1
|
Messeha SS, Fidudusola FF, Gendy S, Latinwo LM, Odewumi CO, Soliman KFA. Nrf2 Activation as a Therapeutic Target for Flavonoids in Aging-Related Osteoporosis. Nutrients 2025; 17:267. [PMID: 39861398 PMCID: PMC11767473 DOI: 10.3390/nu17020267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/08/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Biological aging is a substantial change that leads to different diseases, including osteoporosis (OP), a condition involved in loss of bone density, deterioration of bone structure, and increased fracture risk. In old people, there is a natural decline in bone mineral density (BMD), exacerbated by hormonal changes, particularly during menopause, and it continues in the early postmenopausal years. During this transition time, hormonal alterations are linked to elevated oxidative stress (OS) and decreased antioxidant defenses, leading to a significant increase in OP. Aging is significantly associated with an abnormal ratio of oxidant/antioxidant and modified nuclear factor erythroid-derived two related factor2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) pathway. OS adversely affects bone health by promoting osteoclastic (bone resorbing) activity and impairing osteoblastic (bone-forming cells). Nrf2 is critical in controlling OS and various cellular processes. The expression of Nrf2 is linked to multiple age-related diseases, including OP, and Nrf2 deficiency leads to unbalanced bone formation/resorption and a consequent decline in bone mass. Various drugs are available for treating OP; however, long-term uses of these medicines are implicated in diverse illnesses such as cancer, cardiovascular, and stroke. At the same time, multiple categories of natural products, in particular flavonoids, were proposed as safe alternatives with antioxidant activity and substantial anti-osteoporotic effects.
Collapse
Affiliation(s)
- Samia S. Messeha
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| | - Fidara F. Fidudusola
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Sherif Gendy
- School of Allied Health Sciences, Florida A&M University, Tallahassee, FL 32307, USA;
| | - Lekan M. Latinwo
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Caroline O. Odewumi
- College of Science and Technology, Florida A&M University, Tallahassee, FL 32307, USA; (S.S.M.); (F.F.F.); (L.M.L.)
| | - Karam F. A. Soliman
- College of Pharmacy and Pharmaceutical Sciences, Institute of Public Health, Florida A&M University, Tallahassee, FL 32307, USA
| |
Collapse
|
2
|
Chen G, Xin Y, Hammour MM, Braun B, Ehnert S, Springer F, Vosough M, Menger MM, Kumar A, Nüssler AK, Aspera-Werz RH. Establishment of a human 3D in vitro liver-bone model as a potential system for drug toxicity screening. Arch Toxicol 2025; 99:333-356. [PMID: 39503877 PMCID: PMC11742461 DOI: 10.1007/s00204-024-03899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/17/2024] [Indexed: 01/19/2025]
Abstract
Drug toxicity is an important cause of chronic liver damage, which in the long term can lead to impaired bone homeostasis through an imbalance in the liver-bone axis. For instance, non-steroidal anti-inflammatory drugs (e.g., diclofenac), which are commonly used to control pain during orthopaedic interventions, are known to reduce bone quality and are the most prevalent causes of drug-induced liver damage. Therefore, we used human cell lines to produce a stable, reproducible, and reliable in vitro liver-bone co-culture model, which mimics the impaired bone homeostasis seen after diclofenac intake in vivo. To provide the best cell culture conditions for the two systems, we tested the effects of supplements contained in liver and bone cell culture medium on liver and bone cell lines, respectively. Additionally, different ratios of culture medium combinations on bone cell scaffolds and liver spheroids' viability and function were also analysed. Then, liver spheroids and bone scaffolds were daily exposed to 3-6 µM diclofenac alone or in co-culture to compare and evaluate its effect on the liver and bone system. Our results demonstrated that a 50:50 liver:bone medium combination maintains the function of liver spheroids and bone scaffolds for up to 21 days. Osteoclast-like cell activity was significantly upregulated after chronic exposure to diclofenac only in bone scaffolds co-cultured with liver spheroids. Consequently, the mineral content and stiffness of bone scaffolds treated with diclofenac in co-culture with liver spheroids were significantly reduced. Interestingly, our results show that the increase in osteoclastic activity in the system is not related to the main product of diclofenac metabolism. However, osteoclast activation correlated with the increase in oxidative stress and inflammation associated with chronic diclofenac exposure. In summary, we established a long-term stable liver-bone system that represents the interaction between the two organs, meanwhile, it is also an outstanding model for studying the toxicity of drugs on bone homeostasis.
Collapse
Affiliation(s)
- Guanqiao Chen
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Yuxuan Xin
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Fabian Springer
- Department of Radiology, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, 1665659911, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maximilian M Menger
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| | - Ashok Kumar
- Biomaterial and Tissue Engineering Group, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, 208016, India
- Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, 208016, India
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076, Tübingen, Germany
| |
Collapse
|
3
|
Bao S, Jimu W, Mu N, Yan F, Xing S, Zhou Z. Association between the serum cotinine and trabecular bone score in the adult population: A cross-sectional study. Tob Induc Dis 2024; 22:TID-22-183. [PMID: 39610648 PMCID: PMC11603413 DOI: 10.18332/tid/194680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/18/2024] [Indexed: 11/30/2024] Open
Abstract
INTRODUCTION Trabecular bone score (TBS) is gaining attention as a novel approach for evaluating bone quality, as it provides insights into skeletal microarchitecture. We aimed to investigate the possible relationship between serum cotinine and TBS in the US population. METHODS This cross-sectional study utilized data from the 2005-2008 National Health and Nutrition Examination Survey (NHANES). A total of 6961 adults aged ≥20 years with complete data on TBS and serum cotinine were included. Serum cotinine levels were measured using isotope-dilution high-performance liquid chromatography coupled with tandem mass spectrometry. TBS was derived from lumbar spine DXA images using the Med-Imap SA TBS Calculator. Weighted multivariable linear regression analyses were conducted, adjusting for age, sex, race, BMI, poverty income ratio (PIR), total spine bone mineral density (TSBMD), smoking status, C-reactive protein (CRP), total protein, blood urea nitrogen, serum creatinine, serum uric acid, serum calcium, alkaline phosphatase, and serum phosphorus. Subgroup analyses were stratified by sex, race, BMI, and PIR. RESULTS A total of 6961 individuals were included in the analysis, with a mean (± SE) age of 45.20 ± 0.39 years, comprising 49.21% males and 50.79% females. The serum level of cotinine was negatively associated with TBS in the fully adjusted model. Specifically, for each unit increase in the log2-cotinine score, there was a corresponding 0.01 unit decrease in TBS (β= -0.01; 95% CI: -0.02 - -0.01, p=0.002). Participants in the highest tertile of serum cotinine had a significantly lower TBS compared to those in the lowest tertile (β= -0.01; 95% CI: -0.02 - -0.01, p=0.002). Subgroup analysis revealed a significant negative association between serum cotinine and TBS in females (β= -0.021; 95% CI: -0.03 - -0.01), but not in males. No significant associations were found when stratified by race, BMI, and PIR. CONCLUSIONS Serum cotinine was negatively associated with TBS in US adults. Further large-scale prospective studies are still needed to explore the associative relationship of cotinine in TBS.
Collapse
Affiliation(s)
- Shifu Bao
- Department of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Weibu Jimu
- Department of Medicine and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Nai Mu
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Fang Yan
- Department of Geriatrics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Shuxing Xing
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China
| | - Zheng Zhou
- Department of Orthopedics, Chengdu Fifth People's Hospital, Chengdu, China
| |
Collapse
|
4
|
Tao YA, Long L, Gu JX, Wang PY, Li X, Li XL, Fan P, Wang Y. Associations of oxidative balance score with lumbar spine osteopenia in 20-40 years adults: NHANES 2011-2018. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2024:10.1007/s00586-024-08424-1. [PMID: 39168893 DOI: 10.1007/s00586-024-08424-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/30/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024]
Abstract
PURPOSE Current research suggests that oxidative stress may decrease bone mineral density (BMD) by disrupting bone metabolism balance. However, no study investigated the relationship between systemic oxidative stress status and adult BMD. This study aims to investigate whether oxidative balance score (OBS) is associated with BMD in adults under 40. METHODS 3963 participants were selected from the National Health and Nutrition Survey (NHANES) from 2011 to 2018. OBS is scored based on 20 dietary and lifestyle factors. Weighted multiple logistic regression and restricted cubic splines were used to assess the correlation between OBS and osteopenia. RESULTS After adjusting for confounding factors, the weighted logistic regression results showed that compared with the first tertile of OBS, the highest tertile had a 38% (OR: 0.62, 95% CI: 0.47-0.82) lower risk of osteopenia. The restrictive cubic spline curve indicates a significant nonlinear correlation between OBS and the risk of osteopenia. CONCLUSION The research findings emphasize the relationship between OBS and the risk of osteopenia in young adults. Adopting an antioxidant diet and lifestyle may help young adults to maintain bone mass.
Collapse
Affiliation(s)
- Yu-Ao Tao
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Ling Long
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Jia-Xiang Gu
- Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, Jiangxi, 332000, China
| | - Pei-Yang Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Xi Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Xiao-Long Li
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China
| | - Pan Fan
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China.
| | - Yuntao Wang
- Department of Spine Center, Zhongda Hospital, Medical School, Southeast University, NanJing, 210009, Jiangsu, China.
| |
Collapse
|
5
|
Chen Z, Li H, Song C, Sun J, Liu W. Association between serum cotinine and muscle mass: results from NHANES 2011-2018. BMC Public Health 2024; 24:2093. [PMID: 39095754 PMCID: PMC11295381 DOI: 10.1186/s12889-024-19623-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 07/29/2024] [Indexed: 08/04/2024] Open
Abstract
PURPOSE Recently, the detrimental effect of cigarette smoking on muscle metabolism has attracted much attention, but the relationship between cigarette smoking and muscle mass is poorly understood. Thus, this study investigated the association between exposure to cigarette smoke, defined based on serum cotinine, and muscle mass in the US population. METHODS We utilized National Health and Nutrition Examination Survey (NHANES) data between 2011 and 2018 for analysis. Data on serum cotinine, muscle mass (quantified by appendicular skeletal muscle mass index, ASMI), and covariates were extracted and analyzed. Weighted multivariate linear regression analyses and smooth curve fittings were performed to investigate the association between serum cotinine and ASMI. Subgroup analyses were stratified by gender, race and smoking status. When nonlinearity was detected, the threshold effects were analyzed using a two-piecewise linear regression model. RESULTS In total, 8004 participants were included for analysis. The serum level of cotinine was negatively associated with ASMI in the fully adjusted model. Furthermore, comparing participants in the highest vs. the lowest tertile of serum cotinine, we found that ASMI decreased by 0.135 Kg/m2. In subgroup analysis stratified by gender and race, the association between serum cotinine and ASMI remained significant in all genders and races. In addition, the association remained significant among current and former smokers, but not among those who never smoked. Smooth curve fittings showed nonlinear relationships between serum cotinine and ASMI, with the inflection points identified at 356 ng/mL. CONCLUSIONS Our study revealed that serum cotinine was negatively related to muscle mass. This finding improves our understanding of the deleterious effects of cigarette smoking on muscle mass and highlights the importance of smoking cessation for muscle health.
Collapse
Affiliation(s)
- Zhi Chen
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Hongxiang Li
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Chenyang Song
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Jun Sun
- Department of Emergency, Zhaotong Traditional Chinese Medicine Hospital, Zhaotong, Yunnan, 657000, China
| | - Wenge Liu
- Department of Orthopedics, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China.
| |
Collapse
|
6
|
Murashevych B, Maslak H, Girenko D, Abraimova O, Netronina O, Shvets V. The effect of hypochlorous acid inhalation on the activity of antioxidant system enzymes in rats of different ages. Free Radic Res 2024; 58:441-457. [PMID: 39073910 DOI: 10.1080/10715762.2024.2386688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/08/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Hypochlorous acid HOCl is an effective disinfectant with a broad spectrum and high rate of microbicidal action. Its use for air treatment can be an effective tool for the prevention and therapy of infectious diseases. In this work, the in vivo study was conducted on 110 Wistar Han rats (12 and 72 weeks old) on the effect of a single inhalation of air containing gaseous HOCl on the activity of antioxidant system enzymes. For this, a special installation was designed to uniformly maintain the concentration of HOCl in the air and regulate it over a wide range. Inhalation exposure was carried out for 4 h at total chlorine concentrations in the air of approximately 2.0 mg/m3 and 5.0 mg/m3, after which the animals were observed for 14 days. The effect of inhalation on the antioxidant system activity varied significantly in animals of different ages. Catalase activity in young rats increased approximately 2-fold on days 1-2 after inhalation, regardless of the HOCl concentration, while in old animals a sharp dose-dependent decrease was initially observed. The glutathione peroxidase activity in animals of both ages increased upon inhalation of air with 5.0 mg/m3 HOCl, and in old animals this was more pronounced; when the HOCl concentration decreased to 2.0 mg/m3, this indicator increased slightly in old rats and remained virtually unchanged in young ones. The glutathione reductase activity when exposed to 2.0 mg/m3 HOCl did not change for both age groups, and with increasing HOCl concentration it increased by 1.5-2.0 times in all animals.
