1
|
Ding W, Qian K, Bao W, Wang Z. Phellodendrine inhibits oxidative stress and promotes autophagy by regulating the AMPK/mTOR pathway in burn sepsis-induced intestinal injury. Toxicol Res (Camb) 2025; 14:tfae233. [PMID: 39822373 PMCID: PMC11734437 DOI: 10.1093/toxres/tfae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 12/01/2024] [Indexed: 01/19/2025] Open
Abstract
Intestinal injury is an important complication of burn sepsis with limited therapeutic choices. Phellodendrine is a promising compound for gastrointestinal inflammatory diseases and is extracted from the traditional Chinese medicine phellodendron bark. The study aimed to explore the role of phellodendrine against oxidative stress and autophagy in burn sepsis-induced intestinal injury. A mouse model of burn sepsis model was established by intraperitoneally injecting 10 mg/kg lipopolysaccharide (LPS) to mice burned by boiled water. Phellodendrine (30 mg/kg) was injected into mice in the drug group after scalding and before LPS injection. Hematoxylin and eosin staining was performed to observe histopathological changes in murine small intestines. TdT-mediated dUTP Nick-End Labeling (TUNEL) assay was performed to evaluate intestinal cell apoptosis. Immunofluorescence staining was performed to measure the expression and distribution of autophagy markers, light chain 3II (LC3II) and p62 in intestinal tissues. Oxidative stress indicators were detected using corresponding commercial kits. Protein levels of apoptotic markers, autophagy markers, and factors involved in adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR) pathway in intestines were quantified by western blotting. Phellodendrine attenuated bun sepsis-induced intestinal pathological changes. Meanwhile, aggravated cell apoptosis, reduction of antioxidant enzymes, and downregulation of autophagy markers in intestinal tissues of burn sepsis group were all improved by phellodendrine. In addition, phellodendrine activated the phosphorylation (p) of AMPK and inhibited p-mTOR signaling in intestines of burn septic mice. In conclusion, phellodendrine suppresses oxidative stress and activates autophagy in burn sepsis-induced intestinal injury by activating AMPK and inhibiting mTOR signaling.
Collapse
Affiliation(s)
- Wei Ding
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Kun Qian
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Wenxiu Bao
- Department of Burn and Plastic Surgery, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu City, Anhui Province 241000, China
| | - Zhen Wang
- Department of General Practice, Yijishan Hospital, First Affiliated Hospital of Wannan Medical College, Jinghu District, Wuhu, Anhui Province 241000, China
| |
Collapse
|
2
|
Ferraz APCR, Figueiredo PDO, Yoshida NC. Black Mulberry ( Morus nigra L.): A Review of Attributes as an Anticancer Agent to Encourage Pharmaceutical Development. Adv Pharmacol Pharm Sci 2024; 2024:3784092. [PMID: 39529942 PMCID: PMC11554416 DOI: 10.1155/2024/3784092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024] Open
Abstract
Recent considerations of natural sources as potential anticancer agents have arisen due to the origins of numerous drugs commonly used in chemotherapy. Plant-based drugs, in particular, have attracted attention for offering the advantage of low adverse effects. Among these, the black mulberry plant (Morus nigra L.) stands out as a natural source of polyphenols, widely used to treat metabolic dysfunctions and confer benefits on human health. This study explores the potential of this plant as an anticancer agent, examining its effectiveness based on the type of application of the plant extracts or isolated substances, extraction methods, and its potential biological effects on cancer cells. Consequently, this study contributes to a better understanding of the distribution of phytochemicals in M. nigra and their applications in the context of cancer field. Among the compounds found in black mulberry are flavonoids, chlorogenic acid, cryptochlorogenic acid, and protocatechuic acid, along with cyanidin-3-O-glucoside as the main anthocyanin on the fruit. The phytochemicals derived from M. nigra exhibit antinociceptive and antimicrobial activities, while also showing protective effects, such as antioxidant properties that underline their potential as anticancer agents. The black mulberry's roots, stem bark, pulp, and leaves are particularly rich sources of anti-inflammatory compounds. Ethanol and methanol extraction methods appear to be the most effective in cancer management, offering compounds that facilitate the integration of apoptosis induction, cell growth inhibition, and cytotoxicity modulation. These results collectively represent the salient biological attributes that positioned black mulberry as a promising anticancer agent. Therefore, these findings highlight the multifaceted potential of M. nigra as an anticancer agent, making a compelling case for further research to advance prospects in the medical field.
Collapse
Affiliation(s)
| | | | - Nídia Cristiane Yoshida
- Federal University of Mato Grosso do Sul (UFMS), Institute of Chemistry, INQUI, Campo Grande 79074-460/549, Brazil
| |
Collapse
|
3
|
Carvalho-Silva JM, Reis ACD. Anti-inflammatory action of silver nanoparticles in vivo: systematic review and meta-analysis. Heliyon 2024; 10:e34564. [PMID: 39113960 PMCID: PMC11305315 DOI: 10.1016/j.heliyon.2024.e34564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 08/10/2024] Open
Abstract
The aim of this study was to systematically review the literature to investigate whether silver nanoparticles (AgNPs) have an anti-inflammatory effect in vivo. The guidelines of PRISMA were applied, and a registration was made in PROSPERO. A personalized search of the PubMed, Web of Science, Scopus, Embase, Lilacs, and Google Scholar databases was conducted in September 2023. For the data analysis, the inverse variance in the random effects model was used. The tools of SYRCLE and GRADE were used to assess the risk of bias and the certainty of evidence, respectively. From the 9185 identified studies, 5685 duplicate studies were excluded; 52 were read in full text, and 7 were included in this review. Six studies were evaluated by the meta-analysis, and an increase in anti-inflammatory molecules (SMD -5.22; PI [-6.50, -3.94]) and an increase in anti-inflammatory ones (SMD 5.75; PI [3.79, 7.72]) were observed. Qualitative analysis showed a reduction in pro-inflammatory proteins and in the COX-2 pathway. It was concluded that AgNPs present an anti-inflammatory action in vivo through mechanisms involving the reduction of pro-inflammatory molecules and proteins, the increase of anti-inflammatory molecules, and selective inhibition of the COX-2 pathway.
Collapse
Affiliation(s)
- João Marcos Carvalho-Silva
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| | - Andréa Cândido dos Reis
- Department of Dental Materials and Prosthesis, Ribeirão Preto Dental School, University of São Paulo (USP), Ribeirão Preto, Brazil
| |
Collapse
|
4
|
Liu Y, Yao X, Yang Y, Mi Y, Wang Y, Tan S, Fang M, Meng Q, Chen G, Li N, Hou Y. Americanin B inhibits pyroptosis in lipopolysaccharide-induced septic encephalopathy mice through targeting NLRP3 protein. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155520. [PMID: 38489892 DOI: 10.1016/j.phymed.2024.155520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/16/2024] [Accepted: 03/07/2024] [Indexed: 03/17/2024]
Abstract
BACKGROUND Sepsis is considered as a severe illness due to its high mortality. Sepsis can cause septic encephalopathy, thus leading to brain injury, behavioral and cognitive dysfunction. Pyroptosis is a type of regulated cell death (RCD) and takes a crucial part in occurrence and development of sepsis. Americanin B (AMEB) is a lignan compounds, which is extracted from Vernicia fordii. In our previous study, AMEB could inhibit microglial activation in inflammatory cell model. However, the function of AMEB in septic encephalopathy mice is uncertain. It would be worthwhile to ascertain the role and mechanism of AMEB in sepsis. PURPOSE Current study designs to certify the relationship between pyroptosis and septic encephalopathy, and investigate whether AMEB can restrain NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome activation and restrict pyroptosis by targeting NLRP3 in septic mice model. STUDY DESIGN C57BL/6 mice were utilized to perform sepsis model in vivo experiments. BV-2 cell lines were used for in vitro experiments. METHODS In vivo sepsis model was established by lipopolysaccharide (LPS) intraperitoneal injection in male C57BL/6 J mice and in vitro model was exposed by LPS plus ATP in BV-2 cells. The survival rate was monitored on the corresponding days. NLRP3, apoptosis associated Speck-like protein (ASC), caspase-1, GasderminD (GSDMD), interleukin-1β (IL-1β) and interleukin-18 (IL-18) level were detected by western blotting and immunofluorescence analysis. Molecular docking, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) experiments, RNAi transfection and quantitative real-time PCR were applied to confirm the potential target of AMEB. RESULTS The results suggested that AMEB could rise survival percentage and lighten brain injury in LPS-induced sepsis mice. In addition, AMEB could inhibit pyroptosis and the activiation of NLRP3 inflammasome. The inhibiting function of AMEB on the activiation of NLRP3 inflammasome is weakened following si-NLRP3 transfection. Moreover, AMEB exerted anti-pyroptosis effect via targeting NLRP3 protein. CONCLUSIONS Our findings first indicate NLRP3 is an effective druggable target for septic encephalopathy related brain injury, and also provide a candidate-AMEB for the treatment of septic encephalopathy. These emerging findings on AMEB in models of sepsis suggest an innovative approach that may be beneficial in the prevention of septic encephalopathy.
Collapse
Affiliation(s)
- Yeshu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Xiaohu Yao
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yanqiu Yang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yan Mi
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Yingjie Wang
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Shaowen Tan
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Mingxia Fang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Qingqi Meng
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China
| | - Gang Chen
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China
| | - Ning Li
- School of Traditional Chinese Materia Medica, Key Laboratory of Innovative Traditional Chinese Medicine for Major Chronic Diseases of Liaoning province, Key Laboratory for TCM Material Basis Study and Innovative Drug Development of Shenyang City, Shenyang Pharmaceutical University, Shenyang, China.
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang, China.
| |
Collapse
|
5
|
Du X, Liu J, Wang X, Chen X, Mao Z, Yu F, Wang P, Wu C, Guo H, Zhang H. Environmentally related microcystin-LR-induced ovarian dysfunction via the CCL2-CCR10 axis in mice ameliorated by dietary mulberry. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 349:123929. [PMID: 38582190 DOI: 10.1016/j.envpol.2024.123929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/08/2024]
Abstract
Microcystin-LR (MC-LR) is a reproductive toxin produced by cyanobacteria in the aquatic environment and can be ingested by humans through drinking water and the food chain, posing a threat to human reproductive health. However, the toxic mechanisms and prospective interventions for MC-LR-induced ovarian dysfunction at environmental doses are unknown. The mulberry fruit is a traditional natural product of plant origin, with various pharmacological effects, such as antioxidant and anti-inflammatory effects. Here, mice were exposed to MC-LR (10, 100 μg/L) in drinking water for 90 days, during which mice were gavage 600 mg/kg/week of mulberry fruit extract (MFE). It was found that MC-LR can accumulate in mouse ovaries, causing sexual hormone disturbance, inflammatory infiltration, and ovarian pathological damage. Results from RNA-seq were shown that CCL2, a chemokine associated with inflammatory response, was significantly increased in mouse ovary after MC-LR exposure. Further investigation revealed that MC-LR exposure aggravates apoptosis of granulosa cells via the CCL2-CCR10 axis-mediated Jak/Stat pathway. Importantly, MFE can significantly ameliorate these ovarian dysfunction phenotypes by inhibiting the activation of the CCL2-CCR10 axis. This study broadened new insights into the ovarian toxicity of MC-LR and clarified the pharmacological effects of mulberry fruit on ovarian function protection.
Collapse
Affiliation(s)
- Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Junjie Liu
- Henan Human Sperm Bank, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Xin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, TX, USA.
| | - Zhenxing Mao
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Fangfang Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Pengpeng Wang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Cuiping Wu
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| | - Hongxiang Guo
- College of Life Sciences, Henan Agricultural University, Zhengzhou, Henan, 450002, China.
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
6
|
Li W, Lin M, Li J, Ding Q, Chen X, Chen H, Shen Z, Zhu X. Xijiao Dihuang Decoction Protects Against Murine Sepsis-Induced Cardiac Inflammation and Apoptosis via Suppressing TLR4/NF-κB and Activating PI3K/AKT Pathway. J Inflamm Res 2024; 17:853-863. [PMID: 38348278 PMCID: PMC10860816 DOI: 10.2147/jir.s428305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 02/01/2024] [Indexed: 02/15/2024] Open
Abstract
Background Xijiao Dihuang decoction (XJDHT), a traditional Chinese medicine, is widely used to treat patients with sepsis. However, the mechanisms underlying the effects of XJDHT on cardiac dysfunction have yet to be fully elucidated. The present study evaluated the potential utility of XJDHT in protecting against sepsis-induced cardiac dysfunction and myocardial injury. Methods The mice were randomly divided into 3 groups and administered Lipopolysaccharide (LPS,10 mg/kg) or equivalent saline solution (control) and treated with XJDHT (10 g/kg/day) or saline by gavage for 72 hours. XJDHT was dissolved in 0.9% sodium chloride and administered at 200 μL per mouse. Transthoracic echocardiography, RNA-seq, TUNEL assays and hematoxylin and eosin (H&E) staining of cardiac tissues were performed. Results Treatment with XJDHT significantly enhanced myocardial function and attenuated pathological change, infiltration of inflammatory cells, levels of TNF-α, IL-1β and expression of TLR4 and NF-κB in mice with sepsis. RNA sequencing and Kyoto Encyclopedia of Genes and Genomes pathway analyses identified 531 differentially expressed genes and multiple enriched signaling pathways including the PI3K/AKT pathway. Further, XJDHT attenuated cardiac apoptosis and decreased Bax protein expression while increasing protein levels of Bcl-2, PI3K, and p-AKT in cardiac tissues of mice with sepsis. Conclusion In summary, XJDHT improves cardiac function in a murine model of sepsis by attenuating cardiac inflammation and apoptosis via suppressing the TLR4/NF-κB pathway and activating the PI3K/AKT pathway.
