1
|
Chen S, Han C, Wang X, Zhang Q, Yang X. Alantolactone improves cognitive impairment in rats with Porphyromonas gingivalis infection by inhibiting neuroinflammation, oxidative stress, and reducing Aβ levels. Brain Res 2024; 1845:149203. [PMID: 39208968 DOI: 10.1016/j.brainres.2024.149203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/20/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
Neuroinflammation caused by the chronic periodontal pathogen Porphyromonas gingivalis is growing regarded as as a key factor in the pathogenesis of Alzheimer's disease (AD). Alantolactone (AL), a sesquiterpene lactone isolated from the root of Inula racemosa Hook. f, has been proven to provide various neuroprotective effects. However, whether AL can improve cognitive impairment caused by P. gingivalis infection remains unclear. In this research, a rat model of P. gingivalis infection was used to examine the neuroprotective benefits of AL. The results revealed that 6 weeks of AL treatment (50 and 100 mg/kg) shortened escape latency and increased the number of crossings over the platform location and time spent in the target quadrant of P. gingivalis-infected rats in the Morris water maze experiment. By activating the Nrf2/HO-1 pathway, AL suppressed malondialdehyde (MDA) levels and simultaneously increased the activity of total superoxide dismutase (T-SOD). Furthermore, AL lowered the presence of IL-6, IL-1β, and TNFα in the hippocampal and cortical tissues of P. gingivalis-infected rats by inhibiting astrocyte and microglial activation and NF-κB phosphorylation. AL also significantly reduced Aβ levels in the cortical and hippocampus tissues of rats infected with P. gingivalis. In conclusion, AL improved cognitive impairment in P. gingivalis-infected rats by inhibiting neuroinflammation, reducing Aβ1-42 level, and exerting antioxidative stress effects.
Collapse
Affiliation(s)
| | - Cheng Han
- Qinghai University Graduate School, Xining, China
| | - XinHao Wang
- Qinghai University Graduate School, Xining, China
| | - QingXin Zhang
- Department of Magnetic Resonance, Qinghai Provincial People's Hospital, Xining 810000, China.
| | - XiaoLi Yang
- Department of Neurology, Qinghai Provincial People's Hospital, Xining 810000, China.
| |
Collapse
|
2
|
Wang X, Zhang S, Li Y, Zhang Y. The regulation of miRNAs using curcumin and other polyphenols during the prevention and treatment of Alzheimer's disease. Hum Mol Genet 2024:ddae154. [PMID: 39561994 DOI: 10.1093/hmg/ddae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/21/2024] [Accepted: 10/29/2024] [Indexed: 11/21/2024] Open
Abstract
Alzheimer's disease (AD), a prevalent neurodegenerative disorder, predominantly affects individuals over the age of 65 and poses significant challenges in terms of effective management and treatment. The disease's pathogenesis involves complex molecular pathways including misfolded proteins accumulation, neuroinflammation, and synaptic dysfunction. Recent insights have highlighted the role of microRNAs (miRNAs) as critical regulators within these pathways, where they influence gene expression and contribute to the pathophysiological landscape of AD. Notably, emerging research has demonstrated that polyphenols, including curcumin, might modulate miRNA activity, thus offering a novel approach to mitigate AD symptoms and progression. This review explores the potential mechanisms through which polyphenols regulate miRNA expression and activity, specifically focusing on autophagy enhancement and inflammation reduction in the context of AD. We provide a detailed examination of key studies linking miRNA dysregulation to AD pathogenesis and discuss how polyphenols might correct these aberrations. The findings presented here underscore the therapeutic potential of polyphenols in AD treatment via miRNA modulation, pointing to new directions in disease management strategies and highlighting the need for targeted research into miRNA-based interventions.
Collapse
Affiliation(s)
- XiYun Wang
- Department of Neurology, Tiantai People's Hospital of Zhejiang Province, Tiantai Branch of Zhejiang Provincial People's Hospital, Hangzhou Medical College, Taizhou, Zhejiang, China
| | - Sale Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Ying Li
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| | - Yu Zhang
- Medical College, Xi'an Peihua University, Xi'an, Shaanxi 710125, China
| |
Collapse
|
3
|
Wheeler HB, Madrigal AA, Chaim IA. Mapping the future of oxidative RNA damage in neurodegeneration: Rethinking the status quo with new tools. Proc Natl Acad Sci U S A 2024; 121:e2317860121. [PMID: 39495912 PMCID: PMC11572933 DOI: 10.1073/pnas.2317860121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
Over two decades ago, increased levels of RNA oxidation were reported in postmortem patients with ALS, Alzheimer's, Parkinson's, and other neurodegenerative diseases. Interestingly, not all cell types and transcripts were equally oxidized. Furthermore, it was shown that RNA oxidation is an early phenomenon, altogether indicating that oxidative RNA damage could be a driver, and not a consequence, of disease. Despite all these exciting observations, the field appears to have stagnated since then. We argue that this is a consequence of the shortcomings of technologies to model these diseases, limiting our understanding of which transcripts are being oxidized, which RNA-binding proteins are interacting with these RNAs, what their implications are in RNA processing, and as a result, what their potential role is in disease onset and progression. Here, we discuss the limits of previous technologies and propose ways by which advancements in iPSC-derived disease modeling, proteomics, and sequencing technologies can be combined and leveraged to answer new and decades-old questions.
Collapse
Affiliation(s)
- Hailey B. Wheeler
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Assael A. Madrigal
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| | - Isaac A. Chaim
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
4
|
Huang Y, Sun X, Huang Q, Huang Q, Chen X, Zhou X, Chen H, Shen J, Gao M, Gong Y, Zhang H, Tang H, Wang X, Jiang X, Zheng Y, Yuan C. Circulating metabolome in relation to cognitive impairment: a community-based cohort of older adults. Transl Psychiatry 2024; 14:469. [PMID: 39528482 PMCID: PMC11554788 DOI: 10.1038/s41398-024-03147-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 11/16/2024] Open
Abstract
The role of circulating metabolome in cognitive impairment is inconclusive, and whether the associations are in the severity-dependent manner remains unclear. We aimed to identify plasma metabolites associated with cognitive impairment and evaluate the added predictive capacity of metabolite biomarkers on incident cognitive impairment beyond traditional risk factors. In the Rugao Longevity and Ageing Study (RuLAS), plasma metabolome was profiled by nuclear magnetic resonance spectroscopy. Participants were classified into the cognitively normal, moderately impaired, and severely impaired groups according to their performance in two objective cognitive tests. A two-step strategy of cross-sectional discovery followed by prospective validation was applied. In the discovery stage, we included 1643 participants (age: 78.9 ± 4.5 years) and conducted multinomial logistic regression. In the validation stage, we matched 68 incident cases of cognitive impairment (moderately-to-severely impaired) during the 2-year follow-up with 204 cognitively normal controls by age and sex at a 1:3 ratio, and conducted conditional logistic regression. We identified 28 out of 78 metabolites cross-sectionally related to severely impaired cognition, among which IDL particle number, ApoB in IDL, leucine, and valine were prospectively associated with 28%, 28%, 29%, and 33% lower risk of developing cognitive impairment, respectively. Incorporating 13 metabolite biomarkers selected through Lasso regression into the traditional risk factors-based prediction model substantially improved the ability to predict incident cognitive impairment (AUROC: 0.839 vs. 0.703, P < 0.001; AUPRC: 0.705 vs. 0.405, P < 0.001). This study identified specific plasma metabolites related to cognitive impairment. Incorporation of specific metabolites substantially improved the prediction performance for cognitive impairment.
Collapse
Affiliation(s)
- Yuhui Huang
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xuehui Sun
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University-the People's Hospital of Rugao Joint Research Institute of Longevity and Aging, Rugao, Jiangsu, China
| | - Qingxia Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Qiumin Huang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Xiao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xiaofeng Zhou
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
| | - Hui Chen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Jie Shen
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Mengyan Gao
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yiying Gong
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Hui Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University-the People's Hospital of Rugao Joint Research Institute of Longevity and Aging, Rugao, Jiangsu, China
| | - Huiru Tang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Zhangjiang Fudan International Innovation Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaofeng Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China
- Fudan University-the People's Hospital of Rugao Joint Research Institute of Longevity and Aging, Rugao, Jiangsu, China
| | - Xiaoyan Jiang
- State Key Laboratory of Cardiology, Department of Pathology and Pathophysiology, School of Medicine, Tongji University, Shanghai, China.
| | - Yan Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences and Human Phenome Institute, Fudan University, Shanghai, China.
| | - Changzheng Yuan
- School of Public Health, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
5
|
Schmidt AT, Hicks SD, Bergquist BK, Maloney KA, Dennis VE, Bammel AC. Preliminary Evidence for Neuronal Dysfunction Following Adverse Childhood Experiences: An Investigation of Salivary MicroRNA Within a High-Risk Youth Sample. Genes (Basel) 2024; 15:1433. [PMID: 39596633 PMCID: PMC11593590 DOI: 10.3390/genes15111433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024] Open
Abstract
Background/Objectives: Adverse childhood experiences (ACEs) are potent drivers of psychopathology and neurological disorders, especially within minoritized populations. Nonetheless, we lack a coherent understanding of the neuronal mechanisms through which ACEs impact gene expression and, thereby, the development of psychopathology. Methods: This observational pilot study used a novel marker of neuronal functioning (brain-derived micro ribonucleic acids, or miRNAs) collected via saliva to explore the connection between ACEs and neuronal gene expression in 45 adolescents with a collectively high ACE exposure (26 males and 19 females of diverse races/ethnicities, with six cumulative ACEs on average). We aimed to determine the feasibility of using salivary microRNA for probing neuronal gene expression with the goal of identifying cellular processes and genetic pathways perturbed by childhood adversity. Results: A total of 274 miRNAs exhibited reliable salivary expression (raw counts > 10 in > 10% of samples). Fourteen (5.1%) were associated with cumulative ACE exposure (p < 0.05; r's ≥ 0.31). ACE exposure correlated negatively with miR-92b-3p, 145a-5p, 31-5p, and 3065-5p, and positively with miR-15b-5p, 30b-5p, 30c-5p, 30e-3p, 199a-3p, 223-3p, 338-3p, 338-5p, 542-3p, and 582-5p. Most relations remained significant after controlling for multiple comparisons and potential retrospective bias in ACE reporting for miRNAs with particularly strong relations (p < 0.03). We examined KEGG pathways targeted by miRNAs associated with total ACE scores. Results indicated putative miRNA targets over-represented 47 KEGG pathways (adjusted p < 0.05) involved in neuronal signaling, brain development, and neuroinflammation. Conclusions: Although preliminary and with a small sample, the findings represent a novel contribution to the understanding of how childhood adversity impacts neuronal gene expression via miRNA signaling.
Collapse
Affiliation(s)
- Adam T. Schmidt
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Center for Translational Neuroscience and Therapeutics, TTUHSC, Lubbock, TX 79409, USA
| | - Steven D. Hicks
- Department of Pediatrics, Penn State College of Medicine, Hershey, PA 17033, USA;
| | - Becca K. Bergquist
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Kelsey A. Maloney
- Department of Pediatrics, University of Tennessee Health Sciences Center, Memphis, TN 38163, USA
| | - Victoria E. Dennis
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Alexandra C. Bammel
- Department of Psychological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
6
|
Tang Z, Chen Z, Guo M, Peng Y, Xiao Y, Guan Z, Ni R, Qi X. NRF2 Deficiency Promotes Ferroptosis of Astrocytes Mediated by Oxidative Stress in Alzheimer's Disease. Mol Neurobiol 2024; 61:7517-7533. [PMID: 38401046 DOI: 10.1007/s12035-024-04023-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/06/2024] [Indexed: 02/26/2024]
Abstract
Oxidative stress is involved in the pathogenesis of Alzheimer's disease (AD), which is linked to reactive oxygen species (ROS), lipid peroxidation, and neurotoxicity. Emerging evidence suggests a role of nuclear factor (erythroid-derived 2)-like 2 (Nrf2), a major source of antioxidant response elements in AD. The molecular mechanism of oxidative stress and ferroptosis in astrocytes in AD is not yet fully understood. Here, we aimed to investigate the mechanism by which Nrf2 regulates the ferroptosis of astrocytes in AD. We found decreased expression of Nrf2 and upregulated expression of the ROS marker NADPH oxidase 4 (NOX4) in the frontal cortex from patients with AD and in the cortex of 3×Tg mice compared to wildtype mice. We demonstrated that Nrf2 deficiency led to ferroptosis-dependent oxidative stress-induced ROS with downregulated heme oxygenase-1 and glutathione peroxidase 4 and upregulated cystine glutamate expression. Moreover, Nrf2 deficiency increased lipid peroxidation, DNA oxidation, and mitochondrial fragmentation in mouse astrocytes (mAS, M1800-57). In conclusion, these results suggest that Nrf2 deficiency promotes ferroptosis of astrocytes involving oxidative stress in AD.