Collapse
Affiliation(s)
- Bohdan Murashevych
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Hanna Maslak
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Dmitry Girenko
- Department of Physical Chemistry, Ukrainian State University of Chemical Technology, Dnipro, Ukraine
| | - Olha Abraimova
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Olha Netronina
- Department of Biochemistry and Medical Chemistry, Dnipro State Medical University, Dnipro, Ukraine
| | - Volodymyr Shvets
- Department of Biochemistry, Zaporizhzhia State Medical University, Zaporizhzhia, Ukraine
| |
Collapse
|
7
|
Xiang K, Ren M, Liu F, Li Y, He P, Gong X, Chen T, Wu T, Huang Z, She H, Liu K, Jing Z, Yang S. Tobacco toxins trigger bone marrow mesenchymal stem cells aging by inhibiting mitophagy. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 277:116392. [PMID: 38677065 DOI: 10.1016/j.ecoenv.2024.116392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/01/2024] [Accepted: 04/22/2024] [Indexed: 04/29/2024]
Abstract
Smoking disrupts bone homeostasis and serves as an independent risk factor for the development and progression of osteoporosis. Tobacco toxins inhibit the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs), promote BMSCs aging and exhaustion, but the specific mechanisms are not yet fully understood. Herein, we successfully established a smoking-related osteoporosis (SROP) model in rats and mice through intraperitoneal injection of cigarette smoke extract (CSE), which significantly reduced bone density and induced aging and inhibited osteogenic differentiation of BMSCs both in vivo and in vitro. Bioinformatics analysis and in vitro experiments confirmed that CSE disrupts mitochondrial homeostasis through oxidative stress and inhibition of mitophagy. Furthermore, we discovered that CSE induced BMSCs aging by upregulating phosphorylated AKT, which in turn inhibited the expression of FOXO3a and the Pink1/Parkin pathway, leading to the suppression of mitophagy and the accumulation of damaged mitochondria. MitoQ, a mitochondrial-targeted antioxidant and mitophagy agonist, was effective in reducing CSE-induced mitochondrial oxidative stress, promoting mitophagy, significantly downregulating the expression of aging markers in BMSCs, restoring osteogenic differentiation, and alleviating bone loss and autophagy levels in CSE-exposed mice. In summary, our results suggest that BMSCs aging caused by the inhibition of mitophagy through the AKT/FOXO3a/Pink1/Parkin axis is a key mechanism in smoking-related osteoporosis.
Collapse
Affiliation(s)
- Kai Xiang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Mingxing Ren
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Fengyi Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Yuzhou Li
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Ping He
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Xuerui Gong
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Tao Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Tianli Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Ziyu Huang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Hui She
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Kehao Liu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China.
| | - Zheng Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| | - Sheng Yang
- Stomatological Hospital of Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China.
| |
Collapse
|
8
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
9
|
Snega Priya P, Pratiksha Nandhini P, Arockiaraj J. A comprehensive review on environmental pollutants and osteoporosis: Insights into molecular pathways. ENVIRONMENTAL RESEARCH 2023; 237:117103. [PMID: 37689340 DOI: 10.1016/j.envres.2023.117103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/28/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
A significant problem that has an impact on community wellbeing is environmental pollution. Environmental pollution due to air, water, or soil pollutants might pose a severe risk to global health, necessitating intense scientific effort. Osteoporosis is a common chronic condition with substantial clinical implications on mortality, morbidity, and quality of life. It is closely linked to bone fractures. Worldwide, osteoporosis affects around 200 million people, and every year, there are almost 9 million fractures. There is evidence that certain environmental factors may increase the risk of osteoporosis in addition to traditional risk factors. It is crucial to understand the molecular mechanisms at play because there is a connection between osteoporosis and exposure to environmental pollutants such as heavy metals, air pollutants, endocrine disruptors, metal ions and trace elements. Hence, in this scoping review, we explore potential explanations for the link between pollutants and bone deterioration through deep insights into molecular pathways. Understanding and recognizing these pollutants as modifiable risk factors for osteoporosis would possibly help to enhance environmental policy thereby aiding in the improvement of bone health and improving patient quality of life.
Collapse
Affiliation(s)
- P Snega Priya
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - P Pratiksha Nandhini
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India
| | - Jesu Arockiaraj
- Toxicology and Pharmacology Laboratory, Department of Biotechnology, SRM Institute of Science and Technology, Faculty of Science and Humanities, Kattankulatur, 603203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
10
|
Rinderknecht H, Mayer A, Histing T, Ehnert S, Nüssler A. Herbal Extracts of Ginseng and Maqui Berry Show Only Minimal Effects on an In Vitro Model of Early Fracture Repair of Smokers. Foods 2023; 12:2960. [PMID: 37569229 PMCID: PMC10419284 DOI: 10.3390/foods12152960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/28/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Smoking is a major risk factor for delayed fracture healing, affecting several aspects of early fracture repair, including inflammation, osteogenesis, and angiogenesis. Panax ginseng (GE) and maqui berry extract (MBE) were shown in our previous studies to reduce smoke-induced cellular damage in late bone-healing in vitro models. We aimed here to analyze their effects on the early fracture repair of smokers in a 3D co-culture model of fracture hematomas and endothelial cells. Both extracts did not alter the cellular viability at concentrations of up to 100 µg/mL. In early fracture repair in vitro, they were unable to reduce smoking-induced inflammation and induce osteo- or chondrogenicity. Regarding angiogenesis, smoking-induced stress in HUVECs could not be counteracted by both extracts. Furthermore, smoking-impaired tube formation was not restored by GE but was harmed by MBE. However, GE promoted angiogenesis initiation under smoking conditions via the Angpt/Tie2 axis. To summarize, cigarette smoking strikingly affected early fracture healing processes in vitro, but herbal extracts at the applied doses had only a limited effect. Since both extracts were shown before to be very effective in later stages of fracture healing, our data suggest that their early use immediately after fracture does not appear to negatively impact later beneficial effects.
Collapse
Affiliation(s)
| | | | | | | | - Andreas Nüssler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.M.); (T.H.); (S.E.)
| |
Collapse
|
11
|
Weng W, Bovard D, Zanetti F, Ehnert S, Braun B, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. Tobacco heating system has less impact on bone metabolism than cigarette smoke. Food Chem Toxicol 2023; 173:113637. [PMID: 36708864 DOI: 10.1016/j.fct.2023.113637] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 12/14/2022] [Accepted: 01/24/2023] [Indexed: 01/26/2023]
Abstract
Cigarette smoking promotes osteoclast activity, thus increasing the risk of secondary osteoporosis, leading to osteoporosis-associated fracture and impaired fracture healing. Heated tobacco products (HTP) are considered potential reduced-risk alternatives to cigarettes. However, their impact on bone metabolism remains to be elucidated. We developed an in vitro model that mimics in vivo bone cell interactions to comparatively evaluate the effects of HTPs and cigarette smoke on bone cell functionality and viability. We generated an in vitro coculture system with SCP-1 and THP-1 cells (1:8 ratio) cultured on a decellularized Saos-2 matrix with an optimized coculture medium. We found that, following acute or chronic exposure, particulate matter extract from the aerosol of an HTP, the Tobacco Heating System (THS), was less harmful to the bone coculture system than reference cigarette (1R6F) smoke extract. In the fracture healing model, cultures exposed to the THS extract maintained similar osteoclast activity and calcium deposits as control cultures. Conversely, smoke extract exposure promoted osteoclast activity, resulting in an osteoporotic environment, whose formation could be prevented by bisphosphonate coadministration. Thus, THS is potentially less harmful than cigarette smoke to bone cell differentiation and bone mineralization - both being crucial aspects during the reparative phase of fracture healing.
Collapse
Affiliation(s)
- Weidong Weng
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Sabrina Ehnert
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Bianca Braun
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tatiana Uynuk-Ool
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Tina Histing
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland.
| | - Andreas K Nussler
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| | - Romina H Aspera-Werz
- Siegfried Weller Research Institute, BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076, Tübingen, Germany.
| |
Collapse
|
12
|
Hou W, Chen S, Zhu C, Gu Y, Zhu L, Zhou Z. Associations between smoke exposure and osteoporosis or osteopenia in a US NHANES population of elderly individuals. Front Endocrinol (Lausanne) 2023; 14:1074574. [PMID: 36817605 PMCID: PMC9935577 DOI: 10.3389/fendo.2023.1074574] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 01/24/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Tobacco exposure is considered to be a risk factor for reduced bone mineral density (BMD), which may result in osteopenia. Cotinine, a metabolite of nicotine, is commonly utilized as a marker of tobacco exposure. Nevertheless, there are limited clinical data on the associations between osteoporosis (OP) or osteopenia and smoking status or serum cotinine level. METHODS We thoroughly examined the NHANES cross-sectional data from 2005 to 2010, 2013 to 2014, and 2017 to 2018. Multivariate logistic regression models were applied to assess the associations among smoking status and serum cotinine levels as well as OP and osteopenia. The relationships between serum cotinine level and OP and osteopenia were also assessed using the restricted cubic spline (RCS) method. RESULTS A total of 10,564 participants were included in this cross-sectional study. The mean age of the study population was 64.85 ± 9.54 years, and the patients were predominantly male (51.9%). We found that the relationships between higher serum cotinine levels (≥3 ng/ml) and the prevalence of osteoporosis (Model 1: OR=2.27 [1.91-2.69]; Model 2: OR=2.03 [1.70-2.43]; Model 3: OR=2.04 [1.70-2.45]; all p for trend <0.001) remained significant after adjustment for covariates by applying the lowest serum cotinine levels (<0.05 ng/ml) as the reference. Similar results were observed for current smokers, who were more likely to develop OP compared with nonsmokers (Model 1: OR=2.30 [1.90-2.79]; Model 2: OR=2.16 [1.77-2.64]; Model 3: OR=2.16 [1.77-2.65]). Moreover, higher serum cotinine levels were found to be strongly and positively correlated with the prevalence of osteopenia (OR=1.60 [1.42-1.80]). A similar relationship was observed between current smokers and the prevalence of osteopenia compared with nonsmokers (OR=1.70 [1.49-1.94]). RCS regression also showed that serum cotinine levels were nonlinearly and positively correlated with OP and osteopenia, with inflection points of 5.82 ng/ml and 3.26 ng/ml, respectively. CONCLUSION This study showed that being a smoker was associated with the prevalence of OP or osteopenia compared with being a nonsmoker and that there was a strong nonlinear positive dose-response relationship between serum cotinine levels and OP and osteopenia.
Collapse
Affiliation(s)
- Wenyuan Hou
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
- Department of Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Shaoqi Chen
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
- Department of Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Caiyu Zhu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
- Department of Graduate School, Anhui University of Chinese Medicine, Hefei, China
| | - Yifan Gu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
| | - Lei Zhu
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
| | - Zhengxin Zhou
- The First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, China
- *Correspondence: Zhengxin Zhou,
| |
Collapse
|
13
|
Lu C, Prahm C, Chen Y, Ehnert S, Rinderknecht H, McCaig CD, Nussler AK, Kolbenschlag J. Microcurrent Reverses Cigarette Smoke-Induced Angiogenesis Impairment in Human Keratinocytes In Vitro. Bioengineering (Basel) 2022; 9:445. [PMID: 36134990 PMCID: PMC9495747 DOI: 10.3390/bioengineering9090445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cigarette smoking (CS) leads to several adverse health effects, including diseases, disabilities, and even death. Post-operative and trauma patients who smoke have an increased risk for complications, such as delayed bone or wound healing. In clinical trials, microcurrent (MC) has been shown to be a safe, non-invasive, and effective way to accelerate wound healing. Our study aimed to investigate if MC with the strength of 100 μA may be beneficial in treating CS-related healing impairment, especially in regard to angiogenesis. In this study, we investigated the effect of human keratinocyte cells (HaCaT) on angiogenesis after 72 h of cigarette smoke extract (CSE) exposure in the presence or absence of 100 μA MC. Cell viability and proliferation were evaluated by resazurin conversion, Sulforhodamine B, and Calcein-AM/Hoechst 33342 staining; the pro-angiogenic potential of HaCaT cells was evaluated by tube formation assay and angiogenesis array assay; signaling pathway alterations were investigated using Western blot. Constant exposure for 72 h to a 100 μA MC enhanced the angiogenic ability of HaCaT cells, which was mediated through the PI3K-Akt signaling pathway. In conclusion, the current data indicate that 100 μA MC may support wound healing in smoking patients by enhancing angiogenesis.
Collapse
Affiliation(s)
- Chao Lu
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72076 Tuebingen, Germany
| | - Cosima Prahm
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72076 Tuebingen, Germany
| | - Yangmengfan Chen
- Siegfried-Weller Institute for Trauma Research, BG Kinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72070 Tuebingen, Germany
| | - Sabrina Ehnert
- Siegfried-Weller Institute for Trauma Research, BG Kinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72070 Tuebingen, Germany
| | - Helen Rinderknecht
- Siegfried-Weller Institute for Trauma Research, BG Kinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72070 Tuebingen, Germany
| | - Colin D. McCaig
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Andreas K. Nussler
- Siegfried-Weller Institute for Trauma Research, BG Kinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72070 Tuebingen, Germany
| | - Jonas Kolbenschlag
- Department of Hand-, Plastic, Reconstructive and Burn Surgery, BG Klinik Tuebingen, University of Tuebingen, Schnarrenbergstrasse 95, D-72076 Tuebingen, Germany
| |
Collapse
|
14
|
Tariq U, Butt MS, Pasha I, Faisal MN. Prophylactic role of olive fruit extract against cigarette smoke-induced oxidative stress in Sprague-Dawley rats. Cell Stress Chaperones 2022; 27:545-560. [PMID: 35951259 PMCID: PMC9485526 DOI: 10.1007/s12192-022-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.
