1
|
Jain P, Jain A, Deshmukh R, Samal P, Satapathy T, Ajazuddin. Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD): Exploring Systemic Impacts and Innovative Therapies. Clin Res Hepatol Gastroenterol 2025:102584. [PMID: 40157567 DOI: 10.1016/j.clinre.2025.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), which includes the inflammatory subtype metabolic dysfunction-associated steatohepatitis, is a prominent cause of chronic liver disease with systemic effects. Insulin resistance, obesity, and dyslipidaemia produce MASLD in over 30% of adults. It is a global health issue. From MASLD to MASH, hepatic inflammation and fibrosis grow, leading to cirrhosis, hepatocellular cancer, and extrahepatic complications such CVD, CKD, and sarcopenia. Effects of MASLD to MASH are mediated through mechanisms that include inflammation, oxidative stress, dysbiosis, and predisposition through genetic makeup. Advances in diagnostic nomenclature in the past few years have moved the emphasis away from NAFLD to MASLD, focusing on the metabolic etiology and away from the stigma of an alcoholic-related condition. Epidemiological data show a large geographical variability and increasing prevalence in younger populations, particularly in regions with high carbohydrate-rich diets and central adiposity. Lifestyle modification is considered as the main management of MASLD currently. This may include dietary intervention, exercise, and weight loss management. Pharmaceutical management is primarily aimed at metabolic dysfunction with promising findings for GLP-1 receptor agonists, pioglitazone and SGLT-2 inhibitors, which can correct both hepatic and systemic outcome. However, it still depends on well-integrated multidisciplinary care models by considering complex relationships between MASLD and its effects on extrahepatic organs. Determining complications at an early stage; developing precision medicine strategies; exploring new therapeutic targets will represent crucial factors in improving their outcomes. This review discuss the systemic nature of MASLD and calls for multiple collaborations to reduce its far-reaching health impacts and our quest for understanding its pathological mechanisms. Thus, collective efforts that are required to address MASLD are under the public health, clinical care, and research angles toward effectively containing its rapidly increasing burden.
Collapse
Affiliation(s)
- Parag Jain
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024.
| | - Akanksha Jain
- Department of Biotechnology, Bharti University, Durg, C.G., India
| | | | - Pradeep Samal
- Department of Pharmacy, Sciences, Guru Ghasidas Vishwavidyalaya, Koni, Bilaspur, C.G. India
| | - Trilochan Satapathy
- Department of Pharmacy, Columbia Institute of Pharmaceutical Sciences, Raipur, C.G., India, 493111
| | - Ajazuddin
- Department of Pharmacology, Rungta College of Pharmaceutical Sciences and Research, Bhilai, C.G., India, 490024
| |
Collapse
|
2
|
Qin G, Zhang H, Shen W, Wang Y, Yin N, Nie C, Yoon J, Xu Q. A Nonconsumptive Fluorescent Probe for Precise Detection of Hydrogen Peroxide in Nonalcoholic Fatty Liver Disease and Inflammation. Anal Chem 2025. [PMID: 40128091 DOI: 10.1021/acs.analchem.4c06647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Hydrogen peroxide (H2O2) plays a vital role in various physiological and pathological processes. Thus, fluorescent probes of H2O2 are powerful tools for the investigation of H2O2-related diseases. However, developing fluorescent probes that do not irreversibly consume H2O2 presents a significant challenge. In this work, we introduce carbonate ester as a nonconsumptive recognizing molecule to construct RES-6C as a novel fluorescent probe of H2O2. RES-6C exhibited a selective and sensitive turn-on fluorescence response to H2O2, enabling the detection of H2O2 in cells without disturbing the cellular redox status. RES-6C has been applied to study nonalcoholic fatty liver disease, revealing that peroxisomes and mitochondria contribute to H2O2 production to a similar extent during very-long-chain fatty acid metabolism for the first time. It has also enabled fluorescent imaging of H2O2 in the LPS-induced inflammation mouse model. Overall, RES-6C serves as a versatile tool to monitor H2O2 in tissues and in vivo, providing new insights into the design of probes for H2O2.
Collapse
Affiliation(s)
- Guixin Qin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hanbo Zhang
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Wei Shen
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Yuting Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Nan Yin
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chenyao Nie
- School of Pharmaceutical Sciences, Cixi Biomedical Research Institute, Wenzhou Medical University, Wenzhou 325035, P. R. China
| | - Juyoung Yoon
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| | - Qingling Xu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
3
|
Yan M, Cong X, Wang H, Qin K, Tang Y, Xu X, Wang D, Cheng S, Liu Y, Zhu H. Dietary Se-enrich Cardamine violifolia supplementation decreases lipid deposition and improves antioxidant status in the liver of aging laying hens. Poult Sci 2025; 104:104620. [PMID: 39647356 PMCID: PMC11666952 DOI: 10.1016/j.psj.2024.104620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/26/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024] Open
Abstract
Aging-related lipid metabolic disorder is related to oxidative stress. Selenium (Se)-enriched Cardamine violifolia (SEC) is known for its excellent antioxidant function. The objective of this study was to evaluate the effects of SEC on antioxidant capacity and lipid metabolism in the liver of aged laying hens. A total of 450 sixty-five-wk-old Roman laying hens were randomly divided into 5 treatments: a basal diet (without Se supplementation, CON) and basal diets supplemented with 0.3 mg/kg Se from sodium selenite (SS), 0.3 mg/kg Se from Se-enriched yeast (SEY), 0.3 mg/kg Se from SEC (SEC), or 0.3 mg/kg Se from SEC and 0.3 mg/kg Se from SEY (SEC + SEY). The experiment lasted for 8 wk. The results showed that dietary SEC + SEY supplementation decreased (P < 0.05) triglyceride (in the plasma and liver) and total cholesterol levels (in the plasma), and increased (P < 0.05) HDL-C concentration in plasma compared to CON diet. Compared with CON diet, SEC and/or SEY supplementation decreased (P < 0.05) the mRNA expression of hepatic ACC, FAS and HMGCR, and increased (P < 0.05) PPARα, VTG-II, Apo-VLDL II and ApoB expression. Dietary SEC + SEY and SEY supplementation increased (P < 0.05) Se content in egg yolk and breast muscle compared to CON diet. Dietary SEC, SEY or SEC + SEY supplementation increased (P < 0.05) the activity of antioxidant enzymes (GSH-PX, T-AOC and T-SOD) in the plasma and liver and decreased (P < 0.05) MDA content in the plasma compared to CON diet. Dietary Se supplementation promoted (P < 0.05) mRNA expression of Nrf2 in the liver. In contrast, dietary SEY and SEC supplementation resulted in a decrease (P < 0.05) of hepatic Keap1 mRNA expression compared to CON diet. Dietary SEC + SEY and/or SEC supplementation increased (P < 0.05) mRNA expression of Selenof, GPX1 and GPX4 in the liver compared with CON diet. In conclusion, dietary SEC (0.3 mg/kg Se) or SEC (0.3 mg/kg Se) + SEY (0.3 mg/kg Se) improved the antioxidant capacity and the lipid metabolism in the liver of aged laying hens, which might be associated with regulating Nrf2/Keap1 signaling pathway.
Collapse
Affiliation(s)
- Mengke Yan
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xin Cong
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China; Enshi Se-Run Material Engineering Technology Co., Ltd., Enshi 445000, China
| | - Hui Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Kun Qin
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Yuhui Tang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Xiao Xu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Dan Wang
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Shuiyuan Cheng
- National R&D Center for Se-Rich Agricultural Products Processing, School of Modern Industry for Selenium Science and Engineering, Wuhan Polytechnic University, Wuhan 430048, China
| | - Yulan Liu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China
| | - Huiling Zhu
- Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, No. 68 Xuefu South Road, Changqing Garden, Wuhan 430048, China.
| |
Collapse
|
4
|
AL-Juwary RS, AL-Kattan MM. Effects of experimental hepatic steatosis on apelin and various biochemical parameters in male white rabbits. Open Vet J 2025; 15:211-221. [PMID: 40092174 PMCID: PMC11910280 DOI: 10.5455/ovj.2024.v15.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 12/15/2024] [Indexed: 03/19/2025] Open
Abstract
Background Hepatic steatosis is the second most prevalent liver disease following viral hepatitis, and its incidence is increasing rapidly, posing a significant threat to human health. Aim This research aimed to identify natural treatment methods that reduce the risk of experimental hepatic steatosis with triton by answering the following questions:Do polyphenols extracted from strawberries reduce the risk of experimental hepatic steatosis in rabbits?Do omega-3 extracted from almonds reduce the risk of experimental hepatic steatosis in rabbits?Is giving Omega-3, Vit. E considered the optimal treatment for hepatic steatosis? Methods This study aimed to assess the effects of strawberry polyphenols, omega-3 from almonds, omega-3, and vitamin E on reducing the risk of Triton-induced liver steatosis. The experiment involved 100 male rabbits (10-12 months old, 1,150-1,350 g) divided randomly into the following 10 groups: control group, Triton (300 mg/kg body mass) group, strawberry polyphenols group, strawberry polyphenols with Triton group, almond Omega-3 group, almond Omega-3 with Triton group, strawberry polyphenols with almond Omega-3 group, strawberry polyphenols with almond Omega-3 with Triton group, Omega-3, Vit. E group, and Omega-3, Vit. E with Triton group. Dosing occurred daily for 4 months. Results The results of the study indicated a significant increase in the levels of Triglycerides, Total cholesterol, Low-density lipoprotein-cholesterol, and Very low-density lipoprotein-cholesterol in the group of rabbits treated with Triton compared with the other groups, while these parameters decreased in the groups treated with strawberry polyphenols, omega-3 from almonds, omega-3, and vitamin E. In addition, the levels of High-density lipoprotein-cholesterol, Paroxinase-1 activity, and apelin concentration decreased in the group treated with Triton but increased in the groups receiving strawberry polyphenols, omega-3 from almonds, omega-3, and vitamin E, at a probability level (p ≤ 0.01). Conclusion These results suggest that polyphenols extracted from strawberries, Omega-3 extracted from almonds, and Omega-3, Vit. E is a suitable treatment for hepatic steatosis.
Collapse
|
5
|
Sadri M, Shafaghat Z, Roozbehani M, Hoseinzadeh A, Mohammadi F, Arab FL, Minaeian S, Fard SR, Faraji F. Effects of Probiotics on Liver Diseases: Current In Vitro and In Vivo Studies. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10431-z. [PMID: 39739162 DOI: 10.1007/s12602-024-10431-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2024] [Indexed: 01/02/2025]
Abstract
Various types of liver or hepatic diseases cause the death of about 2 million people worldwide every year, of which 1 million die from the complications of cirrhosis and another million from hepatocellular carcinoma and viral hepatitis. Currently, the second most common solid organ transplant is the liver, and the current rate represents less than 10% of global transplant requests. Hence, finding new approaches to treat and prevent liver diseases is essential. In liver diseases, the interaction between the liver, gut, and immune system is crucial, and probiotics positively affect the human microbiota. Probiotics are a non-toxic and biosafe alternative to synthetic chemical compounds. Health promotion by lowering cholesterol levels, stimulating host immunity, the natural gut microbiota, and other functions are some of the activities of probiotics, and their metabolites, including bacteriocins, can exert antimicrobial effects against a broad range of pathogenic bacteria. The present review discusses the available data on the results of preclinical and clinical studies on the effects of probiotic administration on different types of liver diseases.
Collapse
Affiliation(s)
- Maryam Sadri
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Shafaghat
- Department of Immunology, Iran University of Medical Sciences, Tehran, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Akram Hoseinzadeh
- Cancer Research Center, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Mohammadi
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medicine Sciences, Mashhad, Iran
| | - Sara Minaeian
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Soheil Rahmani Fard
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medicine Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Orfanidou M, Polyzos SA. Retinopathy in Metabolic Dysfunction-Associated Steatotic Liver Disease. MEDICINA (KAUNAS, LITHUANIA) 2024; 61:38. [PMID: 39859020 PMCID: PMC11766779 DOI: 10.3390/medicina61010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/27/2025]
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a multisystemic disease, i.e., influencing various organ systems beyond the liver and, thus, contributing to comorbidities. Characterized by excessive fat accumulation in the hepatocytes, MASLD is frequently linked to metabolic syndrome components, such as obesity, insulin resistance, dyslipidemia, and hypertension. Therefore, exploring the intricate connection between MASLD and other organ systems, including the eyes, seems to be essential. In this context, retinopathy has been investigated for its potential association with MASLD, since both conditions share common pathogenetic pathways. Chronic low-grade inflammation, oxidative stress, insulin resistance, and endothelial dysfunction are only some of those mechanisms contributing to disease progression and, possibly, determining the bidirectional interplay between the liver and retinal pathology. This narrative review aims to summarize data concerning the multisystemicity of MASLD, primarily focusing on its potential association with the eyes and, particularly, retinopathy. Identifying this possible association may emphasize the need for early screening and integrated management approaches that address the liver and eyes as interconnected components within the framework of a systemic disease. Further research is necessary to delineate the precise mechanisms and develop targeted interventions to mitigate the bidirectional impact between the liver and eyes, aiming to reduce the overall burden of disease and improve patient outcomes.
