1
|
Ibrahim BMM, Elbaset MA, Abou Baker DH, Zikri EN, El Gengaihi S, Abdel Salam M. A pharmacological and toxicological biochemical study of cardiovascular regulatory effects of hibiscus, corn silk, marjoram, and chamomile. Heliyon 2024; 10:e22659. [PMID: 38226236 PMCID: PMC10788201 DOI: 10.1016/j.heliyon.2023.e22659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/17/2024] Open
Abstract
Hypertension is one of the most typical causes of morbidity and mortality. The present study investigated the possible antihypertensive cardiovascular effects of an herbal mixture extract of Hibiscus, Corn silk, Marjoram, and Chamomile. HPLC analysis of the water extract prepared from the aerial parts of four plants and their mixture was done to detect the most predominant compounds. A safety study was done prior to the efficacy study to determine the dose and ensure the extract's safety in female rats. Hypertension was induced in ovariectomized and non-ovariectomized rats by oral administration of 50 mg/kg of LName for 30 days; the hypertensive rats were classified into non-ovariectomized and ovariectomized untreated groups, treated groups with high and low doses of the mixture(150,300 mg/kg) given to ovariectomized and non-ovariectomized hypertensive groups and a standard group treated with angiotensin-converting enzyme inhibitor. The untreated group showed significant elevation of blood pressure, heart rate, cholesterol, triglycerides, malondialdehyde, cyclic adenosine monophosphate, angiotensin-converting enzyme, C-reactive protein, and significantly lowered reduced glutathione, high-density lipoprotein, and endothelial nitric oxide synthase. Treatment significantly counteracted the effects of L Name. The mixture provides a promising natural cardiovascular regulating supplement owing to its high contents of flavonoids.
Collapse
Affiliation(s)
- Bassant MM. Ibrahim
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Marawan A. Elbaset
- Pharmacology Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Doha H. Abou Baker
- Medicinal and Aromatic Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt, PO: 12622
| | - Emad N. Zikri
- Alternative and Complementary Medicine Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| | - Souad El Gengaihi
- Medicinal and Aromatic Plants Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Dokki, Giza, Egypt, PO: 12622
| | - Mouchira Abdel Salam
- Alternative and Complementary Medicine Department, Medicine and Clinical Studies Research Institute, National Research Centre, Dokki Giza, PO:12622, Egypt
| |
Collapse
|
2
|
Efosa JO, Omage K, Azeke MA. Drying temperature affects the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx in rats induced with L-NAME. Toxicol Rep 2023; 11:177-188. [PMID: 37719201 PMCID: PMC10504460 DOI: 10.1016/j.toxrep.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/25/2023] [Accepted: 09/05/2023] [Indexed: 09/19/2023] Open
Abstract
The effects of different drying temperatures on the hypolipidemic, antioxidant, and antihypertensive potential of Hibiscus sabdariffa calyx was evaluated. The calyx were dried under different temperature conditions (- 58 °C, 30 °C, 40 °C, and 50 °C), and extracted with a solvent mixture of ethanol and water (1:4 % w/v). To induce hypertension, the rats were administered with 40 mg/kg body weight dose of N-nitro L-arginine methyl-ester (L-NAME), via the intra-gastric route. H. sabdariffa extract was administered orally, at varying doses (250, 500, and 1000 mg/kg) to the rats. Afterwards, the hypolipidemic, antioxidant, and antihypertensive potentials of the extracts were evaluated using standard validated methods. Induction with L-NAME significantly (p < 0.05) increased the total cholesterol, triglyceride, and LDL levels, significantly decreased the HDL levels; significantly (p < 0.05) increased the levels of LPO/MDA, H2O2, and decreased GPx, and SOD activities; significantly (p < 0.05) increased the pressures (diastolic and systolic); significantly (p < 0.05) increased ACE and arginase activities, glucose level, and significantly decreased nitric oxide activity. Treatment with H. sabdariffa extract significantly (p < 0.05) reversed these trends in the hypertensive experimental rats. The hypolipidemic, antioxidant, and antihypertensive properties of the extract from the calyx of H. sabdariffa, which varies with the drying temperatures of the calyx, portends its potential as a curative agent in the treatment of hypertensive conditions, and other cardiovascular diseases.
Collapse
Affiliation(s)
- John Osarenren Efosa
- Department of Physical Laboratory Technology, School of Applied Sciences and Technology, Auchi Polytechnic, Edo State, Nigeria
| | - Kingsley Omage
- Department of Biochemistry, College of Basic Medical Sciences, Igbinedion University Okada, Edo State, Nigeria
- Division of Nephrology and Hypertension, Department of Medicine, Oregon Health and Science University, Portland, OR, USA
| | - Marshall Arebojie Azeke
- Department of Biochemistry, Faculty of Life Sciences, Ambrose Alli University, Edo State, Nigeria
| |
Collapse
|
3
|
Razzaq MA, Younis W, Malik MNH, Alsahli TG, Jahan S, Ehsan R, Gasparotto Junior A, Bashir A. Pulegone Prevents Hypertension through Activation of Muscarinic Receptors and Cyclooxygenase Pathway in L-NAME-Induced Hypertensive Rats. Cardiovasc Ther 2023; 2023:8166840. [PMID: 37214130 PMCID: PMC10195173 DOI: 10.1155/2023/8166840] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 05/24/2023] Open
Abstract
The current study was designed to determine pulegone's antihypertensive and vasoprotective activity in L-NAME-induced hypertensive rats. Firstly, the hypotensive dose-response relationship of pulegone was evaluated in normotensive anesthetized rats using the invasive method. Secondly, the mechanism involved in hypotensive activity was determined in the presence of pharmacological drugs such as atropine/muscarinic receptor blocker (1 mg/kg), L-NAME/NOS inhibitor (20 mg/kg), and indomethacin/COX inhibitor (5 mg/kg) in anesthetized rats. Furthermore, studies were carried out to assess the preventive effect of pulegone in L-NAME-induced hypertensive rats. Hypertension was induced in rats by administering L-NAME (40 mg/kg) orally for 28 days. Rats were divided into six groups which were treated orally with tween 80 (placebo), captopril (10 mg/kg), and different doses of pulegone (20 mg/kg, 40 mg/kg, and 80 mg/kg). Blood pressure, urine volume, sodium, and body weight were monitored weekly. After 28 days, the effect of pulegone on lipid profile, hepatic markers, antioxidant enzymes, and nitric oxide was estimated from the serum of treated rats. Moreover, plasma mRNA expression of eNOS, ACE, ICAM1, and EDN1 was measured using real-time PCR. Results show that pulegone dose-dependently decreased blood pressure and heart rate in normotensive rats, with the highest effect at 30 mg/kg/i.v. The hypotensive effect of pulegone was reduced in the presence of atropine and indomethacin, whereas L-NAME did not change its hypotensive effect. Concurrent treatment with pulegone for four weeks in L-NAME-treated rats caused a reduction in both systolic blood pressure and heart rate, reversed the reduced levels of serum nitric oxide (NO), and ameliorated lipid profile and oxidative stress markers. Treatment with pulegone also improved the vascular response to acetylcholine. Plasma mRNA expression of eNOS was reduced, whereas ACE, ICAM1, and EDN1 levels were high in the L-NAME group, which was facilitated by pulegone treatment. To conclude, pulegone prevented L-NAME-induced hypertension by demonstrating a hypotensive effect through muscarinic receptors and cyclooxygenase pathway, indicating its use as a potential candidate in managing hypertension.
Collapse
Affiliation(s)
- Muryam Abdul Razzaq
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Waqas Younis
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
- Department of Pharmacology, Physiology, and Neuroscience, New Jersey Medical School-Rutgers, Newark, NJ 07103, USA
| | | | - Tariq G. Alsahli
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Shah Jahan
- Department of Immunology, University of Health Sciences, Lahore, Pakistan
| | - Roma Ehsan
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| | - Arquimedes Gasparotto Junior
- Laboratory of Cardiovascular Pharmacology (LaFaC), Faculty of Health Sciences, Federal University of Grande Dourados, Dourados, MS, Brazil
| | - Asifa Bashir
- Department of Pharmacology, Faculty of Pharmacy, The University of Lahore, Lahore, Pakistan
| |
Collapse
|
4
|
Al-U'datt DGF, Tranchant CC, Alu'datt M, Abusara S, Al-Dwairi A, AlQudah M, Al-Shboul O, Hiram R, Altuntas Y, Jaradat S, Alzoubi KH. Inhibition of transglutaminase 2 (TG2) ameliorates ventricular fibrosis in isoproterenol-induced heart failure in rats. Life Sci 2023; 321:121564. [PMID: 36931499 DOI: 10.1016/j.lfs.2023.121564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/06/2023] [Accepted: 03/06/2023] [Indexed: 03/17/2023]
Abstract
AIMS Transglutaminase (TG) inhibitors represent promising therapeutic interventions in cardiac fibrosis and related dysfunctions. However, it remains unknown how TG inhibition, TG2 in particular, affects the signaling systems that drive pathological fibrosis. This study aimed to examine the effect TG inhibition by cystamine on the progression of isoproterenol (ISO)-induced cardiac fibrosis and dysfunction in rats. MATERIALS AND METHODS Cardiac fibrosis was established by intraperitoneal injection of ISO to rats (ISO group), followed by 6 weeks of cystamine injection (ISO + Cys group). The control groups were administered normal saline alone or with cystamine. Hemodynamics, lipid profile, liver enzymes, urea, and creatinine were assessed in conjunction with heart failure markers (serum NT-proANP and cTnI). Left ventricular (LV) and atrial (LA) fibrosis, total collagen content, and mRNA expression of profibrotic markers including TG2 were quantified by Masson's trichrome staining, LC-MS/MS and quantitative PCR, respectively. KEY FINDINGS Cystamine administration to ISO rats significantly decreased diastolic and mean arterial pressures, total cholesterol, triglycerides, LDL, liver enzymes, urea, and creatinine levels, while increasing HDL. NT-proANP and cTnI serum levels remained unchanged. In LV tissues, significant reductions in ISO-induced fibrosis and elevated total collagen content were achieved after cystamine treatment, together with a reduction in TG2 concentration. Reduced mRNA expression of several profibrotic genes (COL1A1, FN1, MMP-2, CTGF, periostin, CX43) was also evidenced in LV tissues of ISO rats upon cystamine administration, whereas TGF-β1 expression was depressed in LA tissues. Cystamine decreased TG2 mRNA expression in the LV of control rats, while LV expression of TG2 was relatively low in ISO rats irrespective of cystamine treatment. SIGNIFICANCE TG2 inhibition by cystamine in vivo exerted cardioprotective effects against ISO-induced cardiac fibrosis in rats decreasing the LV abundance of several profibrotic markers and the content of TG2 and collagen, suggesting that TG2 pharmacological inhibition could be beneficial to alleviate cardiac fibrosis.