Collapse
Affiliation(s)
- Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Imran Pasha
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
15
|
The association between depression and bone metabolism: a US nationally representative cross-sectional study. Arch Osteoporos 2022; 17:113. [PMID: 35962284 DOI: 10.1007/s11657-022-01154-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 07/26/2022] [Indexed: 02/03/2023]
Abstract
This population-based study investigated the association between depression and bone mineral density (BMD), fractures, and osteoporosis in the US population. We found that participants with depression had lower BMD and were more likely to have fractures and osteoporosis. BACKGROUND Depression, fractures, and osteoporosis are common in middle-aged and elderly, but their associations remained unclear. OBJECTIVE To investigate the association between depression and bone mineral density (BMD), osteoporosis, and fracture in a middle-aged and elderly US population. METHODS A nationally representative cross-sectional study used the National Health and Nutrition Examination Survey (NHANES) datasets. Depression was assessed and stratified using the Patient Health Questionnaire (PHQ-9). The multiple logistic regression models and the logistic binary regression models were used to analyze the association between depression and BMD, fractures, and osteoporosis. Gender, age, race, educational level, poverty ratio, body mass index (BMI), smoke, alcohol use, physical activity, and diabetes were included as covariates. Subgroup analysis was also conducted on gender, age, race, and education level. RESULTS In total, 9766 participants were included after a series of exclusions, and 4179 (42.79%) had at least mild depressive symptoms. Compared to the participants without depression, those with depression had a lower total femur, femoral neck, and total spine BMD after adjusting multiple covariates. The multivariable-adjusted logistic binary regression models demonstrated that participants with depression more likely have hip fractures (OR = 1.518, 95% CI: 1.377-2.703, P = 0.000), spine fractures (OR = 1.311, 95% CI: 1.022-1.678, P = 0.030), and osteoporosis (OR = 1.621, 95% CI: 1.388-1.890, P = 0.000). Subgroup analysis revealed that depressed participants who were males, non-Hispanic White, ≤ 70 years, and not highly educated had a lower BMD and easily had osteoporosis. CONCLUSION Depression was associated with lower BMD, particularly in the spine, males, Hispanic-White, and not highly educated populations. Moreover, people with depression were more likely to have fractures and osteoporosis.
Collapse
|
16
|
Hammour MM, Othman A, Aspera-Werz R, Braun B, Weis-Klemm M, Wagner S, Nadalin S, Histing T, Ruoß M, Nüssler AK. Optimisation of the HepaRG cell line model for drug toxicity studies using two different cultivation conditions: advantages and limitations. Arch Toxicol 2022; 96:2511-2521. [PMID: 35748891 DOI: 10.1007/s00204-022-03329-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/07/2022] [Indexed: 11/26/2022]
Abstract
The HepaRG cell line represents a successful model for hepatotoxicity studies. These cells are of human origin and are differentiated in vitro into mature and functional hepatocyte-like cells. The objective of this research was to compare two different culture protocols, Sison-Young et al. 2017 (hereinafter referred as Sison) and Gripon et al. 2002 (hereinafter referred as Biopredic) for HepaRG cells in order to optimise this model for drug metabolism and toxicity testing studies. HepaRG cells obtained from the same batch were cultured according to the described protocols. Using both protocols, differentiated HepaRG cells retained their drug metabolic capacity (major phase I/II enzymes) and transporters, as well as their morphological characteristics. Morphologically, HepaRG cells cultured after the Biopredic protocol formed more apical membranes and small ductular-like structures, than those cultivated using the Sison protocol. Also, the efflux activity of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1) as well as the activity of uridine-glucuronosyltransferase (UGT) and glutathione S-transferase (GST) were significantly reduced in HepaRG cultured using the Sison protocol. Applying well-established drug cocktails to measure cytochrome P450 (CYPs) activity, we found that production of the corresponding metabolites was hampered in Sison-cultured HepaRG cells, indicating that the activity of CYP1A2, CYP2C9, CYP3A4, CYP2B6 and CYP2C19 was significantly reduced. Moreover, HepaRG sensitivity to well-known drugs, namely diclofenac, amiodarone, imipramine and paracetamol, revealed some differences between the two culture protocols. Furthermore, the HepaRG cells can be maintained with higher viability and sufficient CYPs activity and expression (i.e. CYP3A4, CYP1A2 and CYP2B6) as well as liver-specific functions, using Biopredic compared with the Sison culture protocol. These maintained liver-specific functions might be dependent on the prolongation of the culture conditions in the case of the Biopredic protocol. In conclusion, based on the metabolic activity of HepaRG cells using the standard protocol from Biopredic, we believe that this protocol is optimal for investigating drug metabolism and pharmacokinetic screening studies.
Collapse
Affiliation(s)
- Mohammad Majd Hammour
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Amnah Othman
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina Aspera-Werz
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Michaela Weis-Klemm
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvia Wagner
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Silvio Nadalin
- Department of General, Visceral and Transplant Surgery, University Hospital Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Siegfried Weller Institute, BG Klinik Tübingen, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
17
|
Mesaik MA, Khalid A, Abdalla AN, Sultana S, Youssef AR, Ahmed IE, Mohammed YI, Mirghani HO, Rehman ZU, Alhazmi HA, Al Bratty M. GC-MS and Cellular Toxicity Studies on Smokeless-Tobacco Show Alerting Cytotoxic effect on Human Gingiva and Lung Fibroblasts. JOURNAL OF SPECTROSCOPY 2022; 2022:1-10. [DOI: 10.1155/2022/4005935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
Smokeless tobacco (SLT) has been reported to have deleterious effects on the health of its users. This study aims to analyze the constituents of locally collected SLT sample extracts (S1–S11) from Tabuk region of Saudi Arabia using GC-MS and investigate their cytotoxic effect on human gingival fibroblasts (hGFs), normal human fibroblasts (MRC5), and two cancer cell lines (HT29 and HepG2) using MTT assay. GC-MS results showed that pyridine, 3-(1-methyl-1H-pyrrol-2-yl)-, tetracyclo[4.4.1.1(7,10).0(2,5)]dodec-3-en-11-ol, and cotinine were found in S1, while ethyl iso-allocholate was traced in S2. Compounds 9,12-octadecadienoic acid, ethyl ester, 7-methyl-Z-tetradecen-1-ol acetate, cis-10-heptadecenoic acid and octadecanoic acid, ethyl ester, and nicotine traces were found in S4, while compound 3,7,11,15-tetramethyl-2-hexadecen-1-ol, tetradecamethyl-hexasiloxane, and phytol in S5. Additionally, octadecamethyl cyclononasiloxane, oleic acid, and trimethylsilyl ester were found in S6 and S9, respectively. Interestingly, extracts S4, S10, and S6 were the most cytotoxic to the normal fibroblasts (hGF and MRC5, with low selectivity index: <1), compared with doxorubicin and with their effect on the cancerous cells (HT29 and HepG2). Various components detected in SLT samples were carcinogenic, including nicotine and its derivatives, hexadecanoic acid, 1,2-benzenedicarboxylic acid, and octadecanoic acid. The present study showed that the cytotoxic and possibly carcinogenic effects of the SLT samples on gingiva and lung cells are attributed to many compounds and not only nicotine derivatives, all of which could create health threats for SLT users and lead to various types of cancers, including oral, lung, colon, and liver cancers.
Collapse
Affiliation(s)
- M. Ahmed Mesaik
- Department of Medical Microbiology, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Medicinal and Aromatic Plants and Traditional Medicine Research Institute, National Center for Research, P.O. Box 2424, Khartoum 11111, Sudan
| | - Ashraf N. Abdalla
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Abdel-Rahman Youssef
- Department of Basic and Clinical Oral Sciences, Faculty of Dentistry, Umm Al-Qura University, Makkah, Saudi Arabia
- Department of Microbiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Izzaddinn E. Ahmed
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Yassin I. Mohammed
- Department of Family and Community Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Hyder O. Mirghani
- Department of Internal Medicine, Faculty of Medicine, University of Tabuk, Tabuk 71491, P.O. Box 741, Saudi Arabia
| | - Zia ur Rehman
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, P.O. Box 114, Jazan 45142, Saudi Arabia
| |
Collapse
|
18
|
Chronic Pain in Musculoskeletal Diseases: Do You Know Your Enemy? J Clin Med 2022; 11:jcm11092609. [PMID: 35566735 PMCID: PMC9101840 DOI: 10.3390/jcm11092609] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/02/2022] [Accepted: 05/03/2022] [Indexed: 02/06/2023] Open
Abstract
Musculoskeletal pain is a condition that characterises several diseases and represents a constantly growing issue with enormous socio-economic burdens, highlighting the importance of developing treatment algorithms appropriate to the patient’s needs and effective management strategies. Indeed, the algic condition must be assessed and treated independently of the underlying pathological process since it has an extremely negative impact on the emotional and psychic aspects of the individual, leading to isolation and depression. A full understanding of the pathophysiological mechanisms involved in nociceptive stimulation and central sensitization is an important step in improving approaches to musculoskeletal pain. In this context, the bidirectional relationship between immune cells and neurons involved in nociception could represent a key point in the understanding of these mechanisms. Therefore, we provide an updated overview of the magnitude of the musculoskeletal pain problem, in terms of prevalence and costs, and summarise the role of the most important molecular players involved in the development and maintenance of pain. Finally, based on the pathophysiological mechanisms, we propose a model, called the “musculoskeletal pain cycle”, which could be a useful tool to counteract resignation to the algic condition and provide a starting point for developing a treatment algorithm for the patient with musculoskeletal pain.
Collapse
|
19
|
Weng W, Li H, Zhu S. An Overlooked Bone Metabolic Disorder: Cigarette Smoking-Induced Osteoporosis. Genes (Basel) 2022; 13:genes13050806. [PMID: 35627191 PMCID: PMC9141076 DOI: 10.3390/genes13050806] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/25/2022] [Accepted: 04/27/2022] [Indexed: 12/19/2022] Open
Abstract
Cigarette smoking (CS) leads to significant bone loss, which is recognized as an independent risk factor for osteoporosis. The number of smokers is continuously increasing due to the addictive nature of smoking. Therefore it is of great value to effectively prevent CS-induced osteoporosis. However, there are currently no effective interventions to specifically counteract CS-induced osteoporosis, owing to the fact that the specific mechanisms by which CS affects bone metabolism are still elusive. This review summarizes the latest research findings of important pathways between CS exposure and bone metabolism, with the aim of providing new targets and ideas for the prevention of CS-induced osteoporosis, as well as providing theoretical directions for further research in the future.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tuebingen, 72076 Tuebingen, Germany;
| | - Hongming Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Sheng Zhu
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, China;
- Correspondence:
| |
Collapse
|
20
|
Francisco CM, Fischer LW, Vendramini V, de Oliva SU, Paccola CC, Miraglia SM. Resveratrol reverses male reproductive damage in rats exposed to nicotine during the intrauterine phase and breastfeeding. Andrology 2022; 10:951-972. [PMID: 35472028 DOI: 10.1111/andr.13183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Nicotine leads to reproductive changes culminating in male infertility and subfertility. Resveratrol, a polyphenol, is a biological modulator. Sirtuin 1 (SIRT1) protein can positively act on male reproduction, and its expression can be affected by nicotine and modulated by resveratrol. OBJECTIVES The capability of resveratrol to reverse the reproductive damage in adult male offspring, which was nicotine-exposed during the intrauterine phase and breastfeeding, was investigated. MATERIALS AND METHODS Four groups were established with male offspring born from nicotine-exposed and non-exposed rat dams during pregnancy and lactation. Forty-eight male Wistar rats were distributed into four groups: sham control (SC), resveratrol (R), nicotine (N), and nicotine + resveratrol (NR). Rat dams of the N and NR offspring were exposed to nicotine (2 mg/kg/day) during pregnancy and lactation using a subcutaneously implanted minipump. The offspring of the R and NR groups received resveratrol (300 mg/kg of body weight, gavage) for 63 days from puberty. At 114 days of age, the male rats were euthanized. RESULTS Nicotine did not alter the body weight, biometry of reproductive organs, or quantitative sperm parameters of adult offspring but caused an evident worsening of all sperm qualitative parameters studied. Daily treatment with resveratrol from puberty up to adulthood improved all qualitative sperm parameters significantly, leading some of them close to the control values. Resveratrol also improved the morphological integrity and expression of SIRT1 in the seminiferous epithelium of nicotine-exposed offspring. CONCLUSION AND DISCUSSION Resveratrol reversed the male reproductive damage caused by nicotine. Nicotine crosses the blood-placental membrane and is present in the breast milk of mothers who smoke. Resveratrol restored the altered reproductive parameters in the male adult offspring that were nicotine-exposed during intrauterine life and breastfeeding. The epigenetic modulating action of resveratrol can be involved in this nicotine damage reversion. Resveratrol may be a promising candidate to be investigated regarding the adjuvant strategies in the treatment of male infertility.
