1
|
Hu S, Liu X, Ding Y, Chen J, Wang X. Effects of exercise and walnut oil on CES1 and inflammatory factors in the liver of type 2 diabetic rats. Eur J Med Res 2025; 30:128. [PMID: 39994797 PMCID: PMC11849220 DOI: 10.1186/s40001-025-02377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 02/11/2025] [Indexed: 02/26/2025] Open
Abstract
Carboxylesterase 1 (CES1) and inflammatory factors play important roles in regulating lipid metabolism and maintaining glucose homeostasis. Exercise and walnut oil have anti-inflammatory effects, but the effects of exercise and walnut oil on CES1 and inflammatory factors in type 2 diabetes mellitus (T2DM) remain to be revealed. 8-week-old SD male rats were randomly divided into normal control group (NC group, N = 12) and high fat group (HFD group, N = 28) after 1 week of adaptive feeding. HFD rat models were established by high-fat diet and one-time injection of streptozocin. The successfully constructed rats were randomly divided into diabetes control group (T2DM-NC group, N = 6), the diabetes plus moderate intensity exercise group (T2DM-MED group, N = 6), the diabetes plus high intensity intermittent exercise group (T2DM-HIIT group, N = 6), and the diabetes plus walnut oil group (T2DM-WO group, N = 6). After 6 weeks of intervention, ELISAs were used to determine the blood glucose and lipid-related indices of the rats. Histomorphologic changes in the liver were observed by hematoxylin‒eosin staining. The mRNA expression levels of CES1 and inflammatory cytokines were determined by real-time quantitative PCR. The protein expression levels of CES1 and inflammatory factors were determined by immunofluorescence staining. Compared with those in the NC group, in the T2DM-NC group, FBG, TG, LDL-C and HOMA-IR were increased (P < 0.01), FINS activity was decreased (P < 0.01), liver morphology was more disorganized, and CES1 and inflammatory cytokines were highly expressed in the liver tissue (P < 0.05 or P < 0.01). After 6 weeks of intervention, TG levels were significantly decreased (P < 0.05 or P < 0.01), whereas FINS levels were increased (P < 0.05 or P < 0.01), liver morphology was significantly ameliorated, and the CES1, TXNIP and IL-1β expression levels were decreased (P < 0.05 or P < 0.01) in the T2DM-MED, T2DM-HIIT and T2DM-WO groups when compared with those in the T2DM-NC group. The T2DM rats presented abnormal blood glucose and lipid levels, and CES1, TXNIP and IL-1β were highly expressed in the liver. Exercise and walnut oil intervention ameliorated the glycolipid metabolism and liver morphology, and reduce the expression of CES1, TXNIP and IL-1β in the liver.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Education and Physical Education, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xuan Liu
- School of Education and Physical Education, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yiting Ding
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Jun Chen
- Shannan Maternal and Child Health Hospital, Shannan, 856000, Xizang, China
| | - Xianwang Wang
- Department of Biochemistry and Molecular Biology, Center for Molecular Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
- Shannan Maternal and Child Health Hospital, Shannan, 856000, Xizang, China.
| |
Collapse
|
2
|
Li S, Wang K, Wu J, Zhu Y. The immunosenescence clock: A new method for evaluating biological age and predicting mortality risk. Ageing Res Rev 2025; 104:102653. [PMID: 39746402 DOI: 10.1016/j.arr.2024.102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/12/2024] [Accepted: 12/29/2024] [Indexed: 01/04/2025]
Abstract
Precisely assessing an individual's immune age is critical for developing targeted aging interventions. Although traditional methods for evaluating biological age, such as the use of cellular senescence markers and physiological indicators, have been widely applied, these methods inherently struggle to capture the full complexity of biological aging. We propose the concept of an 'immunosenescence clock' that evaluates immune system changes on the basis of changes in immune cell abundance and omics data (including transcriptome and proteome data), providing a complementary indicator for understanding age-related physiological transformations. Rather than claiming to definitively measure biological age, this approach can be divided into a biological age prediction clock and a mortality prediction clock. The main function of the biological age prediction clock is to reflect the physiological state through the transcriptome data of peripheral blood mononuclear cells (PBMCs), whereas the mortality prediction clock emphasizes the ability to identify people at high risk of mortality and disease. We hereby present nearly all of the immunosenescence clocks developed to date, as well as their functional differences. Critically, we explicitly acknowledge that no single diagnostic test can exhaustively capture the intricate changes associated with biological aging. Furthermore, as these biological functions are based on the acceleration or delay of immunosenescence, we also summarize the factors that accelerate immunosenescence and the methods for delaying it. A deep understanding of the regulatory mechanisms of immunosenescence can help establish more accurate immune-age models, providing support for personalized longevity interventions and improving quality of life in old age.
Collapse
Affiliation(s)
- Shuyu Li
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ke Wang
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jingni Wu
- Department of International Healthcare Center and General Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yongliang Zhu
- Laboratory of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Liu Y, Wang W, Liang B, Zou Z, Zhang A. NLRP3 inflammasome activation and disruption of IRS-1/PI3K/AKT signaling: Potential mechanisms of arsenic-induced pancreatic beta cells dysfunction in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117504. [PMID: 39657381 DOI: 10.1016/j.ecoenv.2024.117504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024]
Abstract
Environmental exposure to arsenic is associated with significant health risks, including diabetogenic effects linked to pancreatic dysfunction. The NOD-like receptor protein 3 (NLRP3) inflammasome has been implicated in various metabolic abnormalities; however, its specific role in arsenic-induced pancreatic dysfunction remains insufficiently understood. This study aimed to elucidate the involvement and underlying mechanisms of the NLRP3 inflammasome in arsenic-induced pancreatic beta cells dysfunction through in vivo and in vitro models. In rat models, arsenic exposure was found to activate the NLRP3 inflammasome, as evidenced by pathomorphological changes and the expression of inflammasome activation markers. These pathological changes were accompanied by disruptions in the insulin signaling pathway, characterized by increased phosphorylation of insulin receptor substrate 1 (IRS-1) at Ser616, reduced expression of phosphatidylinositol 3-kinase (PI3K) and phosphorylated protein kinase B (AKT) at Ser473, and significant decreases in downstream targets, including the nuclear translocation of PDX-1, membrane translocation of glucose transporter 2 (GLUT2), and glucokinase (GCK) expression. In vitro, NaAsO2-treated INS-1 cells exhibited a dose-dependent reduction in glucose-stimulated insulin secretion. Furthermore, arsenic exposure in these cells activated the NLRP3 inflammasome, suppressed the IRS-1/PI3K/AKT signaling pathway, and downregulated insulin secretion regulatory molecules (PDX-1, GLUT2, and GCK). Notably, these arsenic-induced effects were reversed by MCC950, an NLRP3 inflammasome inhibitor, and Extendin-4, an agonist of the IRS-1/PI3K/AKT signaling pathway. Collectively, these findings demonstrate that NLRP3 inflammasome activation disrupts the IRS-1/PI3K/AKT signaling pathway, contributing to arsenic-induced pancreatic beta cells dysfunction in rats.
Collapse
Affiliation(s)
- Yonglian Liu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Wenjuan Wang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Bing Liang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Zhonglan Zou
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China
| | - Aihua Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang, Guizhou 550025, PR China.
| |
Collapse
|
4
|
Jalali AM, Mitchell KJ, Pompoco C, Poludasu S, Tran S, Ramana KV. Therapeutic Significance of NLRP3 Inflammasome in Cancer: Friend or Foe? Int J Mol Sci 2024; 25:13689. [PMID: 39769450 PMCID: PMC11728390 DOI: 10.3390/ijms252413689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/16/2024] [Accepted: 12/19/2024] [Indexed: 01/16/2025] Open
Abstract
Besides various infectious and inflammatory complications, recent studies also indicated the significance of NLRP3 inflammasome in cancer progression and therapy. NLRP3-mediated immune response and pyroptosis could be helpful or harmful in the progression of cancer, and also depend on the nature of the tumor microenvironment. The activation of NLRP3 inflammasome could increase immune surveillance and the efficacy of immunotherapy. It can also lead to the removal of tumor cells by the recruitment of phagocytic macrophages, T-lymphocytes, and other immune cells to the tumor site. On the other hand, NLRP3 activation can also be harmful, as chronic inflammation driven by NLRP3 supports tumor progression by creating an environment that facilitates cancer cell proliferation, migration, invasion, and metastasis. The release of pro-inflammatory cytokines such as IL-1β and IL-18 can promote tumor growth and angiogenesis, while sustained inflammation may lead to immune suppression, hindering effective anti-tumor responses. In this review article, we discuss the role of NLRP3 inflammasome-mediated inflammatory response in the pathophysiology of various cancer types; understanding this role is essential for the development of innovative therapeutic strategies for cancer growth and spread.
Collapse
Affiliation(s)
| | | | | | | | | | - Kota V. Ramana
- Department of Biomedical Sciences, Noorda College of Osteopathic Medicine, Provo, UT 84606, USA
| |
Collapse
|
5
|
Verlinden SF. The genetic advantage of healthy centenarians: unraveling the central role of NLRP3 in exceptional healthspan. FRONTIERS IN AGING 2024; 5:1452453. [PMID: 39301197 PMCID: PMC11410711 DOI: 10.3389/fragi.2024.1452453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/19/2024] [Indexed: 09/22/2024]
Abstract
Despite extensive research into extending human healthspan (HS) and compressing morbidity, the mechanisms underlying aging remain elusive. However, a better understanding of the genetic advantages responsible for the exceptional HS of healthy centenarians (HC), who live in good physical and mental health for one hundred or more years, could lead to innovative health-extending strategies. This review explores the role of NLRP3, a critical component of innate immunity that significantly impacts aging. It is activated by pathogen-associated signals and self-derived signals that increase with age, leading to low-grade inflammation implicated in age-related diseases. Furthermore, NLRP3 functions upstream in several molecular aging pathways, regulates cellular senescence, and may underlie the robust health observed in HC. By targeting NLRP3, mice exhibit a phenotype akin to that of HC, the HS of monkeys is extended, and aging symptoms are reversed in humans. Thus, targeting NLRP3 could offer a promising approach to extend HS. Additionally, a paradigm shift is proposed. Given that the HS of the broader population is 30 years shorter than that of HC, it is postulated that they suffer from a form of accelerated aging. The term 'auto-aging' is suggested to describe accelerated aging driven by NLRP3.