Collapse
Affiliation(s)
- Wei Li
- The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Mingrui Lin
- The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Jiapeng Li
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Qihang Ding
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People’s Republic of China
| | - Xiaoling Chen
- Department of Infectious Disease, Fujian Medical University Union Hospital, Fuzhou, Fujian, People’s Republic of China
| | - Huaiyu Chen
- The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Zhiqing Shen
- The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, People’s Republic of China
| | - Xueli Zhu
- The People’s Hospital of Fujian Traditional Medical University, Fuzhou, Fujian, People’s Republic of China
| |
Collapse
|
7
|
Dong W, Li J, Zhuang Z. Deciphering the prognostic significance of anoikis-related lncRNAs in invasive breast cancer: from comprehensive bioinformatics analysis to functional experimental validation. Aging (Albany NY) 2024; 16:402-430. [PMID: 38189818 PMCID: PMC10817393 DOI: 10.18632/aging] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/06/2023] [Indexed: 12/15/2022]
Abstract
The global prevalence of breast cancer necessitates the development of innovative prognostic markers and therapeutic strategies. This study investigated the prognostic implications of anoikis-related long non-coding RNAs (ARLs) in invasive breast cancer (IBC), which is an area that has not been extensively explored. By integrating the RNA sequence transcriptome and clinical data from The Cancer Genome Atlas (TCGA) database and employing advanced regression analyses, we devised a novel prognostic model based on ARL scores. ARL scores correlated with diverse clinicopathological parameters, cellular pathways, distinct mutation patterns, and immune responses, thereby affecting both immune cell infiltration and anticipated responses to chemotherapy and immunotherapy. Additionally, the overexpression of a specific lncRNA, AL133467.1, significantly impeded the proliferation and migration, as well as possibly the anoikis resistance of breast cancer cells. These findings highlight the potential of the ARL signature as a robust prognostic tool and a promising basis for personalized IBC treatment strategies.
Collapse
Affiliation(s)
- Wenge Dong
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiejing Li
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Zhigang Zhuang
- Department of Breast Surgery, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
8
|
Kundu A, Ghosh P, Bishayi B. Vitexin along with verapamil downregulates efflux pump P-glycoprotein in macrophages and potentiate M1 to M2 switching via TLR4-NF-κB-TNFR2 pathway in lipopolysaccharide treated mice. Immunobiology 2024; 229:152767. [PMID: 38103391 DOI: 10.1016/j.imbio.2023.152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/22/2023] [Accepted: 11/29/2023] [Indexed: 12/19/2023]
Abstract
The lipopolysaccharide, a microbial toxin, is one of the major causative agents of sepsis. P-gp expression and its functions are altered during inflammation. LPS has been known to impair the functions of P-gp, an efflux transporter. But the effect of LPS on P-gp expression in murine peritoneal macrophages is poorly understood. Molecular docking studies reveal that vitexin is a potent substrate and verapamil a potent inhibitor of P-gp. In the present experimental study, the curative potential of vitexin as a fruit component and verapamil treated as a control inhibitor of P-gp was examined in a murine LPS sepsis model. The effects of vitexin and verapamil on P-gp expression in macrophages correlating with changes in macrophage polarization and associated functional responses during LPS induced sepsis were studied. Peritoneal macrophages of LPS (10 mg/kg body weight) challenged mice exhibited elevated levels of H2O2, superoxide, and NO in parallel with lower antioxidant activity. LPS treatment increased P-gp expression through increased TLR4/expression. However, LPS challenged mice treated with vitexin (5 mg/kg body weight) + verapamil (5 mg/kg body weight) showed higher anti-oxidant enzyme activity (SOD, CAT and GRx) resulting in reduced oxidative stress. This combination treatment also elevated TNFR2, concomitant with down-regulation of TLR4, NF-κB and P-gp expression in murine peritoneal macrophages, resulting in a switch from M1 to M2 polarisation of macrophages and reduced inflammatory responses. In conclusion, combined vitexin and verapamil treatment could be used as a promising therapy to regulate P-gp expression and protection against LPS mediated sepsis and inflammatory damages.
Collapse
Affiliation(s)
- Ayantika Kundu
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India
| | - Pratiti Ghosh
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| | - Biswadev Bishayi
- Department of Physiology, Immunology Laboratory, University of Calcutta, University Colleges of Science and Technology, 92 APC Road, Calcutta 700009, West Bengal, India.
| |
Collapse
|
9
|
He YQ, Deng JL, Zhou CC, Jiang SG, Zhang F, Tao X, Chen WS. Ursodeoxycholic acid alleviates sepsis-induced lung injury by blocking PANoptosis via STING pathway. Int Immunopharmacol 2023; 125:111161. [PMID: 37948864 DOI: 10.1016/j.intimp.2023.111161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 10/31/2023] [Indexed: 11/12/2023]
Abstract
Acute lung injury (ALI), a progressive lung disease mostly caused by sepsis, is characterized by uncontrolled inflammatory responses, increased oxidative stress, pulmonary barrier dysfunction, and pulmonary edema. Ursodeoxycholic acid (UDCA) is a natural bile acid with various pharmacological properties and is extensively utilized in clinical settings for the management of hepatobiliary ailments. Nonetheless, the potential protective effects and mechanism of UDCA on sepsis-induced lung injuries remain unknown. In this study, we reported that UDCA effectively inhibited pulmonary edema, inflammatory cell infiltration, pro-inflammatory cytokines production, and oxidative stress. Furthermore, UDCA treatment significantly alleviated the damage of pulmonary barrier and enhanced alveolar fluid clearance. Importantly, UDCA treatment potently suppressed PANoptosis-like cell death which is demonstrated by the block of apoptosis, pyroptosis, and necroptosis. Mechanistically, UDCA treatment prominently inhibited STING pathway. And the consequential loss of STING substantially impaired the beneficial effects of UDCA treatment on the inflammatory response, pulmonary barrier, and PANoptosis. These results indicate that STING plays a pivotal role in the UDCA treatment against sepsis-induced lung injury. Collectively, our findings show that UDCA treatment can ameliorate sepsis-induced lung injury and verified a previously unrecognized mechanism by which UDCA alleviated sepsis-induced lung injury through blocking PANoptosis-like cell death via STING pathway.
Collapse
Affiliation(s)
- Yu-Qiong He
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Jiu-Ling Deng
- Department of Pharmacy, Shanghai Fifth People's Hospital, Fudan University, Shanghai 200240, China
| | - Can-Can Zhou
- Department of Pharmacy, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200040, China
| | - Sheng-Gui Jiang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China
| | - Feng Zhang
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Xia Tao
- Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| | - Wan-Sheng Chen
- Institute of Chinese Materia Madica, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Department of Pharmacy, Changzheng Hospital, Second Military Medical University, Shanghai 200003, China.
| |
Collapse
|
10
|
Zhou X, Fu S, Wu Y, Guo Z, Dian W, Sun H, Liao Y. C-reactive protein-to-albumin ratio as a biomarker in patients with sepsis: a novel LASSO-COX based prognostic nomogram. Sci Rep 2023; 13:15309. [PMID: 37714898 PMCID: PMC10504378 DOI: 10.1038/s41598-023-42601-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 09/12/2023] [Indexed: 09/17/2023] Open
Abstract
To develop a C-reactive protein-to-albumin ratio (CAR)-based nomogram for predicting the risk of in-hospital death in sepsis patients. Sepsis patients were selected from the MIMIC-IV database. Independent predictors were determined by multiple Cox analysis and then integrated to predict survival. The performance of the model was evaluated using the concordance index (C-index), receiver operating characteristic curve (ROC) analysis, and calibration curve. The risk stratifications analysis and subgroup analysis of the model in overall survival (OS) were assessed by Kaplan-Meier (K-M) curves. A total of 6414 sepsis patients were included. C-index of the CAR-based model was 0.917 [standard error (SE): 0.112] for the training set and 0.935 (SE: 0.010) for the validation set. The ROC curve analysis showed that the area under the curve (AUC) of the nomogram was 0.881 in the training set and 0.801 in the validation set. And the calibration curve showed that the nomogram performs well in both the training and validation sets. K-M curves indicated that patients with high CAR had significantly higher in-hospital mortality than those with low CAR. The CAR-based model has considerably high accuracy for predicting the OS of sepsis patients.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Emergency/Intensive Care Unit, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216 Guanshan Avenue, Hongshan District, Wuhan, Hubei, China.
| | - Shouzhi Fu
- Department of Emergency/Intensive Care Unit, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216 Guanshan Avenue, Hongshan District, Wuhan, Hubei, China
| | - Yisi Wu
- Cardiac Function Department, Asia Heart Hospital, Wuhan, China
| | - Zhenhui Guo
- Department of 120 Emergency Center, Wuhan Third Hospital, Tongren Hospital of Wuhan University, Wuhan, China
| | - Wankang Dian
- Department of Emergency/Intensive Care Unit, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216 Guanshan Avenue, Hongshan District, Wuhan, Hubei, China
| | - Huibin Sun
- Department of Emergency/Intensive Care Unit, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216 Guanshan Avenue, Hongshan District, Wuhan, Hubei, China
| | - Youxia Liao
- Department of Emergency/Intensive Care Unit, Wuhan Third Hospital, Tongren Hospital of Wuhan University, No. 216 Guanshan Avenue, Hongshan District, Wuhan, Hubei, China.
| |
Collapse
|
11
|
Rodriguez-Herrera AJ, de Souza ABF, Castro TDF, Machado-Junior PA, Marcano-Gomez EC, Menezes TP, Castro MLDC, Talvani A, Costa DC, Cangussú SD, Bezerra FS. Long-term e-cigarette aerosol exposure causes pulmonary emphysema in adult female and male mice. Regul Toxicol Pharmacol 2023; 142:105412. [PMID: 37247649 DOI: 10.1016/j.yrtph.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/14/2023] [Accepted: 05/21/2023] [Indexed: 05/31/2023]
Abstract
This study aimed to evaluate long-term exposure to conventional cigarette smoke (CC) and electronic cigarette (EC) aerosol in adult male and female C57BL/6 mice. Forty-eight C57BL/6 mice were used, male (n = 24) and female (n = 24), both were divided into three groups: control, CC and EC. The CC and EC groups were exposed to cigarette smoke or electronic cigarette aerosol, respectively, 3 times a day for 60 consecutive days. Afterwards, they were maintained for 60 days without exposure to cigarettes or electronic cigarette aerosol. Both cigarettes promoted an influx of inflammatory cells to the lung in males and females. All animals exposed to CC and EC showed an increase in lipid peroxidation and protein oxidation. There was an increase of IL-6 in males and females exposed to EC. The IL-13 levels were higher in the females exposed to EC and CC. Both sexes exposed to EC and CC presented tissue damage characterized by septal destruction and increased alveolar spaces compared to control. Our results demonstrated that exposure to CC and EC induced pulmonary emphysema in both sexes, and females seem to be more susceptible to EC.
Collapse
Affiliation(s)
- Andrea Jazel Rodriguez-Herrera
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Ana Beatriz Farias de Souza
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Thalles de Freitas Castro
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Pedro Alves Machado-Junior
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Elena Cecilia Marcano-Gomez
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Tatiana Prata Menezes
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Maria Laura da Cruz Castro
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Sílvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil
| | - Frank Silva Bezerra
- Laboratory of Experimental Pathophysiology, Department of Biological Sciences, Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), 35400-000, Ouro Preto, MG, Brazil.
| |
Collapse
|
12
|
Zheng MZ, Lou JS, Fan YP, Fu CY, Mao XJ, Li X, Zhong K, Lu LH, Wang LL, Chen YY, Zheng LR. Identification of autophagy-associated circRNAs in sepsis-induced cardiomyopathy of mice. Sci Rep 2023; 13:11807. [PMID: 37479790 PMCID: PMC10361974 DOI: 10.1038/s41598-023-38998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 07/18/2023] [Indexed: 07/23/2023] Open
Abstract
Circular RNAs (circRNAs) play a role in sepsis-related autophagy. However, the role of circRNAs in autophagy after sepsis-induced cardiomyopathy (SICM) is unknown, so we explored the circRNA expression profiles associated with autophagy in an acute sepsis mouse model. At a dose of 10 mg/kg, mice were intraperitoneally administered with lipopolysaccharides. The myocardial tissue was harvested after 6 h for microarray analysis, qRT-PCR, and western blotting. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and Gene Set Enrichment Analysis were evaluated, and a competing endogenous RNA network was constructed, to evaluate the role of circRNAs related to autophagy in SICM. In total, 1,735 differently expressed circRNAs were identified in the LPS-treated group, including 990 upregulated and 745 downregulated circRNAs. The expression level of the autophagy-specific protein p62 decreased, while the ratio of LC3 II to LC3 I increased. Additionally, 309 mRNAs and 187 circRNAs were correlated with autophagy in myocardial tissue after SICM. Of these, 179 circRNAs were predicted to function as "miRNA sponges". Some distinctive circRNAs and mRNAs found by ceRNA analysis might be involved in autophagy in SICM. These findings provide insights into circRNAs and identified new research targets that may be used to further explore the pathogenesis of SICM.