Collapse
Affiliation(s)
- Myrsini Orfanidou
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- First Department of Ophthalmology, AHEPA University Hospital, Aristotle University of Thessaloniki, 54636 Thessaloniki, Greece
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
7
|
Fan J, Wang D. Serum uric acid and nonalcoholic fatty liver disease. Front Endocrinol (Lausanne) 2024; 15:1455132. [PMID: 39669496 PMCID: PMC11635646 DOI: 10.3389/fendo.2024.1455132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is characterized by over 5% hepatic fat accumulation without secondary causes. The prevalence of NAFLD has escalated in recent years due to shifts in dietary patterns and socioeconomic status, making it the most prevalent chronic liver disease and a significant public health concern globally. Serum uric acid (SUA) serves as the end product of purine metabolism in the body and is intricately linked to metabolic syndrome. Elevated SUA levels have been identified as an independent risk factor for the incidence and progression of NAFLD. This paper reviews the relationship between SUA and NAFLD, the underlying mechanisms of SUA involved in NAFLD, and the potential benefits of SUA-lowering therapy in treating NAFLD. The aim is to raise awareness of SUA management in patients with NAFLD, and to encourage further investigation into pharmacological interventions in this area.
Collapse
Affiliation(s)
| | - Dongxu Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
8
|
Zhang J, Ouyang H, Gu X, Dong S, Lu B, Huang Z, Li J, Ji L. Caffeic acid ameliorates metabolic dysfunction-associated steatotic liver disease via alleviating oxidative damage and lipid accumulation in hepatocytes through activating Nrf2 via targeting Keap1. Free Radic Biol Med 2024; 224:352-365. [PMID: 39209138 DOI: 10.1016/j.freeradbiomed.2024.08.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Metabolic-associated steatotic liver disease (MASLD), known as non-alcoholic fatty liver disease (NAFLD) in the past, encompasses a range of liver pathological conditions marked by the excessive lipid accumulation. Consumption of coffee is closely associated with the reduced risk of MASLD. Caffeic acid (CA), a key active ingredient in coffee, exhibits notable hepatoprotective properties. This study aims to investigate the improvement of CA on MASLD and the engaged mechanism. Mice underwent a 12-week high-fat diet (HFD) regimen to induce MASLD, and liver pathology was assessed using hematoxylin-eosin (H&E) and oil red O (ORO) staining. Hepatic inflammation was evaluated by F4/80 and Ly6G immunohistochemistry (IHC) and myeloperoxidase (MPO) measurement. Pathways and transcription factors relevant to MASLD were analyzed by using microarray data from patients' livers. Oxidative damage was evaluated by detecting reactive oxygen species (ROS), malondialdehyde (MDA), glutathione (GSH) and superoxide dismutase (SOD). Co-immunoprecipitation (CoIP), cellular thermal shift assay (CETSA) and surface plasmon resonance (SPR) were used to validate the binding between CA and its target protein. CA significantly alleviated liver damage, steatosis and inflammatory injury, and reduced the elevated NAFLD activity score (NAS) in HFD-fed mice. Clinical data indicate that fatty acid metabolism and ROS generation are pivotal in MASLD progression. CA increased the expression of fibroblast growth factor 21 (FGF21), FGF receptor 1 (FGFR1) and β-Klotho (KLB), and promoted fatty acid consumption. Additionally, CA mitigated oxidative stress injury and activated nuclear factor erythroid 2-related factor-2 (Nrf2). In primary hepatocytes isolated from Nrf2 knockout mice, CA's promotion on FGF21 release and inhibition on oxidative stress and lipotoxicity was disappeared. CA could directly bind to kelch-like ECH-associated protein 1 (Keap1) that is an Nrf2 inhibitor protein. This study suggests that CA alleviates MASLD by reducing hepatic lipid accumulation, lipotoxicity and oxidative damage through activating Nrf2 via binding to Keap1.
Collapse
Affiliation(s)
- Jinyu Zhang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Hao Ouyang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Hepatology, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Xinnan Gu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Shiyuan Dong
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Bin Lu
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Zhenlin Huang
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jian Li
- Department of Pharmaceutics, China Pharmaceutical University, Jiangsu Nanjing, 210009, China; Technology Center of Jinling Pharmaceutical Co., Ltd., Jiangsu Nanjing, 210009, China.
| | - Lili Ji
- The MOE Key Laboratory for Standardization of Chinese Medicines, Shanghai Key Laboratory of Compound Chinese Medicines and the SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
9
|
Zhang K, Xu Y, Zhang N, Liang X, Zhang H, Liang H. Association of the Composite Dietary Antioxidant Index and Consumption Time with NAFLD: The U.S. National Health and Nutrition Examination Survey, 2017-2020. Nutrients 2024; 16:3556. [PMID: 39458550 PMCID: PMC11514589 DOI: 10.3390/nu16203556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024] Open
Abstract
BACKGROUND The timing of food intake can affect the physiological and metabolic functions of the body. However, whether and how the timing of dietary antioxidant intake could influence non-alcoholic fatty liver disease (NAFLD) is largely unknown. The Composite Dietary Antioxidant Index (CDAI) serves as a comprehensive measure that encompasses various dietary antioxidants. This study aims to investigate the association between the meal timing of CDAI and NAFLD in American adults. METHODS We used data from the 2017-2020 National Health and Nutrition Examination Survey (NHANES). Dietary intake was assessed through the implementation of two non-concurrent 24-h dietary recalls. Vibration-controlled transient elastography was employed to assess the controlled attenuation as an indicator of NAFLD. CDAI across the day (total, breakfast, lunch, dinner) and Δ CDAI (Δ = dinner-breakfast) were categorized into quartiles. Weighted logistic regression models and restricted cubic splines were used to evaluate the association between the meal timing of CDAI and NAFLD. RESULTS Of the 6570 participants in this study, 1153 had NAFLD. Participants in the highest quartile of total CDAI levels had a lower risk of NAFLD compared with the lowest quartile (OR = 0.52; 95% CI, 0.38-0.71). More importantly, participants in the highest quartile of dinner CDAI, but not those in that of breakfast or lunch, had a lower risk of NAFLD (OR = 0.54; 95% CI, 0.40-0.73) compared with the lowest quartile. The restricted cubic splines indicated a linear relationship between total CDAI and NAFLD (Pfor nonlinearity = 0.70), as well as between dinner CDAI and NAFLD (Pfor nonlinearity = 0.19). Stratification analyses revealed that the effect of dinner CDAI on NAFLD varied between non-Hispanic Whites and individuals of other races (Pfor interaction = 0.032). CONCLUSIONS these findings suggest the potential beneficial effects of an antioxidant-rich diet and strategic meal timing on NAFLD.
Collapse
Affiliation(s)
| | | | | | | | | | - Hui Liang
- Department of Nutrition and Food Hygiene, School of Public Health, Qingdao University, 308 Ningxia Road, Qingdao 266071, China; (K.Z.); (Y.X.); (N.Z.); (X.L.); (H.Z.)
| |
Collapse
|
10
|
Minetti ET, Hamburg NM, Matsui R. Drivers of cardiovascular disease in metabolic dysfunction-associated steatotic liver disease: the threats of oxidative stress. Front Cardiovasc Med 2024; 11:1469492. [PMID: 39411175 PMCID: PMC11473390 DOI: 10.3389/fcvm.2024.1469492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 08/30/2024] [Indexed: 10/19/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD), now known as metabolic-associated steatotic liver disease (MASLD), is the most common liver disease worldwide, with a prevalence of 38%. In these patients, cardiovascular disease (CVD) is the number one cause of mortality rather than liver disease. Liver abnormalities per se due to MASLD contribute to risk factors such as dyslipidemia and obesity and increase CVD incidents. In this review we discuss hepatic pathophysiological changes the liver of MASLD leading to cardiovascular risks, including liver sinusoidal endothelial cells, insulin resistance, and oxidative stress with a focus on glutathione metabolism and function. In an era where there is an increasingly robust recognition of what causes CVD, such as the factors included by the American Heart Association in the recently developed PREVENT equation, the inclusion of liver disease may open doors to how we approach treatment for MASLD patients who are at risk of CVD.
Collapse
Affiliation(s)
| | | | - Reiko Matsui
- Whitaker Cardiovascular Institute, Section of Vascular Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, United States
| |
Collapse
|
11
|
Li X, He J, Sun Q. The prevalence and effects of sarcopenia in patients with metabolic dysfunction-associated steatotic liver disease (MASLD): A systematic review and meta-analysis. Clin Nutr 2024; 43:2005-2016. [PMID: 39053329 DOI: 10.1016/j.clnu.2024.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Sarcopenia is a common complication in patients with metabolic dysfunction-associated steatotic liver disease (MASLD). However, the prevalence and its impact on the survival of sarcopenia in patients with MASLD is unknown. In this study, we aimed to assess the prevalence and effects of sarcopenia in patients with MASLD. METHODS Systematic review and meta-analysis of full texts of relevant studies were searched from inception until June 12, 2024 in five databases (PubMed, Cochrane Library, Embase, Web of Science, and the China National Knowledge Infrastructure). Next, we assessed the prevalence of sarcopenia in MASLD, and calculated the ORs and HRs between sarcopenia and MASLD based on the adjusted data from individual studies. Statistical analyses were performed using Stata 11.0. RESULTS Of the 2984 records considered, 29 studies recruiting 63,330 patients were included. The pooled prevalence of sarcopenia in patients with MASLD was 23.5% overall (95% CI; 19.1%-27.9%, I2 = 99.6%), and was higher in Asian patients, male, cross-sectional studies, when BIA were employed to measure muscle mass, one criterion of diagnosis sarcopenia, MASLD was diagnosed employing MRI, and moderate-quality studies. Sarcopenia was associated with MASLD patients (adjusted odds ratio [aOR] 2.08, 95% CI 1.58-2.74, I2 = 93.6%) with similar findings in subgroups stratified by age, study design, methods for measuring muscle mass, assessment method to detect sarcopenia, and study quality. The association between all-cause mortality further supports the association between sarcopenia and poor prognosis with MASLD (aHR 1.59, 95% CI 1.33-1.91, I2 = 0%). CONCLUSIONS Sarcopenia was strongly associated with MASLD progression and was a risk factor not only for MASLD pathogenesis but was also markedly correlated with MASLD-associated mortality.
Collapse
Affiliation(s)
- Xiaoyan Li
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China
| | - Jie He
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, Sichuan, China; Clinical Medical College of Chengdu Medical College, Chengdu 610500, Sichuan, China
| | - Qiuhua Sun
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou 310000, Zhejiang, China.
| |
Collapse
|
12
|
Tangestani H, Jamshidi A, Farhadi A, Ghalandari H, Dehghani P, Moghaddas N, Safaei Z, Emamat H. The effects of pomegranate (Punica granatum) on nonalcoholic fatty liver disease: A systematic review of in vivo interventional studies. Phytother Res 2024; 38:4189-4201. [PMID: 38923154 DOI: 10.1002/ptr.8272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 05/14/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a disorder in which excess fat accumulates in hepatocytes and can lead to serious complications. Oxidative stress is one of the leading causes of NAFLD. Pomegranates are considered antioxidant-rich fruit. This systematic review study was aimed to investigate the impact of pomegranate on NAFLD. PubMed, Scopus, and Google Scholar databases/search engines (from inception up to July 2023) were searched for interventional studies (human and animal) that examined the effects of supplementation with different parts of pomegranate including fruits, peels, seeds, or flower on NAFLD outcomes. A total of 222 articles were retrieved following the initial search. After excluding duplicates, the title and abstract of 114 articles were screened. Afterward, irrelevant articles were removed and the full texts of the remaining 27 articles were reviewed. Eventually, 19 articles (16 animal and three human interventional studies) that met the inclusion criteria, published between 2009 and 2023, were included in this systematic review. Our study indicates the potential beneficial effects of different parts of pomegranate on the improvement of NAFLD. However, given that the majority of the included articles were animal studies, further investigations in the form of human clinical trials are warranted to suggest a clinical indication of such interventions.