Collapse
|
6
|
Zhang T, Zhou Y, Zhang Y, Wang DG, Lv QY, Wang W, Bai YP, Hua Q, Guo LQ. Sesamin ameliorates nonalcoholic steatohepatitis through inhibiting hepatocyte pyroptosis in vivo and in vitro. Front Pharmacol 2024; 15:1347274. [PMID: 38362146 PMCID: PMC10867836 DOI: 10.3389/fphar.2024.1347274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/22/2024] [Indexed: 02/17/2024] Open
Abstract
Sesamin (Ses) is a natural lignan abundantly present in sesame and sesame oil. Pyroptosis, a newly identified type of pro-inflammatory programmed necrosis, contributes to the development of non-alcoholic steatohepatitis (NASH) when hepatocyte pyroptosis is excessive. In this study, Ses treatment demonstrated an improvement in hepatic damage in mice with high-fat, high-cholesterol diet-induced NASH and palmitate (PA)-treated mouse primary hepatocytes. Notably, we discovered, for the first time, that Ses could alleviate hepatocyte pyroptosis both in vivo and in vitro. Furthermore, treatment with phorbol myristate acetate, a protein kinase Cδ (PKCδ) agonist, increased PKCδ phosphorylation and attenuated the protective effects of Ses against pyroptosis in PA-treated mouse primary hepatocytes. Mechanistically, Ses treatment alleviated hepatocyte pyroptosis in NASH, which was associated with the regulation of the PKCδ/nod-like receptor family CARD domain-containing protein 4/caspase-1 axis. This study introduces a novel concept and target, suggesting the potential use of functional factors in food to alleviate liver damage caused by NASH.
Collapse
Affiliation(s)
- Teng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Yong Zhou
- Department of Cardiology, Suzhou Hospital of Anhui Medical University, Suzhou, China
| | - Yan Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - De-Guo Wang
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Qiu-Yue Lv
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| | - Wen Wang
- Department of Gastroenterology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Ya-Ping Bai
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu, China
| | - Qiang Hua
- Department of Gerontology, Geriatric Endocrinology Unit, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu, China
| | - Li-Qun Guo
- School of Pharmacy, Anhui Innovative Center for Drug Basic Research of Metabolic Diseases, Wannan Medical College, Wuhu, China
| |
Collapse
|
7
|
Liu T, Wang Q, Du Z, Yin L, Li J, Meng X, Xue D. The trigger for pancreatic disease: NLRP3 inflammasome. Cell Death Discov 2023; 9:246. [PMID: 37452057 PMCID: PMC10349060 DOI: 10.1038/s41420-023-01550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
NLRP3 inflammasome is a multiprotein complex expressed in a variety of cells to stimulate the production of inflammatory factors. Activation of NLRP3 inflammasome depends on a complex regulatory mechanism, and its pro-inflammatory function plays an important role in pancreatic diseases. In this literature review, we summarize the activation mechanism of NLRP3 and analyze its role in each of the four typical pancreatic diseases. Through this article, we provide a relatively comprehensive summary to the researchers in this field, and provide some targeted therapy routes.
Collapse
Affiliation(s)
- Tianming Liu
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Qiang Wang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhiwei Du
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Lu Yin
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Jiachen Li
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Xianzhi Meng
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| | - Dongbo Xue
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Key Laboratory of Hepatosplenic Surgery, Ministry of Education, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
| |
Collapse
|
8
|
Zgutka K, Tkacz M, Tomasiak P, Tarnowski M. A Role for Advanced Glycation End Products in Molecular Ageing. Int J Mol Sci 2023; 24:9881. [PMID: 37373042 PMCID: PMC10298716 DOI: 10.3390/ijms24129881] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Ageing is a composite process that involves numerous changes at the cellular, tissue, organ and whole-body levels. These changes result in decreased functioning of the organism and the development of certain conditions, which ultimately lead to an increased risk of death. Advanced glycation end products (AGEs) are a family of compounds with a diverse chemical nature. They are the products of non-enzymatic reactions between reducing sugars and proteins, lipids or nucleic acids and are synthesised in high amounts in both physiological and pathological conditions. Accumulation of these molecules increases the level of damage to tissue/organs structures (immune elements, connective tissue, brain, pancreatic beta cells, nephrons, and muscles), which consequently triggers the development of age-related diseases, such as diabetes mellitus, neurodegeneration, and cardiovascular and kidney disorders. Irrespective of the role of AGEs in the initiation or progression of chronic disorders, a reduction in their levels would certainly provide health benefits. In this review, we provide an overview of the role of AGEs in these areas. Moreover, we provide examples of lifestyle interventions, such as caloric restriction or physical activities, that may modulate AGE formation and accumulation and help to promote healthy ageing.
Collapse
Affiliation(s)
- Katarzyna Zgutka
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Marta Tkacz
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| | - Patrycja Tomasiak
- Institute of Physical Culture Sciences, University of Szczecin, 70-453 Szczecin, Poland
| | - Maciej Tarnowski
- Department of Physiology in Health Sciences, Faculty of Health Sciences, Pomeranian Medical University, Żołnierska 54, 70-210 Szczecin, Poland
| |
Collapse
|
9
|
Bauer S, Hezinger L, Rexhepi F, Ramanathan S, Kufer TA. NOD-like Receptors-Emerging Links to Obesity and Associated Morbidities. Int J Mol Sci 2023; 24:ijms24108595. [PMID: 37239938 DOI: 10.3390/ijms24108595] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/06/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity and its associated metabolic morbidities have been and still are on the rise, posing a major challenge to health care systems worldwide. It has become evident over the last decades that a low-grade inflammatory response, primarily proceeding from the adipose tissue (AT), essentially contributes to adiposity-associated comorbidities, most prominently insulin resistance (IR), atherosclerosis and liver diseases. In mouse models, the release of pro-inflammatory cytokines such as TNF-alpha (TNF-α) and interleukin (IL)-1β and the imprinting of immune cells to a pro-inflammatory phenotype in AT play an important role. However, the underlying genetic and molecular determinants are not yet understood in detail. Recent evidence demonstrates that nucleotide-binding and oligomerization domain (NOD)-like receptor (NLR) family proteins, a group of cytosolic pattern recognition receptors (PRR), contribute to the development and control of obesity and obesity-associated inflammatory responses. In this article, we review the current state of research on the role of NLR proteins in obesity and discuss the possible mechanisms leading to and the outcomes of NLR activation in the obesity-associated morbidities IR, type 2 diabetes mellitus (T2DM), atherosclerosis and non-alcoholic fatty liver disease (NAFLD) and discuss emerging ideas about possibilities for NLR-based therapeutic interventions of metabolic diseases.
Collapse
Affiliation(s)
- Sarah Bauer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Lucy Hezinger
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| | - Fjolla Rexhepi
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Thomas A Kufer
- Institute of Nutritional Medicine, Department of Immunology, University of Hohenheim, 70593 Stuttgart, Germany
| |
Collapse
|
10
|
Kim Y. Blood and Tissue Advanced Glycation End Products as Determinants of Cardiometabolic Disorders Focusing on Human Studies. Nutrients 2023; 15:nu15082002. [PMID: 37111220 PMCID: PMC10144557 DOI: 10.3390/nu15082002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 04/29/2023] Open
Abstract
Cardiometabolic disorders are characterised by a cluster of interactive risk determinants such as increases in blood glucose, lipids and body weight, as well as elevated inflammation and oxidative stress and gut microbiome changes. These disorders are associated with onset of type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). T2DM is strongly associated with CVD. Dietary advanced glycation end products (dAGEs) attributable from modern diets high in sugar and/or fat, highly processed foods and high heat-treated foods can contribute to metabolic etiologies of cardiometabolic disorders. This mini review aims to determine whether blood dAGEs levels and tissue dAGEs levels are determinants of the prevalence of cardiometabolic disorders through recent human studies. ELISA (enzyme-linked immunosorbent assay), high-performance liquid chromatography (HPLC), liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS) for blood dAGEs measurement and skin auto fluorescence (SAF) for skin AGEs measurement can be used. Recent human studies support that a diet high in AGEs can negatively influence glucose control, body weight, blood lipid levels and vascular health through the elevated oxidative stress, inflammation, blood pressure and endothelial dysfunction compared with a diet low in AGEs. Limited human studies suggested a diet high in AGEs could negatively alter gut microbiota. SAF could be considered as one of the predictors affecting risks for cardiometabolic disorders. More intervention studies are needed to determine how dAGEs are associated with the prevalence of cardiometabolic disorders through gut microbiota changes. Further human studies are conducted to find the association between CVD events, CVD mortality and total mortality through SAF measurement, and a consensus on whether tissue dAGEs act as a predictor of CVD is required.
