1
|
Molefi E, McLoughlin I, Palaniappan R. Transcutaneous Auricular Vagus Nerve Stimulation for Visually Induced Motion Sickness: An eLORETA Study. Brain Topogr 2024; 38:11. [PMID: 39487878 PMCID: PMC11531436 DOI: 10.1007/s10548-024-01088-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), a non-invasive form of electrical brain stimulation, has shown potent therapeutic potential for a wide spectrum of conditions. How taVNS influences the characterization of motion sickness - a long mysterious syndrome with a polysymptomatic onset - remains unclear. Here, to examine taVNS-induced effects on brain function in response to motion-induced nausea, 64-channel electroencephalography (EEG) recordings from 42 healthy participants were analyzed; collected during nauseogenic visual stimulation concurrent with taVNS administration, in a crossover randomized sham-controlled study. Cortical neuronal generators were estimated from the obtained EEG using exact low-resolution brain electromagnetic tomography (eLORETA). While both sham and taVNS increased insula activation during electrical stimulation, compared to baseline, taVNS additionally augmented middle frontal gyrus neuronal activity. Following taVNS, brain regions including the supramarginal, parahippocampal, and precentral gyri were activated. Contrasting sham, taVNS markedly increased activity in the middle occipital gyrus during stimulation. A repeated-measures ANOVA showed that taVNS reduced motion sickness symptoms. This reduction in symptoms correlated with taVNS-induced neural activation. Our findings provide new insights into taVNS-induced brain changes, during and after nauseogenic stimuli exposure, including accompanying behavioral response. Together, these findings suggest that taVNS has promise as an effective neurostimulation tool for motion sickness management.
Collapse
Affiliation(s)
| | - Ian McLoughlin
- ICT Cluster, Singapore Institute of Technology, Singapore, Singapore
| | | |
Collapse
|
2
|
Guo K, Lu Y, Wang X, Duan Y, Li H, Gao F, Wang J. Multi-level exploration of auricular acupuncture: from traditional Chinese medicine theory to modern medical application. Front Neurosci 2024; 18:1426618. [PMID: 39376538 PMCID: PMC11456840 DOI: 10.3389/fnins.2024.1426618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 08/22/2024] [Indexed: 10/09/2024] Open
Abstract
As medical research advances and technology rapidly develops, auricular acupuncture has emerged as a point of growing interest. This paper delves into the intricate anatomy of auricular points, their significance and therapeutic principles in traditional Chinese medicine (TCM), and the underlying mechanisms of auricular acupuncture in contemporary medicine. The aim is to delve deeply into this ancient and mysterious medical tradition, unveiling its multi-layered mysteries in the field of neurostimulation. The anatomical structure of auricular points is complex and delicate, and their unique neurovascular network grants them a special status in neurostimulation therapy. Through exploration of these anatomical features, we not only comprehend the position of auricular points in TCM theory but also provide a profound foundation for their modern medical applications. Through systematic review, we synthesize insights from traditional Chinese medical theory for modern medical research. Building upon anatomical and classical theoretical foundations, we focus on the mechanisms of auricular acupuncture as a unique neurostimulation therapy. This field encompasses neuroregulation, pain management, psychological wellbeing, metabolic disorders, and immune modulation. The latest clinical research not only confirms the efficacy of auricular stimulation in alleviating pain symptoms and modulating metabolic diseases at the endocrine level but also underscores its potential role in regulating patients' psychological wellbeing. This article aims to promote a comprehensive understanding of auricular acupuncture by demonstrating its diverse applications and providing substantial evidence to support its broader adoption in clinical practice.
Collapse
Affiliation(s)
- Kaixin Guo
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yan Lu
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Xiuping Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yunfeng Duan
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Hui Li
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Fengxiao Gao
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jian Wang
- Department of Acupuncture, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
3
|
Abstract
PURPOSE OF REVIEW Migraine brings hours or even days of disability, affecting 15% of the US population and one billion people worldwide. Migraine treatments have improved over the years and there is now a range of non-pharmacologic therapies that can be administered as monotherapy, combined with pharmacologic therapy or combined with other non-pharmacologic therapies to give greater options for those who do not tolerate, do not respond to, or who wish to reduce or avoid pharmacologic treatments. RECENT FINDINGS We conducted a review of the literature on auricular therapy as acute or preventive treatment for migraine, searching the databases of MEDLINE and ClinicalTrials.gov from 2013 to 2023. A total of 43 articles contained at least one search term, with three studies specific to acute or prevention of migraine (one for acute only, one for prevention only and one for both acute and prevention). The population was limited to, adults with migraine ages 18 or older, with the administration of auricular therapy as the intervention. While there have been studies on the use of auricular therapy for pain on two specific standardized auricular therapies, Battlefield Acupuncture (BFA) and National Acupuncture Detoxification Association (NADA), neither of these protocols were utilized in any of the studies specific to migraine management. Each of the three studies used different techniques, with one using acupuncture needles and five specific points and two using semi-permanent needles (remained in for a few days) that were placed in areas that showed high activity. Each of these studies showed auricular therapy to have benefit for the management of migraine. However, the authors of each of the studies recommended further studies. Auricular therapy may be a helpful adjunctive treatment to abort a current migraine attack or aid in reducing the frequency or severity of migraine attacks.
Collapse
Affiliation(s)
- Karen A Williams
- KDW Health Management LLC, 10335 Gulf Beach Hwy Unit 1008, Pensacola, FL, USA.
| |
Collapse
|
4
|
Yang S, Wu YR, Zhan Z, Pan YH, Jiang JF. State- and frequency-dependence in autonomic rebalance mediated by intradermal auricular electroacupuncture stimulation. Front Neurosci 2024; 18:1367266. [PMID: 38846714 PMCID: PMC11153749 DOI: 10.3389/fnins.2024.1367266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/09/2024] [Indexed: 06/09/2024] Open
Abstract
Background Vagus nerve stimulation (VNS) improves diseases such as refractory epilepsy and treatment-resistant depression, likely by rebalancing the autonomic nervous system (ANS). Intradermal auricular electro-acupuncture stimulation (iaES) produces similar effects. The aim of this study was to determine the effects of different iaES frequencies on the parasympathetic and sympathetic divisions in different states of ANS imbalance. Methods We measured heart rate variability (HRV) and heart rate (HR) of non-modeled (normal) rats with the treatment of various frequencies to determine the optimal iaES frequency. The optimized iaES frequency was then applied to ANS imbalance model rats to elucidate its effects. Results 30 Hz and 100 Hz iaES clearly affected HRV and HR in normal rats. 30 Hz iaES increased HRV, and decreased HR. 100 Hz iaES decreased HRV, and increased HR. In sympathetic excited state rats, 30 Hz iaES increased HRV. 100 Hz iaES increased HRV, and decreased HR. In parasympathetic excited state rats, 30 Hz and 100 Hz iaES decreased HRV. In sympathetic inhibited state rats, 30 Hz iaES decreased HRV, while 100 Hz iaES decreased HR. In parasympathetic inhibited rats, 30 Hz iaES decreased HR and 100 Hz iaES increased HRV. Conclusion 30 Hz and 100 Hz iaES contribute to ANS rebalance by increasing vagal and sympathetic activity with different amplifications. The 30 Hz iaES exhibited positive effects in all the imbalanced states. 100 Hz iaES suppressed the sympathetic arm in sympathetic excitation and sympathetic/parasympathetic inhibition and suppressed the vagal arm and promoted the sympathetic arm in parasympathetic excitation and normal states.
Collapse
Affiliation(s)
| | | | | | | | - Jin-Feng Jiang
- Key Laboratory of Acupuncture and Medicine Research of Ministry of Education, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
5
|
Wang Y, Su Y, Wang J, Zhang K, Zhang W, Cui J, Liu Y, Wang X, Bai W. Networks of Nerve Fibers, and Blood and Lymphatic Vessels in the Mouse Auricle: The Structural Basis of Ear Acupuncture. Med Acupunct 2024; 36:79-86. [PMID: 38659726 PMCID: PMC11036157 DOI: 10.1089/acu.2023.0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Abstract
Objective Ear acupuncture, as a system for treating and preventing diseases through stimulation of points on the auricle, has been systematically introduced during the last 60 years. Although the auricular cartography was described somatotopically as an inverted fetus by Paul Nogier, MD, the underlying mechanism of auricular stimulation remains unclear. The aim of this research was to gain an understanding of the structural basis of auricular stimulation, as well as showing the distribution of the nerve fibers, and the blood and lymphatic vessels. Materials and Methods The distribution of nerve fibers, and blood and lymphatic vessels was examined in whole-mount auricular skins of mice by combining the biomarkers protein gene product 9.5, cluster of differentiation 31, and lymphatic-vessel endothelial hyaluronan receptor-1 following tissue-clearing treatment with multiple immunofluorescent staining. Results The labeled nerve fibers, and the blood and lymphatic vessels were distributed extensively in the inner and outer parts of the auricular skin. Auricular nerves aligning with blood vessels ran from the basal region to the peripheral region and crossed over lymphatic vessels, thus forming the neural, vascular, and lymphatic networks. Conclusions As these are important tissue components of auricular skin, this result implies that the auricular nerve fibers, and blood and lymphatic vessels may coordinate with each other to respond directly to auricular stimulation.
