1
|
Lim KH, Wang L, Dotse E, Wang M, Tiu CY, Wijanarko KJ, Wang X, Chow KT. TLR4 sensitizes plasmacytoid dendritic cells for antiviral response against SARS-CoV-2 coronavirus. J Leukoc Biol 2024; 115:190-200. [PMID: 37747799 DOI: 10.1093/jleuko/qiad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/04/2023] [Accepted: 08/24/2023] [Indexed: 09/27/2023] Open
Abstract
Plasmacytoid dendritic cells are a rare subset of dendritic cells that exhibit antiviral functions in response to toll-like receptor 7/8 stimulations. Alternative toll-like receptors such as TLR4 have been known to be active in plasmacytoid dendritic cells for immune regulatory functions. However, it is unclear whether these toll-like receptors differentially activate plasmacytoid dendritic cells as compared with canonical toll-like receptor 7/8 stimulation. Here, we assessed alternative plasmacytoid dendritic cell activation states mediated by toll-like receptors other than endosomal toll-like receptors via the RNA sequencing approach. We found that toll-like receptor 4 stimulation induced a high degree of similarity in gene expression pattern to toll-like receptor 7/8 stimulation in plasmacytoid dendritic cells. Despite high resemblance to toll-like receptor 7/8, we discovered unique genes that were activated under toll-like receptor 4 activation only, as well as genes that were induced at a higher magnitude in comparison to toll-like receptor 7/8 activation. In comparison between toll-like receptor 4-activated plasmacytoid dendritic cells and conventional dendritic cells, we revealed that plasmacytoid dendritic cells and conventional dendritic cells expressed distinct gene sets, whereby conventional dendritic cells mostly favored antigen presentation functions for adaptive immune response regulation while plasmacytoid dendritic cells leaned toward immune response against infectious diseases. Last, we determined that toll-like receptor 4 activation sensitized plasmacytoid dendritic cells against SARS-CoV-2 (COVID-19) single-stranded RNA by enhancing antiviral-related responses and type I interferon production. These findings provided greater insights into the toll-like receptor 4 activation state in plasmacytoid dendritic cells, which can be beneficial for alternative therapeutic interventions involving plasmacytoid dendritic cells for various diseases.
Collapse
Affiliation(s)
- King Hoo Lim
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Lishi Wang
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Eunice Dotse
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Meijun Wang
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Cheuk Ying Tiu
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Kevin Julio Wijanarko
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
| | - Xin Wang
- Department of Surgery, Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, N.T., Hong Kong
| | - Kwan T Chow
- Department of Biomedical Sciences, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
- Tung Biomedical Sciences Centre, City University of Hong Kong, 83 Tat Chee Ave, Kowloon Tong, Kowloon, Hong Kong
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, China
| |
Collapse
|
2
|
Zhu X, Han R, Tian X, Hochgerner M, Li H, Wang J, Xia J. The opposite effect of tapinarof between IMQ and IL-23 induced psoriasis mouse models. Exp Dermatol 2024; 33:e14862. [PMID: 37350230 DOI: 10.1111/exd.14862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/24/2023]
Abstract
Tapinarof is an aryl hydrocarbon receptor (AHR) ligand which is used to treat plaque psoriasis in adults. However, the underlying mechanism is not yet fully understood. In this study, we applied two of the most studied psoriasis mouse models: topical application of imiquimod (IMQ) and subcutaneous injection of IL-23. Although both models successfully induced psoriasis-like lesions in mice, tapinarof had a completely opposite effect on the two models. Tapinarof decreased the expression of multiple essential cytokines involved in the pathological IL-23/IL-17/IL-22 axis and ameliorated IMQ-induced psoriatic dermatitis, inhibiting keratinocyte proliferation and abnormal differentiation. However, in the IL-23-injection-model, tapinarof instead aggravated the disease. Here, tapinarof increased epidermal thickness and differentiated epidermal dysplasia in mice. Our data suggest that tapinarof may have different effects on varied types of psoriasis.