Collapse
Affiliation(s)
- Yoona Kim
- Department of Food and Nutrition, Institute of Agriculture and Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Gyeongsangnam-do, Republic of Korea
| |
Collapse
|
11
|
Singla S, Kumar V, Jena G. 3-aminobenzamide protects against colitis associated diabetes mellitus in male BALB/c mice: Role of PARP-1, NLRP3, SIRT-1, AMPK. Biochimie 2023; 211:96-109. [PMID: 36934779 DOI: 10.1016/j.biochi.2023.03.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/19/2023]
Abstract
Diabetes and ulcerative colitis are chronic diseases associated with inflammation, dysbiosis, impaired immune function and infection risk. In patients with type 1 diabetes enteropathy, gastrointestinal manifestations are seen relatively frequently. The current investigation was aimed to decipher the role of 3-aminobenzamide (3-AB) in ulcerative colitis associated Diabetes mellitus in male BALB/c mice. Ulcerative colitis associated Diabetes mellitus experimental murine model was developed by 3 cycles (each cycle consists of seven days) of Dextran Sulphate Sodium (DSS; 2.5 %w/v) with recovery time of one week in-between along with Streptozotocin (STZ; 40 mg/kg; i.p. x 5 days; consecutively) was given at the Ist recovery period. As an intervention, 3-aminobenzamide (3-AB; 5 and 10 mg/kg; intraperitoneally) was given beginning with the second DSS cycle and then continue till sacrifice. 3-aminobenzamide treatment significantly reduced the severity of colitis-associated diabetes mellitus by altering the expression of a number of molecular targets, including sirtuin 1 (SIRT 1), proliferating cell nuclear antigen (PCNA), poly[ADP-ribose] polymerase 1 (PARP-1), cysteine protease-1 (Caspase-1), nuclear factor kappa-light-chain-enhancer of activated B cells (NFkBp65), NLR family pyrin domain containing 3 (NLRP3), insulin growth factor 1 (IGF-1), interleukin-1β (IL-1β), interleukin-10 (IL-10) and β-catenin. Further, 3-AB at high dose (10 mg/kg; intraperitoneally) significantly restored the epithelial tight junction integrity as evaluated by TEM analysis and restored occludin expression analysed by immunofluorescence analysis. Present study revealed that the high dose of 3-AB (10 mg/kg; intraperitoneally) showed significant and consistent protective effects against colitis associated Diabetes mellitus by modulating various molecular targets.
Collapse
Affiliation(s)
- Shivani Singla
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Vinod Kumar
- High Resolution Transmission Electron Microscopy Facility, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| | - Gopabandhu Jena
- Facility for Risk Assessment and Intervention Studies, Dept. of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, S.A.S Nagar, Mohali, Chandigarh, Punjab, 160062, India.
| |
Collapse
|
12
|
MiR-146a-5p Contributes to Microglial Polarization Transitions Associated With AGEs. Mol Neurobiol 2023; 60:3020-3033. [PMID: 36780120 DOI: 10.1007/s12035-023-03252-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/30/2023] [Indexed: 02/14/2023]
Abstract
M1/M2 polarization transitions of microglial phenotypes determine the states of neuroinflammation, which is critical in the pathophysiology of diabetic encephalopathy. This study aims to investigate the effects of advanced glycation end products (AGEs) on the microglial polarization state, the role of miR-146a-5p in the regulation of microglial polarization, and the underlying signaling pathways. BV-2 cells were incubated with N-ε-carboxymethyl lysine (CML), one kind of Advanced Glycation End Products (AGEs), to induce polarization. CD11b and iNOS and CD206 and Arg-1 were used to evaluate M1 and M2 microglia, respectively. The mRNA and protein expression levels of miR-146a-5p, transcription factor NF-κB, and inflammasome NLRP3 were measured. High and low expression of miR-146a-5p in the BV-2 cell line was generated by lentivirus transfection technology. RAGE, TLR-4, and NF-κB antagonists were applied to evaluate the underlying signaling pathways. Compared with the control group, CML upregulated the M1 phenotype and downregulated the M2 phenotype. These effects were reversed by overexpression of miR-146a. Furthermore, the expression of inflammasome NLRP3 and NF-κB was upregulated in the CML group and was reduced after miR-146a overexpression. And then overexpression of miR-146a effects was reversed by inhibition miR-146a expression. An NF-κB antagonist (PDTC), a RAGE antagonist (FPS-ZMI), and a TLR-4 antagonist (TLI-095) all reversed the polarization state induced by CML. In summary, CML induced polarization transitions to M1 phenotype and promoted inflammasome NLRP3 expression in BV-2 cells. The RAGE or TLR-4/miR-146a/NLRP3/NF-кB pathway might participate in the regulation of CML-induced BV-2 polarization.
Collapse
|
13
|
Xing YJ, Zhang T, Wan SJ, Cheng Y, Zhou SM, Sun Y, Zhang HR, Yao XM, Hua Q, Meng XJ, Zhang Y, Lv K, Li C, Kong X. LncRNA HEM2ATM improves obesity-associated adipose tissues meta-inflammation and insulin resistance by interacting with heterogeneous nuclear ribonucleoprotein U. Clin Immunol 2023; 247:109234. [PMID: 36649749 DOI: 10.1016/j.clim.2023.109234] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/05/2022] [Accepted: 01/03/2023] [Indexed: 01/15/2023]
Abstract
Obesity is a complicated metabolic disease characterized by meta-inflammation in adipose tissues. In this study, we explored the roles of a new long non-coding RNA (lncRNA), HEM2ATM, which is highly expressed in adipose tissue M2 macrophages, in modulating obesity-associated meta-inflammation and insulin resistance. HEM2ATM expression decreased significantly in adipose tissue macrophages (ATMs) obtained from epididymal adipose tissues of high-fat diet (HFD)-induced obese mice. Overexpression of macrophage HEM2ATM improved meta-inflammation and insulin resistance in the adipose tissues of HFD-fed mice. Functionally, HEM2ATM negatively regulated the production of pro-inflammatory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in macrophages. Mechanistically, HEM2ATM bound to heterogeneous nuclear ribonucleoprotein U (hnRNP U), suppressed hnRNP U translocation from the nucleus to the cytoplasm, hindered the function of cytoplasmic hnRNP U on TNF-α and IL-6 mRNA stabilization, and decreased the secretion of TNF-α and IL-6. Collectively, HEM2ATM is a novel suppressor of obesity-associated meta-inflammation and insulin resistance.
Collapse
Affiliation(s)
- Yu-Jie Xing
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Teng Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China
| | - Shu-Jun Wan
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Central Laboratory of Yijishan Hospital, Wuhu 241001, China
| | - Yi Cheng
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Si-Min Zhou
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Yue Sun
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Hao-Ran Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China
| | - Xin-Ming Yao
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Qiang Hua
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Xiang-Jian Meng
- Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China
| | - Yan Zhang
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China
| | - Kun Lv
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Central Laboratory of Yijishan Hospital, Wuhu 241001, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| | - Chunxiao Li
- Department of Dermatology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, China.
| | - Xiang Kong
- Key Laboratory of Non-coding RNA Transformation Research of Anhui Higher Education Institution, Wannan Medical College, Wuhu 241002, China; Department of Endocrinology, The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital, Wuhu 241001, China; Central Laboratory of Yijishan Hospital, Wuhu 241001, China; Anhui Province Clinical Research Center for Critical Respiratory Medicine, Wannan Medical College, Wuhu 241002, China; Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, College of Life Sciences, Anhui Normal University, Wuhu 241000, China.
| |
Collapse
|
14
|
Hadzi-Petrushev N, Angelovski M, Mladenov M. Advanced Glycation End Products and Diabetes. CONTEMPORARY ENDOCRINOLOGY 2023:99-127. [DOI: 10.1007/978-3-031-39721-9_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Wei H, Cui D. Pyroptosis and Insulin Resistance in Metabolic Organs. Int J Mol Sci 2022; 23:11638. [PMID: 36232938 PMCID: PMC9570443 DOI: 10.3390/ijms231911638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/09/2022] Open
Abstract
Skeletal muscle serves as the optimal effective organ to balance glucose homeostasis, but insulin resistance (IR) in skeletal muscle breaks this balance by impeding glucose uptake and causes metabolic disorders. IR in skeletal muscle is caused by multiple factors, and it has been reported that systemic low-grade inflammation is related to skeletal muscle IR, though its molecular mechanisms need to be ulteriorly studied. Pyroptosis is a novel inflammatory-mediated type of cell death. It has recently been reported that pyroptosis is associated with a decline in insulin sensitivity in skeletal muscle. The appropriate occurrence of pyroptosis positively eliminates pathogenic factors, whereas its excessive activation may aggravate inflammatory responses and expedite disease progression. The relationship between pyroptosis and IR in skeletal muscle and its underlined mechanism need to be further illustrated. The role of pyroptosis during the process of IR alleviation induced by non-drug interventions, such as exercise, also needs to be clarified. In this paper, we review and describe the molecular mechanisms of pyroptosis and further comb the roles of its relevant key factors in skeletal muscle IR, aiming to propose a novel theoretical basis for the relationship between pyroptosis and muscle IR and provide new research targets for the improvement of IR-related diseases.
