1
|
Opsasnick LA, Zhao W, Schmitz LL, Ratliff SM, Faul JD, Zhou X, Needham BL, Smith JA. Epigenome-wide association study of long-term psychosocial stress in older adults. Epigenetics 2024; 19:2323907. [PMID: 38431869 PMCID: PMC10913704 DOI: 10.1080/15592294.2024.2323907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Long-term psychosocial stress is strongly associated with negative physical and mental health outcomes, as well as adverse health behaviours; however, little is known about the role that stress plays on the epigenome. One proposed mechanism by which stress affects DNA methylation is through health behaviours. We conducted an epigenome-wide association study (EWAS) of cumulative psychosocial stress (n = 2,689) from the Health and Retirement Study (mean age = 70.4 years), assessing DNA methylation (Illumina Infinium HumanMethylationEPIC Beadchip) at 789,656 CpG sites. For identified CpG sites, we conducted a formal mediation analysis to examine whether smoking, alcohol use, physical activity, and body mass index (BMI) mediate the relationship between stress and DNA methylation. Nine CpG sites were associated with psychosocial stress (all p < 9E-07; FDR q < 0.10). Additionally, health behaviours and/or BMI mediated 9.4% to 21.8% of the relationship between stress and methylation at eight of the nine CpGs. Several of the identified CpGs were in or near genes associated with cardiometabolic traits, psychosocial disorders, inflammation, and smoking. These findings support our hypothesis that psychosocial stress is associated with DNA methylation across the epigenome. Furthermore, specific health behaviours mediate only a modest percentage of this relationship, providing evidence that other mechanisms may link stress and DNA methylation.
Collapse
Affiliation(s)
- Lauren A. Opsasnick
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Wei Zhao
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Lauren L. Schmitz
- Robert M. La Follette School of Public Affairs, University of Wisconsin-Madison, Madison, WI, USA
| | - Scott M. Ratliff
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jessica D. Faul
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| | - Xiang Zhou
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Belinda L. Needham
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Jennifer A. Smith
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, USA
- Survey Research Center, Institute for Social Research, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
2
|
Winful T, Sorunke M, Benn Torres J. Exploring the Relationship Between Stress, Salivary C-Reactive Protein, and Embodied Physiological Responses in a Nigerian Population. Am J Hum Biol 2024:e24158. [PMID: 39318111 DOI: 10.1002/ajhb.24158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/26/2024] Open
Abstract
OBJECTIVES The impacts of stress on inflammation, although hypothesized, have not been thoroughly examined, especially in relation to social and environmental factors and particularly within Black populations. This study aims to explore the biological mechanisms of embodiment linking stress and health to understand physiological changes in the body's response to psychological stress in a Nigerian population. Through a multidisciplinary approach, this study queries the relationship between stress, cortisol, and salivary C-reactive protein (sCRP), a biomarker of inflammation, while also validating the use of sCRP as a potential and accurate stress indicator in the field. METHODS In this cross-sectional study, 138 passive drool saliva samples (nfemale = 89 nmale = 49) were collected and assessed for sCRP and cortisol levels in adults. Participants also completed a short demographic survey and, to measure psychological stress, the General Health Questionnaire 12 (GHQ-12). Relationships between sCRP and stress-related variables (i.e., cortisol, GHQ-12, and demographic data) were assessed using Spearman's correlations, simple regression, multivariable linear regression, and exploratory factor analysis. RESULTS sCRP levels ranged from 20.57 to 6879.41 pg/mL across all samples, with significant differences between female and male participants. The GHQ-12 was not a significant predictor of sCRP variability. However, socio-demographic factors such as body mass index (BMI), age, self-reported sex, ethnic identity, and cortisol were significant predictors, collectively explaining 24%-27% of the variation in sCRP. CONCLUSION Socio-demographic predictors like BMI, age, sex, and particularly ethnic group experience in Nigeria encapsulate aspects of embodied stress, that significantly affect sCRP variability.
Collapse
Affiliation(s)
- Taiye Winful
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
- Department of Anthropology, University of Illinois Urbana Champaign, Champaign, Illinois, USA
| | - Modupe Sorunke
- Department of Preventive Dentistry, Lagos State University College of Medicine (LASUCOM), Ikeja-Lagos, Nigeria
| | - Jada Benn Torres
- Department of Anthropology, Genetic Anthropology and Biocultural Studies Laboratory, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
3
|
Raghul Kannan S, Tamizhselvi R. N-acetyltransferase and inflammation: Bridging an unexplored niche. Gene 2023; 887:147730. [PMID: 37625560 DOI: 10.1016/j.gene.2023.147730] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 08/27/2023]
Abstract
Protein N-terminal (Nt) acetylation is an essential post-translational process catalysed by N-acetyltransferases or N-terminal acetyltransferases (NATs). Over the past several decades, several types of NATs (NatA- NatH) have been identified along with their substrates, explaining their significance in eukaryotes. It affects protein stability, protein degradation, protein translocation, and protein-protein interaction. NATs have recently drawn attention as they are associated with the pathogenesis of human diseases. In particular, NAT-induced epigenetic modifications play an important role in the control of mitochondrial function, which may lead to inflammatory diseases. NatC knockdown causes a marked reduction in mitochondrial membrane proteins, impairing their functions, and NatA affects mitophagy via reduced phosphorylation and transcription of the autophagy receptor. However, the NAT-mediated mitochondrial epigenetic mechanisms involved in the inflammatory process remain unexplored. The current review will impart an overview of the biological functions and aberrations of various NAT, which may provide a novel therapeutic strategy for inflammatory disorders.
Collapse
Affiliation(s)
- Sampath Raghul Kannan
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Ramasamy Tamizhselvi
- School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| |
Collapse
|
4
|
Smolen P, Dash PK, Redell JB. Traumatic brain injury-associated epigenetic changes and the risk for neurodegenerative diseases. Front Neurosci 2023; 17:1259405. [PMID: 37795186 PMCID: PMC10546067 DOI: 10.3389/fnins.2023.1259405] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Epidemiological studies have shown that traumatic brain injury (TBI) increases the risk for developing neurodegenerative diseases (NDs). However, molecular mechanisms that underlie this risk are largely unidentified. TBI triggers widespread epigenetic modifications. Similarly, NDs such as Alzheimer's or Parkinson's are associated with numerous epigenetic changes. Although epigenetic changes can persist after TBI, it is unresolved if these modifications increase the risk of later ND development and/or dementia. We briefly review TBI-related epigenetic changes, and point out putative feedback loops that might contribute to long-term persistence of some modifications. We then focus on evidence suggesting persistent TBI-associated epigenetic changes may contribute to pathological processes (e.g., neuroinflammation) which may facilitate the development of specific NDs - Alzheimer's disease, Parkinson's disease, or chronic traumatic encephalopathy. Finally, we discuss possible directions for TBI therapies that may help prevent or delay development of NDs.