Collapse
Affiliation(s)
- Yuqing Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuxin Su
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jia Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Kaiwen Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wenjie Zhang
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingjing Cui
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yihan Liu
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiaoyu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wanzhu Bai
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Ng KB, Guiu Hernandez E, Haszard J, Macrae P, Huckabee ML, Cakmak YO. Transcutaneous auricular vagus nerve stimulation alters cough sensitivity depending on stimulation parameters: potential implications for aspiration risk. Front Neurosci 2024; 18:1265894. [PMID: 38406583 PMCID: PMC10885700 DOI: 10.3389/fnins.2024.1265894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/03/2024] [Indexed: 02/27/2024] Open
Abstract
Background Transcutaneous auricular vagus nerve stimulation (taVNS) is considered a safe and promising tool for limb rehabilitation after stroke, but its effect on cough has never been studied. It is known that the ear and larynx share vagal afferent pathways, suggesting that stimulating the ear with taVNS might have effects on cough sensitivity. The specific stimulation parameters used can influence outcomes. Objective To investigate the effect of various stimulation parameters on change in cough sensitivity, compared to the reference parameter of 25 Hz stimulation at the left concha (most commonly-used parameter for stroke rehabilitation). Design, setting, and participants: Randomized, single-blind, active-controlled, eight-period cross-over design conducted March to August 2022 at a New Zealand research laboratory with 16 healthy participants. Interventions All participants underwent eight stimulation conditions which varied by stimulation side (right ear, left ear), zone (ear canal, concha), and frequency (25 Hz, 80 Hz). Main outcome measures: Change in natural and suppressed cough threshold (from baseline to after 10 min of stimulation) assessed using a citric acid cough reflex test. Results When compared to the reference parameter of 25 Hz stimulation at the left concha, there was a reduction in natural cough threshold of -0.16 mol/L for 80 Hz stimulation at the left canal (p = 0.004), indicating increased sensitivity. For the outcome measure of suppressed cough threshold, there was no significant effect of any of the stimulation conditions compared to the active reference. Conclusion Since stroke patients often have cough hyposensitivity with resulting high risk of silent aspiration, using 80 Hz taVNS at the left canal may be a better choice for future stroke rehabilitation studies than the commonly used 25 Hz taVNS at the left concha. Treatment parameters should be manipulated in future sham-controlled trials to maximize any potential treatment effect of taVNS in modulating cough sensitivity. Clinical trial registration ACTRN12623000128695.
Collapse
Affiliation(s)
- Karen B. Ng
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- University of Canterbury Rose Centre for Stroke Recovery and Research, Christchurch, New Zealand
| | - Esther Guiu Hernandez
- University of Canterbury Rose Centre for Stroke Recovery and Research, Christchurch, New Zealand
| | - Jillian Haszard
- Division of Health Sciences, Biostatistics Centre, University of Otago, Dunedin, New Zealand
| | - Phoebe Macrae
- University of Canterbury Rose Centre for Stroke Recovery and Research, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Maggie-Lee Huckabee
- University of Canterbury Rose Centre for Stroke Recovery and Research, Christchurch, New Zealand
- School of Psychology, Speech and Hearing, University of Canterbury, Christchurch, New Zealand
| | - Yusuf O. Cakmak
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
- Point-of-Care Technologies Theme, Centre for Bioengineering, University of Otago, Dunedin, New Zealand
| |
Collapse
|
7
|
Wang L, Gao F, Wang Z, Liang F, Dai Y, Wang M, Wu J, Chen Y, Yan Q, Wang L. Transcutaneous auricular vagus nerve stimulation in the treatment of disorders of consciousness: mechanisms and applications. Front Neurosci 2023; 17:1286267. [PMID: 37920298 PMCID: PMC10618368 DOI: 10.3389/fnins.2023.1286267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/05/2023] [Indexed: 11/04/2023] Open
Abstract
This review provides an in-depth exploration of the mechanisms and applications of transcutaneous auricular vagus nerve stimulation (taVNS) in treating disorders of consciousness (DOC). Beginning with an exploration of the vagus nerve's role in modulating brain function and consciousness, we then delve into the neuroprotective potential of taVNS demonstrated in animal models. The subsequent sections assess the therapeutic impact of taVNS on human DOC, discussing the safety, tolerability, and various factors influencing the treatment response. Finally, the review identifies the current challenges in taVNS research and outlines future directions, emphasizing the need for large-scale trials, optimization of treatment parameters, and comprehensive investigation of taVNS's long-term effects and underlying mechanisms. This comprehensive overview positions taVNS as a promising and safe modality for DOC treatment, with a focus on understanding its intricate neurophysiological influence and optimizing its application in clinical settings.
Collapse
Affiliation(s)
- Likai Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Fei Gao
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhan Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Feng Liang
- First Clinical Medical College, Shanxi Medical University, Taiyuan, China
| | - Yongli Dai
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Mengchun Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Jingyi Wu
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Yaning Chen
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Qinjie Yan
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| | - Litong Wang
- Department of Rehabilitation Medicine, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Gurtubay IG, Perez-Rodriguez DR, Fernandez E, Librero-Lopez J, Calvo D, Bermejo P, Pinin-Osorio C, Lopez M. Immediate effects and duration of a short and single application of transcutaneous auricular vagus nerve stimulation on P300 event related potential. Front Neurosci 2023; 17:1096865. [PMID: 37051148 PMCID: PMC10083261 DOI: 10.3389/fnins.2023.1096865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/10/2023] [Indexed: 03/28/2023] Open
Abstract
IntroductionTranscutaneous auricular vagus nerve stimulation (taVNS) is a neuromodulatory technique that stimulates the auricular branch of the vagus nerve. The modulation of the locus coeruleus-norepinephrine (LC-NE) network is one of the potential working mechanisms of this method. Our aims were 1-to investigate if short and single applications of taVNS can modulate the P300 cognitive event-related potential (ERP) as an indirect marker that reflects NE brain activation under control of the LC, and 2-to evaluate the duration of these changes.Methods20 healthy volunteers executed an auditory oddball paradigm to obtain P300 and reaction time (RT) values. Then a 7 min active or sham taVNS period was initiated and simultaneously a new P300 paradigm was performed. We successively repeated the paradigm on 4 occasions with different time intervals up to 56 min after the stimulation onset.ResultsDuring active taVNS an immediate and significant effect of increasing the amplitude and reducing the latency of P300, as well as a shortening in the RT was observed. This effect was prolonged in time up to 28 min. The values then returned to pre-stimulation levels. Sham stimulation did not generate changes.DiscussionOur results, demonstrate differential facilitating effects in a concrete time window after taVNS. Literature about the modulatory effect of taVNS over P300 ERP shows a wide spread of results. There is not a standardized system for taVNS and currently the great heterogeneity of stimulation approaches concerning targets and parameters, make it difficult to obtain conclusions about this relationship. Our study was designed optimizing several stimulation settings, such as a customized earbud stimulator, enlarged stimulating surface, simultaneous stimulation over the cymba and cavum conchae, a Delayed Biphasic Pulse Burst and current controlled stimulation that adjusted the output voltage and guaranteed the administration of a preset electrical dose. Under our stimulation conditions, targeting vagal nerve fibers via taVNS modulates the P300 in healthy participants. The optimal settings of modulatory function of taVNS on P300, and their interdependency is insufficiently studied in the literature, but our data provides several easily optimizable parameters, that will produce more robust results in future.
Collapse
Affiliation(s)
- Iñaki G. Gurtubay
- Department of Neurophysiology, University Hospital of Navarre, Pamplona, Spain
- Navarrabiomed Biomedical Research Centre, Pamplona, Spain
- *Correspondence: Iñaki G. Gurtubay,
| | | | | | | | - David Calvo
- Arrhythmia Unit, Cardiovascular Institute, Hospital Clínico San Carlos, Madrid, Asturias, Spain
| | - Pedro Bermejo
- Neurologist, Translational Medicine UCB Pharma, Brussels, Belgium
| | | | - Miguel Lopez
- Xana Smart Neurostimulation, Epalinges, Switzerland
| |
Collapse
|
9
|
Zhang ZJ, Zhang SY, Yang XJ, Qin ZS, Xu FQ, Jin GX, Hou XB, Liu Y, Cai JF, Xiao HB, Wong YK, Zheng Y, Shi L, Zhang JN, Zhao YY, Xiao X, Zhang LL, Jiao Y, Wang Y, He JK, Chen GB, Rong PJ. Transcutaneous electrical cranial-auricular acupoint stimulation versus escitalopram for mild-to-moderate depression: An assessor-blinded, randomized, non-inferiority trial. Psychiatry Clin Neurosci 2023; 77:168-177. [PMID: 36445151 DOI: 10.1111/pcn.13512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
AIM Transcutaneous electrical cranial-auricular acupoint stimulation (TECAS) is a novel non-invasive therapy that stimulates acupoints innervated by the trigeminal and auricular vagus nerves. An assessor-blinded, randomized, non-inferiority trial was designed to compare the efficacy of TECAS and escitalopram in mild-to-moderate major depressive disorder. METHODS 468 participants received two TECAS sessions per day at home (n = 233) or approximately 10-13 mg/day escitalopram (n = 235) for 8 weeks plus 4-week follow-up. The primary outcome was clinical response, defined as a baseline-to-endpoint ≥50% reduction in Montgomery-Åsberg Depression Rating Scale (MADRS) score. Secondary outcomes included remission rate, changes in the severity of depression, anxiety, sleep and life quality. RESULTS The response rate was 66.4% on TECAS and 63.2% on escitalopram with a 3.2% difference (95% confidence interval [CI], -5.9% to 12.9%) in intention-to-treat analysis, and 68.5% versus 66.2% with a 2.3% difference (95% CI, -6.9% to 11.4%) in per-protocol analysis. The lower limit of 95% CI of the differences fell within the prespecified non-inferiority margin of -10% (P ≤ 0.004 for non-inferiority). Most secondary outcomes did not differ between the two groups. TECAS-treated participants who experienced psychological trauma displayed a markedly greater response than those without traumatic experience (81.3% vs 62.1%, P = 0.013). TECAS caused much fewer adverse events than escitalopram. CONCLUSIONS TECAS was comparable to escitalopram in improving depression and related symptoms, with high acceptability, better safety profile, and particular efficacy in reducing trauma-associated depression. It could serve an effective portable therapy for mild-to-moderate depression.