Collapse
Affiliation(s)
- Ming-Zhi Zheng
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Department of Pharmacology, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Jun-Sheng Lou
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yun-Peng Fan
- Department of Orthopedic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chun-Yan Fu
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China
| | - Xing-Jia Mao
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Xiang Li
- Department of Pharmacology, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Kai Zhong
- Department of Pharmacology, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Lin-Huizi Lu
- Department of Clinical Medicine, Hangzhou Medical College, Hangzhou, 310053, Zhejiang, China
| | - Lin-Lin Wang
- Department of Basic Medicine Sciences, and Department of Orthopaedics of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China.
| | - Ying-Ying Chen
- Department of Basic Medicine Sciences, and Department of Obstetrics of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, China.
| | - Liang-Rong Zheng
- Department of Cardiology and Atrial Fibrillation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| |
Collapse
|
13
|
Li X, Zhai Y, Yao Q, The E, Ao L, Fullerton DA, Yu KJ, Meng X. Up-regulation of Myocardial Klotho Expression to Promote Cardiac Functional Recovery in Old Mice following Endotoxemia. RESEARCH SQUARE 2023:rs.3.rs-2949854. [PMID: 37292905 PMCID: PMC10246261 DOI: 10.21203/rs.3.rs-2949854/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Objective Endotoxemic cardiac dysfunction contributes to greater morbidity and mortality in elderly patients with sepsis. This study tested the hypothesis that Klotho insufficiency in aging heart exaggerates and prolongs myocardial inflammation to hinder cardiac function recovery following endotoxemia. Methods Endotoxin (0.5 mg/kg, iv) was administered to young adult (3-4 months) and old (18-22 months) mice with or without subsequent treatment with recombinant interleukin-37 (IL-37, 50 μg/kg, iv) or recombinant Klotho (10 μg/kg, iv). Cardiac function was analyzed using a microcatheter 24, 48 and 96 h later. Myocardial levels of Klotho, ICAM-1, VCAM-1 and IL-6 were determined by immunoblotting and ELISA. Results In comparison to young adult mice, old mice had worse cardiac dysfunction accompanied by greater myocardial levels of ICAM-1, VCAM-1 and IL-6 at each time point following endotoxemia and failed to fully recover cardiac function by 96 h. The exacerbated myocardial inflammation and cardiac dysfunction were associated with endotoxemia-caused further reduction of lower myocardial Klotho level in old mice. Recombinant IL-37 promoted inflammation resolution and cardiac functional recovery in old mice. Interestingly, recombinant IL-37 markedly up-regulated myocardial Klotho levels in old mice with or without endotoxemia. Similarly, recombinant Klotho suppressed myocardial inflammatory response and promoted inflammation resolution in old endotoxemic mice, leading to complete recovery of cardiac function by 96 h. Conclusion Myocardial Klotho insufficiency in old endotoxemic mice exacerbates myocardial inflammatory response, impairs inflammation resolution and thereby hinders cardiac functional recovery. IL-37 is capable of up-regulating myocardial Klotho expression to improve cardiac functional recovery in old endotoxemic mice.
Collapse
|
14
|
Coelho AM, Queiroz IF, Lima WG, Talvani A, Perucci LO, Oliveira de Souza M, Costa DC. Temporal analysis of paracetamol-induced hepatotoxicity. Drug Chem Toxicol 2023; 46:472-481. [PMID: 35313777 DOI: 10.1080/01480545.2022.2052891] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Paracetamol-induced hepatotoxicity (APAP) causes severe damage that may be irreversible. Understanding the evolution of liver injury caused by overdose of the drug is important to assist in the treatment. In the present study, we evaluated the acute intoxication by APAP (500 mg/kg) in periods of 3 and 12 hours in C57BL/6 mice through biochemical, histological, inflammatory parameters, and the redox status. The results showed that in the 3-hour period there was an increase in creatinine dosage and lipid peroxidation (TBARS) compared to the control group. In the period of 12 hours after APAP intoxication all parameters evaluated were altered; there was an increase of ALT, AST, and necrosis, besides the increase of redox status biomarkers as carbonylated protein, TBARS, and MMP-9. We also observed activation of the inflammasome pathway as well as a reduction in the regenerative capacity of hepatocytes with a decrease in binucleated liver cells. In cytochrome gene expression, the mRNA level increased in CYP2E1 isoenzyme and reduced CYP1A2 expression. This study indicated that early treatment is necessary to mitigate APAP-induced acute liver injury, and alternative therapies capable of controlling the progression of intoxication in the liver are needed.
Collapse
Affiliation(s)
- Aline Meireles Coelho
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Isabela Ferreira Queiroz
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Wanderson Geraldo Lima
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - André Talvani
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Luiza Oliveira Perucci
- Center for Research in Biological Sciences (NUPEB), Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Melina Oliveira de Souza
- Department of Food (DEALI), School of Nutrition, Universidade Federal de Ouro Preto (UFOP), Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Department of Biological Sciences (DECBI), Institute of Exact and Biological Sciences, Federal University of Ouro Preto (UFOP), Minas Gerais, Brazil
| |
Collapse
|
15
|
Lipopolysaccharide-induced endotoxaemia during adolescence promotes stress vulnerability in adult mice via deregulation of nuclear factor erythroid 2-related factor 2 in the medial prefrontal cortex. Psychopharmacology (Berl) 2023; 240:713-724. [PMID: 36847832 DOI: 10.1007/s00213-022-06285-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 11/19/2022] [Indexed: 03/01/2023]
Abstract
RATIONALE Sepsis is a severe inflammatory response to infection that leads to long-lasting cognitive impairment and depression after resolution. The lipopolysaccharide (LPS)-induced endotoxaemia model is a well-established model of gram-negative bacterial infection and recapitulates the clinical characteristics of sepsis. However, whether LPS-induced endotoxaemia during adolescence can modulate depressive and anxiety-like behaviours in adulthood remains unclear. OBJECTIVES To determine whether LPS-induced endotoxaemia in adolescence can modulate the stress vulnerability to depressive and anxiety-like behaviours in adulthood and explore the underlying molecular mechanisms. METHODS Quantitative real-time PCR was used to measure inflammatory cytokine expression in the brain. A stress vulnerability model was established by exposure to subthreshold social defeat stress (SSDS), and depressive- and anxiety-like behaviours were evaluated by the social interaction test (SIT), sucrose preference test (SPT), tail suspension test (TST), force swimming test (FST), elevated plus-maze (EPM) test, and open field test (OFT). Western blotting was used to measure Nrf2 and BDNF expression levels in the brain. RESULTS Our results showed that inflammation occurred in the brain 24 h after the induction of LPS-induced endotoxaemia at P21 but resolved in adulthood. Furthermore, LPS-induced endotoxaemia during adolescence promoted the inflammatory response and the stress vulnerability after SSDS during adulthood. Notably, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2) and BDNF in the mPFC were decreased after SSDS exposure in mice treated with LPS during adolescence. Activation of the Nrf2-BDNF signalling pathway by sulforaphane (SFN), an Nrf2 activator, ameliorated the effect of LPS-induced endotoxaemia during adolescence on stress vulnerability after SSDS during adulthood. CONCLUSIONS Our study identified adolescence as a critical period during which LPS-induced endotoxaemia can promote stress vulnerability during adulthood and showed that this effect is mediated by impairment of Nrf2-BDNF signalling in the mPFC.
Collapse
|
16
|
Gomes SV, Dias BV, Júnior PAM, Pereira RR, de Souza DMS, Breguez GS, de Lima WG, Magalhães CLDB, Cangussú SD, Talvani A, Queiroz KB, Calsavara AJC, Costa DC. High-fat diet increases mortality and intensifies immunometabolic changes in septic mice. J Nutr Biochem 2023; 116:109315. [PMID: 36921735 DOI: 10.1016/j.jnutbio.2023.109315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/21/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023]
Abstract
Immunometabolic changes in the liver and white adipose tissue (WAT) caused by high-fat (HF) diet intake may worse metabolic adaptation and protection against pathogens in sepsis. We investigate the effect of chronic HF diet (15 weeks) on mortality and immunometabolic responses in female mice after sepsis induced by cecum ligation and perforation (CLP). At week 14, animals were divided into four groups: sham C diet (C-Sh), sepsis C diet (C-Sp), sham HF diet (HF-Sh) and sepsis HF diet (HF-Sp). The surviving animals were euthanised on the 7th day. The HF diet decreased survival rate (58.3% vs 76.2% C-Sp group), increased serum cytokine storm (IL-6 (1.41 ×; vs HF-Sh), IL-1β (1.37 ×; vs C-Sp), TNF (1.34 ×; vs C-Sp and 1.72 ×; vs HF-Sh), IL-17 (1.44 ×; vs HF-Sh), IL-10 (1.55 ×; vs C-Sp and 1.41 ×; HF-Sh), WAT inflammation (IL-6 (8.7 ×; vs C-Sp and 2.4 ×; vs HF-Sh), TNF (5 ×; vs C-Sp and 1.7 ×;vs HF-Sh), IL-17 (1.7 ×; vs C-Sp), IL-10 (7.4 ×; vs C-Sp and 1.3 ×; vs HF-Sh), and modulated lipid metabolism in septic mice. In the HF-Sp group liver's, we observed hepatomegaly, hydropic degeneration, necrosis, an increase in oxidative stress (reduction of CAT activity (-81.7%; vs HF-Sh); increase MDA levels (82.8%; vs HF-Sh), and hepatic IL-6 (1.9 ×; vs HF-Sh), and TNF (1.3 × %;vs HF-Sh) production. Furthermore, we found a decrease in the total number of inflammatory, mononuclear cells, and in the regenerative processes, and binucleated hepatocytes in a HF-Sp group liver's. Our results suggested that the organism under metabolic stress of a HF diet during sepsis may worsen the inflammatory landscape and hepatocellular injury and may harm the liver regenerative process.
Collapse
Affiliation(s)
- Sttefany Viana Gomes
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Bruna Vidal Dias
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Pedro Alves Machado Júnior
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Renata Rebeca Pereira
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Débora Maria Soares de Souza
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Gustavo Silveira Breguez
- Multiuser Research Laboratory, School of Nutrition, School of Nutrition, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Wanderson Geraldo de Lima
- Morphopathology Laboratory, Department of Biological Sciences (DECBI), Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Cintia Lopes de Brito Magalhães
- Laboratory of Biology and Technology of Microorganisms (LBTM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Silvia Dantas Cangussú
- Laboratory of Experimental Pathophysiology (LAFEx), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - André Talvani
- Laboratory of Immunobiology of Inflammation, Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Karina Barbosa Queiroz
- Laboratory of Experimental Nutrition (LABNEx), Department of Food, Postgraduate Program in Health and Nutrition, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Allan Jefferson Cruz Calsavara
- Laboratory of Cognition and Health (LACOS), School of Medicine, Department of Pediatric and Adult Clinics (DECPA), Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil
| | - Daniela Caldeira Costa
- Laboratory of Metabolic Biochemistry (LBM), Department of Biological Sciences (DECBI), Graduate Program in Health and Nutrition, Graduate Program in Biological Sciences, Federal University of Ouro Preto (UFOP), Ouro Preto, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Yang J, Wang M, Xu Y, Liao J, Li X, Zhou Y, Dai J, Li X, Chen P, Chen G, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Wang Y, Liang G, Tang Q. Discovery of 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives as novel anti-inflammatory agents for the treatment of acute lung injury and sepsis. Eur J Med Chem 2023; 249:115144. [PMID: 36708679 DOI: 10.1016/j.ejmech.2023.115144] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 01/09/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023]
Abstract
Acute lung injury (ALI) and sepsis, characterized by systemic inflammatory response syndrome, remain the major causes of death in severe patients. Inhibiting the release of proinflammatory cytokines is considered to be a promising method for the treatment of inflammation-related diseases. In this study, a total of 28 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivatives were designed and synthesized and their anti-inflammatory activities in J774A.1 were evaluated. Among them, derivative 13a was found to significantly inhibit lipopolysaccharide (LPS)-induced expression of the proinflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) on J774A.1, THP-1 and LX-2 cells, and inhibited the activation of the NF-κB pathway. Furthermore, administration of 13ain vivo significantly improved the symptoms in LPS-induced ALI mice, including alleviation of pathological changes in the lung tissue, reduction of pulmonary edema, and inhibition of macrophage infiltration. Moreover, the administration of 13ain vivo significantly promoted survival in LPS-induced sepsis mice. 13a demonstrated favorable pharmacokinetic properties with T1/2 value of 11.8 h and F value of 36.3%. Therefore, this study has identified a novel 4-oxo-N-phenyl-1,4-dihydroquinoline-3-carboxamide derivative, 13a, which is an effective anti-inflammatory agent. The findings have laid a foundation for the further development of agents to treat ALI and sepsis.