Collapse
Affiliation(s)
- Paul Smolen
- Department of Neurobiology and Anatomy, McGovern Medical School, University of Texas Health Science Center, Houston, TX, United States
| | | | | |
Collapse
|
5
|
Dongiovanni P, Meroni M, Casati S, Goldoni R, Thomaz DV, Kehr NS, Galimberti D, Del Fabbro M, Tartaglia GM. Salivary biomarkers: novel noninvasive tools to diagnose chronic inflammation. Int J Oral Sci 2023; 15:27. [PMID: 37386003 DOI: 10.1038/s41368-023-00231-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Several chronic disorders including type 2 diabetes (T2D), obesity, heart disease and cancer are preceded by a state of chronic low-grade inflammation. Biomarkers for the early assessment of chronic disorders encompass acute phase proteins (APP), cytokines and chemokines, pro-inflammatory enzymes, lipids and oxidative stress mediators. These substances enter saliva through the blood flow and, in some cases, there is a close relation between their salivary and serum concentration. Saliva can be easily collected and stored with non-invasive and cost-saving procedures, and it is emerging the concept to use it for the detection of inflammatory biomarkers. To this purpose, the present review aims to discuss the advantages and challenges of using standard and cutting-edge techniques to discover salivary biomarkers which may be used in diagnosis/therapy of several chronic diseases with inflammatory consequences with the pursuit to possibly replace conventional paths with detectable soluble mediators in saliva. Specifically, the review describes the procedures used for saliva collection, the standard approaches for the measurement of salivary biomarkers and the novel methodological strategies such as biosensors to improve the quality of care for chronically affected patients.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Riccardo Goldoni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, CNR, Pisa, Italy
| | - Douglas Vieira Thomaz
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nermin Seda Kehr
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Chemistry, İzmir Institute of Technology, Gülbahçe Kampüsü, Urla İzmir, Turkey
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurology-Neurodegenerative Diseases, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
6
|
Madhu V, Hernandez-Meadows M, Boneski PK, Qiu Y, Guntur AR, Kurland IJ, Barve RA, Risbud MV. The mitophagy receptor BNIP3 is critical for the regulation of metabolic homeostasis and mitochondrial function in the nucleus pulposus cells of the intervertebral disc. Autophagy 2023; 19:1821-1843. [PMID: 36628478 PMCID: PMC10262801 DOI: 10.1080/15548627.2022.2162245] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/12/2023] Open
Abstract
The contribution of mitochondria to the metabolic function of hypoxic NP cells has been overlooked. We have shown that NP cells contain networked mitochondria and that mitochondrial translocation of BNIP3 mediates hypoxia-induced mitophagy. However, whether BNIP3 also plays a role in governing mitochondrial function and metabolism in hypoxic NP cells is not known. BNIP3 knockdown altered mitochondrial morphology, and number, and increased mitophagy. Interestingly, BNIP3 deficiency in NP cells reduced glycolytic capacity reflected by lower production of lactate/H+ and lower ATP production rate. Widely targeted metabolic profiling and flux analysis using 1-2-13C-glucose showed that the BNIP3 loss resulted in redirection of glycolytic flux into pentose phosphate and hexosamine biosynthesis as well as pyruvate resulting in increased TCA flux. An overall reduction in one-carbon metabolism was noted suggesting reduced biosynthesis. U13C-glutamine flux analysis showed preservation of glutamine utilization to maintain TCA intermediates. The transcriptomic analysis of the BNIP3-deficient cells showed dysregulation of cellular functions including membrane and cytoskeletal integrity, ECM-growth factor signaling, and protein quality control with an overall increase in themes related to angiogenesis and innate immune response. Importantly, we observed strong thematic similarities with the transcriptome of a subset of human degenerative samples. Last, we noted increased autophagic flux, decreased disc height index and aberrant COL10A1/collagen X expression, signs of early disc degeneration in young adult bnip3 knockout mice. These results suggested that in addition to mitophagy regulation, BNIP3 plays a role in maintaining mitochondrial function and metabolism, and dysregulation of mitochondrial homeostasis could promote disc degeneration.Abbreviations: ECAR extracellular acidification rate; HIF hypoxia inducible factor; MFA metabolic flux analysis; NP nucleus pulposus; OCR oxygen consumption rate; ShBnip3 short-hairpin Bnip3.
Collapse
Affiliation(s)
- Vedavathi Madhu
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Miriam Hernandez-Meadows
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Paige K Boneski
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Yunping Qiu
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Anyonya R Guntur
- Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, ME, USA
| | - Irwin J. Kurland
- Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ruteja A Barve
- Department of Genetics, Genome Technology Access Centre at the McDonnell Genome Institute, Washington University, School of Medicine, St. Louis, MO, USA
| | - Makarand V. Risbud
- Department of Orthopaedic Surgery, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Stevenson AJ, McCartney DL, Gadd DA, Shireby G, Hillary RF, King D, Tzioras M, Wrobel N, McCafferty S, Murphy L, McColl BW, Redmond P, Taylor AM, Harris SE, Russ TC, McIntosh AM, Mill J, Smith C, Deary IJ, Cox SR, Marioni RE, Spires‐Jones TL. A comparison of blood and brain-derived ageing and inflammation-related DNA methylation signatures and their association with microglial burdens. Eur J Neurosci 2022; 56:5637-5649. [PMID: 35362642 PMCID: PMC9525452 DOI: 10.1111/ejn.15661] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/18/2022] [Accepted: 03/29/2022] [Indexed: 12/31/2022]
Abstract
Inflammation and ageing-related DNA methylation patterns in the blood have been linked to a variety of morbidities, including cognitive decline and neurodegenerative disease. However, it is unclear how these blood-based patterns relate to patterns within the brain and how each associates with central cellular profiles. In this study, we profiled DNA methylation in both the blood and in five post mortem brain regions (BA17, BA20/21, BA24, BA46 and hippocampus) in 14 individuals from the Lothian Birth Cohort 1936. Microglial burdens were additionally quantified in the same brain regions. DNA methylation signatures of five epigenetic ageing biomarkers ('epigenetic clocks'), and two inflammatory biomarkers (methylation proxies for C-reactive protein and interleukin-6) were compared across tissues and regions. Divergent associations between the inflammation and ageing signatures in the blood and brain were identified, depending on region assessed. Four out of the five assessed epigenetic age acceleration measures were found to be highest in the hippocampus (β range = 0.83-1.14, p ≤ 0.02). The inflammation-related DNA methylation signatures showed no clear variation across brain regions. Reactive microglial burdens were found to be highest in the hippocampus (β = 1.32, p = 5 × 10-4 ); however, the only association identified between the blood- and brain-based methylation signatures and microglia was a significant positive association with acceleration of one epigenetic clock (termed DNAm PhenoAge) averaged over all five brain regions (β = 0.40, p = 0.002). This work highlights a potential vulnerability of the hippocampus to epigenetic ageing and provides preliminary evidence of a relationship between DNA methylation signatures in the brain and differences in microglial burdens.