Collapse
Affiliation(s)
- Hadith Tangestani
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ali Jamshidi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Akram Farhadi
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hamid Ghalandari
- Department of Community Nutrition, Faculty of Nutrition and Food Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Pardis Dehghani
- Students Research Committee, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Nika Moghaddas
- Students Research Committee, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra Safaei
- Department of Library and Medical Information, School of Paramedical Sciences, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hadi Emamat
- Department of Nutrition, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
- The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Sandireddy R, Sakthivel S, Gupta P, Behari J, Tripathi M, Singh BK. Systemic impacts of metabolic dysfunction-associated steatotic liver disease (MASLD) and metabolic dysfunction-associated steatohepatitis (MASH) on heart, muscle, and kidney related diseases. Front Cell Dev Biol 2024; 12:1433857. [PMID: 39086662 PMCID: PMC11289778 DOI: 10.3389/fcell.2024.1433857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 07/01/2024] [Indexed: 08/02/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is the most common liver disorder worldwide, with an estimated global prevalence of more than 31%. Metabolic dysfunction-associated steatohepatitis (MASH), formerly known as non-alcoholic steatohepatitis (NASH), is a progressive form of MASLD characterized by hepatic steatosis, inflammation, and fibrosis. This review aims to provide a comprehensive analysis of the extrahepatic manifestations of MASH, focusing on chronic diseases related to the cardiovascular, muscular, and renal systems. A systematic review of published studies and literature was conducted to summarize the findings related to the systemic impacts of MASLD and MASH. The review focused on the association of MASLD and MASH with metabolic comorbidities, cardiovascular mortality, sarcopenia, and chronic kidney disease. Mechanistic insights into the concept of lipotoxic inflammatory "spill over" from the MASH-affected liver were also explored. MASLD and MASH are highly associated (50%-80%) with other metabolic comorbidities such as impaired insulin response, type 2 diabetes, dyslipidemia, hypertriglyceridemia, and hypertension. Furthermore, more than 90% of obese patients with type 2 diabetes have MASH. Data suggest that in middle-aged individuals (especially those aged 45-54), MASLD is an independent risk factor for cardiovascular mortality, sarcopenia, and chronic kidney disease. The concept of lipotoxic inflammatory "spill over" from the MASH-affected liver plays a crucial role in mediating the systemic pathological effects observed. Understanding the multifaceted impact of MASH on the heart, muscle, and kidney is crucial for early detection and risk stratification. This knowledge is also timely for implementing comprehensive disease management strategies addressing multi-organ involvement in MASH pathogenesis.
Collapse
Affiliation(s)
| | | | | | | | - Madhulika Tripathi
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| | - Brijesh Kumar Singh
- Cardiovascular and Metabolic Disorders Research Program, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
14
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Chronic exposure to TiO 2 micro- and nano particles: A biochemical and histopathological experimental study. J Biomed Mater Res B Appl Biomater 2024; 112:e35443. [PMID: 38968028 DOI: 10.1002/jbm.b.35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/08/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 μm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- CONICET, Buenos Aires, Argentina
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Guillermo Maglione
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | | | - Fernando Brites
- CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
15
|
Gopinath V, Mariya Davis A, Menon TK, Raghavamenon AC. Alcohol promotes liver fibrosis in high fat diet induced diabetic rats. J Basic Clin Physiol Pharmacol 2024; 35:273-284. [PMID: 39023980 DOI: 10.1515/jbcpp-2024-0042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024]
Abstract
OBJECTIVES Type 2 diabetes (T2DM) and alcoholism are considered to be lifestyle-associated independent risk factors in fatty liver diseases (FLD) mediated cirrhosis and hepatocellular carcinoma (HCC). A combined effect of both these conditions may exacerbate the pathological changes and a pre-clinical exploration of this is expected to provide a mechanical detail of the pathophysiology. The present study aims to understand the effect of alcohol on pre- diabetic and type 2 diabetic female Wistar rats. METHODS In this experimental study, 12 Wistar rats (180-220 g) were randomly assigned into three groups: Normal (fed normal rat chow), alcohol (20 %) fed diabetic (HFD + STZ), and pre-diabetic rats (HFD alone). After, two months of the experimental period, blood and liver tissues were collected lipid metabolic alteration, liver injury, and fibrosis were determined following biochemical and histological methods. Data were analyzed using one-way ANOVA and Dunnett's Post Hoc test. RESULTS Significant dyslipidemia was observed in the liver tissues of diabetic and pre-diabetic rats following alcohol ingestion. A significant (p<0.05) increase in lipid peroxidation status, and hepatic marker enzyme activities (p<0.0001) were observed in diabetic animals. In corroborating with these observations, hematoxylin and eosin staining of hepatic tissue revealed the presence of sinusoidal dilation along with heavily damaged hepatocytes and inflammatory cell infiltration. Further, significantly (p<0.001) increased hepatic hydroxyproline content and extended picrosirius red stained areas of collagen in liver tissue indicated initiation of fibrosis in alcohol-fed diabetic rats. CONCLUSIONS Overall, the results indicate that alcohol consumption in T2DM conditions is more deleterious than pre diabetic conditions in progressing to hepatic fibrosis.
Collapse
Affiliation(s)
- Veena Gopinath
- Department of Biochemistry, Amala Cancer Research Center (Recognized Centre of the University of Calicut), Thrissur, Kerala, India
| | - Aleena Mariya Davis
- Department of Biochemistry, Amala Cancer Research Center (Recognized Centre of the University of Calicut), Thrissur, Kerala, India
| | - Thara K Menon
- Department of Biotechnology, University of Calicut, Thenhipalam, Kerala, India
| | - Achuthan C Raghavamenon
- Department of Biochemistry, Amala Cancer Research Center (Recognized Centre of the University of Calicut), Thrissur, Kerala, India
| |
Collapse
|
16
|
Ezzat WM. Impact of lifestyle interventions on pathogenesis of nonalcoholic fatty liver disease. World J Gastroenterol 2024; 30:2633-2637. [PMID: 38855152 PMCID: PMC11154675 DOI: 10.3748/wjg.v30.i20.2633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024] Open
Abstract
This editorial builds on the article titled "Establishment and validation of an adherence prediction system for lifestyle interventions in non-alcoholic fatty liver disease" by Zeng et al. We carried out a critical examination of nonalcoholic fatty liver disease (NAFLD) pathogenesis and how lifestyle interventions could facilitate disease resolution, particularly highlighting that non-alcoholic steatohepatitis (NASH) is a severe form of NAFLD. Our discussion details that weight loss is a pivotal factor in disease outcomes: A 3%-5% reduction is enough for resolution in 50% of non-obese individuals, while a 7%-10% reduction achieves similar benefits in obese individuals, as demonstrated by magnetic resonance spectroscopy. Additionally, the editorial underscores that such lifestyle changes are instrumental not only in resolving NAFLD but also in reversing hepatic steatosis and inflammation. These insights, derived from the research, emphasize the critical role of personalized lifestyle modifications in halting the progression of NAFLD to NASH and even reversing fibrosis, thus offering a template for effective patient management.
Collapse
Affiliation(s)
- Wafaa Mohamed Ezzat
- Department of Internal Medicine, Medical Research and Clinical Studies Institute, National Research Center, Giza 12311, Egypt
| |
Collapse
|
17
|
Keyghobadi H, Bozorgpoursavadjani H, Koohpeyma F, Mohammadipoor N, Nemati M, Dehghani F, Jamhiri I, Keighobadi G, Dastghaib S. Therapeutic potential of Lactobacillus casei and Chlorella vulgaris in high-fat diet-induced non-alcoholic fatty liver disease (NAFLD)-associated kidney damages: a stereological study. Mol Biol Rep 2024; 51:613. [PMID: 38704764 DOI: 10.1007/s11033-024-09542-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/10/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND The non-alcoholic fatty liver disease (NAFLD) is prevalent in as many as 25% of adults who are afflicted with metabolic syndrome. Oxidative stress plays a significant role in the pathophysiology of hepatic and renal injury associated with NAFLD. Therefore, probiotics such as Lactobacillus casei (LBC) and the microalga Chlorella vulgaris (CV) may be beneficial in alleviating kidney injury related to NAFLD. MATERIALS AND METHODS This animal study utilized 30 C57BL/6 mice, which were evenly distributed into five groups: the control group, the NAFLD group, the NAFLD + CV group, the NAFLD + LBC group, and the NAFLD + CV + LBC group. A high-fat diet (HFD) was administered to induce NAFLD for six weeks. The treatments with CV and LBC were continued for an additional 35 days. Biochemical parameters, total antioxidant capacity (TAC), and the expression of kidney damage marker genes (KIM 1 and NGAL) in serum and kidney tissue were determined, respectively. A stereological analysis was conducted to observe the structural changes in kidney tissues. RESULTS A liver histopathological examination confirmed the successful induction of NAFLD. Biochemical investigations revealed that the NAFLD group exhibited increased ALT and AST levels, significantly reduced in the therapy groups (p < 0.001). The gene expression levels of KIM-1 and NGAL were elevated in NAFLD but were significantly reduced by CV and LBC therapies (p < 0.001). Stereological examinations revealed reduced kidney size, volume, and tissue composition in the NAFLD group, with significant improvements observed in the treated groups (p < 0.001). CONCLUSION This study highlights the potential therapeutic efficacy of C. vulgaris and L. casei in mitigating kidney damage caused by NAFLD. These findings provide valuable insights for developing novel treatment approaches for managing NAFLD and its associated complications.
Collapse
Affiliation(s)
- Haniyeh Keyghobadi
- Department of Biology, Zarghan Branch, Islamic Azad University, Zarghan, Iran
| | | | - Farhad Koohpeyma
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nazanin Mohammadipoor
- Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL, USA
| | - Marzieh Nemati
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshad Dehghani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Iman Jamhiri
- Molecular Dermatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sanaz Dastghaib
- Endocrinology and Metabolism Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
- Autophagy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
18
|
Senavirathna T, Shafaei A, Lareu R, Balmer L. Unlocking the Therapeutic Potential of Ellagic Acid for Non-Alcoholic Fatty Liver Disease and Non-Alcoholic Steatohepatitis. Antioxidants (Basel) 2024; 13:485. [PMID: 38671932 PMCID: PMC11047720 DOI: 10.3390/antiox13040485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Obesity is in epidemic proportions in many parts of the world, contributing to increasing rates of non-alcoholic fatty liver disease (NAFLD). NAFLD represents a range of conditions from the initial stage of fatty liver to non-alcoholic steatohepatitis (NASH), which can progress to severe fibrosis, through to hepatocellular carcinoma. There currently exists no treatment for the long-term management of NAFLD/NASH, however, dietary interventions have been investigated for the treatment of NASH, including several polyphenolic compounds. Ellagic acid is one such polyphenolic compound. Nutraceutical food abundant in ellagic acid undergoes initial hydrolysis to free ellagic acid within the stomach and small intestine. The proposed mechanism of action of ellagic acid extends beyond its initial therapeutic potential, as it is further broken down by the gut microbiome into urolithin. Both ellagic acid and urolithin have been found to alleviate oxidative stress, inflammation, and fibrosis, which are associated with NAFLD/NASH. While progress has been made in understanding the pharmacological and biological activity of ellagic acid and its involvement in NAFLD/NASH, it has yet to be fully elucidated. Thus, the aim of this review is to summarise the currently available literature elucidating the therapeutic potential of ellagic acid and its microbial-derived metabolite urolithin in NAFLD/NASH.
