1
|
Liu X, Chang Y, Li Y, Liu Y, Chen N, Cui J. Association Between Cardiovascular Health and Retinopathy in US Adults: From NHANES 2005-2008. Am J Ophthalmol 2024; 266:56-67. [PMID: 38762091 DOI: 10.1016/j.ajo.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/28/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
PURPOSE Investigating the relationship between cardiovascular health (CVH) and retinopathy in the adult population of the United States. DESIGN The cross-sectional study. METHODS The study utilized samples, including the diabetes population, from the National Health and Nutrition Examination Survey (NHANES) conducted between 2005 and 2008 (N= 4249), to assess cardiovascular health (CVH) using the Life's Essential 8 (LE8) assessment. Retinopathy is determined through imaging assessment by professionals independently grading fundus photographs. Univariable and multivariable weighted logistic regression models, restricted cubic splines (RCS), subgroup analysis and weighted quantile sum (WQS) regression approaches were employed to assess the association between LE8 score-based CVH status and retinopathy. The mediation analysis was conducted to investigate whether serum albumin levels mediated the relationship between LE8 score and retinopathy. RESULTS In a fully adjusted logistic regression model, participants in the moderate and high CVH groups had a 39% (odds ratio (OR) 0.61, 95% confidence interval (CI) 0.43-0.87, P-value = 0.01) and 56% (OR 0.44, 95% CI 0.25-0.77, P-value < 0.001) lower odds of developing retinopathy compared to the low CVH group. The RCS model indicates a significant non-linear relationship between CVH and retinopathy. The WQS regression analysis suggests that blood glucose (47.65%) and blood pressure (19.41%) have the highest weights in relation to retinopathy. Mediation analysis suggests that serum albumin partially mediates the relationship between LE8 scores and retinopathy. CONCLUSION This study demonstrates a significant negative correlation between overall cardiovascular health measured by LE8 scores and retinopathy. Public health strategies that promote achieving optimal cardiovascular health indicators may help reduce the burden of retinal microvascular diseases.
Collapse
Affiliation(s)
- Xiangliang Liu
- From the The First Hospital of Jilin University (X.L., Y.C., Y.L., N.C., J.C.), Changchun, China
| | - Yu Chang
- From the The First Hospital of Jilin University (X.L., Y.C., Y.L., N.C., J.C.), Changchun, China
| | - Yuguang Li
- From the The First Hospital of Jilin University (X.L., Y.C., Y.L., N.C., J.C.), Changchun, China
| | - Yingrui Liu
- Department of Ophthalmology, Shenzhen People's Hospital (Y.L.), Shenzhen, China
| | - Naifei Chen
- From the The First Hospital of Jilin University (X.L., Y.C., Y.L., N.C., J.C.), Changchun, China.
| | - Jiuwei Cui
- From the The First Hospital of Jilin University (X.L., Y.C., Y.L., N.C., J.C.), Changchun, China.
| |
Collapse
|
2
|
Do T, Van A, Ataei A, Sharma S, Mohandas R. Microvascular Dysfunction in Obesity-Hypertension. Curr Hypertens Rep 2023; 25:447-453. [PMID: 37837517 DOI: 10.1007/s11906-023-01272-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 10/16/2023]
Abstract
PURPOSE OF REVIEW This review aims to explore the role of microvascular dysfunction in obesity-hypertension, discuss the effects obesity has on renal microvasculature, review the current methods for assessing microvascular dysfunction and available therapeutic options, and identify critical areas for further research. RECENT FINDINGS There is a strong association between obesity and hypertension. However, the pathophysiology of obesity-hypertension is not clear. Microvascular dysfunction has been linked to hypertension and obesity and could be an important mediator of obesity-related hypertension. Newer therapies for hypertension and obesity could have ameliorating effects on microvascular dysfunction, including GLP-1 agonists and SGLT-2 inhibitors. There is still much progress to be made in our understanding of the complex interplay between obesity, hypertension, and microvascular dysfunction. Continued efforts to understand microvascular dysfunction and its role in obesity-hypertension are crucial to develop precision therapy to target obesity-hypertension.
Collapse
Affiliation(s)
- Tammy Do
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Ashley Van
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Arash Ataei
- Department of Medicine, LSU Health Sciences Center - New Orleans, New Orleans, LA, USA
| | - Swati Sharma
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA
| | - Rajesh Mohandas
- Section of Nephrology and Hypertension, LSU Health Sciences Center - New Orleans, 2021 Perdido Street, Ste 4325, New Orleans, LA, 70112, USA.