Collapse
Affiliation(s)
- Anna J. Stevenson
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Daniel L. McCartney
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Danni A. Gadd
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Gemma Shireby
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Robert F. Hillary
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Declan King
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Makis Tzioras
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Nicola Wrobel
- Edinburgh Clinical Research FacilityWestern General HospitalEdinburghUK
| | - Sarah McCafferty
- Edinburgh Clinical Research FacilityWestern General HospitalEdinburghUK
| | - Lee Murphy
- Edinburgh Clinical Research FacilityWestern General HospitalEdinburghUK
| | - Barry W. McColl
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| | - Paul Redmond
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
| | | | - Sarah E. Harris
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Tom C. Russ
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
- Alzheimer Scotland Dementia Research Centre, 7 George SquareUniversity of EdinburghEdinburghUK
- Division of PsychiatryUniversity of Edinburgh, Royal Edinburgh HospitalEdinburghUK
| | - Andrew M. McIntosh
- Division of PsychiatryUniversity of Edinburgh, Royal Edinburgh HospitalEdinburghUK
| | - Jonathan Mill
- University of Exeter Medical SchoolUniversity of ExeterExeterUK
| | - Colin Smith
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Ian J. Deary
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Simon R. Cox
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
- Department of PsychologyUniversity of EdinburghEdinburghUK
| | - Riccardo E. Marioni
- Centre for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
- Lothian Birth CohortsUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
- UK Dementia Research InstituteUniversity of EdinburghEdinburghUK
| |
Collapse
|
8
|
Azimzadeh O, Moertl S, Ramadan R, Baselet B, Laiakis EC, Sebastian S, Beaton D, Hartikainen JM, Kaiser JC, Beheshti A, Salomaa S, Chauhan V, Hamada N. Application of radiation omics in the development of adverse outcome pathway networks: an example of radiation-induced cardiovascular disease. Int J Radiat Biol 2022; 98:1722-1751. [PMID: 35976069 DOI: 10.1080/09553002.2022.2110325] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND Epidemiological studies have indicated that exposure of the heart to doses of ionizing radiation as low as 0.5 Gy increases the risk of cardiac morbidity and mortality with a latency period of decades. The damaging effects of radiation to myocardial and endothelial structures and functions have been confirmed radiobiologically at high dose, but much less is known at low dose. Integration of radiation biology and epidemiology data is a recommended approach to improve the radiation risk assessment process. The adverse outcome pathway (AOP) framework offers a comprehensive tool to compile and translate mechanistic information into pathological endpoints which may be relevant for risk assessment at the different levels of a biological system. Omics technologies enable the generation of large volumes of biological data at various levels of complexity, from molecular pathways to functional organisms. Given the quality and quantity of available data across levels of biology, omics data can be attractive sources of information for use within the AOP framework. It is anticipated that radiation omics studies could improve our understanding of the molecular mechanisms behind the adverse effects of radiation on the cardiovascular system. In this review, we explored the available omics studies on radiation-induced cardiovascular disease (CVD) and their applicability to the proposed AOP for CVD. RESULTS The results of 80 omics studies published on radiation-induced CVD over the past 20 years have been discussed in the context of the AOP of CVD proposed by Chauhan et al. Most of the available omics data on radiation-induced CVD are from proteomics, transcriptomics, and metabolomics, whereas few datasets were available from epigenomics and multi-omics. The omics data presented here show great promise in providing information for several key events of the proposed AOP of CVD, particularly oxidative stress, alterations of energy metabolism, extracellular matrix and vascular remodeling. CONCLUSIONS The omics data presented here shows promise to inform the various levels of the proposed AOP of CVD. However, the data highlight the urgent need of designing omics studies to address the knowledge gap concerning different radiation scenarios, time after exposure and experimental models. This review presents the evidence to build a qualitative omics-informed AOP and provides views on the potential benefits and challenges in using omics data to assess risk-related outcomes.
Collapse
Affiliation(s)
- Omid Azimzadeh
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection (BfS), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Raghda Ramadan
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Bjorn Baselet
- Institute for Environment, Health and Safety, Radiobiology Unit, Belgian Nuclear Research Centre (SCK CEN), Mol, Belgium
| | - Evagelia C Laiakis
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA.,Department of Biochemistry and Molecular and Cellular Biology, Georgetown University, Washington, DC 20057, USA
| | | | | | - Jaana M Hartikainen
- School of Medicine, Institute of Clinical Medicine, Pathology and Forensic Medicine, and Translational Cancer Research Area, University of Eastern Finland, Kuopio, Finland
| | - Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine (HMGU-IRM), 85764 Neuherberg, Germany
| | - Afshin Beheshti
- KBR, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, 94035, USA.,Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Sisko Salomaa
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo 201-8511, Japan
| |
Collapse
|
9
|
Yang S, Huang Y, Zhao Q. Epigenetic Alterations and Inflammation as Emerging Use for the Advancement of Treatment in Non-Small Cell Lung Cancer. Front Immunol 2022; 13:878740. [PMID: 35514980 PMCID: PMC9066637 DOI: 10.3389/fimmu.2022.878740] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 03/21/2022] [Indexed: 12/26/2022] Open
Abstract
Lung cancer remains one of the most common malignancies in the world. Nowadays, the most common lung cancer is non-small cell lung cancer (NSCLC), namely, adenocarcinoma, squamous cell carcinoma, and large cell lung carcinoma. Epigenetic alterations that refer to DNA methylation, histone modifications, and noncoding RNA expression, are now suggested to drive the genesis and development of NSCLC. Additionally, inflammation-related tumorigenesis also plays a vital role in cancer research and efforts have been attempted to reverse such condition. During the occurrence and development of inflammatory diseases, the immune component of inflammation may cause epigenetic changes, but it is not always certain whether the immune component itself or the stimulated host cells cause epigenetic changes. Moreover, the links between epigenetic alterations and cancer-related inflammation and their influences on the human cancer are not clear so far. Therefore, the connection between epigenetic drivers, inflammation, and NSCLC will be summarized. Investigation on such topic is most likely to shed light on the molecular and immunological mechanisms of epigenetic and inflammatory factors and promote the application of epigenetics in the innovative diagnostic and therapeutic strategies for NSCLC.
