1
|
Mokhtar HI, Khodeer DM, Alzahrani S, Qushawy M, Alshaman R, Elsherbiny NM, Ahmed ES, Abu El Wafa EG, El-Kherbetawy MK, Gardouh AR, Zaitone SA. Formulation and characterization of cholesterol-based nanoparticles of gabapentin protecting from retinal injury. Front Chem 2024; 12:1449380. [PMID: 39502139 PMCID: PMC11537204 DOI: 10.3389/fchem.2024.1449380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/27/2024] [Indexed: 11/08/2024] Open
Abstract
Introduction This study aimed to prepare cholesterol and stearic acid-based solid lipid nanoparticles of gabapentin (GAB-SLNs) for protection against streptozotocin (STZ)-induced retinal injury in rats. Methods We prepared four preparations of GAB-SLNs using a hot high-shear homogenization ultrasonication process, and the best formulation was selected and tested for biological activity. The retinal injury was brought in male adult albino rats while gabapentin doses continued for 6 weeks. Six groups of rats were assigned as the vehicle, diabetic, diabetic + gabapentin (10-20 mg/kg), and diabetic + GAB-SLNs (10-20 mg/kg). GAB-SLN#2 was selected as the optimized formulation with high entrapment efficacy (EE%, 98.64% ± 1.97%), small particle size (185.65 ± 2.41 nm), high negative Zeta potential (-32.18 ± 0.98 mV), low polydispersity index (0.28 ± 0.02), and elevated drug release (99.27% ± 3.48%). The TEM image of GAB-SLN#2 revealed a smooth surface with a spherical shape. Results GAB-SLNs provided greater protection against retinal injury than free gabapentin as indicated by the histopathology data which demonstrated more organization of retinal layers and less degeneration in ganglion cell layer in rats treated with GAB-SLN#2. Further, GAB-SLN#2 reduced the inflammatory proteins (IL-6/JAK2/STAT3) and vascular endothelial growth factor (VEGF). Conclusion The preparation of GAB-SLNs enhanced the physical properties of gabapentin and improved its biological activity as a neuroprotectant. Further studies are warranted to validate this technique for the use of oral gabapentin in other neurological disorders.
Collapse
Affiliation(s)
- Hatem I. Mokhtar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Sinai University-Kantara Branch, Ismailia, Egypt
| | - Dina M. Khodeer
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Sharifa Alzahrani
- Department of Pharmacology, Faculty of Medicine, University of Tabuk, Tabuk, Saudi Arabia
| | - Mona Qushawy
- Department of Pharmaceutics, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Reem Alshaman
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Nehal M. Elsherbiny
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| | - Esam Sayed Ahmed
- Department of Ophthalmology, Al-Azher Asyut Faculty of Medicine for Men, Asyut, Egypt
| | | | | | - Ahmed R. Gardouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Jadara University, Irbid, Jordan
| | - Sawsan A. Zaitone
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk, Saudi Arabia
| |
Collapse
|
2
|
Liu Y, Lou X. The Bidirectional Association Between Metabolic Syndrome and Long-COVID-19. Diabetes Metab Syndr Obes 2024; 17:3697-3710. [PMID: 39398386 PMCID: PMC11471063 DOI: 10.2147/dmso.s484733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/22/2024] [Indexed: 10/15/2024] Open
Abstract
Background The rapid global spread of a new coronavirus disease known as COVID-19 has led to a significant increase in mortality rates, resulting in an unprecedented worldwide pandemic. Methods The impact of COVID-19, particularly its long-term effects, has also had a profound effect on the health and well-being of individuals.Metabolic syndrome increases the risk of heart and brain diseases, presenting a significant danger to human well-being. Purpose The prognosis of long COVID and the progression of metabolic syndrome interact with each other, but there is currently a lack of systematic reports.In this paper, the pathogenesis, related treatment and prognosis of long COVID and metabolic syndrome are systematically reviewed.
Collapse
Affiliation(s)
- Yanfen Liu
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| | - Xueyong Lou
- Department of Endocrinology at Zhejiang University School of Medicine, Jinhua Hospital, Jinhua, People’s Republic of China
| |
Collapse
|
3
|
Hao L, Gao M, Guo W, Yao Z. Correlation Between Risk Factors, Degree of Vascular Restenosis, and Inflammatory Factors After Interventional Treatment for Stroke: A Two-Center Retrospective Study. Neurologist 2024; 29:233-237. [PMID: 38251319 DOI: 10.1097/nrl.0000000000000549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
OBJECTIVE To study the correlation between risk factors, degree of vascular restenosis, and inflammatory factors after interventional treatment for stroke. METHODS The clinical data of 96 stroke patients who received interventional therapy in our hospital from April 2020 to June 2021 were selected for retrospective study, and the postoperative follow-up was 1 year. Univariate and multivariate regression were used to analyze identified factors associated with interventional stroke efficacy. At the same time, the value of inflammatory factor levels in predicting vascular restenosis after interventional stroke was analyzed. RESULTS According to our findings, several risk factors, including body mass index ≥ 25.51 kg/m 2 , smoking, drinking, hypertension, and diabetes, were identified as contributors to poor postoperative efficacy following stroke intervention ( P <0.05). Furthermore, a notable association was observed between the severity of vascular stenosis ( P <0.001) and the levels of interleukin 6, interleukin 2, TNF-α, and C-reactive protein. The combined assessment of these serum inflammatory factors exhibited excellent predictive capability for postoperative vascular restenosis and stenosis severity, yielding a sensitivity of 84.30%, a specificity of 81.20%, and an area under the curve of 0.882. CONCLUSIONS Obesity, smoking, alcohol consumption, hypertension, and diabetes have been found to be associated with suboptimal outcomes following interventional treatment for stroke. The assessment of preoperative levels of inflammatory factors holds promise in predicting the likelihood of postoperative restenosis to a certain degree.
Collapse
Affiliation(s)
- Liang Hao
- Department of Neurosurgery, The Third Hospital of Shijiazhuang, Shijiazhuang, Hebei, China
| | | | | | | |
Collapse
|
4
|
Zhao L, Hu H, Zhang L, Liu Z, Huang Y, Liu Q, Jin L, Zhu M, Zhang L. Inflammation in diabetes complications: molecular mechanisms and therapeutic interventions. MedComm (Beijing) 2024; 5:e516. [PMID: 38617433 PMCID: PMC11014467 DOI: 10.1002/mco2.516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/16/2024] Open
Abstract
At present, diabetes mellitus (DM) has been one of the most endangering healthy diseases. Current therapies contain controlling high blood sugar, reducing risk factors like obesity, hypertension, and so on; however, DM patients inevitably and eventually progress into different types of diabetes complications, resulting in poor quality of life. Unfortunately, the clear etiology and pathogenesis of diabetes complications have not been elucidated owing to intricate whole-body systems. The immune system was responsible to regulate homeostasis by triggering or resolving inflammatory response, indicating it may be necessary to diabetes complications. In fact, previous studies have been shown inflammation plays multifunctional roles in the pathogenesis of diabetes complications and is attracting attention to be the meaningful therapeutic strategy. To this end, this review systematically concluded the current studies over the relationships of susceptible diabetes complications (e.g., diabetic cardiomyopathy, diabetic retinopathy, diabetic peripheral neuropathy, and diabetic nephropathy) and inflammation, ranging from immune cell response, cytokines interaction to pathomechanism of organ injury. Besides, we also summarized various therapeutic strategies to improve diabetes complications by target inflammation from special remedies to conventional lifestyle changes. This review will offer a panoramic insight into the mechanisms of diabetes complications from an inflammatory perspective and also discuss contemporary clinical interventions.
Collapse
Affiliation(s)
- Lu Zhao
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Haoran Hu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lin Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Zheting Liu
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yunchao Huang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Qian Liu
- National Demonstration Center for Experimental Traditional Chinese Medicines Education (Zhejiang Chinese Medical University)College of Pharmaceutical Science, Zhejiang Chinese Medical UniversityHangzhouChina
| | - Liang Jin
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
- Shanghai Key Laboratory of Compound Chinese Medicines, The Ministry of Education Key Laboratory for Standardization of Chinese Medicines, Institute of Chinese Materia MedicaShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Meifei Zhu
- Department of Critical Care MedicineThe First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine)HangzhouChina
| | - Ling Zhang
- Department of Biology and MedicineCollege of Life Science, Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
5
|
Ghasemi Pour Afshar N, Arab HA, Vatannejad A, Ashabi G, Golabchifar AA. The Role of the JAK-STAT Signaling Pathway in the Protective Effects of Hepatic Ischemia Post-conditioning Against the Injury Induced by Ischemia/Reperfusion in the Rat Liver. Adv Pharm Bull 2024; 14:224-230. [PMID: 38585457 PMCID: PMC10997924 DOI: 10.34172/apb.2024.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 06/02/2023] [Accepted: 07/14/2023] [Indexed: 04/09/2024] Open
Abstract
Purpose Hepatic ischemic post-conditioning (IPOC) is shown to protect the liver from injury induced by ischemia/reperfusion (IR). However, the mechanism underlying this protection has remained elusive. The present study aimed to investigate the role of the interleukin 6-Janus kinase-signal transducers and activators of transcription (IL-6-JAK-STAT) pathway in the protective effect of hepatic IPOC against the IR-induced injury in the liver. Methods Twenty-five rats were randomly divided into 5 groups of (1) sham-operated, (2) IR, (3) IR+hepatic IPOC, (4) IR+tofacitinib (TOFA), and (5) IR+TOFA+hepatic IPOC. The changes induced by IR and the effects of different treatments were assessed by enzyme release, histopathological observations, the serum level of IL-6, and the occurrence of apoptosis detected via the expression of the Bax/Bcl-2 ratio. Results The hepatic IPOC improved the liver injury induced by IR as shown by histological changes, reduction of IL-6 level, aspartate aminotransferase (AST), and alanine aminotransferase (ALT) compared to the IR group (P<0.001, P<0.05, P<0.05, respectively). There was also downregulation of the Bax/Bcl2 ratio in the rats exposed to IR+hepatic IPOC compared with those in the IR group (P<0.05). However, TOFA, an inhibitor of JAK-STAT activity, inhibited the protective effect of hepatic IPOC. Conclusion It suggests that the protective effect of hepatic IPOC against IR-induced injury may be mediated by activating the IL-6-JAK-STAT pathway.
Collapse
Affiliation(s)
- Neda Ghasemi Pour Afshar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Hossein Ali Arab
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ali akbar Golabchifar
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
6
|
Piron A, Szymczak F, Papadopoulou T, Alvelos MI, Defrance M, Lenaerts T, Eizirik DL, Cnop M. RedRibbon: A new rank-rank hypergeometric overlap for gene and transcript expression signatures. Life Sci Alliance 2024; 7:e202302203. [PMID: 38081640 PMCID: PMC10709657 DOI: 10.26508/lsa.202302203] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
High-throughput omics technologies have generated a wealth of large protein, gene, and transcript datasets that have exacerbated the need for new methods to analyse and compare big datasets. Rank-rank hypergeometric overlap is an important threshold-free method to combine and visualize two ranked lists of P-values or fold-changes, usually from differential gene expression analyses. Here, we introduce a new rank-rank hypergeometric overlap-based method aimed at gene level and alternative splicing analyses at transcript or exon level, hitherto unreachable as transcript numbers are an order of magnitude larger than gene numbers. We tested the tool on synthetic and real datasets at gene and transcript levels to detect correlation and anticorrelation patterns and found it to be fast and accurate, even on very large datasets thanks to an evolutionary algorithm-based minimal P-value search. The tool comes with a ready-to-use permutation scheme allowing the computation of adjusted P-values at low time cost. The package compatibility mode is a drop-in replacement to previous packages. RedRibbon holds the promise to accurately extricate detailed information from large comparative analyses.
Collapse
Affiliation(s)
- Anthony Piron
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Florian Szymczak
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Theodora Papadopoulou
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
| | - Maria Inês Alvelos
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Matthieu Defrance
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
| | - Tom Lenaerts
- Interuniversity Institute of Bioinformatics in Brussels (IB2), Brussels, Belgium
- https://ror.org/01r9htc13 Machine Learning Group, Université Libre de Bruxelles, Brussels, Belgium
- Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium
| | - Décio L Eizirik
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
| | - Miriam Cnop
- https://ror.org/01r9htc13 ULB Center for Diabetes Research, Medical Faculty, Université Libre de Bruxelles, Brussels, Belgium
- https://ror.org/01r9htc13 Division of Endocrinology, Erasmus Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
7
|
Rahmati M, Haffner M, Lee MA, Leach JK, Saiz AM. The critical impact of traumatic muscle loss on fracture healing: Basic science and clinical aspects. J Orthop Res 2024; 42:249-258. [PMID: 37990953 DOI: 10.1002/jor.25746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 11/20/2023] [Indexed: 11/23/2023]
Abstract
Musculoskeletal trauma, specifically fractures, is a leading cause of patient morbidity and disability worldwide. In approximately 20% of cases with fracture and related traumatic muscle loss, bone healing is impaired leading to fracture nonunion. Over the past few years, several studies have demonstrated that bone and the surrounding muscle tissue interact not only anatomically and mechanically but also through biochemical pathways and mediators. Severe damage to the surrounding musculature at the fracture site causes an insufficiency in muscle-derived osteoprogenitor cells that are crucial for fracture healing. As an endocrine tissue, skeletal muscle produces many myokines that act on different bone cells, such as osteoblasts, osteoclasts, osteocytes, and mesenchymal stem cells. Investigating how muscle influences fracture healing at cellular, molecular, and hormonal levels provides translational therapeutic solutions to this clinical challenge. This review provides an overview about the contributions of surrounding muscle tissue in directing fracture healing. The focus of the review is on describing the interactions between bone and muscle in both healthy and fractured environments. We discuss current progress in identifying the bone-muscle molecular pathways and strategies to harness these pathways as cues for accelerating fracture healing. In addition, we review the existing challenges and research opportunities in the field.