Collapse
Affiliation(s)
- Xingyu Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Institute for Six-Sector Economy, Fudan University, Shanghai, China
| | - Ruomei Han
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Xiaoxue Tian
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| | - Mathias Hochgerner
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| | - Hui Li
- MOE Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
- Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Jingjing Xia
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine (Guangzhou), School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
3
|
Li F, Song B, Zhou WF, Chu LJ. Toll-Like Receptors 7/8: A Paradigm for the Manipulation of Immunologic Reactions for Immunotherapy. Viral Immunol 2023; 36:564-578. [PMID: 37751284 DOI: 10.1089/vim.2023.0077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023] Open
Abstract
The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.
Collapse
Affiliation(s)
- Fang Li
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Biao Song
- Department of Pharmacy, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Wei-Feng Zhou
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| | - Li-Jin Chu
- Department of Clinical Medicine, Anhui Medical College, Hefei, China
| |
Collapse
|
4
|
Bonilha CS, Veras FP, de Queiroz Cunha F. NET-targeted therapy: effects, limitations, and potential strategies to enhance treatment efficacy. Trends Pharmacol Sci 2023; 44:622-634. [PMID: 37468402 DOI: 10.1016/j.tips.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/21/2023]
Abstract
Neutrophil extracellular traps (NETs) are complex structures released by activated neutrophils during inflammatory responses. Due to their unique potential for causing tissue damage and modulating immune responses, there is increasing interest in studying these structures as potential targets for the treatment of infectious diseases, autoimmune diseases, and cancer. However, therapeutic targeting of NETs might trigger deleterious effects that may limit treatment efficacy. NET disruption may increase the microbial load in infection; in autoimmunity, NET targeting might impair peripheral tolerance, but it might reduce adaptive immune responses in cancer. In this review, we explore the therapeutic and deleterious effects of NET-targeted therapy while shedding light on novel strategies to overcome treatment-related limitations and enhance treatment efficacy.
Collapse
Affiliation(s)
- Caio Santos Bonilha
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Infection, Immunity, and Inflammation, University of Glasgow, Glasgow G12 8TA, UK.
| | - Flavio Protasio Veras
- Center for Research in Inflammatory Diseases, University of Sao Paulo, Sao Paulo 14049-900, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas, Minas Gerais 37130-001, Brazil
| | | |
Collapse
|
5
|
Roy G, Chakraborty A, Swami B, Pal L, Ahuja C, Basak S, Bhaskar S. Type 1 interferon mediated signaling is indispensable for eliciting anti-tumor responses by Mycobacterium indicus pranii. Front Immunol 2023; 14:1104711. [PMID: 37122749 PMCID: PMC10140407 DOI: 10.3389/fimmu.2023.1104711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction The evolving tumor secretes various immunosuppressive factors that reprogram the tumor microenvironment (TME) to become immunologically cold. Consequently, various immunosuppressive cells like Tregs are recruited into the TME which in turn subverts the anti-tumor response of dendritic cells and T cells.Tumor immunotherapy is a popular means to rejuvenate the immunologically cold TME into hot. Mycobacterium indicus pranii (MIP) has shown strong immunomodulatory activity in different animal and human tumor models and has been approved for treatment of lung cancer (NSCLC) patients as an adjunct therapy. Previously, MIP has shown TLR2/9 mediated activation of antigen presenting cells/Th1 cells and their enhanced infiltration in mouse melanoma but the underlying mechanism by which it is modulating these immune cells is not yet known. Results This study reports for the first time that MIP immunotherapy involves type 1 interferon (IFN) signaling as one of the major signaling pathways to mediate the antitumor responses. Further, it was observed that MIP therapy significantly influenced frequency and activation of different subsets of T cells like regulatory T cells (Tregs) and CD8+ T cells in the TME. It reduces the migration of Tregs into the TME by suppressing the expression of CCL22, a Treg recruiting chemokine on DCs and this process is dependent on type 1 IFN. Simultaneously, in a type 1 IFN dependent pathway, it enhances the activation and effector function of the immunosuppressive tumor resident DCs which in turn effectively induce the proliferation and effector function of the CD8+ T cells. Conclusion This study also provides evidence that MIP induced pro-inflammatory responses including induction of effector function of conventional dendritic cells and CD8+ T cells along with reduction of intratumoral Treg frequency are essentially mediated in a type 1 IFN-dependent pathway.
