1
|
Anwer SS, Hassanin HM. The possible protective role of selenium on the visual cortex of adult albino rat on exposure to potassium dichromate. Ultrastruct Pathol 2023; 47:495-508. [PMID: 37936280 DOI: 10.1080/01913123.2023.2259455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 09/12/2023] [Indexed: 11/09/2023]
Abstract
The visual cortex is very important in mammals for processing of visual information. Exposure to heavy metals such as potassium dichromate poses serious health threat to human beings. The aim of this work is to study the effect of potassium dichromate on the visual cortex of adult albino rat and also to identify the possibility of selenium as protective agent against toxicity of potassium dichromate. A total number of 40 adult albino rats weighting (200-250) gm were used. They divided into four groups: control group, potassium dichromate received group, potassium dichromate and selenium received group and selenium received group. The rats received treatment for 6 weeks. After 6 weeks, they were sacrificed. The present study showed that potassium dichromate causes degeneration of granular neurons in layer IV and pyramidal neurons in layer V. Morphometric results revealed statistically significant decrease in the number of granule and pyramidal cells in potassium dichromate received group as compared with control group. Most of degenerative changes are improved by selenium.
Collapse
Affiliation(s)
- Sally S Anwer
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hala Mohamed Hassanin
- Human Anatomy and Embryology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Serrano-Sandoval SN, Jiménez-Rodríguez A, Hernández-Pérez J, Chavez-Santoscoy RA, Guardado-Félix D, Antunes-Ricardo M. Selenized Chickpea Sprouts Hydrolysates as a Potential Anti-Aging Ingredient. Molecules 2023; 28:molecules28083402. [PMID: 37110634 PMCID: PMC10145560 DOI: 10.3390/molecules28083402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 03/31/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Skin aging represents a health and aesthetic problem that could result in infections and skin diseases. Bioactive peptides can potentially be used in skin aging regulation. Chickpea (Cicer arietinum L.) selenoproteins were obtained from germination with 2 mg Na2SeO3/100 g of seeds for 2 days. Alcalase, pepsin, and trypsin were used as hydrolyzers, and a membrane < 10 kDa was used to fractionate the hydrolysate. Se content, antioxidant capacity, elastase and collagen inhibition, functional stability, and preventative capacity were analyzed. Significant increases in Se content were found in germinated chickpea flour and protein related to the control. An increase of 38% in protein was observed in the selenized flour related to the control. A band (600-550 cm-1) observed in the selenized hydrolysates suggested the insertion of Se into the protein. Hydrolysates from pepsin and trypsin had the highest antioxidant potential. Se enhanced the stability of total protein and protein hydrolysates through time and increased their antioxidant capacity. Hydrolysates > 10 kDa had higher elastase and collagenase inhibition than the total protein and hydrolysates < 10 kDa. Protein hydrolysates < 10 kDa 6 h before UVA radiation had the highest inhibition of collagen degradation. Selenized protein hydrolysates showed promising antioxidant effects that could be related to skin anti-aging effects.
Collapse
Affiliation(s)
- Sayra N Serrano-Sandoval
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Antonio Jiménez-Rodríguez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | - Jesús Hernández-Pérez
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| | | | - Daniela Guardado-Félix
- Programa Regional de Posgrado en Biotecnología, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Sinaloa, FCQB-UAS, AP 1354, Culiacan 80000, SIN, Mexico
| | - Marilena Antunes-Ricardo
- Escuela de Ingeniería y Ciencias, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
- The Institute for Obesity Research, Tecnologico de Monterrey, Av. Eugenio Garza Sada 2501 Sur, Monterrey 64849, NL, Mexico
| |
Collapse
|
3
|
Pincemail J, Meziane S. On the Potential Role of the Antioxidant Couple Vitamin E/Selenium Taken by the Oral Route in Skin and Hair Health. Antioxidants (Basel) 2022; 11:2270. [PMID: 36421456 PMCID: PMC9686906 DOI: 10.3390/antiox11112270] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 09/29/2023] Open
Abstract
The relationship between oxidative stress and skin aging/disorders is well established. Many topical and oral antioxidants (vitamins C and E, carotenoids, polyphenols) have been proposed to protect the skin against the deleterious effect induced by increased reactive oxygen species production, particularly in the context of sun exposure. In this review, we focused on the combination of vitamin E and selenium taken in supplements since both molecules act in synergy either by non-enzymatic and enzymatic pathways to eliminate skin lipids peroxides, which are strongly implicated in skin and hair disorders.