Collapse
Affiliation(s)
- Maryam Rahmati
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, California, USA
| | - Max Haffner
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, California, USA
| | - Mark A Lee
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, California, USA
| | - Jonathan Kent Leach
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, California, USA
- Department of Biomedical Engineering, University of California, Davis, Davis, California, USA
| | - Augustine M Saiz
- Department of Orthopaedic Surgery, University of California, Davis, Sacramento, California, USA
| |
Collapse
|
8
|
Gao H, Kuang Y, Liu Y, Zhang Y, Wang P, Ma Q. Changes of plasma Rap1A levels in patients with in-stent restenosis after percutaneous coronary intervention and the underlying mechanisms. ZHONG NAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF CENTRAL SOUTH UNIVERSITY. MEDICAL SCIENCES 2023; 48:1650-1658. [PMID: 38432855 PMCID: PMC10929945 DOI: 10.11817/j.issn.1672-7347.2023.230285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Indexed: 03/05/2024]
Abstract
OBJECTIVES Percutaneous coronary intervention (PCI) is one of the most important treatments for coronary artery disease (CAD). However, in-stent restenosis (ISR) after PCI is a serious complication without effective measures for prevention and treatment. This study aims to investigate the Ras-related protein 1A (Rap1A) level in ISR patients and in the tumor necrosis factor-α (TNF-α)-induced inflammatory injury model of human umbilical vein endothelial cells (HUVECs), to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs and to provide a new potential target for ISR prevention and treatment. METHODS A total of 60 CAD patients, who underwent PCI between December 2020 and July 2022 from the Department of Cardiovascular Medicine of Xiangya Hospital, Central South University, and re-examined coronary angiography (CAG) 1 year after the operation, were included. After admission, 27 patients were diagnosed with ISR and 33 patients were diagnosed with non-in-stent restenosis (non-ISR) according to the CAG. Clinical data were collected, and the plasma Rap1A level was determined by enzyme linked immunosorbent assay (ELISA). In cell experiments, an inflammatory injury model was established with TNF-α treatment (10 ng/mL, 24 h) in HUVECs. The mRNA and protein expression levels of Rap1A, interlukin-6 (IL-6), and vascular cell adhesion molecule-1 (VCAM-1) were measured by real-time reverse transcription PCR and Western blotting. Small interfering RNA (siRNA) was used to explore the role of Rap1A in regulating TNF-α-induced inflammation in HUVECs. RESULTS Compared with the non-ISR patients, a higher proportion of ISR patients had a history of smoking (P=0.005) and diabetes (P=0.028), and higher levels of glycosylated hemoglobin (HbA1c) (P=0.012), low-density lipoprotein cholesterol (LDL-c) (P=0.014), and hypersensitive C-reactive protein (hs-CRP) (P=0.027). The remaining projects did not show significant differences (all P>0.05). The plasma level of Rap1A in the ISR group was significantly higher than that in the non-ISR group [942.14 (873.28 to 1 133.81) μg/mL vs 886.93 (812.61 to 930.98) μg/mL; P=0.004]. Diabetes, LDL-c, and Rap1A were risk factors for ISR by univariate logistic regression analysis (all P<0.05). The mRNA and protein expression levels of inflammatory factors IL-6 and VCAM-1 were increased in HUVECs after 10 ng/mL TNF-α treatment for 24 h compared with the control group (all P<0.05), while the mRNA and protein levels of Rap1A were increased (both P<0.05). After inhibition of Rap1A in HUVECs, the mRNA and protein expression levels of IL-6 and VCAM-1 were significantly decreased (all P<0.05). CONCLUSIONS The plasma Rap1A level was significantly elevated in patients with ISR, suggesting that Rap1A may be a potential biomarker for predicting ISR. In the TNF-α- induced HUVECs inflammatory injury model, the expression level of Rap1A was increased. The level of TNF-α-induced endothelial cell inflammation was decreased after inhibition of Rap1A expression, suggesting that Rap1A may be a potential target for the treatment of endothelial cell inflammation in ISR.
Collapse
Affiliation(s)
- Haodong Gao
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| | - Yuanyuan Kuang
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Yubo Liu
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Yinzhuang Zhang
- Department of Cardiology, First Hospital of Changsha, Changsha 410005, China
| | - Ping Wang
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008
| | - Qilin Ma
- Department of Cardiology, Xiangya Hospital, Central South University; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha 410008.
| |
Collapse
|
9
|
Gohari S, Ismail-Beigi F, Mahjani M, Ghobadi S, Jafari A, Ahangar H, Gohari S. The effect of sodium-glucose co-transporter-2 (SGLT2) inhibitors on blood interleukin-6 concentration: a systematic review and meta-analysis of randomized controlled trials. BMC Endocr Disord 2023; 23:257. [PMID: 37996879 PMCID: PMC10668472 DOI: 10.1186/s12902-023-01512-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 11/14/2023] [Indexed: 11/25/2023] Open
Abstract
BACKGROUND The low-grade chronic inflammation in diabetes plays an important role in development of cardiovascular and renal complications. Sodium-glucose co-transporter-2 (SGLT2) inhibitors are recognized as protective agents for cardio-renal complications. Interleukin-6 (IL-6) is positively associated with the pathophysiology of metabolic-related pathologies. The aim of this meta-analysis is to investigate the effect of SGLT2 inhibitors on blood IL-6 concentration in randomized controlled trials (RCTs). METHODS Embase, PubMed, and Scopus were systematically searched up to 1st of November 2023. The eligible studies were RCTs with adult population that had provided blood IL-6 for both control and intervention groups. Cochrane risk-of-bias tool were for study quality assessment. Data were analyzed using random effect model via Stata statistical software. RESULTS Eighteen studies with a total of 5311 patients were included. Of which 3222 and 2052 patients were in intervention and control arm, respectively. Of the total population, 49.7% were men. The study durations ranged from 8 to 52 weeks. The pooled analysis showed a significant association between the use of SGLT2 inhibitors and lower IL-6 levels (standardized mean difference (SMD) = -1.04, Confidence Interval (CI): -1.48; -0.60, I2 = 96.93%). Dapagliflozin was observed to have a higher IL-6-lowering effect (SMD = -1.30, CI: -1.89; -0.71, I2 = 92.52) than empagliflozin or canagliflozin. Sub-group analysis of control groups (SMD = -0.58 (-1.01, -0.15) and -1.35 (-2.00, -0.70 for the placebo and active control sub-groups, respectively) and duration of interventions (SMD = -0.78 (-1.28, -0.28) and -1.20 (-1.86, -0.55) for study duration of ≤ 12 and > 12 weeks, respectively) did not change the results. Meta-regression analysis showed a significant correlation between the level of HbA1c and IL-6-lowering efficacy of SGLT2 inhibitors. CONCLUSION IL-6 levels are significantly reduced with the use of SGLT2 inhibitors with HbA1c as the only marker influencing such reductions, and dapagliflozin had the highest potency. The anti-inflammatory effect of SGLT2 inhibitors supports their broader use to address diabetic complications related to inflammatory responses.
Collapse
Affiliation(s)
- Sepehr Gohari
- Student Research Center, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Faramarz Ismail-Beigi
- Department of Medicine, Case Western Reserve University, University Hospitals Cleveland Medical Center, Cleveland, OH, USA
| | - Mahsa Mahjani
- Endocrine Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Saeed Ghobadi
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Melbourne, VIC, Australia
| | - Alireza Jafari
- Physiology Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Hassan Ahangar
- Department of Cardiology, School of Medicine, Mousavi Hospital, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Sheida Gohari
- Department of Systems Science and Industrial Engineering, State University of New York at Binghamton, Binghamton, NY, USA
| |
Collapse
|
10
|
Albogami S. Genome-Wide Identification of lncRNA and mRNA for Diagnosing Type 2 Diabetes in Saudi Arabia. Pharmgenomics Pers Med 2023; 16:859-882. [PMID: 37731406 PMCID: PMC10508282 DOI: 10.2147/pgpm.s427977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
Purpose According to the World Health Organization, Saudi Arabia ranks seventh worldwide in the number of patients with diabetes mellitus. To our knowledge, no research has addressed the potential of noncoding RNA as a diagnostic and/or management biomarker for patients with type 2 diabetes mellitus (T2DM) living in high-altitude areas. This study aimed to identify molecular biomarkers influencing patients with T2DM living in high-altitude areas by analyzing lncRNA and mRNA. Patients and Methods RNA sequencing and bioinformatics analyses were used to identify significantly expressed lncRNAs and mRNAs in T2DM and healthy control groups. Coding potential was analyzed using coding-noncoding indices, the coding potential calculator, and PFAM, and the lncRNA function was predicted using Pearson's correlation. Differentially expressed transcripts between the groups were identified, and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the biological functions of both lncRNAs and mRNAs. Results We assembled 1766 lncRNAs in the T2DM group, of which 582 were novel. This study identified three lncRNA target genes (KLF2, CREBBP, and REL) and seven mRNAs (PIK3CD, PIK3R5, IL6R, TYK2, ZAP70, LAMTOR4, and SSH2) significantly enriched in important pathways, playing a role in the progression of T2DM. Conclusion To the best of our knowledge, this comprehensive study is the first to explore the applicability of certain lncRNAs as diagnostic or management biomarkers for T2DM in females in Taif City, Saudi Arabia through the genome-wide identification of lncRNA and mRNA profiling using RNA seq and bioinformatics analysis. Our findings could help in the early diagnosis of T2DM and in designing effective therapeutic targets.
Collapse
Affiliation(s)
- Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, 21944, Saudi Arabia
| |
Collapse
|
11
|
Cai Z, Zeng Y, Liu Z, Zhu R, Wang W. Curcumin Alleviates Epidermal Psoriasis-Like Dermatitis and IL-6/STAT3 Pathway of Mice. Clin Cosmet Investig Dermatol 2023; 16:2399-2408. [PMID: 37675183 PMCID: PMC10478781 DOI: 10.2147/ccid.s423922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/25/2023] [Indexed: 09/08/2023]
Abstract
Background To further investigate why curcumin (CUR) can attenuate psoriasis-like dermatitis of mice. Methods and Results Sixteen mice were randomized into four groups. The control group used carrier cream, and the model and the CUR group were applied with topical 5% imiquimod in the naked mice skin once a day for 6 days (62.5 mg/day/mice). Meanwhile, the control and model mice were given the same dose of saline by oral means, while mice in the CUR groups received oral drug doses of 50 and 100 mg/kg once a day for 6 days, respectively. CUR could largely improve imiquimod-induced lesions of mice. By using the ELISA and qPCR, we found that the protein and mRNA levels of epidermal TNF-α and IL-6 were inhibited by CUR. The phosphorylation levels of STAT3 and its downstream associated protein levels (eg, Cyclin D1, Bcl-2 and Pim1) in skin tissues of different groups were also inhibited by CUR. Furthermore, the results of immunohistochemistry also showed the repressed effect of CUR for the expression of TNF-α, IL-6 and p-STAT3 in psoriasis-like lesions of mice. Conclusion CUR can effectively ameliorate the featured lesions of psoriasis mice, which may be closely associated with the involvement of IL-6/STAT3 signaling.
Collapse
Affiliation(s)
- Zhenguo Cai
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Dermatology, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Zhuohang Liu
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Ruizheng Zhu
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| | - Wuqing Wang
- Department of Dermatology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People’s Republic of China
- Department of Dermatology, Minhang Hospital, Fudan University/Central Hospital of Minhang District, Shanghai, 201199, People’s Republic of China
| |
Collapse
|
12
|
Peng S, Wu WQ, Li LY, Shi YC, Lin S, Song ZY. Deficiency of neuropeptide Y attenuates neointima formation after vascular injury in mice. BMC Cardiovasc Disord 2023; 23:239. [PMID: 37149580 PMCID: PMC10164319 DOI: 10.1186/s12872-023-03267-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 04/26/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Restenosis after percutaneous coronary intervention (PCI) limits therapeutic revascularization. Neuropeptide Y (NPY), co-stored and co-released with the sympathetic nervous system, is involved in this process, but its exact role and underlying mechanisms remain to be fully understood. This study aimed to investigate the role of NPY in neointima formation after vascular injury. METHODS Using the left carotid arteries of wild-type (WT, NPY-intact) and NPY-deficient (NPY-/-) mice, ferric chloride-mediated carotid artery injury induced neointima formation. Three weeks after injury, the left injured carotid artery and contralateral uninjured carotid artery were collected for histological analysis and immunohistochemical staining. RT-qPCR was used to detect the mRNA expression of several key inflammatory markers and cell adhesion molecules in vascular samples. Raw264.7 cells were treated with NPY, lipopolysaccharide (LPS), and lipopolysaccharide-free, respectively, and RT-qPCR was used to detect the expression of these inflammatory mediators. RESULTS Compared with WT mice, NPY-/- mice had significantly reduced neointimal formation three weeks after injury. Mechanistically, immunohistochemical analysis showed there were fewer macrophages and more vascular smooth muscle cells in the neointima of NPY-/- mice. Moreover, the mRNA expression of key inflammatory markers such as interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and intercellular adhesion molecule-1 (ICAM-1) was significantly lower in the injured carotid arteries of NPY-/- mice, compared to that in the injured carotid arteries of WT mice. In RAW264.7 macrophages, NPY significantly promoted TGF-β1 mRNA expression under unactivated but not LPS-stimulated condition. CONCLUSIONS Deletion of NPY attenuated neointima formation after artery injury, at least partly, through reducing the local inflammatory response, suggesting that NPY pathway may provide new insights into the mechanism of restenosis.