Collapse
Affiliation(s)
- Shuo Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Yang Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| | - Qi Zhao
- Cancer Centre, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, Macau SAR, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau, Macau SAR, China
- *Correspondence: Shuo Yang, ; Yang Huang, ; Qi Zhao,
| |
Collapse
|
10
|
Costa TJ, De Oliveira JC, Giachini FR, Lima VV, Tostes RC, Bomfim GF. Programming of Vascular Dysfunction by Maternal Stress: Immune System Implications. Front Physiol 2022; 13:787617. [PMID: 35360231 PMCID: PMC8961444 DOI: 10.3389/fphys.2022.787617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/13/2022] Open
Abstract
A growing body of evidence highlights that several insults during pregnancy impact the vascular function and immune response of the male and female offspring. Overactivation of the immune system negatively influences cardiovascular function and contributes to cardiovascular disease. In this review, we propose that modulation of the immune system is a potential link between prenatal stress and offspring vascular dysfunction. Glucocorticoids are key mediators of stress and modulate the inflammatory response. The potential mechanisms whereby prenatal stress negatively impacts vascular function in the offspring, including poor hypothalamic–pituitary–adrenal axis regulation of inflammatory response, activation of Th17 cells, renin–angiotensin–aldosterone system hyperactivation, reactive oxygen species imbalance, generation of neoantigens and TLR4 activation, are discussed. Alterations in the immune system by maternal stress during pregnancy have broad relevance for vascular dysfunction and immune-mediated diseases, such as cardiovascular disease.
Collapse
Affiliation(s)
- Tiago J. Costa
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Júlio Cezar De Oliveira
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Fernanda Regina Giachini
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Victor Vitorino Lima
- Institute of Biological Sciences and Health, Federal University of Mato Grosso, Barra do Garças, Brazil
| | - Rita C. Tostes
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
| | - Gisele Facholi Bomfim
- Health Education Research Center (NUPADS), Institute of Health Sciences, Federal University of Mato Grosso, Sinop, Brazil
- *Correspondence: Gisele Facholi Bomfim,
| |
Collapse
|
11
|
Wang C, Cardenas A, Hutchinson JN, Just A, Heiss J, Hou L, Zheng Y, Coull BA, Kosheleva A, Koutrakis P, Baccarelli AA, Schwartz JD. Short- and intermediate-term exposure to ambient fine particulate elements and leukocyte epigenome-wide DNA methylation in older men: the Normative Aging Study. ENVIRONMENT INTERNATIONAL 2022; 158:106955. [PMID: 34717175 PMCID: PMC8710082 DOI: 10.1016/j.envint.2021.106955] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/18/2021] [Accepted: 10/22/2021] [Indexed: 05/08/2023]
Abstract
BACKGROUND Several epigenome-wide association studies (EWAS) of ambient particulate matter with aerodynamic diameter ≤ 2.5 µm (PM2.5) have been reported. However, EWAS of PM2.5 elements (PEs), reflecting different emission sources, are very limited. OBJECTIVES We performed EWAS of short- and intermediate-term exposure to PM2.5 and 13 PEs. We hypothesized that significant changes in DNAm may vary by PM2.5 mass and its elements. METHODS We repeatedly collected blood samples in the Normative Aging Study and measured leukocyte DNA methylation (DNAm) with the Illumina HumanMethylation450K BeadChip. We collected daily PM2.5 and 13 PEs at a fixed central site. To estimate the associations between each PE and DNAm at individual cytosine-phosphate-guanine (CpG) sites, we incorporated a distributed-lag (0-27 d) term in the setting of median regression with subject-specific intercept and examined cumulative lag associations. We also accounted for selection bias due to loss to follow-up and mortality prior to enrollment. Significantly differentially methylated probes (DMPs) were identified using Bonferroni correction for multiple testing. We further conducted regional and pathway analyses to identify significantly differentially methylated regions (DMRs) and pathways. RESULTS We included 695 men with 1,266 visits between 1999 and 2013. The subjects had a mean age of 75 years. The significant DMPs, DMRs, and pathways varied by to PM2.5 total mass and PEs. For example, PM2.5 total mass was associated with 2,717 DMPs and 10,470 DMRs whereas Pb was associated with 3,173 DMPs and 637 DMRs. The identified pathways by PM2.5 mass were mostly involved in mood disorders, neuroplasticity, immunity, and inflammation, whereas the pathways associated with motor vehicles (BC, Cu, Pb, and Zn) were related with cardiovascular disease and cancer (e.g., "PPARs signaling"). CONCLUSIONS PM2.5 and PE were associated with methylation changes at multiple probes and along multiple pathways, in ways that varied by particle components.
Collapse
Affiliation(s)
- Cuicui Wang
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA.
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health and Center for Computational Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - John N Hutchinson
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Allan Just
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jonathan Heiss
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Lifang Hou
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yinan Zheng
- Department of Preventive Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Brent A Coull
- Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Petros Koutrakis
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia Mailman School of Public Health, New York, NY 10032, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
12
|
Das D, Karthik N, Taneja R. Crosstalk Between Inflammatory Signaling and Methylation in Cancer. Front Cell Dev Biol 2021; 9:756458. [PMID: 34901003 PMCID: PMC8652226 DOI: 10.3389/fcell.2021.756458] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/11/2021] [Indexed: 01/08/2023] Open
Abstract
Inflammation is an intricate immune response against infection and tissue damage. While the initial immune response is important for preventing tumorigenesis, chronic inflammation is implicated in cancer pathogenesis. It has been linked to various stages of tumor development including transformation, proliferation, angiogenesis, and metastasis. Immune cells, through the production of inflammatory mediators such as cytokines, chemokines, transforming growth factors, and adhesion molecules contribute to the survival, growth, and progression of the tumor in its microenvironment. The aberrant expression and secretion of pro-inflammatory and growth factors by the tumor cells result in the recruitment of immune cells, thus creating a mutual crosstalk. The reciprocal signaling between the tumor cells and the immune cells creates and maintains a successful tumor niche. Many inflammatory factors are regulated by epigenetic mechanisms including DNA methylation and histone modifications. In particular, DNA and histone methylation are crucial forms of transcriptional regulation and aberrant methylation has been associated with deregulated gene expression in oncogenesis. Such deregulations have been reported in both solid tumors and hematological malignancies. With technological advancements to study genome-wide epigenetic landscapes, it is now possible to identify molecular mechanisms underlying altered inflammatory profiles in cancer. In this review, we discuss the role of DNA and histone methylation in regulation of inflammatory pathways in human cancers and review the merits and challenges of targeting inflammatory mediators as well as epigenetic regulators in cancer.
Collapse
Affiliation(s)
- Dipanwita Das
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Nandini Karthik
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Reshma Taneja
- Department of Physiology, Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Sethumadhavan DV, Jabeena CA, Govindaraju G, Soman A, Rajavelu A. The severity of SARS-CoV-2 infection is dictated by host factors? Epigenetic perspectives. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100079. [PMID: 34725650 PMCID: PMC8550886 DOI: 10.1016/j.crmicr.2021.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/02/2021] [Accepted: 10/24/2021] [Indexed: 12/15/2022] Open
Abstract
The emergence of COVID-19, caused by SARS-CoV-2 poses a significant threat to humans as it is highly contagious with increasing mortality. There exists a high degree of heterogeneity in the mortality rates of COVID-19 across the globe. There are multiple speculations on the varying degree of mortality. Still, all the clinical reports have indicated that preexisting chronic diseases like hypertension, diabetes, chronic obstructive pulmonary disease (COPD), kidney disorders, and cardiovascular diseases are associated with the increased risk for high mortality in SARS-CoV-2 infected patients. It is worth noting that host factors, mainly epigenetic factors could play a significant role in deciding the outcome of COVID-19 diseases. Over the recent years, it is evident that chronic diseases are developed due to altered epigenome that includes a selective loss/gain of DNA and histone methylation on the chromatin of the cells. Since, there is a high positive correlation between chronic diseases and elevated mortality due to SARS-CoV-2, in this review; we discuss the overall picture of the aberrant epigenome map in varying chronic ailments and its implications in COVID-19 disease severity and high mortality.
