1
|
Lin W, Wu X, Xu S, Wang D, Chen J, Chen L, Chen X. Expression of histone methyltransferase WHSC1 in invasive breast cancer and its correlation with clinical and pathological data. Pathol Res Pract 2024; 263:155647. [PMID: 39395300 DOI: 10.1016/j.prp.2024.155647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/02/2024] [Accepted: 10/05/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND The WHSC1 protein facilitates specific dimethylation of histone H3 at the K36 position, enhancing gene transcription and expression. Studies have confirmed its high expression in diverse malignant tumors. We aimed to identify novel molecular markers to assess the biological behavior of breast cancer cells. METHODS We conducted a comprehensive analysis of mRNA expression in breast cancer and adjacent tissues based on TCGA data. We enrolled 141 breast cancer patients treated at the First Affiliated Hospital of Fujian Medical University between 2012 and 2016. Patient clinical information and pathological specimens were obtained. We utilized tissue microarray (TMA) technology. We employed the chi-square test for between-group comparisons, with p < 0.05 indicating statistical significance. Furthermore, we analyzed the associations between WHSC1 expression and clinical or pathological data. RESULTS WHSC1 mRNA expression was significantly higher in breast cancer tissues than in adjacent tissues (p < 0.001). Moreover, high WHSC1 protein expression in breast cancer was associated with several important clinical parameters, such as pathological type (p = 0.007), high Ki67 expression(Ki67>20 %) (p < 0.001), lymph node metastasis (p < 0.001), T stage (p = 0.011), N stage (p < 0.001), postoperative pathological stage (p < 0.001), premenopausal status (p = 0.004), and positive HER2 status (p < 0.001). Multivariate regression analysis showed that high WHSC1 expression, elevated Ki67 levels, and positive HER2 status were independent risk factors for axillary lymph node metastasis in breast cancer patients. CONCLUSION WHSC1 protein expression is upregulated in breast cancer patients and represents an independent risk factor influencing axillary lymph node metastasis, highlighting its potential significance as a strong candidate biomarker.
Collapse
Affiliation(s)
- Wei Lin
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Xian Wu
- Department of Breast Surgery, the Second Hospital of Longyan City, Longyan 364030, China
| | - Sunwang Xu
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Dexing Wang
- First Clinical Medical College, Fujian Medical University, Fuzhou 350005, China
| | - Jinshu Chen
- First Clinical Medical College, Fujian Medical University, Fuzhou 350005, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China.
| | - Xiangjin Chen
- Department of Thyroid and Breast Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of General Surgery,Second Division, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Fujian Key Laboratory of Precision Medicine for Cancer, the First Affiliated Hospital, Fujian Medical University,Fuzhou 350005,China.
| |
Collapse
|
2
|
Esmaeili SV, Alboghobeish A, Feyzi V, Ravannakhjavani F, Zendehdel R. Virtual screening study for biological activity assessment and metabolism pathway of a fuel dye in airborne exposure scenario. Toxicol Ind Health 2024:7482337241286187. [PMID: 39313242 DOI: 10.1177/07482337241286187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The utilization of synthetic dyes increases the risk to human health. Despite the progress of information on azo dyes, very little attention has been reported on toxicity assessment of anthraquinone dyes. Solvent Blue 35 (SB35) is one of the anthraquinone dyes likely to be encountered because of its increasing use in various industries. Whereas the design of laboratory tests is very expensive, in silico screening was used to predict the metabolic profile and toxicity effect of SB35. MetaTox software was used to predict the metabolites of phase I and II in two layers. Since airborne exposure has been considered, the pathways of inhalation and dermal absorption of SB35 were investigated through the SwissADME model based on the modified Lipinski's rule of five. To predict the biological effect and toxicity of SB35 and each of the metabolites, PASS online software was used. Chemical activity was considered according to the probability of activation values (Pa) higher than the probability of inactivation values (Pi). N- dealkylation of SB35 was predicted in the first layer, while seven active compounds were obtained in the second layer from phases I and II reactions. Investigating the physicochemical properties of SB35 confirmed inhalation absorption for occupational exposure scenarios. All metabolites are absorbed from intestinal routes based on the RO5 rules. SB35 and their metabolites have an effective substrate role for the sub-type of CYP 450 enzymes. The toxicity effect of carcinogenicity for SB35 and mutagenicity for metabolites are predicted while confirmed with some biological effects. However, reproductive disorders are pointed with SB35 by probability higher than 70%. Virtual screening methods are efficient tools for creating cost-effective predictions in the hazard's evaluation of SB35. However, a perspective view is suggested before decision-making for laboratory designing tests.
Collapse
Affiliation(s)
- Sayed Vahid Esmaeili
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Alboghobeish
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Vafa Feyzi
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ravannakhjavani
- Student Research Committee, Department of Occupational Health and Safety Engineering, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Rezvan Zendehdel
- Environmental and Occupational Hazards Control Research Center, Research Institute for Health Sciences and Environment, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Ye Y, Sun X, Huang C, Ji J, Sun J, Zhang Y, Wang JS, Zhao H, Sun X. Metabolic transformation of cyclopiazonic acid in liver microsomes from different species based on UPLC-Q/TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134902. [PMID: 38909467 DOI: 10.1016/j.jhazmat.2024.134902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/31/2024] [Accepted: 06/12/2024] [Indexed: 06/25/2024]
Abstract
To investigate the metabolic transformation of cyclopiazonic acid (CPA) in the liver of different species and to supplement accurate risk assessment information, the metabolism of CPA in liver microsomes from four animals and humans was studied using the ultra-high-performance liquid chromatography-quadrupole/time-of-flight method. The results showed that a total of four metabolites were obtained, and dehydrogenation, hydroxylation, methylation, and glucuronidation were identified as the main metabolic pathways of CPA. Rat liver microsomes exhibited the highest metabolic capacity for CPA, with dehydrogenated (C20H18N2O3) and glucuronic acid-conjugated (C26H28N2O10) metabolites identified in all liver microsomes except chicken, indicating significant species metabolic differences. Moreover, C20H18N2O3 was only detected in the incubation system with cytochromes P450 3A4 (CYP3A4). The hydroxylated (C20H20N2O4) and methylated (C21H22N2O3) metabolites were detected in all incubation systems except for the CYP2C9, with CYP3A4 demonstrating the strongest metabolic capacity. The "cocktail" probe drug method showed that CPA exhibited a moderate inhibitory effect on the CYP3A4 (IC50 value = 8.658 μM), indicating that the substrate had a negative effect on enzyme activity. Our results provide new insights to understand the biotransformation profile of CPA in animals and humans.