Collapse
Affiliation(s)
| | | | - Vanessa Vendramini
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Samara Urban de Oliva
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Camila Cicconi Paccola
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| | - Sandra Maria Miraglia
- Department of Morphology and Genetics, Federal University of São Paulo, São Paulo, Brazil
| |
Collapse
|
21
|
Rinderknecht H, Nussler AK, Steinestel K, Histing T, Ehnert S. Smoking Impairs Hematoma Formation and Dysregulates Angiogenesis as the First Steps of Fracture Healing. Bioengineering (Basel) 2022; 9:bioengineering9050186. [PMID: 35621464 PMCID: PMC9137559 DOI: 10.3390/bioengineering9050186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/19/2022] [Accepted: 04/22/2022] [Indexed: 01/02/2023] Open
Abstract
Bone fracture healing is an overly complex process in which inflammation, osteogenesis, and angiogenesis are tightly coupled, and delayed fracture repair is a very common health risk. One of the major causes of delayed healing is the formation of insufficient vasculature. Precise regulation of blood vessels in bone and their interplay with especially osteogenic processes has become an emerging topic within the last years; nevertheless, regulation of angiogenesis in (early) diseased fracture repair is still widely unknown. Here, we aim to develop an in vitro model for the analysis of early fracture healing which also enables the analysis of angiogenesis as a main influencing factor. As smoking is one of the main risk factors for bone fractures and developing a delay in healing, we model smoking and non-smoking conditions in vitro to analyze diverging reactions. Human in vitro fracture hematomas mimicking smokers’ and non-smokers’ hematomas were produced and analyzed regarding cell viability, inflammation, osteogenic and chondrogenic differentiation, and angiogenic potential. We could show that smokers’ blood hematomas were viable and comparable to non-smokers. Smokers’ hematomas showed an increase in inflammation and a decrease in osteogenic and chondrogenic differentiation potential. When analyzing angiogenesis, we could show that the smokers’ hematomas secrete factors that drastically reduced HUVEC proliferation and tube formation. With an angiogenesis array and gene expression analysis, we could identify the main influencing factors: Anpgt1/2, Tie2, and VEGFR2/3. In conclusion, our model is suitable to mimic smoking conditions in vitro showing that smoking negatively impacts early vascularization of newly formed tissue.
Collapse
Affiliation(s)
- Helen Rinderknecht
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Andreas K. Nussler
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Konrad Steinestel
- Institute of Pathology and Molecular Pathology, Bundeswehrkrankenhaus Ulm, Oberer Eselsberg 40, 89081 Ulm, Germany;
| | - Tina Histing
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
| | - Sabrina Ehnert
- Siegfried-Weller Institute for Trauma Research, BG Trauma Center, University of Tuebingen, Schnarrenbergstrasse 95, 72070 Tuebingen, Germany; (H.R.); (A.K.N.); (T.H.)
- Correspondence:
| |
Collapse
|
22
|
Garcia ALH, Matzenbacher CA, Soares S, Rohr P, da Silva J. Fluorosilicic acid and cotinine, separately and in combination, induce genotoxicity and telomeric reduction in human osteoblast cell line MG63. MUTATION RESEARCH. GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2022; 876-877:503474. [PMID: 35483789 DOI: 10.1016/j.mrgentox.2022.503474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/07/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
Skeletal fluorosis is a severe case in which bone deformations and bone tissue weakening occur due to excessive fluorine deposition. Recently, data on smoking have been published that smoke constituents can indirectly influence bone mass and interfere in the metabolism of fluorides in humans. Thus, the present in vitro study aimed to assess the genetic instability in human osteoblast MG63 cells exposed to fluorosilicic acid (FA) and cotinine (COT), separately and in combination, in concentrations found in human plasma. For this, cell cytotoxicity was performed by MTT assay; DNA damage was performed by alkaline comet assay (CA), modified by repair endonucleases (+FPG); micronuclei test (MN) using CBMN-Cyt assay; and telomere length (TL) by qPCR in MG63 cells. No cytotoxicity was observed for all concentrations tested in this study. Alkaline CA results showed a significant increase in DNA damage at all FA concentrations (0.03125-0.300 mg/L), in the two highest concentrations of COT (125 and 250 ng/mL), and the highest concentration of FA+COT (0.300 mg/L+250 ng/mL). Alkaline CA+FPG test was used to detect oxidized nucleobases, which occurred at the two highest concentrations of FA, COT, and FA+COT. Micronuclei test showed an increase in the frequency of MN at all concentrations of FA (0.075-0.300 mg/L) except in the lowest concentration (0.03125 mg/L), in the two highest concentrations of COT (125 and 250 ng/mL), and all concentrations of FA+COT. There was no significant difference in nuclear division index, binucleated cells, nucleoplasmic bridge, and nuclear bud. A TL reduction was observed in cells treated with the highest concentrations of FA alone (0.300 mg/L) and FA+COT (0.300 mg/L+250 ng/mL). Finally, our study showed that FA and COT (mainly alone) at concentrations found in human plasma induced oxidative damage and genetic instability in human osteoblast cells.
Collapse
Affiliation(s)
- Ana L H Garcia
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| | - Cristina A Matzenbacher
- Federal University of Rio Grande do Sul, Department of Genetics, C.P. 15053, 91501-970 Porto Alegre, RS, Brazil
| | - Solange Soares
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil
| | - Paula Rohr
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, São Paulo, Brazil
| | - Juliana da Silva
- Lutheran University of Brazil (ULBRA), Laboratory of Genetic Toxicology, PPGBioSaúde (Postgraduate Program in Cellular and Molecular Biology Applied to Health) and PPGGTA (Postgraduate Program in Genetics and Applied Toxicology), 92425-900, Canoas, RS, Brazil; Laboratory of Genetic Toxicology, La Salle University (UniLaSalle), Canoas, RS, Brazil.
| |
Collapse
|
23
|
Cheng J, Mi P, Li Y, Lu Y, Sun F. Melatonin prevents oocyte deterioration due to cotinine exposure in mice. Biol Reprod 2022; 107:635-649. [PMID: 35191979 DOI: 10.1093/biolre/ioac043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/14/2022] Open
Abstract
Levels of cotinine, a major metabolite of nicotine, have been positively correlated with risks of cigarette smoking-related diseases. Melatonin is synthesized by the pineal gland and has been demonstrated to be beneficial to oocyte maturation due to its antioxidative activity. In this study, we investigated the effects of cotinine on mouse oocyte meiosis and the protective roles of melatonin in vitro and in vivo. The results showed that cotinine exposure caused defects in the first polar body extrusion and reduced parthenogenetic activation in in vitro-matured oocytes. Additionally, cotinine exposure increased the level of oxidative stress, which resulted in aberrant actin distribution, abnormal spindle morphology, chromosome misalignment, and even oocyte aneuploidy. Simultaneously, cotinine exposure decreased the mitochondrial membrane potential and antioxidant gene expression and increased apoptosis-related gene expression. However, all these toxic effects of cotinine could be reversed after the addition of melatonin, and the mechanism may be a decrease in reactive oxygen species production. In conclusion, cotinine causes poor oocyte quality, which could be rescued by melatonin supplementation during meiotic maturation in mouse oocytes.
Collapse
Affiliation(s)
- Jinmei Cheng
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Panpan Mi
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yinchuan Li
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Yajuan Lu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| |
Collapse
|
24
|
Sheppard AJ, Barfield AM, Barton S, Dong Y. Understanding Reactive Oxygen Species in Bone Regeneration: A Glance at Potential Therapeutics and Bioengineering Applications. Front Bioeng Biotechnol 2022; 10:836764. [PMID: 35198545 PMCID: PMC8859442 DOI: 10.3389/fbioe.2022.836764] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/19/2022] [Indexed: 01/24/2023] Open
Abstract
Although the complex mechanism by which skeletal tissue heals has been well described, the role of reactive oxygen species (ROS) in skeletal tissue regeneration is less understood. It has been widely recognized that a high level of ROS is cytotoxic and inhibits normal cellular processes. However, with more recent discoveries, it is evident that ROS also play an important, positive role in skeletal tissue repair, specifically fracture healing. Thus, dampening ROS levels can potentially inhibit normal healing. On the same note, pathologically high levels of ROS cause a sharp decline in osteogenesis and promote nonunion in fracture repair. This delicate balance complicates the efforts of therapeutic and engineering approaches that aim to modulate ROS for improved tissue healing. The physiologic role of ROS is dependent on a multitude of factors, and it is important for future efforts to consider these complexities. This review first discusses how ROS influences vital signaling pathways involved in the fracture healing response, including how they affect angiogenesis and osteogenic differentiation. The latter half glances at the current approaches to control ROS for improved skeletal tissue healing, including medicinal approaches, cellular engineering, and enhanced tissue scaffolds. This review aims to provide a nuanced view of the effects of ROS on bone fracture healing which will inspire novel techniques to optimize the redox environment for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Aaron J. Sheppard
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Ann Marie Barfield
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
- School of Medicine, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Shane Barton
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| | - Yufeng Dong
- Department of Orthopaedic Surgery, Louisiana State University Health Shreveport, Shreveport, LA, United States
| |
Collapse
|
25
|
Ściskalska M, Milnerowicz H. Association of genetic variants in the GPX1 and GPX4 genes with the activities of glutathione-dependent enzymes, their interaction with smoking and the risk of acute pancreatitis. Biomed Pharmacother 2022; 146:112591. [PMID: 35062064 DOI: 10.1016/j.biopha.2021.112591] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/02/2022] Open
Abstract
Genetic factors and tobacco smoke exposure can be associated with an increased risk of acute pancreatitis (AP). The pathogenesis of AP is associated with intensive oxidative stress. Glutathione peroxidase (GPx) is one of many enzymes involved in the neutralization of free radicals. This study aimed to investigate the impact of SNP rs1050450 in the GPX1 gene and rs713041 in the GPX4 gene on the activity of total GPx in a group of AP patients and healthy subjects. It was found that AP can contribute to decreased GPx activity (in plasma and erythrocyte lysate) accompanied by an increased glutathione reductase (GR) activity and decreased glutathione (GSH) concentration in two groups, non-smokers and smokers. A decreased GPx activity in erythrocyte lysate of AP patients compared to healthy subjects was associated with the occurrence of the CC genotype for SNP rs1050450. It was noted an increased GPx activity and decreased GR activity in erythrocytes of non-smoking AP patients with the TT genotype compared to subjects with the CC and TC genotype for SNP rs713041. However, in the group of smoking AP patients with this genotype, GR activity was elevated compared to non-smokers, which was accompanied by increased GSH concentration. These results can indicate that smoking in the course of AP can change the involvement of antioxidants in dependence on the genotype for the examined SNPs. The CC genotype for SNP rs1050450 and the TT genotype for rs713041 increases the risk of AP recurrence, which may be associated with increased MDA concentration.
Collapse
Affiliation(s)
- Milena Ściskalska
- Department of Pharmaceutical Biochemistry, Division of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211A St., Wroclaw 50-556, Poland.
| | - Halina Milnerowicz
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211 St., Wrocław 50-556, Poland
| |
Collapse
|
26
|
Fang JG, Wang DJ, Yang HY, Zhang H, Tong JY, Lin ZJ. Association between Serum Cotinine Levels and Bone Mineral Density: An Analysis of the National Health and Nutrition Examination Survey (NHANES). Int J Endocrinol 2022; 2022:6830705. [PMID: 36110149 PMCID: PMC9470356 DOI: 10.1155/2022/6830705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/06/2022] [Accepted: 08/24/2022] [Indexed: 11/29/2022] Open
Abstract
PURPOSE To investigate the relationship between serum cotinine and lumbar bone mineral density (BMD) among 7905 participants aged 30 years and over. METHOD A total of 3945 men and 3960 women from the National Health and Nutrition Examination Survey 2011-2018 were included in this cross-sectional analysis. Independent variable was serum cotinine, which is a biomarker of cigarette exposure. The outcome variable was lumbar BMD. We investigated the associations of serum cotinine levels and lumbar BMD using multivariable linear regression models. RESULTS Serum cotinine concentration was negatively associated with lumbar BMD after adjustment of relevant covariables (β = -0.039, 95% CI: -0.078 to -0.014, P = 0.005). However, in the subgroup analysis stratified by gender, this negative association remained only in women (β = -0.072, 95% CI: -0.132 to -0.012, P = 0.019). CONCLUSION Our study suggested that elevated serum cotinine level correlated with decreased lumbar BMD, especially in women. This finding indicated that reducing cigarette exposure and maintaining serum cotinine at a low level may be beneficial to bone health for adults.