Collapse
Affiliation(s)
- Joël Pincemail
- CHU of Liège, Platform Antioxidant Nutrition and Health, Pathology Tower, 4130, Sart Tilman, 4000 Liège, Belgium
| | - Smail Meziane
- Institut Européen des Antioxydants, 54000 Nancy, France
| |
Collapse
|
4
|
Zhang Y, You S, Wang D, Zhao D, Zhang J, An Q, Li M, Wang C. Fermented Dendrobium officinale polysaccharides protect UVA-induced photoaging of human skin fibroblasts. Food Sci Nutr 2022; 10:1275-1288. [PMID: 35432966 PMCID: PMC9007291 DOI: 10.1002/fsn3.2763] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/22/2021] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
In this study, Fourier transform infrared spectroscopy (FT‐IR), gel permeation chromatograph‐liquid chromatography (GPC‐LC), and scanning electron microscopy (SEM) were used to analyze the molecular characteristics of fermented Dendrobium officinale polysaccharides (FDOP) by Lactobacillus delbrueckii bulgaricus. The characteristic structural peak of FDOP was more prominent, showing a smaller molecular structure, and its porous structure showed better water solubility. The protective effect of FDOP on the damage of human skin fibroblasts (HSF) caused by ultraviolet (UV) radiation was investigated by evaluating its antioxidative and antiaging indices. The results showed that the antioxidant capacity of HSF was improved, and the breakdown of collagen, elastin, and hyaluronic acid was reduced, thus providing effective protection to the skin tissue. The antioxidative property of FDOP was explored using Nf‐E2‐related factor 2‐small interfering RNA‐3 (Nrf2‐siRNA‐3) (Nrf2‐si3) and qRT‐PCR (quantitative reverse transcription polymerase chain reaction), and the antiaging property of FDOP was explored using Western Blot and qRT‐PCR. The results show that FDOP can up‐regulate signal transduction of the Nrf2/Keap1 (Kelch‐like ECH‐associated protein 1) and transforming growth factor‐β (TGF‐β)/Smads pathways to reduce antioxidative damage and antiaging effects. Therefore, this study provides a theoretical basis for FDOP as a novel functional agent that can be used in the cosmetic industry.
Collapse
Affiliation(s)
- Yongtao Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Shiquan You
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Dongdong Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Dan Zhao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Jiachan Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Quan An
- Yunnan Baiyao Group Co., Ltd. Kunming China
| | - Meng Li
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| | - Changtao Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health Beijing Technology and Business University Beijing China.,Chemistry and Materials Engineering Beijing Technology & Business University Beijing China.,Institute of Cosmetic Regulatory Science Beijing Technology and Business University Beijing China
| |
Collapse
|
5
|
Osmotic Stress Interferes with DNA Damage Response and H2AX Phosphorylation in Human Keratinocytes. Cells 2022; 11:cells11060959. [PMID: 35326410 PMCID: PMC8946833 DOI: 10.3390/cells11060959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 12/07/2022] Open
Abstract
The human skin and in particular its outermost layer, the epidermis, protects the body from potentially harmful substances, radiation as well as excessive water loss. However, the interference between the various stress responses of the epidermal keratinocytes, which often occur simultaneously, is largely unknown. The focus of this study was to investigate the interference between osmotic stress and DNA damage response. In addition to revealing the already well-described regulation of diverse gene sets, for example, cellular processes such as transcription, translation, and metabolic pathways (e.g., the KEGG citrate cycle and Reactome G2/M checkpoints), gene expression analysis of osmotically stressed keratinocytes revealed an influence on the transcription of genes also related to UV-induced DNA damage response. A gene network regulating the H2AX phosphorylation was identified to be regulated by osmotic stress. To analyze and test the interference between osmotic stress and DNA damage response, which can be triggered by UV stress on the one hand and oxidative stress on the other, in more detail, primary human keratinocytes were cultured under osmotic stress conditions and subsequently exposed to UV light and H2O2, respectively. γH2AX measurements revealed lower γH2AX levels in cells previously cultured under osmotic stress conditions.
Collapse
|
6
|
Zhang Y, Wang D, Fu H, Zhao D, Zhang J, Li M, Wang C. Protective effects of extracellular proteins of Saccharomycopsis fibuligera on UVA-damaged human skin fibroblasts. J Funct Foods 2022. [DOI: 10.1016/j.jff.2021.104897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
7
|
Zhang D, Zhang D, Wang C, Zhang R, Li Q, Xiong Y. Mechanism of DNA methylation-mediated downregulation of O6-Methylguanine-DNA methyltransferase in cartilage injury of Kashin-Beck Disease. Rheumatology (Oxford) 2021; 61:3471-3480. [PMID: 34888649 DOI: 10.1093/rheumatology/keab913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/29/2021] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Kashin-Beck Disease (KBD) is an endemic osteoarthropathy, in which excessive apoptosis of chondrocytes occurs. O6-methylguanine-DNA methyltransferase (MGMT), a DNA damage repair gene, plays an important role in apoptosis but the mechanism is unclear in KBD cartilage injury. This study was to investigate the expression and promoter methylation of MGMT in KBD patients and its role in DNA damage and apoptosis of chondrocytes. METHODS MGMT mRNA and protein level were detected by quantitative real-time PCR and immunohistochemistry. Demethylation of MGMT was carried out using 5-Aza-2'-deoxycytidine, and the methylation level of MGMT promoter was measured by quantitative methylation specific PCR. Next, shRNA was used to knockdown the expression of MGMT. Cell viability, apoptosis and DNA damage were determined by MTT assay, flow cytometry, Hoechst 33342 staining and alkaline comet assay following T-2 toxin and selenium treatment. RESULTS MGMT protein expression and mRNA levels were decreased (p = 0.02, p = 0.007) and promoter methylation was increased (p = 0.008) in KBD patients. Meanwhile, MGMT level was upregulated by 5-Aza-2'-deoxycytidine in chondrocytes (p = 0.0002). DNA damage and apoptosis rates were increased in MGMT-silenced chondrocytes (all p < 0.0001). Furthermore, DNA damage and apoptosis were increseaed in chondrocytes treated with T-2 toxin (all p < 0.0001), but were decreased after selenium treatment (p < 0.0001, p = 0.01). Decreased mRNA level and increased methylation of MGMT were found in T-2 toxin group (p = 0.005, p = 0.002), while selenium reversed it (p = 0.02, p = 0.004). CONCLUSIONS MGMT might play a crucial part in the pathogenesis of KBD cartilage injury, which providing a therapeutic target for KBD.