Collapse
Affiliation(s)
- Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Minxiu Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Yulan Xu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Jintian Dai
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Gaozhi Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City 450005, Russia
| | - Yi Wang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325024, Zhejiang, China.
| |
Collapse
|
18
|
Li C, Dai J, Liu C, Dong G, Zhang X, Zhang J, Yan F, Zhang H, Wang C, Zhao M, Ning Z, Ma Q, Shi H, Li Z, Xiong H. Pyruvate Dehydrogenase Kinase 2 Accelerates Endotoxin Shock by Promoting Mitogen-Activated Protein Kinase Activation. Inflammation 2023; 46:418-431. [PMID: 36171490 DOI: 10.1007/s10753-022-01744-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 11/26/2022]
Abstract
Endotoxin shock remains one of the major causes of mortality worldwide. Pyruvate dehydrogenase kinase (PDK) 2 is an important regulatory enzyme involved in glucose metabolism. The purpose of this study was to determine the regulatory effect of PDK2 on LPS-induced endotoxin shock and explore the mechanisms in vivo and in vitro. Here, we showed that PDK2 contributed to Toll-like receptor (TLR)-mediated inflammation. Lipopolysaccharide (LPS) activation of TLR4 pathways resulted in PDK2 upregulation in macrophages and dendritic cells (DCs). PDK2 overexpression enhanced TLR4 signaling pathway activation, whereas downregulating PDK2 expression inhibited TLR4 signaling pathway activation. Pharmacological inhibition of PDK2 significantly decreased the mortality rate and alleviated pathological injury in the lungs and livers of LPS-challenged mice, while significantly suppressing proinflammatory cytokine production. Thus, we confirmed that PDK2 is involved in LPS-induced endotoxin shock by modulating TLR4-mitogen-activated protein kinase signaling and inducing the production of proinflammatory cytokines in macrophages and DCs. Our findings highlight the importance of PDK2 as a novel target to treat septic shock.
Collapse
Affiliation(s)
- Chunxia Li
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Jun Dai
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Chuanbin Liu
- Department of Pediatric Dentistry, Jining Stomatological Hospital, Jining, 272067, Shandong, China
| | - Guanjun Dong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Xin Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Junfeng Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Fenglian Yan
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Zhang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Changying Wang
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Mingsheng Zhao
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhaochen Ning
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Qun Ma
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Hui Shi
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Zhihua Li
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China
| | - Huabao Xiong
- Institute of Immunology and Molecular Medicine, Basic Medical School, Jining Medical University, Jining, 272067, Shandong, China.
| |
Collapse
|
19
|
Sericultural By-Products: The Potential for Alternative Therapy in Cancer Drug Design. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020850. [PMID: 36677907 PMCID: PMC9861160 DOI: 10.3390/molecules28020850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023]
Abstract
Major progress has been made in cancer research; however, cancer remains one of the most important health-related burdens. Sericulture importance is no longer limited to the textile industry, but its by-products, such as silk fibroin or mulberry, exhibit great impact in the cancer research area. Fibroin, the pivotal compound that is found in silk, owns superior biocompatibility and biodegradability, representing one of the most important biomaterials. Numerous studies have reported its successful use as a drug delivery system, and it is currently used to develop three-dimensional tumor models that lead to a better understanding of cancer biology and play a great role in the development of novel antitumoral strategies. Moreover, sericin's cytotoxic effect on various tumoral cell lines has been reported, but also, it has been used as a nanocarrier for target therapeutic agents. On the other hand, mulberry compounds include various bioactive elements that are well known for their antitumoral activities, such as polyphenols or anthocyanins. In this review, the latest progress of using sericultural by-products in cancer therapy is discussed by highlighting their notable impact in developing novel effective drug strategies.
Collapse
|
20
|
Chen Y, Chen X, Zhou Q. Different effects of a perioperative single dose of dexamethasone on wound healing in mice with or without sepsis. Front Surg 2023; 10:927168. [PMID: 37114154 PMCID: PMC10126451 DOI: 10.3389/fsurg.2023.927168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 03/16/2023] [Indexed: 04/29/2023] Open
Abstract
Introduction Sepsis delays wound healing owing to uncontrolled inflammation. A single perioperative dose of dexamethasone is widely used because of its anti-inflammatory effects. However, the effects of dexamethasone on wound healing in sepsis remain unclear. Methods We discuss the methods to obtain dose curves and explore the safe dosage range for wound healing in mice with or without sepsis. A saline or LPS intraperitoneal injection was applied to C57BL/6 mice. After 24 hours, the mice received a saline or DEX intraperitoneal injection and full-thickness, dorsal wounding operation. Wound healing was observed by image record, immunofluorescence and histological staining. Inflammatory cytokines and M1/M2 macrophages in wounds were determined by ELISA and immunofluorescence, respectively. Results Dose-response curves reflected the safe dosage range of DEX in mice with or without sepsis, from 0.121 to 2.03 mg/kg and from 0 to 0.633 mg/kg, respectively. we found that a single dose of dexamethasone (1 mg/kg, i.p.) promoted wound healing in septic mice, but delayed wound healing in normal mice. In normal mice, dexamethasone delays inflammation, resulting in an insufficient number of macrophages during the healing process. In septic mice, dexamethasone alleviated excessive inflammation and maintained the balance of M1/M2 macrophages in the early and late healing process. Discussion In summary, the safe dosage range of dexamethasone in septic mice is wider than that in normal mice. A single dose of dexamethasone (1 mg/kg) increased wound healing in septic mice, but delayed it in normal mice. Our findings provide helpful suggestions for the rational use of dexamethasone.
Collapse
Affiliation(s)
- Yuanyang Chen
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoshan Chen
- Department of Anesthesiology, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Quanhong Zhou
- Department of ICU, Affiliated Shanghai Sixth People's Hospital, Shanghai Jiao Tong University, Shanghai, China
- Correspondence: Quanhong Zhou
| |
Collapse
|
21
|
Zhang J, Zhang Z, Nie X, Liu Y, Qi Y, Wang J. Deregulated RNAs involved in sympathetic regulation of sepsis-induced acute lung injury based on whole transcriptome sequencing. BMC Genomics 2022; 23:836. [PMID: 36526959 PMCID: PMC9758828 DOI: 10.1186/s12864-022-09073-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
Sympathetic nerves play essential roles in the regulation of lung inflammation, and we investigated the effect of sympathetic denervation (SD) on sepsis-induced acute lung injury (ALI) in mice. Mice were randomized to the control, SD, ALI and SD + ALI, groups. SD and ALI were established through intratracheal 6-hydroxydopamine and intraperitoneal lipopolysaccharide, respectively. Models and gene expressions levels were evaluated by HE staining, ELISA, Western blotting and RT-qPCR. RNA extraction, whole transcriptome sequencing and subsequent biostatistical analysis were performed. Sympathetic denervation in the lungs significantly attenuated lung TNF-ɑ and norepinephrine expression, alleviated sepsis-induced acute lung injury and inhibited NF-κB signaling. Compared with the ALI group, the SD + ALI group exhibited 629 DE circRNAs, 269 DE lncRNAs,7 DE miRNAs and 186 DE mRNAs, respectively. Some DE RNAs were validated by RT-qPCR. CircRNA-miRNA-mRNA regulatory networks in the SD + ALI group revealed enrichment of the B-cell receptor signaling pathway, IL-17 signaling pathway, neuroactive ligand-receptor interaction, CAM, primary immunodeficiency, and cytokine-cytokine receptor interaction terms. The lncRNA-miRNA-mRNA network also revealed inflammation-related signaling pathways. Taken together, based on the successfully established models of SD and ALI, we show here that sympathetic nerves may regulate sepsis-induced ALI supposedly by affecting the expression of circRNAs, lncRNAs, miRNAs, and mRNAs in the lungs. These results may allow for further exploration of the roles of pulmonary sympathetic nerves in sepsis-induced ALI.
Collapse
Affiliation(s)
- Jia Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Zhao Zhang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Xinran Nie
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yingli Liu
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Yong Qi
- Department of Respiratory and Critical Care Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
| | - Jing Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
22
|
Nur S, Sami FJ, Marwati M, Nursamsiar N, Fadri A, Khairuddin K. Phenolic and Flavonoid Content of Black Mulberry (Morus nigra L.) Stem and Their Evaluation Antioxidant and Cytotoxic Profile. BORNEO JOURNAL OF PHARMACY 2022. [DOI: 10.33084/bjop.v5i4.3760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The black mulberry (Morus nigra) plant has been widely developed for its bioactivity as natural medicine. This study evaluated plant extracts' total phenolic and flavonoid content and their correlation to M. nigra stem's antioxidant activity and toxicity. Dry powder from the M. nigra stem was extracted by maceration with 96% ethanol to obtain a thick extract (TE) and fractionated using hexane (HF), ethyl acetate (EAF), and ethanol-aqueous (EF). The samples were analyzed for a compound using reagents and the determination of total phenolic and flavonoid content. The samples were evaluated for antioxidant activity using several parameters and their cytotoxic effects using the BSLT method. Identification of compounds in EAF was confirmed to contain phenolic, flavonoids, alkaloids, saponins, tannins, steroids, and terpenoids. EAF showed higher phenolic and flavonoid content than others. The evaluation of antioxidant activity showed that extracts and fractions from M. nigra stems showed the ability to reduce ions and free radicals. EF sample has activity in reducing Mo (IV) ion by TAC method of 98.82±0.53 µM/mg, indicating substantial antioxidant capacity. In addition, EAF samples showed potential activity in reducing DPPH, hydroxyl, and peroxide radicals in the β-carotene bleaching method with IC50 values of 12.13, 42.06, and 57.6 µg/mL, respectively. Similar activity was also seen in the cytotoxic effect of a robust EAF sample with an LC50 value of 16.31 µg/mL. The results show that EAF can be developed as a raw material for traditional medicine as an antioxidant and anticancer candidate with a significant flavonoid and phenolics content.
Collapse
|
23
|
Han JH, Lee HW, Jung SH, Cho CW, Kim TJ, Kang JS, Myung CS. The anti-obesity effect of mulberry leaf (Mori Folium) extracts was increased by bioconversion with Pectinex. Sci Rep 2022; 12:20375. [PMID: 36437256 PMCID: PMC9701790 DOI: 10.1038/s41598-022-23856-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 11/07/2022] [Indexed: 11/29/2022] Open
Abstract
Mulberry leaf (Mori Folium) extract (MLE) is known to have anti-obesity effects. In this study, the enhanced effects of MLE after bioconversion treatment using Pectinex (BMLE) on obesity were explored, and the underlying mechanisms were investigated using the active components, neochlorogenic acid (5-CQA) and cryptochlorogenic acid (4-CQA), whose amounts were increased by bioconversion of MLE. Both MLE and BMLE inhibited lipid accumulation in 3T3-L1 adipocytes without cytotoxicity and suppressed the expression of CCAAT/enhancer-binding protein alpha (C/EBPα). In addition, MLE and BMLE decreased high-fat diet-induced adipose tissue mass expansion. Notably, BMLE significantly increased antiadipogenic and anti-obesity effects compared to MLE in vitro and in vivo. The active ingredients increased by bioconversion, 5-CQA and 4-CQA, inhibited the protein levels of C/EBPα and the mRNA levels of stearoyl-CoA desaturase 1 (Scd1). These findings provide new insights into the therapeutic possibility of using bioconversion of MLE, by which upregulation of 5-CQA and 4-CQA potently inhibits adipogenesis.
Collapse
Affiliation(s)
- Joo-Hui Han
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Hyung-Won Lee
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Sang-Hyuk Jung
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Chong Woon Cho
- grid.254230.20000 0001 0722 6377College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Tae Jeong Kim
- grid.254230.20000 0001 0722 6377College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Jong Seong Kang
- grid.254230.20000 0001 0722 6377College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| | - Chang-Seon Myung
- grid.254230.20000 0001 0722 6377Department of Pharmacology, College of Pharmacy, Chungnam National University, Daejeon, 34134 Republic of Korea
| |
Collapse
|
24
|
Carneiro ADA, Sinoti SBP, de Freitas MM, Simeoni LA, Fagg CW, Magalhães PDO, Silveira D, Fonseca-Bazzo YM. Hydroethanolic Extract of Morus nigra L. Leaves: A Dual PPAR-α/γ Agonist with Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated RAW 264.7. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11223147. [PMID: 36432875 PMCID: PMC9693183 DOI: 10.3390/plants11223147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 05/14/2023]
Abstract
Inhibition of systemic inflammation has been a beneficial strategy in treating several non-communicable diseases, which represent one of the major causes of mortality in the world. The Peroxisome Proliferator-Activated Receptors (PPAR) are interesting pharmacological targets, since they can act both through the metabolic and anti-inflammatory pathways. Morus nigra L. has flavonoids in its chemical composition with recognized anti-oxidant activity and often associated with anti-inflammatory activity. Therefore, this study aimed to evaluate the hydroethanolic extract of M. nigra leaves' ability to activate PPAR and promote anti-inflammatory effects in lipopolysaccharide (LPS)-stimulated murine macrophage cells. The leaf extract was prepared by cold maceration, and the chemical profile was obtained by HPLC-DAD. Activation of PPAR α and γ was evaluated by the luciferase reporter assay. The anti-inflammatory activity was assessed by measuring the reactive oxygen species (ROS), nitric oxide (NO), and Tumor Necrosis Factor-α (TNF-α) in RAW 264.7 cells after stimulation with LPS from Escherichia coli. The HPLC-DAD analysis identified two major compounds: rutin and isoquercitrin. The extract showed agonist activity for the two types of PPAR, α and γ, although its major compounds, rutin and isoquercitrin, did not significantly activate the receptors. In addition, the extract significantly reduced the production of ROS, NO, and TNF-α. Treatment with the specific PPAR-α antagonist, GW 6471, was able to partially block the anti-inflammatory effect caused by the extract.