Collapse
Affiliation(s)
- Zhang-Jin Zhang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Shui-Yan Zhang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Xin-Jing Yang
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Zong-Shi Qin
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Feng-Quan Xu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Gui-Xing Jin
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiao-Bing Hou
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Yong Liu
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Ji-Fu Cai
- Department of Neurology, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Hai-Bing Xiao
- Department of Neurology, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China
| | - Yat Kwan Wong
- Department of Chinese Medicine, the University of Hong Kong-Shenzhen Hospital (HKU-SZH), Shenzhen, China.,School of Chinese Medicine, LKS Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yu Zheng
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Lei Shi
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Jin-Niu Zhang
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yuan-Yuan Zhao
- The First Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xue Xiao
- Beijing First Hospital of Integrated Chinese and Western Medicine, Beijing, China
| | - Liu-Lu Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Yue Jiao
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China.,Department of TCM, Tsinghua University Hospital Beijing, Beijing, China
| | - Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Jia-Kai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| | - Guo-Bing Chen
- Department of Microbiology and Immunology, School of Medicine; Institute of Geriatric Immunology, School of Medicine, Jinan University, Guangzhou, China
| | - Pei-Jing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences (CACMS), Beijing, China
| |
Collapse
|
10
|
Safety of transcutaneous auricular vagus nerve stimulation (taVNS): a systematic review and meta-analysis. Sci Rep 2022; 12:22055. [PMID: 36543841 PMCID: PMC9772204 DOI: 10.1038/s41598-022-25864-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) has been investigated as a novel neuromodulation tool. Although taVNS is generally considered safe with only mild and transient adverse effects (AEs), those specifically caused by taVNS have not yet been investigated. This systematic review and meta-analysis on taVNS aimed to (1) systematically analyze study characteristics and AE assessment, (2) characterize and analyze possible AEs and their incidence, (3) search for predictable risk factors, (4) analyze the severity of AE, and (5) suggest an evidence-based taVNS adverse events questionnaire for safety monitoring. The articles searched were published through April 7, 2022, in Medline, Embase, Web of Science, Cochrane, and Lilacs databases. In general, we evaluated 177 studies that assessed 6322 subjects. From these, 55.37% of studies did not mention the presence or absence of any AEs; only 24.86% of the studies described that at least one adverse event occurred. In the 35 studies reporting the number of subjects with at least one adverse event, a meta-analytic approach to calculate the risk differences of developing an adverse event between active taVNS and controls was used. The meta-analytic overall adverse events incidence rate was calculated for the total number of adverse events reported on a 100,000 person-minutes-days scale. There were no differences in risk of developing an adverse event between active taVNS and controls. The incidence of AE, in general, was 12.84/100,000 person-minutes-days of stimulation, and the most frequently reported were ear pain, headache, and tingling. Almost half of the studies did not report the presence or absence of any AEs. We attribute this to the absence of AE in those studies. There was no causal relationship between taVNS and severe adverse events. This is the first systematic review and meta-analysis of transcutaneous auricular stimulation safety. Overall, taVNS is a safe and feasible option for clinical intervention.
Collapse
|
11
|
Garcia RG, Staley R, Aroner S, Stowell J, Sclocco R, Napadow V, Barbieri R, Goldstein JM. Optimization of respiratory-gated auricular vagus afferent nerve stimulation for the modulation of blood pressure in hypertension. Front Neurosci 2022; 16:1038339. [PMID: 36570845 PMCID: PMC9783922 DOI: 10.3389/fnins.2022.1038339] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
Background The objective of this pilot study was to identify frequency-dependent effects of respiratory-gated auricular vagus afferent nerve stimulation (RAVANS) on the regulation of blood pressure and heart rate variability in hypertensive subjects and examine potential differential effects by sex/gender or race. Methods Twenty hypertensive subjects (54.55 ± 6.23 years of age; 12 females and 8 males) were included in a within-person experimental design and underwent five stimulation sessions where they received RAVANS at different frequencies (i.e., 2 Hz, 10 Hz, 25 Hz, 100 Hz, or sham stimulation) in a randomized order. EKG and continuous blood pressure signals were collected during a 10-min baseline, 30-min stimulation, and 10-min post-stimulation periods. Generalized estimating equations (GEE) adjusted for baseline measures were used to evaluate frequency-dependent effects of RAVANS on heart rate, high frequency power, and blood pressure measures, including analyses stratified by sex and race. Results Administration of RAVANS at 100 Hz had significant overall effects on the reduction of heart rate (β = -2.03, p = 0.002). It was also associated with a significant reduction of diastolic (β = -1.90, p = 0.01) and mean arterial blood pressure (β = -2.23, p = 0.002) in Black hypertensive participants and heart rate in female subjects (β = -2.83, p = 0.01) during the post-stimulation period when compared to sham. Conclusion Respiratory-gated auricular vagus afferent nerve stimulation exhibits frequency-dependent rapid effects on the modulation of heart rate and blood pressure in hypertensive patients that may further differ by race and sex. Our findings highlight the need for the development of optimized stimulation protocols that achieve the greatest effects on the modulation of physiological and clinical outcomes in this population.
Collapse
Affiliation(s)
- Ronald G. Garcia
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- School of Medicine, Universidad de Santander, Bucaramanga, Colombia
| | - Rachel Staley
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Aroner
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jessica Stowell
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
- Department of Gastroenterology and Center for Neurointestinal Health, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Vitaly Napadow
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Scott Schoen and Nancy Adams Discovery Center for Recovery from Chronic Pain, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Riccardo Barbieri
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy
- Department of Anesthesia and Critical Care, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Jill M. Goldstein
- Clinical Neuroscience Laboratory of Sex Differences in the Brain, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Innovation Center on Sex Differences in Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
12
|
Dabiri B, Zeiner K, Nativel A, Kaniusas E. Auricular vagus nerve stimulator for closed-loop biofeedback-based operation. ANALOG INTEGRATED CIRCUITS AND SIGNAL PROCESSING 2022; 112:237-246. [PMID: 35571976 PMCID: PMC9087171 DOI: 10.1007/s10470-022-02037-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/02/2022] [Accepted: 04/13/2022] [Indexed: 06/15/2023]
Abstract
Auricular vagus nerve stimulation (aVNS) is a novel neuromodulatory therapy used for treatment of various chronic systemic disorders. Currently, aVNS is non-individualized, disregarding the physiological state of the patient and therefore making it difficult to reach optimum therapeutic outcomes. A closed-loop aVNS system is required to avoid over-stimulation and under-stimulation of patients, leading to personalized and thus improved therapy. This can be achieved by continuous monitoring of individual physiological parameters that serve as a basis for the selection of optimal aVNS settings. In this work we developed a novel aVNS hardware for closed-loop application, which utilizes cardiorespiratory sensing using embedded sensors (and/or external sensors), processes and analyzes the acquired data in real-time, and directly governs settings of aVNS. We show in-lab that aVNS stimulation can be arbitrarily synchronized with respiratory and cardiac phases (as derived from respiration belt, electrocardiography and/or photo plethysmography) while mimicking baroreceptor-related afferent input along the vagus nerve projecting into the brain. Our designed system identified > 90% of all respiratory and cardiac cycles and activated stimulation at the target point with a precision of ± 100 ms despite the intrinsic respiratory and heart rate variability reducing the predictability. The developed system offers a solid basis for future clinical research into closed-loop aVNS in favour of personalized therapy.
Collapse
Affiliation(s)
- Babak Dabiri
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Klaus Zeiner
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Arnaud Nativel
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| |
Collapse
|
13
|
Leon-Ariza JS, Mosquera MA, Siomin V, Fonseca A, Leon-Ariza DS, Gualdron MA, Leon-Sarmiento FE. The Vagus Nerve Somatosensory-evoked Potential in Neural Disorders: Systematic Review and Illustrative Vignettes. Clin EEG Neurosci 2022; 53:256-263. [PMID: 33709798 DOI: 10.1177/15500594211001221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Objective. To review the scientific publications reporting vagal nerve somatosensory-evoked potential (VSEP) findings from individuals with brain disorders, and present novel physiological explanations on the VSEP origin. Methods. We did a systematic review on the papers reporting VSEP findings from individuals with brain disorders and their controls. We evaluated papers published from 2003 to date indexed in PubMed, Web of Science, and Scielo databases. We extracted the following information: number of patients and controls, type of neural disorder, age, gender, stimulating/recording and grounding electrodes as well as stimulus side, intensity, duration, frequency, and polarity. Information about physiological parameters, neurobiological variables, and correlation studies was also reviewed. Representative vignettes were included to add support to our conclusions. Results. The VSEP was studied in 297 patients with neural disorders such as Parkinson's disease (PD), Alzheimer's disease, vascular dementia, mild cognitive impairment, subjective memory impairment, major depression, and multiple sclerosis. Scalp responses marked as the VSEP showed high variability, low validity, and poor reproducibility. VSEP latencies and amplitudes did not correlate with disease duration, unified PD rating scale score, or heart function in PD patients nor with cerebrospinal fluid β amyloid, phosphor-τ, and cognitive tests from patients with mental disorders. Vignettes demonstrated that the VSEP was volume conduction propagating from muscles surrounding the scalp recording electrodes. Conclusion. The VSEP is not a brain-evoked potential of neural origin but muscle activity induced by electrical stimulation of the tragus region of the ear. This review and illustrative vignettes argue against assessing the parasympathetic system using the so-called VSEP.