Collapse
Affiliation(s)
- Dandan Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Di Zhang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Chen Wang
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Rongqiang Zhang
- School of Public Health, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Qiang Li
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| | - Yongmin Xiong
- Institute of Endemic Diseases and Key Laboratory of Trace Elements and Endemic Diseases, School of Public Health, Xi'an Jiaotong University Health Science Center, No.76 Yanta West Road, Xi'an, Shaanxi, China
| |
Collapse
|
8
|
Kim SJ, Choi MC, Park JM, Chung AS. Antitumor Effects of Selenium. Int J Mol Sci 2021; 22:11844. [PMID: 34769276 PMCID: PMC8584251 DOI: 10.3390/ijms222111844] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 10/26/2021] [Accepted: 10/28/2021] [Indexed: 12/11/2022] Open
Abstract
Functions of selenium are diverse as antioxidant, anti-inflammation, increased immunity, reduced cancer incidence, blocking tumor invasion and metastasis, and further clinical application as treatment with radiation and chemotherapy. These functions of selenium are mostly related to oxidation and reduction mechanisms of selenium metabolites. Hydrogen selenide from selenite, and methylselenol (MSeH) from Se-methylselenocyteine (MSeC) and methylseleninicacid (MSeA) are the most reactive metabolites produced reactive oxygen species (ROS); furthermore, these metabolites may involve in oxidizing sulfhydryl groups, including glutathione. Selenite also reacted with glutathione and produces hydrogen selenide via selenodiglutathione (SeDG), which induces cytotoxicity as cell apoptosis, ROS production, DNA damage, and adenosine-methionine methylation in the cellular nucleus. However, a more pronounced effect was shown in the subsequent treatment of sodium selenite with chemotherapy and radiation therapy. High doses of sodium selenite were effective to increase radiation therapy and chemotherapy, and further to reduce radiation side effects and drug resistance. In our study, advanced cancer patients can tolerate until 5000 μg of sodium selenite in combination with radiation and chemotherapy since the half-life of sodium selenite may be relatively short, and, further, selenium may accumulates more in cancer cells than that of normal cells, which may be toxic to the cancer cells. Further clinical studies of high amount sodium selenite are required to treat advanced cancer patients.
Collapse
Affiliation(s)
- Seung Jo Kim
- Sangkyungwon Integrate Medical Caner Hospital, Yeoju 12616, Gyeonggido, Korea;
| | - Min Chul Choi
- Comprehensive Gynecological Cancer Center, CHA Bundang Medical Center, Seongnam 13497, Gyeonggido, Korea;
| | - Jong Min Park
- Oriental Medicine, Daejeon University, Daejeon 34520, Korea;
| | - An Sik Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and technology, Daejeon 34141, Korea
| |
Collapse
|
9
|
Gromkowska-Kępka KJ, Markiewicz-Żukowska R, Nowakowski P, Naliwajko SK, Moskwa J, Puścion-Jakubik A, Bielecka J, Grabia M, Mielcarek K, Soroczyńska J, Socha K. Chemical Composition and Protective Effect of Young Barley ( Hordeum vulgare L.) Dietary Supplements Extracts on UV-Treated Human Skin Fibroblasts in In Vitro Studies. Antioxidants (Basel) 2021; 10:antiox10091402. [PMID: 34573034 PMCID: PMC8467029 DOI: 10.3390/antiox10091402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/27/2021] [Indexed: 12/02/2022] Open
Abstract
Young barley seems to be a promising material for use as nutricosmetic due to the presence of many biologically active compounds. The aim of this study was to evaluate the effect of Hordeum vulgare L. extracts on human skin fibroblasts exposed to ultraviolet radiation B (UVB) radiation. Analysis of the chemical composition showed a predominance of 9,12,15-octadecatrienoic acid. The quality assessment showed that young barley preparations have high total polyphenolic content (TPC) and favourable total antioxidant status (TAS). They also contain antioxidant elements such as zinc, copper, and selenium. Furthermore, the analyzed products were found to be safe in terms of toxic elements (lead, cadmium and mercury) and lack of cytotoxic effect of young barley extracts on cells. In vitro bioactivity assays showed that young barley extract increased the survival rate and accelerated the migration of fibroblasts in research models with UVB radiation. The application of both extracts caused an increase in DNA biosynthesis, and in the number of cells arrested in S phase. Moreover, an inhibitory effect of the tested extracts on the expression of matrix metalloproteinase 2 (MMP-2) and matrix metalloproteinase 9 (MMP-9) was observed. The results indicate that young barley extracts, due to protective as well as restorative effect, could potentially be used in the production of nutricosmetics and skin care products.
