1
|
Upton C, Healey J, Rothnie AJ, Goddard AD. Insights into membrane interactions and their therapeutic potential. Arch Biochem Biophys 2024; 755:109939. [PMID: 38387829 DOI: 10.1016/j.abb.2024.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/31/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Recent research into membrane interactions has uncovered a diverse range of therapeutic opportunities through the bioengineering of human and non-human macromolecules. Although the majority of this research is focussed on fundamental developments, emerging studies are showcasing promising new technologies to combat conditions such as cancer, Alzheimer's and inflammatory and immune-based disease, utilising the alteration of bacteriophage, adenovirus, bacterial toxins, type 6 secretion systems, annexins, mitochondrial antiviral signalling proteins and bacterial nano-syringes. To advance the field further, each of these opportunities need to be better understood, and the therapeutic models need to be further optimised. Here, we summarise the knowledge and insights into several membrane interactions and detail their current and potential uses therapeutically.
Collapse
Affiliation(s)
- Calum Upton
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Joseph Healey
- Nanosyrinx, The Venture Centre, University of Warwick Science Park, Coventry, CV4 7EZ, UK
| | - Alice J Rothnie
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK
| | - Alan D Goddard
- School of Biosciences, Health & Life Science, Aston University, Birmingham, B4 7ET, UK.
| |
Collapse
|
2
|
Shen F, Yang W, Luan G, Peng J, Li Z, Gao J, Hou Y, Bai G. Catalpolaglycone disrupts mitochondrial thermogenesis by specifically binding to a conserved lysine residue of UCP2 on the proton leak tunnel. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155356. [PMID: 38241920 DOI: 10.1016/j.phymed.2024.155356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 12/03/2023] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
BACKGROUND Catalpol (CAT), a naturally occurring iridoid glycoside sourced from the root of Rehmannia glutinosa, affects mitochondrial metabolic functions. However, the mechanism of action of CAT against pyrexia and its plausible targets remain to be fully elucidated. PURPOSE This study aimed to identify the specific targets of CAT for blocking mitochondrial thermogenesis and to unveil the unique biological mechanism of action of the orthogonal binding mode between the hemiacetal group and lysine residue on the target protein in vivo. METHODS Lipopolysaccharide (LPS)/ carbonyl cyanide 3-chlorophenylhydrazone (CCCP)-induced fever models were established to evaluate the potential antipyretic effects of CAT. An alkenyl-modified CAT probe was designed to identify and capture potential targets. Binding capacity was tested using in-gel imaging and a cellular thermal shift assay. The underlying antipyretic mechanisms were explored using biochemical and molecular biological methods. Catalpolaglycone (CA) was coupled with protein profile identification and molecular docking analysis to evaluate and identify its binding mode to UCP2. RESULTS After deglycation of CAT in vivo, the hemiacetal group in CA covalently binds to Lys239 of UCP2 in the mitochondria of the liver via an ɛ-amine nucleophilic addition. This irreversible binding affects proton leakage and improves mitochondrial membrane potential and ADP/ATP transformation efficiency, leading to an antipyretic effect. CONCLUSION Our findings highlight the potential role of CA in modulating UCP2 activity or function within the mitochondria and open new avenues for investigating the therapeutic effects of CA on mitochondrial homeostasis.
Collapse
Affiliation(s)
- Fukui Shen
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Wen Yang
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Guoqing Luan
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jiamin Peng
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Zhenqiang Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Jie Gao
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Yuanyuan Hou
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China.
| | - Gang Bai
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| |
Collapse
|
3
|
Indelicato E, Boesch S, Mencacci NE, Ghezzi D, Prokisch H, Winkelmann J, Zech M. Dystonia in ATP Synthase Defects: Reconnecting Mitochondria and Dopamine. Mov Disord 2024; 39:29-35. [PMID: 37964479 DOI: 10.1002/mds.29657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/16/2023] Open
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Niccolo' E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois, USA
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, Milan, Italy
| | - Holger Prokisch
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- DZPG, Deutsches Zentrum für Psychische Gesundheit, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Munich, Neuherberg, Germany
- Institute of Human Genetics, Technical University of Munich, School of Medicine, Munich, Germany
- Institute for Advanced Study, Technical University of Munich, Garching, Germany
| |
Collapse
|
4
|
Althaher AR, Alwahsh M. An overview of ATP synthase, inhibitors, and their toxicity. Heliyon 2023; 9:e22459. [PMID: 38106656 PMCID: PMC10722325 DOI: 10.1016/j.heliyon.2023.e22459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/09/2023] [Accepted: 11/13/2023] [Indexed: 12/19/2023] Open
Abstract
Mitochondrial complex V (ATP synthase) is a remarkable molecular motor crucial in generating ATP and sustaining mitochondrial function. Its importance in cellular metabolism cannot be overstated, as malfunction of ATP synthase has been linked to various pathological conditions. Both natural and synthetic ATP synthase inhibitors have been extensively studied, revealing their inhibitory sites and modes of action. These findings have opened exciting avenues for developing new therapeutics and discovering new pesticides and herbicides to safeguard global food supplies. However, it is essential to remember that these compounds can also adversely affect human and animal health, impacting vital organs such as the nervous system, heart, and kidneys. This review aims to provide a comprehensive overview of mitochondrial ATP synthase, its structural and functional features, and the most common inhibitors and their potential toxicities.