Collapse
Affiliation(s)
- Gargi Roy
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Anush Chakraborty
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Bharati Swami
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Lalit Pal
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Charvi Ahuja
- Product Development Cell, National Institute of Immunology, New Delhi, India
| | - Soumen Basak
- Systems Immunology Lab, National Institute of Immunology, New Delhi, India
| | - Sangeeta Bhaskar
- Product Development Cell, National Institute of Immunology, New Delhi, India
- *Correspondence: Sangeeta Bhaskar,
| |
Collapse
|
6
|
Brown GJ, Cañete PF, Wang H, Medhavy A, Bones J, Roco JA, He Y, Qin Y, Cappello J, Ellyard JI, Bassett K, Shen Q, Burgio G, Zhang Y, Turnbull C, Meng X, Wu P, Cho E, Miosge LA, Andrews TD, Field MA, Tvorogov D, Lopez AF, Babon JJ, López CA, Gónzalez-Murillo Á, Garulo DC, Pascual V, Levy T, Mallack EJ, Calame DG, Lotze T, Lupski JR, Ding H, Ullah TR, Walters GD, Koina ME, Cook MC, Shen N, de Lucas Collantes C, Corry B, Gantier MP, Athanasopoulos V, Vinuesa CG. TLR7 gain-of-function genetic variation causes human lupus. Nature 2022; 605:349-356. [PMID: 35477763 PMCID: PMC9095492 DOI: 10.1038/s41586-022-04642-z] [Citation(s) in RCA: 258] [Impact Index Per Article: 129.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/10/2022] [Indexed: 12/13/2022]
Abstract
Although circumstantial evidence supports enhanced Toll-like receptor 7 (TLR7) signalling as a mechanism of human systemic autoimmune disease1-7, evidence of lupus-causing TLR7 gene variants is lacking. Here we describe human systemic lupus erythematosus caused by a TLR7 gain-of-function variant. TLR7 is a sensor of viral RNA8,9 and binds to guanosine10-12. We identified a de novo, previously undescribed missense TLR7Y264H variant in a child with severe lupus and additional variants in other patients with lupus. The TLR7Y264H variant selectively increased sensing of guanosine and 2',3'-cGMP10-12, and was sufficient to cause lupus when introduced into mice. We show that enhanced TLR7 signalling drives aberrant survival of B cell receptor (BCR)-activated B cells, and in a cell-intrinsic manner, accumulation of CD11c+ age-associated B cells and germinal centre B cells. Follicular and extrafollicular helper T cells were also increased but these phenotypes were cell-extrinsic. Deficiency of MyD88 (an adaptor protein downstream of TLR7) rescued autoimmunity, aberrant B cell survival, and all cellular and serological phenotypes. Despite prominent spontaneous germinal-centre formation in Tlr7Y264H mice, autoimmunity was not ameliorated by germinal-centre deficiency, suggesting an extrafollicular origin of pathogenic B cells. We establish the importance of TLR7 and guanosine-containing self-ligands for human lupus pathogenesis, which paves the way for therapeutic TLR7 or MyD88 inhibition.