Collapse
Affiliation(s)
- Yongli Ye
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Xinyu Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Caihong Huang
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jian Ji
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jiadi Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Yinzhi Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, PR China
| | - Jia-Sheng Wang
- Department of Environmental Health Science, College of Public Health, University of Georgia, Athens, GA 30602, USA
| | - Hongjing Zhao
- Center for Food Evaluation, State Administration for Market Regulation, Beijing 100070, PR China
| | - Xiulan Sun
- School of Food Science and Technology, International Joint Laboratory on Food Safety, Synergetic Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
4
|
Hossam Abdelmonem B, Abdelaal NM, Anwer EKE, Rashwan AA, Hussein MA, Ahmed YF, Khashana R, Hanna MM, Abdelnaser A. Decoding the Role of CYP450 Enzymes in Metabolism and Disease: A Comprehensive Review. Biomedicines 2024; 12:1467. [PMID: 39062040 PMCID: PMC11275228 DOI: 10.3390/biomedicines12071467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
Cytochrome P450 (CYP450) is a group of enzymes that play an essential role in Phase I metabolism, with 57 functional genes classified into 18 families in the human genome, of which the CYP1, CYP2, and CYP3 families are prominent. Beyond drug metabolism, CYP enzymes metabolize endogenous compounds such as lipids, proteins, and hormones to maintain physiological homeostasis. Thus, dysregulation of CYP450 enzymes can lead to different endocrine disorders. Moreover, CYP450 enzymes significantly contribute to fatty acid metabolism, cholesterol synthesis, and bile acid biosynthesis, impacting cellular physiology and disease pathogenesis. Their diverse functions emphasize their therapeutic potential in managing hypercholesterolemia and neurodegenerative diseases. Additionally, CYP450 enzymes are implicated in the onset and development of illnesses such as cancer, influencing chemotherapy outcomes. Assessment of CYP450 enzyme expression and activity aids in evaluating liver health state and differentiating between liver diseases, guiding therapeutic decisions, and optimizing drug efficacy. Understanding the roles of CYP450 enzymes and the clinical effect of their genetic polymorphisms is crucial for developing personalized therapeutic strategies and enhancing drug responses in diverse patient populations.
Collapse
Affiliation(s)
- Basma Hossam Abdelmonem
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, October University for Modern Sciences & Arts (MSA), Giza 12451, Egypt
| | - Noha M. Abdelaal
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Eman K. E. Anwer
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
- Department of Microbiology and Immunology, Faculty of Pharmacy, Modern University for Technology and Information, Cairo 4411601, Egypt
| | - Alaa A. Rashwan
- Biotechnology Graduate Program, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (N.M.A.); (E.K.E.A.); (A.A.R.)
| | - Mohamed Ali Hussein
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Yasmin F. Ahmed
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Rana Khashana
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Mireille M. Hanna
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| | - Anwar Abdelnaser
- Institute of Global Health and Human Ecology, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt; (B.H.A.); (M.A.H.); (Y.F.A.); (R.K.); (M.M.H.)
| |
Collapse
|
5
|
Kowalski JP, Rettie AE. There and Back Again: A Perspective on 20 Years of CYP4Z1. Drug Metab Dispos 2024; 52:498-507. [PMID: 38604728 DOI: 10.1124/dmd.124.001670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024] Open
Abstract
Cytochrome P450 (CYP)4Z1, a highly expressed CYP gene in breast cancer, was one of the last CYPs to be identified in the human genome, some 20 years ago. CYP4 enzymes typically catalyze ω-hydroxylation and metabolize ω3 and ω6 polyunsaturated fatty acids to bioactive lipid metabolites that can influence tumor growth and metastasis. These attributes of CYP4Z1 make it an attractive target for new chemotherapeutic drug design, as a potential biomarker for selection of patients that might respond favorably to drugs and for developing enzyme inhibitors as potential therapeutic agents. This review summarizes the current state of knowledge regarding the advancing biochemistry of CYP4Z1, its role in breast cancer, and the recent synthesis of selective chemical inhibitors of the enzyme. We identify gaps that need to be filled to further advance this field and present new experimental data on recombinant CYP4Z1 expression and purification of the active catalytic form. SIGNIFICANCE STATEMENT: In breast cancer, an unmet need is the availability of highly effective therapeutic agents, especially for triple negative breast cancer. The relevance of the work summarized in this mini-review is that it identifies a new potential drug target, CYP4Z1, and discusses ways in which the gene product's catalytic activity might be modulated in order to combat this malignancy and limit its spread.
Collapse
Affiliation(s)
- John P Kowalski
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington
| |
Collapse
|
6
|
Xia Q, Gao W, Yang J, Xing Z, Ji Z. The deregulation of arachidonic acid metabolism in ovarian cancer. Front Oncol 2024; 14:1381894. [PMID: 38764576 PMCID: PMC11100328 DOI: 10.3389/fonc.2024.1381894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024] Open
Abstract
Arachidonic acid (AA) is a crucial polyunsaturated fatty acid in the human body, metabolized through the pathways of COX, LOX, and cytochrome P450 oxidase to generate various metabolites. Recent studies have indicated that AA and its metabolites play significant regulatory roles in the onset and progression of ovarian cancer. This article examines the recent research advancements on the correlation between AA metabolites and ovarian cancer, both domestically and internationally, suggesting their potential use as biological markers for early diagnosis, targeted therapy, and prognosis monitoring.
Collapse
Affiliation(s)
- Qiuyi Xia
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Wen Gao
- Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jintao Yang
- Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Zhifang Xing
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
7
|
Fan R, Liang Z, Wang Q, Chen S, Huang S, Liu J, Huang R, Chen J, Zhao F, Huang W. Beneficial action of cinnamic acid against ovarian cancer via network pharmacology analysis and the pharmacological activity assessment. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2987-2994. [PMID: 37870582 DOI: 10.1007/s00210-023-02766-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/02/2023] [Indexed: 10/24/2023]
Abstract
Naturally occurring cinnamic acid (CA) shows the beneficial potential in the suppression of ovarian cancer (OC). Currently, the in-depth molecular mechanisms of CA to suppress OC are still undescribed entirely. Thus, our research used the preclinical methodology through network pharmacology approach and pharmacological evaluation in vitro to unshroud the anti-OC targets and mechanisms of CA. Our data primarily identified 202 CA targets and 495 OC targets, and additional 45 shared targets in CA and OC were screened as presented in interaction network map. All 11 core targets in CA against OC were identified completely. The enrichment analysis of core targets revealed the biological functions and molecular mechanisms of CA against OC in details, including metabolic recombination and immune microenvironment regulation. Additionally, pharmacological evaluation data in vitro suggested that CA inhibited human OC cell proliferation in the time- and dose-dependent manners. In conclusion, CA can exert antineoplastic effects against OC effectively, and the pharmacological functions may directly actualize through a multi-target and multi-pathway avenue for suppressing OC.