| |
Collapse
|
3
|
Balbino-Silva CS, Couto GK, Lino CA, de Oliveira-Silva T, Lunardon G, Huang ZP, Festuccia WT, Barreto-Chaves ML, Wang DZ, Rossoni LV, Diniz GP. miRNA-22 is involved in the aortic reactivity in physiological conditions and mediates obesity-induced perivascular adipose tissue dysfunction. Life Sci 2023; 316:121416. [PMID: 36690245 DOI: 10.1016/j.lfs.2023.121416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
AIMS Blood vessels are surrounded by perivascular adipose tissue (PVAT), which plays an important role in vascular tonus regulation due to its anticontractile effect; however, this effect is impaired in obesity. We previously demonstrated that miRNA-22 is involved in obesity-related metabolic disorders. However, the impact of miRNA-22 on vascular reactivity and PVAT function is unknown. AIM To investigate the role of miRNA-22 on vascular reactivity and its impact on obesity-induced PVAT dysfunction. MAIN METHODS Wild-type and miRNA-22 knockout (KO) mice were fed a control or a high-fat (HF) diet. To characterize the vascular response, concentration-responses curves to noradrenaline were performed in PVAT- or PVAT+ thoracic aortic rings in absence and presence of L-NAME. Expression of adipogenic and thermogenic markers and NOS isoforms were evaluated by western blotting or qPCR. KEY FINDINGS HF diet and miRNA-22 deletion reduced noradrenaline-induced contraction in PVAT- aortic rings. Additionally, miRNA-22 deletion increased noradrenaline-induced contraction in PVAT+ aortic rings without affecting its sensitivity; however, this effect was not observed in miRNA-22 KO mice fed a HF diet. Interestingly, miRNA-22 deletion reduced the contraction of aortic rings to noradrenaline via a NOS-dependent mechanism. Moreover, HF diet abolished the NOS-mediated anticontractile effect of PVAT, which was attenuated by miRNA-22 deletion. Mechanistically, we found that PVAT from miRNA-22 KO mice fed a HF diet presented increased protein expression of nNOS. SIGNIFICANCE These results suggest that miRNA-22 is important for aorta reactivity under physiological circumstances and its deletion attenuates the loss of the NOS-mediated anticontractile effect of PVAT in obesity.
Collapse
Affiliation(s)
- Camila S Balbino-Silva
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Gisele K Couto
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Caroline A Lino
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Guilherme Lunardon
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Zhan-Peng Huang
- Center for Translational Medicine, The First Affiliated Hospital, NHC Key Laboratory of Assisted Circulation, Sun Yat-sen University, Guangzhou, China
| | - William T Festuccia
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Da-Zhi Wang
- Department of Cardiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Center for Regenerative Medicine, USF Health Heart Institute, University of South Florida, Tampa, FL, USA
| | - Luciana V Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| | - Gabriela P Diniz
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
4
|
Lázaro-Suárez ML, Domínguez de la Mora I, Rodríguez-Aguilar JC, Fortis-Barrera Á, Blancas-Flores G, Gómez-Zamudio JH, Alarcon-Villaseñor EF, Román-Ramos R, Alarcon-Aguilar FJ. Role of Perivascular Adipose Tissue in Aorta Reactivity from Obese and Hyperglycemic CD-1 Mice: New Insights into Perivascular Adipose Tissue. Metab Syndr Relat Disord 2023; 21:101-108. [PMID: 36399542 DOI: 10.1089/met.2022.0050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Background: Perivascular adipose tissue (PVAT) plays an essential role in cardiovascular homeostasis. However, during obesity and diabetes, its role in vascular tone regulation is unclear. This study aimed to evaluate the function of the PVAT on aorta reactivity in the lean and cafeteria (CAF) diet-induced obese-hyperglycemic mice model. Methods: Aorta reactivity to phenylephrine, KCl, and acetylcholine was analyzed in lean (n = 6) and obese mice (n = 6). Also, nitric oxide (NO-) and cyclooxygenase participation, in the presence (n = 6) and absence (n = 6) of PVAT, were examined in the aortas. Results: After a CAF diet for 19 weeks, obese mice showed increased body weight, glucose intolerance, and hypercholesterolemia concerning lean mice. Vascular reactivity to phenylephrine was reduced significantly in the aorta of obese mice. In contrast, the contraction produced by KCl (80 mM) was increased in the aorta of obese mice independent of PVAT. Acetylcholine-induced vasorelaxation diminished in the aortas of obese mice in the presence of PVAT. Nonselective inhibition of cyclooxygenases likely shows that PVAT and endothelium release vasorelaxant prostanoids. Conclusions: The results suggest that PVAT modulates aorta reactivity by releasing NO-, decreasing the α1-adrenergic response to phenylephrine, and probably releasing vasorelaxant prostanoids. The data suggest that PVAT regulates the vascular smooth muscle and endothelial function in a CAF diet-induced obese-hyperglycemic mice model.