Collapse
Affiliation(s)
| | - Di Cui
- College of Physical Education, Hunan University, Changsha 410012, China
| |
Collapse
|
16
|
Zhu Q, Liu X, Zhu Q, Liu Z, Yang C, Wu H, Zhang L, Xia X, Wang M, Hao H, Cui Y, Zhang G, Hill MA, Flaker GC, Zhou S, Liu Z. N-Acetylcysteine Enhances the Recovery of Ischemic Limb in Type-2 Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11061097. [PMID: 35739993 PMCID: PMC9219773 DOI: 10.3390/antiox11061097] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Critical limb ischemia (CLI) is a severe complication of diabetes mellitus that occurs without effective therapy. Excessive reactive oxygen species (ROS) production and oxidative stress play critical roles in the development of diabetic cardiovascular complications. N-acetylcysteine (NAC) reduces ischemia-induced ROS production. The present study aimed to investigate the effect of NAC on the recovery of ischemic limb in an experimental model of type-2 diabetes. TALLYHO/JngJ diabetic and SWR/J non-diabetic mice were used for developing a CLI model. For NAC treatment, mice received NAC (1 mg/mL) in their drinking water for 24 h before initiating CLI, and continuously for the duration of the experiment. Blood flow, mechanical function, histology, expression of antioxidant enzymes including superoxide dismutase (SOD)-1, SOD-3, glutathione peroxidase (Gpx)-1, catalase, and phosphorylated insulin receptor substrate (IRS)-1, Akt, and eNOS in ischemic limb were evaluated in vivo or ex vivo. Body weight, blood glucose, plasma advanced glycation end-products (AGEs), plasma insulin, insulin resistance index, and plasma TNF-a were also evaluated during the experiment. NAC treatment effectively attenuated ROS production with preserved expressions of SOD-1, Gpx-1, catalase, phosphorylated Akt, and eNOS, and enhanced the recovery of blood flow and function of the diabetic ischemic limb. NAC treatment also significantly decreased the levels of phosphorylated IRS-1 (Ser307) expression and plasma TNF-α in diabetic mice without significant changes in blood glucose and AGEs levels. In conclusion, NAC treatment enhanced the recovery of blood flow and mechanical function in ischemic limbs in T2D mice in association with improved tissue redox/inflammatory status and insulin resistance.
Collapse
Affiliation(s)
- Qiang Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Xuanyou Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Qingyi Zhu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zehao Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Chunlin Yang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hao Wu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Linfang Zhang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Xiujuan Xia
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Meifang Wang
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Hong Hao
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Yuqi Cui
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Guangsen Zhang
- Institute of Molecular Hematopathy, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Michael A. Hill
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA;
| | - Gregory C. Flaker
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
| | - Shenghua Zhou
- Department of Cardiology, Second Xiangya Hospital, Central South University, Changsha 410011, China;
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, Division of Cardiovascular Medicine, University of Missouri School of Medicine, Columbia, MO 65212, USA; (Q.Z.); (X.L.); (Q.Z.); (Z.L.); (C.Y.); (H.W.); (L.Z.); (X.X.); (M.W.); (H.H.); (Y.C.); (G.C.F.)
- Correspondence: ; Tel.: +1-573-884-3278; Fax: +1-573-884-7743
| |
Collapse
|
17
|
Advanced Glycation End-Products (AGEs): Formation, Chemistry, Classification, Receptors, and Diseases Related to AGEs. Cells 2022; 11:cells11081312. [PMID: 35455991 PMCID: PMC9029922 DOI: 10.3390/cells11081312] [Citation(s) in RCA: 260] [Impact Index Per Article: 86.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 01/27/2023] Open
Abstract
Advanced glycation end-products (AGEs) constitute a non-homogenous, chemically diverse group of compounds formed either exogeneously or endogeneously on the course of various pathways in the human body. In general, they are formed non-enzymatically by condensation between carbonyl groups of reducing sugars and free amine groups of nucleic acids, proteins, or lipids, followed by further rearrangements yielding stable, irreversible end-products. In the last decades, AGEs have aroused the interest of the scientific community due to the increasing evidence of their involvement in many pathophysiological processes and diseases, such as diabetes, cancer, cardiovascular, neurodegenerative diseases, and even infection with the SARS-CoV-2 virus. They are recognized by several cellular receptors and trigger many signaling pathways related to inflammation and oxidative stress. Despite many experimental research outcomes published recently, the complexity of their engagement in human physiology and pathophysiological states requires further elucidation. This review focuses on the receptors of AGEs, especially on the structural aspects of receptor-ligand interaction, and the diseases in which AGEs are involved. It also aims to present AGE classification in subgroups and to describe the basic processes leading to both exogeneous and endogeneous AGE formation.
Collapse
|
18
|
Tai GJ, Yu QQ, Li JP, Wei W, Ji XM, Zheng RF, Li XX, Wei L, Xu M. NLRP3 inflammasome links vascular senescence to diabetic vascular lesions. Pharmacol Res 2022; 178:106143. [PMID: 35219871 DOI: 10.1016/j.phrs.2022.106143] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/31/2022] [Accepted: 02/22/2022] [Indexed: 01/10/2023]
Abstract
Vascular senescence is inextricably linked to the onset and progression of cardiovascular diseases (CVDs), which are the main cause of mortality in people with Type 2 diabetes (T2DM). Previous studies have emphasized the importance of chronic aseptic inflammation in diabetic vasculopathy. Here, we found the abnormal activation of NLRP3 inflammasome in the aorta of both old and T2DM mice by immunofluorescence and Western Blot analysis. Histopathological and isometry tension analysis showed that the presence of T2DM triggered or aggravated the increase of vascular aging markers, as well as age-associated vascular impairment and vasomotor dysfunction, which were improved by NLRP3 deletion or inhibition. Differential expression of aortic genes links to senescence activation and vascular remodeling supports the favorable benefits of NLRP3-/- during T2DM. In vitro results based on primary mice aortic endothelial cells (MAECs) and vascular smooth muscle cells (VSMCs) demonstrate that NLRP3 deficiency attenuated premature senescence and restored proliferation and migration capability under-stimulation, and partially ameliorated replicative senescence. These results provide an insight into the critical role of NLRP3 signaling in T2DM-induced vascular aging and loss of vascular homeostasis, and provide the possibility that targeting NLRP3 inflammasome might be a promising strategy to prevent diabetic vascular senescence and associated vascular lesions.
Collapse
Affiliation(s)
- Guang-Jie Tai
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qing-Qing Yu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Jia-Peng Li
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Wei Wei
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiao-Man Ji
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Rui-Fang Zheng
- Xinjiang Key Laboratory of Uighur Medicines, Xinjiang Institute of Materia Medica, Urumchi, Xinjiang 830004, China
| | - Xiao-Xue Li
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Li Wei
- Department of Practice and Policy, UCL School of Pharmacy, London WC1N 1AX, United Kingdom
| | - Ming Xu
- Department of Clinical Pharmacy, School of Preclinical Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
19
|
Emodin Alleviates High-Glucose-Induced Pancreatic β-Cell Pyroptosis by Inhibiting NLRP3/GSDMD Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5276832. [PMID: 35265148 PMCID: PMC8898799 DOI: 10.1155/2022/5276832] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 12/22/2022]
Abstract
Diabetes mellitus (DM) is a chronic noninfectious disease that is mainly featured by pancreatic β-cell (β-cell) dysfunction and impaired glucose homeostasis. Currently, the pathogenesis of dysfunction of the β-cells in DM remains unclear, and therapeutic approaches to it are limited. Emodin (EMD), a natural anthraquinone derivative, has been preliminarily proven to show antidiabetic effects. However, the underlying mechanism of EMD on β-cells still needs to be elucidated. In this study, we investigated the protective effects of EMD on the high glucose (50 mM)-induced INS-1 cell line and the underlying mechanism. INS-1 cells were treated with EMD (5, 10, and 20 μM) when exposed to high glucose. The effects of EMD were examined by using the inverted phase-contrast microscope, qRT-PCR, ELISA, and western blot. The results showed that EMD could alleviate cellular morphological changes, suppress IL-1β and LDH release, and promote insulin secretion in high-glucose-induced INS-1 cells. Furthermore, EMD inhibits NOD-like receptor protein 3 (NLRP3) activation and gasdermin D (GSDMD) cleavage to alleviate pyroptosis induced by high glucose. Overexpression of NLRP3 reversed the above changes caused by EMD. Collectively, our findings suggest that EMD attenuates high-glucose-induced β-cell pyroptosis by inhibiting NLRP3/GSDMD signaling.
Collapse
|
20
|
Mao QY, He SY, Hu QY, Lu Y, Niu YX, Li XY, Zhang HM, Qin L, Su Q. Advanced Glycation End Products (AGEs) Inhibit Macrophage Efferocytosis of Apoptotic β Cells through Binding to the Receptor for AGEs. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:1204-1213. [PMID: 35173034 DOI: 10.4049/jimmunol.2100695] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Pancreatic β cell apoptosis is important in the pathogenesis of type 2 diabetes mellitus (T2DM). Generally, apoptotic β cells are phagocytosed by macrophages in a process known as "efferocytosis." Efferocytosis is critical to the resolution of inflammation and is impaired in T2DM. Advanced glycation end products (AGEs), which are increased in T2DM, are known to suppress phagocytosis function in macrophages. In this study, we found that AGEs inhibited efferocytosis of apoptotic β cells by primary peritoneal macrophages in C57BL/6J mice or mouse macrophage cell line Raw264.7. Mechanistically, AGEs inhibit efferocytosis by blocking Ras-related C3 botulinum toxin substrate 1 activity and cytoskeletal rearrangement through receptor for advanced glycation end products/ras homolog family member A/Rho kinase signaling in macrophages. Furthermore, it was observed that AGEs decreased the secretion of anti-inflammatory factors and promoted the proinflammatory ones to modulate the inflammation function of efferocytosis. Taken together, our results indicate that AGEs inhibit efferocytosis through binding to receptor for advanced glycation end products and activating ras homolog family member A/Rho kinase signaling, thereby inhibiting the anti-inflammatory function of efferocytosis.