Collapse
Affiliation(s)
- Tharani Senavirathna
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| | - Armaghan Shafaei
- Centre for Integrative Metabolomics and Computational Biology, School of Science, Edith Cowan University, Perth, WA 6027, Australia;
| | - Ricky Lareu
- Curtin Medical School and Curtin Health Innovation Research Institute, Faculty of Health Sciences, Curtin University, Perth, WA 6845, Australia
| | - Lois Balmer
- Centre for Precision Health, School of Medical and Health Sciences, Edith Cowan University, Perth, WA 6027, Australia;
| |
Collapse
|
19
|
Jiang YJ, Cao YM, Cao YB, Yan TH, Jia CL, He P. A Review: Cytochrome P450 in Alcoholic and Non-Alcoholic Fatty Liver Disease. Diabetes Metab Syndr Obes 2024; 17:1511-1521. [PMID: 38586542 PMCID: PMC10997053 DOI: 10.2147/dmso.s449494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 03/16/2024] [Indexed: 04/09/2024] Open
Abstract
Alcoholic fatty liver disease (FALD) and non-alcoholic fatty liver disease (NAFLD) have similar pathological spectra, both of which are associated with a series of symptoms, including steatosis, inflammation, and fibrosis. These clinical manifestations are caused by hepatic lipid synthesis and metabolism dysregulation and affect human health. Despite having been studied extensively, targeted therapies remain elusive. The Cytochrome P450 (CYP450) family is the most important drug-metabolising enzyme in the body, primarily in the liver. It is responsible for the metabolism of endogenous and exogenous compounds, completing biological transformation. This process is relevant to the occurrence and development of AFLD and NAFLD. In this review, the correlation between CYP450 and liver lipid metabolic diseases is summarised, providing new insights for the treatment of AFLD and NAFLD.
Collapse
Affiliation(s)
- Yu-Jie Jiang
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Ye-Ming Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Yong-Bing Cao
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Tian-Hua Yan
- Department of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 211100, People’s Republic of China
| | - Cheng-Lin Jia
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| | - Ping He
- Institute of Vascular Anomalies, Shanghai Academy of Traditional Chinese Medicine, Shanghai, 200082, People’s Republic of China
| |
Collapse
|
20
|
Xue R, Wu Q, Guo L, Ye D, Cao Q, Zhang M, Xian Y, Chen M, Yan K, Zheng J. Pyridostigmine attenuated high-fat-diet induced liver injury by the reduction of mitochondrial damage and oxidative stress via α7nAChR and M3AChR. J Biochem Mol Toxicol 2024; 38:e23671. [PMID: 38454809 DOI: 10.1002/jbt.23671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 01/18/2024] [Accepted: 02/23/2024] [Indexed: 03/09/2024]
Abstract
Obesity is a major cause of nonalcohol fatty liver disease (NAFLD), which is characterized by hepatic fibrosis, lipotoxicity, inflammation, and apoptosis. Previous studies have shown that an imbalance in the autonomic nervous system is closely related to the pathogenesis of NAFLD. In this study, we investigated the effects of pyridostigmine (PYR), a cholinesterase (AChE) inhibitor, on HFD-induced liver injury and explored the potential mechanisms involving mitochondrial damage and oxidative stress. A murine model of HFD-induced obesity was established using the C57BL/6 mice, and PYR (3 mg/kg/d) or placebo was administered for 20 weeks. PYR reduced the body weight and liver weight of the HFD-fed mice. Additionally, the serum levels of IL-6, TNF-α, cholesterol, and triglyceride were significantly lower in the PYR-treated versus the untreated mice, corresponding to a decrease in hepatic fibrosis, lipid accumulation, and apoptosis in the former. Furthermore, the mitochondrial morphology improved significantly in the PYR-treated group. Consistently, PYR upregulated ATP production and the mRNA level of the mitochondrial dynamic factors OPA1, Drp1 and Fis1, and the mitochondrial unfolded protein response (UPRmt) factors LONP1 and HSP60. Moreover, PYR treatment activated the Keap1/Nrf2 pathway and upregulated HO-1 and NQO-1, which mitigated oxidative injury as indicated by decreased 8-OHDG, MDA and H2 O2 levels, and increased SOD activity. Finally, PYR elevated acetylcholine (ACh) levels by inhibiting AChE, and upregulated the α7nAChR and M3AChR proteins in the HFD-fed mice. PYR alleviated obesity-induced hepatic injury in mice by mitigating mitochondrial damage and oxidative stress via α7nAChR and M3AChR.
Collapse
Affiliation(s)
- Runqing Xue
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Wu
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Lulu Guo
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
- The College of Life Sciences, Northwest University, Xi'an, China
| | - Dan Ye
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Qing Cao
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Meng Zhang
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Yushan Xian
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Minchun Chen
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Kangkang Yan
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| | - Jie Zheng
- Department of Pharmacy, The Affiliated Hospital of Northwest University, Xi'an, China
| |
Collapse
|
21
|
Hegazy DH, Mohamed FS, Mahmoud SAH, El Deeb NMF, Elyamany AS, Elgendi AM. Liver macrophage activation: Relation with hepatic histopathological changes in patients with metabolic associated steatotic liver disease. Clin Exp Hepatol 2024; 10:79-89. [PMID: 39845348 PMCID: PMC11748224 DOI: 10.5114/ceh.2024.139983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 01/31/2024] [Indexed: 01/24/2025] Open
Abstract
Aim of the study Metabolic associated steatotic liver disease (MASLD) is one of the most frequent chronic liver diseases in the world; macrophage activation is reflected by increased expression of CD163, which sheds as serum soluble CD163 that is linked to hepatic steatosis, inflammation, and fibrosis. Aim of the study was assessment of liver macrophage activation and hepatic histopathological changes in patients with MASLD. Material and methods A total of 30 patients with MASLD and equal numbers of age- and sex-matched healthy controls were enrolled in the study. Quantitative serum levels of soluble CD163 (sCD163) were determined using a commercially available standard sandwich ELISA kit. Core liver biopsies were obtained from patients with MASLD and evaluation of CD163 using anti-CD163 Ab-1 (Clone 10D6) - mouse monoclonal antibody. Results The median sCD163 level was significantly higher in patients with MASLD compared with healthy controls. It can discriminate patients with MASLD from healthy controls at a cut-off value of 814 pg/ml. sCD163 level and intrahepatic total CD163-positive cell count were positively correlated, and both showed positive correlations with nonalcoholic fatty liver disease activity score. Conclusions Soluble CD163 can discriminate MASLD patients from healthy controls after the exclusion of other causes of inflammation.
Collapse
Affiliation(s)
| | - Fathalla S. Mohamed
- Internal Medicine Department, Hepatology Unit, Faculty of Medicine, Alexandria University, Egypt
| | - Sabah A. H. Mahmoud
- Medical Biochemistry Department, Faculty of Medicine, Alexandria University, Egypt
| | | | - Amany S. Elyamany
- Internal Medicine Department, Hepatology Unit, Faculty of Medicine, Alexandria University, Egypt
| | - Ahmed M. Elgendi
- General Surgery Department, Hepatobiliary Surgery Unit, Faculty of Medicine, Alexandria University, Egypt
| |
Collapse
|
22
|
Dumitru A, Matei E, Cozaru GC, Chisoi A, Alexandrescu L, Popescu RC, Butcaru MP, Dumitru E, Rugină S, Tocia C. Endotoxin Inflammatory Action on Cells by Dysregulated-Immunological-Barrier-Linked ROS-Apoptosis Mechanisms in Gut-Liver Axis. Int J Mol Sci 2024; 25:2472. [PMID: 38473721 DOI: 10.3390/ijms25052472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024] Open
Abstract
Our study highlighted the immune changes by pro-inflammatory biomarkers in the gut-liver-axis-linked ROS-cell death mechanisms in chronic and acute inflammations when gut cells are exposed to endotoxins in patients with hepatic cirrhosis or steatosis. In duodenal tissue samples, gut immune barrier dysfunction was analyzed by pro-inflammatory biomarker expressions, oxidative stress, and cell death by flow cytometry methods. A significant innate and adaptative immune system reaction was observed as result of persistent endotoxin action in gut cells in chronic inflammation tissue samples recovered from hepatic cirrhosis with the A-B child stage. Instead, in patients with C child stage of HC, the endotoxin tolerance was installed in cells, characterized by T lymphocyte silent activation and increased Th1 cytokines expression. Interesting mechanisms of ROS-cell death were observed in chronic and acute inflammation samples when gut cells were exposed to endotoxins and immune changes in the gut-liver axis. Late apoptosis represents the chronic response to injury induction by the gut immune barrier dysfunction, oxidative stress, and liver-dysregulated barrier. Meanwhile, necrosis represents an acute and severe reply to endotoxin action on gut cells when the immune system reacts to pro-inflammatory Th1 and Th2 cytokines releasing, offering protection against PAMPs/DAMPs by monocytes and T lymphocyte activation. Flow cytometric analysis of pro-inflammatory biomarkers linked to oxidative stress-cell death mechanisms shown in our study recommends laboratory techniques in diagnostic fields.
Collapse
Affiliation(s)
- Andrei Dumitru
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Elena Matei
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
| | - Georgeta Camelia Cozaru
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medical Sciences Academy, 1 I.C. Bratianu Street, 030167 Bucharest, Romania
| | - Anca Chisoi
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Clinical Service of Pathology, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medical Sciences Academy, 1 I.C. Bratianu Street, 030167 Bucharest, Romania
| | - Luana Alexandrescu
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Răzvan Cătălin Popescu
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Mihaela Pundiche Butcaru
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| | - Eugen Dumitru
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Center for Research and Development of the Morphological and Genetic Studies of Malignant Pathology, "Ovidius" University of Constanta, 145 Tomis Blvd., 900591 Constanta, Romania
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Sorin Rugină
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
- Academy of Romanian Scientist, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Cristina Tocia
- Gastroenterology Department, "Sf. Apostol Andrei" Emergency County Hospital, 145 Tomis Blvd., 900591 Constanta, Romania
- Medicine Faculty, "Ovidius" University of Constanta, 1 Universitatii Street, 900470 Constanta, Romania
| |
Collapse
|
23
|
Liu C, Fang Z, Yang K, Ji Y, Yu X, Guo Z, Dong Z, Zhu T, Liu C. Identification and validation of cuproptosis-related molecular clusters in non-alcoholic fatty liver disease. J Cell Mol Med 2024; 28:e18091. [PMID: 38169083 PMCID: PMC10844703 DOI: 10.1111/jcmm.18091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 09/20/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a major chronic liver disease worldwide. Cuproptosis has recently been reported as a form of cell death that appears to drive the progression of a variety of diseases. This study aimed to explore cuproptosis-related molecular clusters and construct a prediction model. The gene expression profiles were obtained from the Gene Expression Omnibus (GEO) database. The associations between molecular clusters of cuproptosis-related genes and immune cell infiltration were investigated using 50 NAFLD samples. Furthermore, cluster-specific differentially expressed genes were identified by the WGCNA algorithm. External datasets were used to verify and screen feature genes, and nomograms, calibration curves and decision curve analysis (DCA) were performed to verify the performance of the prediction model. Finally, a NAFLD-diet mouse model was constructed to further verify the predictive analysis, thus providing new insights into the prediction of NAFLD clusters and risks. The role of cuproptosis in the development of non-alcoholic fatty liver disease and immune cell infiltration was explored. Non-alcoholic fatty liver disease was divided into two cuproptosis-related molecular clusters by unsupervised clustering. Three characteristic genes (ENO3, SLC16A1 and LEPR) were selected by machine learning and external data set validation. In addition, the accuracy of the nomogram, calibration curve and decision curve analysis in predicting NAFLD clusters was also verified. Further animal and cell experiments confirmed the difference in their expression in the NAFLD mouse model and Mouse hepatocyte cell line. The present study explored the relationship between non-alcoholic fatty liver disease and cuproptosis, providing new ideas and targets for individual treatment of the disease.