Collapse
Affiliation(s)
- Martha L Lázaro-Suárez
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Israel Domínguez de la Mora
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Juan Carlos Rodríguez-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Ángeles Fortis-Barrera
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Gerardo Blancas-Flores
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Jaime H Gómez-Zamudio
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Ciudad de Mexico, Mexico
| | | | - Rubén Román-Ramos
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| | - Francisco Javier Alarcon-Aguilar
- Laboratorio de Farmacología, Departamento de Ciencias de la Salud, DCBS, Universidad Autónoma Metropolitana-Iztapalapa, Ciudad de México, México
| |
Collapse
|
5
|
Zhang B, Wang X, Zhong L, Wang YS. Lipid accumulation product as useful predictors of stroke: A correlation analysis between lipid accumulation index/cerebral vascular hemodynamics indexes and risk factors of stroke in 3264 people undergoing physical examination in Xinjiang. Medicine (Baltimore) 2022; 101:e28444. [PMID: 35029185 PMCID: PMC8757929 DOI: 10.1097/md.0000000000028444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 12/07/2021] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE To investigate the relationship between lipid accumulation index and cerebral hemodynamic integral value in 3264 people undergoing physical examination, so as to analyze the correlation between different lipid accumulation product index (LAP) levels and stroke risk factors. METHODS This cross-sectional study was conducted from January to December 2019 on 3264 adults at the age of 19 to 85 living in Urumqi, Xinjiang. The stroke related risk factors were evaluated by the questionnaire survey. The enrolled subjects were divided into Q1 group (n = 817), Q2 group (n = 815), Q3 group (n = 816) and Q4 group (n = 816) according to the quartile site at a low-to-high-score manner. RESULTS The proportion of males was significantly higher than that of females in Q2, Q3, and Q4 groups. The proportion of middle-aged people and the elderly in Q2, Q3, and Q4 groups was significantly higher than that of youths (P < .05). The proportion of patients with history of hypertension, hyperlipidemia, physical inactivity, and smoking, and the levels of systolic blood pressure, diastolic blood pressure, fasting blood glucose, total cholesterol, high-density cholesterol, low-density cholesterol, triglyceride, body mass index, waist circumference increased with the increase of LAP level in different groups (P < .05). On both sides of the cerebral hemodynamic integral value (CVHI) index, Vmean, Vmax, Vmin showed a decreasing trend whereas peripheral resistance, pulse velocity, Zcv, dynamic resistance, critical pressure level, difference between diastolic and critical pressure showed an increase trend with the increase of LAP level. The normal rate of CVHI in 4 groups (>75 points) was 97.4%, 89.7%, 87.0, and 80.8%, respectively, showing a decreasing trend. Logistic regression results showed that the higher the LAP, the higher the abnormal risk of CVHI. CONCLUSION There is a positive correlation between LAP and CVHI, the higher the LAP, the higher the risk of CVHI abnormality, which should be concerned seriously.
Collapse
Affiliation(s)
- Bing Zhang
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Xiao Wang
- Urumqi General Hospital of Xinjiang Military Region, Urumqi, China
| | - Li Zhong
- School of Basic Medical Science, Xinjiang Medical University, Urumqi, China
| | - Yu-Shan Wang
- Center of Health Management, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
6
|
Yue L, Chen S, Ren Q, Niu S, Pan X, Chen X, Li Z, Chen X. Effects of semaglutide on vascular structure and proteomics in high-fat diet-induced obese mice. Front Endocrinol (Lausanne) 2022; 13:995007. [PMID: 36419767 PMCID: PMC9676360 DOI: 10.3389/fendo.2022.995007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 10/10/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Obesity is a chronic metabolic disease caused by a combination of genetic and environmental factors. To determine whether semaglutide could improve aortic injury in obese C57BL/6J mice, and further explore its molecular mechanism of action using proteomics. METHODS 24 C57BL/6J male mice were randomly divided into normal diet group (NCD group), high-fat diet group (HFD group) and high-fat diet + semaglutide group (Sema group, semaglutide (30 nmol/kg/d) for 12 weeks). The serum samples were collected from mice to detect blood glucose, insulin and blood lipid concentrations. Aortic stiffness was detected by Doppler pulse wave velocity (PWV). Changes in vascular structure were detected by HE, masson, EVG staining and electron microscopy. The aorta-related protein expression profiles were detected by proteomic techniques, and proteins with potential molecular mechanisms were identified. RESULTS Semaglutide could reduce body weight, the concentrations of blood glucose, total cholesterol (TC), triglycerides (TG), lipoprotein cholesterol (LDL-C), and reduce the aortic PWV and ameliorate vascular damage in obese mice. The results of proteomic analysis showed there were 537 up-regulated differentially expressed proteins (DEPs) and 322 down-regulated DEPs in NCD/HFD group, 251 up-regulated DEPs and 237 down-regulated proteins in HFD/Sema group. There were a total of 25 meaningful overlapping DEPs in the NCD/HFD and HFD/Sema groups. GO enrichment analysis of overlapping DEPs found that these differential proteins were mainly located in the signaling pathways of the extracellular matrix. The most obvious changes of extracellular matrix associated proteins in the three experimental groups were Coll5a1, Lama4, Sparc. CONCLUSION Semaglutide may protect vascular structure and improve endothelial permeability by reducing the levels of Coll5a1, Lama4, Sparc in extracellular matrix, so as to improve vascular function and achieve vascular protection.