Collapse
Affiliation(s)
- Qian-Yun Mao
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Sun-Yue He
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Qiu-Yue Hu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Yao Lu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Yi-Xin Niu
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Xiao-Yong Li
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Hong-Mei Zhang
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| | - Li Qin
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
- Department of Endocrinology, Xinhua Hospital Chongming Branch, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qing Su
- Department of Endocrinology, Xinhua Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China; and
| |
Collapse
|
21
|
Ikeda T, Nakamura K, Kida T, Oku H. Possible roles of anti-type II collagen antibody and innate immunity in the development and progression of diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 2022; 260:387-403. [PMID: 34379187 PMCID: PMC8786754 DOI: 10.1007/s00417-021-05342-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 07/19/2021] [Accepted: 07/24/2021] [Indexed: 11/08/2022] Open
Abstract
The pathogenesis of both diabetic retinopathy (DR) and rheumatoid arthritis (RA) has recently been considered to involve autoimmunity. Serum and synovial fluid levels of anti-type II collagen antibodies increase early after the onset of RA, thus inducing immune responses and subsequent hydrarthrosis and angiogenesis, which resemble diabetic macular edema and proliferative DR (PDR), respectively. We previously reported that DR is also associated with increased serum levels of anti-type II collagen antibodies. Retinal hypoxia in DR may induce pericytes to express type II collagen, resulting in autoantibody production against type II collagen. As the result of blood-retinal barrier disruption, anti-type II collagen antibodies in the serum come into contact with type II collagen around the retinal vessels. A continued loss of pericytes and type II collagen around the retinal vessels may result in a shift of the immune reaction site from the retina to the vitreous. It has been reported that anti-inflammatory M2 macrophages increased in the vitreous of PDR patients, accompanied by the activation of the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, a key regulator of innate immunity. M2 macrophages promote angiogenesis and fibrosis, which might be exacerbated and prolonged by dysregulated innate immunity.
Collapse
Affiliation(s)
- Tsunehiko Ikeda
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Department of Ophthalmology, Osaka Kaisei Hospital, 1-6-10 Miyahara Yodogawa-ku, Osaka City, Osaka, Japan.
| | | | - Teruyo Kida
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Hidehiro Oku
- Department of Ophthalmology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
22
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
23
|
Kostoff RN, Briggs MB, Kanduc D, Shores DR, Kovatsi L, Drakoulis N, Porter AL, Tsatsakis A, Spandidos DA. Contributing factors common to COVID‑19 and gastrointestinal cancer. Oncol Rep 2021; 47:16. [PMID: 34779496 PMCID: PMC8611322 DOI: 10.3892/or.2021.8227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/04/2021] [Indexed: 12/11/2022] Open
Abstract
The devastating complications of coronavirus disease 2019 (COVID-19) result from the dysfunctional immune response of an individual following the initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Multiple toxic stressors and behaviors contribute to underlying immune system dysfunction. SARS-CoV-2 exploits the dysfunctional immune system to trigger a chain of events, ultimately leading to COVID-19. The authors have previously identified a number of contributing factors (CFs) common to myriad chronic diseases. Based on these observations, it was hypothesized that there may be a significant overlap between CFs associated with COVID-19 and gastrointestinal cancer (GIC). Thus, in the present study, a streamlined dot-product approach was used initially to identify potential CFs that affect COVID-19 and GIC directly (i.e., the simultaneous occurrence of CFs and disease in the same article). The nascent character of the COVID-19 core literature (~1-year-old) did not allow sufficient time for the direct effects of numerous CFs on COVID-19 to emerge from laboratory experiments and epidemiological studies. Therefore, a literature-related discovery approach was used to augment the COVID-19 core literature-based ‘direct impact’ CFs with discovery-based ‘indirect impact’ CFs [CFs were identified in the non-COVID-19 biomedical literature that had the same biomarker impact pattern (e.g., hyperinflammation, hypercoagulation, hypoxia, etc.) as was shown in the COVID-19 literature]. Approximately 2,250 candidate direct impact CFs in common between GIC and COVID-19 were identified, albeit some being variants of the same concept. As commonality proof of concept, 75 potential CFs that appeared promising were selected, and 63 overlapping COVID-19/GIC potential/candidate CFs were validated with biological plausibility. In total, 42 of the 63 were overlapping direct impact COVID-19/GIC CFs, and the remaining 21 were candidate GIC CFs that overlapped with indirect impact COVID-19 CFs. On the whole, the present study demonstrates that COVID-19 and GIC share a number of common risk/CFs, including behaviors and toxic exposures, that impair immune function. A key component of immune system health is the removal of those factors that contribute to immune system dysfunction in the first place. This requires a paradigm shift from traditional Western medicine, which often focuses on treatment, rather than prevention.
Collapse
Affiliation(s)
- Ronald Neil Kostoff
- School of Public Policy, Georgia Institute of Technology, Gainesville, VA 20155, USA
| | | | - Darja Kanduc
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, I‑70125 Bari, Italy
| | - Darla Roye Shores
- Department of Pediatrics, Division of Gastroenterology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Leda Kovatsi
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos Drakoulis
- Research Group of Clinical Pharmacology and Pharmacogenomics, Faculty of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, 15771 Athens, Greece
| | | | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| |
Collapse
|
24
|
Gao K, Zheng P, Yang T, Zhang X, Zhao Z. Tangshenping granule inhibits pyroptosis in a rat model of streptozotocin-induced diabetic nephropathy via the NLRP3/caspase-1/GSDMD pathway. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [DOI: 10.1016/j.jtcms.2021.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Chen X, Zhang D, Li Y, Wang W, Bei W, Guo J. NLRP3 inflammasome and IL-1β pathway in type 2 diabetes and atherosclerosis: Friend or foe? Pharmacol Res 2021; 173:105885. [PMID: 34536551 DOI: 10.1016/j.phrs.2021.105885] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/23/2021] [Accepted: 09/09/2021] [Indexed: 12/28/2022]
Abstract
Type 2 diabetes and atherosclerosis have gradually garnered great attention as inflammatory diseases. Previously, the fact that Interleukin-1β (IL-1β) accelerates the development of type 2 diabetes and atherosclerosis has been proved in animal experiments and clinical trials. However, the continued studies found that the effect of IL-1β on type 2 diabetes and atherosclerosis is much more complicated than the negative impact. Nucleotide-binding oligomerization domain and leucine-rich repeat pyrin 3 domain (NLRP3) inflammasome, whose activation and assembly significantly affect the release of IL-1β, is a crucial effector activated by a variety of metabolites. The diversity of NLRP3 activation mode is one of the fundamental reasons for the intricate effects on the progression of type 2 diabetes and atherosclerosis, providing many new insights for us to intervene in metabolic diseases. This review focuses on how NLRP3 inflammasome affects the progression of type 2 diabetes and atherosclerosis and what opportunities and challenges it can bring us.
Collapse
Affiliation(s)
- Xu Chen
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Dongxing Zhang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Yuping Li
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weixuan Wang
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China
| | - Weijian Bei
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| | - Jiao Guo
- Key Unit of Modulating Liver to Treat Hyperlipemia SATCM (State Administration of Traditional Chinese Medicine), Guangdong Pharmaceutical University, Guangzhou, China; Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangzhou, China.
| |
Collapse
|
26
|
Gora IM, Ciechanowska A, Ladyzynski P. NLRP3 Inflammasome at the Interface of Inflammation, Endothelial Dysfunction, and Type 2 Diabetes. Cells 2021; 10:314. [PMID: 33546399 PMCID: PMC7913585 DOI: 10.3390/cells10020314] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/30/2021] [Indexed: 01/08/2023] Open
Abstract
Type 2 diabetes mellitus (T2DM), accounting for 90-95% cases of diabetes, is characterized by chronic inflammation. The mechanisms that control inflammation activation in T2DM are largely unexplored. Inflammasomes represent significant sensors mediating innate immune responses. The aim of this work is to present a review of links between the NLRP3 inflammasome, endothelial dysfunction, and T2DM. The NLRP3 inflammasome activates caspase-1, which leads to the maturation of pro-inflammatory cytokines interleukin 1β and interleukin 18. In this review, we characterize the structure and functions of NLRP3 inflammasome as well as the most important mechanisms and molecules engaged in its activation. We present evidence of the importance of the endothelial dysfunction as the first key step to activating the inflammasome, which suggests that suppressing the NLRP3 inflammasome could be a new approach in depletion hyperglycemic toxicity and in averting the onset of vascular complications in T2DM. We also demonstrate reports showing that the expression of a few microRNAs that are also known to be involved in either NLRP3 inflammasome activation or endothelial dysfunction is deregulated in T2DM. Collectively, this evidence suggests that T2DM is an inflammatory disease stimulated by pro-inflammatory cytokines. Finally, studies revealing the role of glucose concentration in the activation of NLRP3 inflammasome are analyzed. The more that is known about inflammasomes, the higher the chances to create new, effective therapies for patients suffering from inflammatory diseases. This may offer potential novel therapeutic perspectives in T2DM prevention and treatment.
Collapse
Affiliation(s)
- Ilona M. Gora
- Nalecz Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Sciences, Ks. Trojdena 4, 02-109 Warsaw, Poland; (A.C.); (P.L.)
| | | | | |
Collapse
|
27
|
From mitochondria to sarcopenia: Role of inflammaging and RAGE-ligand axis implication. Exp Gerontol 2021; 146:111247. [PMID: 33484891 DOI: 10.1016/j.exger.2021.111247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Sarcopenia is characterized by a loss of muscle mass and function that reduces mobility, diminishes quality of life, and can lead to fall-related injuries. At the intracellular level, mitochondrial population alterations are considered as key contributors to the complex etiology of sarcopenia. Mitochondrial dysfunctions lead to reactive oxygen species production, altered cellular proteostasis, and promotes inflammation. Interestingly, the receptor for advanced glycation end-products (RAGE) is a pro-inflammatory receptor involved in inflammaging. In this review, after a brief description of sarcopenia, we will describe how mitochondria and the pathways controlling mitochondrial population quality could participate to age-induced muscle mass and force loss. Finally, we will discuss the RAGE-ligand axis during aging and its possible connection with mitochondria to control inflammaging and sarcopenia.