Collapse
Affiliation(s)
| | - Mario A Mosquera
- Miami Neuroscience Institute, Baptist Hospital South Florida, Miami, FL, USA
| | - Vitaly Siomin
- Miami Neuroscience Institute, Baptist Hospital South Florida, Miami, FL, USA
| | - Angelo Fonseca
- Miami Neuroscience Institute, Baptist Hospital South Florida, Miami, FL, USA
| | | | | | - Fidias E Leon-Sarmiento
- Miami Neuroscience Institute, Baptist Hospital South Florida, Miami, FL, USA.,Parkinson's Disease Research Laboratory, 5450Florida International University, Miami, FL, USA
| |
Collapse
|
14
|
Wang Y, Li L, Li S, Fang J, Zhang J, Wang J, Zhang Z, Wang Y, He J, Zhang Y, Rong P. Toward Diverse or Standardized: A Systematic Review Identifying Transcutaneous Stimulation of Auricular Branch of the Vagus Nerve in Nomenclature. Neuromodulation 2022; 25:366-379. [PMID: 35396069 DOI: 10.1111/ner.13346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/19/2020] [Accepted: 11/23/2020] [Indexed: 12/26/2022]
Abstract
OBJECTIVES After 20 years of development, there is confusion in the nomenclature of transcutaneous stimulation of the auricular branch of the vagus nerve (ABVN). We performed a systematic review of transcutaneous stimulation of ABVN in nomenclature. MATERIALS AND METHODS A systematic search of the literature was carried out, using the bibliographic search engine PubMed. The search covered articles published up until June 11, 2020. We recorded the full nomenclature and abbreviated nomenclature same or similar to transcutaneous stimulation of ABVN in the selected eligible studies, as well as the time and author information of this nomenclature. RESULTS From 261 studies, 67 full nomenclatures and 27 abbreviated nomenclatures were finally screened out, transcutaneous vagus nerve stimulation and tVNS are the most common nomenclature, accounting for 38.38% and 42.06%, respectively. In a total of 97 combinations of full nomenclatures and abbreviations, the most commonly used nomenclature for the combination of transcutaneous vagus nerve stimulation and tVNS, accounting for 30.28%. Interestingly, the combination of full nomenclatures and abbreviations is not always a one-to-one relationship, there are ten abbreviated nomenclatures corresponding to transcutaneous vagus nerve stimulation, and five full nomenclatures corresponding to tVNS. In addition, based on the analysis of the usage habits of nomenclature in 21 teams, it is found that only three teams have fixed habits, while other different teams or the same team do not always use the same nomenclature in their paper. CONCLUSIONS The phenomenon of confusion in the nomenclature of transcutaneous stimulation of ABVN is obvious and shows a trend of diversity. The nomenclature of transcutaneous stimulation of ABVN needs to become more standardized in the future.
Collapse
Affiliation(s)
- Yu Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liang Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Shaoyuan Li
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiliang Fang
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jinling Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junying Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zixuan Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yifei Wang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jiakai He
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yue Zhang
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Peijing Rong
- Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
15
|
Li L, Wang D, Pan H, Huang L, Sun X, He C, Wei Q. Non-invasive Vagus Nerve Stimulation in Cerebral Stroke: Current Status and Future Perspectives. Front Neurosci 2022; 16:820665. [PMID: 35250458 PMCID: PMC8888683 DOI: 10.3389/fnins.2022.820665] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/25/2022] [Indexed: 12/26/2022] Open
Abstract
Stroke poses a serious threat to human health and burdens both society and the healthcare system. Standard rehabilitative therapies may not be effective in improving functions after stroke, so alternative strategies are needed. The FDA has approved vagus nerve stimulation (VNS) for the treatment of epilepsy, migraines, and depression. Recent studies have demonstrated that VNS can facilitate the benefits of rehabilitation interventions. VNS coupled with upper limb rehabilitation enhances the recovery of upper limb function in patients with chronic stroke. However, its invasive nature limits its clinical application. Researchers have developed a non-invasive method to stimulate the vagus nerve (non-invasive vagus nerve stimulation, nVNS). It has been suggested that nVNS coupled with rehabilitation could be a promising alternative for improving muscle function in chronic stroke patients. In this article, we review the current researches in preclinical and clinical studies as well as the potential applications of nVNS in stroke. We summarize the parameters, advantages, potential mechanisms, and adverse effects of current nVNS applications, as well as the future challenges and directions for nVNS in cerebral stroke treatment. These studies indicate that nVNS has promising efficacy in reducing stroke volume and attenuating neurological deficits in ischemic stroke models. While more basic and clinical research is required to fully understand its mechanisms of efficacy, especially Phase III trials with a large number of patients, these data suggest that nVNS can be applied easily not only as a possible secondary prophylactic treatment in chronic cerebral stroke, but also as a promising adjunctive treatment in acute cerebral stroke in the near future.
Collapse
Affiliation(s)
- Lijuan Li
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Dong Wang
- Department of Rehabilitation Medicine, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Hongxia Pan
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Liyi Huang
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Xin Sun
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Chengqi He
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
| | - Quan Wei
- Rehabilitation Medicine Center and Institute of Rehabilitation Medicine, West China Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Rehabilitation Medicine in Sichuan Province, Sichuan University, Chengdu, China
- *Correspondence: Quan Wei,
| |
Collapse
|
16
|
Ludwig M, Wienke C, Betts MJ, Zaehle T, Hämmerer D. Current challenges in reliably targeting the noradrenergic locus coeruleus using transcutaneous auricular vagus nerve stimulation (taVNS). Auton Neurosci 2021; 236:102900. [PMID: 34781120 DOI: 10.1016/j.autneu.2021.102900] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 10/15/2021] [Indexed: 12/11/2022]
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS), as a non-invasive brain stimulation technique may influence the locus coeruleus-norepinephrine system (LC-NE system) via modulation of the Vagus Nerve (VN) which projects to the LC. Few human studies exist examining the effects of taVNS on the LC-NE system and studies to date assessing the ability of taVNS to target the LC yield heterogeneous results. The aim of this review is to present an overview of the current challenges in assessing effects of taVNS on LC function and how translational approaches spanning animal and human research can help in this regard. A particular emphasis of the review discusses how the effects of taVNS may be influenced by changes in structure and function of the LC-NE system across the human lifespan and in disease.
Collapse
Affiliation(s)
- Mareike Ludwig
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany.
| | - Christian Wienke
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Matthew J Betts
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Tino Zaehle
- Department of Neurology, Section of Neuropsychology, Otto-v.-Guericke University, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Dorothea Hämmerer
- Institute for Cognitive Neurology and Dementia Research, Faculty of Medicine, University Hospital Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London, UK; Department of Psychology, University of Innsbruck; CBBS Center for Behavioral Brain Sciences, Magdeburg, Germany
| |
Collapse
|
17
|
de Gurtubay IG, Bermejo P, Lopez M, Larraya I, Librero J. Evaluation of different vagus nerve stimulation anatomical targets in the ear by vagus evoked potential responses. Brain Behav 2021; 11:e2343. [PMID: 34551214 PMCID: PMC8613407 DOI: 10.1002/brb3.2343] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/05/2021] [Accepted: 08/09/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Electrical auricular vagus nerve stimulation (taVNS) is an emerging therapy. Stimuli are transported to brainstem nuclei, whereby its multiple projections reach to many subcortical and cortical areas, thus allowing the neuromodulation of several systemic physiological processes. We aim to define the best auricular target for taVNS through vagus somatosensory evoked potential (VSEP) elicited stimulating different auricular areas with different electrode sizes. METHODS Twenty-six subjects were enrolled. Three stimulation areas were studied: simultaneous cymba and cavum (CC), cymba (C) and earlobe (L); and two electrode sizes: extra-large (X) and small (S). We studied the effect of five combinations (CCX, CCS, CS, LX and LS) on VSEP´s latency and amplitude, and sensory and pain threshold (Pt) using a lineal mixed model regression analysis. We used CS combination, used in a commercial device, as reference model. RESULTS Valid VSEP were obtained for CCX, CCS and CS but not in LX and LS. Both CCS and CCX tests showed significant amplitude increases. The same effect was observed in CCX using CCS as reference. Significant increases in Pt were found for CCX and LX. The same effect was observed in CCX using LX as reference. CONCLUSION The results suggest that CC and C areas are active targets for taVNS but not for earlobe, as anatomical data support. Considering that amplitude reflects the synchronized electrical activity generated, we conclude the most effective topography is the simultaneous stimulation of cymba and concha. The use of X-sized electrodes increases the amplitudes and makes the stimulation more comfortable.
