1
|
Sah A, Singewald N. The (neuro)inflammatory system in anxiety disorders and PTSD: Potential treatment targets. Pharmacol Ther 2025:108825. [PMID: 39983845 DOI: 10.1016/j.pharmthera.2025.108825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/03/2024] [Revised: 01/06/2025] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
Targeting the immune system has recently garnered attention in the treatment of stress- associated psychiatric disorders resistant to existing pharmacotherapeutics. While such approaches have been studied in considerable detail in depression, the role of (neuro)inflammation in anxiety-related disorders, or in anxiety as an important transdiagnostic symptom, is much less clear. In this review we first critically review preclinical and clinical evidence of central and peripheral immune dysregulation in anxiety disorders and post-traumatic stress disorder (PTSD) and briefly discuss proposed mechanisms of how inflammation can affect anxiety-related symptoms. We then give an overview of existing and potential future targets in inflammation-associated signal transduction pathways and discuss effects of different immune-modulatory drugs in anxiety-related disorders. Finally, we discuss key gaps in current clinical trials such as the lack of prospective studies involving anxiety patient stratification strategies based on inflammatory biomarkers. Overall, although evidence is rather limited so far, there is data to indicate that increased (neuro)inflammation is present in subgroups of anxiety disorder patients. Although exact identification of such immune subtypes of anxiety disorders and PTSD is still challenging, these patients will likely particularly benefit from therapeutic targeting of aspects of the inflammatory system. Different anti-inflammatory treatment approaches (microglia-directed treatments, pro-inflammatory cytokine inhibitors, COX-inhibitors, phytochemicals and a number of novel anti-inflammatory agents) have indeed shown some efficacy even in non-stratified anxiety patient groups and appear promising as novel alternative or complimentary therapeutic options in specific ("inflammatory") subtypes of anxiety disorder and PTSD patients.
Collapse
Affiliation(s)
- Anupam Sah
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, , Leopold Franzens University Innsbruck, Innsbruck, Austria
| | - Nicolas Singewald
- Institute of Pharmacy, Department of Pharmacology and Toxicology, Center for Molecular Biosciences Innsbruck, , Leopold Franzens University Innsbruck, Innsbruck, Austria.
| |
Collapse
|
2
|
Raise-Abdullahi P, Rezvani M, Yousefi F, Rahmani S, Meamar M, Raeis-Abdollahi E, Vafaei AA, Rashidipour H, Rashidy-Pour A. Natural polyphenols as therapeutic candidates for mitigating neuropsychiatric symptoms in post-traumatic stress disorder: Evidence from preclinical studies. Prog Neuropsychopharmacol Biol Psychiatry 2025; 136:111230. [PMID: 39722290 DOI: 10.1016/j.pnpbp.2024.111230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 09/02/2024] [Revised: 12/02/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Post-traumatic stress disorder (PTSD) is a challenging mental health condition that affects millions of people worldwide after they experience traumatic events. The current medications often do not fully address the wide range of PTSD symptoms or the underlying brain mechanisms, prompting the need to explore new treatments. Polyphenols, which are natural compounds found in many plant-based foods, have gained interest due to their brain-protective, anti-inflammatory, and antioxidant benefits. This review looks at how polyphenols might help treat PTSD by influencing important brain pathways related to the disorder. We explored how polyphenols affect the stress-response system, fear-related memories, brain chemicals, and inflammation. Specifically, we discuss how compounds like resveratrol, curcumin, green tea extract, and quercetin can balance stress hormones, help reduce fear memories, regulate brain chemicals, and decrease brain inflammation. Studies with animals have provided insights into how these compounds might work to ease PTSD symptoms. Based on the preclinical studies, the present review suggests that polyphenols could be a valuable addition or alternative to current PTSD treatments. However, more research is needed to confirm these findings and to determine the best ways to use polyphenols in treating PTSD.
Collapse
Affiliation(s)
| | - Mehrnaz Rezvani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Yousefi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Sadaf Rahmani
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Student Research Committee, Semnan University of Medical Sciences, Semnan, Iran
| | - Morvarid Meamar
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Clinical Research Development Unit, Kowsar Educational Research and Therapeutic Hospital, Semnan University of Medical Sciences, Semnan, Iran
| | - Ehsan Raeis-Abdollahi
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran; Department of Basic Medical Sciences, Faculty of Medicine, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| | - Abbas Ali Vafaei
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamed Rashidipour
- College of International Education, Dalian Medical University, Dalian, China
| | - Ali Rashidy-Pour
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran; Department of Physiology, School of Medicine, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Trebesova H, Monaco M, Baldassari S, Ailuno G, Lancellotti E, Caviglioli G, Pittaluga AM, Grilli M. Unveiling Niaprazine's Potential: Behavioral Insights into a Re-Emerging Anxiolytic Agent. Biomedicines 2024; 12:2087. [PMID: 39335600 PMCID: PMC11428487 DOI: 10.3390/biomedicines12092087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/18/2024] [Revised: 09/03/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
Ongoing global research actions seek to comprehensively understand the adverse impact of stress and anxiety on the physical and mental health of both human beings and animals. Niaprazine (NIA) is a chemical compound that belongs to the class of piperazine derivatives. This compound has recently gained renewed attention due to its potential therapeutic properties for treating certain conditions such as anxiety. Despite its potential benefits, the behavioral effects of NIA have not been thoroughly investigated. This study aimed to examine NIA's potential as an anti-anxiety and anti-stress agent. After administering either vehicle or NIA in their drinking water to mice for 14 days, we conducted behavioral analyses using the Marble Burying Test and the Elevated Plus Maze test. NIA-treated mice spend more time in the open arms and bury fewer marbles. Moreover, a stability study confirmed the linear relationship between NIA concentration and its response across concentrations encompassing the NIA mother solution and the NIA solutions administered to mice. Also, a preliminary synaptic toxicity analysis showed no direct damage to cortical nerve endings. Here, we show that NIA can modulate anxiety-related behaviors without significantly impacting exploratory activity or adverse effects. Our work describes new findings that contribute to the research on safer and more tolerable anxiety management options.
Collapse
Affiliation(s)
- Hanna Trebesova
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Martina Monaco
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Sara Baldassari
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Giorgia Ailuno
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | | | - Gabriele Caviglioli
- Pharmaceutical Technology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
| | - Anna Maria Pittaluga
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Massimo Grilli
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genova, 16148 Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
4
|
Spanoudaki M, Papadopoulou SK, Antasouras G, Papadopoulos KA, Psara E, Vorvolakos T, Solovos E, Chrysafi M, Psallas M, Mentzelou M, Ourda D, Giaginis C. Curcumin as a Multifunctional Spice Ingredient against Mental Disorders in Humans: Current Clinical Studies and Bioavailability Concerns. Life (Basel) 2024; 14:479. [PMID: 38672750 PMCID: PMC11050944 DOI: 10.3390/life14040479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/27/2024] [Revised: 03/27/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mental disorders in terms of depression, anxiety, and stress are one of the major causes of burden globally. Over the last two decades, the use of plant-based substances in the treatment of mental disorders in combination or not with medication has increasingly attracted the interest of the scientific research community. However, even if there is a plethora of naturally occurring bioactive compounds, most of them have low bioavailability, rendering them unable to insert into the bloodstream to exert their biological activities. METHODS This is a comprehensive narrative review that critically summarizes and scrutinizes the new approaches to the treatment of mental disorders using curcumin, also highlighting its bioavailability properties. The most accurate were searched using effective and relevant keywords. RESULTS This narrative review reveals substantial evidence that curcumin can exert significant effects on several mental disorders. However, despite the low cost, the extensive and confirmed potency of curcumin and its involvement in signaling pathways and the scientifically confirmed data regarding its molecular mechanisms of action against mental disorders, this naturally occurring compound presents low oral bioavailability. Pharmaceutical technology has provided solutions to increase the bioavailability of curcumin. Combination with piperine, galactomannosides, liposomal formulation or nanoformulation overcomes the bioavailability and solubility disadvantages. CONCLUSIONS Although curcumin demonstrates anti-anxiety, anti-depressive and anti-stress properties, studies on humans are limited and heterogeneous. Further research is highly recommended to determine the most functional formula, dose, duration, and possible side effects of curcumin on mental disorders in humans. Based on the current knowledge, the curcumin nanoformulation and Theracurmin, a form of colloidal submicroscopic particles, seem to be the most effective bioavailable formulations, which may be examined in future clinical human studies.