Collapse
Affiliation(s)
- Jian-Guo Fang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Shanghai 200438, China
| | - Duo-Jun Wang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Shanghai 200438, China
| | - Hao-Yu Yang
- School of Basic Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Zhang
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Shanghai 200438, China
| | - Jin-Yu Tong
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Shanghai 200438, China
| | - Zai-Jun Lin
- Department of Spine Surgery, Shidong Hospital Affiliated to University of Shanghai for Science and Technology, No. 999, Shiguang Road, Shanghai 200438, China
| |
Collapse
|
27
|
Huang W, Xiao Y, Wang H, Li K. Association of geriatric nutritional risk index with the risk of osteoporosis in the elderly population in the NHANES. Front Endocrinol (Lausanne) 2022; 13:965487. [PMID: 36523597 PMCID: PMC9744963 DOI: 10.3389/fendo.2022.965487] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Osteoporosis is common in the elderly, and malnutrition is considered a major risk factor for osteoporosis. This study investigated the relationship between the Geriatric Nutrition Risk Index (GNRI) and osteoporosis based on a large cross-sectional study of the National Health and Nutrition Examination Survey (NHANES). METHODS We included 7405 older adults from NHANES (2005 to 2018) and divided them into the High-GNRI and Low-GNRI groups based on GNRI levels to compare the prevalence of osteoporosis among the two groups. A multi-factor logistic regression analysis was used to determine whether GNRI was an independent risk factor for osteoporosis. Spearman's rank correlation coefficient was computed to investigate the linear relationship between geriatric nutritional risk index (GNRI) and bone mineral density (BMD) T-score. Finally, a generalized additive model (GAM) revealed whether there was a non-linear relationship between GNRI and osteoporosis. RESULTS The prevalence of osteoporosis was higher in the Low-GNRI group than those in the High-GNRI group (12.2% vs. 8.2%; P = 0.001). Similarly, the femoral neck BMD T-scores (-1.09 ± 1.42 vs. -0.91 ± 1.31; P = 0.003). However, there was no significant difference between Low-GNRI group and High-GNRI group in lumbar BMD T-scores (1.700 ± 1.69 vs 1.85 ± 1.72; P>0.05). The multi-factor logistic regression analysis identified low GNRI as an independent risk factor for osteoporosis (OR: 1.544; 95% CI: 1.179-2.022; P < 0.001). Besides, GNRI showed a positive linear correlation (P < 0.001) with femoral neck BMD T-scores in older adults, with a progressive trend towards higher BMD as GNRI increased. By contrast, there was no linear correlation between GNRI and lumbar BMD T-score (P = 0.978). Lastly, the dose response curve revealed the non-linear negative correlation between GNRI and the risk of osteoporosis in the elderly (non-linear P < 0.001). With the increase of GNRI, the risk of osteoporosis gradually decreased, especially when GNRI was greater than 100, the downward trend was more significant. CONCLUSION GNRI is an independent risk factor for osteoporosis in the elderly and is negatively and non-linearly associated with the risk of osteoporosis in the elderly population.
Collapse
Affiliation(s)
- Wei Huang
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, China
| | - Yingqi Xiao
- Department of Pulmonary and Critical Care Medicine, Dongguan Tungwah Hospital, Dongguan, China
- *Correspondence: Yingqi Xiao,
| | - Hongwei Wang
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, China
| | - Kaixiang Li
- Department of Orthopaedics, Dongguan Tungwah Hospital, Dongguan, China
| |
Collapse
|
28
|
Abaricia JO, Whitehead AJ, Kandalam S, Shah AH, Hotchkiss KM, Morandini L, Olivares-Navarrete R. E-cigarette Aerosol Mixtures Inhibit Biomaterial-Induced Osseointegrative Cell Phenotypes. MATERIALIA 2021; 20:101241. [PMID: 34778733 PMCID: PMC8589285 DOI: 10.1016/j.mtla.2021.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Smoking is a known contributor to the failure of dental implants. Despite a decline in cigarette use, the popularity of e-cigarettes has exploded. However, little is known about how e-cigarettes affect the biologic response to implants. This study examines the effect of e-cigarette aerosol mixtures (ecig-AM) on macrophage activation and osteoblastogenesis of mesenchymal stem cells (MSCs) in response to titanium (Ti) implant surfaces. METHODS Ecig-AMs were prepared by bubbling aerosol through PBS. Human-derived MSCs or murine-derived macrophages were plated on smooth, rough-hydrophobic, or rough-hydrophilic Ti surfaces in media supplemented with ecig-AM. In macrophages, expression of inflammatory markers was measured by qPCR and macrophage immunophenotype characterized by flow cytometry after 24 hours of exposure. In MSCs, expression of osteogenic markers and inflammatory cytokines was measured by qPCR and ELISA, while alkaline phosphatase activity (ALP) was determined by colorimetric assay. RESULTS Ecig-AM polarized primary macrophages into a pro-inflammatory state with higher effect on ecig-AM with flavorants and nicotine. Metabolic activity of MSCs decreased in a concentration dependent fashion and was stronger in ecig-AM containing nicotine. MSCs reduced expression of osteogenic markers in response to ecig-AM, but increased RANKL secretion, particularly at the highest ecig-AM concentrations. The effect of ecig-AM exposure was lessened when macrophages or MSCs were cultured on rough-hydrophilic substrates. SIGNIFICANCE Ecig-AM activated macrophages into a pro-inflammatory phenotype and impaired MSC-to-osteoblast differentiation in response to Ti implant surfaces. These effects were potentiated by flavorants and nicotine, suggesting that e-cigarette use may compromise the osseointegration of dental implants.
Collapse
Affiliation(s)
| | | | - Suraj Kandalam
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Arth H. Shah
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Kelly M Hotchkiss
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Lais Morandini
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| | - Rene Olivares-Navarrete
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23284, USA
| |
Collapse
|
29
|
Lin B, Pan Z. Consensus gene modules related to levels of bone mineral density (BMD) among smokers and nonsmokers. Bioengineered 2021; 12:10134-10146. [PMID: 34743649 PMCID: PMC8810040 DOI: 10.1080/21655979.2021.2000746] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 11/30/2022] Open
Abstract
Osteoporosis, as a common metabolic disorder characterized by the decrease of bone mass, can cause fractures, thereby threatening the life quality of females, especially postmenopausal women. Thus, it is necessary to reveal the genes involved in osteoporosis and explore biomarkers for osteoporosis. In this study, two groups, smokers and nonsmokers with different bone mineral density (BMD) levels, were collected from the Gene Expression Omnibus (GEO) database GSE13850. Consensus modules of the two groups were identified; the variety of gene modules between smokers and nonsmokers with different BMD levels was observed; and a consensus module, including 390 genes significantly correlated with different BMD levels, was identified. Function analysis revealed the significantly enriched osteoporosis-related pathways, such as the PI3K-Akt signaling pathway. Hub genes analysis revealed the critical role of CXCL12 and CHRM2 in modules related to BMD levels. Based on the support vector machine recursive feature elimination (SVM-RFE) analysis, the model containing 10 genes (TNS4, IRF2, BSG, GZMM, ARRB2, COX15, RALY, TP53, RPS6KA3, and SYNPO) with good performance in identifying people with different BMD levels was constructed. Among them, the roles of RALY and SYNPO in the osteogenic differentiation of hBMSCs were verified experimentally. Overall, this study provides a strategy to explore the biomarkers for osteoporosis through analysis of consensus modules.
Collapse
Affiliation(s)
- Bingyuan Lin
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
- Department of Orthopaedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhijun Pan
- Department of Orthopaedics, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
30
|
Chełchowska M, Gajewska J, Ambroszkiewicz J, Mazur J, Ołtarzewski M, Maciejewski TM. Influence of Oxidative Stress Generated by Smoking during Pregnancy on Glutathione Status in Mother-Newborn Pairs. Antioxidants (Basel) 2021; 10:antiox10121866. [PMID: 34942969 PMCID: PMC8698311 DOI: 10.3390/antiox10121866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/15/2021] [Accepted: 11/21/2021] [Indexed: 11/16/2022] Open
Abstract
Glutathione plays a key role in maintaining a physiological balance between prooxidants and antioxidants in the human body. Therefore, we examined the influence of maternal smoking as a source of oxidative stress measured by total oxidant capacity (TOC) on reduced glutathione (GSH), oxidized glutathione (GSSG), glutathione peroxidase (GPx-3), and reductase (GR) amount in maternal and umbilical cord blood in 110 (45 smoking and 65 non-smoking) mother-newborn pairs. Concentrations of glutathione status markers and TOC were evaluated by competitive inhibition enzyme immunoassay technique. Plasma TOC levels were significantly higher and the GSH/GSSG ratio, which is considered an index of the cell’s redox status, were significantly lower in smoking women and their offspring than in non-smoking pairs. Decreased GR levels were found in smoking mothers and their newborns compared with similar non-smoking groups. Although plasma GPx-3 concentrations were similar in both maternal groups, in the cord blood of newborns exposed to tobacco smoke in utero they were reduced compared with the levels observed in children of tobacco abstinent mothers. Oxidative stress generated by tobacco smoke impairs glutathione homeostasis in both the mother and the newborn. The severity of oxidative processes in the mother co-existing with the reduced potential of antioxidant systems may have a negative effect on the oxidative-antioxidant balance in the newborn.
Collapse
Affiliation(s)
- Magdalena Chełchowska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
- Correspondence: ; Tel./Fax: +48-2-2327-7260
| | - Joanna Gajewska
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Jadwiga Ambroszkiewicz
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Joanna Mazur
- Department of Humanization in Medicine and Sexology, Collegium Medicum University of Zielona Góra, 65-729 Zielona Góra, Poland;
| | - Mariusz Ołtarzewski
- Department of Screening Tests and Metabolic Diagnostics, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland; (J.G.); (J.A.); (M.O.)
| | - Tomasz M. Maciejewski
- Clinic of Obstetrics and Gynaecology, Institute of Mother and Child, Kasprzaka 17a, 01-211 Warsaw, Poland;
| |
Collapse
|
31
|
Tariq U, Butt MS, Pasha I, Faisal MN. Neuroprotective effects of Olea europaea L. fruit extract against cigarette smoke-induced depressive-like behaviors in Sprague-Dawley rats. J Food Biochem 2021; 45:e14014. [PMID: 34796529 DOI: 10.1111/jfbc.14014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/19/2021] [Accepted: 10/26/2021] [Indexed: 12/01/2022]
Abstract
Depression is broadly acclaimed as a mental health anomaly and despite advancements in the development of antidepressant drugs, they are linked with side effects. Dietary modifications and medicinal plants like olives can be used as effective strategies due to their antioxidant, immune-modulatory, antiinflammatory, and anticonvulsant properties. Considering the compositional alterations in olive fruits during ripening, the antidepressant potential of olive fruits at different degrees of ripeness, that is, un-ripened (green) and ripened (black) was investigated. Rats were randomly divided into five groups: G0 (Normal diet), G1 (Normal diet + smoke exposure (SE), G2 (Normal diet + SE + Citalopram), G3 (Normal diet + SE + Green olive extract), and G4 (Normal diet + SE + Black olive extract). Depressive-like behaviors were induced in all groups through cigarette smoke exposure except G0 . Green and black olive extracts prevented depressive behaviors by reducing the immobility time of rats in forced swim test and tail suspension test while increased the latency to respond in hot plate assay. Moreover, lipid peroxidation in brain tissue was reduced with citalopram, green, and black olive extracts. Additionally, treatments also enhanced the antioxidant pool of brain tissues. Histological examination revealed that olive extracts and citalopram prevented cigarette smoke-induced moderate to severe necrosis and congestion in the brain parenchyma and elucidated antidepressant potential by improving the expression of monoamine oxidase-A, solute carrier family 6 member 4, and brain-derived neurotrophic factor genes. Conclusively, olives may act as a promising antidepressant agent in ameliorating cigarette smoke-induced depressive-like behaviors. PRACTICAL APPLICATIONS: Olive extracts at both ripening stages revealed an antidepressant-like effect almost similar to the standard antidepressant drug and also prevented oxidative damages. Therefore, from the current findings, it can be recommended that food ingredients with antidepressant potential like olives should be incorporated in future interventions to combat depression/psychiatric anomalies and diet therapy should be encouraged to alleviate lifestyle-related disorders.
Collapse
Affiliation(s)
- Urwa Tariq
- Faculty of Food Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Imran Pasha
- Faculty of Food Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Faculty of Veterinary Science, Institute of Pharmacy, Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
32
|
Weng W, Zanetti F, Bovard D, Braun B, Ehnert S, Uynuk-Ool T, Histing T, Hoeng J, Nussler AK, Aspera-Werz RH. A simple method for decellularizing a cell-derived matrix for bone cell cultivation and differentiation. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:124. [PMID: 34524552 PMCID: PMC8443471 DOI: 10.1007/s10856-021-06601-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 08/29/2021] [Indexed: 05/02/2023]
Abstract
The extracellular matrix regulates cell survival, proliferation, and differentiation. In vitro two-dimensional cell experiments are typically performed on a plastic plate or a substrate of a single extracellular matrix constituent such as collagen or calcium phosphate. As these approaches do not include extracellular matrix proteins or growth factors, they fail to mimic a complex cell microenvironment. The cell-derived matrix is an alternative platform for better representing the in vivo microenvironment in vitro. Standard decellularization of a cell-derived matrix is achieved by combining chemical and physical methods. In this study, we compared the decellularization efficacy of several methods: ammonium hydroxide, sodium dodecyl sulfate (SDS), or Triton X-100 with cold or heat treatment on a matrix of Saos-2 cells. We found that the protocols containing SDS were cytotoxic during recellularization. Heat treatment at 47 °C was not cytotoxic, removed cellular constituents, inactivated alkaline phosphatase activity, and maintained the levels of calcium deposition. Subsequently, we investigated the differentiation efficiency of a direct bone coculture system in the established decellularized Saos-2 matrix, an inorganic matrix of calcium phosphate, and a plastic plate as a control. We found that the decellularized Saos-2 cell matrix obtained by heat treatment at 47 °C enhanced osteoclast differentiation and matrix mineralization better than the inorganic matrix and the control. This simple and low-cost method allows us to create a Saos-2 decellularized matrix that can be used as an in vivo-like support for the growth and differentiation of bone cells.