Collapse
Affiliation(s)
- Changxu Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhihao Fang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Kai Yang
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Yanchao Ji
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xiaoxiao Yu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - ZiHao Guo
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Zhichao Dong
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Tong Zhu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
- Beijing Chaoyang Hospital Affiliated to Capital Medical UniversityBeijingChina
| | - Chang Liu
- Department of General SurgeryFourth Affiliated Hospital of Harbin Medical UniversityHarbinChina
| |
Collapse
|
24
|
Hu Q, Zhang W, Wei F, Huang M, Shu M, Song D, Wen J, Wang J, Nian Q, Ma X, Zeng J, Zhao Y. Human diet-derived polyphenolic compounds and hepatic diseases: From therapeutic mechanisms to clinical utilization. Phytother Res 2024; 38:280-304. [PMID: 37871899 DOI: 10.1002/ptr.8043] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/12/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
This review focuses on the potential ameliorative effects of polyphenolic compounds derived from human diet on hepatic diseases. It discusses the molecular mechanisms and recent advancements in clinical applications. Edible polyphenols have been found to play a therapeutic role, particularly in liver injury, liver fibrosis, NAFLD/NASH, and HCC. In the regulation of liver injury, polyphenols exhibit anti-inflammatory and antioxidant effects, primarily targeting the TGF-β, NF-κB/TLR4, PI3K/AKT, and Nrf2/HO-1 signaling pathways. In the regulation of liver fibrosis, polyphenolic compounds effectively reverse the fibrotic process by inhibiting the activation of hepatic stellate cells (HSC). Furthermore, polyphenolic compounds show efficacy against NAFLD/NASH by inhibiting lipid oxidation and accumulation, mediated through the AMPK, SIRT, and PPARγ pathways. Moreover, several polyphenolic compounds exhibit anti-HCC activity by suppressing tumor cell proliferation and metastasis. This inhibition primarily involves blocking Akt and Wnt signaling, as well as inhibiting the epithelial-mesenchymal transition (EMT). Additionally, clinical trials and nutritional evidence support the notion that certain polyphenols can improve liver disease and associated metabolic disorders. However, further fundamental research and clinical trials are warranted to validate the efficacy of dietary polyphenols.
Collapse
Affiliation(s)
- Qichao Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Feng Wei
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Meilan Huang
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Mengyao Shu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Song
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jianxia Wen
- School of Food and Bioengineering, Xihua University, Chengdu, China
| | - Jundong Wang
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qing Nian
- Department of Blood Transfusion, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinhao Zeng
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Department of Gastroenterology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
25
|
Morshedzadeh N, Ramezani Ahmadi A, Behrouz V, Mir E. A narrative review on the role of hesperidin on metabolic parameters, liver enzymes, and inflammatory markers in nonalcoholic fatty liver disease. Food Sci Nutr 2023; 11:7523-7533. [PMID: 38107097 PMCID: PMC10724641 DOI: 10.1002/fsn3.3729] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/04/2023] [Accepted: 09/14/2023] [Indexed: 12/19/2023] Open
Abstract
Insulin resistance, oxidative stress, hyperlipidemia, and inflammation play main roles in the development of nonalcoholic fatty liver disease (NAFLD). Some studies have reported that hesperidin can reduce hyperglycemia and hyperlipidemia by inhibiting inflammatory pathways. In the current study, our purpose was to evaluate whether it can influence the primary parameters in NAFLD and improve the treatment effectiveness for future trials. Various studies have found that hesperidin involves multiple signaling pathways such as cell proliferation, lipid and glucose metabolism, insulin resistance, oxidative stress, and inflammation, which can potentially affect NAFLD development and prognosis. Recent findings indicate that hesperidin also regulates key enzymes and may affect the severity of liver fibrosis. Hesperidin inhibits reactive oxygen species production that potentially interferes with the activation of transcription factors like nuclear factor-κB. Appropriate adherence to hesperidin may be a promising approach to modulate inflammatory pathways, metabolic indices, hepatic steatosis, and liver injury.
Collapse
Affiliation(s)
- Nava Morshedzadeh
- Student Research CommitteeKerman University of Medical SciencesKermanIran
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | | | - Vahideh Behrouz
- Department of Nutrition, Faculty of Public HealthKerman University of Medical SciencesKermanIran
| | - Elias Mir
- Student Research CommitteeKerman University of Medical SciencesKermanIran
| |
Collapse
|
26
|
Cui T, Xiao X, Pan Z, Tang K, Zhong Y, Chen Y, Guo J, Duan S, Zhong G, Li T, Li X, Wu X, Lin C, Yang X, Gao Y, Zhang D. Harnessing the Therapeutic Potential of Ginsenoside Rd for Activating SIRT6 in Treating a Mouse Model of Nonalcoholic Fatty Liver Disease. ACS OMEGA 2023; 8:29735-29745. [PMID: 37599957 PMCID: PMC10433470 DOI: 10.1021/acsomega.3c04122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/24/2023] [Indexed: 08/22/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a prevalent global condition and a common precursor to liver cancer, yet there is currently no specific medication available for its treatment. Ginseng, renowned for its medicinal and dietary properties, has been utilized in NAFLD management, although the precise underlying mechanism remains elusive. To investigate the effectiveness of ginsenoside Rd, we employed mouse and cell models to induce NAFLD using high-fat diets, oleic acid, and palmitic acid. We explored and confirmed the specific mechanism of ginsenoside Rd-induced hepatic steatosis through experiments involving mice with a liver-specific knockout of SIRT6, a crucial protein involved in metabolic regulation. Our findings revealed that administration of ginsenoside Rd significantly reduced the inflammatory response, reactive oxygen species (ROS) levels, lipid peroxide levels, and mitochondrial stress induced by oleic acid and palmitic acid in primary hepatocytes, thereby mitigating excessive lipid accumulation. Moreover, ginsenoside Rd administration effectively enhanced the mRNA content of key proteins involved in fatty acid oxidation, with a particular emphasis on SIRT6 and its target proteins. We further validated that ginsenoside Rd directly binds to SIRT6, augmenting its deacetylase activity. Notably, we made a significant observation that the protective effect of ginsenoside Rd against hepatic disorders induced by a fatty diet was almost entirely reversed in mice with a liver-specific SIRT6 knockout. Our findings highlight the potential therapeutic impact of Ginsenoside Rd in NAFLD treatment by activating SIRT6. These results warrant further investigation into the development of Ginsenoside Rd as a promising agent for managing this prevalent liver disease.
Collapse
Affiliation(s)
- Tianqi Cui
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoxia Xiao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Zhisen Pan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Kaijia Tang
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yadi Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Yingjian Chen
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Jingyi Guo
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Siwei Duan
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Guangcheng Zhong
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Tianyao Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiang Li
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiumei Wu
- Emergency
Department of the First Affiliated Hospital of Guangzhou University
of Chinese Medicine, Guangzhou 510006, China
| | - Chuanquan Lin
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Xiaoying Yang
- Jiangsu
Key Laboratory of Immunity and Metabolism, Department of Pathogen
Biology and Immunology, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yong Gao
- Science
and Technology Innovation Center, Guangzhou
University of Chinese Medicine, Guangzhou 510006, China
| | - Dong Zhang
- The
Fourth Clinical Medical College of Guangzhou University of Chinese
Medicine, Shenzhen 518033, China
| |
Collapse
|
27
|
Anastasopoulos NA, Charchanti AV, Barbouti A, Mastoridou EM, Goussia AC, Karampa AD, Christodoulou D, Glantzounis GK. The Role of Oxidative Stress and Cellular Senescence in the Pathogenesis of Metabolic Associated Fatty Liver Disease and Related Hepatocellular Carcinoma. Antioxidants (Basel) 2023; 12:1269. [PMID: 37371999 DOI: 10.3390/antiox12061269] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) represents a worryingly increasing cause of malignancy-related mortality, while Metabolic Associated Fatty Liver Disease (MAFLD) is going to become its most common cause in the next decade. Understanding the complex underlying pathophysiology of MAFLD-related HCC can provide opportunities for successful targeted therapies. Of particular interest in this sequela of hepatopathology is cellular senescence, a complex process characterised by cellular cycle arrest initiated by a variety of endogenous and exogenous cell stressors. A key biological process in establishing and maintaining senescence is oxidative stress, which is present in multiple cellular compartments of steatotic hepatocytes. Oxidative stress-induced cellular senescence can change hepatocyte function and metabolism, and alter, in a paracrine manner, the hepatic microenvironment, enabling disease progression from simple steatosis to inflammation and fibrosis, as well as HCC. The duration of senescence and the cell types it affects can tilt the scale from a tumour-protective self-restricting phenotype to the creator of an oncogenic hepatic milieu. A deeper understanding of the mechanism of the disease can guide the selection of the most appropriate senotherapeutic agent, as well as the optimal timing and cell type targeting for effectively combating HCC.
Collapse
Affiliation(s)
- Nikolaos-Andreas Anastasopoulos
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of General Surgery, Croydon University Hospital, Croydon Health Services NHS Trust, London CR7 7YE, UK
| | - Antonia V Charchanti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Barbouti
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Eleftheria M Mastoridou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anna C Goussia
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Anastasia D Karampa
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Christodoulou
- Department of Gastroenterology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Georgios K Glantzounis
- HPB Unit, Department of Surgery, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
28
|
Machado IF, Miranda RG, Dorta DJ, Rolo AP, Palmeira CM. Targeting Oxidative Stress with Polyphenols to Fight Liver Diseases. Antioxidants (Basel) 2023; 12:1212. [PMID: 37371941 DOI: 10.3390/antiox12061212] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/29/2023] Open
Abstract
Reactive oxygen species (ROS) are important second messengers in many metabolic processes and signaling pathways. Disruption of the balance between ROS generation and antioxidant defenses results in the overproduction of ROS and subsequent oxidative damage to biomolecules and cellular components that disturb cellular function. Oxidative stress contributes to the initiation and progression of many liver pathologies such as ischemia-reperfusion injury (LIRI), non-alcoholic fatty liver disease (NAFLD), and hepatocellular carcinoma (HCC). Therefore, controlling ROS production is an attractive therapeutic strategy in relation to their treatment. In recent years, increasing evidence has supported the therapeutic effects of polyphenols on liver injury via the regulation of ROS levels. In the current review, we summarize the effects of polyphenols, such as quercetin, resveratrol, and curcumin, on oxidative damage during conditions that induce liver injury, such as LIRI, NAFLD, and HCC.
Collapse
Affiliation(s)
- Ivo F Machado
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- IIIUC-Institute of Interdisciplinary Research, University of Coimbra, 3000 Coimbra, Portugal
| | - Raul G Miranda
- School of Pharmaceutical Science of Ribeirão Preto, University of São Paulo, São Paulo 14040, Brazil
| | - Daniel J Dorta
- Department of Chemistry, Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040, Brazil
| | - Anabela P Rolo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| | - Carlos M Palmeira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Center for Innovative Biomedicine and Biotechnology, University of Coimbra, 3000 Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, 3000 Coimbra, Portugal
| |
Collapse
|
29
|
Paoli A, Cerullo G. Investigating the Link between Ketogenic Diet, NAFLD, Mitochondria, and Oxidative Stress: A Narrative Review. Antioxidants (Basel) 2023; 12:antiox12051065. [PMID: 37237931 DOI: 10.3390/antiox12051065] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Together with the global rise in obesity and metabolic syndrome, the prevalence of individuals who suffer from nonalcoholic fatty liver disease (NAFLD) has risen dramatically. NAFLD is currently the most common chronic liver disease and includes a continuum of liver disorders from initial fat accumulation to nonalcoholic steatohepatitis (NASH), considered the more severe forms, which can evolve in, cirrhosis, and hepatocellular carcinoma. Common features of NAFLD includes altered lipid metabolism mainly linked to mitochondrial dysfunction, which, as a vicious cycle, aggravates oxidative stress and promotes inflammation and, as a consequence, the progressive death of hepatocytes and the severe form of NAFLD. A ketogenic diet (KD), i.e., a diet very low in carbohydrates (<30 g/die) that induces "physiological ketosis", has been demonstrated to alleviate oxidative stress and restore mitochondrial function. Based on this, the aim of the present review is to analyze the body of evidence regarding the potential therapeutic role of KD in NAFLD, focusing on the interplay between mitochondria and the liver, the effects of ketosis on oxidative stress pathways, and the impact of KD on liver and mitochondrial function.