Collapse
Affiliation(s)
- Devadathan Valiyamangalath Sethumadhavan
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - C A Jabeena
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Gayathri Govindaraju
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Manipal Academy of Higher Education (MAHE), Tiger Circle Road, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Aparna Soman
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India
| | - Arumugam Rajavelu
- Pathogen Biology, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud PO, Thiruvananthapuram 695014, Kerala, India.,Department of Biotechnology, Bhupat & Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu 600 036, India
| |
Collapse
|
14
|
Yadav A, Huang TC, Chen SH, Ramasamy TS, Hsueh YY, Lin SP, Lu FI, Liu YH, Wu CC. Sodium phenylbutyrate inhibits Schwann cell inflammation via HDAC and NFκB to promote axonal regeneration and remyelination. J Neuroinflammation 2021; 18:238. [PMID: 34656124 PMCID: PMC8520633 DOI: 10.1186/s12974-021-02273-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/08/2021] [Indexed: 11/24/2022] Open
Abstract
Background Epigenetic regulation by histone deacetylases (HDACs) in Schwann cells (SCs) after injury facilitates them to undergo de- and redifferentiation processes necessary to support various stages of nerve repair. Although de-differentiation activates the synthesis and secretion of inflammatory cytokines by SCs to initiate an immune response during nerve repair, changes in either the timing or duration of prolonged inflammation mediated by SCs can affect later processes associated with repair and regeneration. Limited studies have investigated the regulatory processes through which HDACs in SCs control inflammatory cytokines to provide a favorable environment for peripheral nerve regeneration. Methods We employed the HDAC inhibitor (HDACi) sodium phenylbutyrate (PBA) to address this question in an in vitro RT4 SC inflammation model and an in vivo sciatic nerve transection injury model to examine the effects of HDAC inhibition on the expression of pro-inflammatory cytokines. Furthermore, we assessed the outcomes of suppression of extended inflammation on the regenerative potential of nerves by assessing axonal regeneration, remyelination, and reinnervation. Results Significant reductions in lipopolysaccharide (LPS)-induced pro-inflammatory cytokine (tumor necrosis factor-α [TNFα]) expression and secretion were observed in vitro following PBA treatment. PBA treatment also affected the transient changes in nuclear factor κB (NFκB)-p65 phosphorylation and translocation in response to LPS induction in RT4 SCs. Similarly, PBA mediated long-term suppressive effects on HDAC3 expression and activity. PBA administration resulted in marked inhibition of pro-inflammatory cytokine secretion at the site of transection injury when compared with that in the hydrogel control group at 6-week post-injury. A conducive microenvironment for axonal regrowth and remyelination was generated by increasing expression levels of protein gene product 9.5 (PGP9.5) and myelin basic protein (MBP) in regenerating nerve tissues. PBA administration increased the relative gastrocnemius muscle weight percentage and maintained the intactness of muscle bundles when compared with those in the hydrogel control group. Conclusions Suppressing the lengthened state of inflammation using PBA treatment favors axonal regrowth and remyelination following nerve transection injury. PBA treatment also regulates pro-inflammatory cytokine expression by inhibiting the transcriptional activation of NFκB-p65 and HDAC3 in SCs in vitro. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-021-02273-1.
Collapse
Affiliation(s)
- Anjali Yadav
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, Academia Sinica, Taipei, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Tzu-Chieh Huang
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan
| | - Szu-Han Chen
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Thamil Selvee Ramasamy
- Stem Cell Biology Laboratory, Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yuan-Yu Hsueh
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan.,Division of Plastic and Reconstructive Surgery, Department of Surgery, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Shau-Ping Lin
- Institute of Biotechnology, College of Bio-Resources and Agriculture, National Taiwan University, Taipei, Taiwan
| | - Fu-I Lu
- Department of Biotechnology and Bioindustry Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Ya-Hsin Liu
- Department of Life Sciences, College of Bioscience and Biotechnology, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan. .,International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan. .,Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
15
|
Caputi FF, Carboni L, Rullo L, Alessandrini I, Balzani E, Melotti RM, Romualdi P, Candeletti S, Fanelli A. An Exploratory Pilot Study of Changes in Global DNA Methylation in Patients Undergoing Major Breast Surgery Under Opioid-Based General Anesthesia. Front Pharmacol 2021; 12:733577. [PMID: 34621169 PMCID: PMC8491974 DOI: 10.3389/fphar.2021.733577] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/06/2021] [Indexed: 12/30/2022] Open
Abstract
This study aimed to investigate DNA methylation levels in patients undergoing major breast surgery under opioid-based general anesthesia. Blood samples were collected from eleven enrolled patients, before, during and after anesthesia. PBMC were isolated and global DNA methylation levels as well as DNA methyltransferase (DNMT) and cytokine gene expression were assessed. DNA methylation levels significantly declined by 26%, reversing the direction after the end of surgery. Likewise, DNMT1a mRNA expression was significantly reduced at all time points, with lowest level of −68%. DNMT3a and DNMT3b decreased by 65 and 71%, respectively. Inflammatory cytokines IL6 and TNFα mRNA levels showed a trend for increased expression at early time-points to end with a significant decrease at 48 h after surgery. This exploratory study revealed for the first time intraoperative global DNA hypomethylation in patients undergoing major breast surgery under general anesthesia with fentanyl. The alterations of global DNA methylation here observed seem to be in agreement with DNMTs gene expression changes. Furthermore, based on perioperative variations of IL6 and TNFα gene expression, we hypothesize that DNA hypomethylation may occur as a response to surgical stress rather than to opiate exposure.
Collapse
Affiliation(s)
- Francesca Felicia Caputi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Laura Rullo
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Irene Alessandrini
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Eleonora Balzani
- Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Rita Maria Melotti
- Department of Surgical and Medical Sciences, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Sanzio Candeletti
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Andrea Fanelli
- Anesthesiology and Pain Therapy Unit, AOSP S.Orsola Hospital, Bologna, Italy
| |
Collapse
|
16
|
Saini G, Swahn MH, Aneja R. Disentangling the Coronavirus Disease 2019 Health Disparities in African Americans: Biological, Environmental, and Social Factors. Open Forum Infect Dis 2021; 8:ofab064. [PMID: 33732752 PMCID: PMC7928626 DOI: 10.1093/ofid/ofab064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 02/01/2021] [Indexed: 12/12/2022] Open
Abstract
The stark racial disparities related to the coronavirus disease 2019 (COVID-19) pandemic in the United States, wherein minority populations are disproportionately getting infected and succumbing to the disease, is of grave concern. It is critical to understand and address the underlying causes of these disparities that are complex and driven by interacting environmental, social and biological factors. In this article we focus on the African American community and examine how social and environmental determinants of health intersect with biological factors (comorbidities, underlying genetics, host immunity, vitamin D levels, epigenetics) to exacerbate risk for morbidity and mortality.