Collapse
|
10
|
Luo M, Zhang X, Wu J, Zhao J. Modifications of polysaccharide-based biomaterials under structure-property relationship for biomedical applications. Carbohydr Polym 2021; 266:118097. [PMID: 34044964 DOI: 10.1016/j.carbpol.2021.118097] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/13/2021] [Accepted: 04/17/2021] [Indexed: 12/20/2022]
Abstract
Polysaccharides are well accepted biomaterials that have attracted considerable attention. Compared with other materials under research, polysaccharides show unique advantages: they are available in nature and are normally easily acquired, those acquired from nature show favorable immunogenicity, and are biodegradable and bioavailable. The bioactivity and possible applications are based on their chemical structure; however, naturally acquired polysaccharides sometimes have unwanted flaws that limit further applications. For this reason, carefully summarizing the possible modifications of polysaccharides to improve them is crucial. Structural modifications can not only provide polysaccharides with additional functional groups but also change their physicochemical properties. This review based on the structure-property relation summarizes the common chemical modifications of polysaccharides, the related bioactivity changes, possible functionalization methods, and major possible biomedical applications based on modified polysaccharides.
Collapse
Affiliation(s)
- Moucheng Luo
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China
| | - Xinyu Zhang
- Department of Hematology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen 518107, China
| | - Jun Wu
- School of Biomedical Engineering, Sun Yat-sen University, Shenzhen 518107, China.
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| |
Collapse
|
11
|
Saguie BO, Martins RL, Fonseca ADSD, Romana-Souza B, Monte-Alto-Costa A. An ex vivo model of human skin photoaging induced by UVA radiation compatible with summer exposure in Brazil. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2021; 221:112255. [PMID: 34271412 DOI: 10.1016/j.jphotobiol.2021.112255] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 06/23/2021] [Accepted: 07/04/2021] [Indexed: 01/02/2023]
Abstract
Skin is the largest body organ and can be affected by several factors, such as ultraviolet (UV) radiation. UV radiation is subdivided in UVA, UVB and UVC according to the radiation wavelength. UVC radiation does not cross the ozone layer; UVB cause DNA damage and is closely related to carcinogenesis; UVA radiation penetrates deeply into the skin, reaching epidermis and dermis and is considered the main promoter of skin aging, known as photoaging. In order to understand photoaging mechanisms and propose efficient therapies, several photoaging study models have been developed, each with benefits and limitations, but most of them use very high doses of UVA radiation, which is not compatible with our daily sun exposure. The objective of this work was to develop a human ex vivo photoaging model induced by UVA exposure compatible to a summer in Brazil. For this, human skin fragments were obtained from healthy donors who underwent otoplasty surgery and skin explants were prepared and placed in plates, with the epidermis facing upwards. Skin explants were exposed to UVA at 16 J/cm2 carried out by protocols of 2 or 4 exposures. Results showed an increase of oxidative damage, inflammatory cells, collagenolytic and elastolytic MMPs expression as well as a decrease of elastin expression, suggesting that the experimental model based on skin explants is able to evaluate UVA-induced aging in human skin.
Collapse
Affiliation(s)
- Bianca Oliveira Saguie
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Rayssa Lopes Martins
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Adenilson de Souza da Fonseca
- Department of Biophysics and Biometrics, Rio de Janeiro State University, Av Professor Manoel de Abreu 444, 20950-170 Rio de Janeiro-RJ, Brazil
| | - Bruna Romana-Souza
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil
| | - Andréa Monte-Alto-Costa
- Department of Histology and Embryology, Rio de Janeiro State University, Avenida Marechal Rondon, 381/HLA, 20950-003 Rio de Janeiro-RJ, Brazil.
| |
Collapse
|
12
|
Radomska D, Czarnomysy R, Radomski D, Bielawska A, Bielawski K. Selenium as a Bioactive Micronutrient in the Human Diet and Its Cancer Chemopreventive Activity. Nutrients 2021; 13:1649. [PMID: 34068374 PMCID: PMC8153312 DOI: 10.3390/nu13051649] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/06/2021] [Accepted: 05/11/2021] [Indexed: 12/15/2022] Open
Abstract
This review answers the question of why selenium is such an important trace element in the human diet. Daily dietary intake of selenium and its content in various food products is discussed in this paper, as well as the effects of its deficiency and excess in the body. Moreover, the biological activity of selenium, which it performs mainly through selenoproteins, is discussed. These specific proteins are responsible for thyroid hormone management, fertility, the aging process, and immunity, but their key role is to maintain a redox balance in cells. Furthermore, taking into account world news and the current SARS-CoV-2 virus pandemic, the impact of selenium on the course of COVID-19 is also discussed. Another worldwide problem is the number of new cancer cases and cancer-related mortality. Thus, the last part of the article discusses the impact of selenium on cancer risk based on clinical trials (including NPC and SELECT), systematic reviews, and meta-analyses. Additionally, this review discusses the possible mechanisms of selenium action that prevent cancer development.
Collapse
Affiliation(s)
- Dominika Radomska
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Dominik Radomski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| | - Anna Bielawska
- Department of Biotechnology, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland;
| | - Krzysztof Bielawski
- Department of Synthesis and Technology of Drugs, Medical University of Bialystok, Kilinskiego 1, 15-089 Bialystok, Poland; (D.R.); (D.R.); (K.B.)