Collapse
Affiliation(s)
- Rong Fan
- School of Basic Medical Sciences, Guangxi Traditional Chinese Medical University, No. 179 Mingxiu East Road, Nanning, 530001, China
| | - Zining Liang
- School of Pharmacy, Guangxi Traditional Chinese Medical University, Nanning, 530001, China
| | - Qing Wang
- School of Basic Medical Sciences, Guangxi Traditional Chinese Medical University, No. 179 Mingxiu East Road, Nanning, 530001, China
- Guangxi Key Laboratory of Translational Medicine for Treating High-Incidence Infectious Diseases With Integrative Medicine, Guangxi Traditional Chinese Medical University, Nanning, 530001, China
| | - Sizhe Chen
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China
| | - Shiting Huang
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China
| | - Jiansu Liu
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China
| | - Rui Huang
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China
| | - Jie Chen
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China
| | - Feilan Zhao
- School of Basic Medical Sciences, Guangxi Traditional Chinese Medical University, No. 179 Mingxiu East Road, Nanning, 530001, China.
| | - Wei Huang
- First Clinical Medical College, Guangxi Traditional Chinese Medical University, No. 89-9 Dongge Road, Nanning, 530023, China.
| |
Collapse
|
8
|
Duncan MS, Diaz-Zabala H, Jaworski J, Tindle HA, Greevy RA, Lipworth L, Hung RJ, Freiberg MS, Aldrich MC. Interaction between Continuous Pack-Years Smoked and Polygenic Risk Score on Lung Cancer Risk: Prospective Results from the Framingham Heart Study. Cancer Epidemiol Biomarkers Prev 2024; 33:500-508. [PMID: 38227004 PMCID: PMC10988206 DOI: 10.1158/1055-9965.epi-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 10/13/2023] [Accepted: 01/11/2024] [Indexed: 01/17/2024] Open
Abstract
BACKGROUND Lung cancer risk attributable to smoking is dose dependent, yet few studies examining a polygenic risk score (PRS) by smoking interaction have included comprehensive lifetime pack-years smoked. METHODS We analyzed data from participants of European ancestry in the Framingham Heart Study Original (n = 454) and Offspring (n = 2,470) cohorts enrolled in 1954 and 1971, respectively, and followed through 2018. We built a PRS for lung cancer using participant genotyping data and genome-wide association study summary statistics from a recent study in the OncoArray Consortium. We used Cox proportional hazards regression models to assess risk and the interaction between pack-years smoked and genetic risk for lung cancer adjusting for European ancestry, age, sex, and education. RESULTS We observed a significant submultiplicative interaction between pack-years and PRS on lung cancer risk (P = 0.09). Thus, the relative risk associated with each additional 10 pack-years smoked decreased with increasing genetic risk (HR = 1.56 at one SD below mean PRS, HR = 1.48 at mean PRS, and HR = 1.40 at one SD above mean PRS). Similarly, lung cancer risk per SD increase in the PRS was highest among those who had never smoked (HR = 1.55) and decreased with heavier smoking (HR = 1.32 at 30 pack-years). CONCLUSIONS These results suggest the presence of a submultiplicative interaction between pack-years and genetics on lung cancer risk, consistent with recent findings. Both smoking and genetics were significantly associated with lung cancer risk. IMPACT These results underscore the contributions of genetics and smoking on lung cancer risk and highlight the negative impact of continued smoking regardless of genetic risk.
Collapse
Affiliation(s)
- Meredith S. Duncan
- Department of Biostatistics, University of Kentucky, Lexington, Kentucky
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hector Diaz-Zabala
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - James Jaworski
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Hilary A. Tindle
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
- Division of Internal Medicine, Vanderbilt University Medical Center, Nashville Tennessee
| | - Robert A. Greevy
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Loren Lipworth
- Division of Epidemiology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Rayjean J. Hung
- Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Matthew S. Freiberg
- Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Geriatric Research Education and Clinical Centers (GRECC), Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Melinda C. Aldrich
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
9
|
Dhanyamraju PK. Drug resistance mechanisms in cancers: Execution of pro-survival strategies. J Biomed Res 2024; 38:95-121. [PMID: 38413011 PMCID: PMC11001593 DOI: 10.7555/jbr.37.20230248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/21/2023] [Accepted: 12/07/2023] [Indexed: 02/29/2024] Open
Abstract
One of the quintessential challenges in cancer treatment is drug resistance. Several mechanisms of drug resistance have been described to date, and new modes of drug resistance continue to be discovered. The phenomenon of cancer drug resistance is now widespread, with approximately 90% of cancer-related deaths associated with drug resistance. Despite significant advances in the drug discovery process, the emergence of innate and acquired mechanisms of drug resistance has impeded the progress in cancer therapy. Therefore, understanding the mechanisms of drug resistance and the various pathways involved is integral to treatment modalities. In the present review, I discuss the different mechanisms of drug resistance in cancer cells, including DNA damage repair, epithelial to mesenchymal transition, inhibition of cell death, alteration of drug targets, inactivation of drugs, deregulation of cellular energetics, immune evasion, tumor-promoting inflammation, genome instability, and other contributing epigenetic factors. Furthermore, I highlight available treatment options and conclude with future directions.
Collapse
Affiliation(s)
- Pavan Kumar Dhanyamraju
- Fels Cancer Institute of Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
10
|
Dai Z, Wu Y, Xiong Y, Wu J, Wang M, Sun X, Ding X, Yang L, Sun X, Ge G. CYP1A inhibitors: Recent progress, current challenges, and future perspectives. Med Res Rev 2024; 44:169-234. [PMID: 37337403 DOI: 10.1002/med.21982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/28/2023] [Accepted: 05/23/2023] [Indexed: 06/21/2023]
Abstract
Mammalian cytochrome P450 1A (CYP1A) are key phase I xenobiotic-metabolizing enzymes that play a distinctive role in metabolic activation or metabolic clearance of a variety of procarcinogens, drugs, and endogenous substances. Human CYP1A subfamily contains two members (hCYP1A1 and hCYP1A2), which are known to catalyze the oxidative activation of some environmental procarcinogens into carcinogenic species. Increasing evidence has demonstrated that CYP1A inhibitor therapies are promising strategies for cancer chemoprevention or overcoming CYP1A-associated drug toxicity and resistance. Herein, we reviewed recent advances in the discovery and characterization of hCYP1A inhibitors, from the discovery approaches to structural features and biomedical applications of hCYP1A inhibitors. The inhibition potentials, inhibition modes, and inhibition constants of all reported hCYP1A inhibitors are comprehensively summarized. Meanwhile, the structural features and structure-activity relationships of different classes of hCYP1A1 and hCYP1A2 inhibitors are analyzed and discussed in depth. Furthermore, the major challenges and future directions for this field are presented and highlighted. Collectively, the information and knowledge presented here will strongly facilitate the researchers to discover and develop more efficacious CYP1A inhibitors for specific purposes, such as chemo-preventive agents or as tool molecules in hCYP1A-related fundamental studies.
