1
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
2
|
El-Tahir F, Esh A, Ghorab A, Shendi AM. Chemerin, TNF - α and the degree of albuminuria in patients with diabetic kidney disease. Cytokine 2024; 184:156772. [PMID: 39366065 DOI: 10.1016/j.cyto.2024.156772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/08/2024] [Accepted: 09/26/2024] [Indexed: 10/06/2024]
Abstract
BACKGROUND Chronic inflammation has been increasingly recognized as an essential pathogenic mechanism for the development and progression of diabetic kidney disease (DKD). Chemerin is an adipokine which has been suggested to be related to inflammation and has been correlated with the development of diabetic complications. We aimed to explore the potential links between chemerin, TNF - α, as a marker of systemic inflammation, and the level of albuminuria in patients with type 2 diabetes mellitus (T2DM). METHOD The study included 84 patients with T2DM and 10 normoalbuminuric non-diabetic controls. Demographic, clinical and laboratory data including chemerin and TNF-α levels were collected. RESULTS A total of 84 diabetic patients were enrolled, 32 males (38.1 %), with mean age 57.9 ± 10.7 years. They were divided into 3 groups: A1: 14 with normalbuminuria, A2: 27 with microalbuminuria, and A3: 43 with macroalbuminuria (uACR < 30, 30-300 and > 300 mg/gm respectively). Chemerin and TNF-α levels increased with the progress of albuminuria (control: 21.3 (14.7 -77), A1: 794 (683-925), A2: 1150 (962.9 - 1221.5) and A3: 1466 (1197.5 - 2002.5) ng/ml; p < 0.001) and (control: 77.9 (59 - 96.8), A1: 85.2 (71-116.3), A2: 87.3 (81 - 97.5) and A3: 99 (85.1 - 142.5) pg/ml; p = 0.009) respectively. Among the diabetics, a significant association was evident between serum chemerin and serum TNF-α (r = 0.53; p < 0.001). On linear stepwise regression analysis, chemerin was significantly associated with TNF-α and HbA1c (unstandardized β 10.881 and 272.68 respectively, p < 0.001); and TNF-α was significantly correlated with chemerin, uACR (unstandardized β 0.059 and 0.004 respectively, p < 0.001) and HbA1c (unstandardized β -13.699, p = 0.014). CONCLUSION Our findings suggest a potential role of chemerin and TNF-α in the development and progression of DKD, and thus support the role of the inflammatory pathway. Larger follow up studies are warranted to further explore the potential links between chemerin, inflammation and DKD.
Collapse
Affiliation(s)
- Fatima El-Tahir
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Asmaa Esh
- Clinical Pathology Department, Faculty of Medicine, Zagazig University, Egypt
| | - Adel Ghorab
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt
| | - Ali M Shendi
- Nephrology unit, Internal Medicine Department, Faculty of Medicine, Zagazig University, Egypt; Organ Transplant Center, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.
| |
Collapse
|
3
|
R A, P R, Vm V, Sn MS. Circulating Chemerin Levels in Obese and Non-obese Individuals and Its Association With Obesity in Metabolic Dysfunction-Associated Fatty Liver Disease. Cureus 2024; 16:e68105. [PMID: 39347124 PMCID: PMC11438025 DOI: 10.7759/cureus.68105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 08/28/2024] [Indexed: 10/01/2024] Open
Abstract
Introduction The prevalence of obesity and related disorders is rapidly rising due to altered food habits, sedentary lifestyles and stress. Adipose tissue releases various hormones known as adipokines; one example is chemerin, which is primarily expressed by hepatocytes, adipocytes, and immune cells. Adipokine dysregulation in obesity initiates the cascade of inflammation and insulin resistance that leads to various metabolic disorders such as diabetes mellitus, metabolic syndrome (MS), and metabolic dysfunction-associated fatty liver disease (MAFLD). Aim The aim of our research is to determine serum chemerin levels in obese and non-obese individuals and to estimate the prevalence of MAFLD in obesity. Materials and methods This cross-sectional study was conducted at SRM Medical College Hospital & Research Centre, Tamil Nadu from August 2023 to December 2023. The study group comprised 45 obese and 45 non-obese individuals above 18 years of age. New MAFLD diagnostic criteria and FLI (Fatty Liver Index) formula were used to stratify the cohort. The Godin Leisure-Time Exercise questionnaire was used to assess physical activity levels. Visceral fat was assessed using a body composition analyzer. Student's t-test and ANOVA were used to compare the difference in mean levels across the groups. Pearson's correlation was used to correlate the analyzed parameters. Results Among our obese study participants, nearly 50% reported following a sedentary lifestyle. The prevalence of MAFLD in our obese study group was 44% whereas the prevalence of non-alcoholic fatty disease was found to be only 33%. Fasting plasma glucose (FPG), HbA1c, triglycerides (TG) and chemerin levels were found to vary significantly between the two groups. However, our study did not reveal the association of chemerin with MAFLD, BMI, or visceral fat in obesity. A significant difference in BMI, and visceral fat was observed across groups stratified by their physical activity levels assessed using the Godin leisure questionnaire. Conclusion Our study highlights the effect of physical activity on adipose tissue distribution and metabolic health and does not reveal any significant association of chemerin with MAFLD, BMI, or visceral fat in obesity. Nearly half of the studied obese individuals lead sedentary lifestyles, which highlights the importance of promoting physical activity in the prevention of obesity and related metabolic dysfunction. To validate these findings, future research should involve larger, diverse cohorts and include longitudinal data to track shifts in chemerin levels over time and their impact on metabolic health.