| |
Collapse
|
13
|
Zhu W, Liu Y, Zhang W, Fan W, Wang S, Gu JH, Sun H, Liu F. Selenomethionine protects hematopoietic stem/progenitor cells against cobalt nanoparticles by stimulating antioxidant actions and DNA repair functions. Aging (Albany NY) 2021; 13:11705-11726. [PMID: 33875618 PMCID: PMC8109066 DOI: 10.18632/aging.202865] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 01/22/2021] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cells (HSCs) and hematopoietic progenitor cells (HPCs) can differentiate into all blood lineages to maintain hematopoiesis, wound healing, and immune functions. Recently, cobalt-chromium alloy casting implants have been used extensively in total hip replacements; however, cobalt nanoparticles (CoNPs) released from the alloy were toxic to HSCs and HPCs. We aimed to investigate the mechanism underlying the toxic effect of CoNPs on HSCs/HPCs and to determine the protective effect of selenomethionine (SeMet) against CoNPs in vitro and in vivo. Human and rat CD34+ HSCs/HPCs were isolated from cord blood and bone marrow, respectively. CoNPs decreased the viability of CD34+ HSCs/HPCs and increased apoptosis. SeMet attenuated the toxicity of CoNPs by enhancing the antioxidant ability of cells. The protective effect of SeMet was not completely abolished after adding H2O2 to abrogate the improvement of the antioxidant capacity by SeMet. SeMet and CoNPs stimulated ATM/ATR DNA damage response signals and inhibited cell proliferation. Unlike CoNPs, SeMet did not damage the DNA, and cell proliferation recovered after removing SeMet. SeMet inhibited the CoNP-induced upregulation of hypoxia inducible factor (HIF)-1α, thereby disrupting the inhibitory effect of HIF-1α on breast cancer type 1 susceptibility protein (BRCA1). Moreover, SeMet promoted BRCA1-mediated ubiquitination of cyclin B by upregulating UBE2K. Thus, SeMet enhanced cell cycle arrest and DNA repair post-CoNP exposure. Overall, SeMet protected CD34+ HSCs/HPCs against CoNPs by stimulating antioxidant activity and DNA repair.
Collapse
Affiliation(s)
- Wenfeng Zhu
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Yake Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Weinan Zhang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Wentao Fan
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Siqi Wang
- Orthopaedic Laboratory, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jin-Hua Gu
- Department of Clinical Pharmacy, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, Jiangsu Province, China.,Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Huanjian Sun
- Department of Orthopaedics, The Sixth Affiliated Hospital of Nantong University, Yancheng, Jiangsu Province, China
| | - Fan Liu
- Department of Orthopaedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
14
|
Hu Y, Xiao T, Zhang A. Associations between and risks of trace elements related to skin and liver damage induced by arsenic from coal burning. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111719. [PMID: 33396050 DOI: 10.1016/j.ecoenv.2020.111719] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 05/10/2023]
Abstract
Long-term exposure to high levels of arsenic has been documented to induce skin and liver damage, affecting hundreds of millions of people. While arsenic-induced skin and liver damage and trace element alterations have been studied, their correlations and risks have not been explained. Based on the above premise, this study included a total of 172 subjects from a coal-burning arsenic poisoning area. The levels of 18 trace elements in hair and six liver function indices in serum were detected, and the associations between and risks of trace elements related to skin and liver damage were analyzed. Finally, the receiver operating characteristic (ROC) curve and areas under the curve (AUC) were used to analyze the diagnostic values of certain trace elements for arsenic-induced skin and liver damage. The results found that a decrease in Se was a risk factor for arsenic-induced skin and liver damage (OR = 8.33 and 1.92, respectively). Furthermore, increases in Al and V were risk factors for arsenic-induced skin damage (OR = 1.05) and liver damage (OR = 13.16), respectively. In addition, the results found that Se and Al possessed certain diagnostic values for arsenic-induced skin damage (AUC = 0.93, 0.80), that Se possessed a diagnostic value for liver damage (AUC = 0.93), and that the combination of Se and Al increased the diagnostic value for skin damage (AUC = 0.96). This study provides an important research basis for further understanding the reasons for arsenic-induced skin and liver damage, for screening and identifying candidate diagnostic biomarkers, and for improving prevention and control strategies for arsenism.
Collapse
Affiliation(s)
- Yong Hu
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Tingting Xiao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China
| | - Aihua Zhang
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Department of Toxicology, School of Public Health, Guizhou Medical University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
15
|
Bioactive Compounds for Skin Health: A Review. Nutrients 2021; 13:nu13010203. [PMID: 33445474 PMCID: PMC7827176 DOI: 10.3390/nu13010203] [Citation(s) in RCA: 86] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/05/2021] [Accepted: 01/09/2021] [Indexed: 01/19/2023] Open
Abstract
Human skin is continually changing. The condition of the skin largely depends on the individual’s overall state of health. A balanced diet plays an important role in the proper functioning of the human body, including the skin. The present study draws attention to bioactive substances, i.e., vitamins, minerals, fatty acids, polyphenols, and carotenoids, with a particular focus on their effects on the condition of the skin. The aim of the study was to review the literature on the effects of bioactive substances on skin parameters such as elasticity, firmness, wrinkles, senile dryness, hydration and color, and to define their role in the process of skin ageing.