Collapse
Affiliation(s)
- Arwa R. Althaher
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| | - Mohammad Alwahsh
- Department of Pharmacy, Al-Zaytoonah University of Jordan, Amman 11733, Jordan
| |
Collapse
|
5
|
Fahimi P, Matta CF, Okie JG. Are size and mitochondrial power of cells inter-determined? J Theor Biol 2023; 572:111565. [PMID: 37369290 DOI: 10.1016/j.jtbi.2023.111565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/16/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
Mitochondria are the central hub of ATP production in most eukaryotic cells. Cellular power (energy per unit time), which is primarily generated in these organelles, is crucial to our understanding of cell function in health and disease. We investigated the relation between a mitochondrion's power (metabolic rate) and host cell size by combining metabolic theory with the analysis of two recent databases, one covering 109 protists and the other 63 species including protists, metazoans, microalgae, and vascular plants. We uncovered an interesting statistical regularity: in well-fed protists, relatively elevated values of mitochondrion power cluster around the smallest cell sizes and the medium-large cell sizes. In contrast, in starved protists and metazoans, the relation between mitochondrion power and cell size is inconclusive, and in microalgae and plants, mitochondrion power seems to increase from smaller cells to larger ones (where this investigation includes plant cells of volume up to ca. 2.18 × 105 μm3). Using these results, estimates are provided of the number of active ATP synthase molecules and basal uncouplers.
Collapse
Affiliation(s)
- Peyman Fahimi
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada
| | - Chérif F Matta
- Département de Chimie, Université Laval, Québec, QC G1V0A6, Canada; Department of Chemistry and Physics, Mount Saint Vincent University, Halifax, NS B3M2J6, Canada.
| | - Jordan G Okie
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
6
|
Nasca A, Mencacci NE, Invernizzi F, Zech M, Keller Sarmiento IJ, Legati A, Frascarelli C, Bustos BI, Romito LM, Krainc D, Winkelmann J, Carecchio M, Nardocci N, Zorzi G, Prokisch H, Lubbe SJ, Garavaglia B, Ghezzi D. Variants in ATP5F1B are associated with dominantly inherited dystonia. Brain 2023; 146:2730-2738. [PMID: 36860166 PMCID: PMC10316767 DOI: 10.1093/brain/awad068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 12/31/2022] [Accepted: 02/05/2023] [Indexed: 03/03/2023] Open
Abstract
ATP5F1B is a subunit of the mitochondrial ATP synthase or complex V of the mitochondrial respiratory chain. Pathogenic variants in nuclear genes encoding assembly factors or structural subunits are associated with complex V deficiency, typically characterized by autosomal recessive inheritance and multisystem phenotypes. Movement disorders have been described in a subset of cases carrying autosomal dominant variants in structural subunits genes ATP5F1A and ATP5MC3. Here, we report the identification of two different ATP5F1B missense variants (c.1000A>C; p.Thr334Pro and c.1445T>C; p.Val482Ala) segregating with early-onset isolated dystonia in two families, both with autosomal dominant mode of inheritance and incomplete penetrance. Functional studies in mutant fibroblasts revealed no decrease of ATP5F1B protein amount but severe reduction of complex V activity and impaired mitochondrial membrane potential, suggesting a dominant-negative effect. In conclusion, our study describes a new candidate gene associated with isolated dystonia and confirms that heterozygous variants in genes encoding subunits of the mitochondrial ATP synthase may cause autosomal dominant isolated dystonia with incomplete penetrance, likely through a dominant-negative mechanism.