Collapse
Affiliation(s)
- Zhi Tang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhuyi Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Min Guo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yaqian Peng
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Yan Xiao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-Constructed By the Province and Ministry, Guizhou, 550004, China
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, ETH Zurich and University of Zurich, Zurich, Switzerland.
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education and Key Laboratory of Medical Molecular Biology of Guizhou Province, Guizhou Medical University, Guiyang, 550004, China.
| |
Collapse
|
7
|
Sawant H, Sun B, Mcgrady E, Bihl JC. Role of miRNAs in neurovascular injury and repair. J Cereb Blood Flow Metab 2024; 44:1693-1708. [PMID: 38726895 PMCID: PMC11494855 DOI: 10.1177/0271678x241254772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/29/2024] [Accepted: 04/22/2024] [Indexed: 10/18/2024]
Abstract
MicroRNAs (miRNA) are endogenously produced small, non-coded, single-stranded RNAs. Due to their involvement in various cellular processes and cross-communication with extracellular components, miRNAs are often coined the "grand managers" of the cell. miRNAs are frequently involved in upregulation as well as downregulation of specific gene expression and thus, are often found to play a vital role in the pathogenesis of multiple diseases. Central nervous system (CNS) diseases prove fatal due to the intricate nature of both their development and the methods used for treatment. A considerable amount of ongoing research aims to delineate the complex relationships between miRNAs and different diseases, including each of the neurological disorders discussed in the present review. Ongoing research suggests that specific miRNAs can play either a pathologic or restorative and/or protective role in various CNS diseases. Understanding how these miRNAs are involved in various regulatory processes of CNS such as neuroinflammation, neurovasculature, immune response, blood-brain barrier (BBB) integrity and angiogenesis is of empirical importance for developing effective therapies. Here in this review, we summarized the current state of knowledge of miRNAs and their roles in CNS diseases along with a focus on their association with neuroinflammation, innate immunity, neurovascular function and BBB.
Collapse
Affiliation(s)
- Harshal Sawant
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Bowen Sun
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Erin Mcgrady
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Ji Chen Bihl
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| |
Collapse
|
8
|
Wu S, Miao J, Zhu S, Wu X, Shi J, Zhou J, Xing Y, Hu K, Ren J, Yang H. Pongamol Prevents Neurotoxicity via the Activation of MAPKs/Nrf2 Signaling Pathway in H 2O 2-Induced Neuronal PC12 Cells and Prolongs the Lifespan of Caenorhabditis elegans. Mol Neurobiol 2024; 61:8219-8233. [PMID: 38483657 DOI: 10.1007/s12035-024-04110-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 03/09/2024] [Indexed: 09/21/2024]
Abstract
Despite tremendous advances in modern medicine, effective prevention or therapeutic strategies for age-related neurodegenerative diseases such as Alzheimer's disease (AD) remain limited. Growing evidence now suggests that oxidative stress and apoptosis are increasingly associated with AD as promising therapeutic targets. Pongamol, a flavonoid, is the main constituent of pongamia pinnata and possesses a variety of pharmacological activities such as antioxidant, anti-aging and anti-inflammatory. In the present study, we investigated the antioxidant effects and mechanisms of pongamol in H2O2-induced PC12 cells and Caenorhabditis elegans (C. elegans). Our findings revealed that pongamol reduced cellular damage and apoptosis in H2O2-induced PC12 cells. Furthermore, pongamol reduced levels of apoptosis-related proteins Bax, Cyto C, Cleaved Caspase-3, and Cleaved PARP1, and increased the level of anti-apoptotic protein Bcl-2. Pongamol also effectively attenuated the level of oxidative stress markers such as glutathione (GSH) and reactive oxygen species (ROS) in H2O2-induced PC12 cells. Additionally, pongamol possessed antioxidant activity in H2O2-induced PC12 cells through the MAPKs/Nrf2 signaling pathway. Furthermore, pongamol exerted neuroprotective and anti-aging effects in C. elegans. All together, these results suggested that pongamol has a potential neuroprotective effect through the modulation of MAPKs/Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Shaojun Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Miao
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Susu Zhu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Xinyuan Wu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jindan Shi
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jichao Zhou
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Yi Xing
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Kun Hu
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China
| | - Jie Ren
- School of Pharmacy, Changzhou University, No. 1. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| | - Hao Yang
- Department of Pharmacy, the Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, No. 68. Gehu Middle Road, Changzhou, 213164, Jiangsu, China.
| |
Collapse
|
9
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
10
|
Li YB, Fu Q, Guo M, Du Y, Chen Y, Cheng Y. MicroRNAs: pioneering regulators in Alzheimer's disease pathogenesis, diagnosis, and therapy. Transl Psychiatry 2024; 14:367. [PMID: 39256358 PMCID: PMC11387755 DOI: 10.1038/s41398-024-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 08/21/2024] [Accepted: 08/27/2024] [Indexed: 09/12/2024] Open
Abstract
This article delves into Alzheimer's disease (AD), a prevalent neurodegenerative condition primarily affecting the elderly. It is characterized by progressive memory and cognitive impairments, severely disrupting daily life. Recent research highlights the potential involvement of microRNAs in the pathogenesis of AD. MicroRNAs (MiRNAs), short non-coding RNAs comprising 20-24 nucleotides, significantly influence gene regulation by hindering translation or promoting degradation of target genes. This review explores the role of specific miRNAs in AD progression, focusing on their impact on β-amyloid (Aβ) peptide accumulation, intracellular aggregation of hyperphosphorylated tau proteins, mitochondrial dysfunction, neuroinflammation, oxidative stress, and the expression of the APOE4 gene. Our insights contribute to understanding AD's pathology, offering new avenues for identifying diagnostic markers and developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yao-Bo Li
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China
| | - Qiang Fu
- Institute of National Security, Minzu University of China, Beijing, China
| | - Mei Guo
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China
| | - Yang Du
- Institute of National Security, Minzu University of China, Beijing, China
| | - Yuewen Chen
- Chinese Academy of Sciences Key Laboratory of Brain Connectome and Manipulation, Shenzhen Key Laboratory of Translational Research for Brain Diseases, The Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, China.
- Guangdong Provincial Key Laboratory of Brain Science, Disease and Drug Development, HKUST Shenzhen Research Institute, Shenzhen, China.
| | - Yong Cheng
- Center on Translational Neuroscience, College of Life and Environmental Sciences, Minzu University of China, Beijing, China.
- Institute of National Security, Minzu University of China, Beijing, China.
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Minzu University of China, Beijing, China.
| |
Collapse
|
11
|
Zhang H, Fu X, Yang M, Song X, Li M, Wang X. Research progress on humoral biomarkers of Alzheimer's disease: A review. Medicine (Baltimore) 2024; 103:e38978. [PMID: 39058878 PMCID: PMC11272379 DOI: 10.1097/md.0000000000038978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive memory loss. The main pathological features are neuronal fibrillary tangles caused by amyloid beta deposition and hyperphosphorylation of tau protein, accompanied by neuronal death and loss of synaptic structure. Early diagnosis is the key to the treatment of AD. It is known that some small molecular components are related to the pathogenesis of AD. This article will summarize the common AD biomarkers in cerebrospinal fluid and blood and analyze the current status of AD biomarkers and future research directions. This review summarizes the promising biomarkers for the diagnosis of AD in the last decade and describes their changes in AD body fluids. The diagnostic biomarkers related to AD were mainly distributed in cerebrospinal fluid and blood. Significant changes in these molecules can be detected in cerebrospinal fluid and blood, and they are correlated with AD severity. These humoral molecules have necessary relationship with AD and can be used as AD biomarkers to assist early diagnosis of AD.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Binzhou, China
- Binzhou Medical College, Binzhou, China
| | - Xiaofeng Fu
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Binzhou, China
- Binzhou Medical College, Binzhou, China
| | - Mengyu Yang
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Binzhou, China
- Binzhou Medical College, Binzhou, China
| | - Xiaowen Song
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Min Li
- Department of Ultrasound Medicine, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| | - Xuezhen Wang
- Department of Neurology, Affiliated Hospital of Binzhou Medical College, Binzhou, China
| |
Collapse
|
12
|
Tao B, Gong W, Xu C, Ma Z, Mei J, Chen M. The relationship between hypoxia and Alzheimer's disease: an updated review. Front Aging Neurosci 2024; 16:1402774. [PMID: 39086755 PMCID: PMC11288848 DOI: 10.3389/fnagi.2024.1402774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 07/04/2024] [Indexed: 08/02/2024] Open
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases, and the most prevalent form of dementia. The main hallmarks for the diagnosis of AD are extracellular amyloid-beta (Aβ) plaque deposition and intracellular accumulation of highly hyperphosphorylated Tau protein as neurofibrillary tangles. The brain consumes more oxygen than any other organs, so it is more easily to be affected by hypoxia. Hypoxia has long been recognized as one of the possible causes of AD and other neurodegenerative diseases, but the exact mechanism has not been clarified. In this review, we will elucidate the connection between hypoxia-inducible factors-1α and AD, including its contribution to AD and its possible protective effects. Additionally, we will discuss the relationship between oxidative stress and AD as evidence show that oxidative stress acts on AD-related pathogenic factors such as mitochondrial dysfunction, Aβ deposition, inflammation, etc. Currently, there is no cure for AD. Given the close association between hypoxia, oxidative stress, and AD, along with current research on the protective effects of antioxidants against AD, we speculate that antioxidants could be a potential therapeutic approach for AD and worth further study.
Collapse
Affiliation(s)
- Borui Tao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
- The First Clinical Medical College, Anhui Medical University, Hefei, China
| | - Wei Gong
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Chengyuan Xu
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhihui Ma
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jinyu Mei
- Department of Otorhinolaryngology Head and Neck Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ming Chen
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| |
Collapse
|
13
|
Liu H, Zhou L, Yi P, Zhan F, Zhou L, Dong Y, Xiong Y, Hua F, Xu G. ω3-PUFA alleviates neuroinflammation by upregulating miR-107 targeting PIEZO1/NFκB p65. Int Immunopharmacol 2024; 132:111996. [PMID: 38579563 DOI: 10.1016/j.intimp.2024.111996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/25/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND MiR-107 is reduced in sepsis and associated with inflammation regulation. Dietary supplementation with polyunsaturated fatty acids (ω3-PUFA) can increase the expression of miR-107; this study investigated whether the ω3-PUFA can effectively inhibit neuroinflammation and improve cognitive function by regulating miR-107 in the brain. METHODS The LPS-induced mouse model of neuroinflammation and the BV2 cell inflammatory model were used to evaluate the effects of ω3-PUFA on miR-107 expression and inflammation. Intraventricular injection of Agomir and Antagomir was used to modulate miR-107 expression. HE and Nissl staining for analyzing hippocampal neuronal damage, immunofluorescence analysis for glial activation, RT-qPCR, and Western blot were conducted to examine miR-107 expression and inflammation signalling. RESULTS The result shows that LPS successfully induced the mouse neuroinflammation model and BV2 cell inflammation model. Supplementation of ω3-PUFA effectively reduced the secretion of pro-inflammatory factors TNFα, IL1β, and IL6 induced by LPS, improved cognitive function impairment, and increased miR-107 expression in the brain. Overexpression of miR-107 in the brain inhibited the nuclear factor κB (NFκB) pro-inflammatory signalling pathway by targeting PIEZO1, thus suppressing microglial and astrocyte activation and reducing the release of inflammatory mediators, which alleviated neuroinflammatory damage and improved cognitive function in mice. miR-107, as an intron of PANK1, PANK1 is subject to PPAR α Adjust. ω3-PUFA can activate PPARα, but ω3-PUFA upregulates brain miR-107, and PPARα/PANK1-related pathways may not be synchronized, and further research is needed to confirm the specific mechanism by which ω3-PUFA upregulates miR-107. CONCLUSION The miR-107/PIEZO1/NFκB p65 pathway represents a novel mechanism underlying the improvement of neuroinflammation by ω3-PUFA.