Collapse
Affiliation(s)
- Doa'a G F Al-U'datt
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Carole C Tranchant
- School of Food Science, Nutrition and Family Studies, Faculty of Health Sciences and Community Services, Université de Moncton, New Brunswick, Canada
| | - Muhammad Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, P.O. Box 3030, Irbid 22110, Jordan
| | - Sara Abusara
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ahmed Al-Dwairi
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad AlQudah
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan; Physiology Department, Arabian Gulf University, Manama, Bahrain
| | - Othman Al-Shboul
- Department of Physiology and Biochemistry, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Roddy Hiram
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Yasemin Altuntas
- Montreal Heart Institute and Department of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Saied Jaradat
- Princess Haya Biotechnology Center, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Karem H Alzoubi
- Department of Pharmacy Practice and Pharmacotherapeutics, University of Sharjah, Sharjah, United Arab Emirates; Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
5
|
Ismail WM, Ezzat SM, El-Mosallamy AE, El Deeb KS, El-Fishawy AM. In Vivo Antihypertensive Activity and UHPLC-Orbitrap-HRMS Profiling of Cuphea ignea A. DC. ACS OMEGA 2022; 7:46524-46535. [PMID: 36570254 PMCID: PMC9773801 DOI: 10.1021/acsomega.2c05356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Cuphea ignea A. DC. is an ornamental tropical plant belonging to the family Lythraceae. The aim of this study is to verify the in vivo antihypertensive potential of C. ignea A. DC. and to explore its metabolic profile using a UHPLC-Orbitrap-HRMS technique. The results revealed that the ethanolic extract of the leaves in two doses (250 and 500 mg/kg b.wt.) significantly normalized the elevated systolic blood pressure in N(G)-nitro-l-arginine-methyl ester-induced hypertension in rats. An angiotensin-converting enzyme (ACE) concentration was significantly decreased by the high dose extract compared to lisinopril. Nitric oxide (NO) level was significantly restored by both doses. Concerning the oxidative stress parameters, both doses displayed significant reduction in malondialdehyde (MDA) level while the high dose restored elevated glutathione level. These biochemical results were clearly supported by the histopathological examination of the isolated heart and aorta. A UHPLC-Orbitrap-HRMS study was represented by a detailed metabolic profile of leaves and flowers of C. ignea A. DC., where 53 compounds were identified among which flavonoids, fatty acids, and hydrolysable tannins were the major identified classes. This study established scientific evidence for the use of C. ignea A. DC., a member of genus Cuphea as a complementary treatment in the management of hypertension.
Collapse
Affiliation(s)
- Walaa M. Ismail
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr-El-Ainy
Street, Cairo 11562, Egypt
| | - Shahira M. Ezzat
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr-El-Ainy
Street, Cairo 11562, Egypt
- Department
of Pharmacognosy, Faculty of Pharmacy, October
University for Modern Sciences and Arts (MSA), Giza 12451, Egypt
| | | | - Kadriya S. El Deeb
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr-El-Ainy
Street, Cairo 11562, Egypt
| | - Ahlam M. El-Fishawy
- Department
of Pharmacognosy, Faculty of Pharmacy, Cairo
University, Kasr-El-Ainy
Street, Cairo 11562, Egypt
| |
Collapse
|
6
|
Elbaset MA, Nasr M, Ibrahim BMM, Ahmed-Farid OAH, Bakeer RM, Hassan NS, Ahmed RF. Curcumin nanoemulsion counteracts hepatic and cardiac complications associated with high-fat/high-fructose diet in rats. J Food Biochem 2022; 46:e14442. [PMID: 36165438 DOI: 10.1111/jfbc.14442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 01/14/2023]
Abstract
The relationship between the incidence of cardiovascular abnormalities and non-alcoholic fatty liver disease (NAFLD) has long been postulated. Curcumin (CUR) is a potential anti-atherosclerotic agent but its poor water solubility hinders its pharmacological use. Therefore, the present study aimed to investigate the effect of formulation of CUR nanoemulsion prepared using the spontaneous emulsification technique on high fat high fructose (HFHF)-induced hepatic and cardiac complications. Fifty Wistar rats were divided into five groups. CUR nanoemulsion at doses of 5 and 10 mg/kg and conventional powdered CUR at a dose of 50 mg/kg were orally administered daily to rats for two weeks, and compared with normal control and HFHF control. Results revealed that the high dose level of CUR nanoemulsion was superior to conventional CUR in ameliorating the HFHF-induced insulin resistance status and hyperlipidemia, with beneficial impact on rats' recorded electrocardiogram (ECG), serum aspartate aminotransferase (ALT) and alanine aminotransferase (AST) levels, leptin, adiponectin, creatine phosphokinase, lactate dehydrogenase and cardiac troponin-I. In addition, hepatic and cardiac oxidative and nitrosative stresses, oxidative DNA damage and disrupted cellular energy statuses were counteracted. Results were also confirmed by histopathological examination. PRACTICAL APPLICATIONS: The use of curcumin nanoemulsion could be beneficial in combating hepatic and cardiac complications resulting from HFHF diets.
Collapse
Affiliation(s)
- Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Maha Nasr
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Bassant M M Ibrahim
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Omar A H Ahmed-Farid
- Department of Physiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Rofanda M Bakeer
- Department of Pathology, Faculty of Medicine, Helwan University, Helwan, Egypt
| | - Nabila S Hassan
- Department of Pathology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| | - Rania F Ahmed
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
7
|
Shaukat B, Mehmood MH, Murtaza B, Javaid F, Khan MT, Farrukh M, Rana R, Shahzad M. Ajuga bracteosa Exerts Antihypertensive Activity in l-NAME-Induced Hypertension Possibly through Modulation of Oxidative Stress, Proinflammatory Cytokines, and the Nitric Oxide/Cyclic Guanosine Monophosphate Pathway. ACS OMEGA 2022; 7:33307-33319. [PMID: 36157749 PMCID: PMC9494645 DOI: 10.1021/acsomega.2c03888] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/30/2022] [Indexed: 06/16/2023]
Abstract
Ajuga bracteosa has been used in traditional medicine to treat hypertension and other ailments. The present study has been designed to investigate the beneficial effects of A. bracteosa in l-nitro arginine methyl ester (l-NAME)-induced hypertensive rats. Hypertension was induced by intraperitoneal injection of l-NAME (185 μmol kg-1 i.p.). The aqueous methanol extract of A. bracteosa (AMEAB, 250 and 500 mg kg-1) and coumarin (30 and 70 mg kg-1) were administered orally from day 8 to day 35 of the study. In vivo antihypertensive activity was assessed by measuring the blood pressure using a PowerLab data system. The effects of the AMEAB and coumarin on nitric oxide (NO), cyclic guanosine monophosphate (cGMP), interleukin-6 (IL-6), the tumor necrosis factor (TNF-α), and oxidative stress markers were also assessed using kit methods. Phytochemical profiling of the AMEAB was carried out through high-performance liquid chromatography (HPLC) where quercetin, gallic acid, caffeic acid, vanillic acid, benzoic acid, syringic acid, p-coumaric acid, and ferulic acid were labeled as plant constituents including coumarin. The AMEAB and coumarin significantly reduced blood pressure at the tested doses of 500 and 70 mg kg-1, respectively. Serum levels of NO and cGMP were found to be significantly increased in AMEAB- and coumarin-treated groups when compared with only l-NAME-challenged rats. In addition, a marked decrease was noticed in the serum concentrations of proinflammatory cytokines (IL-6 and TNF-α) in AMEAB- and coumarin-treated rats. Moreover, in AMEAB- and coumarin-treated animals, a noticeable improvement was observed in the levels of antioxidant enzymes including catalase, superoxide dismutase, and malonaldehyde, and the total oxidant status when compared with those of only l-NAME-challenged rats. The data of real-time polymerase chain reaction (RT-PCR) experiments supported that the antihypertensive and anti-inflammatory activities of the AMEAB and coumarin are possibly mediated through modulation of endothelial nitric oxide synthase (eNOS), angiotensin-converting enzyme (ACE), nuclear factor (NF)-kB, and COX-2 gene expressions. This study concludes that A. bracteosa possesses an antihypertensive effect mediated through the modulation of the antioxidant, anti-inflammatory, and NO/cGMP pathways, thus providing a rationale to the antihypertensive use of A. bracteosa in traditional medicine.
Collapse
Affiliation(s)
- Bushra Shaukat
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Malik Hassan Mehmood
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Babar Murtaza
- Riphah
Institute of Pharmaceutical Sciences, Riphah
International University, Islamabad 44000, Pakistan
| | - Farah Javaid
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Tariq Khan
- Department
of Pharmacy, Capital University of Science
and Technology, Islamabad 44000, Pakistan
| | - Maryam Farrukh
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Reemal Rana
- Department
of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | | |
Collapse
|
8
|
Oboh G, Oluokun OO, Oyeleye S, Ogunsuyi O. Moringa seed-supplemented diets modulate ACE activity but not its gene expression in L-NAME-induced hypertensive rats. Biomarkers 2022; 27:684-693. [PMID: 35833352 DOI: 10.1080/1354750x.2022.2101693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Introduction: We investigated the effect of dietary inclusions of Moringa seed (5% and 10%) on blood pressure, angiotensin-1 converting enzyme (ACE) activity, and gene expression, as well as redox status in hypertensive rats.Material and methods: Wistar strain albino rats were fed moringa seed-based diets for two weeks prior L-NAME (40 mg/kg/day, p.o.) administration for another ten days. Subsequently, the blood pressure was monitored. Furthermore, the kidney homogenates were assayed for ACE activity and gene expression, as well as oxidative stress markers.Results: The increased (systolic =297 ± 59.30 mmHg; diastolic= 242 ± 51.96 mmHg) blood pressure, arginase activity, and reduced nitric oxide level were significantly ameliorated in hypertensive rats treated with the seed. However, the elevated ACE activity was significantly reduced but not the upregulated ACE1 gene. Also, the reduced antioxidant enzyme activities were ameliorated with a significant downregulation in their regulator-Nrf2. Rutin (4.07 ± 0.02 mg/g) and quercitrin (4.06 ± 0.01 mg/g), among others, were found in the seed.Discussion: This study suggests that moringa seed offers its antihypertensive properties by acting as an ACE inhibitor but not its gene modulator, and also modulates the antioxidant system through interaction with Nrf2.Conclusion: Moringa seed could act as an ACE inhibitor and not its gene modulator.