Collapse
Affiliation(s)
- Grant J Brown
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Pablo F Cañete
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Hao Wang
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Arti Medhavy
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Josiah Bones
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jonathan A Roco
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yuke He
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Yuting Qin
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Jean Cappello
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Julia I Ellyard
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Katharine Bassett
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Qian Shen
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Yaoyuan Zhang
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Cynthia Turnbull
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Xiangpeng Meng
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Phil Wu
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Eun Cho
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lisa A Miosge
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - T Daniel Andrews
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Matt A Field
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
- Centre for Tropical Bioinformatics and Molecular Biology, Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Queensland, Australia
| | - Denis Tvorogov
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Angel F Lopez
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia
| | - Jeffrey J Babon
- Division of Structural Biology, Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | | | - África Gónzalez-Murillo
- Unidad de Terapias Avanzadas, Oncología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Fundación de Investigación Biomédica, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | | | - Virginia Pascual
- Department of Pediatrics, Drukier Institute for Children's Health, Weill Cornell Medical College, New York, NY, USA
| | - Tess Levy
- Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Eric J Mallack
- Division of Child Neurology, Weill Cornell Medical College, New York-Presbyterian Hospital, New York, NY, USA
| | - Daniel G Calame
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Timothy Lotze
- Division of Pediatric Neurology and Developmental Neuroscience, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Texas Children's Hospital, Houston, TX, USA
| | - James R Lupski
- Texas Children's Hospital, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Huihua Ding
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
| | - Tomalika R Ullah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
- Department of Molecular and Translational Science, Monash University, Clayton, Victoria, Australia
| | - Giles D Walters
- Department of Renal Medicine, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Mark E Koina
- Department of Anatomical Pathology, The Canberra Hospital, Canberra, Australian Capital Territory, Australia
| | - Matthew C Cook
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Nan Shen
- China Australia Centre for Personalised Immunology, Shanghai Renji Hospital, Shanghai Jiaotong University, Shanghai, China
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
- Center for Autoimmune Genomics and Etiology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Carmen de Lucas Collantes
- Sección de Nefrología, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
- Departamento de Pediatría. Facultad de Medicina, Universidad Autónoma de Madrid (UAM), Madrid, Spain
| | - Ben Corry
- Research School of Biology, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michael P Gantier
- Shanghai Institute of Rheumatology, Renji Hospital, School of Medicine, Shanghai, Jiao Tong University (SJTUSM), Shanghai, China
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Vicki Athanasopoulos
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Carola G Vinuesa
- Centre for Personalised Immunology, Department of Immunology and Infectious Disease, John Curtin School of Medical Research, Australian National University, Canberra, Australian Capital Territory, Australia.
- Centre for Cancer Biology, SA Pathology and the University of South Australia, Adelaide, South Australia, Australia.
- Francis Crick Institute, London, UK.
| |
Collapse
|
7
|
The Critical Role of Toll-like Receptor-mediated Signaling in Cancer Immunotherapy. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100122] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
8
|
Martínez-Espinoza I, Guerrero-Plata A. The Relevance of TLR8 in Viral Infections. Pathogens 2022; 11:134. [PMID: 35215078 PMCID: PMC8877508 DOI: 10.3390/pathogens11020134] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 11/16/2022] Open
Abstract
Toll-like receptors (TLRs) are the largest pattern recognition receptors responsible for activating the innate and adaptive immune response against viruses through the release of inflammatory cytokines and antiviral mediators. Viruses are recognized by several TLRs, including TLR8, which is known to bind ssRNA structures. However, the similarities between TLR8 and TLR7 have obscured the distinctive characteristics of TLR8 activation and its importance in the immune system. Here we discuss the activation and regulation of TLR8 by viruses and its importance in therapeutical options such as vaccine adjuvants and antiviral stimulators.