Collapse
Affiliation(s)
- Song Peng
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei-Qiang Wu
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Lin-Yu Li
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Yan-Chuan Shi
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia
| | - Shu Lin
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
- Group of Neuroendocrinology, Garvan Institute of Medical Research, 384 Victoria St, Sydney, Australia.
| | - Zhi-Yuan Song
- Department of Cardiology, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China.
| |
Collapse
|
13
|
Meng Q, Xu Y, Li Y, Wang Y. Novel studies on Drosophila melanogaster model reveal the roles of JNK-Jak/STAT axis and intestinal microbiota in insulin resistance. J Drug Target 2023; 31:261-268. [PMID: 36343203 DOI: 10.1080/1061186x.2022.2144869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The JNK pathway play a critical role in insulin resistance induced by a long-term high-sugar diet. However, the roles of up- and downstream molecules of the JNK pathway in insulin resistance are less known in vertebrates and invertebrates. As a classical organism in biological research, Drosophila melanogaster (D. melanogaster) has been widely applied to the studies of mechanism of insulin resistance. Based on previous studies, we found a novel predictive mechanism of the formation of insulin resistance in D. melanogaster. We found that JNK activated by high-sugar diet and dysregulated intestinal microbiota could mediate inflammation, and then the activated JNK released Upd3, which in turn stimulated Jak/STAT pathway to release ImpL2. ImpL2 can compete with Drosophila insulin-like peptides (Dilps) for binding with the insulin receptor and inhibit the activation of insulin pathway. In this study, we reviewed novel studies on the insulin signalling pathway based on the D. melanogaster model. The findings support our hypothesis. We, therefore, described how a long-term high-sugar diet disrupts intestinal microbiota to induce inflammation and the disruption of JNK-Jak/STAT axis. This description may offer some new clues to the formation of insulin resistance.
Collapse
Affiliation(s)
- Qinghao Meng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yidong Xu
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Ying Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Yiwen Wang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Wikan N, Tocharus J, Oka C, Sivasinprasasn S, Chaichompoo W, Suksamrarn A, Tocharus C. The capsaicinoid nonivamide suppresses the inflammatory response and attenuates the progression of steatosis in a NAFLD-rat model. J Biochem Mol Toxicol 2023; 37:e23279. [PMID: 36541345 DOI: 10.1002/jbt.23279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 04/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is relatively associated with comorbidities in obesity and metabolic inflammation. Low-grade inflammation following the high-fat diet (HFD)-induced NAFLD can promote the development of nonalcoholic steatohepatitis (NASH) through particularly liver-resident immune cell recruitment and hepatic nuclear factor kappa B (NF-κB) pathway. Therefore, inflammatory intervention may contribute to NASH reduction. Pelargonic acid vanillylamide (PAVA) or nonivamide is one of the pungent capsaicinoids of Capsicum species and has been found in chili peppers. Our previous study demonstrated that PAVA improved hepatic function, decreased oxidative stress and reduced apoptotic cell death but the insight role of PAVA on NAFLD is still unclear. Thus, this study aimed to investigate the underlying anti-inflammatory mechanism of PAVA in an NAFLD-rat model. Male Sprague Dawley rats were fed with normal diet or HFD for 16 weeks. Then high-fat rats were given vehicle or PAVA (1 mg/kg/day) for another 4 weeks. We found that PAVA alleviated hepatic inflammation associated with the reducing toll-like receptor 4/NF-κB pathway, showing significantly lower recruitment of cluster of differentiation 44. PAVA also maintained activity of insulin signaling pathway, and attenuated NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) inflammasome formation. NAFLD progresses to NASH through transforming growth factor (TGF-β1), and also recovery to simple stage followed by PAVA suppresses pro-inflammatory cytokines such as tumor necrosis factor-α, interleukin-1β, interleukin-6, and Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway. Therefore, our findings suggest that PAVA provides a novel therapeutic approach for NAFLD and slows the progression to NASH.
Collapse
Affiliation(s)
- Naruemon Wikan
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Jiraporn Tocharus
- Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Chio Oka
- Functional Genomics and Medicine, Division of Biological Science, Nara Institute of Science and Technology, Ikoma, Nara, Japan
| | | | - Waraluck Chaichompoo
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Chainarong Tocharus
- Department of Anatomy, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand.,Center for Research and Development of Natural Products for Health, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
15
|
Sharma B, Yadav DK. L-Carnitine and Chronic Kidney Disease: A Comprehensive Review on Nutrition and Health Perspectives. J Pers Med 2023; 13:298. [PMID: 36836532 PMCID: PMC9960140 DOI: 10.3390/jpm13020298] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/10/2023] Open
Abstract
Progressive segmental glomerulosclerosis is acknowledged as a characteristic of Chronic Kidney Disease (CKD). It is a major health issue that exponentially reduces health and economy and also causes serious morbidity and mortality across the globe. This review is aimed at comprehending the health perspectives of L-Carnitine (LC) as an adjuvant regimen for alleviating CKD and its associated complications. The data were gathered from different online databases such as Science Direct, Google Scholar, ACS publication, PubMed, Springer, etc., using keywords such as CKD/Kidney disease, current epidemiology and its prevalence, LC supplementations, sources of LC, anti-oxidant and anti-inflammatory potential of LC and its supplementation for mimicking the CKD and its associated problem, etc. Various items of literature concerning CKD were gathered and screened by experts based on their inclusion and exclusion criteria. The findings suggest that, among the different comorbidities such as oxidative stress and inflammatory stress, erythropoietin-resistant anemia, intradialytic hypotension, muscle weakness, myalgia, etc., are considered as the most significant onset symptoms in CKD or hemodialysis patients. LC or creatine supplementation provides an effective adjuvant or therapeutic regimen that significantly reduces oxidative and inflammatory stress and erythropoietin-resistant anemia and evades comorbidities such as tiredness, impaired cognition, muscle weakness, myalgia, and muscle wasting. However, no significant changes were found in biochemical alteration such as creatinine, uric acid, urea, etc., after creatine supplementation in a patient with renal dysfunction. The expert-recommended dose of LC or creatine to a patient is approached for better outcomes of LC as a nutritional therapy regimen for CKD-associated complications. Hence, it can be suggested that LC provides an effective nutritional therapy to ameliorate impaired biochemicals and kidney function and to treat CKD and its associated complications.
Collapse
Affiliation(s)
- Bharti Sharma
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John’s University, New York, NY 11439, USA
| | - Dinesh Kumar Yadav
- Department of Pharmacognosy, SGT College of Pharmacy, SGT University, Gurugram 122505, India
| |
Collapse
|
16
|
Multi-Omic Profiles in Infants at Risk for Food Reactions. Genes (Basel) 2022; 13:genes13112024. [DOI: 10.3390/genes13112024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 11/06/2022] Open
Abstract
Food reactions (FR) are multifactorial and impacted by medical, demographic, environmental, and immunologic factors. We hypothesized that multi-omic analyses of host-microbial factors in saliva would enhance our understanding of FR development. This longitudinal cohort study included 164 infants followed from birth through two years. The infants were identified as FR (n = 34) or non-FR (n = 130) using the Infant Feeding Practice II survey and medical record confirmation. Saliva was collected at six months for the multi-omic assessment of cytokines, mRNAs, microRNAs, and the microbiome/virome. The levels of one miRNA (miR-203b-3p, adj. p = 0.043, V = 2913) and one viral phage (Proteus virus PM135, adj. p = 0.027, V = 2955) were lower among infants that developed FRs. The levels of one bacterial phylum (Cyanobacteria, adj. p = 0.048, V = 1515) were higher among infants that developed FR. Logistical regression models revealed that the addition of multi-omic features (miR-203b-3p, Cyanobacteria, and Proteus virus PM135) improved predictiveness for future FRs in infants (p = 0.005, X2 = 12.9), predicting FRs with 72% accuracy (AUC = 0.81, sensitivity = 72%, specificity = 72%). The multi-omic analysis of saliva may enhance the accurate identification of infants at risk of FRs and provide insights into the host/microbiome interactions that predispose certain infants to FRs.
Collapse
|
17
|
Immunolocalization of zinc transporters and metallothioneins reveals links to microvascular morphology and functions. Histochem Cell Biol 2022; 158:485-496. [PMID: 35849202 PMCID: PMC9630201 DOI: 10.1007/s00418-022-02138-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/30/2022] [Indexed: 02/07/2023]
Abstract
Zinc homeostasis is vital to immune and other organ system functions, yet over a quarter of the world’s population is zinc deficient. Abnormal zinc transport or storage protein expression has been linked to diseases, such as cancer and chronic obstructive pulmonary disorder. Although recent studies indicate a role for zinc regulation in vascular functions and diseases, detailed knowledge of the mechanisms involved remains unknown. This study aimed to assess protein expression and localization of zinc transporters of the SLC39A/ZIP family (ZIPs) and metallothioneins (MTs) in human subcutaneous microvessels and to relate them to morphological features and expression of function-related molecules in the microvasculature. Microvessels in paraffin biopsies of subcutaneous adipose tissues from 14 patients undergoing hernia reconstruction surgery were analysed for 9 ZIPs and 3 MT proteins by MQCM (multifluorescence quantitative confocal microscopy). Zinc regulation proteins detected in human microvasculature included ZIP1, ZIP2, ZIP8, ZIP10, ZIP12, ZIP14 and MT1-3, which showed differential localization among endothelial and smooth muscle cells. ZIP1, ZIP2, ZIP12 and MT3 showed significantly (p < 0.05) increased immunoreactivities, in association with increased microvascular muscularization, and upregulated ET-1, α-SMA and the active form of p38 MAPK (Thr180/Tyr182 phosphorylated, p38 MAPK-P). These findings support roles of the zinc regulation system in microvascular physiology and diseases.
Collapse
|
18
|
Bi T, Zhang L, Zhan L, Feng R, Zhao T, Ren W, Hang T, Zhou W, Lu X. Integrated Analyses of Microbiomics and Metabolomics Explore the Effect of Gut Microbiota Transplantation on Diabetes-Associated Cognitive Decline in Zucker Diabetic Fatty Rats. Front Aging Neurosci 2022; 14:913002. [PMID: 35721013 PMCID: PMC9204715 DOI: 10.3389/fnagi.2022.913002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes-associated cognitive decline (DACD), one of the complications of type 2 diabetes (T2DM), correlates significantly with the disorder in glycolipid metabolism, insulin/leptin resistance, and accumulation of β-amyloid (Aβ). Although gut microbiota transplantation (GMT), a novel non-invasive physiotherapy strategy, has been a promising intervention to alleviate the symptoms of T2DM, its protective effect on progressive cognitive decline remains elusive. Here, we transplanted the gut microbiota of healthy or cognitive decline donor rats into ZDF or LZ rats, and integrated microbiomics and metabolomics to evaluate the directional effect of the gut microbiota on the recipient rats. The basal metabolism phenotype changed in ZDF rats instead of in LZ rats. One possible mechanism is that the microbiota and metabolites alter the structure of the intestinal tract, stimulate the brain insulin and leptin signaling pathways, and regulate the deposition of Aβ in the brain. It is worth noting that 10 species of genera, such as Parabacteroides, Blautia, and Lactobacillus, can regulate 20 kinds of metabolites, such as propanoic acid, acetic acid, and citramalic acid, and having a significant improvement on the cognitive behavior of ZDF rats. In addition, the correlation analysis indicated the gut microbiota and metabolites are highly associated with host phenotypes affected by GMT. In summary, our study indicates that altering the microbiota-gut-brain axis by reshaping the composition of gut microbiota is a viable strategy that has great potential for improving cognitive function and combatting DACD.
Collapse
Affiliation(s)
- Tingting Bi
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Lijing Zhang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Libin Zhan
- Center for Innovative Engineering Technology in Traditional Chinese Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, China
- *Correspondence: Libin Zhan,
| | - Ruiqi Feng
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tian Zhao
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Weiming Ren
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Tianyi Hang
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wen Zhou
- School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiaoguang Lu
- Department of Emergency Medicine, Zhongshan Hospital, Dalian University, Dalian, China
- Xiaoguang Lu,
| |
Collapse
|
19
|
Chen H, Song L, Xu X, Han Z, Peng F, Zhang Q, Liu C, Liang X. The effect of icariin on autoimmune premature ovarian insufficiency via modulation of Nrf2/HO-1/Sirt1 pathway in mice. Reprod Biol 2022; 22:100638. [PMID: 35344846 DOI: 10.1016/j.repbio.2022.100638] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/17/2022] [Accepted: 03/12/2022] [Indexed: 12/21/2022]
Abstract
Primary ovarian insufficiency (POI) is a common gynecological disease. Autoimmunity is a common cause of POI. Icariin (ICA) plays a therapeutic role in many autoimmune diseases. This study aims to investigate the effect of ICA on autoimmune POI mice and its effect on immune regulation. Sixty-three female BALB/c mice were randomized into three groups (control, POI, POI + ICA). POI and POI + ICA group were hypodermically injected with zona pellucida three peptides (pZP3) to induce autoimmune POI. Then the POI + ICA group was gavaged with ICA. A vaginal smear was to observe estrous cycles, hematoxylin-eosin staining was to count follicles. Enzyme-linked immunosorbent analysis determined serum FSH, LH, AMH, and anti-zona pellucida antibody (AZPAb) levels. In addition, flow cytometry detected the expression of Th1 cells and Treg cells, and Western blot was used to detect the expression of Nuclear factor E2 related factor 2(Nrf2), heme oxygenase-1 (HO-1), and Sirtuin-1 (Sirt1) proteins. pZP3 treatment decreased serum AMH levels and increased FSH, LH, and AZPAb levels. Additionally, decreases in the number of healthy follicles at all stages and an increase in the number of atretic follicles. Abnormal ovarian structure and an arrested estrous cycle were also noted. However, ICA rescued POI through up-regulating Nrf2, HO-1, and Sirt1 expressions and up-regulating Treg expressions. ICA treatment improved the structure of the injured ovarian and its function in autoimmune POI mice. The mechanism is achieved by increasing the expression of Nrf2/HO-1/Sirt1 pathway in the ovary and increasing Treg cells' expression.