Collapse
Affiliation(s)
- Antonio Paoli
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Research Center for High Performance Sport, UCAM Catholic University of Murcia, 30107 Murcia, Spain
| | - Giuseppe Cerullo
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| |
Collapse
|
30
|
Monserrat-Mesquida M, Bouzas C, Mascaró CM, Tejada S, Sureda A. Probiotics as Potential Therapy in the Management of Non-Alcoholic Fatty Liver Disease (NAFLD). FERMENTATION-BASEL 2023; 9:395. [DOI: 10.3390/fermentation9040395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Background: Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease, the prevalence of which has increased over the years. The management of this pathology is not clear, and a specific pharmacological drug that can treat NAFLD is not available. In this sense, efforts are focused on the potential use of compounds with a natural origin that can contribute to reversing hepatic steatosis. Supplementation with probiotics, live microorganisms, is a potential strategy for the management of NAFLD. Methods: In the present review, the available information on the potential therapeutic effects of probiotics in NAFLD, mainly in animal models and in some clinical trials, is summarized. Results: Studies carried out using animal models of NAFLD induced by a high-fat diet have shown the beneficial effects of probiotic supplementation in reducing liver steatosis and normalizing the blood lipid profile and liver enzyme activities. In addition, a decrease in lipogenesis and an increase in lipolysis have been observed, together with a reduction in the pro-oxidative and pro-inflammatory state and a normalization of intestinal dysbiosis. Clinical trials have reported a decrease in the serum transaminases and an improved lipid profile, as well as a reduction in inflammatory markers. Conclusions: In conclusion, probiotic supplementation can be used as a potential therapy for the management of NAFLD.
Collapse
Affiliation(s)
- Margalida Monserrat-Mesquida
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Cristina Bouzas
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Catalina M. Mascaró
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Tejada
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Laboratory of Neurophysiology, Department of Biology, University of the Balearic Islands, 07122 Palma de Mallorca, Spain
| | - Antoni Sureda
- Research Group in Community Nutrition and Oxidative Stress, University of the Balearic Islands—IUNICS, 07122 Palma de Mallorca, Spain
- Health Research Institute of Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
31
|
Liu B, Yin H, Li Y, Mao G, Yang S, Zhang K. Recent Advances in Small Molecular Fluorescence Probes for Fatty Liver Diseases. CHEMOSENSORS 2023; 11:241. [DOI: 10.3390/chemosensors11040241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Fatty liver diseases are a spectrum of liver disorders consisting of the benign fatty liver, which could eventually lead to cirrhosis or even hepatocellular cancer (HCC) without timely treatment. Therefore, early diagnosis is crucial for fatty liver diseases. Liver biopsy is regarded as the gold standard in the diagnosis of fatty liver diseases. However, it is not recommended for routine use due to its invasiveness and complicated operation. Thus, it is urgent to diagnose fatty liver diseases with non-invasive and precise methods. In this regard, fluorescence imaging technology has attracted intensive attention and become a robust non-invasive method for fatty liver visualization, and a series of fluorescent probes are being intensively designed to track the biomarkers in fatty liver. In this brief review, the small molecular fluorescent probes employed in fatty liver are summarized, mainly focusing on the last four years. Moreover, current opportunities and challenges in the development of fluorescent probes for fatty liver will be highlighted.
Collapse
Affiliation(s)
- Bo Liu
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Honghui Yin
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Yaxiong Li
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Guojiang Mao
- Henan Key Laboratory of Organic Functional Molecule and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| | - Sheng Yang
- Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Kai Zhang
- School of Basic Medical Sciences, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
32
|
Li H, Hou Y, Hu J, Li J, Liang Y, Lu Y, Liu X. Dietary naringin supplementation on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during the late laying period. Poult Sci 2023; 102:102605. [PMID: 36940650 PMCID: PMC10033312 DOI: 10.1016/j.psj.2023.102605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
In this study, the effects of naringin on hepatic yolk precursors formation and antioxidant capacity of Three-Yellow breeder hens during late laying period were evaluated. A total of 480 (54-wk-old) Three-Yellow breeder hens were randomly assigned to 4 groups (6 replicates of 20 hens): nonsupplemented control diet (C), and control diet supplemented with 0.1%, 0.2%, and 0.4% of naringin (N1, N2, and N3), respectively. Results showed that dietary supplemented with 0.1%, 0.2%, and 0.4% of naringin for 8 wk promoted the cell proliferation and attenuated the excessive fat accumulation in the liver. Compared with C group, increased concentrations of triglyceride (TG), total cholesterol (T-CHO), high-density lipoprotein cholesterol (HDL-C), and very low-density lipoprotein (VLDL), and decreased contents of low-density lipoprotein cholesterol (LDL-C) were detected in liver, serum and ovarian tissues (P < 0.05). After 8 wk of feeding with naringin (0.1%, 0.2%, and 0.4%), serum estrogen (E2) level, expression levels of proteins and genes of estrogen receptors (ERs) increased significantly (P < 0.05). Meanwhile, naringin treatment regulated expression of genes related to yolk precursors formation (P < 0.05). Furthermore, dietary naringin addition increased the antioxidants, decreased the oxidation products, and up-regulated transcription levels of antioxidant genes in liver tissues (P < 0.05). These results indicated that dietary supplemented with naringin could improve hepatic yolk precursors formation and hepatic antioxidant capacity of Three-Yellow breeder hens during the late laying period. Doses of 0.2% and 0.4% are more effective than dose of 0.1%.
Collapse
Affiliation(s)
- Hu Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuanyuan Hou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jianing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Jie Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yu Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Yangqing Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China
| | - Xingting Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China.
| |
Collapse
|
33
|
He T, Lykov N, Luo X, Wang H, Du Z, Chen Z, Chen S, Zhu L, Zhao Y, Tzeng C. Protective Effects of Lactobacillus gasseri against High-Cholesterol Diet-Induced Fatty Liver and Regulation of Host Gene Expression Profiles. Int J Mol Sci 2023; 24:ijms24032053. [PMID: 36768377 PMCID: PMC9917166 DOI: 10.3390/ijms24032053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023] Open
Abstract
Fatty liver is one of the most pervasive liver diseases worldwide. Probiotics play an important role in the progression of liver disease, but their effects on host regulation are poorly understood. This study investigated the protective effects of lactobacillus gasseri (L. gasseri) against high-cholesterol diet (HCD)-induced fatty liver injury using a zebrafish larvae model. Liver pathology, lipid accumulation, oxidative stress and hepatic inflammation were evaluated to demonstrate the changes in a spectrum of hepatic injury. Moreover, multiple indexes on host gene expression profiles were comprehensively characterized by RNA screening. The results showed that treatment with L. gasseri ameliorated HCD-induced morphological and histological alterations, lipid regulations, oxidative stress and macrophage aggregation in the liver of zebrafish larvae. Furthermore, the enrichment of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway revealed that the core pathways of L. gasseri regulation were interleukin-17 (IL-17) signaling, phosphoinositide 3-kinase (PI3K)-AKT signaling pathway, the regulation of lipolysis and adipocytes and fatty acid elongation and estrogen signaling. The genes at key junction nodes, hsp90aa1.1, kyat3, hsd17b7, irs2a, myl9b, ptgs2b, cdk21 and papss2a were significantly regulated by L. gasseri administration. To conclude, the current research extends our understanding of the protective effects of L. gasseri against fatty liver and provides potential therapeutic options for fatty liver treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ye Zhao
- Correspondence: (Y.Z.); (C.T.)
| | | |
Collapse
|
34
|
Morales V, González A, Cabello-Verrugio C. Upregulation of CCL5/RANTES Gene Expression in the Diaphragm of Mice with Cholestatic Liver Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1408:201-218. [PMID: 37093429 DOI: 10.1007/978-3-031-26163-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Chronic liver diseases are a group of pathologies affecting the liver with high prevalence worldwide. Among them, cholestatic chronic liver diseases (CCLD) are characterized by alterations in liver function and increased plasma bile acids. Secondary to liver disease, under cholestasis, is developed sarcopenia, a skeletal muscle dysfunction with decreased muscle mass, strength, and physical function. CCL5/RANTES is a chemokine involved in the immune and inflammatory response. Indeed, CCL5 is a myokine because it is produced by skeletal muscle. Several studies show that bile acids induce CCL5/RANTES expression in liver cells. However, it is unknown if the expression of CCL5/RANTES is changed in the skeletal muscle of mice with cholestatic liver disease. We used a murine model of cholestasis-induced sarcopenia by intake of hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC diet), in which we detected the mRNA levels for ccl5. We determined that mice fed the DDC diet presented high levels of serum bile acids and developed typical features of sarcopenia. Under these conditions, we detected the ccl5 gene expression in diaphragm muscle showing elevated mRNA levels compared to mice fed with a standard diet (chow diet). Our results collectively suggest an increased ccl5 gene expression in the diaphragm muscle concomitantly with elevated serum bile acids and the development of sarcopenia.
Collapse
Affiliation(s)
- Vania Morales
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Andrea González
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile
| | - Claudio Cabello-Verrugio
- Laboratory of Muscle Pathology, Fragility and Aging, Faculty of Life Sciences, Universidad Andres Bello, Santiago, 8370146, Chile.
- Millennium Institute on Immunology and Immunotherapy, Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
35
|
Fatty Liver Disease-Alcoholic and Non-Alcoholic: Similar but Different. Int J Mol Sci 2022; 23:ijms232416226. [PMID: 36555867 PMCID: PMC9783455 DOI: 10.3390/ijms232416226] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/12/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
In alcohol-induced liver disease (ALD) and in non-alcoholic fatty liver disease (NAFLD), there are abnormal accumulations of fat in the liver. This phenomenon may be related to excessive alcohol consumption, as well as the combination of alcohol consumption and medications. There is an evolution from simple steatosis to steatohepatitis, fibrosis and cirrhosis leading to hepatocellular carcinoma (HCC). Hepatic pathology is very similar regarding non-alcoholic fatty liver disease (NAFLD) and ALD. Initially, there is lipid accumulation in parenchyma and progression to lobular inflammation. The morphological changes in the liver mitochondria, perivenular and perisinusoidal fibrosis, and hepatocellular ballooning, apoptosis and necrosis and accumulation of fibrosis may lead to the development of cirrhosis and HCC. Medical history of ethanol consumption, laboratory markers of chronic ethanol intake, AST/ALT ratio on the one hand and features of the metabolic syndrome on the other hand, may help in estimating the contribution of alcohol intake and the metabolic syndrome, respectively, to liver steatosis.
Collapse
|
36
|
Trehalose prevents glyphosate-induced hepatic steatosis in roosters by activating the Nrf2 pathway and inhibiting NLRP3 inflammasome activation. Vet Res Commun 2022; 47:651-661. [PMID: 36261742 DOI: 10.1007/s11259-022-10021-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/13/2022] [Indexed: 10/24/2022]
Abstract
Glyphosate (Gly) is a globally spread herbicide that can cause toxic injuries to hepatocytes. Dietary trehalose (Tre) exerts cytoprotective effect in numerous liver diseases through anti-oxidant and anti-inflammatory properties. However, it is yet to be investigated whether Tre affords protection against Gly-induced hepatotoxicity. To evaluate the negative effect of Gly in liver and assess the possible protective role of Tre, sixty Hy-line Brown roosters were allocated into three groups: the first group presented the control with a normal diet, the second group fed normal feed containing 200mg/kg Gly, and the third group fed normal feed containing 200 mg/kg Gly and 5 g/kg Tre. Plasma and liver tissues were collected and analyzed after 120 days. Firstly, Gly-elevated serum levels of hepatic injury markers and liver histopathological damages were evidently alleviated by Tre administration. Also, Tre normalized Gly-altered serum and hepatic lipid profiles and Oil Red O-stained lipid levels, suggesting the improvement of hepatic steatosis. The severely accumulated malondialdehyde levels and impaired antioxidant status in Gly-exposed roosters were markedly improved by administration with Tre. Simultaneously, Gly-inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) level and consequent reduced levels of Nrf2-downstream targets in liver were markedly normalized by Tre treatment. Additionally, Tre treatment evidently mitigated Gly-induced inflammasome response via inhibiting NLRP3 inflammasome activation. Overall, these observations provide novel insights that the protective action of Tre against Gly-induced hepatic steatosis is attributed to activation of Nrf2 pathway and inhibition of NLRP3 inflammasome activation.