Collapse
Affiliation(s)
- Weidong Weng
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Filippo Zanetti
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - David Bovard
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Bianca Braun
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Sabrina Ehnert
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tatiana Uynuk-Ool
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Tina Histing
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000, Neuchâtel, Switzerland
| | - Andreas K Nussler
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Trauma and Reconstructive Surgery, BG Trauma Center Tübingen, Siegfried Weller Institute for Trauma Research, Eberhard Karls University Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
33
|
Qamar W, Altamimi MA, Rehman MU, Ali N, Imam F, Alanazi FE. Toxicological interaction between tobacco smoke toxicants cadmium and nicotine: An in-vitro investigation. Saudi J Biol Sci 2021; 28:4201-4209. [PMID: 34354400 PMCID: PMC8324994 DOI: 10.1016/j.sjbs.2021.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/27/2021] [Accepted: 05/04/2021] [Indexed: 11/16/2022] Open
Abstract
Cigarettes and other tobacco products are used to obtain nicotine that is responsible for their stimulating effects. However, a lot of other organic and inorganic chemicals are also released along with nicotine. Cadmium (Cd) is one of the several heavy metals that are health hazards and is one of the inorganic elements released in tobacco smoke. The in-vitro investigation focused on exploring the effects of nicotine hydrogen tartrate (NHT) and cadmium (Cd) and their toxic interactions in the A549 cell line. In cell viability assay NHT exhibited its IC50 at 11.71 mM concentration, and the IC50 of Cd was found to be 83 µM after a 24 h exposure. Toxic effects of NHT (5 mM and 10 mM), Cd (50 µM and 100 µM), and their combination were also investigated by flowcytometry. The investigation included apoptotic and necrotic events, the effect on different cell cycle phases, and generation of reactive oxygen species by NHT, Cd, and their combination of different concentrations. Data reveal evident toxic effects of NHT, Cd, and NHT + Cd. It also indicates that the toxic interaction of NHT and Cd is not additive and appears to be minimal when compared with NHT or Cd exposures alone.
Collapse
Affiliation(s)
- Wajhul Qamar
- Department of Pharmacology and Toxicology, and Central Laboratory, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad A. Altamimi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Muneeb U. Rehman
- Department of Clinical Pharmacy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Nemat Ali
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Faisal Imam
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Fawaz Essa Alanazi
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
34
|
Chen Y, Aspera-Werz RH, Menger MM, Falldorf K, Ronniger M, Stacke C, Histing T, Nussler AK, Ehnert S. Exposure to 16 Hz Pulsed Electromagnetic Fields Protect the Structural Integrity of Primary Cilia and Associated TGF-β Signaling in Osteoprogenitor Cells Harmed by Cigarette Smoke. Int J Mol Sci 2021; 22:7036. [PMID: 34210094 PMCID: PMC8268780 DOI: 10.3390/ijms22137036] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023] Open
Abstract
Cigarette smoking (CS) is one of the main factors related to avoidable diseases and death across the world. Cigarette smoke consists of numerous toxic compounds that contribute to the development of osteoporosis and fracture nonunion. Exposure to pulsed electromagnetic fields (PEMF) was proven to be a safe and effective therapy to support bone fracture healing. The aims of this study were to investigate if extremely low frequency (ELF-) PEMFs may be beneficial to treat CS-related bone disease, and which effect the duration of the exposure has. In this study, immortalized human mesenchymal stem cells (SCP-1 cells) impaired by 5% cigarette smoke extract (CSE) were exposed to ELF-PEMFs (16 Hz) with daily exposure ranging from 7 min to 90 min. Cell viability, adhesion, and spreading were evaluated by Sulforhodamine B, Calcein-AM staining, and Phalloidin-TRITC/Hoechst 33342 staining. A migration assay kit was used to determine cell migration. Changes in TGF-β signaling were evaluated with an adenoviral Smad2/3 reporter assay, RT-PCR, and Western blot. The structure and distribution of primary cilia were analyzed with immunofluorescent staining. Our data indicate that 30 min daily exposure to a specific ELF-PEMF most effectively promoted cell viability, enhanced cell adhesion and spreading, accelerated migration, and protected TGF-β signaling from CSE-induced harm. In summary, the current results provide evidence that ELF-PEMF can be used to support early bone healing in patients who smoke.
Collapse
Affiliation(s)
- Yangmengfan Chen
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Romina H. Aspera-Werz
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Maximilian M. Menger
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Karsten Falldorf
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Michael Ronniger
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Christina Stacke
- Sachtleben GmbH, Haus Spectrum am UKE, Martinistraße 64, D-20251 Hamburg, Germany; (K.F.); (M.R.); (C.S.)
| | - Tina Histing
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Andreas K. Nussler
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| | - Sabrina Ehnert
- Siegfried Weller Research Institute at the BG Trauma Center Tübingen, Department of Trauma and Reconstructive Surgery, University of Tübingen, Schnarrenbergstr. 95, D-72076 Tübingen, Germany; (Y.C.); (R.H.A.-W.); (M.M.M.); (T.H.); (S.E.)
| |
Collapse
|
35
|
Tarantino U, Cariati I, Greggi C, Gasbarra E, Belluati A, Ciolli L, Maccauro G, Momoli A, Ripanti S, Falez F, Brandi ML. Skeletal System Biology and Smoke Damage: From Basic Science to Medical Clinic. Int J Mol Sci 2021; 22:ijms22126629. [PMID: 34205688 PMCID: PMC8234270 DOI: 10.3390/ijms22126629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
Cigarette smoking has a negative impact on the skeletal system, as it reduces bone mass and increases fracture risk through its direct or indirect effects on bone remodeling. Recent evidence demonstrates that smoking causes an imbalance in bone turnover, making bone vulnerable to osteoporosis and fragility fractures. Moreover, cigarette smoking is known to have deleterious effects on fracture healing, as a positive correlation between the daily number of cigarettes smoked and years of exposure has been shown, even though the underlying mechanisms are not fully understood. It is also well known that smoking causes several medical/surgical complications responsible for longer hospital stays and a consequent increase in the consumption of resources. Smoking cessation is, therefore, highly advisable to prevent the onset of bone metabolic disease. However, even with cessation, some of the consequences appear to continue for decades afterwards. Based on this evidence, the aim of our review was to evaluate the impact of smoking on the skeletal system, especially on bone fractures, and to identify the pathophysiological mechanisms responsible for the impairment of fracture healing. Since smoking is a major public health concern, understanding the association between cigarette smoking and the occurrence of bone disease is necessary in order to identify potential new targets for intervention.
Collapse
Affiliation(s)
- Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Ida Cariati
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Chiara Greggi
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Medical-Surgical Biotechnologies and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - Elena Gasbarra
- Department of Clinical Sciences and Translational Medicine, “Tor Vergata” University of Rome, Via Montpellier 1, 00133 Rome, Italy; (U.T.); (I.C.); (C.G.); (E.G.)
- Department of Orthopaedics and Traumatology, “Policlinico Tor Vergata” Foundation, Viale Oxford 81, 00133 Rome, Italy
| | - Alberto Belluati
- Orthopaedic and Traumatology Department, Hospital Santa Maria delle Croci–AUSL Romagna, Viale Randi 5, 48121 Ravenna, Italy;
| | - Luigi Ciolli
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy; (L.C.); (F.F.)
| | - Giulio Maccauro
- Department of Orthopaedics and Traumatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Largo Agostino Gemelli 8, 00168 Rome, Italy;
| | - Alberto Momoli
- Orthopedic and Traumatology Department, San Bortolo Hospital-AULSS 8 Berica, Viale Rodolfi 37, 36100 Vicenza, Italy;
| | - Simone Ripanti
- Department of Orthopaedics and Traumatology, San Giovanni-Addolorata Hospital, Via dell’Amba Aradam 8, 00184 Rome, Italy;
| | - Francesco Falez
- Orthopaedic and Traumatology Department, S. Spirito Hospital, Lungotevere in Sassia 1, 00193 Rome, Italy; (L.C.); (F.F.)
| | - Maria Luisa Brandi
- FIRMO Foundation, 50141 Florence, Italy
- Correspondence: ; Tel.: +39-55-5097-755
| |
Collapse
|
36
|
Ratajczak AE, Szymczak-Tomczak A, Rychter AM, Zawada A, Dobrowolska A, Krela-Kaźmierczak I. Impact of Cigarette Smoking on the Risk of Osteoporosis in Inflammatory Bowel Diseases. J Clin Med 2021; 10:1515. [PMID: 33916465 PMCID: PMC8038608 DOI: 10.3390/jcm10071515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Cigarette smoking constitutes one of the most important modifiable factors of osteoporosis, as well as contributes to an early death, tumors, and numerous chronic diseases. The group with an increased risk of a lower bone mineral density are patients suffering from inflammatory bowel diseases. In fact, tobacco smoke, which contains more than 7000 chemical compounds, affects bone mineral density (BMD) both directly and indirectly, as it has an impact on the RANK-RANKL-OPG pathway, intestinal microbiota composition, and calcium-phosphate balance. Constant cigarette use interferes with the production of protective mucus and inhibits the repair processes in the intestinal mucus. Nicotine as well as the other compounds of the cigarette smoke are important risk factors of the inflammatory bowel disease and osteoporosis. Additionally, cigarette smoking may decrease BMD in the IBD patients. Interestingly, it affects patients with Crohn's disease and ulcerative colitis in different ways-on the one hand it protects against ulcerative colitis, whereas on the other it increases the risk of Crohn's disease development. Nevertheless, all patients should be encouraged to cease smoking in order to decrease the risk of developing other disorders.
Collapse
Affiliation(s)
- Alicja Ewa Ratajczak
- Correspondence: (A.E.R.); (I.K.-K.); Tel.: +48-667-385-996 (A.E.R.); +48-8691-343 (I.K.-K.); Fax: +48-8691-686 (A.E.R.)
| | | | | | | | | | - Iwona Krela-Kaźmierczak
- Department of Gastroenterology, Dietetics and Internal Diseases, Poznań University of Medical Sciences, 61-701 Poznań, Poland; (A.S.-T.); (A.M.R.); (A.Z.); (A.D.)
| |
Collapse
|
37
|
Morris TM, Marlborough FJ, Montgomery RJ, Allison KP, Eardley WGP. Smoking and the patient with a complex lower limb injury. Injury 2021; 52:814-824. [PMID: 33495022 DOI: 10.1016/j.injury.2020.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/11/2020] [Accepted: 12/23/2020] [Indexed: 02/02/2023]
Abstract
Smoking is known to increase the risk of peri-operative complications in Orthoplastic surgery by impairing bone and wound healing. The effects of nicotine replacement therapies (NRTs) and electronic cigarettes (e-cigarettes) has been less well established. Previous reviews have examined the relationship between smoking and bone and wound healing separately. This review provides surgeons with a comprehensive and contemporaneous account of how smoking in all forms interacts with all aspects of complex lower limb trauma. We provide a guide for surgeons to refer to during the consent process to enable them to tailor information towards smokers in such a way that the patient may understand the risks involved with their surgical treatment. We update the literature with recently discovered methods of monitoring and treating the troublesome complications that occur more commonly in smokers effected by trauma.