Collapse
Affiliation(s)
- Amanda de Assis Carneiro
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Simone Batista Pires Sinoti
- Molecular Pharmacology Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Marcela Medeiros de Freitas
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Luiz Alberto Simeoni
- Molecular Pharmacology Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Christopher William Fagg
- Department of Botany, Institute of Biological Science, School of Pharmacy, Ceilândia Campus, University of Brasília, Brasilia 70910-900, Brazil
| | - Pérola de Oliveira Magalhães
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Dâmaris Silveira
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
| | - Yris Maria Fonseca-Bazzo
- Natural Products Laboratory, Department of Pharmacy, Health Sciences School, University of Brasília (UnB), Campus Darcy Ribeiro, Asa Norte, Brasilia 70910-900, Brazil
- Correspondence:
| |
Collapse
|
25
|
Maqsood M, Anam Saeed R, Sahar A, Khan MI. Mulberry plant as a source of functional food with therapeutic and nutritional applications: A review. J Food Biochem 2022; 46:e14263. [PMID: 35642132 DOI: 10.1111/jfbc.14263] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
Abstract
Medicinal plants from the family Moraceae have diverse applications in agriculture, cosmetics, food, and the pharmaceutical industry. Their extensive spectrum of pharmacological activity for treating numerous inflammatory illnesses, cancer, cardiovascular diseases, and gastrointestinal problems reflects their biological and therapeutic value. This article summarizes the molecular mechanisms related to the biological implications of mulberry extracts, fractions, and isolated bioactive compounds from different parts in various health-related ailments. Additionally, the food industry and animal nutrition applications are summarized. Phytochemicals such as steroids, saponins, alkaloids, glycosides, polysaccharides, and phenolic compounds including terpenoids, flavonoids, anthocyanins, and tannins are found in this medicinal plant. The aqueous, ethanolic, and methanolic extracts, as well as bioactive compounds, have anti-oxidative, hypoglycemic, nephroprotective, antimicrobial, neuroprotective, anti-mutagenic, hepatoprotective, anthelmintic, immune-modulatory, cardioprotective, and skin protecting activities. Mulberry supplementation in food products improves the stability of phenolics, sensory properties, antioxidant activity, and antimicrobial properties. Mulberry leaves in animal feed increase the nutrient digestibility, growth parameters, antimicrobial, and antioxidant properties. PRACTICAL APPLICATIONS: This review summarized the in vivo and in vitro biological activities of the mulberry and isolated constituents in various health conditions. In addition, the food uses such as antioxidant potential, antimicrobial, and physicochemical properties were discussed. Furthermore, in vivo studies revealed mulberry as a significant protein source and its flavonoids as potential animal foliage.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Raakia Anam Saeed
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Amna Sahar
- Department of Food Engineering, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
26
|
Maqsood M, Khan MI, Sharif MK, Faisal MN. Phytochemical characterization of Morus nigra fruit ultrasound-assisted ethanolic extract for its cardioprotective potential. J Food Biochem 2022; 46:e14335. [PMID: 35848720 DOI: 10.1111/jfbc.14335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/13/2022] [Accepted: 07/04/2022] [Indexed: 12/29/2022]
Abstract
The current work investigated the phytochemical profile of ultrasound-assisted ethanolic extract of Morus nigra (M. nigra) fruit. FTIR analysis of M. nigra fruit extract revealed the presence of alcohols (O-H), alkanes (C-H stretch), alkenes (C=C), and alkynes (C≡C). The HPLC analysis quantified the quercetin, gallic acid, vanillic acid, chlorogenic acid, syringic acid, cinnamic acid, sinapic acid, and kaempferol. Furthermore, the cardioprotective activity of ethanolic extract of M. nigra fruit was investigated. Cholesterol supplementation (2%) in the daily diet and exposure to cigarette smoke (2 cigarettes twice a day) were to induce hypertension in rats. The experimental animals were categorized into four groups: G0 (negative control), G1 (positive control), G2 (standard drug), and G3 (M. nigra fruit). The fruit extract administration at 300 mg/kg BW/day orally for 2 months significantly (p < .001) enhanced the activities of serum and cardiac tissue antioxidants in hypertensive rats. Meanwhile, the fruit extract reduced the elevated serum lipid profile while significantly increasing the high-density lipoproteins in G3 than G1 and G2. The increase in blood pressure, liver transaminases, and serum lactate dehydrogenase also reduced significantly in M. nigra fruit extract-treated rats. Histopathological findings revealed mild normalization of cardiac myocytes with central nuclei, branching, and cross-striations. Consequently, the M. nigra fruit extract exerted the cardioprotective potential via increasing the antioxidant enzymes and reducing the lipids, lactate dehydrogenase, liver transaminases, and blood pressure. The therapeutic potential of M. nigra fruit can be due to flavonols and phenolic acids. PRACTICAL APPLICATIONS: The present work quantified the Morus nigra fruit phytochemicals and its significant role in reducing lipid markers and blood pressure and improving antioxidant status in rats fed a hypercholesterolemic diet and exposed to cigarette smoke. Conclusively, the inclusion of M. nigra fruit in daily diet could improve the cardiac health of the individuals. Furthermore, the therapeutic potential of M. nigra fruit and its isolated constituents in modulating the gene expression against cardiac problems can explore after clinical trials and standardization in higher animals.
Collapse
Affiliation(s)
- Maria Maqsood
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Issa Khan
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Mian Kamran Sharif
- National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
27
|
Wang E, Wang N, Zou Y, Fahim M, Zhou Y, Yang H, Liu Y, Li H. Black mulberry (Morus nigra) fruit extract alleviated AD-Like symptoms induced by toxic Aβ protein in transgenic Caenorhabditis elegans via insulin DAF-16 signaling pathway. Food Res Int 2022; 160:111696. [DOI: 10.1016/j.foodres.2022.111696] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/14/2022] [Accepted: 07/12/2022] [Indexed: 11/29/2022]
|
28
|
Wang J, Yin Y, Xu N, Zhou B, Qin T. Royal jelly attenuates LPS-induced immune dysfunction of dendritic cells via Nrf2/HO-1 axis. J Funct Foods 2022. [DOI: 10.1016/j.jff.2022.105191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022] Open
|
29
|
Puerarin protects against sepsis-induced myocardial injury through AMPK-mediated ferroptosis signaling. Aging (Albany NY) 2022; 14:3617-3632. [PMID: 35482440 PMCID: PMC9085223 DOI: 10.18632/aging.204033] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
Objective: Research suggests that Puerarin may protect against sepsis-induced myocardial damage. However, the mechanisms responsible for Puerarin’s cardioprotective effect remain largely unclear. In this study, our objective is to investigate the role of Puerarin-induced AMPK-mediated ferroptosis signaling in protecting myocardial injury. Methods: 48 male Sprague-Dawley rats were randomly divided into four groups: control group, LPS group, LPS + Pue group, LPS + Pue + Era (Erastin, ferroptosis activator) group, or LPS + Pue + CC (compound C, AMPK inhibitor) group. During the experiment, cardiac systolic function indexes and myocardial histopathological changes were monitored. The serum levels of myocardial injury marker enzyme, inflammatory response related marker enzyme, and oxidative stress related-marker enzyme were measured with ELISA. Apoptotic cardiomyocytes, the iron content in myocardial tissue, apoptosis-related proteins, AMPK, and ferroptosis-related proteins were determined. Results: Puerarin inhibited the myocardial injury induced by LPS. The cardioprotective effects of Puerarin decreased after adding ferroptosis-activating compound Erastin. The protein expression levels of GPX4 and ferritin were down-regulated, whereas ACSL4, TFR, and heart iron content were up-regulated in LPS + Pue + Era group compared with LPS+Pue group. A significant difference was identified between LPS + Pue + Era group and LPS + Pue group in P-AMPK and T-AMPK levels. Meanwhile, after providing CC, P-AMPK/T-AMPK was significantly reduced, the protein expression levels of GPX4 and ferritin were down-regulated. ACSL4, TFR, and the heart iron content were up-regulated in LPS + Pue + CC group compared to LPS + Pue group. Conclusions: Puerarin protected against sepsis-induced myocardial injury, and AMPK-mediated ferroptosis signaling played a crucial role in its cardioprotective effect.
Collapse
|
30
|
Dexmedetomidine Mitigates Microglial Activation Associated with Postoperative Cognitive Dysfunction by Modulating the MicroRNA-103a-3p/VAMP1 Axis. Neural Plast 2022; 2022:1353778. [PMID: 35494481 PMCID: PMC9042642 DOI: 10.1155/2022/1353778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/29/2022] [Indexed: 11/17/2022] Open
Abstract
Surgery-induced microglial activation is critical in mediating postoperative cognitive dysfunction (POCD) in elderly patients, where the important protective effect of dexmedetomidine has been indicated. However, the mechanisms of action of dexmedetomidine during the neuroinflammatory response that underlies POCD remain largely unknown. We found that lipopolysaccharide (LPS) induced substantial inflammatory responses in primary and BV2 microglial cells. The screening of differentially expressed miRNAs revealed that miR-103a-3p was downregulated in these cell culture models. Overexpression of miR-103a-3p mimics and inhibitors suppressed and enhanced the release of inflammatory factors, respectively. VAMP1 expression was upregulated in LPS-treated primary and BV-2 microglial cells, and it was validated as a downstream target of miR-103-3p. VAMP1-knockdown significantly inhibited the LPS-induced inflammatory response. Dexmedetomidine treatment markedly inhibited LPS-induced inflammation and the expression of VAMP1, and miR-103a-3p expression reversed this inhibition. Moreover, dexmedetomidine mitigated microglial activation and the associated inflammatory response in a rat model of surgical trauma that mimicked POCD. In this model, dexmedetomidine reversed miR-103a-3p and VAMP1 expression; this effect was abolished by miR-103a-3p overexpression. Taken together, the data show that miR-103a-3p/VAMP1 is critical for surgery-induced microglial activation of POCD.
Collapse
|
31
|
Network pharmacology prediction and molecular docking-based strategy to explore the potential mechanism of Huanglian Jiedu Decoction against sepsis. Comput Biol Med 2022; 144:105389. [PMID: 35303581 DOI: 10.1016/j.compbiomed.2022.105389] [Citation(s) in RCA: 167] [Impact Index Per Article: 55.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/05/2022] [Accepted: 03/07/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Huanglian Jiedu Decoction (HLJDD) is a classical herbal formula with potential efficacy in the treatment of sepsis. However, the main components and potential mechanisms of HLJDD remain unclear. This study aims to initially clarify the potential mechanism of HLJDD in the treatment of sepsis based on network pharmacology and molecular docking techniques. METHODS The principal components and corresponding protein targets of HLJDD were searched on TCMSP, BATMAN-TCM and ETCM and the compound-target network was constructed by Cytoscape3.8.2. Sepsis targets were searched on OMIM and DisGeNET databases. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Finally, molecular docking study was approved for the core target and the active compound. RESULTS There are 257 nodes and 792 edges in the component target network. The compounds with a higher degree value are quercetin, kaempferol, and wogonin. The protein with a higher degree in the PPI network is JUN, RELA, TNF. GO and KEGG analysis showed that HLJDD treatment of sepsis mainly involves positive regulation of transcription from RNA polymerase II promoter, negative regulation of apoptosis process, response to hypoxia and other biological processes. The signaling pathways mainly include PI3K-AKT, MAPK, TNF signaling pathway. The molecular docking results showed that quercetin, kaempferol and wogonin have higher affinity with JUN, RELA and TNF. CONCLUSION This study reveals the active ingredients and potential molecular mechanism of HLJDD in the treatment of sepsis, and provides a reference for subsequent basic research.