Collapse
|
16
|
Kaźmierczak-Barańska J, Boguszewska K, Karwowski BT. Nutrition Can Help DNA Repair in the Case of Aging. Nutrients 2020; 12:nu12113364. [PMID: 33139613 PMCID: PMC7692274 DOI: 10.3390/nu12113364] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/29/2020] [Accepted: 10/29/2020] [Indexed: 12/20/2022] Open
Abstract
Micronutrients such as vitamins and trace elements are crucial for maintaining the health of all organisms. Micronutrients are involved in every cellular/biochemical process. They play roles in proper heart and brain functioning, influence immunological responses, and antioxidant defense systems. Therefore, prolonged deficiency in one or more micronutrients leads to cardiovascular or neurodegenerative disorders. Keeping micronutrients at adequate levels is especially important for seniors. They are prone to deficiencies due to age-associated functional decline and often to a diet poor in nutrients. Moreover, lack of micronutrients has an indirect impact on the genome. Their low levels reduce the activity of antioxidant enzymes, and therefore inhibit the efficiency of defense against free radicals which can lead to the formation of DNA lesions. The more DNA damage in the genetic material, the faster aging at the cellular level and a higher risk of pathological processes (e.g., carcinogenesis). Supplementation of crucial antioxidative micronutrients such as selenium, zinc, vitamin C, and vitamin E seems to have the potential to positively influence the condition of an aging organism, including minimizing inflammation, enhancing antioxidative defense, and limiting the formation of DNA lesions. In consequence, it may lead to lowering the risk and incidence of age-related diseases such as cardiovascular diseases, neurodegenerative diseases, and malnutrition. In this article, we attempt to present the synergistic action of selected antioxidant micronutrients (vitamin C, vitamin E, selenium, and zinc) for inhibiting oxidative stress and DNA damage, which may impede the process of healthy aging.
Collapse
|
17
|
Güvendi GF, Eroğlu HA, Güvendi B, Adalı Y. Selenium or ozone: Effects on liver injury caused by experimental iron overload. Life Sci 2020; 262:118558. [PMID: 33038377 DOI: 10.1016/j.lfs.2020.118558] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 12/22/2022]
Abstract
AIMS Iron is an important metal ion as a biocatalyst on the other hand iron overload causes various diseases. Iron overload can result in fibrosis and hepatocellular carcinoma with various pathophysiological mechanisms, including oxidative damage in the liver. Therefore; in this study the effects of ozone and selenium -whose antioxidant properties are known- were evaluated in liver injury induced by iron overload. MATERIALS AND METHODS Iron overload model was provided by intraperitoneal administration of 88 mg/kg iron dextrate for 4 weeks. After iron dextran administration, ozone and selenium administrations were made for 3 weeks. From the obtained blood and tissue samples total oxidant status (TOS) and total antioxidant status (TAS) were determined and histopathological examination was performed in liver tissue samples. KEY FINDINGS In rats with iron overload, the lowest mean serum TOS was observed in the selenium administration group. The highest tissue TOS means and the lowest tissue TAS means were determined in the group in which ozone and selenium were administrated together. When histopathological data were evaluated, the presence of increased apoptosis in the ozone group compared to the iron group (p = 0.019) and selenium group (p = 0.019) was noted. Similarly, increased periportal inflammation (p = 0.001) and fibrosis (p = 0.005) were observed in the ozone group compared to the selenium group. SIGNIFICANCE In iron-induced liver damage, ozone was thought to be effective by decreasing ROS, but contrary to expectations, it was observed that it may negatively affect the picture by showing synergistic effect. However, the effects of selenium on both serum and tissue levels are promising.
Collapse
Affiliation(s)
- Gülname Fındık Güvendi
- Rize Recep Tayyip Erdoğan University Medical Faculty, Department of Pathology, Rize, Turkey.
| | - Hüseyin Avni Eroğlu
- Çanakkale Onsekiz Mart University Medical Faculty, Department of Physiology, Çanakkale, Turkey.
| | - Bülent Güvendi
- Rize Recep Tayyip Erdoğan University Medical Faculty, Department of General Surgery, Rize, Turkey
| | - Yasemen Adalı
- İzmir University of Economics Faculty of Medicine, Department of Pathology, İzmir, Turkey.
| |
Collapse
|
18
|
Yüksek V, Çetin S, Usta A. The effect of vitamin E and selenium combination in repairing fluoride-induced DNA damage to NRK-52E cells. Mol Biol Rep 2020; 47:7761-7770. [PMID: 33025505 DOI: 10.1007/s11033-020-05852-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/19/2020] [Indexed: 01/11/2023]
Abstract
Prolonged and excessive fluoride exposure can lead to fluorosis. The kidney is one of the organs that are injured mostly due to fluoride-induced damage. Fluoride can induce DNA damage at cytotoxic concentrations. This study aims to determine the extent of NaF-induced DNA damage and to investigate the effect of vitamin E and selenium combination (ES) in preventing and repairing this damage. For this purpose, we administered different combinations of NaF and ES to NRK-52E cells and determined the effective concentrations of ES and the NaF IC50 values associated with different incubation times (3, 12, and 24 h) by using the MTT assay. The determined quantities of NaF IC50 in association with time and the NaF IC50 + ES combination were administered to the cells. The extent of DNA damage was determined with the comet assay and the expression levels of the Ku70/80 and PARP-1 genes were determined with the RT-qPCR method. DNA damage significantly increased in all experimental groups compared to the control group (p < 0.05). It was found out that the NaF and ES combination statistically reduced the DNA damage compared to the damage observed in the NaF-treated groups (p < 0.05). Treatment of the ES combination significantly increased the expressions of Ku70 and Ku80 genes involved in DNA repair (p < 0.05). We concluded that vitamin E and selenium can potentially be effective in the repair of fluoride-induced DNA damage based on the results of this in vitro study. Our results may shed light on the prevention of DNA damage associated with fluorosis.