Collapse
|
28
|
Gritsenko A, Green JP, Brough D, Lopez-Castejon G. Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev 2020; 55:15-25. [PMID: 32883606 PMCID: PMC7571497 DOI: 10.1016/j.cytogfr.2020.08.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 08/20/2020] [Indexed: 02/06/2023]
Abstract
The NLRP3 inflammasome is a vital part of the innate immune response, whilst its aberrant activation drives the progression of a number of non-communicable diseases. Thus, NLRP3 inflammasome assembly must be tightly controlled at several checkpoints. The priming step of NLRP3 inflammasome activation is associated with increased NLRP3 gene expression, as well as post-translational modifications that control NLRP3 levels and licence the NLRP3 protein for inflammasome assembly. Increasing life expectancy in modern society is accompanied by a growing percentage of elderly individuals. The process of aging is associated with chronic inflammation that drives and/or worsens a range of age related non-communicable conditions. The NLRP3 inflammasome is known to contribute to pathological inflammation in many settings, but the mechanisms that prime NLRP3 for activation throughout aging and related co-morbidities have not been extensively reviewed. Here we dissect the biochemical changes that occur during aging and the pathogenesis of age related diseases and analyse the mechanisms by which they prime the NLRP3 inflammasome, thus exacerbating inflammation.
Collapse
Affiliation(s)
- Anna Gritsenko
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jack P Green
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - David Brough
- Lydia Becker Institute of Immunology and Inflammation, Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Gloria Lopez-Castejon
- Lydia Becker Institute of Immunology and Inflammation, Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
29
|
Keshavarz-Bahaghighat H, Darwesh AM, Sosnowski DK, Seubert JM. Mitochondrial Dysfunction and Inflammaging in Heart Failure: Novel Roles of CYP-Derived Epoxylipids. Cells 2020; 9:E1565. [PMID: 32604981 PMCID: PMC7408578 DOI: 10.3390/cells9071565] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/19/2020] [Accepted: 06/24/2020] [Indexed: 02/07/2023] Open
Abstract
Age-associated changes leading to a decline in cardiac structure and function contribute to the increased susceptibility and incidence of cardiovascular diseases (CVD) in elderly individuals. Indeed, age is considered a risk factor for heart failure and serves as an important predictor for poor prognosis in elderly individuals. Effects stemming from chronic, low-grade inflammation, inflammaging, are considered important determinants in cardiac health; however, our understanding of the mechanisms involved remains unresolved. A steady decline in mitochondrial function is recognized as an important biological consequence found in the aging heart which contributes to the development of heart failure. Dysfunctional mitochondria contribute to increased cellular stress and an innate immune response by activating the NLRP-3 inflammasomes, which have a role in inflammaging and age-related CVD pathogenesis. Emerging evidence suggests a protective role for CYP450 epoxygenase metabolites of N-3 and N-6 polyunsaturated fatty acids (PUFA), epoxylipids, which modulate various aspects of the immune system and protect mitochondria. In this article, we provide insight into the potential roles N-3 and N-6 PUFA have modulating mitochondria, inflammaging and heart failure.
Collapse
Affiliation(s)
- Hedieh Keshavarz-Bahaghighat
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Ahmed M. Darwesh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - Deanna K. Sosnowski
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
| | - John M. Seubert
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB T6G 2E1, Canada; (H.K.-B.); (A.M.D.); (D.K.S.)
- Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta 2020-M Katz Group Centre for Pharmacy and Health Research 11361-87 Avenue, Edmonton, AB T6G 2E1, Canada
| |
Collapse
|
30
|
Rai RC, Bagul PK, Banerjee SK. NLRP3 inflammasome drives inflammation in high fructose fed diabetic rat liver: Effect of resveratrol and metformin. Life Sci 2020; 253:117727. [PMID: 32371063 DOI: 10.1016/j.lfs.2020.117727] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/10/2020] [Accepted: 04/24/2020] [Indexed: 12/23/2022]
Abstract
AIMS To unravel the underlying mechanism of hepatic inflammation during type 2 diabetes (T2DM), we established the diabetic rat model by feeding with high fructose diet for twenty weeks and studied the involvement of inflammasome in the liver of these rats. MATERIALS AND METHODS Male SD rats weighing 180-200 g were divided in four groups: 1) Control (Con group) rats were fed with corn starch diet, 2) diabetic (Dia group) rats were fed with 65% of fructose, 3) diabetic along with resveratrol (10 mg/kg/day); p.o. (Dia + Resv group) and 4) diabetic along with metformin (300 mg/kg/day); p.o. (Dia + Met group), for twenty weeks. We evaluated the establishment of T2DM in fructose fed rats and the effect of resveratrol and metformin treatment on different diabetic parameters in these rats. Further we investigated the role of NLRP3 inflammasome on T2DM induced liver inflammation and effect of resveratrol and metformin treatment on NLRP3 inflammasome driven inflammatory response. KEY FINDINGS Rats from Dia group; manifested insulin resistance, hyperinsulinemia, hyperglycemia, elevated uric acid along with hypertriglyceridemia after fructose feeding for twenty weeks. Mostly, above parameters were attenuated in resveratrol and metformin treated groups. Expression of NLRP3 inflammasome components in liver were increased in Dia group rats with elevated transcript levels of pro-inflammatory cytokines. Histopathological examination revealed increase in glycogen content and fibrosis in Dia group rats; which was considerably reduced with resveratrol and metformin treatment. SIGNIFICANCE Our study suggests that management of inflammation may be considered as an alternative approach to prevent liver tissue injury during chronic diabetic condition.
Collapse
Affiliation(s)
- Ramesh Chandra Rai
- Immunology Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi 110067, India.
| | - Pankaj K Bagul
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India
| | - Sanjay Kumar Banerjee
- Translational Health Science and Technology Institute (THSTI), Faridabad 121001, India; Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER), Guwahati 781101, India.
| |
Collapse
|
31
|
Böhme R, Becker C, Keil B, Damm M, Rasch S, Beer S, Schneider R, Kovacs P, Bugert P, Riedel J, Griesmann H, Ruffert C, Kaune T, Michl P, Hesselbarth N, Rosendahl J. Serum levels of advanced glycation end products and their receptors sRAGE and Galectin-3 in chronic pancreatitis. Pancreatology 2020; 20:187-192. [PMID: 31870801 DOI: 10.1016/j.pan.2019.12.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/09/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND /Objectives: AGE and their receptors like RAGE and Galectin-3 can activate inflammatory pathways and have been associated with chronic inflammatory diseases. Several studies investigated the role of AGE, Galectin-3 and sRAGE in pancreatic diseases, whereas no comprehensive data for chronic pancreatitis (CP) are available. METHODS Serum samples from CP patients without an active inflammatory process (85 ACP; 26 NACP patients) and 40 healthy controls were collected. Levels of AGE, sRAGE and Galectin-3 were measured by ELISA. To exclude potential influences of previously described RAGE SNPs on detected serum levels, we analyzed variants rs207128, rs207060, rs1800625, and rs1800624 by melting curve technique in 378 CP patients and 338 controls. RESULTS AGE and Galectin-3 serum levels were significantly elevated in both ACP and NACP patients compared to controls (AGE: 56.61 ± 3.043 vs. 31.71 ± 2.308 ng/mL; p < 0.001; Galectin-3: 16.63 ± 0.6297 vs. 10.81 ± 0.4835 ng/mL; p < 0.001). In contrast, mean serum sRAGE levels were significantly reduced in CP patients compared to controls (sRAGE: 829.7 ± 37.10 vs. 1135 ± 55.74 ng/mL; p < 0.001). All results were consistent after correction for gender, age and diabetes mellitus. No genetic association with CP was found. CONCLUSIONS Our extensive analysis demonstrated the importance of aging related pathways in the pathogenesis of CP. As the results were consistent in ACP and NACP, both entities most likely share common pathomechanisms. Most probably the involved pathways are a general hallmark of an inflammatory state in CP that is even present in symptom-free intervals.
Collapse
Affiliation(s)
- Richard Böhme
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Carla Becker
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Bettina Keil
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Marko Damm
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Sebastian Rasch
- Klinik und Poliklinik für Innere Medizin II, Klinikum rechts der Isar, Technische Universität München, Ismaninger Straße 22, 81675, München, Germany
| | - Sebastian Beer
- Department for Internal Medicine, Neurology and Dermatology, Division of Gastroenterology, University of Leipzig, Leipzig, Germany
| | - Rick Schneider
- Department of Visceral, Vascular and Endocrine Surgery, Martin Luther University Halle-Wittenberg, 06120, Halle (Saale), Germany
| | - Peter Kovacs
- Leipzig University Medical Center, IFB Adiposity Diseases, University of Leipzig, Leipzig, Germany; Medical Department III - Endocrinology, Nephrology, Rheumatology, University of Leipzig Medical Center, Leipzig, 04103, Germany
| | - Peter Bugert
- Institute of Transfusion Medicine and Immunology, Medical Faculty Mannheim, Heidelberg University, German Red Cross Blood Service of Baden-Württemberg, Mannheim, Germany
| | - Jan Riedel
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Heidi Griesmann
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Claudia Ruffert
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Tom Kaune
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Patrick Michl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Nico Hesselbarth
- Department of Internal Medicine I, Martin Luther University, Halle, Germany
| | - Jonas Rosendahl
- Department of Internal Medicine I, Martin Luther University, Halle, Germany.
| |
Collapse
|
32
|
Advanced glycation end products enhance M1 macrophage polarization by activating the MAPK pathway. Biochem Biophys Res Commun 2020; 525:334-340. [PMID: 32093892 DOI: 10.1016/j.bbrc.2020.02.053] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/07/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND β-cell dysfunction is one of the core pathogenetic mechanisms of type 2 diabetes mellitus (T2DM). However, there are currently no effective therapeutic strategies to preserve β-cell mass and function. The role of islet macrophage phenotype reprogramming in β-cell dysfunction has attracted great attention. Given that advanced glycation end products (AGEs) are major pathogenic factors in T2DM, we investigated the effect of AGEs on macrophage activation and their role in β-cell dysfunction. METHODS We examined cytokine secretion, M1 and M2 macrophage-associated marker expression and MAPK phosphorylation levels in AGEs-stimulated macrophages. MIN6 cells were cocultured with AGEs-pretreated macrophages to study the effect of AGEs-induced macrophage activation on β-cell dysfunction. RESULTS We found that AGEs treatment significantly enhanced macrophage secretion of proinflammatory cytokines. The expression of M1 macrophage markers, such as iNOS and the surface marker CD11c, was significantly upregulated, whereas the expression of M2 macrophage markers, such as Arg1 and CD206, was reciprocally downregulated upon AGEs stimulation. AGEs treatment predominantly activated the MAPK pathway, and the inhibition of the MAPK pathway partially attenuated the AGEs-induced polarization of macrophages. In addition, coculture with AGEs-pretreated macrophages significantly inhibited the expression of molecules involved in β-cell function and was accompanied by the impairment of glucose-stimulated insulin secretion (GSIS) in MIN6 cells. CONCLUSION AGEs enhance the expression of proinflammatory molecules by activating the MAPK pathway. Moreover, these data imply that AGEs induce macrophage M1 phenotype polarization but restrain M2 polarization, which might contribute to β-cell dysfunction in the pathogenesis of T2DM.