Collapse
Affiliation(s)
- Maria Spanoudaki
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Sousana K. Papadopoulou
- Department of Nutritional Sciences and Dietetics, School of Health Sciences, International Hellenic University, 57400 Thessaloniki, Greece (S.K.P.)
| | - Georgios Antasouras
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | | | - Evmorfia Psara
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Theofanis Vorvolakos
- Department of Psychiatry, School of Medicine, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evangelos Solovos
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Chrysafi
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Michalis Psallas
- 424 General Military Hospital of Thessaloniki, 54621 Thessaloniki, Greece; (K.A.P.); (E.S.); (M.P.)
| | - Maria Mentzelou
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| | - Despoina Ourda
- Department of Physical Education and Sport Science, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Constantinos Giaginis
- Department of Food Science and Nutrition, School of Environment, University of Aegean, 81400 Lemnos, Greece; (G.A.); (E.P.); (M.C.); (M.M.)
| |
Collapse
|
5
|
Sheng L, Wei Y, Pi C, Cheng J, Su Z, Wang Y, Chen T, Wen J, Wei Y, Ma J, Tang J, Liu H, Liu Z, Shen H, Zuo Y, Zheng W, Zhao L. Preparation and Evaluation of Curcumin Derivatives Nanoemulsion Based on Turmeric Extract and Its Antidepressant Effect. Int J Nanomedicine 2023; 18:7965-7983. [PMID: 38162571 PMCID: PMC10757808 DOI: 10.2147/ijn.s430769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Purpose The early stage of this study verified that a turmeric extract (TUR) including 59% curcumin (CU), 22% demethoxycurcumin (DMC), and 18% bisdemethoxycurcumin (BDMC), could enhance the stability of CU and had greater antidepressant potential in vitro. The objective of the study was to develop a nano-delivery system containing TUR (TUR-NE) to improve the pharmacokinetic behavior of TUR and enhance its antidepressant effect. Methods The antidepressant potential of TUR was explored using ABTS, oxidative stress-induced cell injury, and a high-throughput screening model. TUR-NE was fabricated, optimized and characterized. The pharmacokinetic behaviors of TUR-NE were evaluated following oral administration to normal rats. The antidepressant effect of TUR-NE was assessed within chronic unpredictable mild stress model (CUMS) mice. The behavioral and biochemical indexes of mice were conducted. Results The results depicted that TUR had 3.18 and 1.62 times higher antioxidant capacity than ascorbic acid and CU, respectively. The inhibition effect of TUR on ASP+ transport was significantly enhanced compared with fluoxetine and CU. TUR-NE displayed a particle size of 116.0 ± 0.31 nm, polydispersity index value of 0.121 ± 0.007, an encapsulation rate of 98.45%, and good release and stability in cold storage. The results of pharmacokinetics indicated the AUC(0-t) of TUR-NE was 8.436 and 4.495 times higher than that of CU and TUR, while the Cmax was 9.012 and 5.452 times higher than that of CU and TUR, respectively. The pharmacodynamic study confirmed that the superior antidepressant effect of TUR-NE by significantly improving the depressant-like behaviors and elevating the content of 5-hydroxytryptamine in plasma and brain in CUMS mice. TUR-NE showed good safety with repeated administration. Conclusion TUR-NE, which had small and uniform particle size, enhanced the bioavailability and antidepressant effect of TUR. It could be a promising novel oral preparation against depression.
Collapse
Affiliation(s)
- Lin Sheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yumeng Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Chao Pi
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ju Cheng
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhilian Su
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuanyuan Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Department of Clinical Pharmacy, West China Hospital, Sichuan University, Chengdu, People’s Republic of China
| | - Tao Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jie Wen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yuxun Wei
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jingwen Ma
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jia Tang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Huiyang Liu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy of Southwest Medical University, Luzhou, People’s Republic of China
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zerong Liu
- Central Nervous System Drug Key Laboratory of Sichuan Province, Sichuan Credit Pharmaceutical CO., Ltd. Luxian County, Luzhou City, People’s Republic of China
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, People’s Republic of China
| | - Hongping Shen
- Clinical Trial Center, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ying Zuo
- Department of Comprehensive Medicine, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Wenwu Zheng
- Department of cardiology, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Ling Zhao
- Luzhou Key Laboratory of Traditional Chinese Medicine for Chronic Diseases Jointly Built by Sichuan and Chongqing, the Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Development Planning Department of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Central Nervous System Drug Key Laboratory of Sichuan Province, School of Pharmacy of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
6
|
Ben-Azu B, Adebayo OG, Moke EG, Omogbiya AI, Oritsemuelebi B, Chidebe EO, Umukoro E, Nwangwa EK, Etijoro E, Umukoro E, Mamudu EJ, Chukwuma C. Geraniol attenuates behavioral and neurochemical impairments by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to post-traumatic stress disorder. J Psychiatr Res 2023; 168:165-175. [PMID: 37913743 DOI: 10.1016/j.jpsychires.2023.10.057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/21/2023] [Revised: 09/23/2023] [Accepted: 10/25/2023] [Indexed: 11/03/2023]
Abstract
Geraniol is an acyclic isoprenoid monoterpenoid analogue that has been shown to elicit neuroprotective functions, primarily through its ability to stimulate antioxidant and anti-inflammatory systems. An increase in inflammatory cytokines and oxidative stress exacerbate activation hypothalamic-pituitary-adrenal axis (HPA), leading to neurochemical dysfunction, which has important roles in the pathogenesis of post-traumatic disorder (PTSD), a mental health disorder characterized of post-trauma-induced intense fear. The aim of this study was to evaluate the anti-PTSD-like effects and underlying mechanisms of geraniol against single-prolonged-stress (SPS)-induced PTSD in mice. Following concomitant exposure to SPS (triple-paradigm traumatic events) and isolation for 7 days, mice (n = 9) were treated with geraniol (50 and 100 mg/kg, p.o.) or fluoxetine (10 mg/kg, p.o.) from days 8-21. Mice were assessed for behavioral changes. Neurochemical changes, inflammatory, oxido-nitrergic markers, adrenal weight, serum glucose and corticosterone concentrations were assayed. Geraniol inhibits SPS-induced anxiety- and depressive-like features as well as behavioral despair in the depression paradigms. SPS-induced locomotor and memory impairments were also abated by geraniol treatment similarly to fluoxetine. SPS-induced adrenal hypertrophy and increased blood glucose and corticosterone concentrations, were attenuated by the geraniol treatment. Elevated levels of TNF-α and IL-6, and malondialdehyde, nitrite, acetylcholinesterase enzyme were reduced by geraniol. Geraniol also increased glutathione, superoxide-dismutase, and catalase levels as well as dopamine, serotonin concentrations and GABAergic glutamic acid decarboxylase enzyme activity in the striatum, prefrontal cortex and hippocampus in the PTSD-mice relative to SPS control. In conclusion, geraniol attenuates behavioral impairments and neurochemical dysregulations by inhibitions of HPA-axis and oxido-inflammatory perturbations in mice exposed to PTSD.