Collapse
Affiliation(s)
- Hailin Liu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lian Zhou
- Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Department of Anesthesiology, Ganjiang New Area Hospital of the First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Pengcheng Yi
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fenfang Zhan
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Lanqian Zhou
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yao Dong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Yanhong Xiong
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Jiangxi Province Key Laboratory of Molecular Medicine, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| | - Guohai Xu
- Department of Anesthesiology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China; Key Laboratory of Anesthesiology of Jiangxi Province, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
14
|
Strnadová V, Pačesová A, Charvát V, Šmotková Z, Železná B, Kuneš J, Maletínská L. Anorexigenic neuropeptides as anti-obesity and neuroprotective agents: exploring the neuroprotective effects of anorexigenic neuropeptides. Biosci Rep 2024; 44:BSR20231385. [PMID: 38577975 PMCID: PMC11043025 DOI: 10.1042/bsr20231385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/26/2024] [Accepted: 04/05/2024] [Indexed: 04/06/2024] Open
Abstract
Since 1975, the incidence of obesity has increased to epidemic proportions, and the number of patients with obesity has quadrupled. Obesity is a major risk factor for developing other serious diseases, such as type 2 diabetes mellitus, hypertension, and cardiovascular diseases. Recent epidemiologic studies have defined obesity as a risk factor for the development of neurodegenerative diseases, such as Alzheimer's disease (AD) and other types of dementia. Despite all these serious comorbidities associated with obesity, there is still a lack of effective antiobesity treatment. Promising candidates for the treatment of obesity are anorexigenic neuropeptides, which are peptides produced by neurons in brain areas implicated in food intake regulation, such as the hypothalamus or the brainstem. These peptides efficiently reduce food intake and body weight. Moreover, because of the proven interconnection between obesity and the risk of developing AD, the potential neuroprotective effects of these two agents in animal models of neurodegeneration have been examined. The objective of this review was to explore anorexigenic neuropeptides produced and acting within the brain, emphasizing their potential not only for the treatment of obesity but also for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Veronika Strnadová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Andrea Pačesová
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Vilém Charvát
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Šmotková
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Blanka Železná
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jaroslav Kuneš
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
- Department of Biochemistry and Molecular Biology, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Lenka Maletínská
- Department of Biochemistry and Molecular Biology, Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Hu GJ, Jiang XY, Du SY, Zhang K, Chen Z. miR-107-5p ameliorates neurological damage, oxidative stress, and immune responses in mice with Alzheimer's disease by suppressing the Toll-like receptor 4 (TLR4)/nuclear factor-kappaB(NF-κB) pathway. Kaohsiung J Med Sci 2024; 40:119-130. [PMID: 38305705 DOI: 10.1002/kjm2.12797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 02/03/2024] Open
Abstract
Alzheimer's disease (AD) is a progressively debilitating neurodegenerative condition primarily affecting the elderly. Emerging research suggests that microRNAs (miRNAs) play a role in the development of AD. This study investigates the impact of miR-107-5p on neurological damage, oxidative stress, and immune responses in AD. We utilized APP/PS1 mice as AD mouse models and C57BL/6 J mice as controls. AD mice received treatment with agomir miR-107-5p (to overexpress miR-107-5p) or BAY11-7082 (an NF-κB pathway inhibitor). We evaluated learning and memory abilities through the Morris water maze test. Histopathological changes, hippocampal neuron distribution, and apoptosis were assessed using hematoxylin-eosin, Nissl, and TUNEL staining. Reactive oxygen species (ROS) levels, amyloid-Aβ (Aβ1-40/42) contents, and inflammatory factors (TNF-α, IL-6, IL-1β) in hippocampal tissues were measured using ROS kits and enzyme-linked immunosorbent assay (ELISA). Microglial activation in hippocampal tissues was observed under a fluorescence microscope. miR-107-5p's binding to TLR4 was predicted via the TargetScan database and confirmed through a dual-luciferase assay. miR-107-5p expression, along with TLR4, APOE, and TREM2 in hippocampal tissue homogenate, and NF-κB p65 protein expression in the nucleus and cytoplasm were assessed via RT-qPCR and Western blot. Overexpression of miR-107-5p ameliorated hippocampal neurological damage, oxidative stress, and immune responses. This was evidenced by improved enhanced learning/memory abilities, reduced Aβ1-40 and Aβ1-42 levels, diminished neuronal injuries, decreased ROS and TNF-α, IL-6, and IL-1β levels, increased APOE and TREM2 levels, and suppressed microglial activation. miR-107-5p directly targeted and inhibited TLR4 expression, leading to reduced nuclear translocation of NF-κB p65 in the NF-κB pathway. Inhibition of the NF-κB pathway similarly improved neurological damage, oxidative stress, and immune response in AD mice. miR-107-5p exerts its beneficial effects by suppressing the TLR4/NF-κB pathway, ultimately ameliorating neurological damage, oxidative stress, and immune responses in AD mice.
Collapse
Affiliation(s)
- Guang-Jun Hu
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Xiao-Yang Jiang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Si-Yu Du
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Kun Zhang
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Zhuo Chen
- Department of Anesthesiology, Wuhan Third Hospital/Tongren Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
16
|
Bermejo-Pareja F, del Ser T. Controversial Past, Splendid Present, Unpredictable Future: A Brief Review of Alzheimer Disease History. J Clin Med 2024; 13:536. [PMID: 38256670 PMCID: PMC10816332 DOI: 10.3390/jcm13020536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Background: The concept of Alzheimer disease (AD)-since its histological discovery by Alzheimer to the present day-has undergone substantial modifications. Methods: We conducted a classical narrative review of this field with a bibliography selection (giving preference to Medline best match). Results: The following subjects are reviewed and discussed: Alzheimer's discovery, Kraepelin's creation of a new disease that was a rare condition until the 1970's, the growing interest and investment in AD as a major killer in a society with a large elderly population in the second half of the 20th century, the consolidation of the AD clinicopathological model, and the modern AD nosology based on the dominant amyloid hypothesis among many others. In the 21st century, the development of AD biomarkers has supported a novel biological definition of AD, although the proposed therapies have failed to cure this disease. The incidence of dementia/AD has shown a decrease in affluent countries (possibly due to control of risk factors), and mixed dementia has been established as the most frequent etiology in the oldest old. Conclusions: The current concept of AD lacks unanimity. Many hypotheses attempt to explain its complex physiopathology entwined with aging, and the dominant amyloid cascade has yielded poor therapeutic results. The reduction in the incidence of dementia/AD appears promising but it should be confirmed in the future. A reevaluation of the AD concept is also necessary.
Collapse
Affiliation(s)
- Félix Bermejo-Pareja
- CIBERNED, Institute of Health Carlos III, 28029 Madrid, Spain
- Institute of Research i+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Teodoro del Ser
- Alzheimer’s Centre Reina Sofia—CIEN Foundation, Institute of Health Carlos III, 28031 Madrid, Spain;
| |
Collapse
|
17
|
Jiang Y, Bian W, Chen J, Cao X, Dong C, Xiao Y, Xu B, Sun X. miRNA-137-5p improves spatial memory and cognition in Alzheimer's mice by targeting ubiquitin-specific peptidase 30. Animal Model Exp Med 2023; 6:526-536. [PMID: 38111333 PMCID: PMC10757218 DOI: 10.1002/ame2.12368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is a prevalent neurodegenerative disorder causing progressive dementia. Research suggests that microRNAs (miRNAs) could serve as biomarkers and therapeutic targets for AD. Reduced levels of miR-137 have been observed in the brains of AD patients, but its specific role and downstream mechanisms remain unclear. This study sought to examine the therapeutic potential of miR-137-5p agomir in alleviating cognitive dysfunction induced in AD models and explore its potential mechanisms. METHODS This study utilized bioinformatic analysis and a dual-luciferase reporter assay to investigate the relationship between miR-137-5p and ubiquitin-specific peptidase 30 (USP30). In vitro experiments were conducted using SH-SY5Y cells to assess the impact of miR-137-5p on Aβ1-42 neurotoxicity. In vivo experiments on AD mice evaluated the effects of miR-137-5p on cognition, Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis, as well as its influence on USP30 levels. RESULTS It was discovered that miR-137-5p mimics efficiently counteract Aβ1-42 neurotoxicity in SH-SY5Y cells, a protective effect that is negated by USP30 overexpression. In vivo experiments demonstrated that miR-137-5p enhances the cognition and mobility of AD mice, significantly reducing Aβ1-42 deposition, Tau hyperphosphorylation, and neuronal apoptosis within the hippocampus and cortex regions. Mechanistically, miR-137-5p significantly suppresses USP30 levels in mice, though USP30 overexpression partially buffers against miR-137-5p-induced AD symptom improvement. CONCLUSION Our study proposes that miR-137-5p, by instigating the downregulation of USP30, has the potential to act as a novel and promising therapeutic target for AD.
Collapse
Affiliation(s)
- Yang Jiang
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
| | - Wei Bian
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Jing Chen
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - Xiaopan Cao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - ChunYao Dong
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Ying Xiao
- Department of NeurologyThe First People's Hospital of ShenYangShenyangP.R. China
| | - Bing Xu
- Department of Neurology and NeuroscienceShenyang Tenth People's Hospital, Shenyang Chest HospitalShenyangP.R. China
| | - XiaoHong Sun
- Department of NeurologyThe Fourth Affiliated Hospital of China Medical UniversityShenyangP.R. China
- Science Experiment CenterChina Medical UniversityShenyangChina
| |
Collapse
|
18
|
Rabeh N, Hajjar B, Maraka JO, Sammanasunathan AF, Khan M, Alkhaaldi SMI, Mansour S, Almheiri RT, Hamdan H, Abd-Elrahman KS. Targeting mGluR group III for the treatment of neurodegenerative diseases. Biomed Pharmacother 2023; 168:115733. [PMID: 37862967 DOI: 10.1016/j.biopha.2023.115733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023] Open
Abstract
Glutamate, an excitatory neurotransmitter, is essential for neuronal function, and it acts on ionotropic or metabotropic glutamate receptors (mGluRs). A disturbance in glutamatergic signaling is a hallmark of many neurodegenerative diseases. Developing disease-modifying treatments for neurodegenerative diseases targeting glutamate receptors is a promising avenue. The understudied group III mGluR 4, 6-8 are commonly found in the presynaptic membrane, and their activation inhibits glutamate release. Thus, targeted mGluRs therapies could aid in treating neurodegenerative diseases. This review describes group III mGluRs and their pharmacological ligands in the context of amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's diseases. Attempts to evaluate the efficacy of these drugs in clinical trials are also discussed. Despite a growing list of group III mGluR-specific pharmacological ligands, research on the use of these drugs in neurodegenerative diseases is limited, except for Parkinson's disease. Future efforts should focus on delineating the contribution of group III mGluR to neurodegeneration and developing novel ligands with superior efficacy and a favorable side effect profile for the treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nadia Rabeh
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Baraa Hajjar
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Jude O Maraka
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Ashwin F Sammanasunathan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Mohammed Khan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Saif M I Alkhaaldi
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Samy Mansour
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Rashed T Almheiri
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Healthcare Engineering Innovation Center (HEIC), Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| | - Khaled S Abd-Elrahman
- Department of Anesthesiology, Pharmacology and Therapeutics, and Djavad Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada; Department of Pharmacology and Therapeutics, College of Medicine and Health Science, Khalifa University, Abu Dhabi 127788, United Arab Emirates; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt.
| |
Collapse
|
19
|
Pereira RL, Oliveira D, Pêgo AP, Santos SD, Moreira FTC. Electrochemical miRNA-34a-based biosensor for the diagnosis of Alzheimer's disease. Bioelectrochemistry 2023; 154:108553. [PMID: 37672968 DOI: 10.1016/j.bioelechem.2023.108553] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/08/2023]
Abstract
Alzheimer's disease (AD) is the most common dementia type and a leading cause of death and disability in the elderly. Diagnosis is expensive and invasive, urging the development of new, affordable, and less invasive diagnostic tools. The identification of changes in the expression of non-coding RNAs prompts the development of diagnostic tools to detect disease-specific blood biomarkers. Building on this idea, this work reports a novel electrochemical microRNA (miRNA) biosensor for the diagnosis of AD, based on carbon screen-printed electrodes (C-SPEs) modified with two gold nanostructures and a complementary anti-miR-34a oligonucleotide probe. This biosensor showed good target affinity, reflected on a 100 pM to 1 μM linearity range and a limit of detection (LOD) of 39 pM in buffer and 94 aM in serum. Moreover, the biosensor's response was not affected by serum compounds, indicating selectivity for miR-34a. The biosensor also detected miR-34a in the cell culture medium of a common AD model, stimulated with a neurotoxin to increase miR-34a secretion. Overall, the proposed biosensor makes a solid case for the introduction of a novel, inexpensive, and minimally invasive tool for the early diagnosis of AD, based on the detection of a circulating miRNA overexpressed in this pathology.