Collapse
Affiliation(s)
- Lin Yue
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
- Department of Endocrinology, The Third Hospital of Shijiazhuang, Shijiazhuang, China
| | - Shuchun Chen
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
- *Correspondence: Shuchun Chen,
| | - Qingjuan Ren
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Shu Niu
- Department of Endocrinology, Shijiazhuang People’s Hospital, Shijiazhuang, China
| | - Xiaoyu Pan
- Department of Internal Medical, Hebei Medical University, Shijiazhuang, China
| | - Xing Chen
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| | - Zelin Li
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| | - Xiaoyi Chen
- Department of Internal Medical, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
7
|
Guerra-Ojeda S, Marchio P, Gimeno-Raga M, Arias-Mutis ÓJ, San-Miguel T, Valles S, Aldasoro M, Vila JM, Zarzoso M, Mauricio MD. PPARγ as an indicator of vascular function in an experimental model of metabolic syndrome in rabbits. Atherosclerosis 2021; 332:16-23. [PMID: 34375909 DOI: 10.1016/j.atherosclerosis.2021.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 07/09/2021] [Accepted: 08/04/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND AND AIMS Underlying mechanisms associated with vascular dysfunction in metabolic syndrome (MetS) remain unclear and can even vary from one vascular bed to another. METHODS In this study, MetS was induced by a high-fat, high-sucrose diet, and after 28 weeks, aorta and renal arteries were removed and used for isometric recording of tension in organ baths, protein expression by Western blot, and histological analysis to assess the presence of atherosclerosis. RESULTS MetS induced a mild hypertension, pre-diabetes, central obesity and dyslipidaemia. Our results indicated that MetS did not change the contractile response in either the aorta or renal artery. Conversely, vasodilation was affected in both arteries in a different way. The aorta from MetS showed vascular dysfunction, including lower response to acetylcholine and sodium nitroprusside, while the renal artery from MetS presented a preserved relaxation to acetylcholine and an increased sensitivity to sodium nitroprusside. We did not find vascular oxidative stress in the aorta from MetS, but we found a significant decrease in PPARγ, phospho-Akt (p-Akt) and phospho-eNOS (p-eNOS) protein expression. On the other hand, we found oxidative stress in the renal artery from MetS, and PPARγ, Akt and p-Akt were overexpressed. No evidence of atherosclerosis was found in arteries from MetS. CONCLUSIONS MetS affects vascular function differently depending on the vessel. In the aorta, it decreases both the vasodilation and the expression of the PPARγ/Akt/eNOS pathway, while in the renal artery, it increases the expression of PPARγ/Akt signalling pathway without decreasing the vasodilation.
Collapse
Affiliation(s)
- Sol Guerra-Ojeda
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Patricia Marchio
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Marc Gimeno-Raga
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Óscar Julián Arias-Mutis
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Teresa San-Miguel
- Department of Pathology. School of Medicine. University of Valencia, Valencia, Spain
| | - Soraya Valles
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Martin Aldasoro
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - José M Vila
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain
| | - Manuel Zarzoso
- Department of Physiotherapy. School of Physiotherapy. University of Valencia, Valencia, Spain
| | - Maria D Mauricio
- Department of Physiology. School of Medicine. University of Valencia and Institute of Health Research INCLIVA, Valencia, Spain.
| |
Collapse
|
8
|
Humphrey JD. Constrained Mixture Models of Soft Tissue Growth and Remodeling - Twenty Years After. JOURNAL OF ELASTICITY 2021; 145:49-75. [PMID: 34483462 PMCID: PMC8415366 DOI: 10.1007/s10659-020-09809-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 12/29/2020] [Indexed: 05/06/2023]
Abstract
Soft biological tissues compromise diverse cell types and extracellular matrix constituents, each of which can possess individual natural configurations, material properties, and rates of turnover. For this reason, mixture-based models of growth (changes in mass) and remodeling (change in microstructure) are well-suited for studying tissue adaptations, disease progression, and responses to injury or clinical intervention. Such approaches also can be used to design improved tissue engineered constructs to repair, replace, or regenerate tissues. Focusing on blood vessels as archetypes of soft tissues, this paper reviews a constrained mixture theory introduced twenty years ago and explores its usage since by contrasting simulations of diverse vascular conditions. The discussion is framed within the concept of mechanical homeostasis, with consideration of solid-fluid interactions, inflammation, and cell signaling highlighting both past accomplishments and future opportunities as we seek to understand better the evolving composition, geometry, and material behaviors of soft tissues under complex conditions.