Collapse
Affiliation(s)
- Benneth Ben-Azu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria.
| | - Olusegun G Adebayo
- Neurophysiology Unit, Department of Physiology, Faculty of Basic Medical Sciences, PAMO University of Medical Sciences, Port-Harcourt, River State, Nigeria
| | - Emuesiri G Moke
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Adrian I Omogbiya
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Benjamin Oritsemuelebi
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel O Chidebe
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emuesiri Umukoro
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, College of Medicine Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Eze K Nwangwa
- Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel Etijoro
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Emmanuel Umukoro
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Elizabeth J Mamudu
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| | - Chineye Chukwuma
- DELSU Joint Canada-Israel Neuroscience and Biopsychiatry Laboratory, Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta State University, Abraka, Delta State, Nigeria
| |
Collapse
|
7
|
Heesbeen EJ, Bijlsma EY, Verdouw PM, van Lissa C, Hooijmans C, Groenink L. The effect of SSRIs on fear learning: a systematic review and meta-analysis. Psychopharmacology (Berl) 2023; 240:2335-2359. [PMID: 36847831 PMCID: PMC10593621 DOI: 10.1007/s00213-023-06333-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 07/04/2022] [Accepted: 01/31/2023] [Indexed: 03/01/2023]
Abstract
RATIONALE Selective serotonin reuptake inhibitors (SSRIs) are considered first-line medication for anxiety-like disorders such as panic disorder, generalized anxiety disorder, and post-traumatic stress disorder. Fear learning plays an important role in the development and treatment of these disorders. Yet, the effect of SSRIs on fear learning are not well known. OBJECTIVE We aimed to systematically review the effect of six clinically effective SSRIs on acquisition, expression, and extinction of cued and contextual conditioned fear. METHODS We searched the Medline and Embase databases, which yielded 128 articles that met the inclusion criteria and reported on 9 human and 275 animal experiments. RESULTS Meta-analysis showed that SSRIs significantly reduced contextual fear expression and facilitated extinction learning to cue. Bayesian-regularized meta-regression further suggested that chronic treatment exerts a stronger anxiolytic effect on cued fear expression than acute treatment. Type of SSRI, species, disease-induction model, and type of anxiety test used did not seem to moderate the effect of SSRIs. The number of studies was relatively small, the level of heterogeneity was high, and publication bias has likely occurred which may have resulted in an overestimation of the overall effect sizes. CONCLUSIONS This review suggests that the efficacy of SSRIs may be related to their effects on contextual fear expression and extinction to cue, rather than fear acquisition. However, these effects of SSRIs may be due to a more general inhibition of fear-related emotions. Therefore, additional meta-analyses on the effects of SSRIs on unconditioned fear responses may provide further insight into the actions of SSRIs.
Collapse
Affiliation(s)
- Elise J Heesbeen
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Elisabeth Y Bijlsma
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - P Monika Verdouw
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Caspar van Lissa
- Department of Methodology, Tilburg University, Tilburg, Netherlands
| | - Carlijn Hooijmans
- Department of Anaesthesiology, Pain and Palliative Care, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lucianne Groenink
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands.
| |
Collapse
|
8
|
Nieto-Quero A, Infantes-López MI, Zambrana-Infantes E, Chaves-Peña P, Gavito AL, Munoz-Martin J, Tabbai S, Márquez J, Rodríguez de Fonseca F, García-Fernández MI, Santín LJ, Pedraza C, Pérez-Martín M. Unveiling the Secrets of the Stressed Hippocampus: Exploring Proteomic Changes and Neurobiology of Posttraumatic Stress Disorder. Cells 2023; 12:2290. [PMID: 37759512 PMCID: PMC10527244 DOI: 10.3390/cells12182290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/27/2023] [Revised: 07/28/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Intense stress, especially traumatic stress, can trigger disabling responses and in some cases even lead to the development of posttraumatic stress disorder (PTSD). PTSD is heterogeneous, accompanied by a range of distress symptoms and treatment-resistant disorders that may be associated with a number of other psychopathologies. PTSD is a very heterogeneous disorder with different subtypes that depend on, among other factors, the type of stressor that provokes it. However, the neurobiological mechanisms are poorly understood. The study of early stress responses may hint at the way PTSD develops and improve the understanding of the neurobiological mechanisms involved in its onset, opening the opportunity for possible preventive treatments. Proteomics is a promising strategy for characterizing these early mechanisms underlying the development of PTSD. The aim of the work was to understand how exposure to acute and intense stress using water immersion restraint stress (WIRS), which could be reminiscent of natural disaster, may induce several PTSD-associated symptoms and changes in the hippocampal proteomic profile. The results showed that exposure to WIRS induced behavioural symptoms and corticosterone levels reminiscent of PTSD. Moreover, the expression profiles of hippocampal proteins at 1 h and 24 h after stress were deregulated in favour of increased inflammation and reduced neuroplasticity, which was validated by histological studies and cytokine determination. Taken together, these results suggest that neuroplastic and inflammatory dysregulation may be a therapeutic target for the treatment of post-traumatic stress disorders.
Collapse
Affiliation(s)
- Andrea Nieto-Quero
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada Infantes-López
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Emma Zambrana-Infantes
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Patricia Chaves-Peña
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Ana L. Gavito
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Jose Munoz-Martin
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| | - Sara Tabbai
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Javier Márquez
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Molecular y Bioquímica, Canceromics Lab, Universidad de Málaga, 29010 Malaga, Spain
| | - Fernando Rodríguez de Fonseca
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - María Inmaculada García-Fernández
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Fisiología Humana, Histología Humana, Anatomía Patológica y Educación Física y Deportiva, Universidad de Málaga, 29010 Malaga, Spain
| | - Luis J. Santín
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Carmen Pedraza
- Departamento de Psicobiología y Metodología de las Ciencias del Comportamiento, Universidad de Málaga, 29010 Malaga, Spain; (A.N.-Q.); (E.Z.-I.); (S.T.); (L.J.S.)
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
| | - Margarita Pérez-Martín
- Instituto de Investigación Biomédica de Málaga y Plataforma en Nanomedicina-IBIMA Plataforma Bionand, 29590 Malaga, Spain; (M.I.I.-L.); (A.L.G.); (J.M.); (F.R.d.F.); (M.I.G.-F.)
- Departamento de Biología Celular, Genética y Fisiología, Universidad de Málaga, 29010 Malaga, Spain; (P.C.-P.); (J.M.-M.)
| |
Collapse
|
9
|
Zeinab Mohamed, El-Kader AEKMA, Salah-Eldin AE, Mohamed O, Awadalla EA. Protective Effects of Curcumin against Acetamiprid-Induced Neurotoxicity in Male Albino Rats. BIOL BULL+ 2023; 50:509-521. [DOI: 10.1134/s1062359022602609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/31/2022] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 09/01/2023]
|
10
|
Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. JOURNAL OF INTEGRATIVE MEDICINE 2023:S2095-4964(23)00048-1. [PMID: 37380564 DOI: 10.1016/j.joim.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/05/2022] [Accepted: 03/16/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVE This study investigated trends in the study of phytochemical treatment of post-traumatic stress disorder (PTSD). METHODS The Web of Science database (2007-2022) was searched using the search terms "phytochemicals" and "PTSD," and relevant literature was compiled. Network clustering co-occurrence analysis and qualitative narrative review were conducted. RESULTS Three hundred and one articles were included in the analysis of published research, which has surged since 2015 with nearly half of all relevant articles coming from North America. The category is dominated by neuroscience and neurology, with two journals, Addictive Behaviors and Drug and Alcohol Dependence, publishing the greatest number of papers on these topics. Most studies focused on psychedelic intervention for PTSD. Three timelines show an "ebb and flow" phenomenon between "substance use/marijuana abuse" and "psychedelic medicine/medicinal cannabis." Other phytochemicals account for a small proportion of the research and focus on topics like neurosteroid turnover, serotonin levels, and brain-derived neurotrophic factor expression. CONCLUSION Research on phytochemicals and PTSD is unevenly distributed across countries/regions, disciplines, and journals. Since 2015, the research paradigm shifted to constitute the mainstream of psychedelic research thus far, leading to the exploration of botanical active ingredients and molecular mechanisms. Other studies focus on anti-oxidative stress and anti-inflammation. Please cite this article as: Gao B, Qu YC, Cai MY, Zhang YY, Lu HT, Li HX, Tang YX, Shen H. Phytochemical interventions for post-traumatic stress disorder: A cluster co-occurrence network analysis using CiteSpace. J Integr Med. 2023; Epub ahead of print.