Collapse
Affiliation(s)
- Alessia Nasca
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Niccolò E Mencacci
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Federica Invernizzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Michael Zech
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Ignacio J Keller Sarmiento
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Andrea Legati
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Chiara Frascarelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Bernabe I Bustos
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Luigi M Romito
- Parkinson and Movement Disorders Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Juliane Winkelmann
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
- Lehrstuhl für Neurogenetik, Technische Universität München, 81675 Munich, Germany
- Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| | - Miryam Carecchio
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department Neuroscience, University of Padua, 35128 Padua, Italy
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Nardo Nardocci
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Giovanna Zorzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milan, Italy
| | - Holger Prokisch
- Institute of Human Genetics, School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München, 85764 Munich, Germany
| | - Steven J Lubbe
- Ken and Ruth Davee Department of Neurology and Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago 60611, IL, USA
| | - Barbara Garavaglia
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
| | - Daniele Ghezzi
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20126 Milan, Italy
- Department of Pathophysiology and Transplantation (DEPT), University of Milan, 20122 Milan, Italy
| |
Collapse
|
7
|
Singh V. F 1F o adenosine triphosphate (ATP) synthase is a potential drug target in non-communicable diseases. Mol Biol Rep 2023; 50:3849-3862. [PMID: 36715790 DOI: 10.1007/s11033-023-08299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 01/19/2023] [Indexed: 01/31/2023]
Abstract
F1Fo adenosine triphosphate (ATP) synthase, also known as the complex V, is the central ATP-producing unit in the cells arranged in the mitochondrial and plasma membranes. F1Fo ATP synthase also regulates the central metabolic processes in the human body driven by proton motive force (Δp). Numerous studies have immensely contributed toward highlighting its regulation in improving energy homeostasis and maintaining mitochondrial integrity, which otherwise gets compromised in illnesses. Yet, its role in the implication of non-communicable diseases remains unknown. F1Fo ATP synthase dysregulation at gene level leads to reduced activity and delocalization in the cristae and plasma membranes, which is directly associated with non-communicable diseases: cardiovascular diseases, diabetes, neurodegenerative disorders, cancer, and renal diseases. Individual subunits of the F1Fo ATP synthase target ligand-based competitive or non-competitive inhibition. After performing a systematic literature review to understand its specific functions and its novel drug targets, the present article focuses on the central role of F1Fo ATP synthase in primary non-communicable diseases. Next, it discusses its involvement through various pathways and the effects of multiple inhibitors, activators, and modulators specific to non-communicable diseases with a futuristic outlook.
Collapse
Affiliation(s)
- Varsha Singh
- Centre for Life Sciences, Chitkara School of Health Sciences, Chitkara University, Rajpura, Punjab, 140401, India.
| |
Collapse
|
8
|
Campos LM, Lemos ASO, Diniz IOM, Carvalho LA, Silva TP, Dib PRB, Hottz ED, Chedier LM, Melo RCN, Fabri RL. Antifungal Annona muricata L. (soursop) extract targets the cell envelope of multi-drug resistant Candida albicans. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115856. [PMID: 36280018 DOI: 10.1016/j.jep.2022.115856] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/03/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
ETNOPHARMACOLOGICAL RELEVANCE Annona muricata L. (soursop) is traditionally used in the treatment of inflammatory diseases, cancer, and infections caused by fungi. The therapeutic activity explored by its medicinal use is generally associated with its phytoconstituents, such as acetogenins and alkaloids. However, its potential antifungal bioactivity as well as its mechanism of action remains to be established. AIM OF THE STUDY To evaluate the antifungal activity of the ethanolic extract of A. muricata leaves against multidrug-resistant Candida albicans (ATCC® 10231). MATERIAL AND METHODS Phytoconstituents were detected by UFLC-QTOF-MS. The minimum inhibitory concentration was determined, followed by the determination of the minimum fungicidal concentration. For planktonic cells, the growth curve and cell density were evaluated. Studies to understand the mechanism of action on the cell envelope involved crystal violet permeability, membrane extravasation, sorbitol protection, exogenous ergosterol binding assay, metabolic activity, and cell viability. Furthermore, mitochondrial membrane potential was assessed. RESULTS Our analyses demonstrated a significant inhibitory effect of A. muricata, with the ability to reduce fungal growth by 58% and cell density by 65%. The extract affected both the fungal plasma membrane and cell wall integrity, with significant reduction of the cell viability. Depolarization of the fungal mitochondrial membrane was observed after treatment with A. muricata. Rutin, xi-anomuricine, kaempferol-3O-rutinoside, nornuciferine, xylopine, atherosperminine, caffeic acid, asimilobine, s-norcorydine, loliolide, annohexocin, annomuricin, annopentocin, and sucrose were identified as extract bioactive components. CONCLUSIONS Our findings show that the A. muricata extract is a source of chemical diversity, which acts as a potential antifungal agent with promising application to the therapy of infections caused by C. albicans.