Collapse
|
37
|
Age-Related NAFLD: The Use of Probiotics as a Supportive Therapeutic Intervention. Cells 2022; 11:cells11182827. [PMID: 36139402 PMCID: PMC9497179 DOI: 10.3390/cells11182827] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/08/2022] [Indexed: 11/24/2022] Open
Abstract
Human aging, a natural process characterized by structural and physiological changes, leads to alterations of homeostatic mechanisms, decline of biological functions, and subsequently, the organism becomes vulnerable to external stress or damage. In fact, the elderly population is prone to develop diseases due to deterioration of physiological and biological systems. With aging, the production of reactive oxygen species (ROS) increases, and this causes lipid, protein, and DNA damage, leading to cellular dysfunction and altered cellular processes. Indeed, oxidative stress plays a key role in the pathogenesis of several chronic disorders, including hepatic diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD, the most common liver disorder in the Western world, is characterized by intrahepatic lipid accumulation; is highly prevalent in the aging population; and is closely associated with obesity, insulin resistance, hypertension, and dyslipidemia. Among the risk factors involved in the pathogenesis of NAFLD, the dysbiotic gut microbiota plays an essential role, leading to low-grade chronic inflammation, oxidative stress, and production of various toxic metabolites. The intestinal microbiota is a dynamic ecosystem of microbes involved in the maintenance of physiological homeostasis; the alteration of its composition and function, during aging, is implicated in different liver diseases. Therefore, gut microbiota restoration might be a complementary approach for treating NAFLD. The administration of probiotics, which can relieve oxidative stress and elicit several anti-aging properties, could be a strategy to modify the composition and restore a healthy gut microbiota. Indeed, probiotics could represent a valid supplement to prevent and/or help treating some diseases, such as NAFLD, thus improving the already available pharmacological intervention. Moreover, in aging, intervention of prebiotics and fecal microbiota transplantation, as well as probiotics, will provide novel therapeutic approaches. However, the relevant research is limited, and several scientific research works need to be done in the near future to confirm their efficacy.
Collapse
|
38
|
Ma C, Han L, Zhu Z, Heng Pang C, Pan G. Mineral metabolism and ferroptosis in non-alcoholic fatty liver diseases. Biochem Pharmacol 2022; 205:115242. [PMID: 36084708 DOI: 10.1016/j.bcp.2022.115242] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/02/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) has become the most prevalent chronic liver disease worldwide. Minerals including iron, copper, zinc, and selenium, fulfil an essential role in various biochemical processes. Moreover, the identification of ferroptosis and cuproptosis further underscores the importance of intracellular mineral homeostasis. However, perturbation of minerals has been frequently reported in patients with NAFLD and related diseases. Interestingly, studies have attempted to establish an association between mineral disorders and NAFLD pathological features, including oxidative stress, mitochondrial dysfunction, inflammatory response, and fibrogenesis. In this review, we aim to provide an overview of the current understanding of mineral metabolism (i.e., absorption, utilization, and transport) and mineral interactions in the pathogenesis of NAFLD. More importantly, this review highlights potential therapeutic strategies, challenges, future directions for targeting mineral metabolism in the treatment of NAFLD.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China; Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Han
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheying Zhu
- Division of Molecular Therapeutics & Formulation, School of Pharmacy, The University of Nottingham, University Park Campus, Nottingham NG7 2RD, UK.
| | - Cheng Heng Pang
- Department of Chemical and Environmental Engineering, University of Nottingham Ningbo China, Ningbo 315100, China.
| | - Guoyu Pan
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
39
|
Yang Y, Liu X, Chen H, Wang P, Yao S, Zhou B, Yin R, Li C, Wu C, Yang X, Yu M. HPS protects the liver against steatosis, cell death, inflammation, and fibrosis in mice with steatohepatitis. FEBS J 2022; 289:5279-5304. [PMID: 35285180 DOI: 10.1111/febs.16430] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 12/14/2022]
Abstract
Hepassocin (HPS) is a hepatokine associated with metabolic regulation and development of non-alcoholic steatohepatitis (NASH). However, previous reports on HPS are controversial and its true function is not yet understood. Here, we demonstrated that hepatic HPS expression levels were upregulated in short-term feeding and downregulated in long-term feeding in high-fat diet (HFD)- and methionine- and choline-deficient (MCD) diet-fed mice, as well as in genetically obese (ob/ob) mice. HFD- and MCD-induced hepatic steatosis, inflammation, apoptosis, and fibrosis were more pronounced in HPS knockout mice than in the wild-type mice. Moreover, HPS depletion aggravated HFD-induced insulin resistance. By contrast, HPS administration improved MCD- or HFD-induced liver phenotypes and insulin resistance in HPS knockout and wild-type mice. Mechanistic studies revealed that MCD-induced hepatic oxidative stress was significantly increased by HPS deficiency and could be attenuated by HPS administration. Furthermore, palmitic acid-induced lipid accumulation and oxidative stress were exclusively enhanced in HPS knockout hepatocytes and diminished by HPS cotreatment. These data suggest that HPS ameliorates NASH in mice, at least in part, by inhibiting the oxidative stress. HPS expression levels are downregulated in human fatty liver tissues, suggesting that it may play an important protective role in NASH. Collectively, our findings provide clear genetic evidence that HPS has beneficial effects on the development of steatohepatitis in mice and suggest that upregulating HPS signaling may represent an effective treatment strategy for NASH.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China
| | - Xian Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Hui Chen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Pengjun Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Songhui Yao
- Institute of Life Sciences, HeBei University, Baoding, China
| | - Bin Zhou
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Ronghua Yin
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Changyan Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Chutse Wu
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, China.,Beijing Institute of Radiation Medicine, China
| | - Xiaoming Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China
| | - Miao Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Institute of Lifeomics, Beijing, China.,Institute of Life Sciences, HeBei University, Baoding, China
| |
Collapse
|
40
|
Increased Adherence to the Mediterranean Diet after Lifestyle Intervention Improves Oxidative and Inflammatory Status in Patients with Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11081440. [PMID: 35892642 PMCID: PMC9332159 DOI: 10.3390/antiox11081440] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/13/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background: A Mediterranean diet (MedDiet) is recommended as a therapy for non-alcoholic fatty liver disease (NAFLD) because there is no specific pharmacological treatment for this disease. Objective: To assess the relationship between the adherence to the Mediterranean diet and the intrahepatic fat content (IFC), levels of oxidative stress, and inflammation biomarkers after a 6-month lifestyle intervention in NAFLD patients. Methods: Patients diagnosed with NAFLD (n = 60 adults; 40–60 years old) living in the Balearic Islands, Spain, were classified into two groups, according to the adherence to the MedDiet after 6 months of lifestyle intervention. Anthropometry, blood pressure, IFC, maximal oxygen uptake, and pro/antioxidant and inflammatory biomarkers were measured in plasma and in PBMCs before and after the intervention. Results: Reductions in weight, body mass index, IFC, blood pressure levels, circulating glucose, glycosylated hemoglobin, and markers of liver damage—aspartate aminotransferase (AST), alanine aminotransferase (ALT), gamma-glutamyl transferase (GGT), and cytokeratin 18 (CK-18)—were observed after the intervention. The highest reductions were observed in the group with the best adherence to the MedDiet. A significant improvement in cardiorespiratory fitness was also observed in the group with a higher adherence. The activities of catalase in plasma and catalase and superoxide dismutase in blood mononuclear cells increased only in the group with a higher adherence, as well as the catalase gene expression in the blood mononuclear cells. The plasma levels of malondialdehyde and myeloperoxidase decreased, and resolvin-D1 increased in both groups after the intervention, whereas interleukin-6 levels decreased only in the group with a higher adherence to the MedDiet. Conclusions: A greater adherence to the MedDiet is related to greater improvements in IFC, cardiorespiratory fitness, and pro-oxidative and proinflammatory status in NAFLD patients after a 6-month nutritional intervention based on the MedDiet.
Collapse
|
41
|
Zhou DD, Mao QQ, Li BY, Saimaiti A, Huang SY, Xiong RG, Shang A, Luo M, Li HY, Gan RY, Li HB, Li S. Effects of Different Green Teas on Obesity and Non-Alcoholic Fatty Liver Disease Induced by a High-Fat Diet in Mice. Front Nutr 2022; 9:929210. [PMID: 35811941 PMCID: PMC9263825 DOI: 10.3389/fnut.2022.929210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) and obesity are serious public health problems. Green tea is widely consumed in the world and different green teas could possess different bioactivities. In this study, the effects of 10 selected green teas on obesity and NAFLD were evaluated and compared. The mice fed with a high-fat diet were intervened with green tea extract (200 mg/kg body weight) for 15 weeks. Most of these teas were first evaluated for their effects on obesity and NAFLD. The results showed that Selenium-Enriched Chaoqing Green Tea and Jieyang Chaoqing Tea showed the most prominent inhibition of obesity and body weight gains of mice in these two tea intervention groups and model groups were 5.3, 5.5, and 13.7 g, respectively. In addition, Jieyang Chaoqing Tea, Taiping Houkui Tea, and Selenium-Enriched Chaoqing Green Tea exerted the most notable effect on NAFLD, which was attributed to decreasing body weight, and lipid content and ameliorating oxidative stress. Furthermore, 13 phytochemicals were determined in these teas by high-performance liquid chromatography and the correlation analysis found that epigallocatechin gallate, gallocatechin, and epigallocatechin might contribute to the decrease of hepatic weight, while epicatechin might reduce oxidative stress. In general, several green teas could prevent the development of obesity and NAFLD and could be developed into functional foods. This study was also helpful for the public to select appropriate tea to prevent obesity and NAFLD.
Collapse
Affiliation(s)
- Dan-Dan Zhou
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Qian-Qian Mao
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Bang-Yan Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Adila Saimaiti
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Si-Yu Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ruo-Gu Xiong
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ao Shang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Min Luo
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Hang-Yu Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Ren-You Gan
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, China
| | - Sha Li
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
42
|
Nascè A, Gariani K, Jornayvaz FR, Szanto I. NADPH Oxidases Connecting Fatty Liver Disease, Insulin Resistance and Type 2 Diabetes: Current Knowledge and Therapeutic Outlook. Antioxidants (Basel) 2022; 11:antiox11061131. [PMID: 35740032 PMCID: PMC9219746 DOI: 10.3390/antiox11061131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/30/2022] [Accepted: 06/03/2022] [Indexed: 12/15/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD), characterized by ectopic fat accumulation in hepatocytes, is closely linked to insulin resistance and is the most frequent complication of type 2 diabetes mellitus (T2DM). One of the features connecting NAFLD, insulin resistance and T2DM is cellular oxidative stress. Oxidative stress refers to a redox imbalance due to an inequity between the capacity of production and the elimination of reactive oxygen species (ROS). One of the major cellular ROS sources is NADPH oxidase enzymes (NOX-es). In physiological conditions, NOX-es produce ROS purposefully in a timely and spatially regulated manner and are crucial regulators of various cellular events linked to metabolism, receptor signal transmission, proliferation and apoptosis. In contrast, dysregulated NOX-derived ROS production is related to the onset of diverse pathologies. This review provides a synopsis of current knowledge concerning NOX enzymes as connective elements between NAFLD, insulin resistance and T2DM and weighs their potential relevance as pharmacological targets to alleviate fatty liver disease.
Collapse
Affiliation(s)
- Alberto Nascè
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
| | - Karim Gariani
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
| | - François R. Jornayvaz
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| | - Ildiko Szanto
- Service of Endocrinology, Diabetes, Nutrition and Patient Therapeutic Education, Geneva University Hospitals, Rue Gabrielle-Perret-Gentil 4, 1205 Geneva, Switzerland; (A.N.); (K.G.)
- Department of Medicine, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland
- Diabetes Center of the Faculty of Medicine, University of Geneva Medical School, 1211 Geneva, Switzerland
- Correspondence: (F.R.J.); (I.S.)
| |
Collapse
|
43
|
Pedroza-Diaz J, Arroyave-Ospina JC, Serna Salas S, Moshage H. Modulation of Oxidative Stress-Induced Senescence during Non-Alcoholic Fatty Liver Disease. Antioxidants (Basel) 2022; 11:antiox11050975. [PMID: 35624839 PMCID: PMC9137746 DOI: 10.3390/antiox11050975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/18/2022] [Accepted: 05/05/2022] [Indexed: 01/10/2023] Open
Abstract
Non-alcoholic fatty liver disease is characterized by disturbed lipid metabolism and increased oxidative stress. These conditions lead to the activation of different cellular response mechanisms, including senescence. Cellular senescence constitutes an important response to injury in the liver. Recent findings show that chronic oxidative stress can induce senescence, and this might be a driving mechanism for NAFLD progression, aggravating the disturbance of lipid metabolism, organelle dysfunction, pro-inflammatory response and hepatocellular damage. In this context, the modulation of cellular senescence can be beneficial to ameliorate oxidative stress-related damage during NAFLD progression. This review focuses on the role of oxidative stress and senescence in the mechanisms leading to NAFLD and discusses the possibilities to modulate senescence as a therapeutic strategy in the treatment of NAFLD.