Collapse
Affiliation(s)
- Biao Gao
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China; Teaching and Research Support Center, Naval Medical University, Shanghai 200433, China
| | - Yi-Cui Qu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Meng-Yu Cai
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yin-Yin Zhang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Tao Lu
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hong-Xia Li
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Yu-Xiao Tang
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China
| | - Hui Shen
- Department of Naval Nutrition and Food Hygiene, Naval Medical University, Shanghai 200433, China.
| |
Collapse
|
11
|
Trebesova H, Orlandi V, Boggia R, Grilli M. Anxiety and Metabolic Disorders: The Role of Botanicals. Curr Issues Mol Biol 2023; 45:1037-1053. [PMID: 36826013 PMCID: PMC9954866 DOI: 10.3390/cimb45020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023] Open
Abstract
Anxiety and anxiety-related disorders are becoming more evident every day, affecting an increasing number of people around the world. Metabolic disorders are often associated with anxiety. Furthermore, anxiety branches into metabolic disorders by playing multiple roles as a cofactor, symptom, and comorbidity. Taken together, these considerations open the possibility of integrating the therapy of metabolic disorders with specific drugs for anxiety control. However, anxiolytic compounds often cause disabling effects in patients. The main goal could be to combine therapeutic protocols with compounds capable of reducing side effects while performing multiple beneficial effects. In this article we propose a group of bioactive ingredients called botanicals as a healthy supplement for the treatment of metabolic disorders related to anxiety.
Collapse
Affiliation(s)
- Hanna Trebesova
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Valentina Orlandi
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Raffaella Boggia
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
| | - Massimo Grilli
- Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 16148 Genoa, Italy
- Correspondence: ; Tel.: +39-010-353-520-21
| |
Collapse
|
12
|
Pizarro Meléndez GP, Valero-Jara V, Acevedo-Hernández P, Thomas-Valdés S. Impact of polyphenols on stress and anxiety: a systematic review of molecular mechanisms and clinical evidence. Crit Rev Food Sci Nutr 2022; 64:2340-2357. [PMID: 36154755 DOI: 10.1080/10408398.2022.2122925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 11/03/2022]
Abstract
Mental health is a global public concern that contributes raising disability and premature death. Anxiety undertakes around 3.6% of the global population, while psychological stress is a condition associated to anxiety with a prevalence of 36.5%. Treatment for both mental conditions consist mainly of psychological therapy and pharmacotherapy, but the long-term drugs use can trigger adverse effects. Growing evidence shows the effect of specific food compounds on stress and anxiety treatment. The aim of this systematic review is to describe the molecular mechanisms related to dietary polyphenols administration from food matrix (considering food, juices or herbal/food extracts) and their effects on stress and/or anxiety, as well as review the available clinical evidence. Search was based on PRISMA Guidelines using peer-reviewed journal articles sourced from PubMed and Web of Science. A total of 38 articles were considered as eligible. The major effects for anxiety management were: reduction of oxidative stress and inflammation; HPA axis modulation; and regulation of some serotonergic/adrenergic pathways. There is a very limited evidence to conclude about the real effect of dietary polyphenols on stress. Although pharmacological treatment for mood disorders is essential, alternative therapies are necessary using non-pharmacological compounds to improve the long-term treatment effectiveness.
Collapse
Affiliation(s)
| | - Viviana Valero-Jara
- Programa de Doctorado en Ciencias e Ingeniería para la Salud, Facultad de Medicina, Universidad de Valparaíso, Valparaiso, Chile
| | - Paula Acevedo-Hernández
- Programa de Doctorado en Ciencias mención Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaiso, Chile
| | - Samanta Thomas-Valdés
- Escuela de Nutrición y Dietética, Facultad de Farmacia, Universidad de Valparaíso, Valparaiso, Chile
| |
Collapse
|
13
|
Mohammadi-Farani A, Fakhri S, Jalili C, Samimi Z. Intra-mPFC injection of sodium butyrate promotes BDNF expression and ameliorates extinction recall impairment in an experimental paradigm of post-traumatic stress disorder. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2022; 25:1150-1158. [PMID: 36246060 PMCID: PMC9526891 DOI: 10.22038/ijbms.2022.65000.14312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 04/16/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Objectives Therapeutic strategies that facilitate extinction are promising in the treatment of post-traumatic stress disorder (PTSD). Brain-derived neurotrophic factor (BDNF) has a crucial role in neural plasticity, a process needed for the retention of fear extinction. In this study, we investigated the effects of local administration of a histone deacetylase (HDAC) inhibitor, sodium butyrate (NaBu), on BDNF transcription and behavioral markers of extinction in the single prolonged stress (SPS) model of PTSD. Materials and Methods NaBu was infused into the infralimbic (IL) subregion of the medial prefrontal cortex (mPFC) of male rats. The freezing response was recorded as the criterion to assess fear strength on the day of extinction as well as 24 hr later in the retention test. Other behavioral tests were also measured to evaluate the anxiety level, locomotor activity, and working memory on the retention day. HDAC activity and BDNF mRNA expression were evaluated after the behavioral experiments. Results NaBu facilitated the recall of fear extinction in SPS rats (P<0.0001). SPS rats had higher HDAC activity (P<0.0001) and lower BDNF expression (P<0.05) than non-SPS animals. Also, anxiety was higher in the SPS group (P<0.0001), but locomotor activity (P=0.61) and working memory (P=0.36) were not different between SPS and Non-SPS groups. Conclusion Our findings provide evidence that the mechanism of action of NaBu in the improvement of extinction recall is mediated, in part, by enhancing histone acetylation and reviving BDNF expression in IL.
Collapse
Affiliation(s)
- Ahmad Mohammadi-Farani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran, Department of Physiology and Pharmacology, School of medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran,Corresponding author: Ahmad Mohammadi-Farani. Department of Physiology and Pharmacology, School of medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran. Tel: +98-38-33333057;
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Samimi
- Department of Immunology, School of medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
14
|
Cai M, Park HR, Yang EJ. Nutraceutical Interventions for Post-Traumatic Stress Disorder in Animal Models: A Focus on the Hypothalamic–Pituitary–Adrenal Axis. Pharmaceuticals (Basel) 2022; 15:ph15070898. [PMID: 35890196 PMCID: PMC9324528 DOI: 10.3390/ph15070898] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 06/13/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 11/16/2022] Open
Abstract
Post-traumatic stress disorder (PTSD) occurs after exposure to traumatic events and is characterized by overwhelming fear and anxiety. Disturbances in the hypothalamic–pituitary–adrenal (HPA) axis are involved in the pathogenesis of mood disorders, including anxiety, PTSD, and major depressive disorders. Studies have demonstrated the relationship between the HPA axis response and stress vulnerability, indicating that the HPA axis regulates the immune system, fear memory, and neurotransmission. The selective serotonin reuptake inhibitors (SSRIs), sertraline and paroxetine, are the only drugs that have been approved by the United States Food and Drug Administration for the treatment of PTSD. However, SSRIs require long treatment times and are associated with lower response and remission rates; therefore, additional pharmacological interventions are required. Complementary and alternative medicine therapies ameliorate HPA axis disturbances through regulation of gut dysbiosis, insomnia, chronic stress, and depression. We have described the cellular and molecular mechanisms through which the HPA axis is involved in PTSD pathogenesis and have evaluated the potential of herbal medicines for PTSD treatment. Herbal medicines could comprise a good therapeutic strategy for HPA axis regulation and can simultaneously improve PTSD-related symptoms. Finally, herbal medicines may lead to novel biologically driven approaches for the treatment and prevention of PTSD.