Collapse
Affiliation(s)
- Ziru Dai
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Yue Wu
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yuan Xiong
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingjing Wu
- Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Min Wang
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xiao Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xinxin Ding
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, America
| | - Ling Yang
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education, Zunyi Medical University, Zunyi, China
| | - Xiaobo Sun
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Guangbo Ge
- Shanghai Frontiers Science Center for TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
11
|
Pandey SK, Verma S, Upreti S, Mishra A, Yadav N, Dwivedi-Agnihotri H. Role of Cytochrome P450 3A4 in Cancer Drug Resistance: Challenges and Opportunities. Curr Drug Metab 2024; 25:235-247. [PMID: 38984579 DOI: 10.2174/0113892002312369240703102215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 06/05/2024] [Accepted: 06/13/2024] [Indexed: 07/11/2024]
Abstract
One of the biggest obstacles to the treatment of diseases, particularly serious conditions like cancer, is therapeutic resistance. The process of drug resistance is influenced by a number of important variables, including MDR genes, drug efflux, low-quality medications, inadequate dosage, etc. Drug resistance must be addressed, and new combinations based on the pharmacokinetics/pharmacodynamics (PK-PD) characteristics of the partner pharmaceuticals must be developed in order to extend the half-lives of already available medications. The primary mechanism of drug elimination is hepatic biotransformation of medicines by cytochrome P450 (CYP) enzymes; of these CYPs, CYP3A4 makes up 30-40% of all known cytochromes that metabolize medications. Induction or inhibition of CYP3A4-mediated metabolism affects the pharmacokinetics of most anticancer drugs, but these details are not fully understood and highlighted because of the complexity of tumor microenvironments and various influencing patient related factors. The involvement of CYPs, particularly CYP3A4 and other drug-metabolizing enzymes, in cancer medication resistance will be covered in the current review.
Collapse
Affiliation(s)
- Swaroop Kumar Pandey
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Sona Verma
- Department of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, India
| | - Shobha Upreti
- Cell and Molecular Biology Laboratory, Department of Zoology, Kumaun University, Nainital, Uttrakhand, 263601, India
| | - Anuja Mishra
- Department of Biotechnology, Institute of Applied Sciences & Humanities, GLA University, Mathura, 281406, India
| | - Neha Yadav
- Department of Biophysics, University of Delhi, South Campus, New Delhi-110021, India
| | | |
Collapse
|
12
|
Patil MN, Datkhile KD, Gudur AK, Gudur RA, Patil SR. Single-nucleotide polymorphism in CYP1A1, CYP1B1, CYP2B6, CYP2C8, and CYP2C9 genes and their association with gastrointestinal cancer: A hospital-based case-control study. J Cancer Res Ther 2024; 20:216-223. [PMID: 38554324 DOI: 10.4103/jcrt.jcrt_294_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/17/2022] [Indexed: 04/01/2024]
Abstract
BACKGROUND Cytochrome P450 (CYP) comprises a group of phase-I metabolizing enzymes that are important in xenobiotics metabolism. Genetic polymorphism of CYPs has been comprehensively studied for their association with a range of diseases. In this study, we assessed single-nucleotide polymorphism (SNP) of CYP1A, CYP1B, CYP2B, and CYP2C and their role in gastrointestinal (GI) cancer susceptibility in the rural population of Maharashtra. MATERIALS AND METHODS In this hospital-based case-control study, the association of polymorphism of CYP genes was studied by the polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) method. The study subjects included 200 clinically confirmed GI cancer patients and equal number of healthy controls. Odds ratio (OR) with 95% confidence interval (CI) and P value were evaluated to find out the level of association, where P ≤ 0.005 was considered statistically significant. RESULTS After the analysis of CYP1A1*2A (rs4646903), CYP1B1*3 (rs1059836), CYP2B6*5 (rs3211371), CYP2C8*2 (rs11572103), CYP2C9*2 (rs1799853), and CYP2C9*3 (rs1057910), we noticed that variant (T) allele of CYP2B6*5 possessed significantly elevated risk (OR = 4.43; 95% CI: 2.20-8.90; P < 0.0001) of GI cancer in studied population. The genotypic distribution of G/C heterozygote allele of CYP1B1*3 (OR = 0.19, 95% CI = 0.12-0.32; P < 0.0001) and homozygous variant C/C allele (OR = 0.24, 95% CI = 0.13-0.45; P < 0.0001) showed a negative association with the development of GI cancer. CONCLUSION The findings from this study supported that polymorphism of CYP2B6*5gene may be involved in the development of GI cancer. However, other SNPs of CYP1A, CYP1B, and CYP2C genes did not signify the risk for GI cancer in the studied population of rural Maharashtra.
Collapse
Affiliation(s)
- Madhavi N Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Kailas D Datkhile
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Anand K Gudur
- Department of Oncology, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Rashmi A Gudur
- Department of Oncology, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| | - Satish R Patil
- Department of Molecular Biology and Genetics, Krishna Institute of Medical Sciences "Deemed to be University", Satara, Maharashtra, India
| |
Collapse
|
13
|
Hu Z, Chen S, Shi T, Dong Z, Cheng M, Li N, Zhao H, Zhu H, Han C, Xu L. Masson pine pollen aqueous extract ameliorates cadmium-induced kidney damage in rats. Front Mol Biosci 2023; 10:1249744. [PMID: 38143799 PMCID: PMC10748820 DOI: 10.3389/fmolb.2023.1249744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/19/2023] [Indexed: 12/26/2023] Open
Abstract
Introduction: Cadmium (Cd) is a hazardous environmental pollutant present in soil, water, and food. Accumulation of Cd in organisms can cause systematic injury and damage to the kidney. The Masson pine pollen aqueous extract (MPPAE) has attracted increasing attention due to its antioxidant activity and ability to enhance immunity. Methods: In this study, we investigated the potential of MPPAE to protect against Cd-induced kidney damage in rats and the underlying mechanism. The transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, were explored. Results: The concentrations of superoxide dismutase (SOD) and malondialdehyde (MDA) were both significantly altered after treatment with MPPAE. Furthermore, sequencing and analysis of the transcriptome and metabolome of rats with Cd-induced kidney damage, following treatment with MPPAE, revealed differential expression of numerous genes and metabolites compared with the untreated control rats. These differentially expressed genes (DEGs) included detoxification-related genes such as cytochrome P450 and the transporter. The differentially expressed metabolites (DEMs) included 4-hydroxybenzoic acid, L-ascorbate, and ciliatine. Conjoint transcriptome and metabolome analysis showed that several DEGs were correlated with DEMs. Conclusion: These preliminary findings indicate the potential of MPPAE for the treatment of toxic metal poisoning.