Collapse
Affiliation(s)
- Raquel L Pereira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Daniela Oliveira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal; ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Sofia D Santos
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal; INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Felismina T C Moreira
- CIETI-LabRISE, School of Engineering, Polytechnic Institute, 4249-015 Porto, Portugal; CEB, Centre of Biological Engineering, Minho University, 4710-057 Braga, Portugal; LABBELS - Associate Laboratory, 4710-057 Braga/Guimarães, Portugal.
| |
Collapse
|
20
|
Gupta R, Advani D, Yadav D, Ambasta RK, Kumar P. Dissecting the Relationship Between Neuropsychiatric and Neurodegenerative Disorders. Mol Neurobiol 2023; 60:6476-6529. [PMID: 37458987 DOI: 10.1007/s12035-023-03502-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 07/11/2023] [Indexed: 09/28/2023]
Abstract
Neurodegenerative diseases (NDDs) and neuropsychiatric disorders (NPDs) are two common causes of death in elderly people, which includes progressive neuronal cell death and behavioral changes. NDDs include Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, multiple sclerosis, and motor neuron disease, characterized by cognitive defects and memory impairment, whereas NPDs include depression, seizures, migraine headaches, eating disorders, addictions, palsies, major depressive disorders, anxiety, and schizophrenia, characterized by behavioral changes. Mounting evidence demonstrated that NDDs and NPDs share an overlapping mechanism, which includes post-translational modifications, the microbiota-gut-brain axis, and signaling events. Mounting evidence demonstrated that various drug molecules, namely, natural compounds, repurposed drugs, multitarget directed ligands, and RNAs, have been potentially implemented as therapeutic agents against NDDs and NPDs. Herein, we highlighted the overlapping mechanism, the role of anxiety/stress-releasing factors, cytosol-to-nucleus signaling, and the microbiota-gut-brain axis in the pathophysiology of NDDs and NPDs. We summarize the therapeutic application of natural compounds, repurposed drugs, and multitarget-directed ligands as therapeutic agents. Lastly, we briefly described the application of RNA interferences as therapeutic agents in the pathogenesis of NDDs and NPDs. Neurodegenerative diseases and neuropsychiatric diseases both share a common signaling molecule and molecular phenomenon, namely, pro-inflammatory cytokines, γCaMKII and MAPK/ERK, chemokine receptors, BBB permeability, and the gut-microbiota-brain axis. Studies have demonstrated that any alterations in the signaling mentioned above molecules and molecular phenomena lead to the pathophysiology of neurodegenerative diseases, namely, Alzheimer's disease, Parkinson's disease, Huntington's disease, and amyotrophic lateral sclerosis, and neuropsychiatric disorders, such as bipolar disorder, schizophrenia, depression, anxiety, autism spectrum disorder, and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Rohan Gupta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Dia Advani
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Divya Yadav
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Rashmi K Ambasta
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Bawana Road, New Delhi, Delhi, 110042, India.
| |
Collapse
|
21
|
Bhatnagar D, Ladhe S, Kumar D. Discerning the Prospects of miRNAs as a Multi-Target Therapeutic and Diagnostic for Alzheimer's Disease. Mol Neurobiol 2023; 60:5954-5974. [PMID: 37386272 DOI: 10.1007/s12035-023-03446-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 06/14/2023] [Indexed: 07/01/2023]
Abstract
Although over the last few decades, numerous attempts have been made to halt Alzheimer's disease (AD) progression and mitigate its symptoms, only a few have been proven beneficial. Most medications available, still only cater to the symptoms of the disease rather than fixing the cause at the root level. A novel approach involving the use of miRNAs, which work on the principle of gene silencing, is being explored by scientists. Naturally present miRNAs in the biological system help to regulate various genes than may be implicated in AD-like BACE-1 and APP. One miRNA thus, holds the power to keep a check on several genes, conferring it the ability to be used as a multi-target therapeutic. With aging and the onset of diseased pathology, dysregulation of these miRNAs is observed. This flawed miRNA expression is responsible for the unusual buildup of amyloid proteins, fibrillation of tau proteins in the brain, neuronal death and other hallmarks leading to AD. The use of miRNA mimics and miRNA inhibitors provides an attractive perspective for fixing the upregulation and downregulation of miRNAs that led to abnormal cellular activities. Furthermore, the detection of miRNAs in the CSF and serum of diseased patients might be considered an earlier biomarker for the disease. While most of the therapies designed around AD have not succeeded completely, the targeting of dysregulated miRNAs in AD patients might give a new direction to scholars to develop an effective treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Devyani Bhatnagar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Shreya Ladhe
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India
| | - Dileep Kumar
- Department of Pharmaceutical Chemistry, Poona College of Pharmacy, Bharati Vidyapeeth (Deemed to Be University), Erandwane, Pune, 411038, Maharashtra, India.
- Department of Entomology, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
- UC Davis Comprehensive Cancer Center, University of California, Davis, One Shields Ave, Davis, CA, 95616, USA.
| |
Collapse
|
22
|
Grosu ȘA, Dobre M, Milanesi E, Hinescu ME. Blood-Based MicroRNAs in Psychotic Disorders-A Systematic Review. Biomedicines 2023; 11:2536. [PMID: 37760977 PMCID: PMC10525934 DOI: 10.3390/biomedicines11092536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/01/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Psychotic disorders are a heterogenous class of mental illness, with an intricate pathophysiology, involving genetics and environmental factors, and their interaction. The identification of accessible biomarkers in bodily systems such as blood may lead to more accurate diagnosis, and more effective treatments targeting dysfunctional pathways, and could assist in monitoring the disease evolution. This systematic review aims to highlight the dysregulated microRNAs (miRNAs) in the peripheral blood of patients with psychotic disorders. Using the PRISMA protocol, PubMed and Science Direct databases were investigated and 22 articles were included. Fifty-five different miRNAs were found differentially expressed in the blood of psychotic patients compared to controls. Seventeen miRNAs (miR-34a, miR-181b, miR-432, miR-30e, miR-21, miR-137, miR-134, miR-7, miR-92a, miR-1273d, miR-1303, miR-3064-5p, miR-3131, miR-3687, miR-4428, miR-4725-3p, and miR-5096) were dysregulated with the same trend (up- or down-regulation) in at least two studies. Of note, miR-34a and miR-181b were up-regulated in the blood of psychotic patients in seven and six studies, respectively. Moreover, the level of miR-181b in plasma was found to be positively correlated with the amelioration of negative symptoms. The panel of miRNAs identified in this review could be validated in future studies in large and well-characterized cohorts of psychotic patients.
Collapse
Affiliation(s)
- Ștefania-Alexandra Grosu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Elena Milanesi
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| | - Mihail Eugen Hinescu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania; (Ș.-A.G.); (M.E.H.)
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania;
| |
Collapse
|
23
|
Gao F, Li F, Wang J, Yu H, Li X, Chen H, Wang J, Qin D, Li Y, Liu S, Zhang X, Wang ZH. SERS-Based Optical Nanobiosensors for the Detection of Alzheimer's Disease. BIOSENSORS 2023; 13:880. [PMID: 37754114 PMCID: PMC10526933 DOI: 10.3390/bios13090880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/28/2023]
Abstract
Alzheimer's disease (AD) is a leading cause of dementia, impacting millions worldwide. However, its complex neuropathologic features and heterogeneous pathophysiology present significant challenges for diagnosis and treatment. To address the urgent need for early AD diagnosis, this review focuses on surface-enhanced Raman scattering (SERS)-based biosensors, leveraging the excellent optical properties of nanomaterials to enhance detection performance. These highly sensitive and noninvasive biosensors offer opportunities for biomarker-driven clinical diagnostics and precision medicine. The review highlights various types of SERS-based biosensors targeting AD biomarkers, discussing their potential applications and contributions to AD diagnosis. Specific details about nanomaterials and targeted AD biomarkers are provided. Furthermore, the future research directions and challenges for improving AD marker detection using SERS sensors are outlined.
Collapse
Affiliation(s)
- Feng Gao
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Fang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jianhao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hang Yu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xiang Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Hongyu Chen
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Jiabei Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Dongdong Qin
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Yiyi Li
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Songyan Liu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Xi Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Zhi-Hao Wang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (F.G.); (F.L.); (J.W.); (H.Y.); (X.L.); (H.C.); (J.W.); (D.Q.); (Y.L.); (S.L.); (X.Z.)
- Center for Neurodegenerative Disease Research, Renmin Hospital of Wuhan University, Wuhan 430060, China
| |
Collapse
|
24
|
Pinto-Hernandez P, Castilla-Silgado J, Coto-Vilcapoma A, Fernández-Sanjurjo M, Fernández-García B, Tomás-Zapico C, Iglesias-Gutiérrez E. Modulation of microRNAs through Lifestyle Changes in Alzheimer's Disease. Nutrients 2023; 15:3688. [PMID: 37686720 PMCID: PMC10490103 DOI: 10.3390/nu15173688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/16/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Lifestyle factors, including diet and physical activity (PA), are known beneficial strategies to prevent and delay Alzheimer's disease (AD) development. Recently, microRNAs have emerged as potential biomarkers in multiple diseases, including AD. The aim of this review was to analyze the available information on the modulatory effect of lifestyle on microRNA expression in AD. Few studies have addressed this question, leaving important gaps and limitations: (1) in human studies, only circulating microRNAs were analyzed; (2) in mice studies, microRNA expression was only analyzed in brain tissue; (3) a limited number of microRNAs was analyzed; (4) no human nutritional intervention studies were conducted; and (5) PA interventions in humans and mice were poorly detailed and only included aerobic training. Despite this, some conclusions could be drawn. Circulating levels of let-7g-5p, miR-107, and miR-144-3p were associated with overall diet quality in mild cognitive impairment patients. In silico analysis showed that these microRNAs are implicated in synapse formation, microglia activation, amyloid beta accumulation, and pro-inflammatory pathways, the latter also being targeted by miR-129-5p and miR-192-5p, whose circulating levels are modified by PA in AD patients. PA also modifies miR-132, miR-15b-5p, miR-148b-3p, and miR-130a-5p expression in mice brains, which targets are related to the regulation of neuronal activity, ageing, and pro-inflammatory pathways. This supports the need to further explore lifestyle-related miRNA changes in AD, both as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Paola Pinto-Hernandez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Juan Castilla-Silgado
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Almudena Coto-Vilcapoma
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Manuel Fernández-Sanjurjo
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Benjamín Fernández-García
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
- Department of Morphology and Cell Biology, Anatomy, University of Oviedo, 33006 Asturias, Spain
| | - Cristina Tomás-Zapico
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| | - Eduardo Iglesias-Gutiérrez
- Department of Functional Biology, Physiology, University of Oviedo, 33006 Asturias, Spain; (P.P.-H.); (J.C.-S.); (A.C.-V.); (M.F.-S.); (C.T.-Z.)
- Health Research Institute of the Principality of Asturias (ISPA), 33011 Asturias, Spain;
| |
Collapse
|
25
|
Tregub PP, Ibrahimli I, Averchuk AS, Salmina AB, Litvitskiy PF, Manasova ZS, Popova IA. The Role of microRNAs in Epigenetic Regulation of Signaling Pathways in Neurological Pathologies. Int J Mol Sci 2023; 24:12899. [PMID: 37629078 PMCID: PMC10454825 DOI: 10.3390/ijms241612899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/11/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
In recent times, there has been a significant increase in researchers' interest in the functions of microRNAs and the role of these molecules in the pathogenesis of many multifactorial diseases. This is related to the diagnostic and prognostic potential of microRNA expression levels as well as the prospects of using it in personalized targeted therapy. This review of the literature analyzes existing scientific data on the involvement of microRNAs in the molecular and cellular mechanisms underlying the development of pathologies such as Alzheimer's disease, cerebral ischemia and reperfusion injury, and dysfunction of the blood-brain barrier.