Collapse
|
32
|
Li J, Zhou L, Li Z, Yang S, Tang L, Gong H. Identification of Crucial Genes and Infiltrating Immune Cells Underlying Sepsis-Induced Cardiomyopathy via Weighted Gene Co-Expression Network Analysis. Front Genet 2022; 12:812509. [PMID: 35003233 PMCID: PMC8740124 DOI: 10.3389/fgene.2021.812509] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/06/2021] [Indexed: 12/21/2022] Open
Abstract
Sepsis-induced cardiomyopathy (SIC), with a possibly reversible cardiac dysfunction, is a potential complication of septic shock. Despite quite a few mechanisms including the inflammatory mediator, exosomes, and mitochondrial dysfunction, having been confirmed in the existing research studies we still find it obscure about the overall situation of gene co-expression that how they can affect the pathological process of SIC. Thus, we intended to find out the crucial hub genes, biological signaling pathways, and infiltration of immunocytes underlying SIC. It was weighted gene co-expression network analysis that worked as our major method on the ground of the gene expression profiles: hearts of those who died from sepsis were compared to hearts donated by non-failing humans which could not be transplanted for technical reasons (GSE79962). The top 25 percent of variant genes were abstracted to identify 10 co-expression modules. In these modules, brown and green modules showed the strongest negative and positive correlation with SIC, which were primarily enriched in the bioenergy metabolism, immunoreaction, and cell death. Next, nine genes (LRRC39, COQ10A, FSD2, PPP1R3A, TNFRSF11B, IL1RAP, DGKD, POR, and THBS1) including two downregulated and seven upregulated genes which were chosen as hub genes that meant the expressive level of which was higher than the counterparts in control groups. Then, the gene set enrichment analysis (GSEA) demonstrated a close relationship of hub genes to the cardiac metabolism and the necroptosis and apoptosis of cells in SIC. Concerning immune cells infiltration, a higher level of neutrophils and B cells native and a lower level of mast cells resting and plasma cells had been observed in patients with SIC. In general, nine candidate biomarkers were authenticated as a reliable signature for deeper exploration of basic and clinical research studies on SIC.
Collapse
Affiliation(s)
- Juexing Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei Zhou
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhenhua Li
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shangneng Yang
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liangyue Tang
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hui Gong
- Department of Cardiology, Jinshan Hospital of Fudan University, Shanghai, China.,Department of Internal Medicine, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
33
|
Memete AR, Timar AV, Vuscan AN, Miere (Groza) F, Venter AC, Vicas SI. Phytochemical Composition of Different Botanical Parts of Morus Species, Health Benefits and Application in Food Industry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11020152. [PMID: 35050040 PMCID: PMC8777750 DOI: 10.3390/plants11020152] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/31/2021] [Accepted: 01/03/2022] [Indexed: 05/05/2023]
Abstract
In recent years, mulberry has acquired a special importance due to its phytochemical composition and its beneficial effects on human health, including antioxidant, anticancer, antidiabetic and immunomodulatory effects. Botanical parts of Morus sp. (fruits, leaves, twigs, roots) are considered a rich source of secondary metabolites. The aim of our study was to highlight the phytochemical profile of each of the botanical parts of Morus tree, their health benefits and applications in food industry with an updated review of literature. Black and white mulberries are characterized in terms of predominant phenolic compounds in correlation with their medical applications. In addition to anthocyanins (mainly cyanidin-3-O-glucoside), black mulberry fruits also contain flavonols and phenolic acids. The leaves are a rich source of flavonols, including quercetin and kaempferol in the glycosylated forms and chlorogenic acid as predominant phenolic acids. Mulberry bark roots and twigs are a source of prenylated flavonoids, predominantly morusin. In this context, the exploitation of mulberry in food industry is reviewed in this paper, in terms of developing novel, functional food with multiple health-promoting effects.
Collapse
Affiliation(s)
- Adriana Ramona Memete
- Doctoral School of Biomedical Science, University of Oradea, 410087 Oradea, Romania;
| | - Adrian Vasile Timar
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Adrian Nicolae Vuscan
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
| | - Florina Miere (Groza)
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Alina Cristiana Venter
- Faculty of Medicine and Pharmacy, University of Oradea, 410073 Oradea, Romania; (F.M.); (A.C.V.)
| | - Simona Ioana Vicas
- Faculty of Environmental Protection, University of Oradea, 410048 Oradea, Romania; (A.V.T.); (A.N.V.)
- Correspondence:
| |
Collapse
|
34
|
Zhao J, Roy P, Tang H, Ma X, Di Q, Quan J, Guan Y, Li X, Xiao W, Chen W. Indole derivative XCR-5a alleviates LPS-induced inflammation in vitro and in vivo. Immunopharmacol Immunotoxicol 2021; 44:157-167. [PMID: 34958291 DOI: 10.1080/08923973.2021.2020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
CONTEXT Few studies on anti-inflammatory drugs with indole groups have been published. This is the first study that demonstrates the anti-inflammatory effects of indole derivative XCR-5a in vitro and in vivo. OBJECTIVE This study aimed to discover more anti-inflammatory drugs with indole groups and investigate their anti-inflammatory mechanisms. MATERIALS AND METHODS First, a series of indole derivatives was synthesized, then screened for XCR-5a, a compound with anti-inflammatory effects. Second, the in vitro production of IL-1β, IL-6, TNF-α, inducible nitric oxide synthase (iNOS), and cyclo-oxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced primary cells of mice pretreated with XCR-5a was determined using qPCR and ELISA. Finally, the effect of XCR-5a on LPS-induced NF-κB signaling activation was determined by Western blotting. An in vivo mouse sepsis model was established. In mouse lung tissue, the production of IL-1β, IL-6, and TNF-α was determined and H&E staining was performed. RESULTS Our findings showed that XCR-5a could suppress the production of LPS-induced IL-1β, IL-6, and TNF-α, as well as mRNA expression of iNOS and COX-2. Pretreatment with XCR-5a inhibited the LPS-induced inflammatory response in septic mice in vivo by decreasing pro-inflammatory cytokines production in serum and reducing immune cell infiltration. Mechanistically, XCR-5a suppressed LPS-induced activation of the NF-κB signaling pathway. CONCLUSIONS XCR-5a has anti-inflammatory effects in vitro and in vivo. Therefore, XCR-5a could be a potential drug candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jiajing Zhao
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Prasanta Roy
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Haimei Tang
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Xingyu Ma
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Qianqian Di
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Jiazheng Quan
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Yonghong Guan
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, PR China
| | - Weilin Chen
- Department of Immunology, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Shenzhen University School of Medicine, Shenzhen, PR China
| |
Collapse
|
35
|
Perri MR, Romano C, Marrelli M, Zicarelli L, Toma CC, Basta D, Conforti F, Statti G. Beneficial Role of Fruits, Their Juices, and Freeze-Dried Powders on Inflammatory Bowel Disease and Related Dysbiosis. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010004. [PMID: 35009009 PMCID: PMC8747592 DOI: 10.3390/plants11010004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/15/2021] [Accepted: 12/17/2021] [Indexed: 05/27/2023]
Abstract
Inflammatory bowel disease (IBD) is a group of complex chronic inflammatory conditions affecting the gastrointestinal tract. It is linked to a number of genetic and environmental factors able to perturb the immune-microbiome axis. Diet is the most investigated variable both for its role in the etiology of IBD and for its beneficial potential in the treatment of the symptoms. Dietary products may influence intestinal inflammation through different mechanisms of action, such as the modulation of inflammatory mediators, the alteration of gene expression, changes in gut permeability, and modifications in enteric flora composition. A consisting number of studies deal with the link between nutrition and microbial community, and particular attention is paid to plant-based foods. The effects of the dietary intake of different fruits have been investigated so far. This review aims to present the most recent studies concerning the beneficial potential of fruit consumption on human gut microbiota. Investigated plant species are described, and obtained results are presented and discussed in order to provide an overview of both in vitro and in vivo effects of fruits, their juices, and freeze-dried powders.
Collapse
Affiliation(s)
- Maria Rosaria Perri
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Carmen Romano
- SIACSA Società Italiana degli Analisti del Comportamento in campo Sperimentale ed Applicativo, 87100 Cosenza, RC, Italy;
| | - Mariangela Marrelli
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | | | - Claudia-Crina Toma
- Pharmacognosy Department, Faculty of Pharmacy, Vasile Goldis Western University of Arad, 87 L. Rebreanu Str., 310045 Arad, Romania;
| | - Daniele Basta
- University Sport Center, University of Calabria, 87036 Rende, CS, Italy;
| | - Filomena Conforti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| | - Giancarlo Statti
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, CS, Italy; (M.R.P.); (F.C.)
| |
Collapse
|
36
|
Chen H, Liu Q, Liu X, Jin J. Berberine attenuates septic cardiomyopathy by inhibiting TLR4/NF-κB signalling in rats. PHARMACEUTICAL BIOLOGY 2021; 59:121-128. [PMID: 33539718 PMCID: PMC8871679 DOI: 10.1080/13880209.2021.1877736] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
CONTEXT Berberine (Ber) can increase the survival rate of septic mice and inhibit inflammation, but whether it has a protective effect on septic cardiomyopathy (SCM) is unclear. OBJECTIVE To investigate whether Ber ameliorates SCM in a rat model and its potential mechanism. MATERIALS AND METHODS Male SD rats were randomly divided into three groups: control (Con, n = 6) (DD H2O, 2 mL/100 g, ig, qd × 3 d, then saline, 10 mg/kg, ip); sepsis [LPS (lipopolysaccharide), n = 18] (LPS 10 mg/kg instead of saline, ip); and berberine intervention (Ber, n = 18) (Ber, 50 mg/kg instead of DD H2O, ig, qd × 3 d, LPS instead of saline, ip). Hemodynamics, HE staining, ELISA and western blot were performed at 6, 24, and 48 h after intraperitoneal injection of LPS to evaluate the effect of berberine in septic rats. RESULT Berberine could recover myocardial injury by partially increased ± dp/dt max (1151, 445 mmHg/s) and LVEDP levels (1.49 mmHg) with LPS-induced rats, as well as an ameliorated increase of cTnT (217.53 pg/mL) in the Ber group compared with that in the LPS group (at 24 h). In addition, HE staining results showed that berberine attenuated the myocardial cell swelling induced by LPS. In contrast to the LPS group, the up-regulation of TLR4, p65 TNF-α, and IL-1β were attenuated in the Ber group. DISCUSSION AND CONCLUSIONS Berberine showed a protective effect on septic cardiomyopathy rats possibly through inhibiting the activation of TLR4/NF-κB signalling pathway. Whether it improves SCM through other mechanisms is our ongoing research.
Collapse
Affiliation(s)
- Huiqi Chen
- Department of Ultrasonography, Guangzhou Red Cross Hospital, Medical College, Jinan University, Guangzhou, China
| | - Qian Liu
- Department of Cardiology, The Second Affiliated Hospital, University of South, Hengyang, China
| | - Xiangqi Liu
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Jinlan Jin
- Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
- CONTACT Jinlan Jin Department of Critical Care Medicine, Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, 6001 North ring road, Shenzhen, China
| |
Collapse
|
37
|
Tang H, Roy P, Di Q, Ma X, Xiao Y, Wu Z, Quan J, Zhao J, Xiao W, Chen W. Synthesis compound XCR-7a ameliorates LPS-induced inflammatory response by inhibiting the phosphorylation of c-Fos. Biomed Pharmacother 2021; 145:112468. [PMID: 34847479 DOI: 10.1016/j.biopha.2021.112468] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/26/2022] Open
Abstract
Inflammation is a biological process closely related to different kinds of diseases, such as cancer and metabolic diseases. Therefore, effective control of the occurrence and development of inflammation is of great significance for disease prevention and control. Recently, 2-substituted indoles have gradually become a research hotspot because of their stability and pharmacological activity. Here we synthesized a series of compound containing 2-substituted indoles and investigated XCR-7a's role in inflammatory response. Our data show that XCR-7a can inhibit the production of inflammatory cytokines interleukin-1 beta (IL-1β), interleukin-6 (IL-6) and inflammatory mediator cyclooxygenase-2 (COX-2) induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. Also, XCR-7a has a protective effect on LPS-induced inflammatory response in mice. Mechanically, we found that XCR-7a could inhibit the phosphorylation of c-Fos induced by LPS, which suggested that the protective effect of XCR-7a on inflammation was related to its negative regulation to phosphorylation of c-Fos. Briefly, our results demonstrated that XCR-7a could be expected to be a potential drug for controlling inflammation.