Collapse
Affiliation(s)
- Ganiyu Oboh
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Odunayo O Oluokun
- Department of Biochemistry, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Sunday Oyeleye
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| | - Opeyemi Ogunsuyi
- Department of Biomedical Technology, Federal University of Technology, P.M.B. 704, Akure, Nigeria.,Drosophila Research lab, Functional Foods and Nutraceuticals Unit, Biochemistry Department, Federal University of Technology, P.M.B. 704 Akure, Nigeria
| |
Collapse
|
9
|
Pannangpetch P, Tangsucharit P, Thanaruksa R, Proongkhong T, Srisuwan S, Aekthammarat D. Antihypertensive effect of Mali-Nil surin rice bran hydrolysate and its mechanisms related to the EDHF-mediated vasorelaxation and L-type Ca 2+ channel-mediated vasoconstriction in L-NAME hypertensive rats. Biomed Pharmacother 2022; 150:113003. [PMID: 35462340 DOI: 10.1016/j.biopha.2022.113003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/17/2022] [Indexed: 11/29/2022] Open
Abstract
Mali-Nil Surin rice bran hydrolysate (MRH) contains highly nutritional proteins and beneficial phenolic compounds. This study investigated an antihypertensive effect of MRH and evaluated the mechanisms mediating this action in Nω-nitro-L-arginine-methyl ester (L-NAME)-induced hypertensive rats. Antihypertensive activity was determined in male rats orally administered with MRH (100 or 300 mg/kg) or enalapril (15 mg/kg) daily together with L-NAME (50 mg/kg/day) in drinking water, for 21 days. Concurrent oral treatment with MRH lowered the high blood pressure in the L-NAME-induced hypertensive rats. MRH treatment improved endothelial function and increased the endothelium-derived hyperpolarizing factor-mediated vasorelaxation in L-NAME hypertensive rats. L-NAME rats treated with MRH had reduced adrenergic hypercontractility, which was associated with a decrease in L-type calcium channel-mediated vasoconstriction. In addition, MRH exhibited antioxidant activity in hypertensive rats, as indicated by suppression of vascular superoxide anion production and reduction of malondialdehyde levels, as well as magnification of superoxide dismutase and catalase activities in serum. This study demonstrated the nutraceutical potential of MRH to prevent oxidative stress-related vascular dysfunction in hypertension.
Collapse
Affiliation(s)
- Patchareewan Pannangpetch
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Panot Tangsucharit
- Cardiovascular Research Group, Khon Kaen University, Khon Kaen 40002, Thailand; Department of Pharmacology, Faculty of Medicine, Khon Kaen University, Khon Kaen 40002, Thailand
| | | | | | - Supawadee Srisuwan
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand
| | - Direk Aekthammarat
- Department of Basic Medical Science, Faculty of Medicine Vajira Hospital, Navamindradhiraj University, Bangkok 10300, Thailand.
| |
Collapse
|
10
|
Xiaofang L, Wenhuan H, Xingfu T, Yanhong Z. Identification of the roselle root rot pathogen and its sensitivity to different fungicides. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
11
|
Salem MA, Ezzat SM, Ahmed KA, Alseekh S, Fernie AR, Essam RM. A Comparative Study of the Antihypertensive and Cardioprotective Potentials of Hot and Cold Aqueous Extracts of Hibiscus sabdariffa L. in Relation to Their Metabolic Profiles. Front Pharmacol 2022; 13:840478. [PMID: 35281911 PMCID: PMC8905494 DOI: 10.3389/fphar.2022.840478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/26/2022] [Indexed: 12/25/2022] Open
Abstract
Ethnopharmacological relevance: Since ancient times, Hibiscus sabdariffa L. calyces have been used as a folk remedy for the treatment of hypertension. However, it is questionable as to whether there is a difference in the antihypertensive activity of the hot or cold aqueous extracts. Aim of the study: We designed this study to specify the best method for water extraction of the antihypertensive metabolites of H. sabdariffa and to confirm their in vivo antihypertensive capabilities. Materials and methods: The powdered dried calyces of H. sabdariffa were independently extracted with cold and hot water. A comparative study was performed between the cold and hot aqueous extracts of H. sabdariffa based on evaluation of the in vitro renin and angiotensin-converting enzyme (ACE) inhibition activities. Additionally, both extracts were subjected to an in vivo study for the evaluation of their antihypertensive activities in L-Nw-Nitro arginine methyl ester (L-NAME)–induced hypertensive rats. Further, a metabolomics study was also performed for both extracts to identify their chemical constituents. Results: The cold and hot extracts significantly reduced the angiotensin II, ACE, and aldosterone levels in the plasma. Furthermore, in the myocardium and aorta, decreased iNOS (inducible nitric oxide synthase) levels and elevated eNOS (endothelial nitric oxide synthase), as well as the rise in plasma NO levels, were reported with both extracts, but better results were displayed with the hot extract, leading to a potential antihypertensive effect. Additionally, the cold and hot Hibiscus extracts induced a cardioprotective effect through reducing necrosis, inflammation, and vacuolization that results from the induction of hypertension, an effect that was more prominent with the hot extract. Moreover, a comprehensive metabolomics approach using ultra-performance liquid chromatography coupled to tandem mass spectrometry (UPLC–MS/MS) was able to trace the metabolites in each extraction. Conclusion: The extracts showed different anthocyanin and phenolic compounds, but the hot extract showed higher contents of specific phenolics to which the superior antihypertensive and cardioprotective activities could be related.
Collapse
Affiliation(s)
- Mohamed A Salem
- Department of Pharmacognosy, Faculty of Pharmacy, Menoufia University, Shibin Elkom, Egypt.,Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo, Egypt.,Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| | - Kawkab A Ahmed
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.,Center for Plant Systems Biology and Biotechnology, Plovdiv, Bulgaria
| | - Reham M Essam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
12
|
Shaukat B, Mehmood MH, Anwar H. Ziziphus Oxyphylla hydro-methanolic extract ameliorates hypertension in L-NAME induced hypertensive rats through NO/cGMP pathway and suppression of oxidative stress related inflammatory biomarkers. JOURNAL OF ETHNOPHARMACOLOGY 2022; 285:114825. [PMID: 34774683 DOI: 10.1016/j.jep.2021.114825] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 09/20/2021] [Accepted: 11/05/2021] [Indexed: 06/13/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ziziphus Oxyphylla belongs to family Ziziphus and has been used traditionally in hypertension. It is enriched with quercetin and kaempferol derivatives, catechin and cyclopeptide alkaloids. AIM The current research evaluates the antihypertensive potential of aqueous methanolic extract of Z. oxyphylla (AMEZO) in NG-nitro-L-arginine methyl ester (LNAME) induced hypertension in rats. MATERIAL AND METHODOLOGY Phytochemical analysis of AMEZO was carried out using high performance liquid chromatography (HPLC) and electrospray ionization mass spectrometry (ESI-MS/MS). Antihypertensive activities of AMEZO (200 and 400 mg/kg) and Kaempferol were assessed in L-NAME (185 μmol/kg, intraperitoneal) injected hypertensive rats. In normotensive rats, blood pressure was assessed using Power Lab data system. Serum and tissue samples were preserved for estimation of nitric oxide (NO), Cyclic guanosine monophosphate (cGMP), interleukin-6 (IL-6), tumor necrosis factor (TNF- α) and oxidative stress markers respectively. mRNA levels of eNOS, ACE, COX-2 and NF-kB genes were assessed through qPCR. RESULTS The HPLC and ESI-MS/MS identified kaempferol, quercetin, catechin, ceanothic acid, zizybernalic acid and oxyphylline F. Chronic administration of AMEZO and kaempferol in L-NAME induced hypertensive rats significantly (p < 0.001) reduced systolic, diastolic and mean blood pressure. AMEZO and kaempferol caused meaningfully improved (p < 0.001) serum NO and cGMP levels. AMEZO administration also noticeably decrease the elevated IL-6 and TNF- α concentration in hypertensive animals. Administration of AMEZO and kaempferol also improved oxidative stress markers (MDA, CAT, SOD, GSH). The antihypertensive activity of AMEZO also resulted in upregulation of eNOS and downregulation of ACE. CONCLUSION These data depict that AMEZO and kaempferol showed antihypertensive activity in LNAME induced hypertensive rats possibly mediated through improvement in NO and cGMP levels, modulation of mRNA expression of eNOS, ACE, COX-2 and NF-kB and suppression of oxidative stress related inflammatory markers, proposing a defensive role in cardiovascular diseases.
Collapse
Affiliation(s)
- Bushra Shaukat
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Malik Hassan Mehmood
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Government College University, Faisalabad, Pakistan.
| | - Haseeb Anwar
- Department of Physiology, Faculty of Life Sciences, Government College University, Faisalabad, Pakistan.
| |
Collapse
|
13
|
Bin Jardan YA, Ahad A, Raish M, Alam MA, Al-Mohizea AM, Al-Jenoobi FI. Effects of garden cress, fenugreek and black seed on the pharmacodynamics of metoprolol: an herb-drug interaction study in rats with hypertension. PHARMACEUTICAL BIOLOGY 2021; 59:1088-1097. [PMID: 34392777 PMCID: PMC8366631 DOI: 10.1080/13880209.2021.1961817] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 07/07/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Garden cress (GC), fenugreek (FG), and black seed (BS) are traditional herbal medicine for managing hypertension. OBJECTIVE The effects of the three herbs on the pharmacodynamics of metoprolol tartrate (MT) in hypertensive rats were investigated. MATERIALS AND METHODS Wistar rats were divided in five groups (n = 6). Group I served as normal control group and Group II (hypertensive control group) had rats treated orally with N-nitro L-arginine methyl ester (L-NAME, 40 mg/kg/day) only. Groups III, IV, and V rats were orally treated with L-NAME (40 mg/kg/day) + GC (300 mg/kg, once daily), L-NAME (40 mg/kg/day) + FG (300 mg/kg, once daily) and L-NAME (40 mg/kg/day) + BS (300 mg/kg, once daily), respectively, for 2 weeks, and on the 14th day, blood pressure and heart rate were recorded using a tail-cuff blood pressure-measuring system. On the 16th day, a single dose of MT (10 mg/kg) was orally administered, and the rats' blood pressure and heart rate were recorded. RESULTS GC, FG, and BS decreased systolic blood pressure (SBP) by 8.7%, 8.5%, and 8.7%, respectively, in hypertensive rats. A greater decrease in SBP by 14.5%, 14.8%, and 16.1% was observed when hypertensive rats were treated with L-NAME + GC + MT, L-NAME + FG + MT, and L-NAME + BS + MT, respectively. Similarly, hypertensive rats treated with the combination of herbs and MT had significantly lower diastolic blood pressure (DBP) than those treated with herbs alone and those treated with L-NAME alone. CONCLUSIONS The combination of investigated herbs and MT had a beneficial effect on hypertension. However, the concurrent administration of drugs, particularly those predominantly cleared through CYP450 2D6-catalyzed metabolism, with the three investigated herbs should be considered with caution.