Collapse
Affiliation(s)
- Aravindraj R
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Renuka P
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Vinodhini Vm
- Department of Biochemistry, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| | - Meenakshi Sundari Sn
- Department of Internal Medicine, SRM Medical College Hospital and Research Centre, Chengalpattu, IND
| |
Collapse
|
4
|
Yin L, Tang H, Qu J, Jia Y, Zhang Q, Wang X. Chemerin regulates glucose and lipid metabolism by changing mitochondrial structure and function associated with androgen/androgen receptor. Am J Physiol Endocrinol Metab 2024; 326:E869-E887. [PMID: 38775724 DOI: 10.1152/ajpendo.00104.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/08/2024] [Accepted: 04/08/2024] [Indexed: 06/07/2024]
Abstract
The adipokine chemerin contributes to exercise-induced improvements in glucose and lipid metabolism; however, the underlying mechanism remains unclear. We aimed to confirm the impact of reduced chemerin expression on exercise-induced improvement in glycolipid metabolism in male diabetic (DM) mice through exogenous chemerin administration. Furthermore, the underlying mechanism of chemerin involved in changes in muscle mitochondria function mediated by androgen/androgen receptor (AR) was explored by generating adipose-specific and global chemerin knockout (adipo-chemerin-/- and chemerin-/-) mice. DM mice were categorized into the DM, exercised DM (EDM), and EDM + chemerin supplementation groups. Adipo-chemerin-/- and chemerin-/- mice were classified in the sedentary or exercised groups and fed either a normal or high-fat diet. Exercise mice underwent a 6-wk aerobic exercise regimen. The serum testosterone and chemerin levels, glycolipid metabolism indices, mitochondrial function, and protein levels involved in mitochondrial biogenesis and dynamics were measured. Notably, exogenous chemerin reversed exercise-induced improvements in glycolipid metabolism, AR protein levels, mitochondrial biogenesis, and mitochondrial fusion in DM mice. Moreover, adipose-specific chemerin knockout improved glycolipid metabolism, enhanced exercise-induced increases in testosterone and AR levels in exercised mice, and alleviated the detrimental effects of a high-fat diet on mitochondrial morphology, biogenesis, and dynamics. Finally, similar improvements in glucose metabolism (but not lipid metabolism), mitochondrial function, and mitochondrial dynamics were observed in chemerin-/- mice. In conclusion, decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, likely through changes in androgen/AR signaling.NEW & NOTEWORTHY Decreased chemerin levels affect exercise-induced improvements in glycolipid metabolism in male mice by increasing mitochondrial number and function, which is likely mediated by androgen/androgen receptor expression. This study is the first to report the regulatory mechanism of chemerin in muscle mitochondria.