Collapse
Affiliation(s)
- Geetanjali Saini
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Monica H Swahn
- Department of Population Health Sciences, School of Public Health, Georgia State University, Atlanta, Georgia, USA
| | - Ritu Aneja
- Department of Biology, College of Arts and Sciences, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
17
|
Ramos-Lopez O, Milagro FI, Riezu-Boj JI, Martinez JA. Epigenetic signatures underlying inflammation: an interplay of nutrition, physical activity, metabolic diseases, and environmental factors for personalized nutrition. Inflamm Res 2021; 70:29-49. [PMID: 33231704 PMCID: PMC7684853 DOI: 10.1007/s00011-020-01425-y] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 10/26/2020] [Accepted: 11/12/2020] [Indexed: 12/12/2022] Open
Abstract
AIM AND OBJECTIVE Emerging translational evidence suggests that epigenetic alterations (DNA methylation, miRNA expression, and histone modifications) occur after external stimuli and may contribute to exacerbated inflammation and the risk of suffering several diseases including diabetes, cardiovascular diseases, cancer, and neurological disorders. This review summarizes the current knowledge about the harmful effects of high-fat/high-sugar diets, micronutrient deficiencies (folate, manganese, and carotenoids), obesity and associated complications, bacterial/viral infections, smoking, excessive alcohol consumption, sleep deprivation, chronic stress, air pollution, and chemical exposure on inflammation through epigenetic mechanisms. Additionally, the epigenetic phenomena underlying the anti-inflammatory potential of caloric restriction, n-3 PUFA, Mediterranean diet, vitamin D, zinc, polyphenols (i.e., resveratrol, gallic acid, epicatechin, luteolin, curcumin), and the role of systematic exercise are discussed. METHODS Original and review articles encompassing epigenetics and inflammation were screened from major databases (including PubMed, Medline, Science Direct, Scopus, etc.) and analyzed for the writing of the review paper. CONCLUSION Although caution should be exercised, research on epigenetic mechanisms is contributing to understand pathological processes involving inflammatory responses, the prediction of disease risk based on the epigenotype, as well as the putative design of therapeutic interventions targeting the epigenome.
Collapse
Affiliation(s)
- Omar Ramos-Lopez
- Medicine and Psychology School, Autonomous University of Baja California, Tijuana, Baja California, Mexico
| | - Fermin I Milagro
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain.
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain.
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain.
| | - Jose I Riezu-Boj
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
| | - J Alfredo Martinez
- Department of Nutrition, Food Science and Physiology, Center for Nutrition Research, University of Navarra, 1 Irunlarrea Street, 31008, Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), Pamplona, Spain
- CIBERobn, Fisiopatología de la Obesidad y la Nutrición, Carlos III Health Institute, Madrid, Spain
- Precision Nutrition and Cardiometabolic Health, IMDEA-Food Institute (Madrid Institute for Advanced Studies), Madrid, Spain
| |
Collapse
|
18
|
Spinelli R, Parrillo L, Longo M, Florese P, Desiderio A, Zatterale F, Miele C, Raciti GA, Beguinot F. Molecular basis of ageing in chronic metabolic diseases. J Endocrinol Invest 2020; 43:1373-1389. [PMID: 32358737 PMCID: PMC7481162 DOI: 10.1007/s40618-020-01255-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 04/10/2020] [Indexed: 02/06/2023]
Abstract
AIM Over the last decades, the shift in age distribution towards older ages and the progressive ageing which has occurred in most populations have been paralleled by a global epidemic of obesity and its related metabolic disorders, primarily, type 2 diabetes (T2D). Dysfunction of the adipose tissue (AT) is widely recognized as a significant hallmark of the ageing process that, in turn, results in systemic metabolic alterations. These include insulin resistance, accumulation of ectopic lipids and chronic inflammation, which are responsible for an elevated risk of obesity and T2D onset associated to ageing. On the other hand, obesity and T2D, the paradigms of AT dysfunction, share many physiological characteristics with the ageing process, such as an increased burden of senescent cells and epigenetic alterations. Thus, these chronic metabolic disorders may represent a state of accelerated ageing. MATERIALS AND METHODS A more precise explanation of the fundamental ageing mechanisms that occur in AT and a deeper understanding of their role in the interplay between accelerated ageing and AT dysfunction can be a fundamental leap towards novel therapies that address the causes, not just the symptoms, of obesity and T2D, utilizing strategies that target either senescent cells or DNA methylation. RESULTS In this review, we summarize the current knowledge of the pathways that lead to AT dysfunction in the chronological ageing process as well as the pathophysiology of obesity and T2D, emphasizing the critical role of cellular senescence and DNA methylation. CONCLUSION Finally, we highlight the need for further research focused on targeting these mechanisms.
Collapse
Affiliation(s)
- R Spinelli
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - L Parrillo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - M Longo
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - P Florese
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - A Desiderio
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Zatterale
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - C Miele
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - G Alexander Raciti
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy
| | - F Beguinot
- Department of Translation Medicine, Federico II University of Naples, 80131, Naples, Italy.
- URT Genomic of Diabetes, Institute of Experimental Endocrinology and Oncology, National Research Council, 80131, Naples, Italy.
| |
Collapse
|
19
|
Topart C, Werner E, Arimondo PB. Wandering along the epigenetic timeline. Clin Epigenetics 2020; 12:97. [PMID: 32616071 PMCID: PMC7330981 DOI: 10.1186/s13148-020-00893-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Increasing life expectancy but also healthspan seems inaccessible as of yet but it may become a reality in the foreseeable future. To extend lifespan, it is essential to unveil molecular mechanisms involved in ageing. As for healthspan, a better understanding of the mechanisms involved in age-related pathologies is crucial. MAIN BODY We focus on the epigenetic side of ageing as ageing is traced by specific epigenetic patterns and can be measured by epigenetic clocks. We discuss to what extent exposure to environmental factor, such as alcohol use, unhealthy diet, tobacco and stress, promotes age-related conditions. We focused on inflammation, cancer and Alzheimer's disease. Finally, we discuss strategies to reverse time based on epigenetic reprogramming. CONCLUSIONS Reversibility of the epigenetic marks makes them promising targets for rejuvenation. For this purpose, a better understanding of the epigenetic mechanisms underlying ageing is essential. Epigenetic clocks were successfully designed to monitor these mechanisms and the influence of environmental factors. Further studies on age-related diseases should be conducted to determine their epigenetic signature, but also to pinpoint the defect in the epigenetic machinery and thereby identify potential therapeutic targets. As for rejuvenation, epigenetic reprogramming is still at an early stage.