Collapse
Affiliation(s)
- Yousef A. Bin Jardan
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdul Ahad
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad Raish
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohd Aftab Alam
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah M. Al-Mohizea
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fahad I. Al-Jenoobi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
14
|
Ragab TIM, Ali NA, El Gendy ANG, Mohamed SH, Shalby AB, Farrag ARH, Shalaby ASG. Renoprotective and therapeutic effects of newly water, ethanol, and butanol ginseng fractions in hypertensive and chronic kidney disease with L-NAME. Biomed Pharmacother 2021; 142:111978. [PMID: 34411920 DOI: 10.1016/j.biopha.2021.111978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 12/22/2022] Open
Abstract
The present study investigated the protective and treatment effects of different ginseng fractions against L-NAME-induced renal toxicity in rats. The data obtained demonstrated that L-NAME significantly increased creatinine, urea, KIM-1, and lipocalin-2 levels in serum; and also increased renal MDA and eNOS levels compared with the control group. Three bioactive fractions were newly extracted from ginseng, analyzed by GC-MS analysis, and were examined for antimicrobial, prebiotic, and histological activities. All ginseng fractions improved such histological changes, as reflected by significant reductions in creatinine, urea, KIM-1, and LCN-2 levels in serum, and renal MDA and eNOS contents in tissue homogenate. The water ginseng fraction (WGF) has the highest prebiotic index of 4.7 toward Lactobacillus reuteri, and can improve the renal functions more than butanol ginseng fraction (BGF) and ethanol ginseng fraction (EGF). These three ginseng fractions significantly reversed L-NAME-induced depletion in the TNF-α gene expression level. Interestingly, WGF was able to improve the renal functions more than BGF and EGF. L-NAME led to alterations in the histological structure and functions of renal tissue of rats and ginseng supplementation could offer greater protection against these changes. Moreover, the WGF exhibited superior renoprotection properties when compared with the other two fractions: BGF and EGF, and the reference drug losartan.
Collapse
Affiliation(s)
- Tamer I M Ragab
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt.
| | - Naglaa A Ali
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Abdel Nasser G El Gendy
- Medicinal and Aromatic Plants Research Department, Pharmaceutical Industry Division, National Research Centre, El Buhouth St., Dokki, Giza 12622, Egypt
| | - Safaa H Mohamed
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Aziza B Shalby
- Department of Hormones, Medical Research Division, National Research Centre, Dokki, 12622 Cairo, Egypt
| | - Abdel-Razik H Farrag
- Departments of Pathology, Medical Research Division, National Research Centre, 33 El Bohouth St., Dokki, Giza 12622, Egypt
| | - Al Shimaa Gamal Shalaby
- Chemistry of Natural and Microbial Products Department, Pharmaceutical Industry Division, National Research Centre, El-Buhouth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
15
|
Belemnaba L, Nitiéma M, Ilboudo S, Ouédraogo GG, Ouédraogo N, Belemlilga MB, Compaoré S, Ouédraogo S, Ouédraogo S. Preclinical Evaluation of the Antihypertensive Effect of an Aqueous Extract of Anogeissus leiocarpa (DC) Guill et Perr. Bark of Trunk in L-NAME-Induced Hypertensive Rat. J Exp Pharmacol 2021; 13:739-754. [PMID: 34393522 PMCID: PMC8357407 DOI: 10.2147/jep.s319787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The present study investigates the effect of an aqueous extract of Anogeissus leiocarpa (AEAL) on normotensive Wistar rats and its chronic antihypertensive effects in L-NAME-induced hypertensive rats by using a non-invasive tail-cuff model. METHODS The effects of AEAL (50mg/kg) and NaCl 0.9% on blood pressure were investigated by daily oral administration in normotensive Wistar rats over four weeks. L-NAME-induced hypertensive rats were produced by L-NAME (40mg/kg) daily oral administration for two weeks. For chronic antihypertensive effects, induced hypertensive rats have received L-NAME in combination with AEAL (10 or 50mg/kg/day) for two following weeks. RESULTS In normotensive rats, daily administration of AEAL (50mg/kg) has no significant effect on their blood pressure, which was similar to that of the control group. L-NAME's daily oral administration induces a progressive increase in systolic blood pressure (SBP) from 115.8 ± 7.9mmHg to 153.5 ± 4.6mmHg after two weeks, which was maintained to the end of the treatment. In L-NAME-induced hypertensive rats, AEAL (50mg/kg/day) significantly decreases the SPB from 160.0 ± 5.8 mmHg to 108.8 ± 2.7mmHg after only four days of administration. However, the lower dose of AEAL (10mg/kg) also normalized the SBP of L-NAME-induced hypertensive rats but only evident after seven days of administration. Moreover, AEAL does not effect on the serum biochemical parameters (ALAT, ASAT, CREAT, etc.) and any macroscopic adverse effect was detected on the sensible organs involved during hypertension. In the aorta rings from treated rats, AEAL (50mg/kg/day) alone or in combination with L-NAME has enhanced the vasodilation effect of acetylcholine. However, the vasodilation effect of AEAL alone or in association with L-NAME has enhanced the sodium nitroprusside effect in treated rat aorta rings after autopsy. CONCLUSION These findings suggest that AEAL affords significant antihypertensive effects against L-NAME-induced hypertensive rats without modification of serum parameters and deleterious effects.
Collapse
Affiliation(s)
- Lazare Belemnaba
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mathieu Nitiéma
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Sylvain Ilboudo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Gueswindé Geoffroy Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Noufou Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Mohamed Bonewendé Belemlilga
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| | - Souleymane Compaoré
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Salfo Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
- Université Joseph KI-ZERBO, 03 BP 7021, Ouagadougou, 03, Burkina Faso
| | - Sylvin Ouédraogo
- Institut de Recherche en Sciences de la Santé/Centre National de la Recherche Scientifique et Technologique (IRSS/CNRST), 03 BP 7047, Ouagadougou, 03, Burkina Faso
| |
Collapse
|
16
|
New Therapeutic Insight into the Effect of Ma Huang Tang on Blood Pressure and Renal Dysfunction in the L-NAME-Induced Hypertension. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9980429. [PMID: 34335852 PMCID: PMC8294972 DOI: 10.1155/2021/9980429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/29/2021] [Accepted: 07/03/2021] [Indexed: 12/11/2022]
Abstract
In this study, we evaluated the effect of a traditional herbal formula, Ma Huang Tang (MHT), on blood pressure and vasodilation in a rat model of NG‐nitro‐L‐arginine methylester- (L-NAME-) induced hypertension. We found that MHT-induced vascular relaxation in a dose-dependent manner in rat aortas pretreated with phenylephrine. However, pretreatment of endothelium-intact aortic rings with L‐NAME, an inhibitor of nitric oxide synthesis (NOS), or 1H‐[1, 2, 4]‐oxadiazole‐[4, 3‐α]‐quinoxalin‐1‐one (ODQ), an inhibitor of soluble guanylyl cyclase, significantly abolished vascular relaxation induced by MHT. MHT also increased the production of guanosine 3′,5′-cyclic monophosphate (cGMP) in the aortic rings pretreated with L-NAME or ODQ. To examine the in vivo effects of MHT, Sprague Dawley rats were treated with 40 mg/kg/day L-NAME for 3 weeks, followed by administration of 50 or 100 mg/kg/day MHT for 2 weeks. MHT was found to significantly normalize systolic blood pressure and decreased intima-media thickness in aortic sections of rats treated with L-NAME compared to that of rats treated with L-NAME alone. MHT also restored the L-NAME-induced decrease in vasorelaxation response to acetylcholine and endothelial nitric oxide synthase (eNOS) and endothelin-1 (ET-1) expression. Furthermore, MHT promoted the recovery of renal function, as indicated by osmolality, blood urea nitrogen (BUN) levels, and creatinine clearance. These results suggest that MHT-induced relaxation in the thoracic aorta is associated with activation of the nitric oxide/cGMP pathway. Furthermore, it provides new therapeutic insights into the regulation of blood pressure and renal function in hypertensive patients.
Collapse
|
17
|
Umeoguaju FU, Ephraim-Emmanuel BC, Uba JO, Bekibele GE, Chigozie N, Orisakwe OE. Immunomodulatory and Mechanistic Considerations of Hibiscus sabdariffa (HS) in Dysfunctional Immune Responses: A Systematic Review. Front Immunol 2021; 12:550670. [PMID: 34040600 PMCID: PMC8141557 DOI: 10.3389/fimmu.2021.550670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Hibiscus sabdariffa calyx (HS) water decoction extract is a commonly consumed beverage with various pharmacological properties. This systematic review examines the possible effect of HS intake on immune mediators. The Scopus and PUBMED databases were searched for all human and animal studies that investigated the effect of HS administration on immune related biomarkers. For each of the immune biomarkers, the mean, standard deviation and number of subjects were extracted for both the HS treated and untreated group. These values were used in the computation of standardized mean difference (SMD). Statistical analysis and forest plot were done with R statistical software (version 3.6.1). Twenty seven (27) studies met the eligibility criteria. Twenty two (22) of the studies were used for the meta-analysis which included a total of 1211 subjects. The meta-analysis showed that HS administration significantly lowered the levels of TNF-α (n=10; pooled SMD: -1.55; 95% CI: -2.43, -0.67; P < 0.01), IL-6 (n=11; pooled SMD:-1.09; 95% CI: -1.77, -0.40; P < 0.01), IL-1β (n=7; pooled SMD:-0.62; 95% CI: -1.25, 0.00; P = 0.05), Edema formation (n=4; pooled SMD: -2.29; 95% CI: -4.47, -0.11; P = 0.04), Monocyte Chemoattractant Protein -1 (n=4; pooled SMD: -1.17; 95% CI: -1.78, -0.57; P < 0.01) and Angiotensin converting enzyme cascade (n=6; pooled SMD: -0.91; 95% CI: -1.57, -0.25; P < 0.01). The levels of IL-10 (n=4; pooled SMD: -0.38; 95% CI: -1.67, 0.91; P = 0.56), Interleukin 8 (n=2; pooled SMD:-0.12; 95% CI: -0.76, 0.51; P = 0.71), iNOS (n=2; pooled SMD:-0.69; 95% CI: -1.60, 0.23 P = 0.14) and C- Reactive Protein (n=4; pooled SMD: 0.05; 95% CI: -0.26, 0.36; P = 0.75), were not significantly changed by HS administration. Some of the results had high statistical heterogeneity. HS may be promising in the management of disorders involving hyperactive immune system or chronic inflammation.