Collapse
Affiliation(s)
- Haoran Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Xiaofang Xu
- Department of Gynecology, Leping Maternal and Child Health Care Hospital, Leping, China
| | - Zhongyu Han
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Fang Peng
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Qinxiu Zhang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China
| | - Chi Liu
- Department of Nephrology, Sichuan Academy of Medical Science and Sichuan Provincial People's Hospital, Sichuan Renal Disease Clinical Research Center, University of Electronic Science and Technology of China, Chengdu, China; Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu 610072, China.
| | - Xin Liang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Reproductive & Women-Children Hospital, Chengdu, China.
| |
Collapse
|
20
|
Bahmani M, Chegini R, Ghanbari E, Sheykhsaran E, Shiri Aghbash P, Leylabadlo HE, Moradian E, Kazemzadeh Houjaghan AM, Bannazadeh Baghi H. Severe acute respiratory syndrome coronavirus 2 infection: Role of interleukin-6 and the inflammatory cascade. World J Virol 2022; 11:113-128. [PMID: 35665236 PMCID: PMC9150027 DOI: 10.5501/wjv.v11.i3.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/03/2022] [Accepted: 04/28/2022] [Indexed: 02/06/2023] Open
Abstract
Since December 2019, a novel coronavirus that represents a serious threat to human lives has emerged. There is still no definite treatment for severe cases of the disease caused by this virus, named coronavirus disease 2019 (COVID-19). One of the most considered treatment strategies targets the exaggerated immune regulator, and interleukin (IL)-6 is a crucial pro-inflammatory mediator. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) cases show an elevated level of IL-6 related to disease severity. IL-6 activity can be inhibited by the following: IL-6 itself, IL-6 signaling pathways such as Janus kinase and signal transducer and activator of transcription (JAK-STAT), gp130, IL-6R, and downstream activated ILs, such as IL-17 and IL-6 cytokine. Currently, according to these studies and their results, IL-6 blockade with anti-IL-6 or its receptor antibodies such as tocilizumab in COVID-19 is beneficial in severe cases and may reduce the mortality rate. JAK-STAT inhibitors block the cytokine storm by inhibiting several crucial pro-inflammatory mediators such as TNF-α and IL-6 and have shown various results in clinical trials. IL-6 induces IL-17 secretion, and IL-17 is involved in the pathogenesis of inflammatory processes. Clinical trials of anti-IL-17 drugs are currently recruiting, and anti-gp130 antibody is preclinical. However, this agent has shown positive effects in inflammatory bowel disease clinical trials and could be tested for SARS-CoV-2. This study aimed to review the role of IL-6 in the cytokine storm and studies regarding IL-6 and blockade of its inflammatory pathways in COVID-19 to determine if any of these agents are beneficial for COVID-19 patients.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Department of Virology, Student Research Committee, Tabriz Univer-sity of Medical Sciences, Tabriz 15731, Iran
| | - Rojin Chegini
- Department of Medical Science, Metabolic Liver Disease Research Center, Isfahan University of Medical Sciences, Isfahan 81745-33871, Iran
| | - Elham Ghanbari
- Department of Medical Science, Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67159-59167, Iran
| | - Elham Sheykhsaran
- Department of Microbiology, Student Research Committee, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | - Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
- Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| | | | - Ehsan Moradian
- Department of Medical Science, Medical Faculty, Tabriz University of Medical Sciences, Tabriz 5165665931, Iran
| | | | - Hossein Bannazadeh Baghi
- Department of Virology, Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz 15731, Iran
| |
Collapse
|
21
|
Clare J, Ganly J, Bursill CA, Sumer H, Kingshott P, de Haan JB. The Mechanisms of Restenosis and Relevance to Next Generation Stent Design. Biomolecules 2022; 12:biom12030430. [PMID: 35327622 PMCID: PMC8945897 DOI: 10.3390/biom12030430] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Stents are lifesaving mechanical devices that re-establish essential blood flow to the coronary circulation after significant vessel occlusion due to coronary vessel disease or thrombolytic blockade. Improvements in stent surface engineering over the last 20 years have seen significant reductions in complications arising due to restenosis and thrombosis. However, under certain conditions such as diabetes mellitus (DM), the incidence of stent-mediated complications remains 2–4-fold higher than seen in non-diabetic patients. The stents with the largest market share are designed to target the mechanisms behind neointimal hyperplasia (NIH) through anti-proliferative drugs that prevent the formation of a neointima by halting the cell cycle of vascular smooth muscle cells (VSMCs). Thrombosis is treated through dual anti-platelet therapy (DAPT), which is the continual use of aspirin and a P2Y12 inhibitor for 6–12 months. While the most common stents currently in use are reasonably effective at treating these complications, there is still significant room for improvement. Recently, inflammation and redox stress have been identified as major contributing factors that increase the risk of stent-related complications following percutaneous coronary intervention (PCI). The aim of this review is to examine the mechanisms behind inflammation and redox stress through the lens of PCI and its complications and to establish whether tailored targeting of these key mechanistic pathways offers improved outcomes for patients, particularly those where stent placement remains vulnerable to complications. In summary, our review highlights the most recent and promising research being undertaken in understanding the mechanisms of redox biology and inflammation in the context of stent design. We emphasize the benefits of a targeted mechanistic approach to decrease all-cause mortality, even in patients with diabetes.
Collapse
Affiliation(s)
- Jessie Clare
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Justin Ganly
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
| | - Christina A. Bursill
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5000, Australia;
- Vascular Research Centre, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
- ARC Centre of Excellence for Nanoscale BioPhotonics, Adelaide, SA 5000, Australia
| | - Huseyin Sumer
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Correspondence: (H.S.); (J.B.d.H.)
| | - Peter Kingshott
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- ARC Training Centre in Surface Engineering for Advanced Materials (SEAM), Swinburne University of Technology, Melbourne, VIC 3122, Australia
| | - Judy B. de Haan
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Melbourne, VIC 3122, Australia; (J.C.); (J.G.); (P.K.)
- Baker Heart and Diabetes Institute, Melbourne, VIC 3004, Australia
- Department Cardiometabolic Health, University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia
- Department of Immunology and Pathology, Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
- Correspondence: (H.S.); (J.B.d.H.)
| |
Collapse
|
22
|
Zhao C, Ren Y, Zhang Y. NDRG4 Alleviates Myocardial Infarction-Induced Apoptosis through the JAK2/STAT3 Pathway. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2022; 2022:4869470. [PMID: 35126626 PMCID: PMC8814718 DOI: 10.1155/2022/4869470] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 01/18/2023]
Abstract
OBJECTIVE At present, studies have confirmed that NDRG4 is specifically expressed in the heart, while its effect on the heart is still unclear. This study is to explore the effect of NDRG4 on cardiomyocyte apoptosis caused by acute myocardial infarction (AMI). METHODS Twenty SD rats were randomly divided into Sham (left anterior descent of heart without ligation) and AMI groups. In this study, coronary artery ligation was used to establish an AMI model, and the AMI model was verified by auxiliary examination and pathological examination. Besides, quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting (WB) was used to detect the expression level of Bax and Bcl-2 in heart tissues, and NDRG mRNA levels in tissues were also detected. qRT-PCR technology was used to verify the transfection efficiency of NDRG4 in H9C2 cells, and the change of apoptosis level of H9C2 cells was detected by Cell Counting Kit-8 (CCK-8) assay and TUNEL staining; besides, the expression level of apoptosis-related factors was detected by WB and qRT-PCR technology. Simultaneously with the modeling of rats, we injected adenovirus (Ad) into the heart tissue and examined the structural and functional changes of the rat heart. Then, WB technology was used to detect the expression level of the JAK2/STAT3 signaling pathway. RESULTS The heart function and heart structure of rats in the MI group were dramatically worse, and the expression level of NDRG4 was also dramatically reduced. The overexpression of NDRG4 in H9C2 cells can effectively inhibit the ischemia/hypoxia- (I/H-) induced decrease in cell viability and increase in apoptosis rate and inhibit the increase in Bax/Bcl-2 ratio. Moreover, overexpression of NDRG4 in heart tissue can effectively improve the cardiac function and structural destruction caused by MI. In addition, NDRG4 can inhibit JAK2/STAT3 pathway activation. CONCLUSION The expression of NDRG4 in the MI tissue of rats was suppressed, while overexpression of NDRG4 by injection of Ad can obviously protect the rat heart. Furthermore, overexpression of NDRG4 in H9C2 cells can effectively inhibit the I/H-induced decrease in cell viability and increase in apoptosis rate, and this may be related to the inhibition of the JAK2/STAT3 signaling pathway.
Collapse
Affiliation(s)
- Changliang Zhao
- Department of Cardiology 4, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000 Heilongjiang, China
| | - Yuanyuan Ren
- Department of Cardiology 4, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, 161000 Heilongjiang, China
| | - Yachao Zhang
- Intensive Care Unit, Hospital of Traditional Chinese Medicine of Qiqihar, Qiqihar, 161000 Heilongjiang, China
| |
Collapse
|
23
|
SOCS3 Gene Polymorphism and Hypertension Susceptibility in Chinese Population: A Two-Center Case-Control Study. BIOMED RESEARCH INTERNATIONAL 2021; 2021:8445461. [PMID: 34840983 PMCID: PMC8612791 DOI: 10.1155/2021/8445461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/26/2021] [Accepted: 11/03/2021] [Indexed: 12/16/2022]
Abstract
Endothelial inflammation and vascular damage are essential risk factors contributing to hypertension. Suppressor of cytokine signaling 3 (SOCS3) is involved in the regulation of multiple inflammatory pathways. A large number of studies have shown that the anti-inflammatory effect of SOCS3 in hypertension, obesity, and allergic reactions has brought more insights into the inhibition of inflammation. Therefore, we selected a tagSNP of SOCS3 (rs8064821) to investigate whether they are contributing to the risk of hypertension in the Chinese population. In total, 532 patients with hypertension and 569 healthy controls were enrolled for two central of China. SOCS3 rs8064821 C>A polymorphism was genotyped using TaqMan assay. SOCS3 rs8064821 CA genotype was associated with an increased risk of hypertension (OR = 1.821, 95%CI = 1.276-2.600, P = 0.001). Rs8064821 A allele was associated with higher SOCS3 mRNA level in PBMCs from healthy donors. SOCS3 rs8064821 C>A polymorphism may contribute to the risk of hypertension in the Chinese population by regulating the expression of SOCS3.
Collapse
|
24
|
Gautam G, Parveen B, Umar Khan M, Sharma I, Kumar Sharma A, Parveen R, Ahmad S. A systematic review on nephron protective AYUSH drugs as constituents of NEERI-KFT (A traditional Indian polyherbal formulation) for the management of chronic kidney disease. Saudi J Biol Sci 2021; 28:6441-6453. [PMID: 34764761 PMCID: PMC8568826 DOI: 10.1016/j.sjbs.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/30/2021] [Accepted: 07/04/2021] [Indexed: 12/24/2022] Open
Abstract
Chronic Kidney Disease (CKD) is a major health problem characterized by kidney dysfunction with progressive segmental glomerulosclerosis to end-stage renal disease (ESRD). Due to lack of scientific data and comprehensive reports, the current systematic review provides an inclusive understanding and prospective associated with phytopharmacology of NEERI-KFT in CKD. The data was collected from more than five databases such as Science Direct, Google Scholar, Elsevier, PubMed, Springer, ACS publication etc using keywords like CKD/Kidney disease, epidemiology/prevalence, modern therapies for CKD management, NEERI-KFT and its role in kidney disease. The study was performed based on scientific reports screened by experts according to inclusion and exclusion criteria. The pre-clinical and clinical findings suggested that NEERI-KFT has promising effects as nephroprotective and considered safe and well effective in primary care of kidney against disease. Phytopharmacological evaluation of NEERI-KFT suggest that it exhibit substantial potential against oxidative and inflammatory stress induced apoptosis by exerting antioxidants, nephroprotective and immunomodulatory effects. Hence, it can be enlighten that NEERI-KFT have potential herbs which exerts significant antioxidants, nephroprotective and immunomodulatory effects in the patients associated with renal dysfunction or CKD thus improving altered renal architecture and renal physiology. Clinically, it is concluded that NEERI-KFT works kidney malfunction and cease ESRD progression or even reduce the number of dialysis.
Collapse
Affiliation(s)
- Gaurav Gautam
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Bushra Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Umar Khan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Ikshit Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Anil Kumar Sharma
- AIMIL Pharmaceuticals (India) Ltd, Saini Majra, Ropar Nalagarh Rd, Tehsil Nalagarh, Solan District, H.P 174101, India
| | - Rabea Parveen
- Human Genetics Laboratory, Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
25
|
Zhou C, Wang F, Ma H, Xing N, Hou L, Du Y, Ding H. Silencing of FOS-like antigen 1 represses restenosis via the ERK/AP-1 pathway in type 2 diabetic mice. Diab Vasc Dis Res 2021; 18:14791641211058855. [PMID: 34881661 PMCID: PMC8669130 DOI: 10.1177/14791641211058855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Restenosis is a major limiting factor for a successful outcome in type 2 diabetes (T2D) patients undergoing percutaneous coronary intervention (PCI). The aim of this study is to explore the role and regulatory mechanism of FOS-like antigen 1 (FOSL1) in restenosis in T2D. A T2D with restenosis mouse model was established by the combination of high-fat diet and streptozotocin injection and by wire-injury. High glucose (HG)-treated vascular smooth muscle cells (VSMCs) were used to mimic T2D in vitro. The results of quantitative real time PCR and western blotting demonstrated that the expression of FOSL1 was increased not only in T2D mice or HG-induced VSMCs, but also in T2D mice that underwent wire-injury. HE staining revealed that FOSL1 knockdown significantly reduced the intimal/media ratio of T2D mice after wire-injury. Silencing of FOSL1 reversed the promoting effects of HG treatment on viability, migration and inflammation reactions, and the inhibiting effect on the apoptosis of VSMCs. Inhibition of ERK/AP-1 pathway obtained similar patterns in HG-induced VSMCs. The activation of ERK/AP-1 pathway reversed the influence of FOSL1 knockdown on HG-induced VSMCs. Our findings indicate that silencing of FOSL1 may suppress restenosis via regulation of the ERK/AP-1 pathway in T2D mice, pointing out a potential therapeutic target to prevent restenosis in T2D.