Collapse
|
9
|
The Signal Peptide and Chaperone UNC93B1 Both Influence TLR8 Ectodomain Intracellular Endosomal Localization. Vaccines (Basel) 2021; 10:vaccines10010014. [PMID: 35062674 PMCID: PMC8778924 DOI: 10.3390/vaccines10010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptor 8 (TLR8) is a single-stranded RNA sensing receptor and is localized in the cellular compartments, where it encounters foreign or self-nucleic acids and activates innate and adaptive immune responses. However, the mechanism controlling intracellular localization TLR8 is not completely resolved. We previously revealed the intracellular localization of TLR8 ectodomain (ECD), and in this study, we investigated the mechanism of the intracellular localization. Here we found that TLR8 ECDs from different species as well as ECDs from different TLRs are all intracellularly localized, similarly to the full-length porcine TLR8. Furthermore, porcine, bovine, and human TLR8 ECDs are all localized in cell endosomes, reflecting the cellular localization of TLR8. Intriguingly, none of post-translational modifications at single sites, including glycosylation, phosphorylation, ubiquitination, acetylation, and palmitoylation alter porcine TLR8-ECD endosomal localization. Nevertheless, the signal peptide of porcine TLR8-ECD determines its endosomal localization. On the other hand, signaling regulator UNC93B1 also decides the endosomal localization of porcine, bovine, and human TLR8 ECDs. The results from this study shed light on the mechanisms of not only TLR8 intracellular localization but also the TLR immune signaling.
Collapse
|
10
|
Mann-Nüttel R, Ali S, Petzsch P, Köhrer K, Alferink J, Scheu S. The transcription factor reservoir and chromatin landscape in activated plasmacytoid dendritic cells. BMC Genom Data 2021; 22:37. [PMID: 34544361 PMCID: PMC8454182 DOI: 10.1186/s12863-021-00991-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 08/29/2021] [Indexed: 12/13/2022] Open
Abstract
Background Transcription factors (TFs) control gene expression by direct binding to regulatory regions of target genes but also by impacting chromatin landscapes and modulating DNA accessibility for other TFs. In recent years several TFs have been defined that control cell fate decisions and effector functions in the immune system. Plasmacytoid dendritic cells (pDCs) are an immune cell type with the unique capacity to produce high amounts of type I interferons quickly in response to contact with viral components. Hereby, this cell type is involved in anti-infectious immune responses but also in the development of inflammatory and autoimmune diseases. To date, the global TF reservoir in pDCs early after activation remains to be fully characterized. Results To fill this gap, we have performed a comprehensive analysis in naïve versus TLR9-activated murine pDCs in a time course study covering early timepoints after stimulation (2 h, 6 h, 12 h) integrating gene expression (RNA-Seq) and chromatin landscape (ATAC-Seq) studies. To unravel the biological processes underlying the changes in TF expression on a global scale gene ontology (GO) analyses were performed. We found that 70% of all genes annotated as TFs in the mouse genome (1014 out of 1636) are expressed in pDCs for at least one stimulation time point and are covering a wide range of TF classes defined by their specific DNA binding mechanisms. GO analysis revealed involvement of TLR9-induced TFs in epigenetic modulation, NFκB and JAK-STAT signaling, and protein production in the endoplasmic reticulum. pDC activation predominantly “turned on” the chromatin regions associated with TF genes. Our in silico analyses pointed at the AP-1 family of TFs as less noticed but possibly important players in these cells after activation. AP-1 family members exhibit (1) increased gene expression, (2) enhanced chromatin accessibility in their promoter region, and (3) a TF DNA binding motif that is globally enriched in genomic regions that were found more accessible in pDCs after TLR9 activation. Conclusions In this study we define the complete set of TLR9-regulated TFs in pDCs. Further, this study identifies the AP-1 family of TFs as potentially important but so far less well characterized regulators of pDC function. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-021-00991-2.