Collapse
|
15
|
Joshi P, Bisht A, Joshi S, Semwal D, Nema NK, Dwivedi J, Sharma S. Ameliorating potential of curcumin and its analogue in central nervous system disorders and related conditions: A review of molecular pathways. Phytother Res 2022; 36:3143-3180. [PMID: 35790042 DOI: 10.1002/ptr.7522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/01/2022] [Revised: 04/26/2022] [Accepted: 05/25/2022] [Indexed: 12/12/2022]
Abstract
Curcumin, isolated from turmeric (Curcuma longa L.) is one of the broadly studied phytomolecule owing to its strong antioxidant and anti-inflammatory potential and has been considered a promising therapeutic candidate in a wide range of disorders. Considering, its low bioavailability, different curcumin analogs have been developed to afford desired pharmacokinetic profile and therapeutic outcome in varied pathological states. Several preclinical and clinical studies have indicated that curcumin ameliorates mitochondrial dysfunction, inflammation, oxidative stress apoptosis-mediated neural cell degeneration and could effectively be utilized in the treatment of different neurodegenerative diseases. Hence, in this review, we have summarized key findings of experimental and clinical studies conducted on curcumin and its analogues with special emphasis on molecular pathways, viz. NF-kB, Nrf2-ARE, glial activation, apoptosis, angiogenesis, SOCS/JAK/STAT, PI3K/Akt, ERK1/2 /MyD88 /p38 MAPK, JNK, iNOS/NO, and MMP pathways involved in imparting ameliorative effects in the therapy of neurodegenerative disorders and associated conditions.
Collapse
Affiliation(s)
- Priyanka Joshi
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India.,R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Akansha Bisht
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| | - Sushil Joshi
- R & D, Patanjali Ayurved Ltd, Patanjali Food and Herbal Park, Haridwar, Uttarakhand, India
| | - Deepak Semwal
- Faculty of Biomedical Sciences, Uttarakhand Ayurved University, Dehradun, Uttarakhand, India
| | - Neelesh Kumar Nema
- Paramount Kumkum Private Limited, Prestige Meridian-1, Bangalore, Karnataka, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Rajasthan, India
| |
Collapse
|
16
|
de Sousa Macedo LLB, Antunes FTT, de Andrade Alvarenga W, Batista MCC, de Moura MSB, Farias MNL, Caminski ES, Dallegrave E, Grivicich I, de Souza AH. Curcumin for attention-deficit-hyperactivity disorder: a systematic review and preliminary behavioral investigation. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:803-813. [PMID: 35394134 DOI: 10.1007/s00210-022-02236-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/02/2021] [Accepted: 03/24/2022] [Indexed: 12/08/2022]
Abstract
Curcumin has protective actions in neuropsychiatric disorders, acting as a neuroprotective agent. As a first approach, the study aimed at a systematic review of the potential effects of curcumin on cognitive performance for attention-deficit-hyperactivity disorder (ADHD). This research was carried out in the databases of PubMed, Embase, SciELO, the Cochrane Central Register of Controlled Trials (CENTRAL), the Web of Science, and the Grey literature. Upon discovering the scarcity of relevant studies, and knowing that curcumin might have an ADHD hyperactive and anxious behavior, the study proposed to evaluate the effects of curcumin in an ADHD phenotype of spontaneously hypertensive Wistar rats (SHR). No studies were found that related to curcumin and ADHD. Fifteen SHRs were then divided into separate groups that received water (1 mg/kg/day), curcumin (50 mg/kg/day), or methylphenidate (1 mg/kg/day) for 42 days. Behavioral tests to assess activity (Open Field Test), anxiety and impulsivity (Elevated Plus-Maze, and Social Interaction), and memory (Y-Maze, and the Object Recognition Test) were all performed. The animals that were treated with curcumin showed less anxious and hyperactive behavior, as seen in the Open Field Test and the Social Interaction Test. Anxious behavior was measured by the EPM and was not modulated by any treatment. The results of the Y-Maze Test demonstrated that curcumin improved spatial memory. In the Object Recognition Test, neither the short nor the long-term memory was improved. The treatments that were used in this study beneficially modulated the anxious and hyperactive behavior of the SHR.
Collapse
Affiliation(s)
- Lélia Lilianna Borges de Sousa Macedo
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Flavia Tasmin Techera Antunes
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil.
| | | | | | | | | | - Emanuelle Sistherenn Caminski
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Eliane Dallegrave
- Laboratório de Pesquisa Em Toxicologia, Universidade Federal de Ciências da Saúde de Porto Alegre, Porto Alegre, Brazil
| | - Ivana Grivicich
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| | - Alessandra Hübner de Souza
- Programa de Pós-Graduação Em Biologia Celular E Molecular Aplicada À Saúde, Universidade Luterana Do Brasil (ULBRA), Avenida Farroupilha, 8001, São José, Canoas, Rio Grande Do Sul, CEP 92425-020, Brasil
| |
Collapse
|
17
|
An Update on the Exploratory Use of Curcumin in Neuropsychiatric Disorders. Antioxidants (Basel) 2022; 11:antiox11020353. [PMID: 35204235 PMCID: PMC8868558 DOI: 10.3390/antiox11020353] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 02/08/2023] Open
Abstract
Curcumin is a polyphenol extracted from the rhizome of the turmeric plant. Beyond its common use as a culinary spice in Eastern Asia, curcumin has been proposed as a therapeutic compound due to its antioxidant, anti-inflammatory and neuroprotective properties. Thus, its efficacy has been evaluated in various inflammatory-based psychiatric disorders, such as schizophrenia, depression, or autism. Our aim is to review those preclinical and clinical studies carried out in psychiatric disorders whose therapeutic approach has involved the use of curcumin and, therefore, to discern the possible positive effect of curcumin in these disorders. Preclinical studies and completed clinical trials of curcumin for psychiatric disorders published from January 2005 to October 2021 were identified through searching relevant databases until 31st October 2021. Sixty-five preclinical studies and 15 clinical trials and open-label studies were selected. Results showed a bias toward studies in depression and, to a lesser extent, schizophrenia. In all disorders, the results were positive in reducing psychiatric deficits. Despite the considerable number of beneficial outcomes reported, the small number of trials and the heterogeneity of protocols make it difficult to draw solid conclusions about the real potency of curcumin in psychiatric disorders.
Collapse
|
18
|
Tohamy HG, El Okle OS, Goma AA, Abdel-Daim MM, Shukry M. Hepatorenal protective effect of nano-curcumin against nano‑copper oxide-mediated toxicity in rats: Behavioral performance, antioxidant, anti-inflammatory, apoptosis, and histopathology. Life Sci 2022; 292:120296. [PMID: 35045342 DOI: 10.1016/j.lfs.2021.120296] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/02/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Metal oxide nanoparticles (NPs) induce oxidative stress that can cause cellular toxicity. A natural antioxidant that can be used to protect tissues from oxidative stress is curcumin. PURPOSE In the present study, we evaluated the protective effect of curcumin nanoparticles (curcumin-NPs) against copper oxide nanoparticles (CuO-NPs)-mediated hepatorenal effects on behavioral performance, biochemical markers, antioxidants, inflammation, apoptosis, and histopathology in rats. STUDY DESIGN Twenty Wistar adult male rats were randomly divided into four groups (n = 5); Group Ι served as a control, group ΙΙ was orally gavaged with curcumin-NPs (100 mg/Kg), group ΙΙI orally received CuO-NPs (100 mg/kg), and group ΙV received both CuO-NPs and curcumin-NPs orally for 14 days. METHODS Behavioral performance, biochemical markers, antioxidants, inflammatory mediators, and apoptotic gene expression were evaluated in addition to histopathological and immunohistochemical examination. RESULTS The results revealed that rats exposed to CuO-NPs suffered from behavioral alterations and hepatic and renal damages, which indicated by a marked elevation of serum biochemical parameters, including alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, lactate dehydrogenase, urea, uric acid, and creatinine and a decline of total protein. Moreover, there was a significant downregulation in the expression of antioxidants genes, whereas inflammatory mediators expression were upregulated. The histopathological and immunohistochemical examination also corroborated these findings. In contrast, rats co-treated with curcumin-NPs exhibited better behavioral performance, biochemical profile, gene expression, histological architecture, and immunohistochemical staining results. CONCLUSION These findings strongly indicated that curcumin-NPs exert significant protection against the behavioral and hepatorenal disorders induced by CuO-NPs toxicity by modulating oxidative stress regulators and gene expression.