Collapse
Affiliation(s)
- Lara M Campos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Ari S O Lemos
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Irley O M Diniz
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Lucas A Carvalho
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Thiago P Silva
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Paula R B Dib
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Eugênio D Hottz
- Laboratory of Immunothrombosis, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Luciana M Chedier
- Plant Chemistry Laboratory, Department of Botany, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rossana C N Melo
- Laboratory of Cellular Biology, Department of Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil
| | - Rodrigo L Fabri
- Bioactive Natural Products Laboratory, Department of Biochemistry, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, MG, Brazil.
| |
Collapse
|
9
|
Feng X, Cheng XT, Zheng P, Li Y, Hakim J, Zhang SQ, Anderson SM, Linask K, Prestil R, Zou J, Sheng ZH, Blackstone C. Ligand-free mitochondria-localized mutant AR-induced cytotoxicity in spinal bulbar muscular atrophy. Brain 2023; 146:278-294. [PMID: 35867854 DOI: 10.1093/brain/awac269] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/12/2022] [Accepted: 07/03/2022] [Indexed: 01/11/2023] Open
Abstract
Spinal bulbar muscular atrophy (SBMA), the first identified CAG-repeat expansion disorder, is an X-linked neuromuscular disorder involving CAG-repeat-expansion mutations in the androgen receptor (AR) gene. We utilized CRISPR-Cas9 gene editing to engineer novel isogenic human induced pluripotent stem cell (hiPSC) models, consisting of isogenic AR knockout, control and disease lines expressing mutant AR with distinct repeat lengths, as well as control and disease lines expressing FLAG-tagged wild-type and mutant AR, respectively. Adapting a small-molecule cocktail-directed approach, we differentiate the isogenic hiPSC models into motor neuron-like cells with a highly enriched population to uncover cell-type-specific mechanisms underlying SBMA and to distinguish gain- from loss-of-function properties of mutant AR in disease motor neurons. We demonstrate that ligand-free mutant AR causes drastic mitochondrial dysfunction in neurites of differentiated disease motor neurons due to gain-of-function mechanisms and such cytotoxicity can be amplified upon ligand (androgens) treatment. We further show that aberrant interaction between ligand-free, mitochondria-localized mutant AR and F-ATP synthase is associated with compromised mitochondrial respiration and multiple other mitochondrial impairments. These findings counter the established notion that androgens are requisite for mutant AR-induced cytotoxicity in SBMA, reveal a compelling mechanistic link between ligand-free mutant AR, F-ATP synthase and mitochondrial dysfunction, and provide innovative insights into motor neuron-specific therapeutic interventions for SBMA.
Collapse
Affiliation(s)
- Xia Feng
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Cell Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Xiu-Tang Cheng
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Pengli Zheng
- Cell Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jill Hakim
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | | | - Stacie M Anderson
- Flow Cytometry Core, National Human Genome Research Institute, National Institute of Health, Bethesda, MD, USA
| | - Kaari Linask
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ryan Prestil
- Neurogenetics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Jizhong Zou
- iPSC Core, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Zu-Hang Sheng
- Synaptic Function Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| | - Craig Blackstone
- Cell Biology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA.,MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, MA, USA.,Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Beignon F, Gueguen N, Tricoire-Leignel H, Mattei C, Lenaers G. The multiple facets of mitochondrial regulations controlling cellular thermogenesis. Cell Mol Life Sci 2022; 79:525. [PMID: 36125552 DOI: 10.1007/s00018-022-04523-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/21/2022] [Accepted: 08/09/2022] [Indexed: 12/01/2022]
Abstract
Understanding temperature production and regulation in endotherm organisms becomes a crucial challenge facing the increased frequency and intensity of heat strokes related to global warming. Mitochondria, located at the crossroad of metabolism, respiration, Ca2+ homeostasis, and apoptosis, were recently proposed to further act as cellular radiators, with an estimated inner temperature reaching 50 °C in common cell lines. This inner thermogenesis might be further exacerbated in organs devoted to produce consistent efforts as muscles, or heat as brown adipose tissue, in response to acute solicitations. Consequently, pathways promoting respiratory chain uncoupling and mitochondrial activity, such as Ca2+ fluxes, uncoupling proteins, futile cycling, and substrate supplies, provide the main processes controlling heat production and cell temperature. The mitochondrial thermogenesis might be further amplified by cytoplasmic mechanisms promoting the over-consumption of ATP pools. Considering these new thermic paradigms, we discuss here all conventional wisdoms linking mitochondrial functions to cellular thermogenesis in different physiological conditions.