Collapse
Affiliation(s)
- Clémence Topart
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Emilie Werner
- Department of Chemistry, Ecole Normale Supérieure, 24 rue Lhomond, 75005, Paris, France
- PSL Research University, 60 Rue Mazarine, 75006, Paris, France
| | - Paola B Arimondo
- EpiCBio, Epigenetic Chemical Biology, Department Structural Biology and Chemistry, Institut Pasteur, CNRS UMR n°3523, 28 rue du Dr Roux, 75015, Paris, France.
| |
Collapse
|
20
|
Cervena K, Siskova A, Buchler T, Vodicka P, Vymetalkova V. Methylation-Based Therapies for Colorectal Cancer. Cells 2020; 9:E1540. [PMID: 32599894 PMCID: PMC7349319 DOI: 10.3390/cells9061540] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 02/08/2023] Open
Abstract
Colorectal carcinogenesis (CRC) is caused by the gradual long-term accumulation of both genetic and epigenetic changes. Recently, epigenetic alterations have been included in the classification of the CRC molecular subtype, and this points out their prognostic impact. As epigenetic modifications are reversible, they may represent relevant therapeutic targets. DNA methylation, catalyzed by DNA methyltransferases (DNMTs), regulates gene expression. For many years, the deregulation of DNA methylation has been considered to play a substantial part in CRC etiology and evolution. Despite considerable advances in CRC treatment, patient therapy response persists as limited, and their profit from systemic therapies are often hampered by the introduction of chemoresistance. In addition, inter-individual changes in therapy response in CRC patients can arise from their specific (epi)genetic compositions. In this review article, we summarize the options of CRC treatment based on DNA methylation status for their predictive value. This review also includes the therapy outcomes based on the patient's methylation status in CRC patients. In addition, the current challenge of research is to develop therapeutic inhibitors of DNMT. Based on the essential role of DNA methylation in CRC development, the application of DNMT inhibitors was recently proposed for the treatment of CRC patients, especially in patients with DNA hypermethylation.
Collapse
Affiliation(s)
- Klara Cervena
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Anna Siskova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
| | - Tomas Buchler
- Department of Oncology, First Faculty of Medicine, Charles University and Thomayer Hospital, Videnska 800, 140 59 Prague, Czech Republic;
| | - Pavel Vodicka
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Veronika Vymetalkova
- Department of Molecular Biology of Cancer, Institute of Experimental Medicine, Videnska 1083, 14 200 Prague, Czech Republic; (K.C.); (A.S.); (P.V.)
- Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Albertov 4, 128 00 Prague, Czech Republic
- Biomedical Centre, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| |
Collapse
|
21
|
Oliveira CR, Vieira RP. Anti-Inflammatory Activity of Miodesin™: Modulation of Inflammatory Markers and Epigenetic Evidence. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:6874260. [PMID: 32509149 PMCID: PMC7246419 DOI: 10.1155/2020/6874260] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/10/2020] [Indexed: 01/13/2023]
Abstract
PURPOSE To investigate the effects of a combined herbal medicine Miodesin™ on the inflammatory response of key cells involved in the acute and chronic inflammatory processes as well as the possible epigenetic involvement. METHODS After the establishment of the IC50 dose, the chondrocyte, keratinocyte, and macrophage cell lines were pretreated for 2 hours with Miodesin™ (200 μg/mL) and stimulated with LPS (1 μg/mL) for 24 hours. The supernatant was used to measure the levels of cytokines (IL-1β, IL-6, IL-8, and TNF-α) and chemokines (CCL2, CCL3, and CCL5), and the cells were used to extract the mRNA for the transcription factor (NF-κβ), inflammatory enzymes (COX-1, COX-2, PLA2, and iNOS), and chemokines (CCL2, CCL3, and CCL5). RESULTS Miodesin™ inhibited the release of LPS-induced cytokines (IL-1β, IL-6, IL-8, and TNF-α; p < 0.01) and chemokines (CCL2, CCL3, and CCL5; p < 0.01) and the expression of the transcription factor (NF-κβ; p < 0.01), inflammatory enzymes (COX-1, COX-2, PLA2, iNOS; p < 0.01), and chemokines (CCL2, CCL3, and CCL5; p < 0.01). In addition, the evaluation of epigenetic mechanism revealed that Miodesin™ did not induce changes in DNA methylation, assuring the genetic safeness of the compound in terms of the inflammatory response. CONCLUSIONS Miodesin™ presents anti-inflammatory properties, inhibiting hyperactivation of chondrocytes, keratinocytes, and macrophages, involving epigenetics in such effects.
Collapse
Affiliation(s)
- Carlos Rocha Oliveira
- Anhembi Morumbi University, School of Medicine, Avenida Deputado Benedito Matarazzo 6070, Sao Jose dos Campos-SP, Brazil 12230-002
| | - Rodolfo Paula Vieira
- Anhembi Morumbi University, School of Medicine, Avenida Deputado Benedito Matarazzo 6070, Sao Jose dos Campos-SP, Brazil 12230-002
- Federal University of Sao Paulo (UNIFESP), Post-Graduation Program in Sciences of Human Movement and Rehabilitation, Avenida Ana Costa 95, Santos-SP, Brazil 11060-001
- Universidade Brasil, Post-Graduation Program in Bioengineering and in Biomedical Engineering, Rua Carolina Fonseca 235, Sao Paulo-SP, Brazil 08230-030
- Brazilian Institute of Teaching and Research in Pulmonary and Exercise Immunology (IBEPIPE), Rua Pedro Ernesto 240, Sao Jose dos Campos-SP, Brazil 12245-520
| |
Collapse
|
22
|
Yeung EH, Guan W, Zeng X, Salas LA, Mumford SL, de Prado Bert P, van Meel ER, Malmberg A, Sunyer J, Duijts L, Felix JF, Czamara D, Hämäläinen E, Binder EB, Räikkönen K, Lahti J, London SJ, Silver RM, Schisterman EF. Cord blood DNA methylation reflects cord blood C-reactive protein levels but not maternal levels: a longitudinal study and meta-analysis. Clin Epigenetics 2020; 12:60. [PMID: 32354366 PMCID: PMC7193358 DOI: 10.1186/s13148-020-00852-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/15/2020] [Indexed: 02/22/2023] Open
Abstract
Background Prenatal inflammation has been proposed as an important mediating factor in several adverse pregnancy outcomes. C-reactive protein (CRP) is an inflammatory cytokine easily measured in blood. It has clinical value due to its reliability as a biomarker for systemic inflammation and can indicate cellular injury and disease severity. Elevated levels of CRP in adulthood are associated with alterations in DNA methylation. However, no studies have prospectively investigated the relationship between maternal CRP levels and newborn DNA methylation measured by microarray in cord blood with reasonable epigenome-wide coverage. Importantly, the timing of inflammation exposure during pregnancy may also result in different effects. Thus, our objective was to evaluate this prospective association of CRP levels measured during multiple periods of pregnancy and in cord blood at delivery which was available in one cohort (i.e., Effects of Aspirin in Gestation and Reproduction trial), and also to conduct a meta-analysis with available data at one point in pregnancy from three other cohorts from the Pregnancy And Childhood Epigenetics consortium (PACE). Secondarily, the impact of maternal randomization to low dose aspirin prior to pregnancy on methylation was assessed. Results Maternal CRP levels were not associated with newborn DNA methylation regardless of gestational age of measurement (i.e., CRP at approximately 8, 20, and 36 weeks among 358 newborns in EAGeR). There also was no association in the meta-analyses (all p > 0.5) with a larger sample size (n = 1603) from all participating PACE cohorts with available CRP data from first trimester (< 18 weeks gestation). Randomization to aspirin was not associated with DNA methylation. On the other hand, newborn CRP levels were significantly associated with DNA methylation in the EAGeR trial, with 33 CpGs identified (FDR corrected p < 0.05) when both CRP and methylation were measured at the same time point in cord blood. The top 7 CpGs most strongly associated with CRP resided in inflammation and vascular-related genes. Conclusions Maternal CRP levels measured during each trimester were not associated with cord blood DNA methylation. Rather, DNA methylation was associated with CRP levels measured in cord blood, particularly in gene regions predominately associated with angiogenic and inflammatory pathways. Trial registration Clinicaltrials.gov, NCT00467363, Registered April 30, 2007, http://www.clinicaltrials.gov/ct2/show/NCT00467363
Collapse
Affiliation(s)
- Edwina H Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA.