Collapse
Affiliation(s)
- Hossam G Tohamy
- Department of Pathology, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Osama S El Okle
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Alexandria University, Egypt
| | - Amira A Goma
- Department of Animal Husbandry and Animal Wealth Development, Faculty of Veterinary Medicine, Alexandria University, Egypt.
| | - Mohamed M Abdel-Daim
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt; Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt.
| |
Collapse
|
19
|
Abstract
Curcumin is the major biologically active polyphenolic constituent in the turmeric plant (Curcuma longa) that has been shown to have antioxidant, anti-inflammatory, neuroprotective, anticancer, antimicrobial, and cardioprotective effects. Interest in curcumin as a treatment for mental health conditions has increased and there is an expanding body of preclinical and clinical research examining its antidepressant and anxiolytic effects. In this narrative review, human trials investigating the effects of curcumin for the treatment of depression or depressive symptoms are summarised. Using findings from in vitro, animal, and human trials, possible biological mechanisms associated with the antidepressant effects of curcumin are also explored. To increase the understanding of curcumin for the treatment of depression, directions for future research are proposed.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, 38 Arnisdale Rd, Duncraig, Perth, WA, 6023, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
| |
Collapse
|
20
|
El-Shamarka ME, Eliwa HA, Ahmed MAE. Inhibition of boldenone-induced aggression in rats by curcumin: Targeting TLR4/MyD88/TRAF-6/NF-κB pathway. J Biochem Mol Toxicol 2021; 36:e22936. [PMID: 34719837 DOI: 10.1002/jbt.22936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/01/2020] [Revised: 09/22/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022]
Abstract
The illicit abuse of anabolic steroids is associated with brutal aggression, which represents a serious health hazard and social threat. Boldenone is commonly used for doping by athletes and adolescents for esthetic purposes and to enhance performance and endurance during competitions. However, the mechanistic pathways underlying boldenone-induced behavioral deviations and neuronal toxicity have not yet been elucidated. On the other hand, the natural polyphenol curcumin is appreciated for its relative safety, potent antioxidant activity, and anti-inflammatory properties. Therefore, the present study was initiated to explore the signaling pathways underlying boldenone-induced anxiety and aggression in rats, and the protective effects of curcumin. To achieve this aim, male Wistar albino rats were randomly distributed into control, curcumin (100 mg/kg in sesame oil, p.o., once daily), boldenone (5 mg/kg, intramuscular, once weekly), and combination groups. Rats were challenged across the open field, irritability, defensive aggression, and resident-intruder tests. The prefrontal cortex was used to assess serotonin level, oxidative stress markers, and mRNA expression of myeloid differentiation primary response gene (MyD88), TNFR-associated factor 6 (TRAF-6), tumor necrosis factor α (TNF-α), interleukin-1β (IL-1β), protein expression of toll-like receptor 4 (TLR4), and phosphorylated nuclear factor-κB transcription factor (NF-κB p65). Unprecedented, the current results showed that boldenone elicited aggression in rats accompanied by depleted serotonin, enhanced oxidative stress, and exaggerated inflammatory response via upregulation of TLR4/MyD88/TRAF-6/NF-κB pathway. Interestingly, curcumin mitigated boldenone-induced neurobehavioral disturbances in rats, normalized the oxidant/antioxidant balance, and suppressed TLR4/MyD88/TRAF-6/NF-κB pathway and its downstream proinflammatory signaling molecules TNF-α and IL-1β.
Collapse
Affiliation(s)
- Marwa E El-Shamarka
- Department of Narcotics, Ergogenic Aids and Poisons, National Research Center, Dokki, Egypt
| | - Hesham A Eliwa
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| | - Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), Giza, Egypt
| |
Collapse
|
21
|
Matias JN, Achete G, Campanari GSDS, Guiguer ÉL, Araújo AC, Buglio DS, Barbalho SM. A systematic review of the antidepressant effects of curcumin: Beyond monoamines theory. Aust N Z J Psychiatry 2021; 55:451-462. [PMID: 33673739 DOI: 10.1177/0004867421998795] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Depression is a severe, chronic, and recurring mental health disorder, which prevalence and morbimortality have increased in recent years. Several theories are proposed to elucidate the mechanisms of depression, such as the involvement of inflammation and the release of cytokines. Alternative treatments have been developed to improve outcomes of the commonly used drugs, and the use of Curcuma longa stands out. Its primary compound is named curcumin that exhibits antioxidant and anti-inflammatory effects. AIMS Several studies have shown that curcumin may play antidepressant actions and, therefore, this study aimed to perform a systematic review of the antidepressant effects of curcumin to evaluate the impact of this compound in the treatment of this condition. METHODS This systematic review has included studies available in MEDLINE-PubMed, EMBASE, and Cochrane databases, and the final selection included 10 randomized clinical trials. CONCLUSION Curcumin improves depressant and anxiety behavior in humans. It can increase monoamines and brain-derived neurotrophic factor levels and may inhibit the production of pro-inflammatory cytokines and neuronal apoptosis in the brain. Systemically, curcumin enhanced insulin sensitivity, reduced cortisol levels, and reversed metabolic abnormalities. Studies with larger samples and standardized dose and formulation are required to demonstrate the benefits of curcumin in depression treatment since there are many variations in this compound's use.
Collapse
Affiliation(s)
- Julia Novaes Matias
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Gabriela Achete
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | | | - Élen Landgraf Guiguer
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Adriano Cressoni Araújo
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Daiene Santos Buglio
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| | - Sandra Maria Barbalho
- Department of Biochemistry and Pharmacology, Faculdade de Medicina de Marília, UNIMAR, São Paulo, Brazil
| |
Collapse
|
22
|
Lopresti AL, Smith SJ, Rea A, Michel S. Efficacy of a curcumin extract (Curcugen™) on gastrointestinal symptoms and intestinal microbiota in adults with self-reported digestive complaints: a randomised, double-blind, placebo-controlled study. BMC Complement Med Ther 2021; 21:40. [PMID: 33478482 PMCID: PMC7818735 DOI: 10.1186/s12906-021-03220-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 08/26/2020] [Accepted: 01/14/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND There is preliminary evidence to suggest curcumin can alleviate digestive symptoms in adults with self-reported digestive complaints and irritable bowel syndrome. However, in all these trials, curcumin was used as a component of a multi-herbal combination and there were consistent concerns associated with risk of bias in most studies. The goal of this study was to investigate the effects of a curcumin extract (Curcugen™) on gastrointestinal symptoms, mood, and overall quality of life in adults presenting with self-reported digestive complaints. Moreover, to determine the potential therapeutic mechanisms of action associated with curcumin, its effects on intestinal microbiota and small intestinal bowel overgrowth (SIBO) were examined. METHODS In this 8-week, parallel-group, double-blind, randomised controlled trial, 79 adults with self-reported digestive complaints were recruited and randomised to receive either a placebo or 500 mg of the curcumin extract, Curcugen™. Outcome measures included the Gastrointestinal Symptom Rating Scale (GSRS), intestinal microbial profile (16S rRNA), Depression, Anxiety, and Stress Scale - 21 (DASS-21), Short Form-36 (SF-36), and SIBO breath test. RESULTS Based on self-report data collected from 77 participants, curcumin was associated with a significantly greater reduction in the GSRS total score compared to the placebo. There was also a greater reduction in the DASS-21 anxiety score. No other significant between-group changes in self-report data were identified. An examination of changes in the intestinal microbial profile and SIBO test revealed curcumin had no significant effect on these parameters. Curcumin was well-tolerated with no significant adverse events. CONCLUSIONS The curcumin extract, Curcugen™, administered for 8 weeks at a dose of 500 mg once daily was associated with greater improvements in digestive complaints and anxiety levels in adults with self-reported digestive complaints. Compared to the placebo, there were no significant changes in intestinal microbiota or SIBO; however, further research using larger samples and testing methods that allow more detailed microbial analyses will be important. An investigation into other potential mechanisms associated with curcumin's gastrointestinal-relieving effects will also be important such as examining its influence on the intestinal barrier function, inflammation, neurotransmitter activity, and visceral sensitivity. TRIAL REGISTRATION Australian New Zealand Clinical Trials Registry, Trial ID. ACTRN12619001236189 . Registered 6 September 2019.