Collapse
Affiliation(s)
| | - Pedro Bermejo
- Department of Neurology, Puerta de Hierro Hospital, Madrid, Spain.,Walden Medical Neurodigital Therapies, Gijón, Spain
| | - Miguel Lopez
- Walden Medical Neurodigital Therapies, Gijón, Spain
| | | | - Julian Librero
- Biomedical Research Centre of the Government of Navarre, Pamplona, Spain
| |
Collapse
|
18
|
Kreisberg E, Esmaeilpour Z, Adair D, Khadka N, Datta A, Badran BW, Bremner JD, Bikson M. High-resolution computational modeling of the current flow in the outer ear during transcutaneous auricular Vagus Nerve Stimulation (taVNS). Brain Stimul 2021; 14:1419-1430. [PMID: 34517143 PMCID: PMC8608747 DOI: 10.1016/j.brs.2021.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Transcutaneous auricular Vagus Nerve Stimulation (taVNS) applies low-intensity electrical current to the ear with the intention of activating the auricular branch of the Vagus nerve. The sensitivity and selectivity of stimulation applied to the ear depends on current flow pattern produced by a given electrode montage (size and placement). OBJECTIVE We compare different electrodes designs for taVNS considering both the predicted peak electric fields (sensitivity) and their spatial distribution (selectivity). METHODS Based on optimized high-resolution (0.47 mm) T1 and T2 weighted MRI, we developed an anatomical model of the left ear and the surrounding head tissues including brain, CSF/meninges, skull, muscle, blood vessels, fat, cartilage, and skin. The ear was further segmented into 6 regions of interest (ROI) based on various nerve densities: cavum concha, cymba concha, crus of helix, tragus, antitragus, and earlobe. A range of taVNS electrode montages were reproduced spanning varied electrodes sizes and placements over the tragus, cymba concha, earlobe, cavum concha, and crus of helix. Electric field across the ear (from superficial skin to cartilage) for each montage at 1 mA or 2 mA taVNS, assuming an activation threshold of 6.15 V/m, 12.3 V/m or 24.6 V/m was predicted using a Finite element method (FEM). Finally, considering every ROI, we calculated the sensitivity and selectivity of each montage. RESULTS Current flow patterns through the ear were highly specific to the electrode montage. Electric field was maximal at the ear regions directly under the electrodes, and for a given total current, increases with decreasing electrode size. Depending on the applied current and nerves threshold, activation may also occur in the regions between multiple anterior surface electrodes. Each considered montage was selective for one or two regions of interest. For example, electrodes across the tragus restricted significant electric field to the tragus. Stimulation across the earlobe restricted significant electric field to the earlobe and the antitragus. Because of this relative selectivity, use of control ear montages in experimental studies, support testing of targeting. Relative targeting was robust across assumptions of activation threshold and tissue properties. DISCUSSION Computational models provide additional insight on how details in electrode shape and placement impact sensitivity (how much current is needed) and selectivity (spatial distribution), thereby supporting analysis of existing approaches and optimization of new devices. Our result suggest taVNS current patterns and relative target are robust across individuals, though (variance in) axon morphology was not represented.
Collapse
Affiliation(s)
- Erica Kreisberg
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Zeinab Esmaeilpour
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Devin Adair
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA
| | - Niranjan Khadka
- Department of Psychiatry, Division of Neuropsychiatry and Neuromodulation, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Abhishek Datta
- Research and Development, Soterix Medical, New York, USA, The City College of the City University of New York, New York, USA
| | - Bashar W Badran
- Department of Psychiatry, Medical University of South Carolina, Charleston, SC, USA
| | - J Douglas Bremner
- Departments of Psychiatry & Behavioral Sciences and Radiology, Emory University School of Medicine, And the Atlanta VA Medical Center, Decatur, Atlanta, GA, USA
| | - Marom Bikson
- Department of Biomedical Engineering, The City College of New York, New York, NY, USA.
| |
Collapse
|
19
|
Song HY, Shin DW, Jung SM, Jeong Y, Jeong B, Park CS. Feasibility study on transcutaneous auricular vagus nerve stimulation using millimeter waves. Biomed Phys Eng Express 2021; 7. [PMID: 34647906 DOI: 10.1088/2057-1976/ac2c54] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 10/01/2021] [Indexed: 11/12/2022]
Abstract
Objective. Electrical stimulation of the auricular vagus nerve is a non-invasive neuromodulation technique that has been used for various conditions, including depression, epilepsy, headaches, and cerebral ischemia. However, unwanted non-vagal nerve stimulations can occur because of diffused stimulations. The objective of this study is to develop a region-specific non-invasive vagus nerve stimulation (VNS) technique using the millimeter wave (MMW) as a stimulus for the auricular branch of the vagus nerve (ABVN).Approach. A numerical simulation was conducted to ascertain whether the MMW could excite the ABVN in the human outer-ear with a millimeter-scale spatial resolution. Additionally, MMW-induced neuronal responses in seven mice were evaluated. Transcutaneous auricular VNS (ta-VNS) was applied to the cymba conchae innervated by the AVBN using a 60-GHz continuous wave (CW). As a control, the auricle's exterior margin was stimulated and referred to as transcutaneous auricular non-vagus nerve stimulation (ta-nonVNS). During stimulation, the local field potential (LFP) in the nucleus tractus solitarii (NTS), an afferent vagal projection site, was recorded simultaneously.Main results. The ta-VNS with a stimulus level of 13 dBm showed a significant increase in the LFP power in the NTS. The mean increases in power (n = 7) in the gamma high and gamma very high bands were 8.6 ± 2.0% and 18.2 ± 5.9%, respectively. However, the ta-nonVNS with a stimulus level of 13 dBm showed a significant decrease in the LFP power in the NTS. The mean decreases in power in the beta and gamma low bands were 11.0 ± 4.4% and 10.8 ± 2.8%, respectively. These findings suggested that MMW stimulation clearly induced a different response according to the presence of ABVN.Significance. Selective auricular VNS is feasible using the MMW. This study provides the basis for the development of a new clinical treatment option using the stimulation of the ta-VNS with a square millimeter spatial resolution.
Collapse
Affiliation(s)
- Hi Yuen Song
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Dong Woo Shin
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Seung Moon Jung
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daejeon, Republic of Korea
| | - Yong Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daejeon, Republic of Korea.,KI for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Bumseok Jeong
- Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daejeon, Republic of Korea.,KI for Health Science and Technology, Daejeon, 34141, Republic of Korea
| | - Chul Soon Park
- School of Electrical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| |
Collapse
|
20
|
Transcutaneous auricular VNS applied to experimental pain: A paired behavioral and EEG study using thermonociceptive CO2 laser. PLoS One 2021; 16:e0254480. [PMID: 34252124 PMCID: PMC8274876 DOI: 10.1371/journal.pone.0254480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 06/24/2021] [Indexed: 11/19/2022] Open
Abstract
Background Transcutaneous auricular Vagal Nerve Stimulation (taVNS) is a non-invasive neurostimulation technique with potential analgesic effects. Several studies based on subjective behavioral responses suggest that taVNS modulates nociception differently with either pro-nociceptive or anti-nociceptive effects. Objective This study aimed to characterize how taVNS alters pain perception, by investigating its effects on event-related potentials (ERPs) elicited by different types of spinothalamic and lemniscal somatosensory stimuli, combined with quantitative sensory testing (detection threshold and intensity ratings). Methods We performed 3 experiments designed to study the time-dependent effects of taVNS and compare with standard cervical VNS (cVNS). In Experiment 1, we assessed the effects of taVNS after 3 hours of stimulation. In Experiment 2, we focused on the immediate effects of the duty cycle (OFF vs. ON phases). Experiments 1 and 2 included 22 and 15 healthy participants respectively. Both experiments consisted of a 2-day cross-over protocol, in which subjects received taVNS and sham stimulation sequentially. In addition, subjects received a set of nociceptive (thermonociceptive CO2 laser, mechanical pinprick) and non-nociceptive (vibrotactile, cool) stimuli, for which we recorded detection thresholds, intensity of perception and ERPs. Finally, in Experiment 3, we tested 13 epileptic patients with an implanted cVNS by comparing OFF vs. ON cycles, using a similar experimental procedure. Results Neither taVNS nor cVNS appeared to modulate the cerebral and behavioral aspects of somatosensory perception. Conclusion The potential effect of taVNS on nociception requires a cautious interpretation, as we found no objective change in behavioral and cerebral responses to spinothalamic and lemniscal somatosensory stimulations.