Collapse
Affiliation(s)
- Zhiyong Hu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Sixin Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Tala Shi
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Zhaoju Dong
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Mei Cheng
- Department of Health and Disease Management, Binzhou Medical University, Yantai, China
| | - Ning Li
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Huijuan Zhao
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Haibo Zhu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Chunlei Han
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| | - Lanlan Xu
- Department of Occupational Health and Environmental Hygiene, School of Public Health and Management, Binzhou Medical University, Yantai, China
| |
Collapse
|
14
|
Shen CK, Huang BR, Charoensaensuk V, Yang LY, Tsai CF, Liu YS, Lai SW, Lu DY, Yeh WL, Lin C. Inhibitory Effects of Urolithins, Bioactive Gut Metabolites from Natural Polyphenols, against Glioblastoma Progression. Nutrients 2023; 15:4854. [PMID: 38068712 PMCID: PMC10708538 DOI: 10.3390/nu15234854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023] Open
Abstract
We previously reported that proinflammatory cytokines, particularly tumor necrosis factor (TNF)-α, promoted tumor migration, invasion, and proliferation, thus worsening the prognosis of glioblastoma (GBM). Urolithins, the potent metabolites produced by the gut from pomegranate polyphenols, have anticancer properties. To develop an effective therapy for GBM, this study aimed to study the effects of urolithins against GBM. Urolithin A and B significantly reduced GBM migration, reduced epithelial-mesenchymal transition, and inhibited tumor growth. Moreover, urolithin A and B inhibited TNF-α-induced vascular cell adhesion molecule (VCAM)-1 and programmed death ligand 1 (PD-L1) expression, thereby reducing human monocyte (HM) binding to GBM cells. Aryl hydrocarbon receptor (AhR) level had higher expression in patients with glioma than in healthy individuals. Urolithins are considered pharmacological antagonists of AhR. We demonstrated that the inhibition of AhR reduced TNF-α-stimulated VCAM-1 and PD-L1 expression. Furthermore, human macrophage condition medium enhanced expression of PD-L1 in human GBM cells. Administration of the AhR antagonist attenuated the enhancement of PD-L1, indicating the AhR modulation in GBM progression. The modulatory effects of urolithins in GBM involve inhibiting the Akt and epidermal growth factor receptor pathways. The present study suggests that urolithins can inhibit GBM progression and provide valuable information for anti-GBM strategy.
Collapse
Affiliation(s)
- Ching-Kai Shen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 404328, Taiwan;
| | - Bor-Ren Huang
- School of Medicine, Tzu Chi University, Taichung 404, Taiwan
- Department of Neurosurgery, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 404, Taiwan
| | - Vichuda Charoensaensuk
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Liang-Yo Yang
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
- Laboratory for Neural Repair, China Medical University Hospital, Taichung 404327, Taiwan
| | - Cheng-Fang Tsai
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung 41354, Taiwan;
| | - Yu-Shu Liu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Sheng-Wei Lai
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
| | - Dah-Yuu Lu
- Department of Pharmacology, School of Medicine, China Medical University, Taichung 404328, Taiwan
- Department of Photonics and Communication Engineering, Asia University, Taichung 41354, Taiwan
| | - Wei-Lan Yeh
- Department of Biochemistry, School of Medicine, China Medical University, Taichung 40402, Taiwan;
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan
| | - Chingju Lin
- Department of Physiology, School of Medicine, China Medical University, Taichung 40402, Taiwan
| |
Collapse
|
15
|
Ohya S, Kajikuri J, Kito H, Matsui M. Down-Regulation of CYP3A4 by the K Ca1.1 Inhibition Is Responsible for Overcoming Resistance to Doxorubicin in Cancer Spheroid Models. Int J Mol Sci 2023; 24:15672. [PMID: 37958656 PMCID: PMC10648085 DOI: 10.3390/ijms242115672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 10/26/2023] [Accepted: 10/26/2023] [Indexed: 11/15/2023] Open
Abstract
The large-conductance Ca2+-activated K+ channel, KCa1.1, plays a pivotal role in cancer progression, metastasis, and the acquisition of chemoresistance. Previous studies indicated that the pharmacological inhibition of KCa1.1 overcame resistance to doxorubicin (DOX) by down-regulating multidrug resistance-associated proteins in the three-dimensional spheroid models of human prostate cancer LNCaP, osteosarcoma MG-63, and chondrosarcoma SW-1353 cells. Investigations have recently focused on the critical roles of intratumoral, drug-metabolizing cytochrome P450 enzymes (CYPs) in chemoresistance. In the present study, we examined the involvement of CYPs in the acquisition of DOX resistance and its overcoming by inhibiting KCa1.1 in cancer spheroid models. Among the CYP isoforms involved in DOX metabolism, CYP3A4 was up-regulated by spheroid formation and significantly suppressed by the inhibition of KCa1.1 through the transcriptional repression of CCAAT/enhancer-binding protein, CEBPB, which is a downstream transcription factor of the Nrf2 signaling pathway. DOX resistance was overcome by the siRNA-mediated inhibition of CYP3A4 and treatment with the potent CYP3A4 inhibitor, ketoconazole, in cancer spheroid models. The phosphorylation levels of Akt were significantly reduced by inhibiting KCa1.1 in cancer spheroid models, and KCa1.1-induced down-regulation of CYP3A4 was reversed by the treatment with Akt and Nrf2 activators. Collectively, the present results indicate that the up-regulation of CYP3A4 is responsible for the acquisition of DOX resistance in cancer spheroid models, and the inhibition of KCa1.1 overcame DOX resistance by repressing CYP3A4 transcription mainly through the Akt-Nrf2-CEBPB axis.