Collapse
Affiliation(s)
- Chaoxi Zhou
- The Second Surgical Department of the Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Fujun Wang
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Hongfang Ma
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Na Xing
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Lin Hou
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaping Du
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| | - Haixia Ding
- Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
- Haixia Ding, Department of Endocrinology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei Province, 050000, China.
| |
Collapse
|
26
|
Molecular Biology Networks and Key Gene Regulators for Inflammatory Biomarkers Shared by Breast Cancer Development: Multi-Omics Systems Analysis. Biomolecules 2021; 11:biom11091379. [PMID: 34572592 PMCID: PMC8469138 DOI: 10.3390/biom11091379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022] Open
Abstract
As key inflammatory biomarkers C-reactive protein (CRP) and interleukin-6 (IL6) play an important role in the pathogenesis of non-inflammatory diseases, including specific cancers, such as breast cancer (BC). Previous genome-wide association studies (GWASs) have neither explained the large proportion of genetic heritability nor provided comprehensive understanding of the underlying regulatory mechanisms. We adopted an integrative genomic network approach by incorporating our previous GWAS data for CRP and IL6 with multi-omics datasets, such as whole-blood expression quantitative loci, molecular biologic pathways, and gene regulatory networks to capture the full range of genetic functionalities associated with CRP/IL6 and tissue-specific key drivers (KDs) in gene subnetworks. We applied another systematic genomics approach for BC development to detect shared gene sets in enriched subnetworks across BC and CRP/IL6. We detected the topmost significant common pathways across CRP/IL6 (e.g., immune regulatory; chemokines and their receptors; interferon γ, JAK-STAT, and ERBB4 signaling), several of which overlapped with BC pathways. Further, in gene–gene interaction networks enriched by those topmost pathways, we identified KDs—both well-established (e.g., JAK1/2/3, STAT3) and novel (e.g., CXCR3, CD3D, CD3G, STAT6)—in a tissue-specific manner, for mechanisms shared in regulating CRP/IL6 and BC risk. Our study may provide robust, comprehensive insights into the mechanisms of CRP/IL6 regulation and highlight potential novel genetic targets as preventive and therapeutic strategies for associated disorders, such as BC.
Collapse
|
27
|
Felicetti L, Femminella M, Reali G. A Molecular Communications System for the Detection of Inflammatory Levels Related to COVID-19 Disease. IEEE TRANSACTIONS ON MOLECULAR, BIOLOGICAL AND MULTI-SCALE COMMUNICATIONS 2021; 7:165-174. [PMID: 35782715 PMCID: PMC8544947 DOI: 10.1109/tmbmc.2021.3071788] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 12/29/2022]
Abstract
A recent and extensive research activity highlighted the process behind the attack and spread of COVID-19 in the human body. What emerged is that the SARS-CoV-2 virus makes use of both the ACE2 receptor, expressed by pneumocytes in the ephitelial alveolar lining, and by the endothelium to spread the disease and to replicate itself. Since the endothelium is an extended tissue lying in the circulatory system, this may lead to a large state of diffuse endothelial inflammation with serious clinical consequences. This situation may be further compromised by the immune system, that may generate pro-inflammatory cytokines (IL-6) as a consequence of the infection. In this paper we propose and analyze a molecular communication system, designed for the detection of excessive IL-6 level, that allows monitoring its evolution in the blood vessels. The proposed analysis was performed by using the BiNS2 simulator, which is suitable for the numerical analysis of flow-based molecular communications in blood vessels, as well as Markov models of the endothelium.
Collapse
Affiliation(s)
- Luca Felicetti
- Department of EngineeringUniversity of Perugia 06123 Perugia Italy
- Consorzio Nazionale Interuniversitario per le TelecomunicazioniUniversity of Perugia 06123 Perugia Italy
| | - Mauro Femminella
- Department of EngineeringUniversity of Perugia 06123 Perugia Italy
- Consorzio Nazionale Interuniversitario per le TelecomunicazioniUniversity of Perugia 06123 Perugia Italy
| | - Gianluca Reali
- Department of EngineeringUniversity of Perugia 06123 Perugia Italy
- Consorzio Nazionale Interuniversitario per le TelecomunicazioniUniversity of Perugia 06123 Perugia Italy
| |
Collapse
|
28
|
Yarmohammadi F, Hayes AW, Karimi G. The cardioprotective effects of hydrogen sulfide by targeting endoplasmic reticulum stress and the Nrf2 signaling pathway: A review. Biofactors 2021; 47:701-712. [PMID: 34161646 DOI: 10.1002/biof.1763] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/20/2022]
Abstract
Cardiac diseases are emerging due to lifestyle, urbanization, and the accelerated aging process. Oxidative stress has been associated with cardiac injury progression through interference with antioxidant strategies and endoplasmic reticulum (ER) function. Hydrogen sulfide (H2 S) is generated endogenously from l-cysteine in various tissues including heart tissue. Pharmacological evaluation of H2 S has suggested a potential role for H2 S against diabetic cardiomyopathy, ischemia/reperfusion injury, myocardial infarction, and cardiotoxicity. Nuclear factor E2-related factor 2 (Nrf2) activity is crucial for cell survival in response to oxidative stress. H2 S up-regulates Nrf2 expression and its related signaling pathway in myocytes. H2 S also suppresses the expression and activity of ER stress-related proteins. H2 S has been reported to improve various cardiac conditions through antioxidant and anti-ER stress-related activities.
Collapse
Affiliation(s)
- Fatemeh Yarmohammadi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - A Wallace Hayes
- Center for Environmental Occupational Risk Analysis and Management, College of Public Health, University of South Florida, Tampa, Florida, USA
- Institute for Integrative Toxicology, Michigan State University, East Lansing, Michigan, USA
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
29
|
Zhang LH, Jiang SZ, Guo X, Xiao B, Li Q, Chen JY, Huang JR, Rao H. MiR-146b-5p targets IFI35 to inhibit inflammatory response and apoptosis via JAK1/STAT1 signalling in lipopolysaccharide-induced glomerular cells. Autoimmunity 2021; 54:430-438. [PMID: 34435525 DOI: 10.1080/08916934.2020.1864730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The dysregulated microRNAs (miRNAs) are implicated in the malignancy of lupus nephritis (LN). This work aims to analyse the effect and mechanism of miR-146b-5p in lipopolysaccharides (LPS)-induced model of LN in vitro. The serum samples of LN patients and normal volunteers were collected. HK-2 cells were challenged via LPS. miR-146b-5p and interferon-induced protein 35 (IFI35) abundances were detected via quantitative real-time polymerase chain reaction (qRT-PCR) or western blot. The inflammatory response was assessed via inflammatory cytokines levels via qRT-PCR and enzyme-linked immunosorbent assay. Cell apoptosis was analysed via flow cytometry and apoptotic protein levels. The protein levels of JAK1/STAT1 signalling were detected via western blot. The relationship of miR-146b-5p and IFI35 was analysed via bioinformatics and dual-luciferase reporter assays. This study revealed that miR-146b-5p level was declined and IFI35 abundance was elevated in serum of LN patients and LPS-challenged HK-2 cells. Functionally, IFI35 overexpression promoted LPS-caused inflammatory response and cell apoptosis, and knockdown of IFI35 caused an opposite trend. Meanwhile, miR-146b-5p targeted IFI35 to suppress inflammatory response and cell inflammatory response and apoptosis via inactivating the JAK1/STAT1 pathway. MiR-146b-5p suppressed inflammatory response and cell apoptosis by IFI35 mediated-JAK1/STAT1 signalling in HK-2 cells, which provided a new mechanism for understanding the pathogenesis of LN.
Collapse
Affiliation(s)
- Li-Hua Zhang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Sheng-Zhi Jiang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Xia Guo
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Bin Xiao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Qiao Li
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Jian-Ying Chen
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Jie-Rou Huang
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| | - Hui Rao
- Department of Rheumatology and Immunology, Hunan Provincial People's Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, Hunan Province, P. R. China
| |
Collapse
|
30
|
Pepe M, Napoli G, Carulli E, Moscarelli M, Forleo C, Nestola PL, Biondi-Zoccai G, Giordano A, Favale S. Autoimmune diseases in patients undergoing percutaneous coronary intervention: A risk factor for in-stent restenosis? Atherosclerosis 2021; 333:24-31. [PMID: 34418682 DOI: 10.1016/j.atherosclerosis.2021.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 06/25/2021] [Accepted: 08/04/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Despite the relation between autoimmune diseases and increased atherosclerotic risk is established, the influence of autoimmune disorders on in-stent restenosis (ISR) after percutaneous coronary intervention (PCI) is only partly known. ISR is an aberrant reparative process mainly characterized by an increased number of vascular smooth muscle cells and excessive deposition of extracellular proteoglycans and type III collagen. Chronic inflammation, always present in autoimmune diseases, modulates the endothelial response to PCI. Aim of this review is to resume the current evidence on the association between ISR and autoimmune diseases, focusing on pathogenic mechanisms and therapeutic targets. METHODS We conducted a comprehensive review of the literature on the relationship between ISR and insulin-dependent diabetes mellitus (IDDM), rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), antiphospholipid-antibodies syndrome (APS), inflammatory bowel diseases (IBD), and Hashimoto's thyroiditis (HT). RESULTS Patients affected with IDDM, RA, SLE, APS, IBD and HT proved to face higher rates of ISR compared to the general population. The endothelial dysfunction seems the principal common pathogenic pathway for ISR and is attributed to both the immune system disorder and the systemic inflammation. Some evidence suggested that methotrexate and anti-tumor necrosis factor treatments can be effective in reducing ISR, while antibodies against vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 showed to reduce neointimal hyperplasia in animal models. CONCLUSIONS Autoimmune diseases are a risk factor for ISR. The study of the potential cardiovascular benefits of the current therapies, mainly anti-inflammatory drugs, and the pursuit of innovative treatments appear of paramount interest.
Collapse
Affiliation(s)
- Martino Pepe
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy.
| | - Gianluigi Napoli
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Eugenio Carulli
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Marco Moscarelli
- Cardiothoracic and Vascular Department, Maria Cecilia Hospital GVM Care & Research, Via Via Corriera 1,Cotignola, 48033, Ravenna, Italy
| | - Cinzia Forleo
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Palma Luisa Nestola
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| | - Giuseppe Biondi-Zoccai
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Corso della Republica 79, Latina, 04100,Latina, Italy; Mediterranea Cardiocentro, Via Orazio 2, Napoli, 80122, Napoli, Italy
| | - Arturo Giordano
- Invasive Cardiology Unit, "Pineta Grande" Hospital, Via Domitiana km 30, Castel Volturno, 81030, Caserta, Italy
| | - Stefano Favale
- Cardiovascular Diseases Section, Department of Emergency and Organ Transplantation (DETO), University of Bari, Piazza G. Cesare 11, Bari (BA), 70120, Italy
| |
Collapse
|
31
|
Osama H, Abdelrahman MA, Madney YM, Harb HS, Saeed H, Abdelrahim MEA. Coffee and type 2 diabetes risk: Is the association mediated by adiponectin, leptin, c-reactive protein or Interleukin-6? A systematic review and meta-analysis. Int J Clin Pract 2021; 75:e13983. [PMID: 33400346 DOI: 10.1111/ijcp.13983] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 12/27/2020] [Accepted: 01/03/2021] [Indexed: 12/26/2022] Open
Abstract
AIM Coffee and diabetes risk association has been demonstrated in numerous studies; however, the exact mechanism has not been clarified yet. The present meta-analysis was conducted to cover the current knowledge regarding the effect of coffee on Type 2 Diabetes (T2D), in addition to the evaluation of adiponectin, leptin, C-reactive protein (CRP) and Interleukin-6 (IL-6) levels among coffee consumers as relatively possible mediators of this effect. METHOD A comprehensive search of the literature was carried out using search engines up to March 2020. The effect sizes were investigated using the standardised mean difference (SMD) and odds ratios (OR) or relative risk (RR) with its 95% confidence interval (CI). A total of 69 cross-sectional and cohort studies were included and divided as follows: 31 articles for T2D risk, 15 studies for adiponectin, 6 studies for leptin, 12 studies for CRP and 5 studies for IL-6. RESULTS Overall, coffee consumption was inversely associated with T2D risk with an estimated pooled RR of 0.73 (95% confidence interval [0.68, 0.80] for the highest vs lowest coffee consumption categories. The combined SMD between the different coffee intake categories, showed that coffee consumption was associated with higher adiponectin levels (P = .002), and lower level of leptin (P = .04) and CRP (P = .2), with apparently no change in IL-6 levels (P = .91). CONCLUSION The present meta-analysis showed strong epidemiological evidence that coffee consumption is inversely associated with the risk of T2D. Also, adiponectin, leptin concentrations appeared to be potential mediators of the coffee effect on diabetes, while IL-6 levels did not.