Collapse
|
21
|
Urbin MA, Lafe CW, Simpson TW, Wittenberg GF, Chandrasekaran B, Weber DJ. Electrical stimulation of the external ear acutely activates noradrenergic mechanisms in humans. Brain Stimul 2021; 14:990-1001. [PMID: 34154980 DOI: 10.1016/j.brs.2021.06.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/01/2021] [Accepted: 06/07/2021] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Transcutaneous stimulation of the external ear is thought to recruit afferents of the auricular vagus nerve, providing a means to activate noradrenergic pathways in the central nervous system. Findings from human studies examining the effects of auricular stimulation on noradrenergic biomarkers have been mixed, possibly relating to the limited and variable parameter space explored to date. OBJECTIVE We tested the extent to which brief pulse trains applied to locations of auricular innervation (canal and concha) elicit acute pupillary responses (PRs) compared to a sham location (lobe). Pulse amplitude and frequency were varied systematically to examine effects on PR features. METHODS Participants (n = 19) underwent testing in three separate experiments, each with stimulation applied to a different external ear location. Perceptual threshold (PT) was measured at the beginning of each experiment. Pulse trains (∼600 ms) consisting of different amplitude (0.0xPT, 0.8xPT, 1.0xPT, 1.5xPT, 2.0xPT) and frequency (25 Hz, 300 Hz) combinations were administered during eye tracking procedures. RESULTS Stimulation to all locations elicited PRs which began approximately halfway through the pulse train and peaked shortly after the final pulse (≤1 s). PR size and incidence increased with pulse amplitude and tended to be greatest with canal stimulation. Higher pulse frequency shortened the latency of PR onset and peak dilation. Changes in pupil diameter elicited by pulse trains were weakly associated with baseline pupil diameter. CONCLUSION (s): Auricular stimulation elicits acute PRs, providing a basis to synchronize neuromodulator release with task-related neural spiking which preclinical studies show is a critical determinant of therapeutic effects. Further work is needed to dissociate contributions from vagal and non-vagal afferents mediating activation of the biomarker.
Collapse
Affiliation(s)
- Michael A Urbin
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Charles W Lafe
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tyler W Simpson
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Physical Medicine & Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA
| | - George F Wittenberg
- Human Engineering Research Laboratories, VA RR&D Center of Excellence, VA Pittsburgh Healthcare System, Pittsburgh, PA, USA; Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Neurology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Bharath Chandrasekaran
- Department of Communication Science and Disorders, University of Pittsburgh, Pittsburgh, PA, USA
| | - Douglas J Weber
- Rehabilitation Neural Engineering Laboratories, University of Pittsburgh, Pittsburgh, PA, USA; Department of Mechanical Engineering and the Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
22
|
Verma N, Mudge JD, Kasole M, Chen RC, Blanz SL, Trevathan JK, Lovett EG, Williams JC, Ludwig KA. Auricular Vagus Neuromodulation-A Systematic Review on Quality of Evidence and Clinical Effects. Front Neurosci 2021; 15:664740. [PMID: 33994937 PMCID: PMC8120162 DOI: 10.3389/fnins.2021.664740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background: The auricular branch of the vagus nerve runs superficially, which makes it a favorable target for non-invasive stimulation techniques to modulate vagal activity. For this reason, there have been many early-stage clinical trials on a diverse range of conditions. These trials often report conflicting results for the same indication. Methods: Using the Cochrane Risk of Bias tool we conducted a systematic review of auricular vagus nerve stimulation (aVNS) randomized controlled trials (RCTs) to identify the factors that led to these conflicting results. The majority of aVNS studies were assessed as having "some" or "high" risk of bias, which makes it difficult to interpret their results in a broader context. Results: There is evidence of a modest decrease in heart rate during higher stimulation dosages, sometimes at above the level of sensory discomfort. Findings on heart rate variability conflict between studies and are hindered by trial design, including inappropriate washout periods, and multiple methods used to quantify heart rate variability. There is early-stage evidence to suggest aVNS may reduce circulating levels and endotoxin-induced levels of inflammatory markers. Studies on epilepsy reached primary endpoints similar to previous RCTs testing implantable vagus nerve stimulation therapy. Preliminary evidence shows that aVNS ameliorated pathological pain but not evoked pain. Discussion: Based on results of the Cochrane analysis we list common improvements for the reporting of results, which can be implemented immediately to improve the quality of evidence. In the long term, existing data from aVNS studies and salient lessons from drug development highlight the need for direct measures of local neural target engagement. Direct measures of neural activity around the electrode will provide data for the optimization of electrode design, placement, and stimulation waveform parameters to improve on-target engagement and minimize off-target activation. Furthermore, direct measures of target engagement, along with consistent evaluation of blinding success, must be used to improve the design of controls-a major source of concern identified in the Cochrane analysis. The need for direct measures of neural target engagement and consistent evaluation of blinding success is applicable to the development of other paresthesia-inducing neuromodulation therapies and their control designs.
Collapse
Affiliation(s)
- Nishant Verma
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Jonah D. Mudge
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Maïsha Kasole
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Rex C. Chen
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - Stephan L. Blanz
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | - James K. Trevathan
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
| | | | - Justin C. Williams
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| | - Kip A. Ludwig
- Department of Biomedical Engineering, University of Wisconsin – Madison, Madison, WI, United States
- Wisconsin Institute for Translational Neuroengineering (WITNe) – Madison, Madison, WI, United States
- Department of Neurosurgery, University of Wisconsin – Madison, Madison, WI, United States
| |
Collapse
|
23
|
Transcutaneous Auricular Vagus Nerve Stimulation: From Concept to Application. Neurosci Bull 2020; 37:853-862. [PMID: 33355897 DOI: 10.1007/s12264-020-00619-y] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/10/2020] [Indexed: 12/19/2022] Open
Abstract
Whether in the West or the East, the connection between the ear and the rest of the body has been explored for a long time. Especially in the past century or more, the relevant theoretical and applied research on the ear has greatly promoted the development of ear therapy, and finally the concept of transcutaneous auricular vagus nerve stimulation (taVNS) has been proposed. The purpose of taVNS is to treat a disease non-invasively by applying electrical current to the cutaneous receptive field formed by the auricular branch of the vagus nerve in the outer ear. In the past two decades, taVNS has been a topic of basic, clinical, and transformation research. It has been applied as an alternative to drug treatment for a variety of diseases. Based on the rapid understanding of the application of taVNS to human health and disease, some limitations in the development of this field have also been gradually exposed. Here, we comprehensively review the origin and research status of the field.
Collapse
|
24
|
Van de Steene T, Tanghe E, Tarnaud T, Kampusch S, Kaniusas E, Martens L, Van Holen R, Joseph W. Sensitivity Study of Neuronal Excitation and Cathodal Blocking Thresholds of Myelinated Axons for Percutaneous Auricular Vagus Nerve Stimulation. IEEE Trans Biomed Eng 2020; 67:3276-3287. [DOI: 10.1109/tbme.2020.2982271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
25
|
Transcutaneous Vagus Nerve Stimulation in Humans Induces Pupil Dilation and Attenuates Alpha Oscillations. J Neurosci 2020; 41:320-330. [PMID: 33214317 DOI: 10.1523/jneurosci.1361-20.2020] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 01/19/2023] Open
Abstract
Vagus nerve stimulation (VNS) is widely used to treat drug-resistant epilepsy and depression. While the precise mechanisms mediating its long-term therapeutic effects are not fully resolved, they likely involve locus coeruleus (LC) stimulation via the nucleus of the solitary tract, which receives afferent vagal inputs. In rats, VNS elevates LC firing and forebrain noradrenaline levels, whereas LC lesions suppress VNS therapeutic efficacy. Noninvasive transcutaneous VNS (tVNS) uses electrical stimulation that targets the auricular branch of the vagus nerve at the cymba conchae of the ear. However, the extent to which tVNS mimics VNS remains unclear. Here, we investigated the short-term effects of tVNS in healthy human male volunteers (n = 24), using high-density EEG and pupillometry during visual fixation at rest. We compared short (3.4 s) trials of tVNS to sham electrical stimulation at the earlobe (far from the vagus nerve branch) to control for somatosensory stimulation. Although tVNS and sham stimulation did not differ in subjective intensity ratings, tVNS led to robust pupil dilation (peaking 4-5 s after trial onset) that was significantly higher than following sham stimulation. We further quantified, using parallel factor analysis, how tVNS modulates idle occipital alpha (8-13Hz) activity identified in each participant. We found greater attenuation of alpha oscillations by tVNS than by sham stimulation. This demonstrates that tVNS reliably induces pupillary and EEG markers of arousal beyond the effects of somatosensory stimulation, thus supporting the hypothesis that tVNS elevates noradrenaline and other arousal-promoting neuromodulatory signaling, and mimics invasive VNS.SIGNIFICANCE STATEMENT Current noninvasive brain stimulation techniques are mostly confined to modulating cortical activity, as is typical with transcranial magnetic or transcranial direct/alternating current electrical stimulation. Transcutaneous vagus nerve stimulation (tVNS) has been proposed to stimulate subcortical arousal-promoting nuclei, though previous studies yielded inconsistent results. Here we show that short (3.4 s) tVNS pulses in naive healthy male volunteers induced transient pupil dilation and attenuation of occipital alpha oscillations. These markers of brain arousal are in line with the established effects of invasive VNS on locus coeruleus-noradrenaline signaling, and support that tVNS mimics VNS. Therefore, tVNS can be used as a tool for studying how endogenous subcortical neuromodulatory signaling affects human cognition, including perception, attention, memory, and decision-making; and also for developing novel clinical applications.
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to explore mechanisms, causes, and therapies of itchy conditions involving organs beyond the skin including the eyes, ears, nose, and genital region. RECENT FINDINGS Conditions which cause itch in these locations vary from skin diseases that extend to these areas (i.e., atopic dermatitis, seborrheic dermatitis, and psoriasis) to allergic conditions (i.e., allergic rhinitis and conjunctivitis) and to neuropathic conditions that relate to afferent nerve fiber damage (i.e., lumbosacral radiculopathies in genital disease) as well as some psychological components. Similar to the skin, itch in these locations involves a complex interaction between epithelial cells, unmyelinated C nerve fibers, and cytokines. There is also a significant component of neural sensitization phenomena. Mechanisms of itch beyond the skin are currently an understudied topic that affects millions of patients. Future research should be done in order to further understand the pathophysiology of itch in these body sites.