Collapse
Affiliation(s)
- Pavel P. Tregub
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Scientific and Educational Resource Center “Innovative Technologies of Immunophenotyping, Digital Spatial Profiling and Ultrastructural Analysis”, RUDN University, 117198 Moscow, Russia
- Research Center of Neurology, 125367 Moscow, Russia
| | - Irada Ibrahimli
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | | | - Alla B. Salmina
- Research Center of Neurology, 125367 Moscow, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V. F. Voino-Yasenetsky Krasnoyarsk State Medical University, 660022 Krasnoyarsk, Russia
| | - Peter F. Litvitskiy
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Zaripat Sh. Manasova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Inga A. Popova
- Department of Pathophysiology, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| |
Collapse
|
26
|
Wang Q, Xia C, Zhu A, Bao Y, Lu J, Chen Y, Xu J, Wang B, Naman CB, Li L, Wang Q, Liu H, Liang H, Cui W. Discrepancy of synaptic and microtubular protein phosphorylation in the hippocampus of APP/PS1 and MAPT×P301S transgenic mice at the early stage of Alzheimer's disease. Metab Brain Dis 2023; 38:1983-1997. [PMID: 37160613 DOI: 10.1007/s11011-023-01209-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 04/02/2023] [Indexed: 05/11/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, and is caused by multiple pathological factors, such as the overproduction of β-amyloid (Aβ) and the hyperphosphorylation of tau. However, there is limited knowledge of the mechanisms underlying AD pathogenesis and no effective biomarker for the early diagnosis of this disorder. Thus in this study, a quantitative phosphoproteomics analysis was performed to evaluate global protein phosphorylation in the hippocampus of Aβ overexpressing APP/PS1 transgenic mice and tau overexpressing MAPT×P301S transgenic mice, two in vivo AD model systems. These animals, up to ten weeks old, do not exhibit cognitive dysfunctions and are widely used to simulate early-stage AD patients. The number of differentially phosphorylated proteins (DPPs) was greater for APP/PS1 transgenic mice than for MAPT×P301S transgenic mice. The function of the DPPs in APP/PS1 transgenic mice was mainly related to synapses, while the function of the DPPs in MAPT×P301S transgenic mice was mainly related to microtubules. In addition, an AD core network was established including seven phosphoproteins differentially expressed in both animal models, and the function of this core network was related to synapses and oxidative stress. The results of this study suggest that Aβ and tau induce different protein phosphorylation profiles in the early stage of AD, leading to the dysfunctions in synapses and microtubule, respectively. And the detection of same DPPs in these animal models might be used for early AD diagnosis.
Collapse
Affiliation(s)
- Qiyao Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Chenglong Xia
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - An Zhu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yongjie Bao
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiani Lu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Yuan Chen
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Jiayi Xu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Binbin Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - C Benjamin Naman
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315211, China
| | - Liping Li
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Qinwen Wang
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hao Liu
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| | - Wei Cui
- Translational Medicine Center of Pain, Emotion and Cognition, Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, 315211, China.
- The Affiliated Hospital of Medical School, Ningbo University, Ningbo, 315211, China.
- Ningbo Kangning Hospital, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
27
|
Gravandi MM, Abdian S, Tahvilian M, Iranpanah A, Moradi SZ, Fakhri S, Echeverría J. Therapeutic targeting of Ras/Raf/MAPK pathway by natural products: A systematic and mechanistic approach for neurodegeneration. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 115:154821. [PMID: 37119761 DOI: 10.1016/j.phymed.2023.154821] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/03/2023] [Accepted: 04/11/2023] [Indexed: 05/21/2023]
Abstract
BACKGROUND Multiple dysregulated pathways are behind the pathogenesis of neurodegenerative diseases (NDDs); however, the crucial targets are still unknown. Oxidative stress, apoptosis, autophagy, and inflammation are the most dominant pathways that strongly influence neurodegeneration. In this way, targeting the Ras/Raf/mitogen-activated protein kinases (MAPKs) pathway appears to be a developing strategy for combating NDDs like Parkinson's disease, Alzheimer's disease, stroke, aging, and other NDDs. Accordingly, plant secondary metabolites have shown promising potentials for the simultaneous modulation of the Ras/Raf/MAPKs pathway and play an essential role in NDDs. MAPKs include p38 MAPK, extracellular signal-regulated kinase 1/2 (ERK 1/2), and c-Jun N-terminal kinase (JNK), which are important molecular players in neurodegeneration. Ras/Raf, which is located the upstream of MAPK pathway influences the initiation and progression of neurodegeneration and is regulated by natural products. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of plant- and marine-derived secondary metabolites against several NDDs through the modulation of the Ras/Raf/MAPK signaling pathway. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of natural products on the Ras/Raf/MAPK signaling pathway in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including PubMed, Scopus, and Web of Sciences. Associated reference lists were also searched for the literature review. RESULTS From a total of 1495 results, finally 107 articles were included in the present study. The results show that several natural compounds such as alkaloid, phenolic, terpenoids, and nanoformulation were shown to have modulatory effects on the Ras/Raf/MAPKs pathway. CONCLUSION Natural products are promising multi-targeted agents with on NDDs through Ras/Raf/MAPKs pathway. Nevertheless, additional and complementary studies are necessary to check its efficacy and potential side effects.
Collapse
Affiliation(s)
| | - Sadaf Abdian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maedeh Tahvilian
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amin Iranpanah
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170022, Chile.
| |
Collapse
|
28
|
Dongiovanni P, Meroni M, Casati S, Goldoni R, Thomaz DV, Kehr NS, Galimberti D, Del Fabbro M, Tartaglia GM. Salivary biomarkers: novel noninvasive tools to diagnose chronic inflammation. Int J Oral Sci 2023; 15:27. [PMID: 37386003 DOI: 10.1038/s41368-023-00231-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 05/23/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Several chronic disorders including type 2 diabetes (T2D), obesity, heart disease and cancer are preceded by a state of chronic low-grade inflammation. Biomarkers for the early assessment of chronic disorders encompass acute phase proteins (APP), cytokines and chemokines, pro-inflammatory enzymes, lipids and oxidative stress mediators. These substances enter saliva through the blood flow and, in some cases, there is a close relation between their salivary and serum concentration. Saliva can be easily collected and stored with non-invasive and cost-saving procedures, and it is emerging the concept to use it for the detection of inflammatory biomarkers. To this purpose, the present review aims to discuss the advantages and challenges of using standard and cutting-edge techniques to discover salivary biomarkers which may be used in diagnosis/therapy of several chronic diseases with inflammatory consequences with the pursuit to possibly replace conventional paths with detectable soluble mediators in saliva. Specifically, the review describes the procedures used for saliva collection, the standard approaches for the measurement of salivary biomarkers and the novel methodological strategies such as biosensors to improve the quality of care for chronically affected patients.
Collapse
Affiliation(s)
- Paola Dongiovanni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Marica Meroni
- Medicine and Metabolic Diseases, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Sara Casati
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy.
| | - Riccardo Goldoni
- Department of Electronics, Information and Bioengineering (DEIB), Politecnico di Milano, Milan, Italy
- Istituto di Elettronica e di Ingegneria dell'Informazione e delle Telecomunicazioni, CNR, Pisa, Italy
| | - Douglas Vieira Thomaz
- Laboratory of Medicinal Pharmaceutical Chemistry, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO, Brazil
| | - Nermin Seda Kehr
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Department of Chemistry, İzmir Institute of Technology, Gülbahçe Kampüsü, Urla İzmir, Turkey
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- Neurology-Neurodegenerative Diseases, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Massimo Del Fabbro
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianluca M Tartaglia
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- UOC Maxillo-Facial Surgery and Dentistry Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy
| |
Collapse
|
29
|
Krzyzaniak K, Krion R, Szymczyk A, Stepniewska E, Sieminski M. Exploring Neuroprotective Agents for Sepsis-Associated Encephalopathy: A Comprehensive Review. Int J Mol Sci 2023; 24:10780. [PMID: 37445958 DOI: 10.3390/ijms241310780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Sepsis is a life-threatening condition resulting from an inflammatory overreaction that is induced by an infectious factor, which leads to multi-organ failure. Sepsis-associated encephalopathy (SAE) is a common complication of sepsis that can lead to acute cognitive and consciousness disorders, and no strict diagnostic criteria have been created for the complication thus far. The etiopathology of SAE is not fully understood, but plausible mechanisms include neuroinflammation, blood-brain barrier disruption, altered cerebral microcirculation, alterations in neurotransmission, changes in calcium homeostasis, and oxidative stress. SAE may also lead to long-term consequences such as dementia and post-traumatic stress disorder. This review aims to provide a comprehensive summary of substances with neuroprotective properties that have the potential to offer neuroprotection in the treatment of SAE. An extensive literature search was conducted, extracting 71 articles that cover a range of substances, including plant-derived drugs, peptides, monoclonal antibodies, and other commonly used drugs. This review may provide valuable insights for clinicians and researchers working in the field of sepsis and SAE and contribute to the development of new treatment options for this challenging condition.
Collapse
Affiliation(s)
- Klaudia Krzyzaniak
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Robert Krion
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Aleksandra Szymczyk
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Ewelina Stepniewska
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| | - Mariusz Sieminski
- Department of Emergency Medicine, Medical University of Gdansk, Smoluchowskiego 17, 80-214 Gdansk, Poland
| |
Collapse
|
30
|
Brown JS. Comparison of Oncogenes, Tumor Suppressors, and MicroRNAs Between Schizophrenia and Glioma: The Balance of Power. Neurosci Biobehav Rev 2023; 151:105206. [PMID: 37178944 DOI: 10.1016/j.neubiorev.2023.105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/25/2023] [Accepted: 04/30/2023] [Indexed: 05/15/2023]
Abstract
The risk of cancer in schizophrenia has been controversial. Confounders of the issue are cigarette smoking in schizophrenia, and antiproliferative effects of antipsychotic medications. The author has previously suggested comparison of a specific cancer like glioma to schizophrenia might help determine a more accurate relationship between cancer and schizophrenia. To accomplish this goal, the author performed three comparisons of data; the first a comparison of conventional tumor suppressors and oncogenes between schizophrenia and cancer including glioma. This comparison determined schizophrenia has both tumor-suppressive and tumor-promoting characteristics. A second, larger comparison between brain-expressed microRNAs in schizophrenia with their expression in glioma was then performed. This identified a core carcinogenic group of miRNAs in schizophrenia offset by a larger group of tumor-suppressive miRNAs. This proposed "balance of power" between oncogenes and tumor suppressors could cause neuroinflammation. This was assessed by a third comparison between schizophrenia, glioma and inflammation in asbestos-related lung cancer and mesothelioma (ALRCM). This revealed that schizophrenia shares more oncogenic similarity to ALRCM than glioma.
Collapse
|
31
|
Xu Y, Jiang H, Zhu B, Cao M, Feng T, Sun Z, Du G, Zhao Z. Advances and applications of fluids biomarkers in diagnosis and therapeutic targets of Alzheimer's disease. CNS Neurosci Ther 2023. [PMID: 37144603 DOI: 10.1111/cns.14238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 01/25/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
AIMS Alzheimer's disease (AD) is a neurodegenerative disease with challenging early diagnosis and effective treatments due to its complex pathogenesis. AD patients are often diagnosed after the appearance of the typical symptoms, thereby delaying the best opportunity for effective measures. Biomarkers could be the key to resolving the challenge. This review aims to provide an overview of application and potential value of AD biomarkers in fluids, including cerebrospinal fluid, blood, and saliva, in diagnosis and treatment. METHODS A comprehensive search of the relevant literature was conducted to summarize potential biomarkers for AD in fluids. The paper further explored the biomarkers' utility in disease diagnosis and drug target development. RESULTS Research on biomarkers mainly focused on amyloid-β (Aβ) plaques, Tau protein abnormal phosphorylation, axon damage, synaptic dysfunction, inflammation, and related hypotheses associated with AD mechanisms. Aβ42 , total Tau (t-Tau), and phosphorylated Tau (p-Tau), have been endorsed for their diagnostic and predictive capability. However, other biomarkers remain controversial. Drugs targeting Aβ have shown some efficacy and those that target BACE1 and Tau are still undergoing development. CONCLUSION Fluid biomarkers hold considerable potential in the diagnosis and drug development of AD. However, improvements in sensitivity and specificity, and approaches for managing sample impurities, need to be addressed for better diagnosis.