Collapse
Affiliation(s)
- Hasnaa Osama
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mona A Abdelrahman
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Yasmin M Madney
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hadeer S Harb
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Haitham Saeed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
32
|
Epac-1/Rap-1 signaling pathway orchestrates the reno-therapeutic effect of ticagrelor against renal ischemia/reperfusion model. Biomed Pharmacother 2021; 139:111488. [PMID: 33957564 DOI: 10.1016/j.biopha.2021.111488] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 02/27/2021] [Accepted: 03/09/2021] [Indexed: 11/21/2022] Open
Abstract
Despite the renal expression of P2Y12, the purinergic receptor for adenosine diphosphate, few data are available to discuss the renotherapeutic potential of ticagrelor, one of its reversible blockers. Indeed, the tonic inhibitory effect of this receptor has been linked to the activation of exchange protein activated by cyclic adenosine monophosphate-1 (Epac-1) protein through the cyclic adenosine monophosphate cascade. Epac-1 is considered a crossroad protein, where its activation has been documented to manage renal injury models. Hence, the current study aimed to investigate the possible therapeutic effectiveness of ticagrelor, against renal ischemia/reperfusion (I/R) model with emphasis on the involvement of Epac-1 signaling pathway using R-CE3F4, a selective Epac-1 blocker. Accordingly, rats were randomized into four groups; viz., sham-operated, renal I/R, I/R post-treated with ticagrelor for 3 days, and ticagrelor + R-CE3F4. Treatment with ticagrelor ameliorated the I/R-mediated structural alterations and improved renal function manifested by the reduction in serum BUN and creatinine. On the molecular level, ticagrelor enhanced renal Epac-1 mRNA expression, Rap-1 activation (Rap-1-GTP) and SOCS-3 level. On the contrary, it inhibited the protein expression of JAK-2/STAT-3 hub, TNF-α and MDA contents, as well as caspase-3 activity. Additionally, ticagrelor enhanced the protein expression/content of AKT/Nrf-2/HO-1 axis. All these beneficial effects were obviously antagonized upon using R-CE3F4. In conclusion, ticagrelor reno-therapeutic effect is partly mediated through modulating the Epac-1/Rap-1-GTP, AKT/Nrf-2/HO-1 and JAK-2/STAT-3/SOCS-3 trajectories, pathways that integrate to afford novel explanations to its anti-inflammatory, anti-oxidant, and anti-apoptotic potentials.
Collapse
|
33
|
Mustafa G, Mahrosh HS, Arif R. In Silico Characterization of Growth Differentiation Factors as Inhibitors of TNF-Alpha and IL-6 in Immune-Mediated Inflammatory Disease Rheumatoid Arthritis. BIOMED RESEARCH INTERNATIONAL 2021; 2021:5538535. [PMID: 33855071 PMCID: PMC8019371 DOI: 10.1155/2021/5538535] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 03/20/2021] [Indexed: 12/13/2022]
Abstract
Tumor necrosis factor alpha (TNF-α) plays a critical role in the progression of inflammation and affects the cells of the synovial membrane. Another key factor in the progression of rheumatoid inflammation is interleukin-6 (IL-6). Both TNF-α and IL-6 promote the proliferation of synovial membrane cells thus stimulating the production of matrix metalloproteinases and other cytotoxins and leading towards bone erosion and destruction of the cartilage. Growth differentiation factor-11 (GDF11) and growth differentiation factor-8 (GDF8) which is also known as myostatin are members of the transforming growth factor-β family and could be used as antagonists to inflammatory responses which are associated with rheumatoid arthritis. In the current study, to elucidate the evolutionary relationships of GDF11 with its homologs from other closely related organisms, a comprehensive phylogenetic analysis was performed. From the phylogram, it was revealed that the clade of Primates that belong to superorder Euarchontoglires showed close evolutionary relationships with order Cetartiodactyla of the Laurasiatheria superorder. Fifty tetrapeptides were devised from conserved regions of GDF11 which served as ligands in protein-ligand docking against TNF-α and IL-6 followed by drug scanning and ADMET profiling of best selected ligands. The peptides SAGP showed strong interactions with IL-6, and peptides AFDP and AGPC showed strong interactions with TNF-α, and all three peptides fulfilled all the pharmacokinetic parameters which are important for bioavailability. The potential of GDF8 as an antagonist to TNF-α and IL-6 was also explored using a protein-protein docking approach. The binding patterns of GDF8 with TNF-α and IL-6 showed that GDF8 could be used as a potential inhibitor of TNF-α and IL-6 to treat rheumatoid arthritis.
Collapse
Affiliation(s)
- Ghulam Mustafa
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Hafiza Salaha Mahrosh
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| | - Rawaba Arif
- Department of Biochemistry, Government College University, Faisalabad 38000, Pakistan
| |
Collapse
|
34
|
Erkens R, Totzeck M, Brum A, Duse D, Bøtker HE, Rassaf T, Kelm M. Endothelium-dependent remote signaling in ischemia and reperfusion: Alterations in the cardiometabolic continuum. Free Radic Biol Med 2021; 165:265-281. [PMID: 33497796 DOI: 10.1016/j.freeradbiomed.2021.01.040] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Intact endothelial function plays a fundamental role for the maintenance of cardiovascular (CV) health. The endothelium is also involved in remote signaling pathway-mediated protection against ischemia/reperfusion (I/R) injury. However, the transfer of these protective signals into clinical practice has been hampered by the complex metabolic alterations frequently observed in the cardiometabolic continuum, which affect redox balance and inflammatory pathways. Despite recent advances in determining the distinct roles of hyperglycemia, insulin resistance (InR), hyperinsulinemia, and ultimately diabetes mellitus (DM), which define the cardiometabolic continuum, our understanding of how these conditions modulate endothelial signaling remains challenging. It is widely accepted that endothelial cells (ECs) undergo functional changes within the cardiometabolic continuum. Beyond vascular tone and platelet-endothelium interaction, endothelial dysfunction may have profound negative effects on outcome during I/R. In this review, we summarize the current knowledge of the influence of hyperglycemia, InR, hyperinsulinemia, and DM on endothelial function and redox balance, their influence on remote protective signaling pathways, and their impact on potential therapeutic strategies to optimize protective heterocellular signaling.
Collapse
Affiliation(s)
- Ralf Erkens
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| | - Matthias Totzeck
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Amanda Brum
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Dragos Duse
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Hans Erik Bøtker
- Department of Cardiology, Institute of Clinical Medicine, Aarhus University Hospital, Denmark
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center, University Hospital Essen, Germany
| | - Malte Kelm
- Department of Cardiology, Pulmonology and Angiology Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
35
|
Li H, Xu L, Song H. MiR-29a Alleviates High Glucose-induced Inflammation and Mitochondrial Dysfunction via Modulation of IL-6/STAT3 in Diabetic Cataracts. Curr Eye Res 2021; 46:1325-1332. [PMID: 33615922 DOI: 10.1080/02713683.2021.1887272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Background: This in vitro study was designed to reveal the role of miR-29a in high glucose-induced cellular injury through the modulation of IL-6/STAT3 in diabetic cataracts.Methods: The expression of miR-29a and STAT3 in the lens capsules of patients with or without diabetes was determined by RT-PCR. The levels of the IL-6 proinflammatory cytokine in the aqueous humor were detected by ELISA. HLE B-3 cells were cultured in normal glucose (NG; 5 mM) or high glucose (HG; 40 mM). After transfection with miR-29a, si-STAT3, or a negative control vector, the levels of IL-6 and STAT3 were detected. A CCK-8 assay was used to determine cell viability. We used flow cytometry to assess changes in reactive oxygen species (ROS) production, mitochondrial membrane potential (MMP), and apoptosis induced by oxidative stress. Western blotting was used to determine the expression of the oxidative injury markers superoxide dismutase (SOD) and malondialdehyde (MDA) and the apoptosis markers Bcl-2 and Bax.Results: Reduced miR-29a, increased STAT3 expression, and IL-6 release were demonstrated in the lens capsules and aqueous humor of patients with diabetes. The stimulation of apoptosis and the loss of MMP induced by HG were attenuated by transfection with a miR-29a mimic and si-STAT3. ROS production, increased MDA content, decreased SOD activity, and upregulation of the apoptotic proteins Bcl-2/Bax were also partially alleviated by miR-29a overexpression, which shows their roles in oxidative injury. Furthermore, transfection with a STAT3 overexpression vector reversed the effects of miR-29a.Conclusions: In conclusion, miR-29a mitigated HG-induced oxidative injury and exerted protective effects via IL-6/STAT3 signaling. Thus, miR-29a may be a potential therapeutic agent for diabetic cataracts.
Collapse
Affiliation(s)
- Hua Li
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Lingxiao Xu
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| | - Hui Song
- Tianjin Eye Hospital, Tianjin Key Lab of Ophthalmology and Visual Science, Tianjin Eye Institute, Clinical College of Ophthalmology Tianjin Medical University, Tianjin, China.,Tianjin Eye Hospital, Nankai University Affiliated Eye Hospital, Tianjin, China
| |
Collapse
|
36
|
Development of a zebrafish screening model for diabetic retinopathy induced by hyperglycemia: Reproducibility verification in animal model. Biomed Pharmacother 2021; 135:111201. [PMID: 33421732 DOI: 10.1016/j.biopha.2020.111201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/15/2020] [Accepted: 12/26/2020] [Indexed: 02/08/2023] Open
Abstract
This study aimed at creating a zebrafish screening model for diabetic retinopathy, and evaluated the effects of aflibercept, which is being used to treated diabetic retinopathy. A morphological change occurred at 160 mM of glucose. The survival and hatching rate decreased in a dose-dependent manner. In the 130 mM glucose group, the retinal vessel diameter was more than double that in the normal group. The zebrafish embryo morphology changed in 200 μg/mL and 400 μg/mL at aflibercept. The survival and hatching rate decrease at 400 μg/mL. Aflibercept 100 μg/mL was a nontoxic and effective dose for the zebrafish diabetic retinopathy model. The expression of diabetic retinopathy inflammatory markers was increased in hyperglycemia. But the inflammation was improved by aflibercept in the zebrafish eye. In a zebrafish diabetic retinopathy model, the diameters of retinal vessels were reduced after treatment with aflibercept, and molecular biological and histopathological efficacy was confirmed. This model can serve for screening of new drug candidates for treatment of in diabetic retinopathy.
Collapse
|
37
|
De Stefano A, Caporali S, Di Daniele N, Rovella V, Cardillo C, Schinzari F, Minieri M, Pieri M, Candi E, Bernardini S, Tesauro M, Terrinoni A. Anti-Inflammatory and Proliferative Properties of Luteolin-7-O-Glucoside. Int J Mol Sci 2021; 22:1321. [PMID: 33525692 PMCID: PMC7865871 DOI: 10.3390/ijms22031321] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/11/2022] Open
Abstract
Flavonoids display a broad range of structures and are responsible for the major organoleptic characteristics of plant-derived foods and beverages. Recent data showed their activity, and in particular of luteolin-7-O-glucoside (LUT-7G), in reduction of oxidative stress and inflammatory mechanisms in different physiological systems. In this paper, we tried to elucidate how LUT-7G could exert both antioxidant and anti-inflammatory effects in endothelial cells cultured in vitro. Here, we showed that LUT-7G is able to inhibit the STAT3 pathway, to have an antiproliferative action, and an important antioxidant property in HUVEC cells. These properties are exerted by the flavone in endothelial through the transcriptional repression of a number of inflammatory cytokines and their receptors, and by the inhibition of ROS generation. ROS and STAT3 activation has been correlated with the production of oxysterols and other hydroxylated fatty acids, and they have been recognized important as players of atherogenesis and cardiocirculatory system diseases. The analysis of the general production pathway of these hydroxylated species, showed a strong decrease of cholesterol hydroxylated species such as 7-alpha-hydroxicholesterol, 7-beta-hydroxicholesterol by the treatment with LUT-7G. This confirms the anti-inflammatory properties of LUT-7G also in the endothelial district, showing for the first time the molecular pathway that verify previous postulated cardiovascular benefits of this flavone.
Collapse
Affiliation(s)
- Alessandro De Stefano
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Sabrina Caporali
- Department of Industrial Engineering, University of Rome Tor Vergata, 00133 Rome, Italy;
| | - Nicola Di Daniele
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Valentina Rovella
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Carmine Cardillo
- Department of Clinical Sciences and Translational Medicine, Cattolica University of Rome, Via Montpellier, 1, 00133 Rome, Italy;
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Francesca Schinzari
- Internal Medicine, Policlinico A. Gemelli Istituto di Ricovero e Cura a Carattere Scientifico, 00133 Rome, Italy;
| | - Marilena Minieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Massimo Pieri
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
- Laboratory of Biochemistry, IDI-IRCCS Fondazione Luigi Maria Monti, Via Monti di Creta 104, 00167 Rome, Italy
| | - Sergio Bernardini
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| | - Manfredi Tesauro
- Centre of Space Biomedicine, Department of Systems Medicine, University of Rome Tor Vergata, 00133 Rome, Italy; (A.D.S.); (N.D.D.); (V.R.); (M.T.)
| | - Alessandro Terrinoni
- Department of Experimental Medicine, University of Rome Tor Vergata, Via Montpellier, 1, 00133 Rome, Italy; (M.M.); (M.P.); (E.C.); (S.B.)
| |
Collapse
|
38
|
Dessie G, Ayelign B, Akalu Y, Shibabaw T, Molla MD. Effect of Leptin on Chronic Inflammatory Disorders: Insights to Therapeutic Target to Prevent Further Cardiovascular Complication. Diabetes Metab Syndr Obes 2021; 14:3307-3322. [PMID: 34305402 PMCID: PMC8296717 DOI: 10.2147/dmso.s321311] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 06/30/2021] [Indexed: 01/08/2023] Open
Abstract
In response to obesity-associated chronic inflammatory disorders, adipose tissue releases a biologically active peptide known as leptin. Leptin activates the secretion of chemical mediators, which contribute to the pathogenesis of chronic inflammatory disorders, such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE) and psoriasis. Conversely, adiposity and obesity are the major aggravating risk factors in the pathogenesis of metabolic syndrome (MetS), including type II diabetes mellitus and obesity-associated hypertension. Elevated level of leptin in obesity-associated hypertension causes an increase in the production of aldosterone, which also results in elevation of arterial blood pressure. Hyperleptinemia is associated with the progress of the atherosclerosis through secretion of pro-inflammatory cytokines, like interleukin 6 (IL-6), tumor necrosis factor α (TNF-α), IL-17, and other cytokines to promote inflammation. The release of those cytokines leads to chronic inflammatory disorders and obesity-associated MetS. Thus, the aberrant leptin level in both MetS and chronic inflammatory disorders also leads to the complication of cardiovascular diseases (CVD). Therapeutic target of leptin regarding its pro-inflammatory effect and dysregulated sympathetic nervous system activity may prevent further cardiovascular complication. This review mainly assesses the mechanism of leptin on the pathogenesis and further cardiovascular risk complication of chronic inflammatory disorders.