Collapse
Affiliation(s)
- J D Humphrey
- Department of Biomedical Engineering, Yale University, New Haven, CT 06520 USA
| |
Collapse
|
9
|
Differential Deleterious Impact of Highly Saturated Versus Monounsaturated Fat Intake on Vascular Function, Structure, and Mechanics in Mice. Nutrients 2021; 13:nu13031003. [PMID: 33808927 PMCID: PMC8003613 DOI: 10.3390/nu13031003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/13/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022] Open
Abstract
Vegetable oils such as palm oil (enriched in saturated fatty acids, SFA) and high-oleic-acid sunflower oil (HOSO, containing mainly monounsaturated fatty acids, MUFA) have emerged as the most common replacements for trans-fats in the food industry. The aim of this study is to analyze the impact of SFA and MUFA-enriched high-fat (HF) diets on endothelial function, vascular remodeling, and arterial stiffness compared to commercial HF diets. Five-week-old male C57BL6J mice were fed a standard (SD), a HF diet enriched with SFA (saturated oil-enriched Food, SOLF), a HF diet enriched with MUFA (unsaturated oil-enriched Food, UOLF), or a commercial HF diet for 8 weeks. Vascular function was analyzed in the thoracic aorta. Structural and mechanical parameters were assessed in mesenteric arteries by pressure myography. SOLF, UOLF, and HF diet reduced contractile responses to phenylephrine and induced endothelial dysfunction in the thoracic aorta. A significant increase in the β-index, and thus in arterial stiffness, was also detected in mesenteric arteries from the three HF groups, due to enhanced deposition of collagen in the vascular wall. SOLF also induced hypotrophic inward remodeling. In conclusion, these data demonstrate a deleterious effect of HF feeding on obesity-related vascular alterations that is exacerbated by SFA.
Collapse
|
10
|
Oxidative Stress and Vascular Damage in the Context of Obesity: The Hidden Guest. Antioxidants (Basel) 2021; 10:antiox10030406. [PMID: 33800427 PMCID: PMC7999611 DOI: 10.3390/antiox10030406] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
The vascular system plays a central role in the transport of cells, oxygen and nutrients between different regions of the body, depending on the needs, as well as of metabolic waste products for their elimination. While the structure of different components of the vascular system varies, these structures, especially those of main arteries and arterioles, can be affected by the presence of different cardiovascular risk factors, including obesity. This vascular remodeling is mainly characterized by a thickening of the media layer as a consequence of changes in smooth muscle cells or excessive fibrosis accumulation. These vascular changes associated with obesity can trigger functional alterations, with endothelial dysfunction and vascular stiffness being especially common features of obese vessels. These changes can also lead to impaired tissue perfusion that may affect multiple tissues and organs. In this review, we focus on the role played by perivascular adipose tissue, the activation of the renin-angiotensin-aldosterone system and endoplasmic reticulum stress in the vascular dysfunction associated with obesity. In addition, the participation of oxidative stress in this vascular damage, which can be produced in the perivascular adipose tissue as well as in other components of the vascular wall, is updated.
Collapse
|
11
|
Inada AC, Silva GT, da Silva LPR, Alves FM, Filiú WFDO, Asato MA, Junior WHK, Corsino J, Figueiredo PDO, Garcez FR, Garcez WS, da Silva RDNO, dos Santos-Eichler RA, Guimarães RDCA, Freitas KDC, Hiane PA. Therapeutic Effects of Morinda citrifolia Linn. (Noni) Aqueous Fruit Extract on the Glucose and Lipid Metabolism in High-Fat/High-Fructose-Fed Swiss Mice. Nutrients 2020; 12:nu12113439. [PMID: 33182564 PMCID: PMC7696076 DOI: 10.3390/nu12113439] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/13/2020] [Accepted: 10/20/2020] [Indexed: 12/28/2022] Open
Abstract
The aim of this study was to evaluate the therapeutic effects of two different doses (250 and 500 mg/kg) of Morinda citrifolia fruit aqueous extract (AE) in high-fat/high-fructose-fed Swiss mice. The food intake, body weight, serum biochemical, oral glucose tolerance test (OGTT), and enzyme-linked immunosorbent assay (ELISA), as well as histological analyses of the liver, pancreatic, and epididymal adipose tissue, were used to determine the biochemical and histological parameters. The chemical profile of the extract was determined by ultra-fast liquid chromatography–diode array detector–tandem mass spectrometry (UFLC–DAD–MS), and quantitative real-time PCR (qRT-PCR) was used to evaluate the gene expressions involved in the lipid and glucose metabolism, such as peroxisome proliferative-activated receptors-γ (PPAR-γ), -α (PPAR-α), fatty acid synthase (FAS), glucose-6-phosphatase (G6P), sterol regulatory binding protein-1c (SREBP-1c), carbohydrate-responsive element-binding protein (ChREBP), and fetuin-A. Seventeen compounds were tentatively identified, including iridoids, noniosides, and the flavonoid rutin. The higher dose of AE (AE 500 mg/kg) was demonstrated to improve the glucose tolerance; however, both doses did not have effects on the other metabolic and histological parameters. AE at 500 mg/kg downregulated the PPAR-γ, SREBP-1c, and fetuin-A mRNA in the liver and upregulated the PPAR-α mRNA in white adipose tissue, suggesting that the hypoglycemic effects could be associated with the expression of genes involved in de novo lipogenesis.