Collapse
Affiliation(s)
- Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
- School of Sport, Shenzhen University, Shenzhen, People's Republic of China
| | - Hongtai Tang
- Department of Burns, Changhai Hospital, Shanghai, People's Republic of China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Yi Jia
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Qilong Zhang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, People's Republic of China
| |
Collapse
|
5
|
Zhao L, Zhou J, Abbasi F, Fathzadeh M, Knowles JW, Leung LLK, Morser J. Chemerin in Participants with or without Insulin Resistance and Diabetes. Biomedicines 2024; 12:924. [PMID: 38672278 PMCID: PMC11048116 DOI: 10.3390/biomedicines12040924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/06/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Chemerin is a chemokine/adipokine, regulating inflammation, adipogenesis and energy metabolism whose activity depends on successive proteolytic cleavages at its C-terminus. Chemerin levels and processing are correlated with insulin resistance. We hypothesized that chemerin processing would be higher in individuals with type 2 diabetes (T2D) and in those who are insulin resistant (IR). This hypothesis was tested by characterizing different chemerin forms by specific ELISA in the plasma of 18 participants with T2D and 116 without T2D who also had their insulin resistance measured by steady-state plasma glucose (SSPG) concentration during an insulin suppression test. This approach enabled us to analyze the association of chemerin levels with a direct measure of insulin resistance (SSPG concentration). Participants were divided into groups based on their degree of insulin resistance using SSPG concentration tertiles: insulin sensitive (IS, SSPG ≤ 91 mg/dL), intermediate IR (IM, SSPG 92-199 mg/dL), and IR (SSPG ≥ 200 mg/dL). Levels of different chemerin forms were highest in patients with T2D, second highest in individuals without T2D who were IR, and lowest in persons without T2D who were IM or IS. In the whole group, chemerin levels positively correlated with both degree of insulin resistance (SSPG concentration) and adiposity (BMI). Participants with T2D and those without T2D who were IR had the most proteolytic processing of chemerin, resulting in higher levels of both cleaved and degraded chemerin. This suggests that increased inflammation in individuals who have T2D or are IR causes more chemerin processing.
Collapse
Affiliation(s)
- Lei Zhao
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - Jonathan Zhou
- University Program in Genetics and Genomics, School of Medicine, Duke University, Durham, NC 27705, USA;
| | - Fahim Abbasi
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Mohsen Fathzadeh
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Joshua W. Knowles
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; (F.A.); (M.F.); (J.W.K.)
| | - Lawrence L. K. Leung
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| | - John Morser
- Division of Hematology, Stanford University School of Medicine, Stanford, CA 94305, USA;
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA 94304, USA
| |
Collapse
|
6
|
Lin X, Qu J, Yin L, Wang R, Wang X. Aerobic exercise-induced decrease of chemerin improved glucose and lipid metabolism and fatty liver of diabetes mice through key metabolism enzymes and proteins. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159409. [PMID: 37871796 DOI: 10.1016/j.bbalip.2023.159409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
Our previous studies have implicated an important role of adipokine chemerin in exercise-induced improvements of glycolipid metabolism and fatty liver in diabetes rat, but the underlying mechanisms remain unknown. This study first used an exogenous chemerin supplement to clarify the roles of decreased chemerin in exercised diabetes mice and possible mechanisms of glucose and lipid metabolism key enzymes and proteins [such as adipose triglyceride lipase (ATGL), lipoprotein lipase (LPL), phosphoenolpyruvate carboxykinase (PEPCK), and glucose transporter 4 (GLUT4)]. In addition, two kinds of adipose-specific chemerin knockout mice were generated to demonstrate the regulation of chemerin on glucose and lipid metabolism enzymes and proteins. We found that in diabetes mice, exercise-induced improvements of glucose and lipid metabolism and fatty liver, and exercise-induced increases of ATGL, LPL, and GLUT4 in liver, gastrocnemius and fat were reversed by exogenous chemerin. Furthermore, in chemerin knockdown mice, chemerin(-/-)∙adiponectin mice had lower body fat mass, improved blood glucose and lipid, and no fatty liver; while chemerin(-/-)∙fabp4 mice had hyperlipemia and unchanged body fat mass. Peroxisome proliferator-activated receptor γ (PPARγ), ATGL, LPL, GLUT4 and PEPCK in the liver and gastrocnemius had improve changes in chemerin(-/-)·adiponectin mice while deteriorated alterations in chemerin(-/-)·fabp4 mice, although PPARγ, ATGL, LPL, and GLUT4 increased in the fat of two kinds of chemerin(-/-) mice. CONCLUSIONS: Decreased chemerin exerts an important role in exercise-induced improvements of glucose and lipid metabolism and fatty liver in diabetes mice, which was likely to be through PPARγ mediating elevations of ATGL, LPL and GLUT4 in peripheral metabolic organs.
Collapse
Affiliation(s)
- Xiaojing Lin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Jing Qu
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Lijun Yin
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China
| | - Ru Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| | - Xiaohui Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China.