Collapse
Affiliation(s)
- Susumu Ohya
- Department of Pharmacology, Graduate School of Medical Sciences, Nagoya City University, Nagoya 467-8601, Japan; (J.K.); (H.K.); (M.M.)
| | | | | | | |
Collapse
|
16
|
Caasi JMN, Baldoza RID, Bauzon MSC, Odtohan MAF, Santiago LA, Santiago-Bautista MR. In Silico Prediction of Selected Bioactive Compounds Present in Alpinia elegans (C.Presl) K.Schum Seed Oil as Potential Drug Candidates Against Human Cancer Cell Lines. Asian Pac J Cancer Prev 2023; 24:2601-2614. [PMID: 37642045 PMCID: PMC10685237 DOI: 10.31557/apjcp.2023.24.8.2601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/11/2023] [Indexed: 08/31/2023] Open
Abstract
OBJECTIVE Alpinia elegans (Zingiberaceae) is a Philippine endemic plant reported to have various folkloric uses. The seed oil of A. elegans has been shown to contain a majority of the following bioactive compounds: D-limonene, α-pinene, and caryophyllene oxide. The study sought to determine if the bioactive compounds found in A. elegans seed oil would be a good natural, inexpensive, and less-detrimental alternative for cancer treatment. METHODS The study utilized in silico (Way2Drug predictive services, SwissADME, AutoDock 4) experiment to examine the aforementioned compounds as viable therapeutic candidates against human cancer cell lines. RESULT Results determined that the compounds D-limonene, α-pinene, and caryophyllene oxide were most potent against thyroid gland carcinoma (8505C) cells, brain glaucoma (Hs 683) cells, and promyeloblast leukemia (HL-60) cells, respectively. Additionally, D-limonene was the only compound to show arrhythmia as an adverse effect. Predictions showed that the compounds could inhibit cellular growth factors and serine/threonine-protein kinase activity. The compounds generated a bioavailability score of 0.55 and exhibited blood-brain barrier (BBB) penetration. D-limonene, α-pinene, and caryophyllene oxide had binding energy of -4.59, -5.43, and -6.92, respectively. CONCLUSION The binding energy indicated that the ligands could securely dock to the receptors, thus suggesting that interaction between the ligands and receptors was stable. Results have shown that the compounds are promising candidates against human cancer cell lines by inhibiting cell proliferation and inducing apoptosis.
Collapse
Affiliation(s)
- Jane Marie N. Caasi
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
| | | | - Mary Sophia C. Bauzon
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
| | | | - Librado A. Santiago
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| | - Myla R. Santiago-Bautista
- Department of Biochemistry, Faculty of Pharmacy, University of Santo Tomas, Manila, Philippines.
- Research Center for Natural and Applied Sciences, University of Santo Tomas, Manila, Philippines.
| |
Collapse
|
17
|
Dutkiewicz Z, Mikstacka R. Hydration and Structural Adaptations of the Human CYP1A1, CYP1A2, and CYP1B1 Active Sites by Molecular Dynamics Simulations. Int J Mol Sci 2023; 24:11481. [PMID: 37511239 PMCID: PMC10380238 DOI: 10.3390/ijms241411481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Cytochromes CYP1A1, CYP1A2, and CYP1B1, the members of the cytochrome P450 family 1, catalyze the metabolism of endogenous compounds, drugs, and non-drug xenobiotics which include substances involved in the process of carcinogenesis, cancer chemoprevention, and therapy. In the present study, the interactions of three selected polymethoxy-trans-stilbenes, analogs of a bioactive polyphenol trans-resveratrol (3,5,4'-trihydroxy-trans-stilbene) with the binding sites of CYP1 isozymes were investigated with molecular dynamics (MD) simulations. The most pronounced structural changes in the CYP1 binding sites were observed in two substrate recognition sites (SRS): SRS2 (helix F) and SRS3 (helix G). MD simulations show that the number and position of water molecules occurring in CYP1 APO and in the structures complexed with ligands are diverse. The presence of water in binding sites results in the formation of water-protein, water-ligand, and bridging ligand-water-protein hydrogen bonds. Analysis of the solvent and substrate channels opening during the MD simulation showed significant differences between cytochromes in relation to the solvent channel and the substrate channels 2c, 2ac, and 2f. The results of this investigation lead to a deeper understanding of the molecular processes that occur in the CYP1 binding sites and may be useful for further molecular studies of CYP1 functions.
Collapse
Affiliation(s)
- Zbigniew Dutkiewicz
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780 Poznań, Poland
| | - Renata Mikstacka
- Department of Inorganic and Analytical Chemistry, Nicolaus Copernicus University, Collegium Medicum, Dr. A. Jurasza 2, 85-089 Bydgoszcz, Poland
| |
Collapse
|
18
|
Jia W, Chen S, Wei R, Yang X, Zhang M, Qian Y, Liu H, Lei D. CYP4F12 is a potential biomarker and inhibits cell migration of head and neck squamous cell carcinoma via EMT pathway. Sci Rep 2023; 13:10956. [PMID: 37414830 PMCID: PMC10326030 DOI: 10.1038/s41598-023-37950-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/30/2023] [Indexed: 07/08/2023] Open
Abstract
Head and neck squamous cell carcinoma (HNSC) is the most common malignant tumor of head and neck. Due to the insidious nature of HNSC and the lack of effective early diagnostic indicators, the development of novel biomarkers to improve patient prognosis is particularly urgent. In this study, we explored and validated the correlation between cytochrome P450 family 4 subfamily F member 12 (CYP4F12) expression levels and HNSC progression using data from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and collected patient samples. We analyzed the association of CYP4F12 expression with clinicopathological features, immune correlation and prognosis. Finally, we analyzed the correlation between CYP4F12 and pathways, and verified by experiments. The results showed that CYP4F12 was low expressed in tumor tissues, participated in a variety of phenotypic changes of HNSC and affected immune cell infiltration. Pathway analysis indicated that CYP4F12 may play a key role in tumor cell migration and apoptosis. Experimental results showed that over-expression of CYP4F12 inhibited cell migration and enhanced the adhesion between cells and matrix by inhibiting epithelial-mesenchymal transition (EMT) pathway in HNSC cells. In conclusion, our study provided insights into the role of CYP4F12 in HNSC and revealed that CYP4F12 may be a potential therapeutic target for HNSC.
Collapse
Affiliation(s)
- Wenming Jia
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Shuai Chen
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Ran Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Xiaoqi Yang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Minfa Zhang
- Department of Otolaryngology/Head and Neck Surgery, Institute of Otolaryngology, Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Ye Qian
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China
| | - Heng Liu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China.