Collapse
Affiliation(s)
- Francis U. Umeoguaju
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Benson C. Ephraim-Emmanuel
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Dental Health Sciences, Ogbia, Bayelsa State College of Health Technology, Otakeme, Nigeria
| | - Joy O. Uba
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Grace E. Bekibele
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Nwondah Chigozie
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
| | - Orish Ebere Orisakwe
- World Bank Africa Centre of Excellence in Public Health and Toxicological Research (PUTOR), University of Port Harcourt, Port Harcourt, Nigeria
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port Harcourtt, Port Harcourt, Nigeria
| |
Collapse
|
18
|
Metchi Donfack MF, Atsamo AD, Temdié Guemmogne RJ, Ngouateu Kenfack OB, Dongmo AB, Dimo T. Antihypertensive Effects of the Vitex cienkowskii (Verbenaceae) Stem-Bark Extract on L-NAME-Induced Hypertensive Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2021; 2021:6668919. [PMID: 33747111 PMCID: PMC7954626 DOI: 10.1155/2021/6668919] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/05/2021] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Vitex cienkowskii stem-bark is used in Cameroonian traditional medicine to treat cardiovascular diseases including hypertension. In previous studies, the methanol/methylene chloride stem-bark extract of Vitex cienkowskii (MMVC) showed a preventive activity in L-NAME-induced hypertension and improved blood pressure of spontaneously hypertensive rats. The present study investigated the curative effects in L-NAME-induced hypertensive rats (LNHR). Hypertension was induced in rats by oral administration of L-NAME (40 mg/kg/day) for 28 days. The animals were divided into 2 groups: one group of 5 rats receiving distilled water (10 ml/kg) and another 20 rats receiving L-NAME. At the end of 4 weeks of administration of L-NAME, the animals were divided into 4 groups of 5 rats each: one group of hypertensive rats receiving distilled water, another one receiving captopril (25 mg/kg), and two groups of hypertensive rats receiving MMVC at doses of 200 and 400 mg/kg, respectively. Body weight, food, and water intake were measured weekly. At the end of the treatment, blood pressure and heart rate were recorded by invasive method. Whole heart, left ventricle, kidneys, and liver were weighed. The effects of plant extract on lipid profile and oxidative stress markers, as well as markers of hepatic and renal functions were assessed spectrophotometrically according to well described protocols. Results show that L-NAME significantly increases the mean arterial blood pressure (MABP), atherogenic index, lipid profile, and creatinine and transaminase activities of normotensive rats. MMVC significantly reduced the blood pressure in LNHR. Body weight, food and water intake, left ventricular hypertrophy, antioxidant level, renal and hepatic markers, and lipid profile were improved by the treatment with MMVC. The curative effect of MMVC on L-NAME-induced hypertension is probably related to its antihypertensive, hypolipidemic, and antioxidant properties. These results confirmed the use of Vitex cienkowskii for the treatment of hypertension in traditional medicine.
Collapse
Affiliation(s)
- Mireille Flaure Metchi Donfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Albert Donatien Atsamo
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Roméo Joël Temdié Guemmogne
- Department of Biological Sciences, Faculty of Science, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Omer Bébé Ngouateu Kenfack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Alain Bertrand Dongmo
- Department of Animal Biology, Faculty of Science, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Théophile Dimo
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
19
|
Bunbupha S, Apaijit K, Potue P, Maneesai P, Pakdeechote P. Hesperidin inhibits L-NAME-induced vascular and renal alterations in rats by suppressing the renin-angiotensin system, transforming growth factor-β1, and oxidative stress. Clin Exp Pharmacol Physiol 2021; 48:412-421. [PMID: 33185907 DOI: 10.1111/1440-1681.13438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/05/2020] [Indexed: 12/27/2022]
Abstract
The protective effect of hesperidin on vascular and renal alterations and possible underlying mechanisms involved in Nω -nitro-L-arginine methyl ester hydrochloride (L-NAME)-induced hypertensive rats were investigated in this study. Male Sprague-Dawley rats were administered L-NAME (40 mg/kg/day), L-NAME plus hesperidin (30 mg/kg/day), and L-NAME plus captopril (2.5 mg/kg/day) for 5 weeks. Hesperidin and captopril significantly prevented L-NAME-induced hypertension, vascular and renal dysfunction, intrarenal artery remodelling, glomerular extracellular matrix accumulation, and renal fibrosis. The preventive treatment with hesperidin and captopril also significantly decreased serum angiotensin-converting enzyme activity and plasma transforming growth factor-β1 (TGF-β1) levels and downregulated angiotensin II receptor type I and TGF-β1 protein expression in the kidneys. In addition, decreased malondialdehyde levels and increased superoxide dismutase activity in the plasma and kidney were observed after co-treatment with hesperidin or captopril. These findings suggest that hesperidin inhibits L-NAME-induced vascular and renal alterations in rats. The possible mechanism may be related to the suppression of the activation of the renin-angiotensin system and expression of TGF-β1, and reduction of oxidative stress.
Collapse
Affiliation(s)
- Sarawoot Bunbupha
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Kwanjit Apaijit
- Faculty of Medicine, Mahasarakham University, Maha Sarakham, Thailand
| | - Prapassorn Potue
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| | - Putcharawipa Maneesai
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| | - Poungrat Pakdeechote
- Department of Physiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
- Research Institute for Human High Performance and Health Promotion, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
20
|
Amos A, Khiatah B. Mechanisms of Action of Nutritionally Rich Hibiscus sabdariffa's Therapeutic Uses in Major Common Chronic Diseases: A Literature Review. J Am Coll Nutr 2021; 41:116-124. [PMID: 33507846 DOI: 10.1080/07315724.2020.1848662] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hibiscus sabdariffa, this beverage has been used for millennia as both a delicious cultural beverage and an ancient medicinal therapy. In recent years, many studies have investigated the uses and mechanisms of action of Hibiscus sabdariffa to treat common chronic diseases. In this literature review, we place the spotlight on Hibiscus sabdariffa's medical effect on common chronic diseases, the flower commonly used to make hibiscus tea. The databases PubMed, MEDLINE, Clinical Key, and CINAHL were searched for studies related to Hibiscus sabdariffa's compounds, antioxidative and anti-inflammatory features, mechanism of action on common chronic diseases including hypertension, hyperlipidemia, obesity, diabetes, and Alzheimer's disease. Hibiscus sabdariffa antihypertensive potentials originate from the vasodilator activity, diuretic efficacy, functionality as an ACE inhibitor, adipocyte differentiation inhibitor, heart rate reduction ability, and anti-inflammatory mechanistic. The antihyperlipidemic effect is dose-dependent and stems from the antioxidative effect and the activation of AMPK through phosphorylation and the inhibition of regulatory adipogenic transcription factors PPAR-γ, C/EBP-α, and SREBP-1c, which altogether results in lipid-lowering effect. As an antihyperglycemic, Hibiscus sabdariffa serves as anti-insulin resistance by inhibition of the phosphorylation of IRS-1 beside a similar effect to gliptins. Finally, Hibiscus sabdariffa was proven to protect against neuroinflammation in microglial cell culture exposed to LPS by decreasing IL-1, IL-6, TNF-α expression, and the protective effect against glucotoxicity, improve memory function by inhibiting the formation of hyperphosphorylated tau proteins in the mouse brain. Regular consumption of hibiscus tea or extract is beneficial for a reduction in chronic disease risk and diagnosis. Key teaching pointsHibiscus sabdariffa, or hibiscus, has been used for millennia as both a delicious cultural beverage and an ancient medicinal therapy. Recent studies have investigated the uses of Hibiscus sabdariffa to treat common chronic diseases.Its antihypertensive potential originates from the vasodilator activity, diuretic efficacy, functionality as an ACE inhibitor, adipocyte differentiation inhibitor, heart rate reduction ability, and anti-inflammatory mechanistics.The antihyperlipidemic effect is dose-dependent and stems from the antioxidative effect and the activation of AMPK through phosphorylation and also the inhibition of regulatory adipogenic transcription factors PPAR-γ, C/EBP-α and SREBP-1c which all together results in lipid-lowering effect.As an antihyperglycemic, Hibiscus sabdariffa serves as anti-insulin resistance by inhibition of the phosphorylation of IRS-1 beside the similar effect to gliptins.Hibiscus sabdariffa was proven to protect against neuroinflammation in microglial cell culture exposed to LPS by decreasing IL-1, IL-6, TNF-α expression, and the protective effect against glucotoxicity, improve memory function by inhibiting the formation of hyperphosphorylated tau proteins in the mouse brain.
Collapse
Affiliation(s)
- Amylee Amos
- Research Department, Amos Institute, Ventura, California, USA
| | - Bashar Khiatah
- Department of Internal Medicine, Community Memorial Hospital, Ventura, California, USA
| |
Collapse
|
21
|
Kakabadze K, Megreladze I, Khvichia N, Mitagvaria N, Kipiani N, Dumbadze M, Sanikidze T. Some Aspects of Role of Nitric Oxide in the Mechanisms of Hypertension (Experimental Study). Cardiol Res 2020; 12:16-24. [PMID: 33447321 PMCID: PMC7781263 DOI: 10.14740/cr1172] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/18/2020] [Indexed: 12/03/2022] Open
Abstract
Background Modulation of endothelial function is a therapeutic option to reduce some of the significant complications of hypertension. However, the relationship between endothelial dysfunction reduced nitric oxide (NO) production, and the development of hypertension is not fully understood. To establish a potential pathogenetic link between impaired NO synthesis and hypertension, we investigated the results of competitive interaction of the substrate of NO synthase, L-arginine, and its analog, an non-selective inhibitor of NO synthase, N-nitro-methyl ether-L-arginine (L-NAME), in experimental rats. Methods Arterial hypertension was induced in male Wistar rats by intraperitoneal administration of L-NAME (Sigma-Aldrich) for 4 - 7 weeks. During the last 3 weeks, to a separate group of animals simultaneously with L-NAME, L-arginine (Sigma-Aldrich) was administered. In animals monitored for systolic and diastolic pressure, the level of NO in blood samples was determined spectrophotometrically using a Griess reagent. Results Administration of L-NAME for 4 - 7 weeks induced an irreversible decrease of NO content in blood, a reversible increase of systolic pressure (SP) and diastolic pressure (DP), and an irreversible increase in pulse pressure (PP). In rats against the background of 7 weeks of intraperitoneal administration of L-NAME, during the last 3 weeks, they were injected with L-arginine, the SP and DP indices returned to their initial values, PP decreased and the NO content in arterial blood increased. Conclusions The results of the study indicate the presence of residual endothelial dysfunction (characterized by insufficient NO) after the correction of hypertension. Therefore, in developing the new therapeutic approaches for the treatment of hypertension, it is necessary to include drugs that, in addition to correcting blood pressure, will support normalization, and potentiation of endothelial function and endogenous NO synthesis.