Collapse
|
33
|
Ye JX, Wang M, Wang RY, Liu HT, Qi YD, Fu JH, Zhang Q, Zhang BG, Sun XB. Hydroxysafflor yellow A inhibits hypoxia/reoxygenation-induced cardiomyocyte injury via regulating the AMPK/NLRP3 inflammasome pathway. Int Immunopharmacol 2020; 82:106316. [PMID: 32088642 DOI: 10.1016/j.intimp.2020.106316] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/23/2020] [Accepted: 02/12/2020] [Indexed: 02/06/2023]
Abstract
Hydroxysafflor yellow A (HSYA) is an effective therapeutic agent that alleviates myocardial ischaemia/reperfusion injury (MIRI), but the exact mechanisms remain elusive. The aim of this study was to investigate the potential protective effect of HSYA against MIRI through mechanisms related to NLRP3 inflammasome regulation. In this study, hypoxia/reoxygenation (H/R)-induced H9c2 cardiomyocytes were treated with HSYA or the AMPK inhibitor, compound C (CC). Our results showed that HSYA pretreatment improved cardiomyocyte viability, maintained mitochondrial membrane potential, reduced apoptotic cardiomyocytes, decreased caspase-3 activity, and inhibited NOD-like receptor 3 (NLRP3) inflammasome activation during H/R injury. Moreover, the inhibition of AMPK activation by the CC inhibitor partially abolished the effects of HSYA treatment, including suppressing the upregulation of NLRP3 inflammasome components (NLRP3, caspase-1 and interleukin-1β) and promoting autophagy (LC3-II/LC3-I and p62). In conclusion, the protective mechanism of HSYA in H/R-induced cardiomyocyte injury is associated with inhibiting NLRP3 inflammasome activation through the AMPK signalling pathway.
Collapse
Affiliation(s)
- Jing-Xue Ye
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Rui-Ying Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Hai-Tao Liu
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Yao-Dong Qi
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China
| | - Jian-Hua Fu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China
| | - Qiong Zhang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, PR China.
| | - Ben-Gang Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| | - Xiao-Bo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100193, PR China.
| |
Collapse
|
34
|
Cepas V, Collino M, Mayo JC, Sainz RM. Redox Signaling and Advanced Glycation Endproducts (AGEs) in Diet-Related Diseases. Antioxidants (Basel) 2020; 9:antiox9020142. [PMID: 32041293 PMCID: PMC7070562 DOI: 10.3390/antiox9020142] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 01/19/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022] Open
Abstract
Diets are currently characterized by elevated sugar intake, mainly due to the increased consumption of processed sweetened foods and drinks during the last 40 years. Diet is the main source of advanced glycation endproducts (AGEs). These are toxic compounds formed during the Maillard reaction, which takes place both in vivo, in tissues and fluids under physiological conditions, favored by sugar intake, and ex vivo during food preparation such as baking, cooking, frying or storage. Protein glycation occurs slowly and continuously through life, driving AGE accumulation in tissues during aging. For this reason, AGEs have been proposed as a risk factor in the pathogenesis of diet-related diseases such as diabetes, insulin resistance, cardiovascular diseases, kidney injury, and age-related and neurodegenerative diseases. AGEs are associated with an increase in oxidative stress since they mediate the production of reactive oxygen species (ROS), increasing the intracellular levels of hydrogen peroxide (H2O2), superoxide (O2−), and nitric oxide (NO). The interaction of AGEs with the receptor for AGEs (RAGE) enhances oxidative stress through ROS production by NADPH oxidases inside the mitochondria. This affects mitochondrial function and ultimately influences cell metabolism under various pathological conditions. This short review will summarize all evidence that relates AGEs and ROS production, their relationship with diet-related diseases, as well as the latest research about the use of natural compounds with antioxidant properties to prevent the harmful effects of AGEs on health.
Collapse
Affiliation(s)
- Vanesa Cepas
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
| | - Massimo Collino
- Dipartimento di Scienza e Tecnologia del Farmaco, Università degli Studi di Torino, 10125 Torino, Italy;
| | - Juan C. Mayo
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| | - Rosa M. Sainz
- Departamento de Morfologia y Biologia Celular, Redox Biology Group, Universidad de Oviedo, 33403 Oviedo, Spain;
- Instituto Universitario de Oncologia del Principado de Asturias (IUOPA), Universidad de Oviedo, 33403 Oviedo, Spain
- Correspondence: (J.C.M.); (R.M.S.); Tel.: +34-985-10-2730 (J.C.M.); +34-985-10-3610 (R.M.S.)
| |
Collapse
|
35
|
Shirasuna K, Karasawa T, Takahashi M. Role of the NLRP3 Inflammasome in Preeclampsia. Front Endocrinol (Lausanne) 2020; 11:80. [PMID: 32161574 PMCID: PMC7053284 DOI: 10.3389/fendo.2020.00080] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/07/2020] [Indexed: 12/14/2022] Open
Abstract
Reproduction involves tightly regulated series of events and the immune system is involved in an array of reproductive processes. Disruption of well-controlled immune functions leads to infertility, placental inflammation, and numerous pregnancy complications, including preeclampsia (PE). Inflammasomes are involved in the process of pathogen clearance and sterile inflammation. They are large multi-protein complexes that are located in the cytosol and play key roles in the production of the pivotal inflammatory cytokines, interleukin (IL)-1β and IL-18, and pyroptosis. The nucleotide-binding oligomerization domain, leucine-rich repeat-, and pyrin domain-containing 3 (NLRP3) inflammasome is a key mediator of sterile inflammation induced by various types of damage-associated molecular patterns (DAMPs). Recent evidence indicates that the NLRP3 inflammasome is involved in pregnancy dysfunction, including PE. Many DAMPs (uric acid, palmitic acid, high-mobility group box 1, advanced glycation end products, extracellular vesicles, cell-free DNA, and free fatty acids) are increased and associated with pregnancy complications, especially PE. This review focuses on the role of the NLRP3 inflammasome in the pathophysiology of PE.
Collapse
Affiliation(s)
- Koumei Shirasuna
- Department of Animal Science, Tokyo University of Agriculture, Atsugi, Japan
- *Correspondence: Koumei Shirasuna
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Japan
| |
Collapse
|
36
|
Zeng C, Li Y, Ma J, Niu L, Tay FR. Clinical/Translational Aspects of Advanced Glycation End-Products. Trends Endocrinol Metab 2019; 30:959-973. [PMID: 31597608 DOI: 10.1016/j.tem.2019.08.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 07/16/2019] [Accepted: 08/16/2019] [Indexed: 12/22/2022]
Abstract
Advanced glycation end-products (AGEs) have been implicated in chronic hyperglycemia and age-related diseases. Endogenous AGEs produced by humans generate oxidative stress and activation of inflammatory signaling pathways via AGE-specific receptors. The present review summarizes current knowledge on the pathogenic role of AGEs in chronic noncommunicable diseases. Although correlations exist between glycation and the pathogenesis of these diseases, uncertainties remain in light of recurrent intervention failures of apparently promising animal models to be translated into clinically useful anti-AGE strategies. Future intervention of AGEs or their receptors should embrace more carefully executed clinical trials. Nevertheless, suppressing symptoms via lifetime drug application is unlikely to eliminate the burden of chronic diseases unless deep-rooted lifestyle issues that cause these diseases are simultaneously addressed.