| |
Collapse
|
7
|
Elmahdy AG, Ibrahim MMA, Salama OH, Ziada HEA, Ali MM, Elmohaseb GF, Youssef EMI, Bayoumy ES, Bayomy MA, Mohamed SA. Association of the serum chemerin level with the development of diabetic retinopathy in patients with type 1 diabetes mellitus. MEDICAL HYPOTHESIS, DISCOVERY & INNOVATION OPHTHALMOLOGY JOURNAL 2023; 11:171-178. [PMID: 37641604 PMCID: PMC10460249 DOI: 10.51329/mehdiophthal1461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/02/2023] [Indexed: 08/31/2023]
Abstract
Background In patients with type 2 diabetes mellitus, the development of diabetic retinopathy (DR) correlates positively with elevated serum chemerin levels. This study was aimed at investigating the probable association between the serum chemerin level and the development of DR in patients with type 1 diabetes mellitus (T1DM). Methods In this cross-sectional study, we included Egyptians and classified them into four groups: group 1, including healthy individuals; group 2, including patients with T1DM without DR; group 3, including patients with T1DM with non-proliferative DR (NPDR); and group 4, including patients with T1DM with proliferative DR (PDR). The assessment included best-corrected distance visual acuity assessment, slit-lamp biomicroscopy, funduscopy, fundus fluorescein angiography, and macular ocular coherence tomography. Fasting blood samples were obtained from all participants to measure serum chemerin, glycated hemoglobin (HbA1c), total cholesterol, triglyceride, and creatinine levels. Serum chemerin levels were compared among the groups, and their correlations with age, duration of diabetes, HbA1c, total cholesterol, triglyceride, and creatinine levels were analyzed. Results We recruited 209 participants, including 46 healthy individuals in group 1, 52 patients (T1DM and no DR) in group 2, 61 patients (T1DM and NPDR) in group 3, and 50 patients (T1DM and PDR) in group 4, with comparable mean ages and sex ratios among groups. The diabetes duration, body mass index, HbA1c, total cholesterol, triglyceride, and serum chemerin levels differed significantly among the groups (all P < 0.001), whereas the creatinine level did not (P > 0.05). The serum chemerin level was significantly higher in group 4 than in groups 3 and 2, in group 3 than in group 2, and in groups 3 and 4 than in group 1 (all P < 0.001). However, it was comparable between groups 1 and 2 (P > 0.05). It correlated with the duration of T1DM and HbA1c, total cholesterol, triglyceride, and creatinine levels but not with age. Conclusions Patients with T1DM with DR showed higher serum chemerin levels than those with T1DM without DR or healthy individuals. Serum chemerin levels were higher in those with PDR than in those with NPDR. Thus, serum chemerin levels are a potential biomarker of the development and severity of DR in patients with T1DM. Nevertheless, future diagnostic accuracy studies are required to confirm these potential applications.
Collapse
Affiliation(s)
- Ahmed Gomaa Elmahdy
- Ophthalmology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Omar Hassan Salama
- Ophthalmology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Mahmoud Mohammed Ali
- Ophthalmology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ghada F Elmohaseb
- Internal Medicine Department, Al-Azhar University, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt
| | - Eman MI Youssef
- Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Eman Saad Bayoumy
- Biochemistry Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Marwa Ahmed Bayomy
- Clinical Pathology Department, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Sanaa Ahmed Mohamed
- Ophthalmology Department, Al-Zahraa Hospital, Al-Azhar University, Cairo, Egypt
| |
Collapse
|
8
|
Yun H, Dumbell R, Hanna K, Bowen J, McLean SL, Kantamneni S, Pors K, Wu QF, Helfer G. The Chemerin-CMKLR1 Axis is Functionally important for Central Regulation of Energy Homeostasis. Front Physiol 2022; 13:897105. [PMID: 35711300 PMCID: PMC9196942 DOI: 10.3389/fphys.2022.897105] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/02/2022] [Indexed: 12/28/2022] Open
Abstract
Chemerin is an adipokine involved in inflammation, adipogenesis, angiogenesis and energy metabolism, and has been hypothesized as a link between obesity and type II diabetes. In humans affected by obesity, chemerin gene expression in peripheral tissues and circulating levels are elevated. In mice, plasma levels of chemerin are upregulated by high-fat feeding and gain and loss of function studies show an association of chemerin with body weight, food intake and glucose homeostasis. Therefore, chemerin is an important blood-borne mediator that, amongst its other functions, controls appetite and body weight. Almost all studies of chemerin to date have focused on its release from adipose tissue and its effects on peripheral tissues with the central effects largely overlooked. To demonstrate a central role of chemerin, we manipulated chemerin signaling in the hypothalamus, a brain region associated with appetite regulation, using pharmacological and genetic manipulation approaches. Firstly, the selective chemerin receptor CMKLR1 antagonist α-NETA was administered i.c.v. to rats to test for an acute physiological effect. Secondly, we designed a short-hairpin-RNA (shRNA) lentivirus construct targeting expression of CMKLR1. This shRNA construct, or a control construct was injected bilaterally into the arcuate nucleus of male Sprague Dawley rats on high-fat diet (45%). After surgery, rats were maintained on high-fat diet for 2 weeks and then switched to chow diet for a further 2 weeks. We found a significant weight loss acutely and inhibition of weight gain chronically. This difference became apparent after diet switch in arcuate nucleus-CMKLR1 knockdown rats. This was not accompanied by a difference in blood glucose levels. Interestingly, appetite-regulating neuropeptides remained unaltered, however, we found a significant reduction of the inflammatory marker TNF-α suggesting reduced expression of CMKLR1 protects from high-fat diet induced neuroinflammation. In white and brown adipose tissue, mRNA expression of chemerin, its receptors and markers of adipogenesis, lipogenesis and brown adipocyte activation remained unchanged confirming that the effects are driven by the brain. Our behavioral analyses suggest that knockdown of CMKLR1 had an impact on object recognition. Our data demonstrate that CMKLR1 is functionally important for the central effects of chemerin on body weight regulation and neuroinflammation.