Collapse
Affiliation(s)
- Aline Carla Inada
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
- Correspondence: ; Tel.: +55-(67)-3345-7410
| | - Gabriela Torres Silva
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Laleska Pâmela Rodrigues da Silva
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Flávio Macedo Alves
- Institute of Biosciences, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Wander Fernando de Oliveira Filiú
- Faculty of Pharmaceutical Science, Food and Nutrition, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Marcel Arakaki Asato
- Faculty of Medicine, Federal University of Mato Grosso do Sul—UFMS, Campo Grande, MS 79070-900, Brazil;
| | - Wilson Hino Kato Junior
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Joaquim Corsino
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Patrícia de Oliveira Figueiredo
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Fernanda Rodrigues Garcez
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Walmir Silva Garcez
- Laboratory PRONABio (Laboratory of Bioactive Natural Products)—Chemistry Institute, Federal University of Mato Grosso do Sul-UFMS, Campo Grande, MS 79070-900, Brazil; (W.H.K.J.); (J.C.); (P.d.O.F.); (F.R.G.); (W.S.G.)
| | - Renée de Nazaré Oliveira da Silva
- Department of Pharmacology, Biomedical Sciences Institute, University of São Paulo, São Paulo, SP 05508-900, Brazil; (R.d.N.O.d.S.); (R.A.d.S.-E.)
| | | | - Rita de Cássia Avellaneda Guimarães
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Karine de Cássia Freitas
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| | - Priscila Aiko Hiane
- Post Graduate Program in Health and Development in the Central-West Region of Brazil, Federal University of Mato Grosso do Sul, Campo Grande, MS 79070-900, Brazil; (G.T.S.); (L.P.R.d.S.); (R.d.C.A.G.); (K.d.C.F.); (P.A.H.)
| |
Collapse
|
12
|
Leonardi BF, Gosmann G, Zimmer AR. Modeling Diet-Induced Metabolic Syndrome in Rodents. Mol Nutr Food Res 2020; 64:e2000249. [PMID: 32978870 DOI: 10.1002/mnfr.202000249] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 08/24/2020] [Indexed: 12/17/2022]
Abstract
Standardized animal models represent one of the most valuable tools available to understand the mechanism underlying the metabolic syndrome (MetS) and to seek for new therapeutic strategies. However, there is considerable variability in the studies conducted with this essential purpose. This review presents an updated discussion of the most recent studies using diverse experimental conditions to induce MetS in rodents with unbalanced diets, discusses the key findings in metabolic outcomes, and critically evaluates what we have been learned from them and how to advance in the field. The study includes scientific reports sourced from the Web of Science and PubMed databases, published between January 2013 and June 2020, which used hypercaloric diets to induce metabolic disorders, and address the impact of the diet on metabolic parameters. The collected data are used as support to discuss variables such as sex, species, and age of the animals, the most favorable type of diet, and the ideal diet length to generate metabolic changes. The experimental characteristics propose herein improve the performance of a preclinical model that resembles the human MetS and will guide researchers to investigate new therapeutic alternatives with confidence and higher translational validity.
Collapse
Affiliation(s)
- Bianca F Leonardi
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Grace Gosmann
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| | - Aline R Zimmer
- Phytochemistry and Organic Synthesis Laboratory, Pharmaceutical Sciences Graduate Program, Faculty of Pharmacy, Federal University of Rio Grande do Sul (UFRGS), 2752 Ipiranga avenue, Porto Alegre, RS, 90610-000, Brazil
| |
Collapse
|
13
|
Ottolini M, Hong K, Cope EL, Daneva Z, DeLalio LJ, Sokolowski JD, Marziano C, Nguyen NY, Altschmied J, Haendeler J, Johnstone SR, Kalani MY, Park MS, Patel RP, Liedtke W, Isakson BE, Sonkusare SK. Local Peroxynitrite Impairs Endothelial Transient Receptor Potential Vanilloid 4 Channels and Elevates Blood Pressure in Obesity. Circulation 2020; 141:1318-1333. [PMID: 32008372 PMCID: PMC7195859 DOI: 10.1161/circulationaha.119.043385] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/17/2020] [Indexed: 12/27/2022]
Abstract
BACKGROUND Impaired endothelium-dependent vasodilation is a hallmark of obesity-induced hypertension. The recognition that Ca2+ signaling in endothelial cells promotes vasodilation has led to the hypothesis that endothelial Ca2+ signaling is compromised during obesity, but the underlying abnormality is unknown. In this regard, transient receptor potential vanilloid 4 (TRPV4) ion channels are a major Ca2+ influx pathway in endothelial cells, and regulatory protein AKAP150 (A-kinase anchoring protein 150) enhances the activity of TRPV4 channels. METHODS We used endothelium-specific knockout mice and high-fat diet-fed mice to assess the role of endothelial AKAP150-TRPV4 signaling in blood pressure regulation under normal and obese conditions. We further determined the role of peroxynitrite, an oxidant molecule generated from the reaction between nitric oxide and superoxide radicals, in impairing endothelial AKAP150-TRPV4 signaling in obesity and assessed the effectiveness of peroxynitrite inhibition in rescuing endothelial AKAP150-TRPV4 signaling in obesity. The clinical relevance of our findings was evaluated in arteries from nonobese and obese