Collapse
Affiliation(s)
- Adrian L Lopresti
- Clinical Research Australia, Perth, Western Australia, 6023, Australia.
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia.
| | - Stephen J Smith
- Clinical Research Australia, Perth, Western Australia, 6023, Australia
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia
| | - Alethea Rea
- College of Science, Health, Engineering and Education, Murdoch University, Perth, Western Australia, 6150, Australia
| | | |
Collapse
|
23
|
Abstract
Despite the overwhelming prevalence of anxiety disorders in modern society, medications and psychotherapy often fail to achieve complete symptom resolution. A complementary approach to medicating symptoms is to address the underlying metabolic pathologies associated with mental illnesses and anxiety. This may be achieved through nutritional interventions. In this perspectives piece, we highlight the roles of the microbiome and inflammation as influencers of anxiety. We further discuss the evidence base for six specific nutritional interventions: avoiding artificial sweeteners and gluten, including omega-3 fatty acids and turmeric in the diet, supplementation with vitamin D, and ketogenic diets. We attempt to integrate insights from the nutrition science-literature in order to highlight some practices that practitioners may consider when treating individual patients. Notably, this piece is not meant to serve as a comprehensive review of the literature, but rather argue our perspective that nutritional interventions should be more widely considered among clinical psychiatrists. Nutritional psychiatry is in its infancy and more research is needed in this burgeoning low-risk and potentially high-yield field.
Collapse
Affiliation(s)
- Nicholas G Norwitz
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom.,Harvard Medical School, Boston, MA, United States
| | - Uma Naidoo
- Harvard Medical School, Boston, MA, United States.,Department of Nutrition and Lifestyle Psychiatry, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
24
|
Sun B, Lv Y, Xu H, Qi C, Li C, Liu P. Effects of Vortioxetine on depression model rats and expression of BDNF and Trk B in hippocampus. Exp Ther Med 2020; 20:2895-2902. [PMID: 32765787 DOI: 10.3892/etm.2020.9026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 09/18/2019] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Effects of Vortioxetine on the expression of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (Trk B) in hippocampus of depressive rats were investigated. Forty-five SD rats were randomly divided into three groups: model control, Vortioxetine and normal control group, with 15 rats in each group. The changes of body mass were recorded within 5 weeks, and the open field test, sugar water preference test and Morris water maze test were performed to evaluate the behavior and mental status of the rats. The expression of BDNF and Trk B in rat hippocampus was detected by enzyme-linked immuno sorbent assay. Compared with the model control group, the body mass, horizontal and vertical movement, sugar and water preference rate of the vortioxetine group in the 5th week were significantly higher than those of the model control group (P<0.05), and significantly lower than those of the normal control group (P<0.05). The escape latency of the Vortioxetine group within 4 days was significantly lower than that of model control group (P<0.05), but higher than that of normal control group (P<0.05). The target quadrant residence time of the Vortioxetine group was significantly lower than that of the model control group (P<0.05), but higher than that of the normal control group (P<0.05). Expression of BDNF and Trk B in the Vortioxetine group was significantly higher than that in the model control group (P<0.05), but lower than that of the normal control group (P<0.05). Collectively, Vortioxetine can effectively alleviate the symptoms of autonomous and exploratory behavior, and reduce the decrease of learning and memory in depressive rats. Vortioxetine can increase the expression of BDNF and Trk B in depressive rats and alleviate their depressive behavior.
Collapse
Affiliation(s)
- Baomin Sun
- Department of Psychology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Yanhua Lv
- Department of Psychiatry, Taian City Mental Hospital, Taian, Shandong 271000, P.R. China
| | - Hua Xu
- Department of Neurology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Chunhua Qi
- Central Laboratory, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Cuiping Li
- Department of Psychology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| | - Pengfei Liu
- Department of Psychology, Taian City Central Hospital, Taian, Shandong 271000, P.R. China
| |
Collapse
|
25
|
Lee B, Sur B, Lee H, Oh S. Korean Red Ginseng prevents posttraumatic stress disorder-triggered depression-like behaviors in rats via activation of the serotonergic system. J Ginseng Res 2020; 44:644-654. [PMID: 32617045 PMCID: PMC7322749 DOI: 10.1016/j.jgr.2019.09.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 01/03/2019] [Revised: 09/04/2019] [Accepted: 09/25/2019] [Indexed: 01/28/2023] Open
Abstract
Background Posttraumatic stress disorder (PTSD), a mental disorder induced by traumatic stress and often accompanied by depression and/or anxiety, may involve an imbalance in the neurotransmitters associated with the fear response. Korean Red Ginseng (KRG) has long been used as a traditional medicine and is known to be involved in a variety of pharmacological activities. We used the open field test and forced swimming test to examine the effects of KRG on the depression-like response of rats after exposure to single prolonged stress (SPS), leading to activation of the serotonergic system. Methods Male rats received KRG (30, 50, and 100 mg/kg, intraperitoneal injection) once daily for 14 days after exposure to SPS. Results Daily KRG administration significantly improved depression-like behaviors in the forced swimming test, increased the number of lines crossed and time spent in the central zone in the open field test, and decreased freezing behavior in contextual and cued fear conditioning. KRG treatment attenuated SPS-induced decreases in serotonin (5-HT) tissue concentrations in the hippocampus and medial prefrontal cortex. The increased 5-HT concentration during KRG treatment may be partially attributable to the 5-hydroxyindoleacetic acid/5-HT ratio in the hippocampus of rats with PTSD. These effects may be caused by the activation of hippocampal genes encoding tryptophan hydroxylase-1 and 2 mRNA levels. Conclusion Our findings suggest that KRG has an antidepressant effect in rats subjected to SPS and may represent an effective use of traditional medicine for the treatment of PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea.,Center for Converging Humanities, Kyung Hee University, Seoul, Republic of Korea
| | - Bongjun Sur
- Department of Molecular medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| | - Hyejung Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Seikwan Oh
- Department of Molecular medicine and TIDRC, School of Medicine, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
26
|
Lee B, Choi GM, Sur B. Silibinin prevents depression-like behaviors in a single prolonged stress rat model: the possible role of serotonin. BMC Complement Med Ther 2020; 20:70. [PMID: 32143600 PMCID: PMC7076861 DOI: 10.1186/s12906-020-2868-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 11/20/2019] [Accepted: 02/26/2020] [Indexed: 01/22/2023] Open
Abstract
Background Post-traumatic stress disorder (PTSD) is an extreme mood disorder that occurs after experiencing extreme stress, and patients with this disorder are known to accompany with symptoms of depression, anxiety, and memory impairments. Silibinin (SIL) is a natural polyphenolic flavonoid and is the main active ingredient of silymarin, which is primarily extracted from the milk thistle. Although some studies have assessed the properties of this flavonoid, the potential of SIL as a treatment for PTSD patients and its mechanisms of action have yet to be fully elucidated. Methods After exposure to a model of single prolonged stress (SPS), the open field test (OFT) and forced swimming test (FST), were used to investigate the effects of SIL on anxiety- and depression-like symptoms in male rats. The rats received of SIL (25, 50, and 100 mg/kg) for 14 days following exposure to SPS. Results Administration of SIL significantly improved anxiety-like behaviors in the OFT, depression-like behaviors in the FST, and freezing behavior in fear conditioning test. SIL also increased levels of serotonin in the hippocampus (Hipp) and amygdala, and enhanced expression of tryptophan hydroxylase-1 mRNA in the Hipp. The administration of SIL also inhibited SPS-induced decreases dopamine levels and increases norepinephrine levels in the Hipp. Conclusions Taken together, the present findings suggest that SIL can be a useful therapeutic ingredient for the treatment of trauma stress-associated symptoms, including PTSD-induced anxiety and depression caused by PTSD.