Collapse
Affiliation(s)
- Gashaw Dessie
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
- Correspondence: Gashaw Dessie Tel +251 975152796 Email
| | - Birhanu Ayelign
- Department of Immunology and Molecular Biology, School of Biomedical and Laboratory Science, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yonas Akalu
- Department of Physiology, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Tewodros Shibabaw
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Meseret Derbew Molla
- Department of Biochemistry, School of Medicine, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
39
|
Bernal S, Lopez-Sanz L, Jimenez-Castilla L, Prieto I, Melgar A, La Manna S, Martin-Ventura JL, Blanco-Colio LM, Egido J, Gomez-Guerrero C. Protective effect of suppressor of cytokine signalling 1-based therapy in experimental abdominal aortic aneurysm. Br J Pharmacol 2020; 178:564-581. [PMID: 33227156 DOI: 10.1111/bph.15330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 09/20/2020] [Accepted: 10/05/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Abdominal aortic aneurysm (AAA) is a multifactorial disease characterized by chronic inflammation, oxidative stress and proteolytic activity in the aortic wall. Targeting JAK/signal transducer and activator of transcription (JAK/STAT) pathway is a promising strategy for chronic inflammatory diseases. We investigated the vasculo-protective role of suppressor of cytokine signalling-1 (SOCS1), the negative JAK/STAT regulator, in experimental AAA. EXPERIMENTAL APPROACH A synthetic, cell permeable peptide (S1) mimic of SOCS1 kinase inhibitory domain to suppress STAT activation was evaluated in the well-established mouse model of elastase-induced AAA by monitoring changes in aortic diameter, cellular composition and gene expression in abdominal aorta. S1 function was further evaluated in cultured vascular smooth muscle cells (VSMC) and macrophages exposed to elastase or elastin-derived peptides. KEY RESULTS S1 peptide prevented AAA development, evidenced by reduced incidence of AAA, aortic dilation and elastin degradation, partial restoration of medial VSMC and decreased inflammatory cells and oxidative stress in AAA tissue. Mechanistically, S1 suppressed STAT1/3 activation in aorta, down-regulated cytokines, metalloproteinases and altered the expression of cell differentiation markers by favouring anti-inflammatory M2 macrophage and contractile VSMC phenotypes. In vitro, S1 suppressed the expression of inflammatory and oxidative genes, reduced cell migration and reversed the phenotypic switch of macrophages and VSMC. By contrast, SOCS1 silencing promoted inflammatory response. CONCLUSION AND IMPLICATIONS This preclinical study demonstrates the therapeutic potential of SOCS1-derived peptide to halt AAA progression by suppressing JAK/STAT-mediated inflammation and aortic dilation. S1 peptide may therefore be a valuable option for the treatment of AAA.
Collapse
Affiliation(s)
- Susana Bernal
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Laura Lopez-Sanz
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Luna Jimenez-Castilla
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ignacio Prieto
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Ana Melgar
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain
| | - Sara La Manna
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain
| | - Jose Luis Martin-Ventura
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Luis Miguel Blanco-Colio
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Cardiovascular Diseases (CIBERCV), Madrid, Spain
| | - Jesus Egido
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| | - Carmen Gomez-Guerrero
- Renal, Vascular and Diabetes Research Laboratory, IIS-Fundacion Jimenez Diaz (IIS-FJD), Autonoma University of Madrid (UAM), Madrid, Spain.,Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Madrid, Spain
| |
Collapse
|
40
|
Chauhan RK, Sharma PK, Srivastava S. Role of signaling pathway in biological cause of Rheumatoid arthritis. Curr Drug Res Rev 2020; 13:130-139. [PMID: 33172384 DOI: 10.2174/2589977512999201109215004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 07/14/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
Rheumatoid Arthritis is a chronic progressive inflammatory auto-immune disease in which the immune system of the body attacks its cartilage and joints lining. It not only affects synovial joints but also many other sites including heart, blood vessels, and skins. It is more common in females than in males. The exact cause of rheumatoid arthritis is not well established but the hypothesis reported in the literature is that in the development stage of the disease, both genetics and environmental factors can play an inciting role. Along with these factors alteration in the normal physiology of enzymatic action, acts as a trigger to develop this condition. Numerous signaling pathways involved in the pathogenesis of Rheumatoid Arthritis involves activation of mitogen-activated protein kinase, kinases Janus family, P-38 Mitogen-Activated Protein Kinase, Nuclear Factor-kappa B. Interleukin-1 to play a proinflammatory cytokine that plays an important role in inflammation in RA. These are also associated with an increase in neutrophil, macrophage and lymphocytic chemotaxis, mast cell degranulation, activation, maturation and survival of T-cells and B-cells activated. These signaling pathways also show that p38α downregulation in myeloid cells exacerbates the severity of symptoms of arthritis. Thus, present review carters about the detail of different signaling pathways and their role in rheumatoid arthritis.
Collapse
Affiliation(s)
- Rakesh Kumar Chauhan
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Pramod Kumar Sharma
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| | - Shikha Srivastava
- Department of Pharmacy, School of Medical and Allied Science, Galgotias University, Plot N. 2, Sector 17- A, Yamuna Expressway, Gautam Buddha Nagar, Greater Noida, Uttar Pradesh 201306,. India
| |
Collapse
|
41
|
She S, Zhao Y, Kang B, Chen C, Chen X, Zhang X, Chen W, Dan S, Wang H, Wang YJ, Zhao J. Combined inhibition of JAK1/2 and DNMT1 by newly identified small-molecule compounds synergistically suppresses the survival and proliferation of cervical cancer cells. Cell Death Dis 2020; 11:724. [PMID: 32895373 PMCID: PMC7476923 DOI: 10.1038/s41419-020-02934-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/14/2022]
Abstract
Despite substantial advances in treating cervical cancer (CC) with surgery, radiation and chemotherapy, patients with advanced CC still have poor prognosis and significantly variable clinical outcomes due to tumor recurrence and metastasis. Therefore, to develop more efficacious and specific treatments for CC remains an unmet clinical need. In this study, by virtual screening the SPECS database, we identified multiple novel JAK inhibitor candidates and validated their antitumor drug efficacies that were particularly high against CC cell lines. AH057, the best JAK inhibitor identified, effectively blocked the JAK/STAT pathways by directly inhibiting JAK1/2 kinase activities, and led to compromised cell proliferation and invasion, increased apoptosis, arrested cell cycles, and impaired tumor progression in vitro and in vivo. Next, by screening the Selleck chemical library, we identified SGI-1027, a DNMT1 inhibitor, as the compound that displayed the highest synergy with AH057. By acting on a same set of downstream effector molecules that are dually controlled by JAK1/2 and DNMT1, the combination of AH057 with SGI-1027 potently and synergistically impaired CC cell propagation via dramatically increasing apoptotic cell death and cell-cycle arrest. These findings establish a preclinical proof of concept for combating CC by dual targeting of JAK1/2 and DNMT1, and provide support for launching a clinical trial to evaluate the efficacy and safety of this drug combination in patients with CC and other malignant tumors.
Collapse
Affiliation(s)
- Shiqi She
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Yang Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310029, Hangzhou, China
| | - Bo Kang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Cheng Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xinyu Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Xiaobing Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Wenjie Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Songsong Dan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Hangxiang Wang
- Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China
| | - Ying-Jie Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, the First Affiliated Hospital, School of Medicine, Zhejiang University, 310003, Hangzhou, China.
| | - Jinhao Zhao
- Institute of Pesticide and Environmental Toxicology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, 310029, Hangzhou, China.
| |
Collapse
|
42
|
Brum RS, Duarte PM, Canto GDL, Flores-Mir C, Benfatti CAM, Porporatti AL, Zimmermann GS. Biomarkers in biological fluids in adults with periodontitis and/or obesity: A meta-analysis. J Indian Soc Periodontol 2020; 24:191-215. [PMID: 32773969 PMCID: PMC7307467 DOI: 10.4103/jisp.jisp_512_19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 02/22/2020] [Accepted: 03/01/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity and periodontal diseases have been investigated to be interconnected, but the molecular mechanism underlying this association is still not clear. The aim of this systematic review is to assess the association of serum, salivary and gingival crevicular fluid (GCF) inflammatory markers (IMs), obesity, and periodontitis. Studies that evaluated IM of adults according to obesity status (O) and periodontitis status (P) (O+P+; O-P+; O+P-) were screened on several electronic databases and grey literature up until February 2019. Risk of bias assessment and level of evidence were evaluated through Fowkes and Fulton scale and Grading of Recommendations Assessment, Development and Evaluation (GRADE). Meta-analyses were grouped according to the biological matrix studied (serum/GCF) and groups (O+P+ vs. O−P+/O+P+ vs. O+P−). Out of the 832 studies screened, 21 were considered in qualitative synthesis and 15 in quantitative synthesis (meta-analysis). Although included studies showed mostly “no” or “minor” problems during the quality assessment, GRADE assessment indicated very low to moderate level of evidence based on the question answered. O+P+ adults exhibited significantly higher serum levels of C-reactive protein (CRP), interleukin 6 (IL-6), leptin, and tumor necrosis factor-α (TNF-alpha) and higher resistin GCF levels than O−P+. O+P+ adults showed significantly higher serum levels of IL-6 and leptin and lower adiponectin serum levels than O+P−. Only qualitative information could be obtained of the IM vaspin, omentin-1, chemerin, IL-10, progranulin, MCP-4, IL-1β, and interferon-γ (IFN-γ). Obesity and periodontitis, together or separately, are associated with altered serum and GCF levels of CRP, IL-6, leptin, TNF-alpha, adiponectin, and resistin. It was not possible to evaluate the association between obesity and periodontitis at salivary levels. The role of recently investigated biomarkers as vaspin, omentin-1, chemerin, IL-10, progranulin, MCP-4, IL-1β, and IFN-γ, which can be key points underlying the association between obesity and periodontitis, remains to be further investigated.
Collapse
Affiliation(s)
- Renata Scheeren Brum
- Department of Dentistry, Centre of Education and Research on Dental Implants (CEPID), Federal University of Santa Catarina, Florianópolis, Brazil
| | - Poliana Mendes Duarte
- Department of Dentistry, University of Guarulhos, Guarulhos, Brazil.,Department of Periodontology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Graziela De Luca Canto
- Department of Dentistry, Brazilian Centre for Evidence-Based Research, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Carlos Flores-Mir
- Department of Orthodontics, School of Dentistry, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - César Augusto Magalhães Benfatti
- Department of Dentistry, Centre of Education and Research on Dental Implants (CEPID), Federal University of Santa Catarina, Florianópolis, Brazil
| | - André Luís Porporatti
- Department of Dentistry, Brazilian Centre for Evidence-Based Research, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gláucia Santos Zimmermann
- Department of Dentistry, Brazilian Centre for Evidence-Based Research, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
43
|
Valproic Acid Promotes Early Neural Differentiation in Adult Mesenchymal Stem Cells Through Protein Signalling Pathways. Cells 2020; 9:cells9030619. [PMID: 32143420 PMCID: PMC7140408 DOI: 10.3390/cells9030619] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/26/2020] [Accepted: 02/26/2020] [Indexed: 12/01/2022] Open
Abstract
Regenerative medicine is a rapidly expanding area in research and clinical applications. Therapies involving the use of small molecule chemicals aim to simplify the creation of specific drugs for clinical applications. Adult mesenchymal stem cells have recently shown the capacity to differentiate into several cell types applicable for regenerative medicine (specifically neural cells, using chemicals). Valproic acid was an ideal candidate due to its clinical stability. It has been implicated in the induction of neural differentiation; however, the mechanism and the downstream events were not known. In this study, we showed that using valproic acid on adult mesenchymal stem cells induced neural differentiation within 24 h by upregulating the expression of suppressor of cytokine signaling 5 (SOCS5) and Fibroblast growth factor 21 (FGF21), without increasing the potential death rate of the cells. Through this, the Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway is downregulated, and the mitogen-activated protein kinase (MAPK) cascade is activated. The bioinformatics analyses revealed the expression of several neuro-specific proteins as well as a range of functional and structural proteins involved in the formation and development of the neural cells.