Collapse
Affiliation(s)
- Timothy M Morris
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW.
| | - Fergal J Marlborough
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Richard J Montgomery
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - Keith P Allison
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| | - William G P Eardley
- Orthoplastic Surgery Department, James Cook University Hospital, Marton Road, Middlesbrough, England, TS4 3BW
| |
Collapse
|
38
|
Nrf2 epigenetic derepression induced by running exercise protects against osteoporosis. Bone Res 2021; 9:15. [PMID: 33637693 PMCID: PMC7910611 DOI: 10.1038/s41413-020-00128-8] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/06/2020] [Accepted: 10/29/2020] [Indexed: 12/11/2022] Open
Abstract
Osteoporosis (OP) is a common skeletal disease involving low bone mineral density (BMD) that often leads to fragility fracture, and its development is affected by multiple cellular pathologies and associated with marked epigenetic alterations of osteogenic genes. Proper physical exercise is beneficial for bone health and OP and reportedly possesses epigenetic modulating capacities; however, whether the protective effects of exercise on OP involve epigenetic mechanisms is unclear. Here, we report that epigenetic derepression of nuclear factor erythroid derived 2-related factor-2 (Nrf2), a master regulator of oxidative stress critically involved in the pathogenesis of OP, mediates the significant osteoprotective effects of running exercise (RE) in a mouse model of OP induced by ovariectomy. We showed that Nrf2 gene knockout (Nfe2l2-/-) ovariectomized mice displayed a worse BMD reduction than the controls, identifying Nrf2 as a critical antiosteoporotic factor. Further, femoral Nrf2 was markedly repressed with concomitant DNA methyltransferase (Dnmt) 1/Dnmt3a/Dnmt3b elevations and Nrf2 promoter hypermethylation in both patients with OP and ovariectomized mice. However, daily 1-h treadmill RE significantly corrected epigenetic alterations, recovered Nrf2 loss and improved the femur bone mass and trabecular microstructure. Consistently, RE also normalized the adverse expression of major osteogenic factors, including osteoblast/osteoclast markers, Nrf2 downstream antioxidant enzymes and proinflammatory cytokines. More importantly, the RE-conferred osteoprotective effects observed in the wild-type control mice were largely abolished in the Nfe2l2-/- mice. Thus, Nrf2 repression due to aberrant Dnmt elevation and subsequent Nrf2 promoter hypermethylation is likely an important epigenetic feature of the pathogenesis of OP, and Nrf2 derepression is essential for the antiosteoporotic effects of RE.
Collapse
|
39
|
El-Mahdy MA, Mahgoup EM, Ewees MG, Eid MS, Abdelghany TM, Zweier JL. Long-term electronic cigarette exposure induces cardiovascular dysfunction similar to tobacco cigarettes: role of nicotine and exposure duration. Am J Physiol Heart Circ Physiol 2021; 320:H2112-H2129. [PMID: 33606584 DOI: 10.1152/ajpheart.00997.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Electronic cigarette (e-cig) vaping (ECV) has been proposed as a safer alternative to tobacco cigarette smoking (TCS); however, this remains controversial due to a lack of long-term comparative studies. Therefore, we developed a chronic mouse exposure model that mimics human vaping and allows comparison with TCS. Longitudinal studies were performed to evaluate alterations in cardiovascular function with TCS and ECV exposure durations of up to 60 wk. For ECV, e-cig liquid with box-mod were used and for TCS, 3R4F-cigarettes. C57/BL6 male mice were exposed 2 h/day, 5 days/wk to TCS, ECV, or air control. The role of vape nicotine levels was evaluated using e-cig-liquids with 0, 6, or 24 mg/mL nicotine. Following 16-wk exposure, increased constriction to phenylephrine and impaired endothelium-dependent and endothelium-independent vasodilation were observed in aortic segents, paralleling the onset of systemic hypertension, with elevations in systemic vascular resistance. Following 32 wk, TCS and ECV induced cardiac hypertrophy. All of these abnormalities further increased out to 60 wk of exposure, with elevated heart weight and aortic thickness along with increased superoxide production in vessels and cardiac tissues of both ECV and TCS mice. While ECV-induced abnormalities were seen in the absence of nicotine, these occurred earlier and were more severe with higher nicotine exposure. Thus, long-term vaping of e-cig can induce cardiovascular disease similar to TCS, and the severity of this toxicity increases with exposure duration and vape nicotine content.NEW & NOTEWORTHY A chronic mouse exposure model that mimics human e-cigarette vaping and allows comparison with tobacco cigarette smoking was developed and utilized to perform longitudinal studies of alterations in cardiovascular function. E-cigarette exposure led to the onset of cardiovascular disease similar to that with tobacco cigarette smoking. Impaired endothelium-dependent and endothelium-independent vasodilation with increased adrenergic vasoconstriction were observed, paralleling the onset of systemic hypertension and subsequent cardiac hypertrophy. This cardiovascular toxicity was dependent on exposure duration and nicotine dose.
Collapse
Affiliation(s)
- Mohamed A El-Mahdy
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Elsayed M Mahgoup
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio.,Department of Pharmacology and Toxicology, College of Pharmacy, Al-Azhar University, Cairo, Egypt
| | - Mohamed G Ewees
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Mahmoud S Eid
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Tamer M Abdelghany
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| | - Jay L Zweier
- Center for Environmental and Smoking Induced Disease and Department of Internal Medicine, Division of Cardiovascular Medicine, Davis Heart and Lung Research Institute, College of Medicine, The Ohio State University, Columbus, Ohio
| |
Collapse
|
40
|
Zhu S, Aspera-Werz RH, Chen T, Weng W, Braun B, Histing T, Nüssler AK. Maqui berry extract prevents cigarette smoke induced oxidative stress in human osteoblasts in vitro. EXCLI JOURNAL 2021; 20:281-296. [PMID: 33628164 PMCID: PMC7898044 DOI: 10.17179/excli2020-3244] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/04/2021] [Indexed: 12/16/2022]
Abstract
Oxidative stress which can be induced by cigarette smoke (CS) is associated with an altered osteoblast differentiation, and an inhibition of the mineralization process. Therefore, treatments focusing on reducing oxidative stress in osteoblasts could be a potential therapy supporting bone formation. Maqui berry extract (MBE) is the richest natural source of delphinidins with high antioxidant activity. In the present study, we pre-/ co-/ post-incubated MBE in cigarette smoke extract (CSE)-affected human osteoblasts (hOBs), to investigate the effects of MBE as an antioxidant on hOBs. Our results clearly showed that high concentrations of MBE are toxic for hOBs, while physiological concentrations of MBE have no negative effects in vitro. Physiological concentrations of MBE can reduce oxidative stress caused by CSE in hOBs by activating the antioxidative regulator Nrf2 and its regulated antioxidative enzymes. Moreover, the physiological concentration of MBE prevents the detrimental effects of CSE-induced oxidative damage on hOBs by increasing cell viability, differentiation capability and matrix mineralization. Pre-incubation with MBE showed a positive effect on the activation of the cellular antioxidant system in hOBs. Thus, we conclude that MBE at physiological concentrations can effectively protect osteoblasts from oxidative stress-induced damage by activating the cells' antioxidative defense system.
Collapse
Affiliation(s)
- Sheng Zhu
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Romina H Aspera-Werz
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tao Chen
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Weidong Weng
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Bianca Braun
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Tina Histing
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| | - Andreas K Nüssler
- Department of Traumatology, Eberhard Karls University Tübingen, BG Clinic, Siegfried Weller Institute, Schnarrenbergstraße 95, 72076 Tübingen, Germany
| |
Collapse
|
41
|
Ng JS, Chin KY. Potential mechanisms linking psychological stress to bone health. Int J Med Sci 2021; 18:604-614. [PMID: 33437195 PMCID: PMC7797546 DOI: 10.7150/ijms.50680] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/30/2020] [Indexed: 02/06/2023] Open
Abstract
Chronic psychological stress affects many body systems, including the skeleton, through various mechanisms. This review aims to provide an overview of the factors mediating the relationship between psychological stress and bone health. These factors can be divided into physiological and behavioural changes induced by psychological stress. The physiological factors involve endocrinological changes, such as increased glucocorticoids, prolactin, leptin and parathyroid hormone levels and reduced gonadal hormones. Low-grade inflammation and hyperactivation of the sympathetic nervous system during psychological stress are also physiological changes detrimental to bone health. The behavioural changes during mental stress, such as altered dietary pattern, cigarette smoking, alcoholism and physical inactivity, also threaten the skeletal system. Psychological stress may be partly responsible for epigenetic regulation of skeletal development. It may also mediate the relationship between socioeconomic status and bone health. However, more direct evidence is required to prove these hypotheses. In conclusion, chronic psychological stress should be recognised as a risk factor of osteoporosis and stress-coping methods should be incorporated as part of the comprehensive osteoporosis-preventing strategy.
Collapse
Affiliation(s)
- Jia-Sheng Ng
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Cheras 56000, Malaysia
| |
Collapse
|
42
|
Zhu S, Häussling V, Aspera-Werz RH, Chen T, Braun B, Weng W, Histing T, Nussler AK. Bisphosphonates Reduce Smoking-Induced Osteoporotic-Like Alterations by Regulating RANKL/OPG in an Osteoblast and Osteoclast Co-Culture Model. Int J Mol Sci 2020; 22:ijms22010053. [PMID: 33374546 PMCID: PMC7793101 DOI: 10.3390/ijms22010053] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023] Open
Abstract
Co-culture models have become mandatory for obtaining better insights into bone homeostasis, which relies on the balance between osteoblasts and osteoclasts. Cigarette smoking (CS) has been proven to increase the risk of osteoporosis; however, there is currently no proven treatment for osteoporosis in smokers excluding cessation. Bisphosphonates (BPs) are classical anti-osteoclastic drugs that are commonly used in examining the suitability of bone co-culture systems in vitro as well as to verify the response to osteoporotic stimuli. In the present study, we tested the effects of BPs on cigarette smoke extract (CSE)-affected cells in the co-culture of osteoblasts and osteoclasts. Our results showed that BPs were able to reduce CSE-induced osteoporotic alterations in the co-culture of osteoblasts and osteoclasts such as decreased matrix remodeling, enhanced osteoclast activation, and an up-regulated receptor activator of nuclear factor (NF)-kB-ligand (RANKL)/osteoprotegerin (OPG) ratio. In summary, BPs may be an effective alternative therapy for reversing osteoporotic alterations in smokers, and the potential mechanism is through modulation of the RANKL/OPG ratio.
Collapse
|
43
|
Aspera-Werz RH, Ehnert S, Müller M, Zhu S, Chen T, Weng W, Jacoby J, Nussler AK. Assessment of tobacco heating system 2.4 on osteogenic differentiation of mesenchymal stem cells and primary human osteoblasts compared to conventional cigarettes. World J Stem Cells 2020; 12:841-856. [PMID: 32952862 PMCID: PMC7477651 DOI: 10.4252/wjsc.v12.i8.841] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/17/2020] [Accepted: 08/01/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cigarette smoking (CS) is the most common method of consuming tobacco. Deleterious effects on bone integrity, increased incidence of fractures, and delayed fracture healing are all associated with CS. Over 150 of the 6500 molecular species contained in cigarette smoke and identified as toxic compounds are inhaled by CS and, via the bloodstream, reach the skeletal system. New technologies designed to develop a reduced-risk alternative for smokers are based on electronic nicotine delivery systems, such as e-cigarettes and tobacco heating systems (THS). THS are designed to heat tobacco instead of burning it, thereby reducing the levels of harmful toxic compounds released.
AIM To examine the effects of THS on osteoprogenitor cell viability and function compared to conventional CS.
METHODS Human immortalized mesenchymal stem cells (n = 3) and primary human pre-osteoblasts isolated from cancellous bone samples from BG Unfall Klinik Tübingen (n = 5) were osteogenically differentiated in vitro with aqueous extracts generated from either the THS 2.4 “IQOS” or conventional “Marlboro” cigarettes for up to 21 d. Cell viability was analyzed using resazurin conversion assay (mitochondrial activity) and calcein-AM staining (esterase activity). Osteogenic differentiation and bone cell function were evaluated using alkaline phosphatase (AP) activity, while matrix formation was analyzed through alizarin red staining. Primary cilia structure was examined by acetylated α-tubulin immunofluorescent staining. Free radical production was evaluated with 2’,7’-dichlorofluorescein-diacetate assay.
RESULTS Our data clearly show that THS is significantly less toxic to bone cells than CS when analyzed by mitochondrial and esterase activity (P < 0.001). No significant differences in cytotoxicity between the diverse flavors of THS were observed. Harmful effects from THS on bone cell function were observed only at very high, non-physiological concentrations. In contrast, extracts from conventional cigarettes significantly reduced the AP activity (by two-fold) and matrix mineralization (four-fold) at low concentrations. Additionally, morphologic analysis of primary cilia revealed no significant changes in the length of the organelle involved in osteogenesis of osteoprogenitor cells, nor in the number of ciliated cells following THS treatment. Assessment of free radical production demonstrated that THS induced significantly less oxidative stress than conventional CS in osteoprogenitor cells.
CONCLUSION THS was significantly less harmful to osteoprogenitor cells during osteogenesis than conventional CS. Additional studies are required to confirm whether THS is a better alternative for smokers to improve delays in bone healing following fracture.