Collapse
Affiliation(s)
- Ritu Mann-Nüttel
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany
| | - Shafaqat Ali
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.,Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Patrick Petzsch
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Medical Faculty, University of Düsseldorf, Düsseldorf, Germany
| | - Judith Alferink
- Cells in Motion Interfaculty Centre, Münster, Germany.,Department of Mental Health, University of Münster, Münster, Germany
| | - Stefanie Scheu
- Institute of Medical Microbiology and Hospital Hygiene, University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
11
|
Li Q, Liu W, Gao S, Mao Y, Xin Y. Application of imiquimod-induced murine psoriasis model in evaluating interleukin-17A antagonist. BMC Immunol 2021; 22:11. [PMID: 33509093 PMCID: PMC7844923 DOI: 10.1186/s12865-021-00401-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Interleukin-17A (IL17A) is a proinflammatory cytokine critically involved in autoimmune diseases, and monoclonal antibodies of IL17A have been approved for clinical treatment of psoriasis. However, a usable psoriatic animal model has been always required for preclinical evaluation of IL17A antagonists. Imiquimod (IMQ)-induced psoriasis model is widely used in fundamental research, but it's not able to accurately show anti-psoriatic effect of IL17A antagonists with conventional modelling condition. RESULTS On female C57BL/6 mice, with optimization on the usage of IMQ, positive control reagent and anti-mIL17A antibody, a 7-day model with proper testing window, acceptable disease severity as well as high repeatability was developed, and the efficacy of IL17A antagonist can be objectively evaluated by several qualitative and quantitative indices. Meanwhile, we validated the detailed involvement of IL17A signaling in disease progression, confirmed that the expression levels of IL17A and its related cytokines were induced by IMQ application, and its downstream cytokines can be inhibited by IL17A antagonist treatment. In further study, we revealed that IL17A was transient induced by IMQ and directly caused downstream signaling activation. This finding on the kinetical change of IL17A signaling will manifest the pharmacokinetics-pharmacodynamics investigation of IL17A antagonists. CONCLUSIONS Our work presents the application of a convenient psoriatic animal model in the research and development of IL17A antagonists, meanwhile providing extra evidence for understanding IL17A's role in the progression of IMQ-induced psoriasis model, which manifest the research and development of IL17A antagonists.
Collapse
Affiliation(s)
- Qingran Li
- Discovery Projects Unit, HitGen Inc, Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Weiping Liu
- Discovery Projects Unit, HitGen Inc, Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Shidong Gao
- Discovery Projects Unit, HitGen Inc, Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Yao Mao
- Discovery Projects Unit, HitGen Inc, Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China
| | - Yanfei Xin
- Discovery Projects Unit, HitGen Inc, Building 6, No. 8 Huigu First East Road, Tianfu International Bio-Town, Shuangliu District, Chengdu, 610200, Sichuan, China.
| |
Collapse
|
12
|
Hong EH, Cho J, Ahn JH, Kwon BE, Kweon MN, Seo SU, Yoon BI, Chang SY, Ko HJ. Plasmacytoid dendritic cells regulate colitis-associated tumorigenesis by controlling myeloid-derived suppressor cell infiltration. Cancer Lett 2020; 493:102-112. [PMID: 32810576 DOI: 10.1016/j.canlet.2020.08.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/23/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022]
Abstract
Toll-like receptor (TLR)3 and TLR7 are important for stimulating plasmacytoid dendritic cells (pDCs), which secrete type I interferon. Mice deficient for TLR3 and TLR7 (TLR3-/-TLR7-/-) reportedly exhibit deteriorated colitis because of impaired pDCs. However, the role of pDCs in tumorigenesis-associated inflammation progression has not been studied. We treated wild-type or TLR3-/-TLR7-/- mice with dextran sulfate sodium (DSS) and/or azoxymethane (AOM) and examined colon mucosa, measured body weight and colon length of mice, and examined pDC and myeloid-derived suppressor cell (MDSC) accumulation. Further, we depleted pDCs in AOM/DSS-treated wild-type mice by treating them with anti-PDCA-1 antibodies. We found that MDSCs significantly increased, while pDCs decreased in TLR3-/-TLR7-/- mice. Moreover, TLR3-/-TLR7-/- mice developed colitis-associated colon cancer following AOM/DSS treatment. Additionally, we showed that a defect in TLR7 of pDCs is responsible for the aggravation of colitis-associated colon cancer. Further, we showed that TLR7 ligand mitigates colitis-associated colon cancer. Collectively, our results demonstrate that gut pDCs play a crucial role in reducing colorectal cancer development via the regulation of infiltrating MDSCs.