Collapse
Affiliation(s)
- Florian Beignon
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.
| | - Naig Gueguen
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France.,Service de Biochimie et Biologie Moléculaire, CHU d'Angers, Angers, France
| | | | - César Mattei
- Univ Angers, CarMe, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Guy Lenaers
- Univ Angers, MitoLab, Unité MITOVASC, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France. .,Service de Neurologie, CHU d'Angers, Angers, France.
| |
Collapse
|
11
|
Walnut Oil Reduces Aβ Levels and Increases Neurite Length in a Cellular Model of Early Alzheimer Disease. Nutrients 2022; 14:nu14091694. [PMID: 35565661 PMCID: PMC9099939 DOI: 10.3390/nu14091694] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 04/11/2022] [Accepted: 04/16/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Mitochondria are the cells' main source of energy. Mitochondrial dysfunction represents a key hallmark of aging and is linked to the development of Alzheimer's disease (AD). Maintaining mitochondrial function might contribute to healthy aging and the prevention of AD. The Mediterranean diet, including walnuts, seems to prevent age-related neurodegeneration. Walnuts are a rich source of α-linolenic acid (ALA), an essential n3-fatty acid and the precursor for n3-long-chain polyunsaturated fatty acids (n3-PUFA), which might potentially improve mitochondrial function. (2) Methods: We tested whether a lipophilic walnut extract (WE) affects mitochondrial function and other parameters in human SH-SY5Y cells transfected with the neuronal amyloid precursor protein (APP695). Walnut lipids were extracted using a Soxhlet Extraction System and analyzed using GC/MS and HPLC/FD. Adenosine triphosphate (ATP) concentrations were quantified under basal conditions in cell culture, as well as after rotenone-induced stress. Neurite outgrowth was investigated, as well as membrane integrity, cellular reactive oxygen species, cellular peroxidase activity, and citrate synthase activity. Beta-amyloid (Aβ) was quantified using homogenous time-resolved fluorescence. (3) Results: The main constituents of WE are linoleic acid, oleic acid, α-linolenic acid, and γ- and δ-tocopherol. Basal ATP levels following rotenone treatment, as well as citrate synthase activity, were increased after WE treatment. WE significantly increased cellular reactive oxygen species but lowered peroxidase activity. Membrane integrity was not affected. Furthermore, WE treatment reduced Aβ1-40 and stimulated neurite growth. (4) Conclusions: WE might increase ATP production after induction of mitochondrial biogenesis. Decreased Aβ1-40 formation and enhanced ATP levels might enhance neurite growth, making WE a potential agent to enhance neuronal function and to prevent the development of AD. In this sense, WE could be a promising agent for the prevention of AD.
Collapse
|
12
|
Bou‐Teen D, Fernandez‐Sanz C, Miro‐Casas E, Nichtova Z, Bonzon‐Kulichenko E, Casós K, Inserte J, Rodriguez‐Sinovas A, Benito B, Sheu S, Vázquez J, Ferreira‐González I, Ruiz‐Meana M. Defective dimerization of FoF1-ATP synthase secondary to glycation favors mitochondrial energy deficiency in cardiomyocytes during aging. Aging Cell 2022; 21:e13564. [PMID: 35233924 PMCID: PMC8920436 DOI: 10.1111/acel.13564] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/18/2022] [Accepted: 01/24/2022] [Indexed: 11/30/2022] Open
Abstract
Aged cardiomyocytes develop a mismatch between energy demand and supply, the severity of which determines the onset of heart failure, and become prone to undergo cell death. The FoF1-ATP synthase is the molecular machine that provides >90% of the ATP consumed by healthy cardiomyocytes and is proposed to form the mitochondrial permeability transition pore (mPTP), an energy-dissipating channel involved in cell death. We investigated whether aging alters FoF1-ATP synthase self-assembly, a fundamental biological process involved in mitochondrial cristae morphology and energy efficiency, and the functional consequences this may have. Purified heart mitochondria and cardiomyocytes from aging mice displayed an impaired dimerization of FoF1-ATP synthase (blue native and proximity ligation assay), associated with abnormal mitochondrial cristae tip curvature (TEM). Defective dimerization did not modify the in vitro hydrolase activity of FoF1-ATP synthase but reduced the efficiency of oxidative phosphorylation in intact mitochondria (in which membrane architecture plays a fundamental role) and increased cardiomyocytes' susceptibility to undergo energy collapse by mPTP. High throughput proteomics and fluorescence immunolabeling identified glycation of 5 subunits of FoF1-ATP synthase as the causative mechanism of the altered dimerization. In vitro induction of FoF1-ATP synthase glycation in H9c2 myoblasts recapitulated the age-related defective FoF1-ATP synthase assembly, reduced the relative contribution of oxidative phosphorylation to cell energy metabolism, and increased mPTP susceptibility. These results identify altered dimerization of FoF1-ATP synthase secondary to enzyme glycation as a novel pathophysiological mechanism involved in mitochondrial cristae remodeling, energy deficiency, and increased vulnerability of cardiomyocytes to undergo mitochondrial failure during aging.