Collapse
Affiliation(s)
- Katevan Kakabadze
- Department of Physics, Biophysics, Biomechanics and Informational Technologies, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Nino Khvichia
- Department of Pathology, Faculty of Medicine, I. Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Nodar Mitagvaria
- I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| | - Nina Kipiani
- Department of Physics, Biophysics, Biomechanics and Informational Technologies, Tbilisi State Medical University, Tbilisi, Georgia
| | | | - Tamar Sanikidze
- Department of Physics, Biophysics, Biomechanics and Informational Technologies, Tbilisi State Medical University, Tbilisi, Georgia.,I. Beritashvili Center of Experimental Biomedicine, Tbilisi, Georgia
| |
Collapse
|
22
|
Greish SM, Abdel-Hady Z, Mohammed SS, Abdel-Hamed AR, Masoud RE, Eltamany DA, Abogresha NM. Protective potential of curcumin in L-NAME-induced hypertensive rat model: AT1R, mitochondrial DNA synergy. INTERNATIONAL JOURNAL OF PHYSIOLOGY, PATHOPHYSIOLOGY AND PHARMACOLOGY 2020; 12:134-146. [PMID: 33224436 PMCID: PMC7675192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/03/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND & OBJECTIVES Hypertension can be induced by inhibiting nitric oxide synthesis with L-NAME, which also has a role in oxidative stress. Curcumin has strong antioxidant property. Our aim was to examine the possible preventive role of curcumin on renal dysfunction secondary to hypertension. MATERIAL & METHODS Twenty-four adult male Albino rats were divided in four groups: normal (N); curcumin (C; received curcumin 100 mg/kg/day by oral gavage for 10 weeks); hypertensive (H; received L-NAME 40 mg/kg/day in their drinking water for 4 weeks); and hypertensive-curcumin (HC; received L-NAME and curcumin). Arterial blood pressure was evaluated non-invasively for 4 weeks. Rats were then sacrificed for assessment of oxidative stress (catalase, lipid peroxidase, reduced glutathione and superoxide dismutase), renal function and structure, and biomarkers of apoptosis (Bcl-2 and caspase-3). AT1R expression and renal mtDNA integrity were also assessed. RESULTS Curcumin attenuated the effects of L-NAME on blood pressure and renal function. The renal histopathological changes observed in the L-NAME group were improved by curcumin administration. The expression of Bcl2 and caspase-3 was improved associated with downregulation of AT1R in curcumin treated groups. The antioxidant markers and mtDNA fragmentation show marked increase in hypertensive group which significantly decreased after curcumin treatment. CONCLUSION Curcumin improved blood pressure elevation renal dysfunction. These improvements mediated through anti-oxidant capabilities and downregulation of AT1R favoring reduced apoptosis and preserved mitochondrial DNA.
Collapse
Affiliation(s)
- Sahar M Greish
- Department of Physiology, Faculty of Medicine, Suez Canal UniversityEgypt
- Department of Physiology, School of Medicine, Badr University in CairoEgypt
| | - Zinab Abdel-Hady
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal UniversityEgypt
| | - Sally S Mohammed
- Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal UniversityEgypt
| | | | - Reham E Masoud
- Department of Clinical Pharmacology, Faculty of Medicine, PortSaid UniversityEgypt
| | - Dalia A Eltamany
- Nutrition and Food Science, Home Economic Department, Faculty of Education, Suez Canal UniversityEgypt
| | - Noha M Abogresha
- Department of Physiology, Faculty of Medicine, Suez Canal UniversityEgypt
| |
Collapse
|
23
|
Koc Yildirim E, Dedeoglu Z, Kaya M, Uner AG. The effect of swimming training on adrenomedullin levels, oxidative stress variables, and gastrocnemius muscle contractile properties in hypertensive rats. Clin Exp Hypertens 2020; 43:131-137. [PMID: 32985250 DOI: 10.1080/10641963.2020.1825726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Introduction/Aim: Regular exercise may have beneficial effects on high blood-pressure, as shown in different types of experimental hypertension models in rats. The present study aims to investigate the effects of 6-week swimming training on blood pressure, oxidative stress variables of selected tissues, serum adrenomedullin (ADM) levels, and in situ muscle contraction in rats with hypertension induced by Nω-nitro-L-arginine methyl ester hydrochloride (L-NAME), an inhibitor of endothelial nitric oxide synthases (eNOs). Materials and Methods: Twenty-six male Sprague Dawley, 8 weeks of age, rats were randomly divided into four groups: (I) normotensive (C), (II) normotensive + exercise (E), (III) hypertensive (L), and (IV) hypertensive + exercise (LE). Hypertension was induced by the oral administration of L-NAME (60 mg/kg) for 6 weeks. Exercise was performed 5 times (1-h each) per week for 6 weeks. At the end of the experiment, blood and tissue samples (the gastrocnemius muscle, heart, kidney, and thoracic aorta) were collected following contractile properties of the gastrocnemius muscle in situ weredetermined. In the collected tissues, oxidative stress (e.g., lipid oxidation and antioxidant enzyme activity) and serum ADM levels were measured. 6-week L-NAME administration per se (Group L) led to a significant increase in systolic and diastolic blood pressure compared to other groups. Results: Importantly, 6-week exercise caused a protective effect of high blood pressure in the rats received L-NAME (Group LE). The level of ADM was lower in the rats received L-NAME than that of the control group. L-NAME increased lipid peroxidation in the thoracic aorta and decreased superoxide dismutase in the heart, kidney and muscle, and decreased catalase and glutathione in the heart. However, the exercise intervention did not have protective effect on the L-NAME-mediated oxidative damage in the collected tissues. Conclusion: In conclusion, 6-week exercise intervention rescued rats from high blood pressure, but did not have ameliorative effect on the decreased ADM levels.
Collapse
Affiliation(s)
- Ece Koc Yildirim
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Zahide Dedeoglu
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Mehmet Kaya
- Department of Zootechny, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| | - Aykut G Uner
- Department of Physiology, Faculty of Veterinary Medicine, Aydin Adnan Menderes University , Aydin, Turkey
| |
Collapse
|
24
|
Souza KPD, Scaramello CBV. Relevance of Animal Models and Echocardiogram for Hypertensive Disease Studies. INTERNATIONAL JOURNAL OF CARDIOVASCULAR SCIENCES 2020. [DOI: 10.36660/ijcs.20200116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
25
|
Abdel-Rahman RF, El Awdan SA, Hegazy RR, Mansour DF, Ogaly HA, Abdelbaset M. Neuroprotective effect of Crocus sativus against cerebral ischemia in rats. Metab Brain Dis 2020; 35:427-439. [PMID: 31728890 DOI: 10.1007/s11011-019-00505-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 10/10/2019] [Indexed: 12/16/2022]
Abstract
The present study aimed to investigate the role of vascular endothelial growth factor (VEGF) in the neuroprotective effect of Crocus sativus (saffron) against cerebral ischemia/reperfusion injury (I/R) in rats. Four groups of a total forty I/R rats with 60-min occlusion followed by 48 h reperfusion or sham surgery were used. The sham and left-brain I/R control groups where treated with normal saline. The rats of the other two groups received saffron extract (100 or 200 mg/kg, ip, respectively) for 3 successive weeks prior to left-brain I/R. Other four doses of saffron extract were received by the rats of the last 2 groups 60 min prior to operation, during the surgery, and on days 1 and 2 following reperfusion. I/R group showed marked neurobehavioral, neurochemical and histopathological alterations. The results revealed a significant reduction in neurological deficit scores in the saffron-treated rats at both doses. Saffron significantly attenuated lipid peroxidation, decreased NO and brain natriuretic peptide (BNP) contents in I/R-brain tissue. On the other hand, saffron reversed the depletion of GSH in the injured brain. Moreover, saffron treatment evidently reduced apoptosis as revealed by a decrease in caspase-3 and Bax protein expression with a marked decrease in the apoptotic neuronal cells compared to I/R group. In addition, saffron administration effectively upregulated the expression of VEGF in I/R-brain tissue. In conclusion, saffron treatment offers significant neuroprotection against I/R damage possibly through diminishing oxidative stress and apoptosis and enhancement of VEGF.
Collapse
Affiliation(s)
| | | | - Rehab R Hegazy
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Dina F Mansour
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - H A Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | | |
Collapse
|
26
|
Li B, He X, Lei SS, Zhou FC, Zhang NY, Chen YH, Wang YZ, Su J, Yu JJ, Li LZ, Zheng X, Luo R, Kołodyńska D, Xiong S, Lv GY, Chen SH. Hypertensive Rats Treated Chronically With N ω-Nitro-L-Arginine Methyl Ester (L-NAME) Induced Disorder of Hepatic Fatty Acid Metabolism and Intestinal Pathophysiology. Front Pharmacol 2020; 10:1677. [PMID: 32076406 PMCID: PMC7006817 DOI: 10.3389/fphar.2019.01677] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/23/2019] [Indexed: 01/14/2023] Open
Abstract
Nω-nitro-L-arginine methyl ester (L-NAME), an inhibitor of nitric oxide (NO) biosynthesis, results in hypertension and liver injury. This study aimed at investigating the changes of liver lipometabonomics and exploring the underlying mechanisms of liver injury in the L-NAME-treated rats. The male Sprague-Dawley (SD) rats were treated with L-NAME (40 mg/kg, p.o.) for 8 weeks. After that, the liver, aorta, fecal, and serum were collected for analysis. The results showed that L-NAME induced hypertension and disordered the endothelial nitric oxide synthase (eNOS)-NO pathway in the treated rats. L-NAME could also increase the levels of serum total cholesterol (TC), triglyceride (TG), alanine transaminase (ALT), and aspartate transaminase (AST). The multidimensional mass spectrometry-based shotgun lipidomics (MDMS-SL) analysis showed that L-NAME could induce significant changes of the total hepatic lipids and most hepatic triglycerides, as well as fatty acid (FA). A positive correlation was found between the blood pressure and TAG. Immunofluorescence and Western-Blot experiments indicated that the L-NAME treatment significantly influenced some FA β-oxidation, desaturation, and synthesis-related proteins. The increase of intestinal inflammation, decrease of microcirculation and tight junction proteins, as well as alterations of microbial communities were observed in the L-NAME induced hypertensive rats, as well as alterations of microbial communities were notable correlation to TAG and FA species. This study demonstrated that the L-NAME-induced hypertensive rats exhibiting liver injury were the joint action of hepatic abnormal fatty acid metabolism and microcirculation disorder. Furthermore, the gut microflora, as well as the changes of FA β-oxidation (ACOX, CPT1α), desaturation (SCD-1), and synthesis (FAS) may be the potential mechanisms for abnormal fatty acid metabolism.