Collapse
Affiliation(s)
- Chang Zeng
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanyuan Li
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Jingzhi Ma
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Lina Niu
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The Graduate School, Augusta University, Augusta, GA, USA.
| | - Franklin R Tay
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China; The Graduate School, Augusta University, Augusta, GA, USA.
| |
Collapse
|
37
|
Hong J, Li G, Zhang Q, Ritter J, Li W, Li PL. D-Ribose Induces Podocyte NLRP3 Inflammasome Activation and Glomerular Injury via AGEs/RAGE Pathway. Front Cell Dev Biol 2019; 7:259. [PMID: 31737627 PMCID: PMC6831643 DOI: 10.3389/fcell.2019.00259] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Accepted: 10/17/2019] [Indexed: 01/20/2023] Open
Abstract
D-ribose levels are demonstrated to be increased in type II diabetes mellitus and increased blood D-ribose is involved in the development of diabetic complications such as diabetic encephalopathy and nephropathy. However, the mechanism mediating the pathogenic role of D-ribose in nephropathy remains poorly understood. Given that D-ribose was reported to induce advanced glycation end products (AGEs) formation, the present study tested whether D-ribose induces NLRP3 activation and associated glomerular injury via AGEs/receptor of AGEs (RAGE) signaling pathway. In vivo, C57BL/6J and Asc-/- mice were treated with D-ribose with or without AGEs inhibitor. Administration of D-ribose daily for 30 days was found to induce NLRP3 inflammasome formation in glomerular podocyte, as shown by increased co-localization of NLRP3 with apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) or caspase-1. This D-ribose-induced NLRP3 inflammasome formation was accompanied by its activation as evidenced by increased IL-1β production, a major product of NLRP3 inflammasome. Corresponding to NLRP3 inflammasome activation, D-ribose led to significant glomerular injury in mice. All these D-ribose-induced glomerular inflammasome and associated pathological changes were markedly attenuated by deletion of Asc gene. Furthermore, the accumulation of AGEs and RAGE was found increased in glomeruli of mice receiving D-ribose. In cell studies, we also confirmed that D-ribose induced NLRP3 inflammasome formation and activation in podocytes, which was significantly blocked by caspase-1 inhibitor, YvAD. Mechanically, AGEs formation inhibition and cleavage or silencing of RAGE gene were shown to suppress D-ribose-induced NLRP3 inflammasome formation and activation, as shown by significant reduction of NLRP3 inflammasome molecular aggregation, caspase-1 activity and IL-1β production. These results strongly suggest that relatively long term administration of D-ribose induces NLRP3 inflammasome formation and activation in podocytes via AGEs/RAGE signaling pathway, which may be one of important triggering mechanisms leading to diabetic nephropathy.
Collapse
Affiliation(s)
- Jinni Hong
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
- Department of Gynecology, The Affiliated People’s Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, China
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Guangbi Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Qinghua Zhang
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Joseph Ritter
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| | - Weiwei Li
- Integrated Laboratory of Traditional Chinese Medicine and Western Medicine, Peking University First Hospital, Beijing, China
| | - Pin-Lan Li
- Department of Pharmacology and Toxicology, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
38
|
LncRNA LEGLTBC Functions as a ceRNA to Antagonize the Effects of miR-34a on the Downregulation of SIRT1 in Glucolipotoxicity-Induced INS-1 Beta Cell Oxidative Stress and Apoptosis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:4010764. [PMID: 31737170 PMCID: PMC6815544 DOI: 10.1155/2019/4010764] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/09/2019] [Accepted: 06/17/2019] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus is a chronic metabolic disorder characterized by elevated blood glucose and/or high serum free fatty acids. Chronic hyperlipidemia causes the dysfunction of pancreatic beta cells, which is aggravated in the presence of hyperglycemia (glucolipotoxicity). Long noncoding RNAs (lncRNAs) have been suggested to play key roles in type 1 diabetes mellitus development. However, their roles in glucolipotoxicity-induced beta cell dysfunction are not fully understood. In the present study, we identified the differentially expressed lncRNAs in INS-1 cells exposed to high glucose and palmitate (HG/PA). Among the dysregulated lncRNAs, NONRATT003679.2 (low expression in glucolipotoxicity-treated beta cells (LEGLTBC)) was involved in glucolipotoxicity-evoked rat islet beta cell damage. LEGLTBC functioned as a molecular sponge of miR-34a in INS-1 cells. Additionally, SIRT1 was identified as a target of miR-34a and LEGLTBC promoted SIRT1 expression by sponging miR-34a. The upregulation of LEGLTBC attenuated HG/PA-induced INS-1 cell injury through the promotion of SIRT1-mediated suppression of ROS accumulation and apoptosis. This is the first study to comprehensively identify the lncRNA expression profiling of HG/PA-treated INS-1 beta cells and to demonstrate that LEGLTBC functions as a competing endogenous RNA and regulates miR-34a/SIRT1-mediated oxidative stress and apoptosis in INS-1 cells undergoing glucolipotoxicity.
Collapse
|
39
|
Zhou X, Wu Y, Ye L, Wang Y, Zhang K, Wang L, Huang Y, Wang L, Xian S, Zhang Y, Chen Y. Aspirin alleviates endothelial gap junction dysfunction through inhibition of NLRP3 inflammasome activation in LPS-induced vascular injury. Acta Pharm Sin B 2019; 9:711-723. [PMID: 31384532 PMCID: PMC6664043 DOI: 10.1016/j.apsb.2019.02.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/04/2019] [Accepted: 01/11/2019] [Indexed: 12/22/2022] Open
Abstract
The loss of endothelial connective integrity and endothelial barrier dysfunction can lead to increased vascular injury, which is related to the activation of endothelial inflammasomes. There are evidences that low concentrations of aspirin can effectively prevent cardiovascular diseases. We hypothesized that low-dose aspirin could ameliorate endothelial injury by inhibiting the activation of NLRP3 inflammasomes and ultimately prevent cardiovascular diseases. Microvascular endothelial cells were stimulated by lipopolysaccharide (2 μg/mL) and administrated by 0.1–2 mmol/L aspirin. The wild type mice were stimulated with LPS (100 μg/kg/day), and 1 h later treated with aspirin (12.5, 62.5, or 125 mg/kg/day) and dexamethasone (0.0182 mg/kg/day) for 7 days. Plasma and heart were harvested for measurement of ELISA and immunofluorescence analyses. We found that aspirin could inhibit NLRP3 inflammasome formation and activation in vitro in dose-dependent manner and has correlation between the NLRP3 inflammasome and the ROS/TXNIP pathway. We also found that low-concentration aspirin could inhibit the formation and activation of NLRP3 inflammasome and restore the expression of the endothelial tight junction protein zonula occludens-1/2 (ZO1/2). We assume that aspirin can ameliorate the endothelial layer dysfunction by suppressing the activation of NLRP3 inflammasome.
Collapse
Affiliation(s)
- Xing Zhou
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yanjiao Wu
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lifeng Ye
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Yunting Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Kaimin Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Lingjun Wang
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, China
| | - Yi Huang
- Department of Stomatology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Lei Wang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
| | - Shaoxiang Xian
- The First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510407, China
| | - Yang Zhang
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX 77204-5037, USA
- Corresponding author. Tel.: +1 713 743 7710.
| | - Yang Chen
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou 510000, China
- Corresponding author. Tel.: +86 20 39357276.
| |
Collapse
|
40
|
Li H, Zhong X, Chen Z, Li W. Suppression of NLRP3 inflammasome improves alveolar bone defect healing in diabetic rats. J Orthop Surg Res 2019; 14:167. [PMID: 31146750 PMCID: PMC6543640 DOI: 10.1186/s13018-019-1215-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 05/23/2019] [Indexed: 02/05/2023] Open
Abstract
Background Excessive inflammatory response under hyperglycemia can impair alveolar bone defect healing under diabetic conditions. NLRP3 (NACHT [nucleotide-binding oligomerization], LRR [leucine-rich repeat], and PYD [pyrin domain] domains-containing protein 3) inflammasome has been considered to play a crucial role in the inflammatory response, but its correlation with the impaired alveolar bone repair in diabetes still remains unclarified. The objective of the current study is to investigate the effect of NLRP3 inflammasome inhibition by a lentiviral short hairpin RNA (shRNA) targeting NLRP3 on alveolar bone defect healing in diabetic rats. Methods Diabetes was induced in rats by high-fat diet and streptozotocin injection, and alveolar bone defects in both maxillae were created by surgery. Then, the lentiviral shRNA targeting NLRP3 was applied in the defect. Eight weeks after surgery, the alveolar bone regeneration was examined using hematoxylin and eosin (H&E) staining, and the gene expression in the bone healing site was detected using quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) analysis and western blot analysis. Results H&E staining showed that treatment with lentiviral shRNA targeting NLRP3 could increase the bone regeneration score in the alveolar bone defect of diabetic rats. Additionally, qRT-PCR analysis and western blot analysis of the bone defect demonstrated that this shRNA inhibited the expression of NLRP3, apoptosis-associated speck-like protein containing a CARD, caspase-1, and proinflammatory cytokine interleukin-1β and increased the expression of osteogenic markers Runt-related transcription factor 2 and osteocalcin. Conclusions Our findings suggested that inhibition of NLRP3 inflammasome could improve alveolar bone defect healing in diabetic rats. The beneficial effect may correlate with reduced proinflammatory cytokine production and increased osteogenic gene expression in hyperglycemia. Electronic supplementary material The online version of this article (10.1186/s13018-019-1215-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hao Li
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China.
| | - Xinghua Zhong
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Zhiyong Chen
- Department of Prosthodontics, The Affiliated Hospital of Stomatology, Guangxi Medical University, 10 Shuangyong Road, Nanning, 530021, People's Republic of China
| | - Wei Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, 14 3rd Section S Renmin Road, Chengdu, 610041, People's Republic of China
| |
Collapse
|
41
|
NLRP3 inflammasome activation in inflammaging. Semin Immunol 2018; 40:61-73. [PMID: 30268598 DOI: 10.1016/j.smim.2018.09.001] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 02/06/2023]
Abstract
The process of aging is associated with the appearance of low-grade subclinical inflammation, termed inflammaging, that can accelerate age-related diseases. In Western societies the age-related inflammatory response can additionally be aggravated by an inflammatory response related to modern lifestyles and excess calorie consumption, a pathophysiologic inflammatory response that was coined metaflammation. Here, we summarize the current knowledge of mechanisms that drive both of these processes and focus our discussion the emerging concept that a key innate immune pathway, the NLRP3 inflammasome, is centrally involved in the recognition of triggers that appear during physiological aging and during metabolic stress. We further discuss how these processes are involved in the pathogenesis of common age-related pathologies and highlight potential strategies by which the detrimental inflammatory responses could be pharmacologically addressed.
Collapse
|