Collapse
Affiliation(s)
- Diana Bou‐Teen
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Celia Fernandez‐Sanz
- Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Elisabet Miro‐Casas
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Zuzana Nichtova
- Cardiovascular Proteomics Laboratory Centro Nacional de Investigaciones Cardiovasculares Carlos III Madrid Spain
| | - Elena Bonzon‐Kulichenko
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics Department of Pathology Anatomy & Cell Biol. Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Kelly Casós
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Javier Inserte
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Antonio Rodriguez‐Sinovas
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Begoña Benito
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| | - Shey‐Shing Sheu
- Center for Translational Medicine Department of Medicine Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Jesús Vázquez
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
- MitoCare Center for Mitochondrial Imaging Research and Diagnostics Department of Pathology Anatomy & Cell Biol. Thomas Jefferson University Philadelphia Pennsylvania USA
| | - Ignacio Ferreira‐González
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
| | - Marisol Ruiz‐Meana
- Cardiovascular Diseases Research Group Vall d’Hebron Institut de Recerca (VHIR) Vall d’Hebron Hospital Universitari Barcelona Spain
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBER‐CV) Madrid Spain
| |
Collapse
|
13
|
|
14
|
An Uninvited Seat at the Dinner Table: How Apicomplexan Parasites Scavenge Nutrients from the Host. Microorganisms 2021; 9:microorganisms9122592. [PMID: 34946193 PMCID: PMC8707601 DOI: 10.3390/microorganisms9122592] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 12/24/2022] Open
Abstract
Obligate intracellular parasites have evolved a remarkable assortment of strategies to scavenge nutrients from the host cells they parasitize. Most apicomplexans form a parasitophorous vacuole (PV) within the invaded cell, a replicative niche within which they survive and multiply. As well as providing a physical barrier against host cell defense mechanisms, the PV membrane (PVM) is also an important site of nutrient uptake that is essential for the parasites to sustain their metabolism. This means nutrients in the extracellular milieu are separated from parasite metabolic machinery by three different membranes, the host plasma membrane, the PVM, and the parasite plasma membrane (PPM). In order to facilitate nutrient transport from the extracellular environment into the parasite itself, transporters on the host cell membrane of invaded cells can be modified by secreted and exported parasite proteins to maximize uptake of key substrates to meet their metabolic demand. To overcome the second barrier, the PVM, apicomplexan parasites secrete proteins contained in the dense granules that remodel the vacuole and make the membrane permissive to important nutrients. This bulk flow of host nutrients is followed by a more selective uptake of substrates at the PPM that is operated by specific transporters of this third barrier. In this review, we recapitulate and compare the strategies developed by Apicomplexa to scavenge nutrients from their hosts, with particular emphasis on transporters at the parasite plasma membrane and vacuolar solute transporters on the parasite intracellular digestive organelle.
Collapse
|
15
|
Oxidative Stress, Mitochondrial Dysfunction, and Neuroprotection of Polyphenols with Respect to Resveratrol in Parkinson's Disease. Biomedicines 2021; 9:biomedicines9080918. [PMID: 34440122 PMCID: PMC8389563 DOI: 10.3390/biomedicines9080918] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/24/2021] [Accepted: 07/25/2021] [Indexed: 02/06/2023] Open
Abstract
Parkinson’s disease (PD) is the second most common neurodegenerative disease and is characterized by dopaminergic neuronal loss. The exact pathogenesis of PD is complex and not yet completely understood, but research has established the critical role mitochondrial dysfunction plays in the development of PD. As the main producer of cytosolic reactive oxygen species (ROS), mitochondria are particularly susceptible to oxidative stress once an imbalance between ROS generation and the organelle’s antioxidative system occurs. An overabundance of ROS in the mitochondria can lead to mitochondrial dysfunction and further vicious cycles. Once enough damage accumulates, the cell may undergo mitochondria-dependent apoptosis or necrosis, resulting in the neuronal loss of PD. Polyphenols are a group of natural compounds that have been shown to offer protection against various diseases, including PD. Among these, the plant-derived polyphenol, resveratrol, exhibits neuroprotective effects through its antioxidative capabilities and provides mitochondria protection. Resveratrol also modulates crucial genes involved in antioxidative enzymes regulation, mitochondrial dynamics, and cellular survival. Additionally, resveratrol offers neuroprotective effects by upregulating mitophagy through multiple pathways, including SIRT-1 and AMPK/ERK pathways. This compound may provide potential neuroprotective effects, and more clinical research is needed to establish the efficacy of resveratrol in clinical settings.