Collapse
Affiliation(s)
- Haesung Yun
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Rebecca Dumbell
- School of Science & Technology, Nottingham Trent University, Nottingham, United Kingdom
| | - Katie Hanna
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Junior Bowen
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Samantha L McLean
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom.,Wolfson Centre for Applied Health Research, Bradford, United Kingdom
| | - Sriharsha Kantamneni
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Klaus Pors
- School of Pharmacy and Medical Sciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| | - Qing-Feng Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Gisela Helfer
- School of Chemistry and Biosciences, Faculty of Life Sciences, University of Bradford, Bradford, United Kingdom
| |
Collapse
|
9
|
Yasir M, Senthilkumar GP, Jayashree K, Ramesh Babu K, Vadivelan M, Palanivel C. Association of serum omentin-1, apelin and chemerin concentrations with the presence and severity of diabetic retinopathy in type 2 diabetes mellitus patients. Arch Physiol Biochem 2022; 128:313-320. [PMID: 31686535 DOI: 10.1080/13813455.2019.1680698] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Omentin-1 is a novel adipokine with anti-inflammatory functions. Apelin is associated with hyperinsulinemia and pathological angiogenesis. Chemerin has both pro- and anti-inflammatory actions and implicated in insulin resistance and metabolic syndrome. The aim of this study was to assess serum omentin-1, apelin and chemerin concentrations and to investigate their association with the presence and severity of DR in T2DM patients. Serum omentin-1, apelin and chemerin were measured in 112 patients with DR and 56 patients without DR. Bivariate analysis showed omentin-1 correlated negatively with hsCRP and TyG index; while apelin correlated positively with chemerin. Linear regression data showed that apelin and chemerin were independent predictors of DR severity. ROC curve revealed that omentin-1 was the best discriminant for DR while apelin was the best discriminant for vision threatening retinopathy. Serum omentin-1 concentration correlates negatively, while serum apelin and chemerin concentrations correlate positively with DR presence and severity in T2DM patients.
Collapse
Affiliation(s)
- Md Yasir
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
- Department of Biochemistry, North Eastern Indira Gandhi Regional Institute of Health & Medical Sciences (NEIGRIHMS), Shillong, India
| | | | - Kuppuswami Jayashree
- Department of Biochemistry, Jawaharlal Institute of Postgraduate Medical Education & Research (JIPMER), Puducherry, India
| | - K Ramesh Babu
- Department of Ophthalmology, JIPMER, Puducherry, India
| | | | | |
Collapse
|
10
|
|
11
|
Chen X, Yang K, Sun P, Zhao R, Liu B, Lu P. Exercise improves bone formation by upregulating the Wnt3a/β-catenin signalling pathway in type 2 diabetic mice. Diabetol Metab Syndr 2021; 13:116. [PMID: 34688315 PMCID: PMC8542289 DOI: 10.1186/s13098-021-00732-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/09/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND The bone formation ability of type 2 diabetes is inhibited, and exercise can effectively improve the bone formation of T2DM. However, whether exercise can mediate the Wnt3a/β-catenin pathway to improve the mechanism of bone formation and metabolism still needs further research. METHODS A T2DM mouse model was established by a high-fat diet and STZ injection, and the mice were trained with swimming and downhill running exercise. Alizarin red staining is used to observe the changes of the left femoral trabecular bone; micro-CT is used to analyze the trabecular and cortical BMD, BV/TV, BS/BV, BS/TV, Tb.Th, Tb.Sp; the ALP staining of skull was used to observe the changes in ALP activity of bone tissues at the skull herringbone sutures; ALP staining was performed to observe the changes in the number of OBs and ALP activity produced by differentiation; Quantitative PCR was used to detect mRNA expression; Western blot was used to detect protein expression levels. RESULTS When the Wnt3a/β-catenin pathway in the bones of T2DM mice was inhibited, the bone formation ability of the mice was significantly reduced, resulting in the degradation of the bone tissue morphology and structure. Swimming caused the significant increase in body weight and Runx2 mRNA expression, while downhill running could significantly decrease the body weight of the mice, while the tibia length, wet weight, and the trabecular morphological structure of the distal femur and the indexes of bone histomorphology were significantly improved by activating the Wnt3a/β-catenin pathway. CONCLUSIONS Bone formation is inhibited in T2DM mice, leading to osteoporosis. Downhill running activates the Wnt3a/β-catenin pathway in the bones of T2DM mice, promotes OB differentiation and osteogenic capacity, enhances bone formation metabolism, and improves the bone morphological structure.