Collapse
Affiliation(s)
- Rachel Shireen Golpanian
- Department of Dermatology and Cutaneous Surgery, and Itch Center University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, 33136, USA
| | - Peter Smith
- School of Medicine and Griffith Health Institute, Griffith Health, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Gil Yosipovitch
- Department of Dermatology and Cutaneous Surgery, and Itch Center University of Miami Miller School of Medicine, 1475 NW 12th Ave, Miami, FL, 33136, USA.
| |
Collapse
|
27
|
Dabiri B, Kampusch S, Geyer SH, Le VH, Weninger WJ, Széles JC, Kaniusas E. High-Resolution Episcopic Imaging for Visualization of Dermal Arteries and Nerves of the Auricular Cymba Conchae in Humans. Front Neuroanat 2020; 14:22. [PMID: 32477074 PMCID: PMC7236887 DOI: 10.3389/fnana.2020.00022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/27/2020] [Indexed: 12/16/2022] Open
Abstract
Therapeutic applications of auricular vagus nerve stimulation (VNS) have drawn recent attention. Since the targeted stimulation process and parameters depend on the electrode–tissue interaction, the lack of structural anatomical information on innervation and vascularization of the auricle restrain the current optimization of stimulation paradigms. For the first time, we employed high-resolution episcopic imaging (HREM) to generate histologic volume data from donated human cadaver ears. Optimal parameters for specimen preparation were evaluated. Anatomical 3D vascular and nerve structures were reconstructed in one sample of an auricular cymba conchae (CC). The feasibility of HREM to visualize anatomical structures was assessed in that diameters, occupied areas, volumes, and mutual distances between auricular arteries, nerves, and veins were registered. The selected region of CC (3 × 5.5 mm) showed in its cross-sections 21.7 ± 2.7 (mean ± standard deviation) arteries and 14.66 ± 2.74 nerve fibers. Identified nerve diameters were 33.66 ± 21.71 μm, and arteries had diameters in the range of 71.58 ± 80.70 μm. The respective occupied area showed a share of, on average, 2.71% and 0.3% for arteries and nerves, respectively, and similar volume occupancy for arteries and nerves. Inter-centroid minimum distance between arteries and nerves was 274 ± 222 μm. The density of vessels and nerves around a point within CC on a given grid was assessed, showing that 50% of all vessels and nerves were found in a radial distance of 1.6–1.8 mm from any of these points, which is strategically relevant when using stimulation needles in the auricle for excitation of nerves. HREM seems suitable for anatomical studies of the human ear. A 3D model of CC was established in the micrometer scale, which forms the basis for future optimization of the auricular VNS. Obviously, the presented single cadaver study needs to be validated by additional anatomical data on the innervation and vascularization of the auricle.
Collapse
Affiliation(s)
- Babak Dabiri
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| | - Stefan H Geyer
- Division of Anatomy, MIC, Medical University of Vienna, Vienna, Austria
| | - Van Hoang Le
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | | | - Jozsef Constantin Széles
- Department for Vascular Surgery, University Clinic for Surgery, Medical University of Vienna, Vienna, Austria
| | - Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria.,SzeleSTIM GmbH, Vienna, Austria
| |
Collapse
|
28
|
Auricular Intradermal Acupuncture as a Supplementary Motor Rehabilitation Strategy in Poststroke Patients: A Randomized Preliminary Clinical Study. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5094914. [PMID: 32256647 PMCID: PMC7106883 DOI: 10.1155/2020/5094914] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 01/29/2020] [Indexed: 11/23/2022]
Abstract
We have explored the potential of auricular intradermal acupuncture (AIA) in standard rehabilitation and acupuncture treatment for motor recovery in poststroke patients. This was a randomized, controlled preliminary clinical study in which the patients were randomly assigned to the CT group (conventional treatment, standard rehabilitation, and routine acupuncture) or AIA group (AIA combined with conventional treatment) and underwent 6 sessions in 1 week (6 days). Standard procedures and previously reported acupuncture points were used. Clinical outcomes were measured by the Fugl-Meyer motor assessment (FMA) of flexor and extensor synergy movement (FSM and ESM) of the upper and lower extremities (UE and LE) at days 0, 3, and 6. The assessment was performed by blinded assessors. The AIA group showed a significant increase in FMA-UE/FMA-LE scores on day 3 (P=0.012 and 0.001, respectively) and day 6 (P=0.041 and P < 0.001, respectively), but this was not observed in the CT group. Furthermore, unlike the CT group, the AIA group exhibited a significant increase in the FMA-LE score on day 3 (P=0.004) and the FMA-UE scores on day 6 (P=0.048). Finally, the correlation between ESM and FMA-UE/FMA-LE was higher than that between FSM and FMA-UE/FMA-LE after treatment: for ESM and UE, r = 0.759, P=0.007; for ESM and LE, r = 0.697, P=0.003; for FSM and UE, r = 0.604, P=0.049; for FSM and LE, r = 0.347, P=0.188. AIA is useful for motor rehabilitation in poststroke patients, particularly in terms of improving extensor synergy. This trial is registered with CHiCTR1800020150.
Collapse
|
29
|
Morphological Evidence for the Sensitivity of the Ear Canal of Odontocetes as shown by Immunohistochemistry and Transmission Electron Microscopy. Sci Rep 2020; 10:4191. [PMID: 32144309 PMCID: PMC7060263 DOI: 10.1038/s41598-020-61170-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 02/17/2020] [Indexed: 11/09/2022] Open
Abstract
The function of the external ear canal in cetaceans is still under debate and its morphology is largely unknown. Immunohistochemical (IHC) analyses using antibodies specific for nervous tissue (anti-S100, anti-NSE, anti-NF, and anti-PGP 9.5), together with transmission electron microscopy (TEM) and various histological techniques, were carried out to investigate the peripheral nervous system of the ear canals of several species of toothed whales and terrestrial Cetartiodactyla. This study highlights the innervation of the ear canal with the presence of lamellar corpuscles over its entire course, and their absence in all studied terrestrial mammals. Each corpuscle consisted of a central axon, surrounded by lamellae of Schwann receptor cells, surrounded by a thin cellular layer, as shown by IHC and TEM. These findings indicate that the corpuscles are mechanoreceptors that resemble the inner core of Pacinian corpuscles without capsule or outer core, and were labelled as simple lamellar corpuscles. They form part of a sensory system that may represent a unique phylogenetic feature of cetaceans, and an evolutionary adaptation to life in the marine environment. Although the exact function of the ear canal is not fully clear, we provide essential knowledge and a preliminary hypothetical deviation on its function as a unique sensory organ.
Collapse
|
30
|
Liu CH, Yang MH, Zhang GZ, Wang XX, Li B, Li M, Woelfer M, Walter M, Wang L. Neural networks and the anti-inflammatory effect of transcutaneous auricular vagus nerve stimulation in depression. J Neuroinflammation 2020; 17:54. [PMID: 32050990 PMCID: PMC7017619 DOI: 10.1186/s12974-020-01732-5] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 12/19/2022] Open
Abstract
Transcutaneous auricular vagus nerve stimulation (taVNS) is a relatively non-invasive alternative treatment for patients suffering from major depressive disorder (MDD). It has been postulated that acupuncture may achieve its treatment effects on MDD through suppression of vagal nerve inflammatory responses. Our previous research established that taVNS significantly increases amygdala–dorsolateral prefrontal cortex connectivity, which is associated with a reduction in depression severity. However, the relationship between taVNS and the central/peripheral functional state of the immune system, as well as changes in brain neural circuits, have not as yet been elucidated. In the present paper, we outline the anatomic foundation of taVNS and emphasize that it significantly modulates the activity and connectivity of a wide range of neural networks, including the default mode network, executive network, and networks involved in emotional and reward circuits. In addition, we present the inflammatory mechanism of MDD and describe how taVNS inhibits central and peripheral inflammation, which is possibly related to the effectiveness of taVNS in reducing depression severity. Our review suggests a link between the suppression of inflammation and changes in brain regions/circuits post taVNS.