Collapse
Affiliation(s)
- Eun-Hye Hong
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jaewon Cho
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Jae-Hee Ahn
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Bo-Eun Kwon
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea
| | - Mi-Na Kweon
- Mucosal Immunology Laboratory, Department of Convergence Medicine, University of Ulsan College of Medicine/Asan Medical Center, Seoul, 05505, South Korea
| | - Sang-Uk Seo
- Department of Microbiology, College of Medicine, The Catholic University of Korea, Seoul, 05505, South Korea
| | - Byung-Il Yoon
- Laboratory of Histology and Molecular Pathogenesis, College of Veterinary Medicine, Kangwon National University, Chuncheon, 24341, South Korea
| | - Sun-Young Chang
- Laboratory of Microbiology, College of Pharmacy, Ajou University, Suwon, 16499, South Korea
| | - Hyun-Jeong Ko
- Laboratory of Microbiology and Immunology, College of Pharmacy, Kangwon National University, Chuncheon, 24341, South Korea.
| |
Collapse
|
13
|
Butterfield JS, Biswas M, Shirley JL, Kumar SR, Sherman A, Terhorst C, Ling C, Herzog RW. TLR9-Activating CpG-B ODN but Not TLR7 Agonists Triggers Antibody Formation to Factor IX in Muscle Gene Transfer. Hum Gene Ther Methods 2019; 30:81-92. [PMID: 31140323 PMCID: PMC6590725 DOI: 10.1089/hgtb.2019.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/20/2019] [Indexed: 02/07/2023] Open
Abstract
Innate immune signals that promote B cell responses in gene transfer are generally ill-defined. In this study, we evaluate the effect of activating endosomal Toll-like receptors 7, 8, and 9 (TLR7, TLR7/8, and TLR9) on antibody formation during muscle-directed gene therapy with adeno-associated virus (AAV) vectors. We examined whether activation of endosomal TLRs, by adenine analog CL264 (TLR7 agonist), imidazolquinolone compound R848 (TLR7/8 agonist), or class B CpG oligodeoxynucleotides ODN1826 (TLR9 agonist), could augment antibody formation upon intramuscular administration of AAV1 expressing human clotting factor IX (AAV1-hFIX) in mice. The TLR9 agonist robustly enhanced antibody formation by the 1st week, thus initially eliminating systemic hFIX expression. By contrast, the TLR7 and TLR7/8 agonists did not markedly promote antibody formation, or significantly reduce circulating hFIX. We concurrently investigated the effects of these TLR agonists during muscle gene transfer on mature B cells and dendritic cells (DCs) in the draining lymph nodes including conventional DCs (CD11b+ or CD8α+ cDCs), monocyte-derived dendritic cells (moDCs), and plasmacytoid dendritic cells (pDCs). Only TLR9 stimulation caused a striking increase in the frequency of moDCs within 24 h. The TLR7/8 and TLR9 agonists activated pDCs, both subsets of cDCs, and mature B cells, whereas the TLR7 agonist had only mild effects on these cells. Thus, these TLR ligands have distinct effects on DCs and mature B cells, yet only the TLR9 agonist enhanced the humoral immune response against AAV-expressed hFIX. These new findings indicate a unique ability of certain TLR9 agonists to stimulate B cell responses in muscle gene transfer through enrichment of moDCs.
Collapse
Affiliation(s)
| | - Moanaro Biswas
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
| | - Jamie L. Shirley
- Department of Pediatrics, University of Florida, Gainesville, Florida
| | - Sandeep R.P. Kumar
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| | - Alexandra Sherman
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| | - Cox Terhorst
- Division of Immunology, Beth Israel Deaconess Medical Center (BIDMC), Harvard Medical School, Boston, Massachusetts
| | - Chen Ling
- Department of Pediatrics, University of Florida, Gainesville, Florida
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Roland W. Herzog
- Department of Pediatrics, University of Florida, Gainesville, Florida
- Department of Pediatrics, Indiana University, Indianapolis, Indiana
- Herman B Wells Center for Pediatric Research, IAPUI, Indianapolis, Indiana
| |
Collapse
|