individuals. RESULTS We show that Ca2+ influx through TRPV4 channels at myoendothelial projections to smooth muscle cells decreases resting blood pressure in nonobese mice, a response that is diminished in obese mice. Counterintuitively, release of the vasodilator molecule nitric oxide attenuated endothelial TRPV4 channel activity and vasodilation in obese animals. Increased activities of inducible nitric oxide synthase and NADPH oxidase 1 enzymes at myoendothelial projections in obese mice generated higher levels of nitric oxide and superoxide radicals, resulting in increased local peroxynitrite formation and subsequent oxidation of the regulatory protein AKAP150 at cysteine 36, to impair AKAP150-TRPV4 channel signaling at myoendothelial projections. Strategies that lowered peroxynitrite levels prevented cysteine 36 oxidation of AKAP150 and rescued endothelial AKAP150-TRPV4 signaling, vasodilation, and blood pressure in obesity. Peroxynitrite-dependent impairment of endothelial TRPV4 channel activity and vasodilation was also observed in the arteries from obese patients. CONCLUSIONS These data suggest that a spatially restricted impairment of endothelial TRPV4 channels contributes to obesity-induced hypertension and imply that inhibiting peroxynitrite might represent a strategy for normalizing endothelial TRPV4 channel activity, vasodilation, and blood pressure in obesity.
Collapse
Affiliation(s)
- Matteo Ottolini
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Kwangseok Hong
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Eric L. Cope
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Zdravka Daneva
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Leon J. DeLalio
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Jennifer D. Sokolowski
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Corina Marziano
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Nhiem Y. Nguyen
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Joachim Altschmied
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, 40021, Germany
| | - Judith Haendeler
- IUF-Leibniz Research Institute for Environmental Medicine, Duesseldorf, 40021, Germany
- Institute of Clinical Chemistry and Laboratory Diagnostic, Medical Faculty, University of Duesseldorf, Duesseldorf, 40021, Germany
| | - Scott R. Johnstone
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Mohammad Y. Kalani
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Min S. Park
- Department of Neurological Surgery, University of Virginia, Charlottesville, VA, 22908, USA
| | - Rakesh P. Patel
- Department of Pathology and Center for Free Radical Biology, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Wolfgang Liedtke
- Department of Neurology, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Brant E. Isakson
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| | - Swapnil K. Sonkusare
- Robert M. Berne Cardiovascular Research Center, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Pharmacology, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia-School of Medicine, Charlottesville, VA, 22908, USA
| |
Collapse
|
14
|
Xu B, Shen J, Li D, Ning B, Guo L, Bing H, Chen J, Li Y. Overexpression of microRNA-9 inhibits 3T3-L1 cell adipogenesis by targeting PNPLA3 via activation of AMPK. Gene 2020; 730:144260. [DOI: 10.1016/j.gene.2019.144260] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 11/06/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
|
15
|
Sartoretto SM, Santos FF, Costa BP, Ceravolo GS, Santos-Eichler R, Carvalho MHC, Fortes ZB, Akamine EH. Involvement of inducible nitric oxide synthase and estrogen receptor ESR2 (ERβ) in the vascular dysfunction in female type 1 diabetic rats. Life Sci 2018; 216:279-286. [PMID: 30447304 DOI: 10.1016/j.lfs.2018.11.030] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 10/31/2018] [Accepted: 11/13/2018] [Indexed: 11/25/2022]
Abstract
AIMS Inflammation is involved in diabetes-related vascular dysfunction. Estrogen receptor ESR2/ERβ induces the expression of inducible nitric oxide (NO) synthase (iNOS) and inflammation. The present study investigated the effect of alloxan-induced type 1 diabetes on the iNOS and ESR2 expression and the effect of the chronic iNOS inhibition on the vascular smooth muscle dysfunction in diabetic female rats. In addition, we evaluated the involvement of ESR2 in iNOS expression. MAIN METHODS Alloxan-induced diabetic female rats were treated or not with iNOS inhibitor (L-NIL). iNOS and ESR2 immunostaining, S-nitrosylated proteins and IL-1β protein expression in aorta and plasmatic NO levels were analyzed. Contractile response to noradrenaline was analyzed in endothelium-denuded aorta. iNOS mRNA expression was analyzed in isolated aortic smooth muscle cells (ASMCs) of female rats, incubated with 22 mM glucose and an ESR2 antagonist. KEY FINDINGS Aortic iNOS and ESR2 immunostaining, S-nitrosylated proteins, IL-1β protein expression and plasmatic NO levels were all increased, whereas noradrenaline-induced contraction was reduced in aorta of diabetic female rats. With the exception of iNOS and ESR2 immunostaining, all these parameters were corrected by L-NIL treatment. High glucose increased iNOS mRNA expression in ASMCs, which was reduced by an ESR2 antagonist. SIGNIFICANCE We demonstrated that increased iNOS-NO contributed to the impairment of the contractile response of aortic smooth muscle cells in female type 1 diabetic rats and that increased expression of iNOS may involve the participation of ESR2/ERβ.