| | - Weihua Guan
- Division of Biostatistics, School of Public Health, University of Minnesota, A460 Mayo Building, MMC 303, 420 Delaware St. SE, Minneapolis, MN, 55455, USA
| | | | - Lucas A Salas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, 03766, USA
| | - Sunni L Mumford
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| | - Paula de Prado Bert
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Evelien R van Meel
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Anni Malmberg
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jordi Sunyer
- ISGlobal, 08003, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.,CIBER Epidemiología y Salud Pública (CIBERESP), Madrid, Spain.,IMIM (Hospital del Mar Medical Research Institute), 08003, Barcelona, Spain
| | - Liesbeth Duijts
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.,Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands
| | - Darina Czamara
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany
| | | | - Elisabeth B Binder
- Department of Translational Research in Psychiatry, Max-Planck-Institute of Psychiatry, Munich, Germany.,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, USA
| | - Katri Räikkönen
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jari Lahti
- Department of Psychology and Logopedics, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Stephanie J London
- Division of Intramural Research, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, Durham, NC, 27709, USA
| | - Robert M Silver
- University of Utah, Salt Lake City, 50 N Medical Dr, Salt Lake City, UT, 84132, USA
| | - Enrique F Schisterman
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, 6710B Rockledge Dr, MSC 7004, Bethesda, MD, 20817, USA
| |
Collapse
|
23
|
Bordoni L, Fedeli D, Fiorini D, Gabbianelli R. Extra Virgin Olive Oil and Nigella sativa Oil Produced in Central Italy: A Comparison of the Nutrigenomic Effects of Two Mediterranean Oils in a Low-Grade Inflammation Model. Antioxidants (Basel) 2019; 9:E20. [PMID: 31878334 PMCID: PMC7022781 DOI: 10.3390/antiox9010020] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/16/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
Extra virgin olive (EVO) oil and Nigella sativa (NG) oil are two well-known Mediterranean foods whose consumption has been associated with beneficial effects on human health. This study investigates the nutrigenomic properties of two high quality EVO and NG oils in an in vitro model of low-grade inflammation of human macrophages (THP-1 cells). The aim was to assess whether these healthy foods could modulate inflammation through antioxidant and epigenetic mechanisms. When THP-1 cells were co-exposed to both lipopolysaccharides (LPS)-induced inflammation and oils, both EVO and NG oils displayed anti-inflammatory activity. Both oils were able to restore normal expression levels of DNMT3A and HDAC1 (but not DNMT3B), which were altered under inflammatory conditions. Moreover, EVO oil was able to prevent the increase in TET2 expression and reduce global DNA methylation that were measured in inflamed cells. Due to its antioxidant properties, EVO oil was particularly efficient in restoring normal levels of membrane fluidity, which, on the contrary, were reduced in the presence of inflammation. In conclusion, these data support the hypothesis that these Mediterranean oils could play a major role in the modulation of low-grade inflammation and metabolic syndrome prevention. However, NS oil seems to be more efficient in the control of proinflammatory cytokines, whereas EVO oil better helps to counteract redox imbalance. Further studies that elucidate the nutrigenomic properties of local produce might help to promote regional the production and consumption of high-quality food, which could also help the population to maintain and promote health.
Collapse
Affiliation(s)
- Laura Bordoni
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Donatella Fedeli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| | - Dennis Fiorini
- School of Science and Technology, Chemistry Division, University of Camerino, Via Sant'Agostino, 62032 Camerino, MC, Italy
| | - Rosita Gabbianelli
- School of Pharmacy, Unit of Molecular Biology, University of Camerino, Via Gentile III da Varano, 62032 Camerino, MC, Italy
| |
Collapse
|
24
|
Overview of the Pathogenesis, Genetic, and Non-Invasive Clinical, Biochemical, and Scoring Methods in the Assessment of NAFLD. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193570. [PMID: 31554274 PMCID: PMC6801903 DOI: 10.3390/ijerph16193570] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/16/2019] [Accepted: 09/20/2019] [Indexed: 02/06/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. It represents a range of disorders, including simple steatosis, nonalcoholic steatohepatitis (NASH), and liver cirrhosis, and its prevalence continues to rise. In some cases, hepatocellular carcinoma (HCC) may develop. The develop;ment of non-invasive diagnostic and screening tools is needed, in order to reduce the frequency of liver biopsies. The most promising methods are those able to exclude advanced fibrosis and quantify steatosis. In this study, new perspective markers for inflammation, oxidative stress, apoptosis, and fibrogenesis; emerging scoring models for detecting hepatic steatosis and fibrosis; and new genetic, epigenetic, and multiomic studies are discussed. As isolated biochemical parameters are not specific or sensitive enough to predict the presence of NASH and fibrosis, there is a tendency to use various markers and combine them into mathematical algorithms. Several predictive models and scoring systems have been developed. Current data suggests that panels of markers (NAFLD fibrosis score, Fib-4 score, BARD score, and others) are useful diagnostic modalities to minimize the number of liver biopsies. The review unveils pathophysiological aspects related to new trends in current non-invasive biochemical, genetic, and scoring methods, and provides insight into their diagnostic accuracies and suitability in clinical practice.
Collapse
|