Collapse
Affiliation(s)
- Veysel Yüksek
- Department of Medical Laboratory, Özalp Vocational High SchoolVan Yuzuncu Yil University, Van, Turkey.
| | - Sedat Çetin
- Department of Biochemistry, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - Ayşe Usta
- Department of Chemistry, Faculty of Science, Van Yuzuncu Yil University, Van, Turkey
| |
Collapse
|
19
|
Proshkina E, Shaposhnikov M, Moskalev A. Genome-Protecting Compounds as Potential Geroprotectors. Int J Mol Sci 2020; 21:E4484. [PMID: 32599754 PMCID: PMC7350017 DOI: 10.3390/ijms21124484] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/06/2023] Open
Abstract
Throughout life, organisms are exposed to various exogenous and endogenous factors that cause DNA damages and somatic mutations provoking genomic instability. At a young age, compensatory mechanisms of genome protection are activated to prevent phenotypic and functional changes. However, the increasing stress and age-related deterioration in the functioning of these mechanisms result in damage accumulation, overcoming the functional threshold. This leads to aging and the development of age-related diseases. There are several ways to counteract these changes: 1) prevention of DNA damage through stimulation of antioxidant and detoxification systems, as well as transition metal chelation; 2) regulation of DNA methylation, chromatin structure, non-coding RNA activity and prevention of nuclear architecture alterations; 3) improving DNA damage response and repair; 4) selective removal of damaged non-functional and senescent cells. In the article, we have reviewed data about the effects of various trace elements, vitamins, polyphenols, terpenes, and other phytochemicals, as well as a number of synthetic pharmacological substances in these ways. Most of the compounds demonstrate the geroprotective potential and increase the lifespan in model organisms. However, their genome-protecting effects are non-selective and often are conditioned by hormesis. Consequently, the development of selective drugs targeting genome protection is an advanced direction.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Centre, Ural Branch, Russian Academy of Sciences, 28 Kommunisticheskaya st., 167982 Syktyvkar, Russia; (E.P.); (M.S.)
- Pitirim Sorokin Syktyvkar State University, 55 Oktyabrsky prosp., 167001 Syktyvkar, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
20
|
Tichati L, Trea F, Ouali K. Potential Role of Selenium Against Hepatotoxicity Induced by 2,4-Dichlorophenoxyacetic Acid in Albino Wistar Rats. Biol Trace Elem Res 2020; 194:228-236. [PMID: 31190189 DOI: 10.1007/s12011-019-01773-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/05/2019] [Indexed: 01/18/2023]
Abstract
The present study aims to investigate the hepatoprotective effects of selenium on toxicity induced by 'Désormone Lourd' based on 2,4-dichlorophenoxyacetic acid in Wistar rats. Male Wistar rats were divided into four groups and were treated orally. The (C) group was used as a control, while the test groups were treated with Se (0.2 mg/kg b.w.), 2,4-D (5 mg/kg b.w.) or both (2,4-D + Se) for 4 weeks. Our results showed that chronic treatment with 2,4-D resulted in hepatotoxicity, as revealed by an increase in liver function markers Aminotransferases (ALT, AST), alkaline phosphatase (ALP), lactate dehydrogenase (LDH) and total bilirubin (TB), along with reduced total protein content and albumin. An overall pro-oxidant effect was associated with a decrease in the reduced glutathione (GSH) content and the enzymatic activity of glutathione-S-transferase (GST), catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx), and an increase in malondialdehyde (MDA) and protein carbonyl levels (PCO). Microscopic observation of liver in 2,4-D-treated rats reveals lesions, which results in perivascular inflammatory infiltration around the vessel, sinusoidal dilatation and vacuolization of hepatocytes. However, selenium supplementation in 2,4-D-treated rats elicited a reduction in the toxic effects of the pesticide by improving the studied parameters, which was confirmed by the histological study of the liver. Selenium appears to have a promising prophylactic effect through its effective anti-radical action against the hepatotoxic effects of 2,4-D.
Collapse
Affiliation(s)
- Lazhari Tichati
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Fouzia Trea
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria
| | - Kheireddine Ouali
- Laboratory of Environmental Biosurveillance (LBSE), Department of Biology, Faculty of Sciences, Badji Mokhtar University, BP 12 Sidi Amar, 23000, Annaba, Algeria.