Collapse
Affiliation(s)
- Romina H Aspera-Werz
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 72076, Germany
| | - Sabrina Ehnert
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Monja Müller
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Sheng Zhu
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Tao Chen
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Weidong Weng
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Johann Jacoby
- Institute for Clinical Epidemiology and Applied Biometry, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| | - Andreas K Nussler
- Department of Traumatology, BG Trauma Clinic, Siegfried Weller Institute for Trauma Research, Eberhard Karls Universität Tübingen, Tübingen 71076, Germany
| |
Collapse
|
44
|
Koul S, Schaal VL, Chand S, Pittenger ST, Nanoth Vellichirammal N, Kumar V, Guda C, Bevins RA, Yelamanchili SV, Pendyala G. Role of Brain Derived Extracellular Vesicles in Decoding Sex Differences Associated with Nicotine Self-Administration. Cells 2020; 9:cells9081883. [PMID: 32796722 PMCID: PMC7464419 DOI: 10.3390/cells9081883] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/04/2020] [Accepted: 08/06/2020] [Indexed: 02/06/2023] Open
Abstract
Smoking remains a significant health and economic concern in the United States. Furthermore, the emerging pattern of nicotine intake between sexes further adds a layer of complexity. Nicotine is a potent psychostimulant with a high addiction liability that can significantly alter brain function. However, the neurobiological mechanisms underlying nicotine’s impact on brain function and behavior remain unclear. Elucidation of these mechanisms is of high clinical importance and may lead to improved therapeutics for smoking cessation. To fill in this critical knowledge gap, our current study focused on identifying sex-specific brain-derived extracellular vesicles (BDEV) signatures in male and female rats post nicotine self-administration. Extracellular vesicles (EVs) are comprised of phospholipid nanovesicles such as apoptotic bodies, microvesicles (MVs), and exosomes based on their origin or size. EVs are garnering significant attention as molecules involved in cell–cell communication and thus regulating the pathophysiology of several diseases. Interestingly, females post nicotine self-administration, showed larger BDEV sizes, along with impaired EV biogenesis compared to males. Next, using quantitative mass spectrometry-based proteomics, we identified BDEV signatures, including distinct molecular pathways, impacted between males and females. In summary, this study has identified sex-specific changes in BDEV biogenesis, protein cargo signatures, and molecular pathways associated with long-term nicotine self-administration.
Collapse
Affiliation(s)
- Sneh Koul
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Victoria L. Schaal
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Subhash Chand
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Steven T. Pittenger
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Neetha Nanoth Vellichirammal
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Vikas Kumar
- Mass Spectrometry and Proteomics Core Facility, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Chittibabu Guda
- Department of Genetics Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA; (N.N.V.); (C.G.)
| | - Rick A. Bevins
- Department of Psychology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; (S.T.P.); (R.A.B.)
| | - Sowmya V. Yelamanchili
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
| | - Gurudutt Pendyala
- Department of Anesthesiology, University of Nebraska Medical Center, Omaha, NE 68198, USA; (S.K.); (V.L.S.); (S.C.); (S.V.Y.)
- Correspondence: ; Tel.: +1-402-559-8690
| |
Collapse
|
45
|
Alomari MA, Alzoubi KH, Khabour OF. Differences in oxidative stress profile in adolescents smoking waterpipe versus cigarettes: The Irbid TRY Project. Physiol Rep 2020. [PMCID: PMC7484827 DOI: 10.14814/phy2.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Mahmoud A. Alomari
- Department of Physical Education Qatar University Doha Qatar
- Division of Physical Therapy Department of Rehabilitation Sciences Jordan University of Science and Technology Irbid Jordan
| | - Karem H. Alzoubi
- Department of Clinical Pharmacy Jordan University of Science and Technology Irbid Jordan
| | - Omar F. Khabour
- Department of Medical Laboratory Sciences Jordan University of Science and Technology Irbid Jordan
| |
Collapse
|
46
|
E-vapor aerosols do not compromise bone integrity relative to cigarette smoke after 6-month inhalation in an ApoE -/- mouse model. Arch Toxicol 2020; 94:2163-2177. [PMID: 32409933 PMCID: PMC7303066 DOI: 10.1007/s00204-020-02769-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/30/2020] [Indexed: 12/12/2022]
Abstract
Cigarette smoke (CS) exposure is one of the leading risk factors for human health. Nicotine-containing inhalable products, such as e-cigarettes, can effectively support tobacco harm reduction approaches. However, there are limited comparative data on the effects of the aerosols generated from electronic vapor products (e-vapor) and CS on bone. Here, we report the effects of e-vapor aerosols and CS on bone morphology, structure, and strength in a 6-month inhalation study. Eight-week-old ApoE-/- mice were exposed to aerosols from three different e-vapor formulations-CARRIER (propylene glycol and vegetable glycerol), BASE (CARRIER and nicotine), TEST (BASE and flavor)-to CS from 3R4F reference cigarettes at matched nicotine concentrations (35 µg/L) or to fresh air (Sham) (N = 10 per group). Tibiae were analyzed for bone morphology by µCT imaging, biomechanics by three-point bending, and by histological analysis. CS inhalation caused a significant decrease in cortical and total bone volume fraction and bone density relative to e-vapor aerosols. Additionally, CS exposure caused a decrease in ultimate load and stiffness. In contrast, bone structural and biomechanical parameters were not significantly affected by e-vapor aerosol or Sham exposure. At the dissection time point, there was no significant difference in body weight or tibia bone weight or length among the groups. Histological findings revealed microcracks in cortical bone areas among all exposed groups compared to Sham control. In conclusion, because of the bone-preserving effect of e-vapor aerosols relative to CS exposure, e-vapor products could potentially constitute less harmful alternatives to cigarettes in situations in which bone health is of importance.
Collapse
|
47
|
Chen T, Ehnert S, Tendulkar G, Zhu S, Arnscheidt C, Aspera-Werz RH, Nussler AK. Primary Human Chondrocytes Affected by Cigarette Smoke-Therapeutic Challenges. Int J Mol Sci 2020; 21:ijms21051901. [PMID: 32164359 PMCID: PMC7084468 DOI: 10.3390/ijms21051901] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/04/2020] [Accepted: 03/07/2020] [Indexed: 12/12/2022] Open
Abstract
Although several researchers have attested deleterious effects of smoking to the musculoskeletal system, the association between smoking and the onset of osteoarthritis (OA) remains unclear. Here, we investigate the effect of cigarette smoke extract (CSE) on primary human chondrocytes. The present study demonstrates that physiological concentrations of CSE (0.1%–10%) inhibit the viability, proliferation, and matrix formation of chondrocytes in a dose- and time-dependent manner. Significant amounts of free radicals were generated by 10% of CSE and led to cell death. A clinical dosage (4 mg/mL) of dexamethasone (Dex) showed toxic effects on chondrocytes, and the long-time treatment by lower doses (4–400 μg/mL) induced hypertrophic changes in the chondrocytes. To substitute Dex, diclofenac (Dic, 1 μg/mL) and acetaminophen (Ace, 10 μg/mL) were tested and did not worsen the metabolic activity of CSE-exposed chondrocytes. Hyaluronic acid (HA, 5 mg/mL) combined with Dic or Ace significantly inhibited the oxidative stress and enhanced the viability and matrix formation of CSE-exposed chondrocytes. This study shows for the first time that CSE mediates the disruption of cartilage through inducing cell death by increasing oxidative stress, and that this effect is fortified by Dex. The deleterious effects of CSE on chondrocytes could be reversed by treatment with HA combined with first-line analgesic/anti-inflammatory agents.
Collapse
|
48
|
Ruoß M, Kieber V, Rebholz S, Linnemann C, Rinderknecht H, Häussling V, Häcker M, Olde Damink LHH, Ehnert S, Nussler AK. Cell-Type-Specific Quantification of a Scaffold-Based 3D Liver Co-Culture. Methods Protoc 2019; 3:E1. [PMID: 31878071 PMCID: PMC7189675 DOI: 10.3390/mps3010001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 12/25/2022] Open
Abstract
In order to increase the metabolic activity of human hepatocytes and liver cancer cell lines, many approaches have been reported in recent years. The metabolic activity could be increased mainly by cultivating the cells in 3D systems or co-cultures (with other cell lines). However, if the system becomes more complex, it gets more difficult to quantify the number of cells (e.g., on a 3D matrix). Until now, it has been impossible to quantify different cell types individually in 3D co-culture systems. Therefore, we developed a PCR-based method that allows the quantification of HepG2 cells and 3T3-J2 cells separately in a 3D scaffold culture. Moreover, our results show that this method allows better comparability between 2D and 3D cultures in comparison to the often-used approaches based on metabolic activity measurements, such as the conversion of resazurin.
Collapse
Affiliation(s)
- Marc Ruoß
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Vanessa Kieber
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Silas Rebholz
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Caren Linnemann
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Helen Rinderknecht
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Victor Häussling
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Marina Häcker
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | | | - Sabrina Ehnert
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| | - Andreas K. Nussler
- Department of Traumatology, Siegfried Weller Institute, BG-Klinik Tübingen, Eberhard Karls University, 72076 Tübingen, Germany; (V.K.); (S.R.); (C.L.); (H.R.); (V.H.); (M.H.); (S.E.); (A.K.N.)
| |
Collapse
|
49
|
Shaik FB, Nagajothi G, Swarnalatha K, Kumar CS, Maddu N. Quantification of Nicotine and Cotinine in Plasma, Saliva, and Urine by HPLC Method in Chewing Tobacco Users. Asian Pac J Cancer Prev 2019; 20:3617-3623. [PMID: 31870102 PMCID: PMC7173387 DOI: 10.31557/apjcp.2019.20.12.3617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Nicotine acts as major alkaloid of all tobacco products including smokeless tobacco (SLT) forms. The mode of SLT consumption is in the form of chewing under the cheek or lip and induced biochemical alterations in the plasma, saliva, and urine. MATERIALS AND METHODS The smokeless tobacco products like Raja or blue bull tobacco brands are widely consumed by human male volunteers under the age of 18-30 years for the period of 3 years consisting of 30g per day. The concentrations of nicotine and cotinine in samples of plasma, saliva, and urine are quantified by the method of HPLC. The remaining variables of plasma are evaluated by auto analyzer and spectrophotometric methods. RESULTS The analysis of results presented that significant increase in the levels of nicotine and cotinine in plasma, saliva, and urine of chewing tobacco users. The lipid profile (Cholesterol, triglycerides, HDL-C, and LDL-C), liver marker enzymes (SGOT, SGPT, and ALP), kidney markers (Creatinine, urea, and uric acid), glucose, and the remaining variables are present within normal range observed in SLT users. The lipid peroxidation (LPO), nitric oxide (NO) (NO2 and NO3), protein carbonyls (PCO), and peroxynitrites (ONOO-) are reported to be higher levels in the plasma of experimental subjects in comparison with normal controls. The various brands of tobacco varieties (Raja, madhu chhap, hans chhap, miraj, badshah, blue bull, and swagat gold tobacco) are presented. CONCLUSION The chewing tobacco users exhibited greater amounts of nicotine and cotinine are at risk of cardiovascular due to nicotine has cardiovascular effects, and oral cancer disease complications in the future for chronic consumption of smokeless tobacco products due to the presence of carcinogens of tobacco-specific N-nitrosamines.
Collapse
Affiliation(s)
- Fareeda Begum Shaik
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India
| | - G Nagajothi
- Department of Corporate Secretary ship, Queen Mary's College (Autonomous), Chennai, Tamil Nadu, India
| | - K Swarnalatha
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India
| | - C Suresh Kumar
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India
| | - Narendra Maddu
- Department of Biochemistry, Sri Krishnadevaraya University, Ananthapuramu, Andhra Pradesh, India
| |
Collapse
|
50
|
Kubo Y, Wruck CJ, Fragoulis A, Drescher W, Pape HC, Lichte P, Fischer H, Tohidnezhad M, Hildebrand F, Pufe T, Jahr H. Role of Nrf2 in Fracture Healing: Clinical Aspects of Oxidative Stress. Calcif Tissue Int 2019; 105:341-352. [PMID: 31236620 DOI: 10.1007/s00223-019-00576-3] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 06/18/2019] [Indexed: 12/20/2022]
Abstract
Fracture healing is a natural process that recapitulates embryonic skeletal development. In the early phase after fracture, reactive oxygen species (ROS) are produced under inflammatory and ischemic conditions due to vessel injury and soft tissue damage, leading to cell death. Usually, such damage during the course of fracture healing can be largely prevented by protective mechanisms and functions of antioxidant enzymes. However, intrinsic oxidative stress can cause excessive toxic radicals, resulting in irreversible damage to cells associated with bone repair during the fracture healing process. Clinically, patients with type-2 diabetes mellitus, osteoporosis, habitual drinkers, or heavy smokers are at risk of impaired fracture healing due to elevated oxidative stress. Although increased levels of oxidative stress markers upon fracture and effects of antioxidants on fracture healing have been reported, a detailed understanding of what causes impaired fracture healing under intrinsic conditions of oxidative stress is lacking. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been identified as a key transcriptional regulator of the expression of antioxidants and detoxifying enzymes. It further not only plays a crucial role in preventing degenerative diseases in multiple organs, but also during fracture healing. This narrative review evaluates the influence of intrinsic oxidative stress on fracture healing and sheds new light on the intriguing role of Nrf2 during bone regeneration in pathological fractures.
Collapse
Affiliation(s)
- Yusuke Kubo
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany.
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Wolf Drescher
- Department of Orthopaedics, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
- Department of Orthopaedic Surgery of the Lower Limb and Arthroplasty, Hospital Rummelsberg, Rummelsberg 71, 90592, Schwarzenbruck, Germany
| | - Hans Christoph Pape
- Department of Trauma Surgery, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Philipp Lichte
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Horst Fischer
- Department of Dental Materials and Biomaterials Research, RWTH Aachen University Hospital, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Frank Hildebrand
- Department of Orthopaedic Trauma Surgery, RWTH Aachen University, Pauwelsstraße 30, 52074, Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, RWTH Aachen University, Wendlingweg 2, 52074, Aachen, Germany
- Department of Orthopaedic Surgery, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| |
Collapse
|