Collapse
Affiliation(s)
- Yanan Xu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| | - Hailun Jiang
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Bin Zhu
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Mingnan Cao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Tao Feng
- Center for Movement Disorders, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhongshi Sun
- Department of Pharmacy, The Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China
- Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Zhigang Zhao
- Department of Pharmacy, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- School of Pharmacy, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Redenšek Trampuž S, Vogrinc D, Goričar K, Dolžan V. Shared miRNA landscapes of COVID-19 and neurodegeneration confirm neuroinflammation as an important overlapping feature. Front Mol Neurosci 2023; 16:1123955. [PMID: 37008787 PMCID: PMC10064073 DOI: 10.3389/fnmol.2023.1123955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/20/2023] [Indexed: 03/19/2023] Open
Abstract
Introduction Development and worsening of most common neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and multiple sclerosis, have been associated with COVID-19 However, the mechanisms associated with neurological symptoms in COVID-19 patients and neurodegenerative sequelae are not clear. The interplay between gene expression and metabolite production in CNS is driven by miRNAs. These small non-coding molecules are dysregulated in most common neurodegenerative diseases and COVID-19. Methods We have performed a thorough literature screening and database mining to search for shared miRNA landscapes of SARS-CoV-2 infection and neurodegeneration. Differentially expressed miRNAs in COVID-19 patients were searched using PubMed, while differentially expressed miRNAs in patients with five most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis) were searched using the Human microRNA Disease Database. Target genes of the overlapping miRNAs, identified with the miRTarBase, were used for the pathway enrichment analysis performed with Kyoto Encyclopedia of Genes and Genomes and Reactome. Results In total, 98 common miRNAs were found. Additionally, two of them (hsa-miR-34a and hsa-miR-132) were highlighted as promising biomarkers of neurodegeneration, as they are dysregulated in all five most common neurodegenerative diseases and COVID-19. Additionally, hsa-miR-155 was upregulated in four COVID-19 studies and found to be dysregulated in neurodegeneration processes as well. Screening for miRNA targets identified 746 unique genes with strong evidence for interaction. Target enrichment analysis highlighted most significant KEGG and Reactome pathways being involved in signaling, cancer, transcription and infection. However, the more specific identified pathways confirmed neuroinflammation as being the most important shared feature. Discussion Our pathway based approach has identified overlapping miRNAs in COVID-19 and neurodegenerative diseases that may have a valuable potential for neurodegeneration prediction in COVID-19 patients. Additionally, identified miRNAs can be further explored as potential drug targets or agents to modify signaling in shared pathways. Graphical AbstractShared miRNA molecules among the five investigated neurodegenerative diseases and COVID-19 were identified. The two overlapping miRNAs, hsa-miR-34a and has-miR-132, present potential biomarkers of neurodegenerative sequelae after COVID-19. Furthermore, 98 common miRNAs between all five neurodegenerative diseases together and COVID-19 were identified. A KEGG and Reactome pathway enrichment analyses was performed on the list of shared miRNA target genes and finally top 20 pathways were evaluated for their potential for identification of new drug targets. A common feature of identified overlapping miRNAs and pathways is neuroinflammation. AD, Alzheimer's disease; ALS, amyotrophic lateral sclerosis; COVID-19, coronavirus disease 2019; HD, Huntington's disease; KEGG, Kyoto Encyclopedia of Genes and Genomes; MS, multiple sclerosis; PD, Parkinson's disease.
Collapse
Affiliation(s)
| | | | | | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
33
|
Crosstalk between Oxidative Stress and Aging in Neurodegeneration Disorders. Cells 2023; 12:cells12050753. [PMID: 36899889 PMCID: PMC10001353 DOI: 10.3390/cells12050753] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
The world population is aging rapidly, and increasing lifespan exacerbates the burden of age-related health issues. On the other hand, premature aging has begun to be a problem, with increasing numbers of younger people suffering aging-related symptoms. Advanced aging is caused by a combination of factors: lifestyle, diet, external and internal factors, as well as oxidative stress (OS). Although OS is the most researched aging factor, it is also the least understood. OS is important not only in relation to aging but also due to its strong impact on neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS), frontotemporal dementia (FTD), Alzheimer's disease (AD), and Parkinson's disease (PD). In this review, we will discuss the aging process in relation to OS, the function of OS in neurodegenerative disorders, and prospective therapeutics capable of relieving neurodegenerative symptoms associated with the pro-oxidative condition.
Collapse
|
34
|
Simões JL, Sobierai LD, Leal IF, Dos Santos MV, Coiado JV, Bagatini MD. Action of the Purinergic and Cholinergic Anti-inflammatory Pathways on Oxidative Stress in Patients with Alzheimer's Disease in the Context of the COVID-19 Pandemic. Neuroscience 2023; 512:110-132. [PMID: 36526078 PMCID: PMC9746135 DOI: 10.1016/j.neuroscience.2022.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the etiologic agent of the 2019 coronavirus disease (COVID-19), has affected more than 20 million people in Brazil and caused a global health emergency. This virus has the potential to affect various parts of the body and compromise metabolic functions. The virus-mediated neural inflammation of the nervous system is due to a storm of cytokines and oxidative stress, which are the clinical features of Alzheimer's disease (AD). This neurodegenerative disease is aggravated in cases involving SARS-CoV-2 and its inflammatory biomarkers, accelerating accumulation of β-amyloid peptide, hyperphosphorylation of tau protein, and production of reactive oxygen species, which lead to homeostasis imbalance. The cholinergic system, through neurons and the neurotransmitter acetylcholine (ACh), modulates various physiological pathways, such as the response to stress, sleep and wakefulness, sensory information, and the cognitive system. Patients with AD have low concentrations of ACh; hence, therapeutic methods are aimed at adjusting the ACh titers available to the body for maintaining functionality. Herein, we focused on acetylcholinesterase inhibitors, responsible for the degradation of ACh in the synaptic cleft, and muscarinic and nicotinic receptor agonists of the cholinergic system owing to the therapeutic potential of the cholinergic anti-inflammatory pathway in AD associated with SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Júlia L.B. Simões
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - Inayá F. Leal
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | | | - João Victor Coiado
- Medical School, Federal University of Fronteira Sul, Chapecó, SC, Brazil
| | - Margarete D. Bagatini
- Graduate Program in Biomedical Sciences, Federal University of Fronteira Sul, Chapecó, SC, Brazil,Corresponding author
| |
Collapse
|
35
|
Li K, Chi R, Liu L, Feng M, Su K, Li X, He G, Shi Y. 3D genome-selected microRNAs to improve Alzheimer's disease prediction. Front Neurol 2023; 14:1059492. [PMID: 36860572 PMCID: PMC9968804 DOI: 10.3389/fneur.2023.1059492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/16/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Alzheimer's disease (AD) is a type of neurodegenerative disease that has no effective treatment in its late stage, making the early prediction of AD critical. There have been an increase in the number of studies indicating that miRNAs play an important role in neurodegenerative diseases including Alzheimer's disease via epigenetic modifications including DNA methylation. Therefore, miRNAs may serve as excellent biomarkers in early AD prediction. Methods Considering that the non-coding RNAs' activity may be linked to their corresponding DNA loci in the 3D genome, we collected the existing AD-related miRNAs combined with 3D genomic data in this study. We investigated three machine learning models in this work under leave-one-out cross-validation (LOOCV): support vector classification (SVC), support vector regression (SVR), and knearest neighbors (KNNs). Results The prediction results of different models demonstrated the effectiveness of incorporating 3D genome information into the AD prediction models. Discussion With the assistance of the 3D genome, we were able to train more accurate models by selecting fewer but more discriminatory miRNAs, as witnessed by several ML models. These interesting findings indicate that the 3D genome has great potential to play an important role in future AD research.
Collapse
Affiliation(s)
- Keyi Li
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Runqiu Chi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xia Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guang He
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,*Correspondence: Guang He ✉
| | - Yi Shi
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China,Shanghai Key Laboratory of Psychotic Disorders, Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China,Yi Shi ✉
| |
Collapse
|
36
|
Lukiw WJ, Pogue AI. Endogenous miRNA-Based Innate-Immunity against SARS-CoV-2 Invasion of the Brain. Int J Mol Sci 2023; 24:3363. [PMID: 36834773 PMCID: PMC9966119 DOI: 10.3390/ijms24043363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/03/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
The severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2), the causative agent of COVID-19, possesses an unusually large positive-sense, single-stranded viral RNA (ssvRNA) genome of about ~29,903 nucleotides (nt). In many respects, this ssvRNA resembles a very large, polycistronic messenger RNA (mRNA) possessing a 5'-methyl cap (m7GpppN), a 3'- and 5'-untranslated region (3'-UTR, 5'-UTR), and a poly-adenylated (poly-A+) tail. As such, the SARS-CoV-2 ssvRNA is susceptible to targeting by small non-coding RNA (sncRNA) and/or microRNA (miRNA), as well as neutralization and/or inhibition of its infectivity via the human body's natural complement of about ~2650 miRNA species. Depending on host cell and tissue type, in silico analysis, RNA sequencing, and molecular-genetic investigations indicate that, remarkably, almost every single human miRNA has the potential to interact with the primary sequence of SARS-CoV-2 ssvRNA. Individual human variation in host miRNA abundance, speciation, and complexity among different human populations and additional variability in the cell and tissue distribution of the SARS-CoV-2 angiotensin converting enzyme-2 (ACE2) receptor (ACE2R) appear to further contribute to the molecular-genetic basis for the wide variation in individual host cell and tissue susceptibility to COVID-19 infection. In this paper, we review recently described aspects of the miRNA and ssvRNA ribonucleotide sequence structure in this highly evolved miRNA-ssvRNA recognition and signaling system and, for the first time, report the most abundant miRNAs in the control superior temporal lobe neocortex (STLN), an anatomical area involved in cognition and targeted by both SARS-CoV-2 invasion and Alzheimer's disease (AD). We further evaluate important factors involving the neurotropic nature of SARS-CoV-2 and miRNAs and ACE2R distribution in the STLN that modulate significant functional deficits in the brain and CNS associated with SARS-CoV-2 infection and COVID-19's long-term neurological effects.
Collapse
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotech Research, Toronto, ON M5S 1A8, Canada
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | | |
Collapse
|
37
|
Yulug B, Altay O, Li X, Hanoglu L, Cankaya S, Lam S, Velioglu HA, Yang H, Coskun E, Idil E, Nogaylar R, Ozsimsek A, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Yildirim S, Arif M, Shoaie S, Zhang C, Nielsen J, Turkez H, Borén J, Uhlén M, Mardinoglu A. Combined metabolic activators improve cognitive functions in Alzheimer's disease patients: a randomised, double-blinded, placebo-controlled phase-II trial. Transl Neurodegener 2023; 12:4. [PMID: 36703196 PMCID: PMC9879258 DOI: 10.1186/s40035-023-00336-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is associated with metabolic abnormalities linked to critical elements of neurodegeneration. We recently administered combined metabolic activators (CMA) to the AD rat model and observed that CMA improves the AD-associated histological parameters in the animals. CMA promotes mitochondrial fatty acid uptake from the cytosol, facilitates fatty acid oxidation in the mitochondria, and alleviates oxidative stress. METHODS Here, we designed a randomised, double-blinded, placebo-controlled phase-II clinical trial and studied the effect of CMA administration on the global metabolism of AD patients. One-dose CMA included 12.35 g L-serine (61.75%), 1 g nicotinamide riboside (5%), 2.55 g N-acetyl-L-cysteine (12.75%), and 3.73 g L-carnitine tartrate (18.65%). AD patients received one dose of CMA or placebo daily during the first 28 days and twice daily between day 28 and day 84. The primary endpoint was the difference in the cognitive function and daily living activity scores between the placebo and the treatment arms. The secondary aim of this study was to evaluate the safety and tolerability of CMA. A comprehensive plasma metabolome and proteome analysis was also performed to evaluate the efficacy of the CMA in AD patients. RESULTS We showed a significant decrease of AD Assessment Scale-cognitive subscale (ADAS-Cog) score on day 84 vs day 0 (P = 0.00001, 29% improvement) in the CMA group. Moreover, there was a significant decline (P = 0.0073) in ADAS-Cog scores (improvement of cognitive functions) in the CMA compared to the placebo group in patients with higher ADAS-Cog scores. Improved cognitive functions in AD patients were supported by the relevant alterations in the hippocampal volumes and cortical thickness based on imaging analysis. Moreover, the plasma levels of proteins and metabolites associated with NAD + and glutathione metabolism were significantly improved after CMA treatment. CONCLUSION Our results indicate that treatment of AD patients with CMA can lead to enhanced cognitive functions and improved clinical parameters associated with phenomics, metabolomics, proteomics and imaging analysis. Trial registration ClinicalTrials.gov NCT04044131 Registered 17 July 2019, https://clinicaltrials.gov/ct2/show/NCT04044131.
Collapse
Affiliation(s)
- Burak Yulug
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ozlem Altay
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Xiangyu Li
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Lutfu Hanoglu
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Seyda Cankaya
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Simon Lam
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Halil Aziz Velioglu
- Department of Women's and Children's Health, Karolinska Institute, Stockholm, Sweden
- Functional Imaging and Cognitive-Affective Neuroscience Lab, Istanbul Medipol University, Istanbul, Turkey
| | - Hong Yang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Ebru Coskun
- Department of Neurology, Faculty of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Ezgi Idil
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Rahim Nogaylar
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Ahmet Ozsimsek
- Department of Neurology and Neuroscience, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Cemil Bayram
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Ismail Bolat
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum, Turkey
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Serkan Yildirim
- Department of Pathology, Veterinary Faculty, Ataturk University, Erzurum, Turkey
| | - Muhammad Arif
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
| | - Saeed Shoaie
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK
| | - Cheng Zhang
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum, Turkey
| | - Jan Borén
- Department of Molecular and Clinical Medicine, University of Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mathias Uhlén
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH - Royal Institute of Technology, Stockholm, Sweden.