Collapse
|
16
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
17
|
Ravera S, Colombo E, Pasquale C, Benedicenti S, Solimei L, Signore A, Amaroli A. Mitochondrial Bioenergetic, Photobiomodulation and Trigeminal Branches Nerve Damage, What's the Connection? A Review. Int J Mol Sci 2021; 22:4347. [PMID: 33919443 PMCID: PMC8122620 DOI: 10.3390/ijms22094347] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Injury of the trigeminal nerve in oral and maxillofacial surgery can occur. Schwann cell mitochondria are regulators in the development, maintenance and regeneration of peripheral nerve axons. Evidence shows that after the nerve injury, mitochondrial bioenergetic dysfunction occurs and is associated with pain, neuropathy and nerve regeneration deficit. A challenge for research is to individuate new therapies able to normalise mitochondrial and energetic metabolism to aid nerve recovery after damage. Photobiomodulation therapy can be an interesting candidate, because it is a technique involving cell manipulation through the photonic energy of a non-ionising light source (visible and NIR light), which produces a nonthermal therapeutic effect on the stressed tissue. METHODS The review was based on the following questions: (1) Can photo-biomodulation by red and NIR light affect mitochondrial bioenergetics? (2) Can photobiomodulation support damage to the trigeminal nerve branches? (preclinical and clinical studies), and, if yes, (3) What is the best photobiomodulatory therapy for the recovery of the trigeminal nerve branches? The papers were searched using the PubMed, Scopus and Cochrane databases. This review followed the ARRIVE-2.0, PRISMA and Cochrane RoB-2 guidelines. RESULTS AND CONCLUSIONS The reliability of photobiomodulatory event strongly bases on biological and physical-chemical evidence. Its principal player is the mitochondrion, whether its cytochromes are directly involved as a photoacceptor or indirectly through a vibrational and energetic variation of bound water: water as the photoacceptor. The 808-nm and 100 J/cm2 (0.07 W; 2.5 W/cm2; pulsed 50 Hz; 27 J per point; 80 s) on rats and 800-nm and 0.2 W/cm2 (0.2 W; 12 J/cm2; 12 J per point; 60 s, CW) on humans resulted as trustworthy therapies, which could be supported by extensive studies.
Collapse
Affiliation(s)
- Silvia Ravera
- Department of Experimental Medicine, University of Genoa, 16132 Genoa, Italy;
| | - Esteban Colombo
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Claudio Pasquale
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Stefano Benedicenti
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Luca Solimei
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
| | - Antonio Signore
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Therapeutic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| | - Andrea Amaroli
- Department of Surgical and Diagnostic Sciences, University of Genoa, 16132 Genoa, Italy; (E.C.); (C.P.); (S.B.); (L.S.); (A.S.)
- Department of Orthopaedic Dentistry, Faculty of Dentistry, First Moscow State Medical University (Sechenov University), 119991 Moscow, Russia
| |
Collapse
|
18
|
Nesci S, Trombetti F, Pagliarani A, Ventrella V, Algieri C, Tioli G, Lenaz G. Molecular and Supramolecular Structure of the Mitochondrial Oxidative Phosphorylation System: Implications for Pathology. Life (Basel) 2021; 11:242. [PMID: 33804034 PMCID: PMC7999509 DOI: 10.3390/life11030242] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023] Open
Abstract
Under aerobic conditions, mitochondrial oxidative phosphorylation (OXPHOS) converts the energy released by nutrient oxidation into ATP, the currency of living organisms. The whole biochemical machinery is hosted by the inner mitochondrial membrane (mtIM) where the protonmotive force built by respiratory complexes, dynamically assembled as super-complexes, allows the F1FO-ATP synthase to make ATP from ADP + Pi. Recently mitochondria emerged not only as cell powerhouses, but also as signaling hubs by way of reactive oxygen species (ROS) production. However, when ROS removal systems and/or OXPHOS constituents are defective, the physiological ROS generation can cause ROS imbalance and oxidative stress, which in turn damages cell components. Moreover, the morphology of mitochondria rules cell fate and the formation of the mitochondrial permeability transition pore in the mtIM, which, most likely with the F1FO-ATP synthase contribution, permeabilizes mitochondria and leads to cell death. As the multiple mitochondrial functions are mutually interconnected, changes in protein composition by mutations or in supercomplex assembly and/or in membrane structures often generate a dysfunctional cascade and lead to life-incompatible diseases or severe syndromes. The known structural/functional changes in mitochondrial proteins and structures, which impact mitochondrial bioenergetics because of an impaired or defective energy transduction system, here reviewed, constitute the main biochemical damage in a variety of genetic and age-related diseases.