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, National Health Commission (NHC) Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, China.
| |
Collapse
|
19
|
Weng N, Zhang Z, Tan Y, Zhang X, Wei X, Zhu Q. Repurposing antifungal drugs for cancer therapy. J Adv Res 2023; 48:259-273. [PMID: 36067975 PMCID: PMC10248799 DOI: 10.1016/j.jare.2022.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Repurposing antifungal drugs in cancer therapy has attracted unprecedented attention in both preclinical and clinical research due to specific advantages, such as safety, high-cost effectiveness and time savings compared with cancer drug discovery. The surprising and encouraging efficacy of antifungal drugs in cancer therapy, mechanistically, is attributed to the overlapping targets or molecular pathways between fungal and cancer pathogenesis. Advancements in omics, informatics and analytical technology have led to the discovery of increasing "off-site" targets from antifungal drugs involved in cancerogenesis, such as smoothened (D477G) inhibition from itraconazole in basal cell carcinoma. AIM OF REVIEW This review illustrates several antifungal drugs repurposed for cancer therapy and reveals the underlying mechanism based on their original target and "off-site" target. Furthermore, the challenges and perspectives for the future development and clinical applications of antifungal drugs for cancer therapy are also discussed, providing a refresh understanding of drug repurposing. KEY SCIENTIFIC CONCEPTS OF REVIEW This review may provide a basic understanding of repurposed antifungal drugs for clinical cancer management, thereby helping antifungal drugs broaden new indications and promote clinical translation.
Collapse
Affiliation(s)
- Ningna Weng
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China; Department of Medical Oncology, Fujian Cancer Hospital & Fujian Medical University Cancer Hospital, Fujian 350011, PR China
| | - Zhe Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China; Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhan Tan
- West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qing Zhu
- Department of Abdominal Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
20
|
De la Garza-Salazar F, Peña-Lozano SP, Gómez-Almaguer D, Colunga-Pedraza PR. Orbital myeloid sarcoma treated with low-dose venetoclax and a potent cytochrome P450 inhibitor. J Oncol Pharm Pract 2023; 29:493-497. [PMID: 35747932 DOI: 10.1177/10781552221110826] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CASE REPORT We report the first case of orbital myeloid sarcoma that was successfully treated with a standard venetoclax dose of 25%. A 38-year-old man with acute myeloid leukemia (AML) post-haplo-hematopoietic stem cell transplantation (HSCT) presented with a nine-month history of progressive right proptosis and a visual acuity deficit. The patient was treated with venetoclax (100 mg orally on days 1-28), cytarabine (40 mg subcutaneously, days 1-10), and itraconazole (100 mg twice daily orally on days 1-28). MANAGEMENT AND OUTCOME The present case report shows that using cytochrome P450 (CYP) inhibitors is a helpful strategy to reduce the cost of expensive treatments. DISCUSSION There are limited data on the use of CYP inhibitors as a strategy to reduce the costs of expensive drugs (i.e. venetoclax). This approach has some advantages over standard dose venetoclax (400 mg/day) such as significantly reduced costs (which is relevant for patients in low-income countries). In this case, we used itraconazole-a potent CYP3A4 inhibitor-which can theoretically reduce the dose to 100 mg/day without losing serum therapeutic concentrations.
Collapse
Affiliation(s)
- Fernando De la Garza-Salazar
- 103564Facultad de Medicina y Hospital Universitario "Dr José Eleuterio González" Haematology service, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Samantha P Peña-Lozano
- 103564Facultad de Medicina y Hospital Universitario "Dr José Eleuterio González" Haematology service, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - David Gómez-Almaguer
- 103564Facultad de Medicina y Hospital Universitario "Dr José Eleuterio González" Haematology service, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| | - Perla R Colunga-Pedraza
- 103564Facultad de Medicina y Hospital Universitario "Dr José Eleuterio González" Haematology service, Universidad Autónoma de Nuevo León, Monterrey, Mexico
| |
Collapse
|
21
|
Fluorescent molecular probes for imaging and detection of oxidases and peroxidases in biological samples. Methods 2023; 210:20-35. [PMID: 36634727 DOI: 10.1016/j.ymeth.2023.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
Oxidases and peroxidases are two subclasses of oxidoreductases. The abnormal expression of oxidases (such as tyrosinase, cytochrome P450 oxidases, and monoamine oxidases) and peroxidases (such as glutathione peroxidase, myeloperoxidase, and eosinophil peroxidase) is relative with some diseases. Therefore, the analysis of oxidases and peroxidases is great important for disease diagnosis and treatment. Fluorescent probes present simple protocol, high sensitivity and good stability in sensing field. Molecule fluorescent probes are constructed with chemical groups that tunes their fluorescence emission in response to binding events, chemical reactions, and the surrounding environment. A fluorescent probe is an efficient tool for visualizing the activity of enzymes in living organisms on the basis of its high specificity, sensitivity, and noninvasiveness characteristics. In this review, we focus on the sensing of oxidases and peroxidases by molecule fluorescent probes, and hope to bring new insight to wide researchers about oxidases and peroxidases in biological samples.
Collapse
|
22
|
Damane BP, Mulaudzi TV, Kader SS, Naidoo P, Savkovic SD, Dlamini Z, Mkhize-Kwitshana ZL. Unraveling the Complex Interconnection between Specific Inflammatory Signaling Pathways and Mechanisms Involved in HIV-Associated Colorectal Oncogenesis. Cancers (Basel) 2023; 15:748. [PMID: 36765706 PMCID: PMC9913377 DOI: 10.3390/cancers15030748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/16/2023] [Accepted: 01/22/2023] [Indexed: 01/27/2023] Open
Abstract
The advancement of HIV treatment has led to increased life expectancy. However, people living with HIV (PLWH) are at a higher risk of developing colorectal cancers. Chronic inflammation has a key role in oncogenesis, affecting the initiation, promotion, transformation, and advancement of the disease. PLWH are prone to opportunistic infections that trigger inflammation. It has been documented that 15-20% of cancers are triggered by infections, and this percentage is expected to be increased in HIV co-infections. The incidence of parasitic infections such as helminths, with Ascariasis being the most common, is higher in HIV-infected individuals. Cancer cells and opportunistic infections drive a cascade of inflammatory responses which assist in evading immune surveillance, making them survive longer in the affected individuals. Their survival leads to a chronic inflammatory state which further increases the probability of oncogenesis. This review discusses the key inflammatory signaling pathways involved in disease pathogenesis in HIV-positive patients with colorectal cancers. The possibility of the involvement of co-infections in the advancement of the disease, along with highlights on signaling mechanisms that can potentially be utilized as therapeutic strategies to prevent oncogenesis or halt cancer progression, are addressed.