- Centre for Host-Microbiome Interaction's, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, UK.
| |
Collapse
|
38
|
Liu Z, Zhang H, Liu S, Hou Y, Chi G. The Dual Role of Astrocyte-Derived Exosomes and Their Contents in the Process of Alzheimer's Disease. J Alzheimers Dis 2023; 91:33-42. [PMID: 36373321 DOI: 10.3233/jad-220698] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Millions of patients worldwide are affected by Alzheimer's disease (AD), and the number of patients with AD is increasing. However, current treatment can only improve symptoms but cannot cure the disease. Astrocytes, glial cells in the central nervous system, play important roles in support, nutrition, protection, and information transmission in the nervous system. Pathological changes in astrocytes are closely associated with the development and progression of AD. As carriers for material and information exchange between astrocytes and other neural cells, astrocyte-derived exosomes (ADEs) have been widely studied in recent years, and ADE secretion has been shown to be increased in patients with AD and animal models of AD. ADEs contain a variety of substances, including nucleic acids, proteins, and lipids. The contents of ADEs can effectively control oxidative stress and detoxification during the early development of AD, thereby playing positive and negative roles in the occurrence and development of AD. In this review, we elaborate on the functions of ADEs and their components in AD and discuss their applications in AD research and clinical practice.
Collapse
Affiliation(s)
- Ziyu Liu
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Haotian Zhang
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Shiji Liu
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Yi Hou
- Department of Regenerative Medicine, School of Pharmaceutical Science, Jilin University, Changchun, China
| | - Guangfan Chi
- The Key Laboratory of Pathobiology, Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, China
| |
Collapse
|
39
|
Ezzati A, Pak VM. The effects of time-restricted eating on sleep, cognitive decline, and Alzheimer's disease. Exp Gerontol 2023; 171:112033. [PMID: 36403899 DOI: 10.1016/j.exger.2022.112033] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
According to the United Nations, by 2050, one in six individuals will be over age 65 globally, and one in four people would be aged 65 and older in western countries. The unprecedented growth of the aging population is associated with increased age-related disorders like Alzheimer's disease (AD) and Mild cognitive impairment (MCI). To date, no cure is known for AD, thus lifestyle interventions including calorie restriction (CR) and time-restricted eating (TRE) are proposed as potential approach to delay the onset and progression of the disease. Sleep disturbances are common in people with MCI and AD. Moreover, accumulating data indicates that pro-inflammatory cytokines including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-8 and IL-10 increase in individuals with AD and MCI versus healthy subjects. Thus, the purpose of the present review is to describe the potential effects of TRE on sleep, cognition decline, and neuroinflammatory markers in humans. Preliminary evidence suggests that TRE may produce neuroprotective effects on cognition and reduce neuroinflammatory markers related to AD in humans. To date, no studies investigated the effects of TRE on sleep disturbances and patients with AD. Thereby, the impact of TRE on cognition in individuals with cognitive decline and AD needs to be investigated further in randomized controlled trials (RCTs).
Collapse
Affiliation(s)
- Armin Ezzati
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, Manhattan, KS, USA; Physical Activity and Nutrition Clinical Research Consortium, College of Health and Human Sciences, Manhattan, KS, USA.
| | - Victoria M Pak
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, GA, USA; Rollins School of Public Health, Department of Epidemiology, Atlanta, GA, USA.
| |
Collapse
|
40
|
Cai Z, Liu M, Zeng L, Zhao K, Wang C, Sun T, Li Z, Liu R. Role of traditional Chinese medicine in ameliorating mitochondrial dysfunction via non-coding RNA signaling: Implication in the treatment of neurodegenerative diseases. Front Pharmacol 2023; 14:1123188. [PMID: 36937876 PMCID: PMC10014574 DOI: 10.3389/fphar.2023.1123188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/17/2023] [Indexed: 03/05/2023] Open
Abstract
Neurodegenerative diseases (NDs) are common chronic disorders associated with progressive nervous system damage, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, among others. Mitochondria are abundant in various nervous system cells and provide a bulk supply of the adenosine triphosphate necessary for brain function, considered the center of the free-radical theory of aging. One common feature of NDs is mitochondrial dysfunction, which is involved in many physiopathological processes, including apoptosis, inflammation, oxidative stress, and calcium homeostasis. Recently, genetic studies revealed extensive links between mitochondrion impairment and dysregulation of non-coding RNAs (ncRNAs) in the pathology of NDs. Traditional Chinese medicines (TCMs) have been used for thousands of years in treating NDs. Numerous modern pharmacological studies have demonstrated the therapeutic effects of prescription, herbal medicine, bioactive ingredients, and monomer compounds of TCMs, which are important for managing the symptoms of NDs. Some highly effective TCMs exert protective effects on various key pathological features regulated by mitochondria and play a pivotal role in recovering disrupted signaling pathways. These disrupted signaling pathways are induced by abnormally-expressed ncRNAs associated with mitochondrial dysfunction, including microRNAs, long ncRNAs, and circular RNAs. In this review, we first explored the underlying ncRNA mechanisms linking mitochondrial dysfunction and neurodegeneration, demonstrating the implication of ncRNA-induced mitochondrial dysfunction in the pathogenesis of NDs. The ncRNA-induced mitochondrial dysfunctions affect mitochondrial biogenesis, dynamics, autophagy, Ca2+ homeostasis, oxidative stress, and downstream apoptosis. The review also discussed the targeting of the disease-related mitochondrial proteins in NDs and the protective effects of TCM formulas with definite composition, standardized extracts from individual TCMs, and monomeric compounds isolated from TCM. Additionally, we explored the ncRNA regulation of mitochondrial dysfunction in NDs and the effects and potential mechanisms of representative TCMs in alleviating mitochondrial pathogenesis and conferring anti-inflammatory, antioxidant, and anti-apoptotic pathways against NDs. Therefore, this review presents an overview of the role of mitochondrion-related ncRNAs and the target genes for TCM-based therapeutic interventions in NDs, providing insight into understanding the "multi-level compound-target-pathway regulatory" treatment mechanism of TCMs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rui Liu
- *Correspondence: Zhuorong Li, ; Rui Liu,
| |
Collapse
|
41
|
Calderón-Garcidueñas L, Torres-Jardón R, Greenough GP, Kulesza R, González-Maciel A, Reynoso-Robles R, García-Alonso G, Chávez-Franco DA, García-Rojas E, Brito-Aguilar R, Silva-Pereyra HG, Ayala A, Stommel EW, Mukherjee PS. Sleep matters: Neurodegeneration spectrum heterogeneity, combustion and friction ultrafine particles, industrial nanoparticle pollution, and sleep disorders-Denial is not an option. Front Neurol 2023; 14:1117695. [PMID: 36923490 PMCID: PMC10010440 DOI: 10.3389/fneur.2023.1117695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/01/2023] [Indexed: 03/02/2023] Open
Abstract
Sustained exposures to ubiquitous outdoor/indoor fine particulate matter (PM2.5), including combustion and friction ultrafine PM (UFPM) and industrial nanoparticles (NPs) starting in utero, are linked to early pediatric and young adulthood aberrant neural protein accumulation, including hyperphosphorylated tau (p-tau), beta-amyloid (Aβ1 - 42), α-synuclein (α syn) and TAR DNA-binding protein 43 (TDP-43), hallmarks of Alzheimer's (AD), Parkinson's disease (PD), frontotemporal lobar degeneration (FTLD), and amyotrophic lateral sclerosis (ALS). UFPM from anthropogenic and natural sources and NPs enter the brain through the nasal/olfactory pathway, lung, gastrointestinal (GI) tract, skin, and placental barriers. On a global scale, the most important sources of outdoor UFPM are motor traffic emissions. This study focuses on the neuropathology heterogeneity and overlap of AD, PD, FTLD, and ALS in older adults, their similarities with the neuropathology of young, highly exposed urbanites, and their strong link with sleep disorders. Critical information includes how this UFPM and NPs cross all biological barriers, interact with brain soluble proteins and key organelles, and result in the oxidative, endoplasmic reticulum, and mitochondrial stress, neuroinflammation, DNA damage, protein aggregation and misfolding, and faulty complex protein quality control. The brain toxicity of UFPM and NPs makes them powerful candidates for early development and progression of fatal common neurodegenerative diseases, all having sleep disturbances. A detailed residential history, proximity to high-traffic roads, occupational histories, exposures to high-emission sources (i.e., factories, burning pits, forest fires, and airports), indoor PM sources (tobacco, wood burning in winter, cooking fumes, and microplastics in house dust), and consumption of industrial NPs, along with neurocognitive and neuropsychiatric histories, are critical. Environmental pollution is a ubiquitous, early, and cumulative risk factor for neurodegeneration and sleep disorders. Prevention of deadly neurological diseases associated with air pollution should be a public health priority.
Collapse
Affiliation(s)
- Lilian Calderón-Garcidueñas
- College of Health, The University of Montana, Missoula, MT, United States.,Universidad del Valle de México, Mexico City, Mexico
| | - Ricardo Torres-Jardón
- Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Glen P Greenough
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Randy Kulesza
- Department of Anatomy, Lake Erie College of Osteopathic Medicine, Erie, PA, United States
| | | | | | | | | | | | | | - Héctor G Silva-Pereyra
- Instituto Potosino de Investigación Científica y Tecnológica A.C., San Luis Potosi, Mexico
| | - Alberto Ayala
- Sacramento Metropolitan Air Quality Management District, Sacramento, CA, United States.,Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, WV, United States
| | - Elijah W Stommel
- Department of Neurology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| | - Partha S Mukherjee
- Interdisciplinary Statistical Research Unit, Indian Statistical Institute, Kolkata, India
| |
Collapse
|
42
|
Zalewska T, Pawelec P, Ziabska K, Ziemka-Nalecz M. Sexual Dimorphism in Neurodegenerative Diseases and in Brain Ischemia. Biomolecules 2022; 13:26. [PMID: 36671411 PMCID: PMC9855831 DOI: 10.3390/biom13010026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022] Open
Abstract
Epidemiological studies and clinical observations show evidence of sexual dimorphism in brain responses to several neurological conditions. It is suggested that sex-related differences between men and women may have profound effects on disease susceptibility, pathophysiology, and progression. Sexual differences of the brain are achieved through the complex interplay of several factors contributing to this phenomenon, such as sex hormones, as well as genetic and epigenetic differences. Despite recent advances, the precise link between these factors and brain disorders is incompletely understood. This review aims to briefly outline the most relevant aspects that differ between men and women in ischemia and neurodegenerative disorders (AD, PD, HD, ALS, and SM). Recognition of disparities between both sexes could aid the development of individual approaches to ameliorate or slow the progression of intractable disorders.
Collapse
Affiliation(s)
- Teresa Zalewska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, 5 A. Pawinskiego Str., 02-106 Warsaw, Poland
| | | | | | | |
Collapse
|
43
|
Ramanathan D, Huang L, Wilson T, Boling W. Molecular hydrogen therapy for neurological diseases: a review of current evidence. Med Gas Res 2022; 13:94-98. [PMID: 36571372 PMCID: PMC9979207 DOI: 10.4103/2045-9912.359677] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Reactive oxygen species and other free radicals cause oxidative stress which is the underlying pathogenesis of cellular injury in various neurological diseases. Molecular hydrogen therapy with its unique biological property of selectively scavenging pathological free radicals has demonstrated therapeutic potential in innumerable animal studies and some clinical trials. These studies have implicated several cellular pathways affected by hydrogen therapy in explaining its anti-inflammatory and antioxidative effects. This article reviews relevant animal and clinical studies that demonstrate neuroprotective effects of hydrogen therapy in stroke, neurodegenerative diseases, neurotrauma, and global brain injury.
Collapse
Affiliation(s)
- Dinesh Ramanathan
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Lei Huang
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA,Department of Basic Sciences, Loma Linda University, Loma Linda, CA, USA
| | - Taylor Wilson
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA
| | - Warren Boling
- Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA,Correspondence to: Warren Boling, E-mail:
| |
Collapse
|
44
|
Liu M, Liu R, Wang R, Ba Y, Yu F, Deng Q, Huang H. Lead-induced neurodevelopmental lesion and epigenetic landscape: Implication in neurological disorders. J Appl Toxicol 2022. [PMID: 36433892 DOI: 10.1002/jat.4419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 11/20/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Lead (Pb) was implicated in multiple genotoxic, neuroepigenotoxic, and chromosomal-toxic mechanisms and interacted with varying synaptic plasticity pathways, likely underpinning previous reports of links between Pb and cognitive impairment. Epigenetic changes have emerged as a promising biomarker for neurological disorders, including cognitive disorders, Alzheimer's disease (AD), and Parkinson's disease (PD). In the present review, special attention is paid to neural epigenetic features and mechanisms that can alter gene expression patterns upon environmental Pb exposure in rodents, primates, and zebrafish. Epigenetic modifications have also been discussed in population studies and cell experiment. Further, we explore growing evidence of potential linkage between Pb-induced disruption of regulatory pathway and neurodevelopmental and neurological disorders both in vivo and in vitro. These findings uncover how epigenome in neurons facilitates the development and function of the brain in response to Pb insult.