Collapse
Affiliation(s)
- Chun-Hong Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China. .,Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China.
| | - Ming-Hao Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Guang-Zhong Zhang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Xiao-Xu Wang
- Dermatological Department, Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China
| | - Bin Li
- Acupuncture and Moxibustion Department, Beijing Hospital of Traditional Chinese Medicine, Beijing Key Laboratory of Acupuncture Neuromodulation, Capital Medical University, Beijing, 100010, China
| | - Meng Li
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743, Germany
| | - Marie Woelfer
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Martin Walter
- Clinical Affective Neuroimaging Laboratory (CANLAB), Otto-von-Guericke-University Magdeburg, Magdeburg, 39120, Germany.,Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, 07743, Germany.,Department of Behavioral Neurology, Leibniz Institute for Neurobiology, Magdeburg, 39118, Germany.,Center of Behavioral Brain Sciences, Otto-von-Guericke University, Magdeburg, 39118, Germany
| | - Lihong Wang
- Department of Psychiatry, University of Connecticut Health Center, Farmington, CT 06030, USA.
| |
Collapse
|
31
|
Butt MF, Albusoda A, Farmer AD, Aziz Q. The anatomical basis for transcutaneous auricular vagus nerve stimulation. J Anat 2019; 236:588-611. [PMID: 31742681 DOI: 10.1111/joa.13122] [Citation(s) in RCA: 241] [Impact Index Per Article: 40.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 10/25/2019] [Accepted: 10/25/2019] [Indexed: 01/08/2023] Open
Abstract
The array of end organ innervations of the vagus nerve, coupled with increased basic science evidence, has led to vagus nerve stimulation (VNS) being explored as a management option in a number of clinical disorders, such as heart failure, migraine and inflammatory bowel disease. Both invasive (surgically implanted) and non-invasive (transcutaneous) techniques of VNS exist. Transcutaneous VNS (tVNS) delivery systems rely on the cutaneous distribution of vagal afferents, either at the external ear (auricular branch of the vagus nerve) or at the neck (cervical branch of the vagus nerve), thus obviating the need for surgical implantation of a VNS delivery device and facilitating further investigations across a wide range of uses. The concept of electrically stimulating the auricular branch of the vagus nerve (ABVN), which provides somatosensory innervation to several aspects of the external ear, is relatively more recent compared with cervical VNS; thus, there is a relative paucity of literature surrounding its operation and functionality. Despite the increasing body of research exploring the therapeutic uses of auricular transcutaneous VNS (tVNS), a comprehensive review of the cutaneous, intracranial and central distribution of ABVN fibres has not been conducted to date. A review of the literature exploring the neuroanatomical basis of this neuromodulatory therapy is therefore timely. Our review article explores the neuroanatomy of the ABVN with reference to (1) clinical surveys examining Arnold's reflex, (2) cadaveric studies, (3) fMRI studies, (4) electrophysiological studies, (5) acupuncture studies, (6) retrograde tracing studies and (7) studies measuring changes in autonomic (cardiovascular) parameters in response to auricular tVNS. We also provide an overview of the fibre composition of the ABVN and the effects of auricular tVNS on the central nervous system. Cadaveric studies, of which a limited number exist in the literature, would be the 'gold-standard' approach to studying the cutaneous map of the ABVN; thus, there is a need for more such studies to be conducted. Functional magnetic resonance imaging (fMRI) represents a useful surrogate modality for discerning the auricular sites most likely innervated by the ABVN and the most promising locations for auricular tVNS. However, given the heterogeneity in the results of such investigations and the various limitations of using fMRI, the current literature lacks a clear consensus on the auricular sites that are most densely innervated by the ABVN and whether the brain regions secondarily activated by electrical auricular tVNS depend on specific parameters. At present, it is reasonable to surmise that the concha and inner tragus are suitable locations for vagal modulation. Given the therapeutic potential of auricular tVNS, there remains a need for the cutaneous map of the ABVN to be further refined and the effects of various stimulation parameters and stimulation sites to be determined.
Collapse
Affiliation(s)
- Mohsin F Butt
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Ahmed Albusoda
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| | - Adam D Farmer
- Institute of Applied Clinical Sciences, University of Keele, Keele, UK.,Department of Gastroenterology, University Hospitals of North Midlands NHS Trust, Stoke on Trent, UK
| | - Qasim Aziz
- The Wingate Institute of Neurogastroenterology, The Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, Whitechapel, London, UK
| |
Collapse
|
32
|
Effects of Transcutaneous Vagus Nerve Stimulation (tVNS) on Conflict-Related Behavioral Performance and Frontal Midline Theta Activity. JOURNAL OF COGNITIVE ENHANCEMENT 2019. [DOI: 10.1007/s41465-019-00152-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Šarolić A, Lechner S, Klonowski W, Varoneckas G, Széles JC. Current Directions in the Auricular Vagus Nerve Stimulation I - A Physiological Perspective. Front Neurosci 2019; 13:854. [PMID: 31447643 PMCID: PMC6697069 DOI: 10.3389/fnins.2019.00854] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 01/07/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging technology in the field of bioelectronic medicine with applications in therapy. Modulation of the afferent vagus nerve affects a large number of physiological processes and bodily states associated with information transfer between the brain and body. These include disease mitigating effects and sustainable therapeutic applications ranging from chronic pain diseases, neurodegenerative and metabolic ailments to inflammatory and cardiovascular diseases. Given the current evidence from experimental research in animal and clinical studies we discuss basic aVNS mechanisms and their potential clinical effects. Collectively, we provide a focused review on the physiological role of the vagus nerve and formulate a biology-driven rationale for aVNS. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the framework of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on physiological aspects - a discussion of engineering aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing and Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at the Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipëda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | |
Collapse
|
34
|
Kaniusas E, Kampusch S, Tittgemeyer M, Panetsos F, Gines RF, Papa M, Kiss A, Podesser B, Cassara AM, Tanghe E, Samoudi AM, Tarnaud T, Joseph W, Marozas V, Lukosevicius A, Ištuk N, Lechner S, Klonowski W, Varoneckas G, Széles JC, Šarolić A. Current Directions in the Auricular Vagus Nerve Stimulation II - An Engineering Perspective. Front Neurosci 2019; 13:772. [PMID: 31396044 PMCID: PMC6667675 DOI: 10.3389/fnins.2019.00772] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Electrical stimulation of the auricular vagus nerve (aVNS) is an emerging electroceutical technology in the field of bioelectronic medicine with applications in therapy. Artificial modulation of the afferent vagus nerve - a powerful entrance to the brain - affects a large number of physiological processes implicating interactions between the brain and body. Engineering aspects of aVNS determine its efficiency in application. The relevant safety and regulatory issues need to be appropriately addressed. In particular, in silico modeling acts as a tool for aVNS optimization. The evolution of personalized electroceuticals using novel architectures of the closed-loop aVNS paradigms with biofeedback can be expected to optimally meet therapy needs. For the first time, two international workshops on aVNS have been held in Warsaw and Vienna in 2017 within the scope of EU COST Action "European network for innovative uses of EMFs in biomedical applications (BM1309)." Both workshops focused critically on the driving physiological mechanisms of aVNS, its experimental and clinical studies in animals and humans, in silico aVNS studies, technological advancements, and regulatory barriers. The results of the workshops are covered in two reviews, covering physiological and engineering aspects. The present review summarizes on engineering aspects - a discussion of physiological aspects is provided by our accompanying article (Kaniusas et al., 2019). Both reviews build a reasonable bridge from the rationale of aVNS as a therapeutic tool to current research lines, all of them being highly relevant for the promising aVNS technology to reach the patient.
Collapse
Affiliation(s)
- Eugenijus Kaniusas
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
| | - Stefan Kampusch
- Institute of Electrodynamics, Microwave and Circuit Engineering, Vienna University of Technology, Vienna, Austria
- SzeleSTIM GmbH, Vienna, Austria
| | - Marc Tittgemeyer
- Max Planck Institute for Metabolism Research, Cologne, Germany
- Cologne Cluster of Excellence in Cellular Stress and Aging Associated Disease (CECAD), Cologne, Germany
| | - Fivos Panetsos
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Raquel Fernandez Gines
- Neurocomputing & Neurorobotics Research Group, Complutense University of Madrid, Madrid, Spain
| | - Michele Papa
- Laboratory of Neuronal Networks, Department of Mental and Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Attila Kiss
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | - Bruno Podesser
- Ludwig Boltzmann Cluster for Cardiovascular Research at Center for Biomedical Research, Medical University of Vienna, Vienna, Austria
| | | | - Emmeric Tanghe
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | | | - Thomas Tarnaud
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Wout Joseph
- Department of Information Technology, Ghent University/IMEC, Ghent, Belgium
| | - Vaidotas Marozas
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Arunas Lukosevicius
- Biomedical Engineering Institute, Kaunas University of Technology, Kaunas, Lithuania
| | - Niko Ištuk
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| | | | - Wlodzimierz Klonowski
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Warsaw, Poland
| | - Giedrius Varoneckas
- Sleep Medicine Centre, Klaipeda University Hospital, Klaipėda, Lithuania
- Institute of Neuroscience, Lithuanian University of Health Sciences, Palanga, Lithuania
| | | | - Antonio Šarolić
- Faculty of Electrical Engineering, Mechanical Engineering and Naval Architecture, University of Split, Split, Croatia
| |
Collapse
|
35
|
Mercante B, Deriu F, Rangon CM. Auricular Neuromodulation: The Emerging Concept beyond the Stimulation of Vagus and Trigeminal Nerves. MEDICINES 2018; 5:medicines5010010. [PMID: 29361732 PMCID: PMC5874575 DOI: 10.3390/medicines5010010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/12/2018] [Accepted: 01/19/2018] [Indexed: 12/16/2022]
Abstract
Neuromodulation, thanks to intrinsic and extrinsic brain feedback loops, seems to be the best way to exploit brain plasticity for therapeutic purposes. In the past years, there has been tremendous advances in the field of non-pharmacological modulation of brain activity. This review of different neurostimulation techniques will focus on sites and mechanisms of both transcutaneous vagus and trigeminal nerve stimulation. These methods are scientifically validated non-invasive bottom-up brain modulation techniques, easily implemented from the outer ear. In the light of this, auricles could transpire to be the most affordable target for non-invasive manipulation of central nervous system functions.
Collapse
Affiliation(s)
- Beniamina Mercante
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy.
| | - Franca Deriu
- Department of Biomedical Sciences, University of Sassari, Sassari 07100, Italy.
| | - Claire-Marie Rangon
- Head of Scientific Auriculotherapy Diploma, Faculty of Medicine, University of Paris-Saclay, Saclay 94270, France.
| |
Collapse
|