Collapse
Affiliation(s)
- Haimei Tang
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Prasanta Roy
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Qianqian Di
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Xingyu Ma
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Yue Xiao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Zherui Wu
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiazheng Quan
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Jiajing Zhao
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming 650091, China.
| | - Weilin Chen
- Department of Immunology, School of Basic Medical School, Health Science Center, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
38
|
He S, Xue J, Cao P, Hou J, Cui Y, Chang J, Huang L, Han Y, Duan X, Tan K, Fan Y. JNK/Itch Axis Mediates the Lipopolysaccharide-Induced Ubiquitin-Proteasome-Dependent Degradation of Ferritin Light Chain in Murine Macrophage Cells. Inflammation 2021; 45:1089-1100. [PMID: 34837126 DOI: 10.1007/s10753-021-01603-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/16/2021] [Indexed: 11/25/2022]
Abstract
Ferritin, which is composed of a heavy chain and a light chain, plays a critical role in maintaining iron homeostasis by sequestering iron. The ferritin light chain (FTL) is responsible for the stability of the ferritin complex. We have previously shown that overexpression of FTL decreases the levels of the labile iron pool (LIP) and reactive oxygen species (ROS) in lipopolysaccharide (LPS)-treated murine macrophage cells. The protein level of FTL was downregulated by LPS within a short treatment period. However, the mechanism underlying the LPS-induced changes in the FTL levels is not known. In the present study, we report that LPS induces the ubiquitin-proteasome-dependent degradation of FTL and that the mechanism of LPS-induced FTL degradation involves the JNK/Itch axis. We found that LPS downregulates the protein and mRNA levels of FTL in a time-dependent manner. The proteasome inhibitor MG-132 significantly reverses the LPS-induced decrease in FTL. Furthermore, we observed that LPS treatment cannot cause ubiquitination of the lysine site (K105 and K144) mutant of FTL. Interestingly, LPS-mediated ubiquitin-dependent degradation of FTL is significantly inhibited by the JNK-specific inhibitor SP600125. Moreover, LPS could upregulate the protein level of E3 ubiquitin ligase Itch, a substrate of JNK kinases. Immunoprecipitation analyses revealed an increase in the association of FTL with Itch, a substrate of JNK kinases, in response to LPS stimulation. SP600125 decreased LPS-induced Itch upregulation. Taken together, these results suggest that LPS stimulation leads to the degradation of FTL through the ubiquitin-proteasome proteolytic pathway, and this FTL degradation is mediated by the JNK/Itch axis in murine macrophage cells.
Collapse
Affiliation(s)
- Shufen He
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianqi Xue
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Pengxiu Cao
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jianyuan Hou
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yan Cui
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Jing Chang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Liying Huang
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Yu Han
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Xianglin Duan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China
| | - Ke Tan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| | - Yumei Fan
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Hebei Province, Shijiazhuang, 050024, PR China.
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, College of Life Science, Hebei Normal University, Shijiazhuang, 050024, PR China.
| |
Collapse
|
39
|
Wu Q, Wang Y, Li Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Aging (Albany NY) 2021. [PMID: 34705665 DOI: 10.18632/aging.] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Brain injury is a familiar complication of severe sepsis, in which excessive inflammation and oxidative stress are the main mechanisms leading to acute brain injury. Here, we focus on probing the function and mechanism of Matairesinol (Mat) in sepsis-mediated brain injury. We established a rat sepsis model by cecal ligation and perforation (CLP) and constructed an in vitro sepsis model by treating neurons and microglia with lipopolysaccharide (LPS). Rats and cells were treated with varying concentrations of Mat, and the changes of neural function, neuronal apoptosis, microglial activation, neuroinflammation and the expression of oxidative stress factors in brain tissues were examined. Additionally, the activation of the MAPK, NF-κB and AMPK pathways in brain tissues and cells was evaluated by Western blot (WB) and/or immunohistochemistry (IHC). Our findings illustrated that Mat improved neuronal apoptosis and weakened microglial activation in CLP rats. Meanwhile, Mat hampered the expression of pro-inflammatory factors (TNF-α, IL-1β, IL-6, IFN-γ, IL-8, and MCP1) and facilitated the contents of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in brain tissues and microglia. Mechanistically, Mat concentration-dependently dampened the phosphorylation of MAPK, JNK and NF-κB in CLP rats and LPS-stimulated microglia and up-regulated Nrf2 and HO-1. Besides, Mat facilitated the AMPK expression. Meanwhile, Compound C, a specific inhibitor of the AMPK pathway, substantially reduced the neuronal protection and anti-inflammatory effects mediated by Mat. Overall, Mat exerts anti-inflammatory and anti-oxidative stress effects by up-regulating AMPK, thereby ameliorating sepsis-mediated brain injury.
Collapse
Affiliation(s)
- Qin Wu
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| | - Yuhua Wang
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| | - Qingfang Li
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| |
Collapse
|
40
|
Wu Q, Wang Y, Li Q. Matairesinol exerts anti-inflammatory and antioxidant effects in sepsis-mediated brain injury by repressing the MAPK and NF-κB pathways through up-regulating AMPK. Aging (Albany NY) 2021; 13:23780-23795. [PMID: 34705665 PMCID: PMC8580336 DOI: 10.18632/aging.203649] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/28/2021] [Indexed: 02/07/2023]
Abstract
Brain injury is a familiar complication of severe sepsis, in which excessive inflammation and oxidative stress are the main mechanisms leading to acute brain injury. Here, we focus on probing the function and mechanism of Matairesinol (Mat) in sepsis-mediated brain injury. We established a rat sepsis model by cecal ligation and perforation (CLP) and constructed an in vitro sepsis model by treating neurons and microglia with lipopolysaccharide (LPS). Rats and cells were treated with varying concentrations of Mat, and the changes of neural function, neuronal apoptosis, microglial activation, neuroinflammation and the expression of oxidative stress factors in brain tissues were examined. Additionally, the activation of the MAPK, NF-κB and AMPK pathways in brain tissues and cells was evaluated by Western blot (WB) and/or immunohistochemistry (IHC). Our findings illustrated that Mat improved neuronal apoptosis and weakened microglial activation in CLP rats. Meanwhile, Mat hampered the expression of pro-inflammatory factors (TNF-α, IL-1β, IL-6, IFN-γ, IL-8, and MCP1) and facilitated the contents of glutathione peroxidase (GSH-Px) and superoxide dismutase (SOD) in brain tissues and microglia. Mechanistically, Mat concentration-dependently dampened the phosphorylation of MAPK, JNK and NF-κB in CLP rats and LPS-stimulated microglia and up-regulated Nrf2 and HO-1. Besides, Mat facilitated the AMPK expression. Meanwhile, Compound C, a specific inhibitor of the AMPK pathway, substantially reduced the neuronal protection and anti-inflammatory effects mediated by Mat. Overall, Mat exerts anti-inflammatory and anti-oxidative stress effects by up-regulating AMPK, thereby ameliorating sepsis-mediated brain injury.
Collapse
Affiliation(s)
- Qin Wu
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| | - Yuhua Wang
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| | - Qingfang Li
- Rehabilitation Medicine Department, Shanxi Provincial People's Hospital, Taiyuan 030001, Shanxi, China
| |
Collapse
|
41
|
Liu H, Sun H, Bao L, Han S, Hui T, Zhang R, Zhang M, Su C, Qian Y, Jiao F. Secondary Metabolism and Hormone Response Reveal the Molecular Mechanism of Triploid Mulberry ( Morus Alba L.) Trees Against Drought. FRONTIERS IN PLANT SCIENCE 2021; 12:720452. [PMID: 34691101 PMCID: PMC8528201 DOI: 10.3389/fpls.2021.720452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 09/01/2021] [Indexed: 06/13/2023]
Abstract
The improvement of a plant's tolerance to drought is a major endeavor in agriculture. Polyploid plants often exhibit enhanced stress tolerance relative to their diploid progenitor, but the matching stress tolerance is still little understood. Own-rooted stem cuttings of mulberry (Morus alba L.) cultivar Shinichinose (2n = 2x = 28) and Shaansang-305 (2n = 3x = 42) were used in this study, of which the latter (triploid) has more production and application purposes. The responses of triploid Shaansang-305 and diploid progenitor ShinIchinose under drought stress were compared through an investigation of their physiological traits, RNA-seq, and secondary metabolome analysis. The results showed that the triploid exhibited an augmented abscisic acid (ABA) content and a better stress tolerance phenotype under severe drought stress. Further, in the triploid plant some genes (TSPO, NCED3, and LOC21398866) and ATG gene related to ABA signaling showed significantly upregulated expression. Interestingly, the triploid accumulated higher levels of RWC and SOD activity, as well as more wax on the leaf surface, but with less reductive flavonoid than in diploid. Our results suggest triploid plants may better adapt to with drought events. Furthermore, the flavonoid metabolism involved in drought resistance identified here may be of great value to medicinal usage of mulberry. The findings presented here could have substantial implications for future studies of crop breeding.
Collapse
Affiliation(s)
- Hui Liu
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Hongmei Sun
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Lijun Bao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
- Shaanxi Key Laboratory of Sericulture, Ankang University, Ankang, China
| | - Shuhua Han
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Tian Hui
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Rui Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Minjuan Zhang
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Chao Su
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Yonghua Qian
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| | - Feng Jiao
- The Sericultural and Silk Research Institute, College of Animal Science and Technology, Northwest A&F University, Xianyang, China
| |
Collapse
|
42
|
Zhao Y, Pu M, Zhang J, Wang Y, Yan X, Yu L, He Z. Recent advancements of nanomaterial-based therapeutic strategies toward sepsis: bacterial eradication, anti-inflammation, and immunomodulation. NANOSCALE 2021; 13:10726-10747. [PMID: 34165483 DOI: 10.1039/d1nr02706a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Sepsis is a life threatening disease that is caused by a dysregulated host immune response to infection, resulting in tissue damage and organ dysfunction, which account for a high in-hospital mortality (approximately 20%). However, there are still no effective and specific therapeutics for clinical sepsis management. Nanomaterial-based strategies have emerged as promising tools for improving the therapeutic efficacy of sepsis by combating lethal bacterial infection, modulating systemic inflammatory response, preventing multiple organ failure, etc. This review has comprehensively summarized the recent advancements in nanomaterial-based strategies for the management of sepsis and severe complications, in which those nanosystems act either as inherent therapeutics or as nanocarriers for the precise delivery of agents. These formulations mechanically possess antibacterial, anti-inflammatory, immunomodulatory, and anti-oxidative effects, achieving multifunctional synergistic treatment efficacy against sepsis. Furthermore, several cell membrane-derived biomimetic nanoplatforms have been used as decoys to trap and neutralize the pathogenic toxins. The critical role of other adjuvant therapies in sepsis management, including the combination of nanotechnology and stem cell therapy, is also highlighted. Overall, this review provides insights into innovative nanotechnology-based strategies applied in sepsis treatment.
Collapse
Affiliation(s)
- Yi Zhao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Minju Pu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Jingwen Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Yanan Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Xuefeng Yan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Liangmin Yu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| | - Zhiyu He
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, China.
| |
Collapse
|
43
|
Medicinal plants used for the treatment of mucositis induced by oncotherapy: a systematic review. Support Care Cancer 2021; 29:6981-6993. [PMID: 33988743 DOI: 10.1007/s00520-021-06247-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 04/20/2021] [Indexed: 12/27/2022]
Abstract
PURPOSE This systematic review aimed to identify effective medicinal plants for the treatment of mucositis induced by oncotherapy. METHODS The clinical question was the following: "Which medicinal plants are effective in the treatment of oral mucositis induced by cancer treatment?" (PubMed, Medline, Web of Science, Scopus, Lilacs, and SciELO). The keywords were the following: phytotherapy OR "herbal drug" OR "plant extract" OR plant OR "medicinal plant" OR pharmacognosy OR ethnobotany OR ethnomedicine OR ethnopharmacology OR "flower essences" OR "natural product" AND mucositis OR mucositides OR stomatitis OR stomatitides OR "oral ulcer" AND chemotherapy OR radiotherapy OR immunotherapy OR cancer OR neoplasm OR neoplasm OR tumor OR tumor. The inclusion criteria for the selection of articles were the type of study design (clinical trials) and the studied population (cancer patients presenting lesions of oral mucositis having undergone treatment with medicinal plants). RESULTS After evaluation of the works, 24 of 893 articles were selected. Matricaria chamomilla (chamomilla) presented promising results, such as a reduction in severity and lesion incidence with improved pain symptomatology. The plant extracts Isatis indigótica, Olea europaea, Calendula officinalis, A. digitatae, and M. sylvestris improved the lesions. Mucotrol™ and QRLYD herbal products improved the degree of severity of the lesions, while SAMITAL® and MUCOSYTE allowed for greater pain control. CONCLUSION The complementary treatment of oral mucositis in cancer patients, with analgesic and anti-inflammatory actions with lower side effects, is an alternative for healthcare professionals.
Collapse
|
44
|
Fazil M, Nikhat S. Exploring new horizons in health care: A mechanistic review on the potential of Unani medicines in combating epidemics of infectious diseases. Phytother Res 2021; 35:2317-2335. [PMID: 33169913 DOI: 10.1002/ptr.6949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/03/2020] [Accepted: 10/30/2020] [Indexed: 12/23/2022]
Abstract
The 20th and 21st centuries have witnessed epidemics and pandemics of various infectious agents. The development of effective antimicrobials in the 20th century has been complemented with the emergence of resistant and mutant strains. In this context, we present a comprehensive overview of the preventive measures described in Unani medicine during epidemics. Unani medicine is a traditional medicine system included in the Indian Systems of Medicine. Unani medicine has an extensive description of epidemic infections and preventive and therapeutic measures for the same. Certain factors like environment, season, and geographical location of a place are known to determine the extent of infections, and their escalation to epidemics. Maintenance of general health, immune-stimulation, and disinfecting of the environment are advised as protective measures, for which many drugs are prescribed. In the case of illness, specific antimicrobial drugs of natural origin are prescribed. Herein we discuss these measures in detail, along with the scientific evidences of anti-microbial, immunomodulatory, and health-protective actions of these drugs.