Collapse
Affiliation(s)
- Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Fangfang Yu
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Qihong Deng
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, Henan province, 450001, China
| |
Collapse
|
45
|
Wang H, Wu S, Wang L, Gou X, Guo X, Liu Z, Li P. Association between serum total bilirubin and Alzheimer's disease: A bidirectional Mendelian randomization study. Arch Gerontol Geriatr 2022; 103:104786. [PMID: 35961107 DOI: 10.1016/j.archger.2022.104786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/27/2022] [Accepted: 08/03/2022] [Indexed: 11/23/2022]
Abstract
Oxidative stress plays an important role in the pathogenesis of Alzheimer's disease (AD). As a potent antioxidant, serum bilirubin is decreased in AD and may be related to its pathogenesis, but the causal association between serum bilirubin and AD has not been reported. This was investigated in the present study by bidirectional two-sample Mendelian randomization (MR) analysis. Genetic instruments at the genome-wide significance level (P < 5 × 10-8) were selected from the United Kingdom Biobank (n = 342,829). Summary-level AD data were obtained from a large-scale genome-wide association study (n = 63,926). Causal estimates were evaluated using the inverse variance weighted (IVW) approach and other five complementary methods. MR-Egger, IVW and MR pleiotropy residual sum and outlier (MR-PRESSO) methods were used for sensitivity analyses. The results showed that there was no significant association between serum total bilirubin and AD (odds ratio=1.003, 95% confidence interval: 0.967-1.041, P = 0.865). Inverse MR revealed that serum total bilirubin was increased in AD (beta = 0.009, SE = 0.003, P = 0.010). These results indicate that serum total bilirubin is not causally associated with AD and cannot be used for screening or diagnosis, but can potentially serve as a biomarker of disease severity, and it needs further clinical studies.
Collapse
Affiliation(s)
- Haiyan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Shuzhen Wu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Lijuan Wang
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Xiaoyan Gou
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Biobank, Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Xiaoling Guo
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China
| | - Zhengping Liu
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China
| | - Pengsheng Li
- Department of Obstetrics, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, 11 Renminxi Road, Foshan, Guangdong 528000, China; Foshan Fetal Medicine Research Institute, Affiliated Foshan Maternity & Child Healthcare Hospital, Southern Medical University, Foshan, China.
| |
Collapse
|
46
|
Li S, Wu L, Ma M, Yang L, Qin C. MicroRNA-668-3p regulates oxidative stress and cell damage induced by Aβ1-42 by targeting the OXR1/p53-p21 axis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:928. [PMID: 36172098 PMCID: PMC9511202 DOI: 10.21037/atm-22-3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/12/2022] [Indexed: 11/25/2022]
Abstract
Background Alzheimer’s disease (AD) is the most common type of dementia in old age and has become a serious social and medical problem threatening human health. We aimed to explore the mechanisms underlying AD development by screening for microRNAs (miRNAs) that affect AD progression and examining their role in AD development. Methods Hematoxylin-eosin (HE) staining, immunohistochemistry, and immunofluorescence (IF) were used to analyze the characteristics of the hippocampus, neuron cell separation, and related protein expression in mice. We used Gene Expression Omnibus (GEO) data analysis to screen miRNAs and mRNAs that affect AD progression, and quantitative reverse transcription polymerase chain reaction (RT-qPCR) and western blot analysis to determine changes in miRNA and mRNA levels before and after amyloid β (Aβ)1-42 induction. In addition, we used luciferase analysis to examine miRNA and mRNA binding and the effect of miRNA/mRNA interaction on neuronal cell proliferation. Apoptosis and reactive oxygen species (ROS) levels were examined using Cell Counting Kit-8 analysis and flow cytometry (FCM), respectively. The enzyme-linked immunosorbent assay was used to analyze changes in neuronal cell-secreted oxidative stress-related protein levels through miRNA/mRNA interaction. Results Oxidative stress levels were significantly increased in the AD mouse model. GEO data analysis revealed 67 dysregulated miRNAs, and miR-668-3p was identified as a potential therapeutic target for AD. We found that the AD and Aβ1-42-induced models showed an increase in miR-668-3p and a decrease in oxidation resistance 1 (OXR1) expression. The luciferase analysis results revealed that miR-668-3p may play a role in AD development by targeting OXR1 and promoting intracellular oxidative stress by activating p53-p21 signaling. The final rescue experiment also confirmed that Aβ1-42-induction decreased cell proliferation, increased apoptosis, increased cell cycle arrest, and promoted oxidative stress. Tenovin-1 (TEN) enhanced the effect of Aβ1-42, and the miR-668-3p inhibitor partially alleviated it, although the effect of the miR-668-3p inhibitor was weakened by TEN. Conclusions MiR-668-3p negatively regulated OXR1 expression by targeting OXR1, affecting p53-p21 protein signaling, and regulating cell damage and oxidative stress induced by Aβ1-42. Therefore, miR-668-3p may be a potential therapeutic target for AD.
Collapse
Affiliation(s)
- Shengyu Li
- Department of Neurology, Wuming Hospital of Guangxi Medical University, Nanning, China.,Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lishuo Wu
- Department of Neurology, The Fifth Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Neurology, The First People's Hospital of Nanning, Nanning, China
| | - Meigang Ma
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Longxiu Yang
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chao Qin
- Department of Neurology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
47
|
Zhang H, Liu X, Liu Y, Liu J, Gong X, Li G, Tang M. Crosstalk between regulatory non-coding RNAs and oxidative stress in Parkinson’s disease. Front Aging Neurosci 2022; 14:975248. [PMID: 36016854 PMCID: PMC9396353 DOI: 10.3389/fnagi.2022.975248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease is the second most common neurodegenerative disease after Alzheimer’s disease, which imposes an ever-increasing burden on society. Many studies have indicated that oxidative stress may play an important role in Parkinson’s disease through multiple processes related to dysfunction or loss of neurons. Besides, several subtypes of non-coding RNAs are found to be involved in this neurodegenerative disorder. However, the interplay between oxidative stress and regulatory non-coding RNAs in Parkinson’s disease remains to be clarified. In this article, we comprehensively survey and overview the role of regulatory ncRNAs in combination with oxidative stress in Parkinson’s disease. The interaction between them is also summarized. We aim to provide readers with a relatively novel insight into the pathogenesis of Parkinson’s disease, which would contribute to the development of pre-clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Hantao Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiaoyan Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Yi Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- Institute of Animal Husbandry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Junlin Liu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xun Gong
- Department of Rheumatology & Immunology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Gang Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Shandong First Medical University, Taian, China
- *Correspondence: Gang Li Min Tang
| | - Min Tang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
- *Correspondence: Gang Li Min Tang
| |
Collapse
|
48
|
Liu Y, Cheng X, Li H, Hui S, Zhang Z, Xiao Y, Peng W. Non-Coding RNAs as Novel Regulators of Neuroinflammation in Alzheimer's Disease. Front Immunol 2022; 13:908076. [PMID: 35720333 PMCID: PMC9201920 DOI: 10.3389/fimmu.2022.908076] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/09/2022] [Indexed: 01/04/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the most common causes of dementia. Although significant breakthroughs have been made in understanding the progression and pathogenesis of AD, it remains a worldwide problem and a significant public health burden. Thus, more efficient diagnostic and therapeutic strategies are urgently required. The latest research studies have revealed that neuroinflammation is crucial in the pathogenesis of AD. Non-coding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs), microRNAs (miRNAs), circular RNAs (circRNAs), PIWI-interacting RNAs (piRNAs), and transfer RNA-derived small RNAs (tsRNAs), have been strongly associated with AD-induced neuroinflammation. Furthermore, several ongoing pre-clinical studies are currently investigating ncRNA as disease biomarkers and therapeutic interventions to provide new perspectives for AD diagnosis and treatment. In this review, the role of different types of ncRNAs in neuroinflammation during AD are summarized in order to improve our understanding of AD etiology and aid in the translation of basic research into clinical practice.
Collapse
Affiliation(s)
- Yuqing Liu
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Xin Cheng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Hongli Li
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Shan Hui
- Department of Geratology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Zheyu Zhang
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| | - Yang Xiao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, Changsha, China.,Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Weijun Peng
- Department of Integrated Traditional Chinese and Western Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Mental Disorder, Changsha, China
| |
Collapse
|
49
|
Rummel NG, Butterfield DA. Altered Metabolism in Alzheimer Disease Brain: Role of Oxidative Stress. Antioxid Redox Signal 2022; 36:1289-1305. [PMID: 34416829 PMCID: PMC9229240 DOI: 10.1089/ars.2021.0177] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Significance: Alzheimer disease (AD) is an all-too-common condition in the aging population. However, aging does not automatically equal neurodegeneration and memory decline. Recent Advances: This review article involves metabolic changes in the AD brain that are related to oxidative stress. Selected pathways are identified as potential targets for intervention in AD. Critical Issues: One of the main factors of AD is the oxidative imbalance within the central nervous system, causing a disruption in metabolic processes. Reactive oxygen species (ROS) are a natural consequence of many cellular processes, especially those associated with mitochondria, such as the electron transport chain. Some ROS, when kept under control and maintained at reasonable levels, often play roles in cell signaling. The cellular damage of ROS arises when oxidative imbalance occurs, in which case ROS are not controlled, leading to a myriad of alterations in cellular metabolic processes. These altered pathways include, among others, dysfunctional glycolysis, calcium regulation, lipid metabolism, mitochondrial processes, and mammalian target of rapamycin pathway dysregulation. Future Directions: Understanding how ROS can lead to these alterations can, ideally, elucidate therapeutic options for retarding AD progression in the aging population. Antioxid. Redox Signal. 36, 1289-1305.
Collapse
Affiliation(s)
- Nicole G Rummel
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA
| | - D Allan Butterfield
- Department of Chemistry and University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
50
|
Cucos CA, Milanesi E, Dobre M, Musat IA, Manda G, Cuadrado A. Altered Blood and Brain Expression of Inflammation and Redox Genes in Alzheimer's Disease, Common to APP V717I × TAU P301L Mice and Patients. Int J Mol Sci 2022; 23:ijms23105799. [PMID: 35628609 PMCID: PMC9144576 DOI: 10.3390/ijms23105799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/09/2022] [Accepted: 05/19/2022] [Indexed: 02/01/2023] Open
Abstract
Despite intensive research, the pathophysiology of Alzheimer’s disease (AD) is still not fully understood, and currently there are no effective treatments. Therefore, there is an unmet need for reliable biomarkers and animal models of AD to develop innovative therapeutic strategies addressing early pathologic events such as neuroinflammation and redox disturbances. The study aims to identify inflammatory and redox dysregulations in the context of AD-specific neuronal cell death and DNA damage, using the APPV717I× TAUP301L (AT) mouse model of AD. The expression of 84 inflammatory and 84 redox genes in the hippocampus and peripheral blood of double transgenic AT mice was evaluated against age-matched controls. A distinctive gene expression profile in the hippocampus and the blood of AT mice was identified, addressing DNA damage, apoptosis and thrombosis, complemented by inflammatory factors and receptors, along with ROS producers and antioxidants. Gene expression dysregulations that are common to AT mice and AD patients guided the final selection of candidate biomarkers. The identified inflammation and redox genes, common to AD patients and AT mice, might be valuable candidate biomarkers for preclinical drug development that could be readily translated to clinical trials.
Collapse
Affiliation(s)
- Catalina Anca Cucos
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Elena Milanesi
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Maria Dobre
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
| | - Ioana Andreea Musat
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 050474 Bucharest, Romania;
| | - Gina Manda
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Correspondence: (G.M.); (A.C.)
| | - Antonio Cuadrado
- Victor Babes National Institute of Pathology, 050096 Bucharest, Romania; (C.A.C.); (E.M.); (M.D.)
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), 28049 Madrid, Spain
- Instituto de Investigaciones Biomédicas “Alberto Sols” (CSIC-UAM), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), 28046 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), 28029 Madrid, Spain
- Correspondence: (G.M.); (A.C.)
| |
Collapse
|