Collapse
Affiliation(s)
- Bo Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xinglishang He
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Shan-Shan Lei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Fu-Chen Zhou
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ning-Yu Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Ye-Hui Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Zhi Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Su
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing-Jing Yu
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Lin-Zi Li
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Xiang Zheng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Rong Luo
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| | - Dorota Kołodyńska
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Shan Xiong
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Gui-Yuan Lv
- College of Pharmaceutical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Su-Hong Chen
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
27
|
Micucci M, Bolchi C, Budriesi R, Cevenini M, Maroni L, Capozza S, Chiarini A, Pallavicini M, Angeletti A. Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents. PHYTOCHEMISTRY 2020; 170:112222. [PMID: 31810054 DOI: 10.1016/j.phytochem.2019.112222] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 06/10/2023]
Abstract
Hypertension has become the leading risk factor for worldwide cardiovascular diseases. Conventional pharmacological treatment, after both dietary and lifestyle changes, is generally proposed. In this review, we present the antihypertensive properties of phytocomplexes from thirteen plants, long ago widely employed in ethnomedicines and, in recent years, increasingly evaluated for their activity in vitro and in vivo, also in humans, in comparison with synthetic drugs acting on the same systems. Here, we focus on the demonstrated or proposed mechanisms of action of such phytocomplexes and of their constituents proven to exert cardiovascular effects. Almost seventy phytochemicals are described and scientifically sound pertinent literature, published up to now, is summarized. The review emphasizes the therapeutic potential of these natural substances in the treatment of the 'high normal blood pressure' or 'stage 1 hypertension', so-named according to the most recent European and U.S. guidelines, and as a supplementation in more advanced stages of hypertension, however needing further validation by clinical trial intensification.
Collapse
Affiliation(s)
- M Micucci
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - C Bolchi
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy
| | - R Budriesi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Cevenini
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - L Maroni
- Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40126, Bologna, Italy
| | - S Capozza
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - A Chiarini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Via Belmeloro, 6, 40126, Italy
| | - M Pallavicini
- Department of Pharmaceutical Sciences, University of Milano, Via Mangiagalli 25, 20133, Milan, Italy.
| | - A Angeletti
- Unit of Nephrology, Dialysis and Transplantation, Department of Experimental Diagnostic and Specialty Medicine, University of Bologna, S.Orsola Malpighi Hospital, Bologna Italy
| |
Collapse
|
28
|
Abdel-Rahman RF, Ezzat SM, Ogaly HA, Abd-Elsalam RM, Hessin AF, Fekry MI, Mansour DF, Mohamed SO. Ficus deltoidea extract down-regulates protein tyrosine phosphatase 1B expression in a rat model of type 2 diabetes mellitus: a new insight into its antidiabetic mechanism. J Nutr Sci 2020; 9:e2. [PMID: 32042410 PMCID: PMC6984126 DOI: 10.1017/jns.2019.40] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Ficus deltoidea var. deltoidea Jack (FD) is a well-known plant used in Malay folklore medicine to lower blood glucose in diabetic patients. For further research of the antihyperglycemic mechanisms, the protein tyrosine phosphatase 1B (PTP1B)-inhibitory effect of FD was analysed both in vitro and in vivo. To optimise a method for FD extraction, water, 50, 70, 80, 90 and 95 % ethanol extracts were prepared and determined for their total phenolic and triterpene contents, and PTP1B-inhibition capacity. Among the tested extracts, 70 % ethanol FD extract showed a significant PTP1B inhibition (92·0 % inhibition at 200 µg/ml) and high phenolic and triterpene contents. A bioassay-guided fractionation of the 70 % ethanol extract led to the isolation of a new triterpene (3β,11β-dihydroxyolean-12-en-23-oic acid; F3) along with six known compounds. In vivo, 4 weeks' administration of 70 % ethanol FD extract (125, 250 and 500 mg/kg/d) to streptozotocin-nicotinamide-induced type 2 diabetic rats reversed the abnormal changes of blood glucose, insulin, total Hb, GLUT2, lipid profile, and oxidative stress in liver and pancreas. Moreover, FD reduced the mRNA expression of the key gluconeogenic enzymes (phosphoenolpyruvate carboxykinase and glucose 6-phosphatase) and restored insulin receptor and GLUT2 encoding gene (Slc2a2) expression. In addition, FD significantly down-regulated the hepatic PTP1B gene expression. These results revealed that FD could potentially improve insulin sensitivity, suppress hepatic glucose output and enhance glucose uptake in type 2 diabetes mellitus through down-regulation of PTP1B. Together, our findings give scientific evidence for the traditional use of FD as an antidiabetic agent.
Collapse
Key Words
- CAT, catalase
- Dihydroxyolean-12-en-23-oic acid
- FBG, fasting blood glucose
- FD, Ficus deltoidea var. deltoidea Jack
- Ficus deltoidea
- G6Pase, glucose 6-phosphatase
- GPx, glutathione peroxidase
- GSH, reduced glutathione
- Glucose 6-phosphatase
- Glucose transporter-2
- MDA, malondialdehyde
- MET, metformin
- NA, nicotinamide
- PEPCK, phosphoenolpyruvate carboxykinase
- PTP, protein tyrosine phosphatase
- Phosphoenolpyruvate carboxykinase
- Protein tyrosine phosphatase 1B
- SOD, superoxide dismutase
- STZ, streptozotocin
- Slc2a2, GLUT2 gene
- T2DM, type 2 diabetes mellitus
Collapse
Affiliation(s)
| | - Shahira M. Ezzat
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo11562, Egypt
- Pharmacognosy Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, 6th October Campus, 12566, Egypt
| | - Hanan A. Ogaly
- Chemistry Department, College of Science, King Khalid University, Abha, Saudi Arabia
- Biochemistry Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Reham M. Abd-Elsalam
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Alyaa F. Hessin
- Pharmacology Department, National Research Centre, Giza, Egypt
- Microbiology and Immunology Department, College of Medicine, University of Illinois, Chicago, IL, USA
| | - Mostafa I. Fekry
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Kasr El-Einy Street, Cairo11562, Egypt
| | - Dina F. Mansour
- Pharmacology Department, National Research Centre, Giza, Egypt
| | - Shanaz O. Mohamed
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, Pulau Pinang, Malaysia
| |
Collapse
|
29
|
Mazzei L, Sanz R, Manucha W. Alterations on a key nephrogenic/cardiogenic gene expression linked to hypertension development. CLINICA E INVESTIGACION EN ARTERIOSCLEROSIS 2019; 32:70-78. [PMID: 31472952 DOI: 10.1016/j.arteri.2019.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 06/11/2019] [Indexed: 10/26/2022]
Abstract
The elevation of blood pressure produces specific organic lesions, including kidney and cardiac damage. On the other hand, cardiovascular disease usually leads to the development of hypertension. Thus, hypertension could be both a cause and a consequence of cardiovascular disease. Previous studies linked the lack of nitric oxide to cardiovascular abnormalities, including hypertension, arteriosclerosis, myocardial infarction, cardiac hypertrophy, diastolic heart failure, and reduced endothelium-derived hyperpolarizing factor responses, with shorter survival. The lack of this gas also leads to renal/cardiac abnormalities. It is widely known that nephrogenic deficiency is a risk factor for kidney disease. Besides, recent evidence suggests that alterations in WT-1, a key nephrogenic factor, could contribute to the development of hypertension. Moreover, some genes involved in the development of hypertension depend on WT-1. This knowledge makes it essential to investigate and understand the mechanisms regulating the expression of these genes during renal/cardiac development, and hypertension. As a consequence, the most in-depth knowledge of the complex aetiopathogenic mechanism responsible for the hypertensive disease will allow us to propose novel therapeutic tools.
Collapse
Affiliation(s)
- Luciana Mazzei
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina; Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500 Mendoza, Argentina
| | - Raúl Sanz
- Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500 Mendoza, Argentina
| | - Walter Manucha
- Instituto de Medicina y Biología Experimental de Cuyo, Consejo Nacional de Investigación Científica y Tecnológica (IMBECU-CONICET), Mendoza, Argentina; Laboratorio de Farmacología Experimental Básica y Traslacional, Área de Farmacología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, CP 5500 Mendoza, Argentina.
| |
Collapse
|
30
|
El-Tahawy NFG, Abdel Hafez SMN, Ramzy MM, Zenhom NM, Abdel-Hamid HA. Effect of experimentally induced hypertension on cerebellum of postmenopausal rat. J Cell Physiol 2019; 234:12941-12955. [PMID: 30536406 DOI: 10.1002/jcp.27961] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 11/19/2018] [Indexed: 08/01/2024]
Abstract
Cerebellum seems to be a specific target for both the decrease of estrogen and hypertension in menopause. The aim of this study was to investigate the hypertension and menopause-induced changes in rat's cerebellar cortex and the possible mechanisms of these changes. Rats were divided into four groups: the sham-operated control (SC-group), the ovariectomized (OVX-group), the hypertensive (H-group), and the ovariectomized-hypertensive (OVX-H-group) group. The mean arterial pressure (MAP), serum nitric oxide (NO), lipid peroxides and antioxidant catalase enzyme levels were assayed. Cerebellar tissue homogenization for analysis of lipid peroxides, antioxidant catalase enzyme, tumor necrosis factor-α (TNF-α), and estradiol was done. Quantification of adrenomedullin (AM) and interleukin-10 (IL-10) mRNA was also done. Cerebella were processed for histological, immunohistochemical and transmission electron microscopic examination. In the OVX-group, insignificant structural and biochemical changes were observed compared with the SC-group apart from the significantly increased lipid peroxides and decreased NO and catalase levels in serum. The H-group showed an elevated lipid peroxides and TNF-α levels, reduced catalase level, numerous degenerated Purkinje cells, vacuolations of the neuropil, some axonal degeneration, and few ghosts in the granular cell layer (GL). However, in OVX-H-group, oxidative stress, inflammation, and cerebellar damage were exacerbated and cerebellar estrogen was reduced associated with reduction in GL thickness and decreased Purkinje cells number. Most axoplasms had degenerated neurofilaments with abnormal myelination. The immunoexpression of glial fibrillary acidic protein were significantly increased in both OVX-group and H-group and significantly decreased in OVX-H group. Gene expression of AM and IL-10 were increased in cerebellar tissues of H-group compared with the SC-group but it was significantly decreased in OVX-H-group compared with H-group. Taken together, postmenopausal rats with hypertension suffered from structural cerebellar changes than rats with only hypertension or estrogen deficiency separately due to augmentation of the increased oxidative stress markers and the proinflammatory cytokines (TNF-α) with down regulation of the anti-inflammatory cytokine (IL-10) and the blood pressure regulator, AM. These suggested that high blood pressure is a critical factor for postmenopausal cerebellum.