Collapse
Affiliation(s)
- Mohammad Fazil
- Hakim Ajmal Khan Institute for Literary and Historical Research in Unani Medicine, Central Council for Research in Unani Medicine, Jamia Millia Islamia Campus, New Delhi, India
| | - Sadia Nikhat
- Department of Ilaj bit Tadbeer, School of Unani Medical Education and Research, New Delhi, India
| |
Collapse
|
45
|
Liu Y, Meng F, Wang S, Xia S, Wang R. Vitamin D 3 mitigates lipopolysaccharide-induced oxidative stress, tight junction damage and intestinal inflammatory response in yellow catfish, Pelteobagrus fulvidraco. Comp Biochem Physiol C Toxicol Pharmacol 2021; 243:108982. [PMID: 33497802 DOI: 10.1016/j.cbpc.2021.108982] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/11/2022]
Abstract
The present study explored the possible mitigative effects of vitamin D3 (VD3) on lipopolysaccharide (LPS)-induced intestinal oxidative stress, inflammatory response and tight junction damage in yellow catfish, Pelteobagrus fulvidraco. Herein, four experimental groups were established by injecting yellow catfish with NaCl, LPS, VD3 or LPS plus VD3. The results showed that LPS induced oxidative stress and that exogenous VD3 mitigated the adverse effects of LPS. Additionally, LPS suppressed the activity of antioxidant enzymes (Cat, Sod and Gr) and upregulated the mRNA expression of proinflammatory cytokines (Tnf-α, Il-1β, Il-8). Furthermore, the mRNA expression of "fencing" tight junctions (Claudin-1, Claudin-5, Occludin, Zo-1) was downregulated, while that of "pore-forming" tight junctions (Claudin-2, Claudin-12) was upregulated, however no effect on apoptosis genes was observed (p53, Bax, Caspase-3 and Caspase-9). These LPS-induced effects were significantly reversed by pretreatment with VD3. Taken together, this study suggests that exogenous VD3 substantially alleviates LPS-induced intestinal inflammation by upregulating antioxidant activity, suppressing inflammation and promoting fencing tight junctions in the intestine.
Collapse
Affiliation(s)
- Yang Liu
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| | - Shidong Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Silei Xia
- School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo 315211, China.
| |
Collapse
|
46
|
Chai J, Chen X, Ye T, Zeng B, Zeng Q, Wu J, Kascakova B, Martins LA, Prudnikova T, Smatanova IK, Kotsyfakis M, Xu X. Characterization and functional analysis of cathelicidin-MH, a novel frog-derived peptide with anti-septicemic properties. eLife 2021; 10:64411. [PMID: 33875135 PMCID: PMC8057816 DOI: 10.7554/elife.64411] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 04/04/2021] [Indexed: 12/20/2022] Open
Abstract
Antimicrobial peptides form part of the innate immune response and play a vital role in host defense against pathogens. Here we report a new antimicrobial peptide belonging to the cathelicidin family, cathelicidin-MH (cath-MH), from the skin of Microhyla heymonsivogt frog. Cath-MH has a single α-helical structure in membrane-mimetic environments and is antimicrobial against fungi and bacteria, especially Gram-negative bacteria. In contrast to other cathelicidins, cath-MH suppresses coagulation by affecting the enzymatic activities of tissue plasminogen activator, plasmin, β-tryptase, elastase, thrombin, and chymase. Cath-MH protects against lipopolysaccharide (LPS)- and cecal ligation and puncture-induced sepsis, effectively ameliorating multiorgan pathology and inflammatory cytokine through its antimicrobial, LPS-neutralizing, coagulation suppressing effects as well as suppression of MAPK signaling. Taken together, these data suggest that cath-MH is an attractive candidate therapeutic agent for the treatment of septic shock.
Collapse
Affiliation(s)
- Jinwei Chai
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Xin Chen
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Tiaofei Ye
- Department of Respiratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Baishuang Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Qingye Zeng
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Jiena Wu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| | - Barbora Kascakova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska, Czech Republic
| | - Larissa Almeida Martins
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska, Czech Republic
| | - Tatyana Prudnikova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska, Czech Republic
| | - Ivana Kuta Smatanova
- Faculty of Science, University of South Bohemia in Ceske Budejovice, Branisovska, Czech Republic
| | - Michail Kotsyfakis
- Institute of Parasitology, Biology Center of the Czech Academy of Sciences, Branisovska, Czech Republic
| | - Xueqing Xu
- Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
Ghorbani A, Hooshmand S. Protective Effects of Morus nigra and Its Phytochemicals against Hepatotoxicity: A Review of Preclinical Studies. Pharmacology 2021; 106:233-243. [PMID: 33849010 DOI: 10.1159/000515032] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Our liver has a variety of vital functions including removing poisons, storing energy, immunological roles, and secretory and excretory functions. It may face some kinds of diseases caused by viruses, hepatotoxic chemicals, drugs, alcohol, and inherited disorders. Oxidative stress and inflammation are in the core of mechanisms of liver damages induced by viruses or chemical agents. SUMMARY Morus nigra (M. nigra), generally known as black mulberry, exhibited wide-spectrum pharmacological effects including antidiabetic, antinociceptive, anticancer, and hepatoprotective activities. Different parts of this plant particularly the fruit and leaf have shown beneficial effects on hepatocytes in cell culture and animal models of liver damages induced by chemicals (e.g., CCl4), drugs (e.g., paracetamol), diet (e.g., high fat), diabetes, etc. The beneficial effects of M. nigra on the liver are attributed to the presence of considerable amounts of phenolic compounds such as anthocyanins, flavonols, and phenolic acids. The present review is aimed to focus on the hepatoprotective activities of M. nigra and its phytochemicals and the mechanisms responsible for these activities. Key Messages: The evidence reviewed in this study can help design clinical trials on M. nigra in patients with liver disorders and develop a hepatoprotective herbal medicine.
Collapse
Affiliation(s)
- Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
48
|
Hooshmand S, Mahdinezhad MR, Taraz Jamshidi S, Soukhtanloo M, Mirzavi F, Iranshahi M, Hasanpour M, Ghorbani A. Morus nigra L. extract prolongs survival of rats with hepatocellular carcinoma. Phytother Res 2021; 35:3365-3376. [PMID: 33624311 DOI: 10.1002/ptr.7056] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 01/22/2021] [Accepted: 02/05/2021] [Indexed: 12/19/2022]
Abstract
Morus nigra is a rich source of anthocyanins, phytochemicals that have anticancer effects. This study aimed to investigate the effects of M. nigra extract (MNE) on diethylnitrosamine (DEN)-induced hepatocellular carcinoma (HCC). Male Sprague-Dawley rats were assigned into four groups (n = 10): control, DEN, and DEN +100 or 400 mg/kg of MNE. After 4 months, the DEN group showed a significant mortality rate, hepatic lipid peroxidation, dysplastic nodules in the cirrhotic liver, and an increase of blood bilirubin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), and alkaline phosphatase (ALP). Also, the body weight gain, blood albumin and glucose, liver antioxidant capacity (thiol groups), and some hematological parameters (RBC, hematocrit, hemoglobin, and platelet) were significantly decreased in the DEN group. MNE significantly increased survival, reduced the size of HCC nodules, improved liver oxidant/antioxidant status, and prevented the above-mentioned changes in the blood (except ALP, glucose, and platelet). Quantitative real-time PCR showed that MNE decreased the expression of Wnt4 and β-catenin, while had no significant effect on PI3K, Akt, and PTEN expression. The MNE did not exhibit antiproliferative activity against HepG2 liver cancer cells. In conclusion, MNE exhibits a hepatoprotective effect through inhibiting oxidative stress and Wnt4/β-catenin pathway and therefore prolongs the survival of rats with HCC.
Collapse
Affiliation(s)
- Sara Hooshmand
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Mahdinezhad
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Shirin Taraz Jamshidi
- Solid Tumor Treatment Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farshad Mirzavi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehrdad Iranshahi
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maedeh Hasanpour
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ahmad Ghorbani
- Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
49
|
Chen L, Zhong X, Cao W, Mao M, Li W, Yang H, Li M, Shi M, Zhang Y, Deng Y, Zu X, Liu J. JQ1 as a BRD4 Inhibitor Blocks Inflammatory Pyroptosis-Related Acute Colon Injury Induced by LPS. Front Immunol 2021; 12:609319. [PMID: 33679744 PMCID: PMC7930386 DOI: 10.3389/fimmu.2021.609319] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/06/2021] [Indexed: 12/12/2022] Open
Abstract
Endotoxemia is a severe inflammation response induced by infection especially bacterial endotoxin translocation, which severely increases mortality in combination with acute colon injury. Bromodomain-containing protein 4 (BRD4) is an important Bromo and Extra-Terminal (BET) protein to participate in inflammatory responses. However, it is still unknown about the specific connection between BRD4 and inflammation-related pyroptosis in endotoxemia colon. Here, through evaluating the mucous morphology and the expression of tight junction proteins such as occludin and ZO1, we found the upregulation of BRD4 in damaged colon with poor tight junction in an endotoxemia mouse model induced by lipopolysaccharides (LPS). Firstly, the BRD4 inhibitor JQ1 was used to effectively protect colon tight junction in endotoxemia. As detected, high levels of pro-inflammation cytokines IL6, IL1β and IL18 in endotoxemia colon were reversed by JQ1 pretreatment. In addition, JQ1 injection reduced endotoxemia-induced elevation of the phosphorylated NF κB and NLRP3/ASC/caspase 1 inflammasome complex in colon injury. Furthermore, activated pyroptosis markers gasdermins in endotoxemia colon were also blocked by JQ1 pretreatment. Together, our data indicate that BRD4 plays a critical role in regulating pyroptosis-related colon injury induced by LPS, and JQ1 as a BRD4 inhibitors can effectively protect colon from endotoxemia-induced inflammation injury.
Collapse
Affiliation(s)
- Ling Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Xiaolin Zhong
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wenyu Cao
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Mingli Mao
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Wei Li
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Hui Yang
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Menglin Li
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Mengmeng Shi
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuan Zhang
- Department of Pathology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yincheng Deng
- Clinical Anatomy & Reproductive Medicine Application Institute, Hengyang Medical School, University of South China, Hengyang, China
| | - Xuyu Zu
- Department of Tumor Research, The First Affiliated Hospital of University of South China, Hengyang, China
| | - Jianghua Liu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of University of South China, Hengyang, China
| |
Collapse
|
50
|
Xie WJ, Hou G, Wang L, Wang SS, Xiong XX. Astaxanthin suppresses lipopolysaccharide‑induced myocardial injury by regulating MAPK and PI3K/AKT/mTOR/GSK3β signaling. Mol Med Rep 2020; 22:3338-3346. [PMID: 32945516 PMCID: PMC7453592 DOI: 10.3892/mmr.2020.11443] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 04/16/2020] [Indexed: 12/16/2022] Open
Abstract
Cardiac dysfunction is a significant manifestation of sepsis and it is associated with the prognosis of the disease. Astaxanthin (ATX) has been discovered to serve a variety of pharmacological effects, including anti‑inflammatory, antioxidant and antiapoptotic properties. The present study aimed to investigate the role and mechanisms of ATX in sepsis‑induced myocardial injury. Male C57BL/6 mice were divided into three groups (15 mice per group): Control group, lipopolysaccharide (LPS) group and LPS + ATX group. The cardiac dysfunction model was induced through an intraperitoneal injection of LPS (10 mg/kg) and ATX (40 mg/kg) was administered to the LPS + ATX group by intraperitoneal injection 30 min following the administration of LPS. All animals were sacrificed after 24 h. Inflammatory cytokine levels in the serum were detected using ELISAs, and cardiac B‑type natriuretic peptide (BNP) levels were analyzed using western blot analysis and reverse transcription‑quantitative PCR. Furthermore, the extent of myocardial injury was evaluated using pathological analysis, and cardiomyocyte apoptosis was analyzed using a TUNEL assay, in addition to determining the expression levels of Bcl‑2 and Bax. The expression levels of proteins involved in the mitogen activated protein kinase (MAPK) and PI3K/AKT signaling pathways were also analyzed using western blot analysis. ATX significantly suppressed the LPS‑induced increased production of TNF‑α and IL‑6 and suppressed the protein expression levels of BNP, Bax and Bcl‑2 to normal levels. ATX also prevented the histopathological changes to the myocardial tissue and reduced the extent of necrosis. Furthermore, the treatment with ATX suppressed the LPS‑activated MAPK and PI3K/AKT signaling. ATX additionally exerted a protective effect on cardiac dysfunction caused by sepsis by inhibiting MAPK and PI3K/AKT signaling.
Collapse
Affiliation(s)
- Wen-Jie Xie
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Guo Hou
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Lu Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Sha-Sha Wang
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| | - Xiao-Xing Xiong
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei 430060, P.R. China
| |
Collapse
|