Collapse
Affiliation(s)
- Xianghe Chen
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China.
| | - Kang Yang
- Rehabilitation Medicine Department, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, 225001, Jiangsu, China.
| | - Peng Sun
- College of Physical Education and Health, East China Normal University, Shanghai, China
| | - Renqing Zhao
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Bo Liu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| | - Pengcheng Lu
- College of Physical Education, Yangzhou University, Yangzhou, 225127, Jiangsu, China
| |
Collapse
|
12
|
Szpakowicz A, Szpakowicz M, Lapinska M, Paniczko M, Lawicki S, Raczkowski A, Kondraciuk M, Sawicka E, Chlabicz M, Kozuch M, Poludniewski M, Dobrzycki S, Kowalska I, Kaminski K. Serum Chemerin Concentration Is Associated with Proinflammatory Status in Chronic Coronary Syndrome. Biomolecules 2021; 11:biom11081149. [PMID: 34439815 PMCID: PMC8392272 DOI: 10.3390/biom11081149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 12/12/2022] Open
Abstract
Background: Chemerin is an adipokine and a chemoattractant for leukocytes. Increased chemerin levels were observed in patients with coronary artery disease (CAD). We investigated associations between chemerin and biochemical measurements or body composition in CAD patients. Methods: In the study, we included patients with stable CAD who had undergone percutaneous coronary intervention (PCI) in the past. All patients had routine blood tests, and their insulin and chemerin serum levels were routinely measured. Body composition was assessed with the DEXA method. Results: The study group comprised 163 patients (mean age 59.8 ± years, 26% of females, n = 43). There was no significant difference in serum chemerin concentrations between patients with diabetes and the remaining ones: 306.8 ± 121 vs. 274.15 ± 109 pg/mL, p = 0.1. Chemerin correlated positively with the white blood cell (WBC) count, the neutrophil to lymphocyte ratio, hsCRP, all fractions of cholesterol, triglycerides, platelet count, fasting insulin, and c-peptide. Chemerin levels were also correlated with total fat mass but only in a subgroup with normal glucose metabolism. Conclusion: In patients with CAD, serum chemerin levels are correlated with inflammation markers, insulin resistance, and an unfavorable lipid profile. Correlation with fat mass is dependent on glucose metabolism status. Depending on the presence of diabetes/prediabetes, the mechanisms regulating chemerin secretion may be different.
Collapse
Affiliation(s)
- Anna Szpakowicz
- Department of Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (A.S.); (E.S.)
| | - Malgorzata Szpakowicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Magda Lapinska
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Marlena Paniczko
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Slawomir Lawicki
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Andrzej Raczkowski
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Marcin Kondraciuk
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
| | - Emilia Sawicka
- Department of Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (A.S.); (E.S.)
| | - Malgorzata Chlabicz
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
- Department of Invasive Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.K.); (M.P.); (S.D.)
| | - Marcin Kozuch
- Department of Invasive Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.K.); (M.P.); (S.D.)
| | - Maciej Poludniewski
- Department of Invasive Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.K.); (M.P.); (S.D.)
| | - Slawomir Dobrzycki
- Department of Invasive Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.K.); (M.P.); (S.D.)
| | - Irina Kowalska
- Department of Internal Medicine and Metabolic Diseases, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland;
| | - Karol Kaminski
- Department of Cardiology, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (A.S.); (E.S.)
- Department of Population Medicine and Lifestyle Diseases Prevention, Medical University of Bialystok, ul.Jana Kilinskiego 1, 15-089 Białystok, Poland; (M.S.); (M.L.); (M.P.); (S.L.); (A.R.); (M.K.); (M.C.)