Collapse
Affiliation(s)
| | | | - Maggie M Ramzy
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Nagwa M Zenhom
- Department of Biochemistry, Faculty of Medicine, Minia University, Minia, Egypt
| | - Heba A Abdel-Hamid
- Department of Physiology, Faculty of Medicine, Minia University, Minia, Egypt
| |
Collapse
|
31
|
Abdallah HMI, Abdel-Rahman RF, El Awdan SA, Allam RM, El-Mosallamy AEMK, Selim MS, Mohamed SS, Arbid MS, Farrag ARH. Protective effect of some natural products against chemotherapy-induced toxicity in rats. Heliyon 2019; 5:e01590. [PMID: 31080906 PMCID: PMC6507045 DOI: 10.1016/j.heliyon.2019.e01590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/01/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Aim There is a great interest in combining anticancer drugs with natural products aiming at maximizing their efficacy while minimizing systemic toxicity. Hence, the present study was constructed aiming to investigate the protective potential of three natural products, 1,8-cineole an essential oil from Artemisia herba alba, exopolysaccharide (EPS) from locally identified marine streptomycete, and ellagic acid (EA), against chemotherapy-induced organ toxicity. Methods Isolation, production and characterization of EPS from marine streptomycete was done. Animals were allocated into five groups, GP1: normal control, GP2: cyclophosphamide (CYC), GP3: 1,8-cineole + CYC, GP4: EPS + CYC, GP4: EA + CYC. All drugs were administered orally 1 week before and concomitantly with CYC. Electrocardiography (ECG) analysis, liver enzymes (ALT and AST), cardiac serum markers (LDH and CK), oxidative stress biomarkers in hepatic and cardiac tissues (GSH and MDA), TGF-β1 and histopathological examination of hepatic and cardiac tissues were executed. Results The isolated stain produced EPS was identified as Streptomyces xiamenensis. EPS contains uronic, sulphate groups and different monosugars with Mw 4.65 × 104 g/mol and showed antioxidant activity against DPPH. Pretreatment of rats with 1,8-cineole, EPS and EA improved ECG abnormalities, decrease serum markers of hepato- and cardiotoxicity, prevent oxidative stress and decrease TGF-β1 in liver and heart tissues. Conclusion The present results demonstrate the hepatoprotective and cardioprotective effects of the above-mentioned natural products against CYC organ toxicity.
Collapse
Affiliation(s)
- Heba M I Abdallah
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rehab F Abdel-Rahman
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Sally A El Awdan
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Rasha M Allam
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | | | - Manal S Selim
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Sahar S Mohamed
- Department of Microbial Biotechnology, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, Egypt
| | - Mahmoud S Arbid
- Department of Pharmacology, Medical Division, National Research Centre, Giza, Egypt
| | - Abdel Razik H Farrag
- Department of Pathology, Medical Division, National Research Centre, Giza, Egypt
| |
Collapse
|
32
|
Novel phthalamide derivatives as antihypertensive agents: rapid and clean synthesis, in silico and in vivo evaluation. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02327-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
33
|
Tata CM, Sewani-Rusike CR, Oyedeji OO, Gwebu ET, Mahlakata F, Nkeh-Chungag BN. Antihypertensive effects of the hydro-ethanol extract of Senecio serratuloides DC in rats. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:52. [PMID: 30819180 PMCID: PMC6394053 DOI: 10.1186/s12906-019-2463-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 02/21/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND Senecio serratuloides DC is used in folk medicine for treating hypertension, skin disorders, internal and external sores, rashes, burns and wounds. This study aimed at investigating the antihypertensive effects of the hydroethanol extract of S. serratuloides (HESS) in N-Nitro-L-arginine methyl ester (L-NAME) induced hypertension in rats. METHODS Acute toxicity of HESS was first determined to provide guidance on doses to be used in this study. Lorke's method was used to determine safety of the extract in mice. Female Wistar rats were treated orally once daily with L-NAME (40 mg/kg) for 4 weeks and then concomitantly with L-NAME (20 mg/kg) and plant extract (150 and 300 mg/kg), captopril (20 mg/kg) or saline as per assigned group for 2 weeks followed by a 2-week period of assigned treatments only. Blood pressure was monitored weekly. Lipid profile, nitric oxide, renin and angiotensin II concentrations were determined in serum while mineralocorticoid receptor concentration was quantified in the kidney homogenate. Nitric oxide (NO) concentration was determined in serum and cardiac histology performed. RESULTS HESS was found to be non-toxic, having a LD50 greater than 5000 mg/kg. Blood pressure increased progressively in all animals from the second week of L-NAME treatment. HESS treatment significantly and dose-dependently lowered systolic blood pressure (p < 0.001), diastolic blood pressure (p < 0.01), low density lipoprotein cholesterol (p < 0.01) and triglycerides (p < 0.01). It significantly prevented L-NAME induced decrease in serum angiotensin II (p < 0.01), high density lipoprotein cholesterol (p < 0.001) and serum nitric oxide concentrations (p < 0.001). HESS also significantly (p < 0.01) prevented collagen deposition in cardiac tissue. CONCLUSION The hydro-ethanol extract of Senecio serratuloides showed antihypertensive, antihyperlipidemic and cardioprotective effects in rats thus confirming its usefulness in traditional antihypertensive therapy and potential for antihypertensive drug development.
Collapse
Affiliation(s)
- Charlotte Mungho Tata
- Department of Human Biology, Faculty of Health Sciences, Walter Sisulu University, Mthatha, 5117 South Africa
| | | | - Opeoluwa Oyehan Oyedeji
- Department of Chemistry, Faculty of Science and Agriculture, University of Fort Hare, PBX1314, Alice, Eastern Cape Province 5700 South Africa
| | - Ephraim Tobela Gwebu
- Department of Chemistry, Faculty of Science and Technology, Rusangu University, Monze, Zambia
| | | | | |
Collapse
|
34
|
Olive leaves extract attenuates type II diabetes mellitus-induced testicular damage in rats: Molecular and biochemical study. Saudi Pharm J 2018; 27:326-340. [PMID: 30976175 PMCID: PMC6438850 DOI: 10.1016/j.jsps.2018.11.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/28/2018] [Indexed: 01/29/2023] Open
Abstract
Diabetes mellitus (DM) has emerged as a public healthcare problem. Sustained hyperglycemia has been linked with many complications including impaired male fertility Olive tree (Olea europaea L.) leaves have been extensively used in traditional remedies worldwide to control blood glucose level in DM. In this study, the beneficial role of olive leaves extract (OLE) was investigated to combat diabetes-induced adverse effect on testicular tissues. Thirty male Wistar rats were divided into 5 equal groups: normal control group, streptozotocin (STZ)-diabetic group and diabetic groups which were given glibenclamide (GLB) or OLE at 250 and 500 mg/kg for 9 weeks to investigate the efficiency of olive leaves extract (OLE) in reducing the deleterious effect of diabetes on the reproductive system of male rats. Rats were checked for serum glucose, insulin, testosterone and gonadotropins. Also, testicular antioxidants, epididymal sperm characteristics and testicular histopathology were assessed. Expression of the testicular steroidogenic enzymes, cholesterol side-chain cleavage enzyme (P450 scc) and 17β-hydroxysteroid dehydrogenase (17β-HSD) was examined. Moreover, androgen receptor and proliferating cell nuclear antigen (PCNA) protein immunohistochemistry were assessed in testes. STZ-induced diabetes significantly increased serum glucose. However, STZ significantly decreased serum levels of insulin, testosterone, follicle stimulating hormone (FSH) and luteinizing hormone (LH). Marked reductions in testicular antioxidants with elevated malondialdehyde (MDA) parallel with deterioration of the testicular histoarchitecture and epididymal sperm characteristics were recorded. Administration of GLB or OLE (250 and 500 mg/kg) resulted in a significant recovery of the above mentioned parameters in STZ-diabetic rats. Interestingly, OLE shows greater glycemic improvement and testicular protection than GLB with the highest percentage protection exhibited by the OLE high dose. Furthermore, OLE significantly induced testicular steroidogenesis in diabetic rat as evidenced by elevated P450 scc and 17β-HSD mRNA expression. The study proves that OLE possesses a potential protective role against diabetes-induced reproductive disorders, which may be due to its antioxidant activity and its ability to normalize testicular steroidogenesis.
Collapse
|
35
|
Innovative perception on using Tiron to modulate the hepatotoxicity induced by titanium dioxide nanoparticles in male rats. Biomed Pharmacother 2018; 103:553-561. [PMID: 29677542 DOI: 10.1016/j.biopha.2018.04.064] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 04/08/2018] [Accepted: 04/09/2018] [Indexed: 12/19/2022] Open
|
36
|
The Effect of Chronic NO Synthase Inhibition on the Vasoactive and Structural Properties of Thoracic Aorta, NO Synthase Activity, and Oxidative Stress Biomarkers in Young SHR. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:2502843. [PMID: 30050647 PMCID: PMC6046115 DOI: 10.1155/2018/2502843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 05/10/2018] [Accepted: 05/24/2018] [Indexed: 12/12/2022]
Abstract
Although the role of nitric oxide (NO) in essential hypertension is still unclear, the effects of long-term NO deficiency have not yet been investigated during the critical juvenile period in spontaneously hypertensive rats (SHR). We aimed to analyze the effects of chronic NO synthase (NOS) inhibition on systolic blood pressure (sBP), vasoactivity, morphological changes and superoxide level in the thoracic aorta (TA), NOS activity in different tissues, and general biomarkers of oxidative stress in plasma of young SHR. Four-week-old SHR were treated with NG-nitro-L-arginine methyl ester (L-NAME, 50 mg/kg/day, p.o.) for 4-5 weeks. L-NAME treatment induced a transient sBP increase only, and surprisingly, slightly inhibited endothelium-dependent relaxation of TA. Hereby, the inhibition of NOS activity varied from tissue to tissue, ranging from the lowest in the TA and the kidney to the highest in the brain stem. In spite of an increased sensitivity of adrenergic receptors, the maximal adrenergic contraction of TA was unchanged, which was associated with changes in elastin arrangement and an increase in wall thickness. The production of reactive oxygen species in the TA was increased; however, the level of selected biomarkers of oxidative stress did not change. Our findings proved that the TA of young SHR responded to chronic NO deficiency by the development of adaptive mechanisms on the functional (preserved NO-derived vasorelaxation, unincreased contraction) and molecular (preserved NOS activity) level.
Collapse
|