Collapse
Affiliation(s)
- Bombi Lee
- Acupuncture and Meridian Science Research Center, College of Korean Medicine, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul, 02447, Republic of Korea. .,Center for Converging Humanities, Kyung Hee University, 02447, Seoul, Republic of Korea.
| | - Gwang Muk Choi
- The Graduate School of Basic Science of Medicine, College of Medicine, Kyung Hee University, 02447, Seoul, Republic of Korea
| | - Bongjun Sur
- Department of Molecular medicine and TIDRC, School of Medicine, Ewha Womans University, 07985, Seoul, Republic of Korea
| |
Collapse
|
27
|
Kordestani-Moghadam P, Nasehi M, Khodagholi F, Vaseghi S, Zarrindast MR, Khani M. The fluctuations of metabotropic glutamate receptor subtype 5 (mGluR5) in the amygdala in fear conditioning model of male Wistar rats following sleep deprivation, reverse circadian and napping. Brain Res 2020; 1734:146739. [PMID: 32087111 DOI: 10.1016/j.brainres.2020.146739] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 12/23/2019] [Revised: 02/15/2020] [Accepted: 02/18/2020] [Indexed: 12/20/2022]
Abstract
Sleep is involved in metabolic system, mental health and cognitive functions. Evidence shows that sleep deprivation (SD) negatively affects mental health and impairs cognitive functions, including learning and memory. Furthermore, the metabotropic glutamate receptor subtype 5 (mGluR5) is a metabolic biomarker, which is affected by various conditions, including stress, sleep deprivation, and cognitive and psychiatric disorders. In this research, we investigated the effect of SD and reverse circadian (RC), and two models of napping (continuous and non-continuous) combined with SD or RC on fear-conditioning memory, anxiety-like behavior and mGluR5 fluctuations in the amygdala. 64 male Wistar rats were used in this study. The water box apparatus was used to induce SD/RC for 48 h, and fear-conditioning memory apparatus was used to assess fear memory. The results showed, fear-conditioning memory was impaired following SD and RC, especially in contextual stage. However, anxiety-like behavior was increased. Furthermore, mGluR5 was increased in the left amygdala more than the right amygdala. Additionally, continuous napping significantly improved fear-conditioning memory, especially freezing behavior. In conclusion, following SD and RC, fear-conditioning memory in contextual stage is more vulnerable than in auditory stage. Furthermore, increase in anxiety-like behavior is related to increase in the activity of left amygdala and mGluR5 receptors.
Collapse
Affiliation(s)
| | - Mohammad Nasehi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Vaseghi
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad-Reza Zarrindast
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Department of Neuroendocrinology, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran; Institute for Cognitive Science Studies (ICSS), Tehran, Iran
| | - Mojgan Khani
- Cognitive and Neuroscience Research Center (CNRC), Amir-Almomenin Hospital, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| |
Collapse
|
28
|
Ramaholimihaso T, Bouazzaoui F, Kaladjian A. Curcumin in Depression: Potential Mechanisms of Action and Current Evidence-A Narrative Review. Front Psychiatry 2020; 11:572533. [PMID: 33329109 PMCID: PMC7728608 DOI: 10.3389/fpsyt.2020.572533] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Academic Contribution Register] [Received: 06/14/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Major depressive disorder (MDD) is one of the most prevalent and debilitating disorders. Current available treatments are somehow limited, so alternative therapeutic approaches targeting different biological pathways are being investigated to improve treatment outcomes. Curcumin is the main active component in the spice turmeric that has been used for centuries in Ayurvedic medicine to treat a variety of conditions, including anxiety and depressive disorders. In the past decades, curcumin has drawn researchers' attention and displays a broad range of properties that seem relevant to depression pathophysiology. In this review, we break down the potential mechanisms of action of curcumin with emphasis on the diverse systems that can be disrupted in MDD. Curcumin has displayed, in a number of studies, a potency in modulating neurotransmitter concentrations, inflammatory pathways, excitotoxicity, neuroplasticity, hypothalamic-pituitary-adrenal disturbances, insulin resistance, oxidative and nitrosative stress, and endocannabinoid system, all of which can be involved in MDD pathophysiology. To date, a handful of clinical trials have been published and suggest a benefit of curcumin in MDD. With evidence that is progressively growing, curcumin appears as a promising alternative option in the management of MDD.
Collapse
|
29
|
Lai S, Shi L, Jiang Z, Lin Z. Glycyrrhizin treatment ameliorates post-traumatic stress disorder-like behaviours and restores circadian oscillation of intracranial serotonin. Clin Exp Pharmacol Physiol 2019; 47:95-101. [PMID: 31494960 DOI: 10.1111/1440-1681.13173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 03/17/2019] [Revised: 08/14/2019] [Accepted: 08/31/2019] [Indexed: 11/30/2022]
Abstract
Post-traumatic stress disorder (PTSD) has become a major disease that threatens human health. Neurotransmitters and the amygdala are found to be critical in the development and maintenance of PTSD. We aim to investigate the role of glycyrrhizin in treating PTSD. Contextual fear extinction and elevated plus maze test were applied to evaluate the anxiety and fear memory. Microdialysis and high-performance liquid chromatography were used to analyze the expression of amygdala neurotransmitters in PTSD animal models and to verify the effects of glycyrrhizin on major neurotransmitters. The protein levels of tryptophan hydroxylase 2 (TPH2) were examined by western bolt. Glycyrrhizin treatment significantly reduced anxiety and fear memory after 1 and 7 days of PTSD modelling. In addition, glycyrrhizin treatment restored the circadian rhythm changes of serotonin and TPH2. The present study found a significant circadian rhythm change of serotonin in the amygdala in PTSD rats. Besides, glycyrrhizin treatment restored the altered serotonin diurnal fluctuations, which raises important implications for PTSD treatment.
Collapse
Affiliation(s)
- Shuhua Lai
- Inpatient Pharmacy, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Liangpan Shi
- Department of Gastrointestinal Surgery, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Zhixian Jiang
- Neurosurgery Department, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| | - Zhihang Lin
- Department of Pharmaceutical, Quanzhou First Hospital Affiliated to Fujian Medical University, Fujian, China
| |
Collapse
|
30
|
Fusar-Poli L, Vozza L, Gabbiadini A, Vanella A, Concas I, Tinacci S, Petralia A, Signorelli MS, Aguglia E. Curcumin for depression: a meta-analysis. Crit Rev Food Sci Nutr 2019; 60:2643-2653. [DOI: 10.1080/10408398.2019.1653260] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Indexed: 12/16/2022]
Affiliation(s)
- Laura Fusar-Poli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Lucia Vozza
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Alberto Gabbiadini
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Antonio Vanella
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Ilaria Concas
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Silvia Tinacci
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Antonino Petralia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Maria Salvina Signorelli
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| | - Eugenio Aguglia
- Department of Clinical and Experimental Medicine, Psychiatry Unit, University of Catania, Catania, Italy
| |
Collapse
|