- Correspondence:
| |
Collapse
|
13
|
Zhang H, Mu J, Du J, Feng Y, Xu W, Bai M, Zhang H. Alpha-lipoic acid could attenuate the effect of chemerin-induced diabetic nephropathy progression. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1107-1116. [PMID: 34804428 PMCID: PMC8591765 DOI: 10.22038/ijbms.2021.50792.11570] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 07/05/2021] [Indexed: 12/21/2022]
Abstract
Objective(s): Chemerin is associated with insulin resistance, obesity, and metabolic syndrome. α-lipoic acid (α-LA) is a potent antioxidant involved in the reduction of diabetic symptoms. This study aimed to investigate the relationship between chemerin and P38 MAPK in the progression of diabetic nephropathy (DN) and examine the effects of α-LA on chemerin-treated human mesangial cells (HMCs). Materials and Methods: HMCs were transfected with a chemerin-overexpressing plasmid. HMCs were also treated with high-glucose, chemerin, α-LA, PDTC (pyrrolidine dithiocarbamate ammonium, NF-κB p65 inhibitor), and/or SB203580 (P38 MAPK inhibitor). Cell proliferation was tested using the Cell Counting Kit-8 assay. Collagen type IV and laminin were tested by ELISA. Chemerin expression was detected by qRT-PCR. The chemerin receptor was detected by immunohistochemistry. Interleukin-6 (IL-6), tumor necrosis factor-a (TNF-α), nuclear factor-κBp-p65 (NF-κB p-p65), transforming growth factor-β (TGF-β), and p-P38 mitogen-activated protein kinase (p-P38 MAPK) were evaluated by western blot. Results: High-glucose culture increased the expression of the chemerin receptor. α-LA inhibited HMC proliferation. Chemerin overexpression increased collagen type IV and laminin expression. P38 MAPK signaling was activated by chemerin, resulting in up-regulation of IL-6, TNF-α, NF-κB p-p65, and TGF-β. SB203580, PDTC, and α-LA reversed the effects of chemerin, reducing IL-6, TNF-α, NF-κB p-p65, and TGF-β expression. Conclusion: Chemerin might be involved in the occurrence and development of DN. α-LA might prevent the effects of chemerin on the progression of DN, possibly via the P38 MAPK pathway.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jiawei Mu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Jinqiu Du
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Ying Feng
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenhui Xu
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengmeng Bai
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Huijuan Zhang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Tang Y, Tang Q, Wei H, Hu P, Zou D, Liang R, Ling Y. Hub Genes Associated with the Diagnosis of Diabetic Retinopathy. Int J Gen Med 2021; 14:1739-1750. [PMID: 33986612 PMCID: PMC8110263 DOI: 10.2147/ijgm.s311683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/14/2021] [Indexed: 11/23/2022] Open
Abstract
Purpose This study aimed to identify genes that may be effective in diagnosing or treating diabetic retinopathy (DR), the most common complication of diabetes mellitus (DM). Methods Differentially expressed genes (DEGs) were identified between DR and DM in GSE146615 dataset. DEGs that were consistently up- or down-regulated under both standard glucose and high glucose conditions were identified as common genes and used to generate a protein-protein interaction network and modules. The module genes were assessed for the area under the receiver operating characteristic curve (AUC), leading to the identification of hub genes. Differentially methylated probes in GSE76169 were also compared with common DEGs to identify specific methylation markers of DR. Enrichment analysis was used to explore the biological characteristics. The Short Time-series Expression Miner algorithm was used to identify genes that were progressively dysregulated in the sequence: healthy controls < DM < DR. Results A total of 1917 common genes were identified for seven modules. The eight genes with AUC > 0.8 under high glucose and standard glucose conditions were considered as hub genes. The module genes were significantly enriched during vascular smooth muscle cell development and regulation of oxygen metabolism, while 92 methylation markers were involved in the similar terms. Among the progressively dysregulated genes, three intersection genes under both standard glucose and high glucose conditions were found to be module genes and were considered as key genes. Conclusion We identified eight potential DR-specific diagnostic and therapeutic genes, whose abnormal expression can cause oxidative stress, thus favoring the course of the disease.