| |
Collapse
|
21
|
Granger C, Aladren S, Delgado J, Garre A, Trullas C, Gilaberte Y. Prospective Evaluation of the Efficacy of a Food Supplement in Increasing Photoprotection and Improving Selective Markers Related to Skin Photo-Ageing. Dermatol Ther (Heidelb) 2020; 10:163-178. [PMID: 31797305 PMCID: PMC6994571 DOI: 10.1007/s13555-019-00345-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Indexed: 01/08/2023] Open
Abstract
INTRODUCTION Skin exposure to ultraviolet radiation (UVR) can cause oxidative stress, particularly in the absence of adequate protective measures or in individuals with a sensitive skin type. Most commonly, protection from UVR entails the use of topical sunscreens. Sunscreens, however, have various limitations. The objective of this study was to evaluate the efficacy and tolerability of an oral food supplement containing a combination of actives with mainly antioxidative properties (vitamins A, C, D3, E, selenium, lycopene, lutein, as well as green tea, polypodium and grape extracts) in the context of photoprotection. METHODS Photoprotective efficacy was assessed in a 12-week-long, open, prospective and monocentric clinical study with 30 subjects (27 women and 3 men) having a Fitzpatrick skin type I-III and manifesting clinical ageing signs. The study included several visits (14, 28, 56, and 84 days after starting supplement intake), in which photoprotection was evaluated by the measurement of the minimal erythema dose (MED), while the antioxidant capacity of the skin was assessed through ferric reducing antioxidant power (FRAP) and malondialdehyde (MDA) assays. Additionally, several skin parameters (including radiance, elasticity, and moisture) were evaluated. Product evaluation was performed throughout the length of the study by means of a self-assessment questionnaire, and safety was monitored through a self-recording of all observed adverse reactions. RESULTS The MED levels increased significantly compared to baseline throughout the study visits, reaching an increase of + 8.1% at T84, p < 0.001. FRAP results also indicated a significant increase in the antioxidant capacity of the skin compared to baseline (+ 22.7% at T84, p < 0.001), while the MDA assay showed a significant decrease in MDA concentration compared to baseline (- 6.4% at T84, p < 0.001) which, in line with the FRAP results, indicated enhanced antioxidative protection of the skin. All assessed skin parameters, including radiance (+ 36.1% at T84, p < 0.001), gross elasticity (+ 13.2% at T84, p < 0.001), net elasticity (+ 28.0% at T84, p < 0.001), and moisture (+ 13.8% at T84, p < 0.001) were also significantly improved. The product was well tolerated as no adverse events were attributed by the investigators to the use of the product. Additionally, the global score obtained from the self-assessment questionnaires provided overwhelmingly positive feedback from the study subjects. CONCLUSIONS The food supplement evaluated in this study was effective and well-tolerated by the subjects, demonstrating a beneficial effect in terms of photoprotection, enhancing the antioxidative status of the skin and improving general skin condition. TRIAL REGISTRATION Retrospectively registered 3rd October 2019, ISRCTN18121679.
Collapse
Affiliation(s)
| | | | | | - Aurora Garre
- Innovation and Development ISDIN, Barcelona, Spain
| | | | - Yolanda Gilaberte
- Dermatology Department, Hospital Universitario Miguel Servet, Saragossa, Spain
| |
Collapse
|
22
|
Cai Z, Zhang J, Li H. Selenium, aging and aging-related diseases. Aging Clin Exp Res 2019; 31:1035-1047. [PMID: 30511318 DOI: 10.1007/s40520-018-1086-7] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/24/2018] [Indexed: 02/07/2023]
Abstract
Selenium is an essential trace element in the human body and plays an important role in the body via selenoprotein, which contains selenium. Selenoproteins (glutathione peroxidase, thioredoxin reductase, methionine sulfoxide reductase1 and endoplasmic reticulum-selenoproteins, etc.) have antioxidant effects and are involved in regulating antioxidant activities. Aging is an inevitable process and is always accompanied by aging-related diseases. Reactive oxygen species are important initial factors in aging and aging-related diseases. Selenium contributes to the alleviation of reduced reactive oxygen species-mediated inflammation, reduced DNA damage and prolonged telomere length and thereby plays roles in fighting aging and preventing aging-related diseases. In the elderly, aging-related diseases include neuropsychiatric diseases, tumors, cardiovascular diseases, and skin aging, among others. Selenium supplementation is an important strategy for anti-aging and the prevention of aging-related diseases and is of great significance for the elderly. However, with the accumulation of related research, selenium supplementation does not necessarily contribute to the prevention of aging and aging-related diseases. It is believed that a low level of selenium is beneficial to the human body. Thus, the effect of selenium on human aging and aging-related diseases is still controversial. This paper reviews the research progress and objective role of selenium in aging and aging-related diseases.
Collapse
Affiliation(s)
- Zhonglin Cai
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Jianzhong Zhang
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China
| | - Hongjun Li
- Department of Urology, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1 Shuaifuyuan, Dongcheng District, Beijing, 100730, China.
| |
Collapse
|
23
|
Efficacy and Safety of an Oral Nutritional (Dietary) Supplement Containing Pinus pinaster Bark Extract and Grape Seed Extract in Combination with a High SPF Sunscreen in the Treatment of Mild-to-Moderate Melasma: A Prospective Clinical Study. COSMETICS 2019. [DOI: 10.3390/cosmetics6010015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Background: Melasma is a common hyperpigmentation disorder, characterized by light-to-dark brown patches, usually distributed on sun-exposed areas of the body. The objective of this study was to evaluate the efficacy and tolerability of an oral nutritional supplement containing Pinus pinaster and Grape seed extract, vitamins and minerals, used concomitantly with a high SPF sunscreen in 30 women with mild-to-moderate facial melasma. Methods: Efficacy was assessed by measurement of the Melasma Area and Severity Index (MASI), instrumental analysis of the lesions (Mexameter®, VISIA®)) and Patient’s and Physician’s Global Assessment (PGA). Results: The MASI score decreased significantly compared with baseline at days 28, 56, and 84. Mexameter® analysis showed a significant decrease of ∆M (difference in the melanin index between melasma and adjacent area). VISIA® results also showed a reduction in the number and areas of UV pigmented spots and in the areas of melasma overtime. Both the Patient’s and Physician’s Global Assessment showed that the product led to an improvement of the lesions in terms of depigmentation and had positive cosmetic features without adverse events. Conclusion: The oral supplement subject of this study in combination with high SPF sunscreen was effective and well-tolerated for treatment of mild to moderate facial melasma.
Collapse
|