Collapse
|
44
|
Pingitore A, Autore C, Peruzzi M, Cavarretta E. Non-alcoholic fatty liver disease and heart valve disease: a neglected link. Minerva Cardioangiol 2020; 68:542-544. [PMID: 32107896 DOI: 10.23736/s0026-4725.20.05161-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Annachiara Pingitore
- Department of Clinical and Molecular Medicine, Sapienza University, Latina, Italy
| | - Camillo Autore
- Department of Clinical and Molecular Medicine, Sapienza University, Latina, Italy
| | - Mariangela Peruzzi
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy.,Mediterranea Cardiocentro, Naples, Italy
| | - Elena Cavarretta
- Department of Medical-Surgical Sciences and Biotechnologies, Sapienza University, Rome, Italy - .,Mediterranea Cardiocentro, Naples, Italy
| |
Collapse
|
45
|
Prediabetes predicts adverse cardiovascular outcomes after percutaneous coronary intervention: a meta-analysis. Biosci Rep 2020; 40:221383. [PMID: 31793983 PMCID: PMC6946623 DOI: 10.1042/bsr20193130] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/17/2019] [Accepted: 11/25/2019] [Indexed: 01/21/2023] Open
Abstract
Background: Prediabetes has been related with increased risk of coronary artery disease (CAD). However, the prognostic efficacy of prediabetes for patients receiving percutaneous coronary intervention (PCI) remains undetermined. We aimed to quantitatively evaluate the influence of diabetes on the risks of major adverse cardiovascular events (MACEs) after PCI in a meta-analysis. Methods: Longitudinal follow-up studies evaluating the association between prediabetes and risks of MACEs and mortality after PCI were identified by search of PubMed and Embase databases. A random-effect model was applied to pool the results. Subgroup analyses were performed to evaluate the impacts of study characteristics on the outcome. Results: Twelve follow-up studies including 10,048 patients that underwent PCI were included. Compared with patients with normoglycemia at admission, those with prediabetes were had significantly higher risk MACEs during follow-up (adjusted risk ratio [RR]: 1.53, 95% confidence interval [CI]: 1.25–1.87, P < 0.001). Further subgroup analyses indicated that the association between prediabetes and higher risk of MACEs remained regardless of the study design, sample size, CAD subtype, PCI type, definition of diabetes, or follow-up duration. Moreover, patients with prediabetes had higher significantly risk of MACEs in studies with adjustment of coronary lesion severity (RR: 1.79, P < 0.001), but the association became insignificant in studies without adjustment of the coronary lesion severity (RR: 1.23, P = 0.09). Conclusions: Prediabetes is independently associated with increased risk of MACEs after PCI as compared with those with normoglycemia, even in studies with adjustment of coronary severity.
Collapse
|
46
|
Chronic Hypoxia-Induced Microvessel Proliferation and Basal Membrane Degradation in the Bone Marrow of Rats Regulated through the IL-6/JAK2/STAT3/MMP-9 Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9204708. [PMID: 32047820 PMCID: PMC7003287 DOI: 10.1155/2020/9204708] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Revised: 11/08/2019] [Accepted: 11/28/2019] [Indexed: 12/15/2022]
Abstract
Chronic hypoxia (CH) is characterized by long-term hypoxia that is associated with microvessel proliferation and basal membrane (BM) degradation in tissues. The IL-6/JAK2/STAT3/MMP-9 pathway has been described in a variety of human cancers and plays an essential role in microvessel proliferation and BM degradation. Therefore, this study investigated the role of the IL-6/JAK2/STAT3/MMP-9 pathway in hypoxia-mediated microvessel proliferation and BM degradation in the rat bone marrow. Eighty pathogen-free Sprague Dawley male rats were randomly divided into four groups (20 per group)—control group, CH group (exposed to hypoxia in a hypobaric chamber at a simulated altitude of 5000 m for 28 d), CH + STAT3 inhibitor group (7.5 mg/kg/d), and CH + DMSO group. Microvessel density (MVD) and BM degradation in the bone marrow were determined by immunofluorescence staining and transmission electron microscopy. Serum IL-6 levels were assessed by enzyme-linked immunosorbent assay (ELISA), and the levels of P-JAK2, P-STAT3, and MMP-9 were assessed by western blot analysis and real-time reverse transcription PCR (RT-PCR). Hypoxia increased serum IL-6 levels, which in turn increased JAK2 and STAT3 phosphorylation, which subsequently upregulated MMP-9. Overexpression of MMP-9 significantly promoted the elevation of MVD and BM degradation. Inhibition of STAT3 using an inhibitor, SH-4-54, significantly downregulated MMP-9 expression and decreased MVD and BM degradation. Surprisingly, STAT3 inhibition also decreased serum IL-6 levels and JAK2 phosphorylation. Our results suggest that the IL-6/JAK2/STAT3/MMP-9 pathway might be related to CH-induced microvessel proliferation and BM degradation in the bone marrow.
Collapse
|
47
|
Sun J, Yu H, Liu H, Pu D, Gao J, Jin X, Liu X, Yan A. Correlation of pre-operative circulating inflammatory cytokines with restenosis and rapid angiographic stenotic progression risk in coronary artery disease patients underwent percutaneous coronary intervention with drug-eluting stents. J Clin Lab Anal 2019; 34:e23108. [PMID: 31729103 PMCID: PMC7083400 DOI: 10.1002/jcla.23108] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
Background This study aimed to explore the associations of common inflammatory cytokine levels with restenosis and rapid angiographic stenotic progression (RASP) risk in coronary artery disease (CAD) patients underwent percutaneous coronary intervention (PCI) with drug‐eluting stents (DES). Methods Two hundred and ten CAD patients underwent PCI with DES were consecutively recruited, then pre‐operative serum levels of TNF‐α, IL‐1β, IL‐4, IL‐6, IL‐8, IL‐10, IL‐17A, IL‐21, and IL‐23 were determined by ELISA. The 12‐month in‐stent restenosis and RASP of non‐intervened lesion were assessed by quantitative coronary angiography analysis. Results The pre‐operative TNF‐α, IL‐6, IL‐17A, and IL‐23 expressions were increased while IL‐4 expression was decreased in restenosis patients compared with non‐restenosis patients. Further analysis revealed that IL‐6, IL‐8, hypercholesteremia, diabetes mellitus, and HsCRP could independently predict restenosis risk, and subsequent ROC curve revealed that their combination was able to differentiate restenosis patients from non‐restenosis patients with an AUC of 0.951 (95%CI: 0.925‐0.978). Meanwhile, the pre‐operative TNF‐α, IL‐6, IL‐17A, IL‐21, and IL‐23 expressions were increased whereas IL‐4 level was decreased in RASP patients compared with non‐RASP patients. Further analysis revealed that TNF‐α, IL‐6, IL‐23, hypercholesteremia, SUA, HsCRP, and multivessel artery lesions could independently predict RASP risk, and subsequent ROC curve disclosed that their combination could discriminate RASP patients from non‐RASP patients with an AUC of 0.886 (95%CI: 0.841‐0.931). Conclusions This study unveils the potentiality of pre‐operative circulating inflammatory cytokines as markers for predicting restenosis and RASP risk in CAD patients underwent PCI with DES.
Collapse
Affiliation(s)
- Jinling Sun
- Department of Geriatrics, ZiBo Central Hospital, Zibo, China
| | - Hui Yu
- Department of Endocrine, ZiBo Central Hospital, Zibo, China
| | - Haining Liu
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Dongyu Pu
- Department of Cardiology, ZiBo Central Hospital, Zibo, China
| | - Junhui Gao
- Department of Ultrasonography, People's Hospital of Linzi District, Zibo, China
| | - Xiaodong Jin
- Department of Geriatrics, ZiBo Central Hospital, Zibo, China
| | - Xiqiang Liu
- Department of Geriatrics, ZiBo Central Hospital, Zibo, China
| | - Aiguo Yan
- Department of Geriatrics, ZiBo Central Hospital, Zibo, China
| |
Collapse
|
48
|
Bako HY, Ibrahim MA, Isah MS, Ibrahim S. Inhibition of JAK-STAT and NF-κB signalling systems could be a novel therapeutic target against insulin resistance and type 2 diabetes. Life Sci 2019; 239:117045. [PMID: 31730866 DOI: 10.1016/j.lfs.2019.117045] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/03/2019] [Accepted: 11/04/2019] [Indexed: 12/15/2022]
Abstract
AIMS Chronic inflammation is associated with the production of high levels of proinflammatory cytokines via the JAK-STAT and NF-κB signalling pathways which are known to be inhibited by tofacitinib and aspirin respectively. High levels of these cytokines increase the synthesis of suppressors of cytokines (SOCS), which at high levels inhibit insulin signalling leading to insulin resistance. The effects of tofacitinib and aspirin on the degree of insulin resistance in type 2 diabetic rats were determined. MATERIALS AND METHODS Rats were induced with type 2 diabetes (T2D) by administration of 10% fructose solution (ad libitum) followed by streptozotocin injection (40 mg/kg BW) and treated with different doses of tofacitinib (10 and 20 mg/kg BW), aspirin (100 and 200 mg/kg BW) and combination of the two drugs at both doses for 9 weeks. KEY FINDINGS Results showed that separate treatment with 10 mg/kg BW tofacitinib and 100 mg/kg BW aspirin significantly (P < 0.05) decreased tumour necrosis factor-α (TNF-α), interleukin 6 (IL-6) and serum amyloid A when compared to diabetic untreated rats. However, the combined therapy (10 mg/kg BW tofacitinib and 100 mg/kg BW aspirin) significantly decreased the levels of TNF-α, IL-6, serum amyloid A, HOMA-IR, blood glucose level and SOC-3 gene expression but significantly (P < 0.05) improved glucose homoestasis, insulin secretion, HOMA-β and GLUT-4 gene expression when compared to diabetic untreated rat. CONCLUSION It was concluded that simultaneous inhibition of the JAK-STAT and NF-κB signalling pathways with tofacitinib and aspirin respectively, could mitigate insulin resistance and hyperglycemia in T2D.
Collapse
Affiliation(s)
- Hauwa'u Yakubu Bako
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria; Department of Biochemistry, Kaduna State University, Kaduna, Nigeria
| | | | - Muhammad Sani Isah
- Department of Medicine, Faculty of Clinical Sciences, College of Health Sciences, Ahmadu Bello University Teaching Hospital, Zaria, Nigeria
| | - Sani Ibrahim
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
49
|
Ashrafizadeh M, Ahmadi Z, Kotla NG, Afshar EG, Samarghandian S, Mandegary A, Pardakhty A, Mohammadinejad R, Sethi G. Nanoparticles Targeting STATs in Cancer Therapy. Cells 2019; 8:E1158. [PMID: 31569687 PMCID: PMC6829305 DOI: 10.3390/cells8101158] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 09/25/2019] [Indexed: 12/12/2022] Open
Abstract
Over the past decades, an increase in the incidence rate of cancer has been witnessed. Although many efforts have been made to manage and treat this life threatening condition, it is still one of the leading causes of death worldwide. Therefore, scientists have attempted to target molecular signaling pathways involved in cancer initiation and metastasis. It has been shown that signal transducers and activator of transcription (STAT) contributes to the progression of cancer cells. This important signaling pathway is associated with a number of biological processes including cell cycle, differentiation, proliferation and apoptosis. It appears that dysregulation of the STAT signaling pathway promotes the migration, viability and malignancy of various tumor cells. Hence, there have been many attempts to target the STAT signaling pathway. However, it seems that currently applied therapeutics may not be able to effectively modulate the STAT signaling pathway and suffer from a variety of drawbacks such as low bioavailability and lack of specific tumor targeting. In the present review, we demonstrate how nanocarriers can be successfully applied for encapsulation of STAT modulators in cancer therapy.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.
| | - Zahra Ahmadi
- Department of Basic Science, Shoushtar Branch, Islamic Azad University, Shoushtar 6451741117, Iran.
| | - Niranjan G Kotla
- Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway, Newcastle, Galway H91 W2TY, Ireland.
| | - Elham Ghasemipour Afshar
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran.
| | - Ali Mandegary
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Abbas Pardakhty
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7619813159, Iran.
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman 7616911319, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| |
Collapse
|
50
|
Advanced Glycation End Products of Bovine Serum Albumin Suppressed Th1/Th2 Cytokine but Enhanced Monocyte IL-6 Gene Expression via MAPK-ERK and MyD88 Transduced NF-κB p50 Signaling Pathways. Molecules 2019; 24:molecules24132461. [PMID: 31277476 PMCID: PMC6652144 DOI: 10.3390/molecules24132461] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 02/06/2023] Open
Abstract
Advanced glycation end products (AGE), the most known aging biomarker, may cause “inflamm-aging” (i.e., chronic low-grade inflammation that develops with aging) in both aged and diabetes groups. However, the molecular bases of inflamm-aging remain obscure. We prepared AGE by incubating BSA (0.0746 mmol/L) + glucose (0.5 mol/L) at 37 °C in 5% CO2–95% air for 1–180 days. The lysine glycation in BSA–AGE reached 77% on day 30 and 100% after day 130, whereas the glycation of arginine and cysteine was minimal. The Nε-(carboxymethyl)-lysine content in BSA–AGE was also increased with increasing number of incubation days. The lectin-binding assay revealed that the glycation of BSA not only altered the conformational structure, but lost binding capacity with various lectins. An immunological functional assay showed that BSA–AGE > 8 μg/mL significantly suppressed normal human Th1 (IL-2 and IFN-γ) and Th2 (IL-10) mRNA expression, whereas AGE > 0.5 μg/mL enhanced monocyte IL-6 production irrelevant to cell apoptosis. The AGE-enhanced monocyte IL-6 production was via MAPK–ERK and MyD88-transduced NF-κBp50 signaling pathways. To elucidate the structure–function relationship of BSA–AGE-enhanced IL-6 production, we pre-preincubated BSA–AGE with different carbohydrate-degrading, protein-degrading, and glycoprotein-degrading enzymes. We found that trypsin and carboxypeptidase Y suppressed whereas β-galactosidase enhanced monocyte IL-6 production. In conclusion, BSA–AGE exerted both immunosuppressive and pro-inflammatory effects that are the molecular basis of inflamm-aging in aged and diabetes groups.
Collapse
|