Collapse
Affiliation(s)
- Simone Marcieli Sartoretto
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz Pereira Costa
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Graziela Scalianti Ceravolo
- Department of Physiological Sciences, Biological Sciences Center, State University of Londrina, Paraná, Brazil
| | - Rosângela Santos-Eichler
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Zuleica Bruno Fortes
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Eliana Hiromi Akamine
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
16
|
Hyppönen E, Boucher BJ. Adiposity, vitamin D requirements, and clinical implications for obesity-related metabolic abnormalities. Nutr Rev 2018; 76:678-692. [DOI: 10.1093/nutrit/nuy034] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Elina Hyppönen
- Australian Centre for Population Health Research, Sansom Institute for Health Research, University of South Australia, South Australian Health & Medical Research Institute, Adelaide, Australia
| | - Barbara J Boucher
- Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom
| |
Collapse
|
17
|
Chai BK, Lau YS, Loong BJ, Rais MM, Ting KN, Dharmani DM, Mohankumar SK. Co-administration of conjugated linoleic acid and rosiglitazone increases atherogenic co-efficient and alters isoprenaline-induced vasodilatation in rats fed high fat diet. Physiol Res 2018; 67:729-740. [PMID: 29750886 DOI: 10.33549/physiolres.933706] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cis(c)-9, trans(t)-11 (c9,t11) and t10,c12 isomers of conjugated linoleic acid (CLA) have been reported as agonists of peroxisome proliferator-activated receptor (PPAR) and beneficial in lipidemia and glycemia. However, it is unclear whether CLA isomers enhance or antagonize effects of conventional drugs targeting PPAR. Male Sprague-Dawley rats were fed high fat diet (HFD) for 8 weeks and treated without or with CLA, rosiglitazone or both for 4 weeks. Oral glucose tolerance and surrogate markers of insulin resistance were not significantly different for all treatments compared to untreated normal diet (ND) or HFD group, except lipoprotein levels. The combination of CLA and rosiglitazone had suppressed levels of low and high density lipoproteins (46 % and 25 %, respectively), compared to HFD-alone. Conversely, the atherogenic co-efficient of the animals received HFD or HFD+rosiglitazone+CLA was 2-folds higher than ND, HFD+rosiglitazone or HFD+CLA. Isolated aortic rings from the combined CLA and rosiglitazone treated animals were less sensitive to isoprenaline-induced relaxation among endothelium-denuded aortas with a decreased efficacy and potency (R(max)=53+/-4.7 %; pEC50=6+/-0.2) compared to endothelium-intact aortas (R(max)=100+/-9.9 %; pEC50=7+/-0.2). Our findings illustrate that the combination of CLA and rosiglitazone precede the atherogenic state with impaired endothelium-independent vasodilatation before the onset of HFD-induced insulin resistance.
Collapse
Affiliation(s)
- B K Chai
- Department of Biomedical Sciences, Faculty of Science, University of Nottingham Malaysia Campus, Semenyih, Selangor, Malaysia. TIFAC CORE Herbal Drugs JSS College of Pharmacy, Jagadguru Sri Shivrathreeshwara University, Mysuru, India. or
| | | | | | | | | | | | | |
Collapse
|
18
|
Araujo HN, Victório JA, Valgas da Silva CP, Sponton ACS, Vettorazzi JF, de Moraes C, Davel AP, Zanesco A, Delbin MA. Anti-contractile effects of perivascular adipose tissue in thoracic aorta from rats fed a high-fat diet: role of aerobic exercise training. Clin Exp Pharmacol Physiol 2017; 45:293-302. [PMID: 29265399 DOI: 10.1111/1440-1681.12882] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 10/11/2017] [Accepted: 10/13/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Hygor N. Araujo
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Jamaira A. Victório
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Carmem P. Valgas da Silva
- Department of Physical Education; Institute of Biosciences; São Paulo State University (UNESP); Rio Claro SP Brazil
| | - Amanda C. S. Sponton
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Jean F. Vettorazzi
- Obesity and Comorbidities Research Center; Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | - Camila de Moraes
- School of Physical Education and Sport of Ribeirão Preto; University of São Paulo (USP); RibeirãoPreto SP Brazil
| | - Ana P. Davel
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| | | | - Maria A. Delbin
- Department of Structural and Functional Biology; Institute of Biology; University of Campinas (UNICAMP); Campinas SP Brazil
| |
Collapse
|