Collapse
Affiliation(s)
- Johanna Pedroza-Diaz
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Grupo de Investigación e Innovación Biomédica GI2B, Facultad de Ciencias Exactas y Aplicadas, Instituto Tecnológico Metropolitano, Medellín 050536, Colombia
| | - Johanna C. Arroyave-Ospina
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
- Correspondence:
| | - Sandra Serna Salas
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| | - Han Moshage
- University Medical Center Groningen, Department of Gastroenterology and Hepatology, University of Groningen, 9712 CP Groningen, The Netherlands; (J.P.-D.); (S.S.S.); (H.M.)
| |
Collapse
|
44
|
Hibiscus sabdariffa extract improves hepatic steatosis, partially through IRS-1/Akt and Nrf2 signaling pathways in rats fed a high fat diet. Sci Rep 2022; 12:7022. [PMID: 35487948 PMCID: PMC9054782 DOI: 10.1038/s41598-022-11027-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 04/18/2022] [Indexed: 12/11/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become a major world-wide health problem and is characterized by lipid accumulation in the liver induced by high fat diet (HFD) consumption. It is usually associated with inflammation, oxidative stress, and insulin resistance. Roselle extract (Hibiscus sabdariffa) is an herb which is used in traditional medicine. However, further study is necessary to represent the mechanism of NAFLD and find new preventive strategies. This study aims to investigate the protective effects of roselle extract on NAFLD rat models. Male Sprague-Dawley rats (n = 35) were divided into 5 groups, control, HFD, HFD + Simvastatin (HFD + SIM), HFD + 250 mg/kg BW, and HFD + 500 mg/kg BW of roselle extract (HFD + R250 and HFD + R500, respectively). The results showed that roselle extract reduced hepatic lipid contents, de novo lipogenesis enzymes, microsomal triglyceride transfer protein, inflammatory cytokines, malondialdehyde, and increased antioxidant properties, transporter related with lipoprotein uptake, and insulin signal proteins. Comparing to SIM, the HFD + R500 group exhibited the greater benefit in terms of anti-hepatic steatosis, antioxidant properties, and an ability to improve insulin resistance. This study demonstrates that roselle extract improved antioxidant properties and attenuated hepatic steatosis, liver inflammation, oxidative stress, and insulin resistance in HFD-induced NAFLD in rats, which could be used for NAFLD prevention.
Collapse
|
45
|
Arora M, Kutinová Canová N, Farghali H. mTOR as an eligible molecular target for possible pharmacological treatment of nonalcoholic steatohepatitis. Eur J Pharmacol 2022; 921:174857. [PMID: 35219732 DOI: 10.1016/j.ejphar.2022.174857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 02/07/2022] [Accepted: 02/22/2022] [Indexed: 12/14/2022]
|
46
|
Du T, Fang Q, Zhang Z, Zhu C, Xu R, Chen G, Wang Y. Lentinan Protects against Nonalcoholic Fatty Liver Disease by Reducing Oxidative Stress and Apoptosis via the PPARα Pathway. Metabolites 2022; 12:metabo12010055. [PMID: 35050176 PMCID: PMC8780611 DOI: 10.3390/metabo12010055] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/02/2022] [Accepted: 01/05/2022] [Indexed: 02/07/2023] Open
Abstract
Lentinan (LNT), a type of polysaccharide derived from Lentinus edodes, has manifested protective effects during liver injury and hepatocellular carcinoma, but little is known about its effects on nonalcoholic fatty liver disease (NAFLD). This study aimed to investigate whether LNT can affect the progression of NAFLD and the associated mechanisms. C57BL/6J mice were fed a normal chow diet or a high-fat diet (HFD) with or without LNT (6 mg/kg/d). AML12 cells were exposed to 200 μM palmitate acid (PA) with or without LNT (5 μg/mL). After 21 wk of the high-fat diet, LNT significantly decreased plasma triglyceride levels and liver lipid accumulation, reduced excessive reactive oxygen species production, and subsequently attenuated hepatic apoptosis in NAFLD mice. These effects were associated with increased PPARα levels, a decreased Bax/Bcl-2 ratio, and enhancement of the antioxidant defense system in vivo. Similar effects were also observed in cultured cells. More importantly, these protective effects of LNT on palmitate acid-treated AML12 cells were almost abolished by PPARα knockdown. In conclusion, this study demonstrates that LNT may ameliorate hepatic steatosis and decrease oxidative stress and apoptosis by activating the PPARα pathway and is a potential drug target for NAFLD.
Collapse
Affiliation(s)
- Tingyi Du
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Qin Fang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Zhihao Zhang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Chuanmeng Zhu
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
| | - Renfan Xu
- Department of Medical Ultrasound, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Guangzhi Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| | - Yan Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (T.D.); (Q.F.); (Z.Z.); (C.Z.)
- Correspondence: (G.C.); (Y.W.); Tel./Fax: +86-27-6937-8422 (G.C. & Y.W.)
| |
Collapse
|
47
|
Non-Alcoholic Steatohepatitis (NASH) and Organokines: What Is Now and What Will Be in the Future. Int J Mol Sci 2022; 23:ijms23010498. [PMID: 35008925 PMCID: PMC8745668 DOI: 10.3390/ijms23010498] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 02/05/2023] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is characterized by steatosis, lobular inflammation, and enlargement of the diameter of hepatocytes (ballooning hepatocytes), with or without fibrosis. It affects 20% of patients with non-alcoholic fatty liver disease (NAFLD). Due to liver dysfunction and the numerous metabolic changes that commonly accompany the condition (obesity, insulin resistance, type 2 diabetes, and metabolic syndrome), the secretion of organokines is modified, which may contribute to the pathogenesis or progression of the disease. In this sense, this study aimed to perform a review of the role of organokines in NASH. Thus, by combining descriptors such as NASH, organokines, oxidative stress, inflammation, insulin resistance, and dyslipidemia, a search was carried out in the EMBASE, MEDLINE-PubMed, and Cochrane databases of articles published in the last ten years. Insulin resistance, inflammation and mitochondrial dysfunction, fructose, and intestinal microbiota were factors identified as participating in the genesis and progression of NASH. Changes in the pattern of organokines secretion (adipokines, myokines, hepatokines, and osteokines) directly or indirectly contribute to aggravating the condition or compromise homeostasis. Thus, further studies involving skeletal muscle, adipose, bone, and liver tissue as endocrine organs are essential to better understand the modulation of organokines involved in the pathogenesis of NASH to advance in the treatment of this disease.
Collapse
|
48
|
Yang XD, Chen Z, Ye L, Chen J, Yang YY. Esculin protects against methionine choline-deficient diet-induced non-alcoholic steatohepatitis by regulating the Sirt1/NF- κB p65 pathway. PHARMACEUTICAL BIOLOGY 2021; 59:922-932. [PMID: 34243681 PMCID: PMC8274538 DOI: 10.1080/13880209.2021.1945112] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 05/10/2021] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
CONTEXT Esculin, an active coumarin compound, has been demonstrated to exert anti-inflammatory effects. However, its potential role in non-alcoholic steatohepatitis (NASH) remains unclear. OBJECTIVE This study explored the hepatoprotective effect and the molecular mechanism of esculin in methionine choline-deficient (MCD) diet-induced NASH. MATERIALS AND METHODS Fifty C57BL/6J mice were divided into five groups: control, model, low dosage esculin (oral, 20 mg/kg), high dosage esculin (oral, 40 mg/kg), and silybin (oral, 105 mg/kg). All animals were fed a MCD diet, except those in the control group (control diet), for 6 weeks. RESULTS Esculin (20 and 40 mg/kg) inhibited MCD diet-induced hepatic lipid content (triglyceride: 16.95 ± 0.67 and 14.85 ± 0.78 vs. 21.21 ± 1.13 mg/g; total cholesterol: 5.10 ± 0.34 and 4.08 ± 0.47 vs. 7.31 ± 0.58 mg/g), fibrosis, and inflammation (ALT: 379.61 ± 40.30 and 312.72 ± 21.45 vs. 559.51 ± 37.01 U/L; AST: 428.22 ± 34.29 and 328.23 ± 23.21 vs. 579.36 ± 31.93 U/L). In vitro, esculin reduced tumour necrosis factor-α, interleukin-6, fibronectin, and collagen 4A1 levels, but had no effect on lipid levels in HepG2 cells induced by free fatty acid. Esculin increased Sirt1 expression levels and decreased NF-κB acetylation levels in vivo and in vitro. Interfering with Sirt1 expression attenuated the beneficial effect of esculin on inflammatory and fibrotic factor production in HepG2 cells. CONCLUSIONS These findings demonstrate that esculin ameliorates MCD diet-induced NASH by regulating the Sirt1/ac-NF-κB signalling pathway. Esculin could thus be employed as a therapy for NASH.
Collapse
Affiliation(s)
- Xi-Ding Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Geriatrics, The Third Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ling Ye
- Department of Geriatrics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Jing Chen
- Department of Pharmacology, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan, China
| | - Yong-Yu Yang
- Department of Pharmacy, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Provincial Engineering Research Central of Translational Medical and Innovative Drug, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
49
|
Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J Hepatol 2021; 13. [PMID: 34904026 PMCID: PMC8637675 DOI: 10.4254/wjh.v13.i11.1494&set/a 878138854+814606438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Fatty liver has been present in the lives of patients and physicians for almost two centuries. Vast knowledge has been generated regarding its etiology and consequences, although a long path seeking novel and innovative diagnostic biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics have emerged as potential noninvasive resources for NAFLD diagnosis. In contrast, metabolomics has been able to distinguish between NAFLD and NASH, even detecting degrees of fibrosis. On the other hand, genetic and epigenetic markers have been useful in monitoring disease progression, eventually functioning as target therapies. Other markers involved in immune dysregulation, oxidative stress, and inflammation are involved in the instauration and evolution of the disease. Finally, the fascinating gut microbiome is significantly involved in NAFLD and NASH. This review presents state-of-the-art biomarkers related to NAFLD and NASH and new promises that could eventually be positioned as diagnostic resources for this disease. As is evident, despite great advances in studying these biomarkers, there is still a long path before they translate into clinical benefits.
Collapse
|
50
|
Castillo-Castro C, Martagón-Rosado AJ, Ortiz-Lopez R, Garrido-Treviño LF, Villegas-Albo M, Bosques-Padilla FJ. Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J Hepatol 2021; 13:1494-1511. [PMID: 34904026 PMCID: PMC8637675 DOI: 10.4254/wjh.v13.i11.1494] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 06/06/2021] [Accepted: 10/14/2021] [Indexed: 02/06/2023] Open
Abstract
Fatty liver has been present in the lives of patients and physicians for almost two centuries. Vast knowledge has been generated regarding its etiology and consequences, although a long path seeking novel and innovative diagnostic biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics have emerged as potential noninvasive resources for NAFLD diagnosis. In contrast, metabolomics has been able to distinguish between NAFLD and NASH, even detecting degrees of fibrosis. On the other hand, genetic and epigenetic markers have been useful in monitoring disease progression, eventually functioning as target therapies. Other markers involved in immune dysregulation, oxidative stress, and inflammation are involved in the instauration and evolution of the disease. Finally, the fascinating gut microbiome is significantly involved in NAFLD and NASH. This review presents state-of-the-art biomarkers related to NAFLD and NASH and new promises that could eventually be positioned as diagnostic resources for this disease. As is evident, despite great advances in studying these biomarkers, there is still a long path before they translate into clinical benefits.
Collapse
Affiliation(s)
| | - Alexandro José Martagón-Rosado
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
- Unidad de Investigación de Enfermedades Metabólicas, Instituto Nacional de Ciencias Médicas y Nutrición, Ciudad de México 14080, Mexico
| | - Rocio Ortiz-Lopez
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | | | - Melissa Villegas-Albo
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
| | - Francisco Javier Bosques-Padilla
- Tecnológico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Monterrey 64710, Mexico
- Centro Regional para el Estudio de las Enfermedades Digestivas, Servicio de Gastroenterología, Facultad de Medicina y Hospital Universitario Dr. José Eleuterio González, Universidad Autónoma de Nuevo León, Monterrey 64460, Mexico
| |
Collapse
|