Collapse
Affiliation(s)
- Yanhui Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Qi Tang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Haicheng Wei
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Pinzhang Hu
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Donghua Zou
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China
| | - Rixiong Liang
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| | - Yu Ling
- Department of Ophthalmology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530022, People's Republic of China.,Department of Ophthalmology, The First People's Hospital of Nanning, Nanning, Guangxi, 530022, People's Republic of China
| |
Collapse
|
15
|
Wang L, Zhang Y, Guo Y, Ding W, Chang A, Wei J, Li X, Qian H, Zhu C. Chemerin/CMKLR1 Axis Promotes the Progression of Proliferative Diabetic Retinopathy. Int J Endocrinol 2021; 2021:4468625. [PMID: 34868308 PMCID: PMC8635949 DOI: 10.1155/2021/4468625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 10/05/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is a prevalent microvascular complication of diabetes, and the levels of chemerin were associated with the severity of DR. However, there is no research on chemerin in the development of proliferative diabetic retinopathy (PDR). Therefore, our study aimed to explore the relationship between chemerin and PDR. METHODS The levels of chemerin/chemokine-like receptor (CMKLR1), proinflammatory cytokines, and vascular endothelial growth factor (VEGF) in 90 cases of PDR and nonproliferative diabetic retinopathy (NPDR) patients and in high glucose (HG) stimulated human retinal pigment epithelium cells (ARPE-19) were evaluated by ELISA. Moreover, chemerin was added into HG-induced ARPE-19 cells to assess its effect on proinflammatory cytokines and VEGF. RESULTS The levels of chemerin/CMKLR1 were higher in PDR patients than NPDR ones, and chemerin was positively correlated with CMKLR1 in PDR patients. Compared to NPDR, the secretions of proinflammatory cytokines and VEGF were increased in PDR patients and positively correlated with chemerin/CMKLR1. Additionally, chemerin activated CMKLR1 and aggravated HG-induced cell injury, inflammatory responses, and VEGF expressions in ARPE-19 cells. CONCLUSION Our study demonstrated that chemerin/CMKLR1 axis aggravated the progression of PDR, which suggested that inhibition of chemerin might serve as a new therapeutic approach to treat PDR.
Collapse
Affiliation(s)
- Lihui Wang
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Ying Zhang
- Department IV of Medicine, Tangshan Likang Hospital, Xinglong Street, Han Town, Lubei District, Tangshan 063000, Hebei, China
| | - Yanan Guo
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Wencui Ding
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Ailing Chang
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Jing Wei
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Xinsheng Li
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Hongxia Qian
- Department I of Endocrinology and Diabetes Mellitus, Cangzhou Central Hospital, Cangzhou 061000, Hebei, China
| | - Chonggui Zhu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| |
Collapse
|
16
|
New drug targets for hypertension: A literature review. Biochim Biophys Acta Mol Basis Dis 2020; 1867:166037. [PMID: 33309796 DOI: 10.1016/j.bbadis.2020.166037] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023]
Abstract
Hypertension is one of the most prevalent cardiovascular diseases worldwide. However, in the population of resistant hypertension, blood pressure is difficult to control effectively. Moreover, antihypertensive drugs may have adverse effect currently. Hence, new therapeutic targets and treatments are needed to uncovered and exploited to control hypertension and its comorbidities. In the past, classical drug targets, such as the aldosterone receptor, aldosterone synthase, and ACE2/angiotensin 1-7/Mas receptor axis, have been investigated. Recently, vaccines and drugs targeting the gastrointestinal microbiome, which represent drug classes, have also been investigated for the management of blood pressure. In this review, we summarized current knowledge on classical and new drug targets and discussed the potential utility of new drugs in the treatment of hypertension.
Collapse
|
17
|
Ferland DJ, Mullick AE, Watts SW. Chemerin as a Driver of Hypertension: A Consideration. Am J Hypertens 2020; 33:975-986. [PMID: 32453820 PMCID: PMC7759724 DOI: 10.1093/ajh/hpaa084] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 05/06/2020] [Accepted: 05/20/2020] [Indexed: 12/13/2022] Open
Abstract
The protein chemerin (tazarotene-induced gene, TIG2; RARRES2) is a relatively new adipokine. Many studies support that circulating chemerin levels associate strongly and positively with body mass index, visceral fat, and blood pressure. Here, we focus on the specific relationship of chemerin and blood pressure with the goal of understanding whether and how chemerin drives (pathological) changes in blood pressure such that it could be interfered with therapeutically. We dissect the biosynthesis of chemerin and how current antihypertensive medications change chemerin metabolism. This is followed with a review of what is known about where chemerin is synthesized in the body and what chemerin and its receptors can do to the physiological function of organs important to blood pressure determination (e.g., brain, heart, kidneys, blood vessels, adrenal, and sympathetic nervous system). We synthesize from the literature our best understanding of the mechanisms by which chemerin modifies blood pressure, with knowledge that plasma/serum levels of chemerin may be limited in their pathological relevance. This review reveals several gaps in our knowledge of chemerin biology that could be filled by the collective work of protein chemists, biologists, pharmacologists, and clinicians.
Collapse
Affiliation(s)
- David J Ferland
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Adam E Mullick
- Cardiovascular Antisense Drug Discovery, Ionis Pharmaceuticals, Carlsbad, California, USA
| | - Stephanie W Watts
- Department of Pharmacology and Toxicology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|