Collapse
Affiliation(s)
- Salvatore Nesci
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Fabiana Trombetti
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Alessandra Pagliarani
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Vittoria Ventrella
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Cristina Algieri
- Department of Veterinary Medical Sciences, Alma Mater Studiorum University of Bologna, 40064 Ozzano Emilia, Italy; (F.T.); (V.V.); (C.A.)
| | - Gaia Tioli
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| | - Giorgio Lenaz
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy;
| |
Collapse
|
19
|
Pleiotropic Effects of Eugenol: The Good, the Bad, and the Unknown. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:3165159. [PMID: 33747344 PMCID: PMC7943301 DOI: 10.1155/2021/3165159] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/11/2022]
Abstract
Phytocompounds and medicinal herbs were used in traditional ancient medicine and are nowadays increasingly screened in both experimental and clinical settings due to their beneficial effects in several major pathologies. Similar to the drug industry, phytotherapy is interested in using nanobased delivery systems to view the identification and characterization of the cellular and molecular therapeutic targets of plant components. Eugenol, the major phenolic constituent of clove essential oil, is a particularly versatile phytochemical with a vast range of therapeutic properties, among which the anti-inflammatory, antioxidant, and anticarcinogenic effects have been systematically addressed. In the past decade, with the emerging understanding of the role of mitochondria as critical organelles in the pathophysiology of noncommunicable diseases, research regarding the role of phytochemicals as modulators of bioenergetics and metabolism is on a rise. Here, we present a brief overview of the major pharmacological properties of eugenol, with special emphasis on its applications in dental medicine, and provide preliminary data regarding its effects, alone, and included in polyurethane nanostructures, on mitochondrial bioenergetics, and glycolysis in human HaCaT keratinocytes.
Collapse
|
20
|
Hearne A, Chen H, Monarchino A, Wiseman JS. Oligomycin-induced proton uncoupling. Toxicol In Vitro 2020; 67:104907. [PMID: 32502624 DOI: 10.1016/j.tiv.2020.104907] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/23/2022]
Abstract
Oligomycin is a classical mitochondrial reagent that binds to the proton channel on the Fo component of ATP synthase. As a result, oligomycin blocks mitochondrial ATP synthesis, proton translocation, and O2 uptake. Here we show that oligomycin induces proton uncoupling subsequent to inhibition of ATP synthesis, as evidenced by recovery of O2 uptake to near baseline levels. Uncoupling is uniquely rapid and readily observed in HepG2 cells but is also observed at longer times in the unrelated H1299 cell line. Proton fluxes plateau at oligomycin concentrations in the region 0.25-5 μM. At the plateau, fluxes are lower than expected for the classical mitochondrial permeability transition pore, although in H1229 cells, fluxes increase to levels consistent with pore opening at higher oligomycin concentrations. Uncoupling is observed in cells metabolizing either pyruvate or lactate and reversed by addition of glucose to restore ATP synthesis. Uncoupling is not sensitive to cyclosporin A and is not reversed by the ANT inhibitor bongkrekic acid. However, bongkrekic acid inhibits uncoupling if added before oligomycin, which we interpret in terms of maintenance of mitochondrial ATP levels.
Collapse
Affiliation(s)
- Abby Hearne
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Haotong Chen
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Anna Monarchino
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| | - Jeffrey S Wiseman
- Edison Biotechnology Institute, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
21
|
Guo QY, Ren SY, Wang JY, Li Y, Yao ZY, Huang H, Gao ZX, Yang SP. Low field nuclear magnetic sensing technology based on hydrogel-coated superparamagnetic particles. Anal Chim Acta 2019; 1094:151-159. [PMID: 31761042 DOI: 10.1016/j.aca.2019.10.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 10/06/2019] [Accepted: 10/09/2019] [Indexed: 12/14/2022]
Abstract
Based on superparamagnetic nanoparticles, a responsive polyacrylamide hydrogel self-assembled by nucleic acid hairpin hybridization chain reaction was designed, and a universal low field nuclear magnetic resonance sensing platform was successfully constructed. As the target was gradually added, the hydrogel coating on the surface of the magnetic nanoparticle was opened layer by layer through binding with the aptamer, which specifically bonded thereto, causing different degrees of exposure of the magnetic nanoparticle, resulting in changes of low field nuclear magnetic resonance signals. This method was originally applied to the rapid detection of adenosine triphosphate (ATP), and the versatility of the method was verified using polychlorinated biphenyl 77 (PCB77). This method had the advantage of being fast, convenient, and low cost, and it can be easily operated with high repeatability. This universal method can detect a variety of targets by replacing aptamers and may be useful in controlling food quality and for rapidly detecting cancer cells in vitro.
Collapse
Affiliation(s)
- Qi-Yue Guo
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Shu-Yue Ren
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China
| | - Jing-Yi Wang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China
| | - Ye Li
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Zi-Yi Yao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Hui Huang
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China; Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China
| | - Zhi-Xian Gao
- Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety, Institute of Environmental and Operational Medicine, Academy of Military Medical Science, Academy of Military Science, Tianjin, 300050, China.
| | - Shi-Ping Yang
- Shanghai Normal University, School of Chemistry and Materials Science, Shanghai Key Laboratory of Rare Earth Functional Materials, Shanghai, 200234, China.
| |
Collapse
|