Collapse
Affiliation(s)
- Botle Precious Damane
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
| | - Thanyani Victor Mulaudzi
- Department of Surgery, Steve Biko Academic Hospital, University of Pretoria, Hatfield 0028, South Africa
| | - Sayed Shakeel Kader
- Department of Surgery, University of KwaZulu Natal, Congella, Durban 4013, South Africa
| | - Pragalathan Naidoo
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| | - Suzana D. Savkovic
- School of Medicine, Department of Pathology & Laboratory Medicine, 1430 Tulane Ave., SL-79, New Orleans, LA 70112, USA
| | - Zodwa Dlamini
- SAMRC Precision Oncology Research Unit (PORU), DSI/NRF SARChI Chair in Precision Oncology and Cancer Prevention (POCP), Pan African Cancer Research Institute (PACRI), University of Pretoria, Hatfield 0028, South Africa
| | - Zilungile Lynette Mkhize-Kwitshana
- Department of Medical Microbiology, School of Laboratory Medicine & Medical Sciences, Medical School Campus, College of Health Sciences, University of KwaZulu-Natal-Natal, Durban 4041, South Africa
- SAMRC Research Capacity Development Division, South African Medical Research Council, Tygerberg, Cape Town 4091, South Africa
| |
Collapse
|
23
|
Liu Z, Tian Y, Zhang X, Wang J, Yang J. Identification of a novel prognostic ADME-related signature associated with tumor immunity for aiding therapy in head and neck squamous cell carcinoma. Cancer Gene Ther 2022; 30:659-670. [PMID: 36380145 DOI: 10.1038/s41417-022-00557-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 02/26/2022] [Accepted: 10/28/2022] [Indexed: 11/16/2022]
Abstract
The genes that control drug absorption, distribution, metabolism, and excretion (ADME) are also involved in carcinogenesis, cancer progression, and chemoresistance. However, no studies have systematically investigated the clinical significance and underlying functions of ADME genes in head and neck squamous cell carcinoma. Herein, we comprehensively explored the ADME genes in this disease, constructed and validated as a prognostic ADME gene signature (ADMEGS), using three ADME genes (ABCB1, ALDH1B1, and PON2) utilizing multiple datasets, including the training and test sets of The Cancer Genome Atlas and the Gene Expression Omnibus validation set. Moreover, we analyzed the relationship between the ADMEGS and clinical parameters, tumor immunity, and therapeutic response. We found that the ADMEGS was significantly correlated with the clinical, T, and N stages. Additionally, we were able to effectively differentiate tumor immune scores, immune cell infiltration statuses, and treatment responses based on the ADMEGS. As such, ADMEGS may be promising predictors for clinical outcome, tumor immunity, and treatment response.
Collapse
|
24
|
Boycott C, Beetch M, Yang T, Lubecka K, Ma Y, Zhang J, Kurzava Kendall L, Ullmer M, Ramsey BS, Torregrosa-Allen S, Elzey BD, Cox A, Lanman NA, Hui A, Villanueva N, de Conti A, Huan T, Pogribny I, Stefanska B. Epigenetic aberrations of gene expression in a rat model of hepatocellular carcinoma. Epigenetics 2022; 17:1513-1534. [PMID: 35502615 PMCID: PMC9586690 DOI: 10.1080/15592294.2022.2069386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 11/15/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is mostly triggered by environmental and life-style factors and may involve epigenetic aberrations. However, a comprehensive documentation of the link between the dysregulated epigenome, transcriptome, and liver carcinogenesis is lacking. In the present study, Fischer-344 rats were fed a choline-deficient (CDAA, cancer group) or choline-sufficient (CSAA, healthy group) L-amino acid-defined diet. At the end of 52 weeks, transcriptomic alterations in livers of rats with HCC tumours and healthy livers were investigated by RNA sequencing. DNA methylation and gene expression were assessed by pyrosequencing and quantitative reverse-transcription PCR (qRT-PCR), respectively. We discovered 1,848 genes that were significantly differentially expressed in livers of rats with HCC tumours (CDAA) as compared with healthy livers (CSAA). Upregulated genes in the CDAA group were associated with cancer-related functions, whereas macronutrient metabolic processes were enriched by downregulated genes. Changes of highest magnitude were detected in numerous upregulated genes that govern key oncogenic signalling pathways, including Notch, Wnt, Hedgehog, and extracellular matrix degradation. We further detected perturbations in DNA methylating and demethylating enzymes, which was reflected in decreased global DNA methylation and increased global DNA hydroxymethylation. Four selected upregulated candidates, Mmp12, Jag1, Wnt4, and Smo, demonstrated promoter hypomethylation with the most profound decrease in Mmp12. MMP12 was also strongly overexpressed and hypomethylated in human HCC HepG2 cells as compared with primary hepatocytes, which coincided with binding of Ten-eleven translocation 1 (TET1). Our findings provide comprehensive evidence for gene expression changes and dysregulated epigenome in HCC pathogenesis, potentially revealing novel targets for HCC prevention/treatment.
Collapse
Affiliation(s)
- Cayla Boycott
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Megan Beetch
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Tony Yang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Katarzyna Lubecka
- Department of Biomedical Chemistry, Faculty of Health Sciences, Medical University of Lodz, Lodz, Poland
| | - Yuexi Ma
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jiaxi Zhang
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lucinda Kurzava Kendall
- Department of Nutrition Science, College of Health and Human Sciences, Purdue University, Indiana, USA
- Department of Internal Medicine, Ascension St. Vincent Hospital, Indianapolis, Indiana, USA
| | - Melissa Ullmer
- Department of Anatomy, Cell Biology and Physiology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Benjamin S. Ramsey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Sandra Torregrosa-Allen
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Bennett D. Elzey
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - Abigail Cox
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - Nadia Atallah Lanman
- Purdue University Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, Indiana, USA
| | - Alisa Hui
- Department of Chemistry, Faculty of Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nathaniel Villanueva
- Department of Chemistry, Faculty of Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aline de Conti
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Tao Huan
- Department of Chemistry, Faculty of Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Igor Pogribny
- Division of Biochemical Toxicology, FDA-National Center for Toxicological Research, Jefferson, Arkansas, USA
| | - Barbara Stefanska
- Food, Nutrition and Health Program, Faculty of Land and Food Systems, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
25
|
Uthansingh K, Parida PK, Pati GK, Sahu MK, Padhy RN. Evaluating the Association of Genetic Polymorphism of Cytochrome p450 (CYP2C9*3) in Gastric Cancer Using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism (PCR-RFLP). Cureus 2022; 14:e27220. [PMID: 36035062 PMCID: PMC9399687 DOI: 10.7759/cureus.27220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2022] [Indexed: 11/05/2022] Open
Abstract
Background and aim As a distinguished system, the cytochrome P450 (CYP) enzyme superfamily is involved in the biotransformation of several endogenous and exogenous substances including drugs, toxins, and carcinogens. Reports on the role of CYP enzyme in gastric cancer (GC) from the Eastern region of India are scarce. The present study aimed to evaluate the effect of single nucleotide polymorphisms (SNP) in cytochrome P450 family 2 subfamily C member 9 (CYP2C9*3) among cases with gastric malignancy. Material and methods The current study is a cross-sectional observational study carried out among 113 GC cases attending the Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India, and Srirama Chandra Bhanja Medical College and Hospital, Cuttack, India. Two ml of venous blood was collected from the confirmed cases of GC. The samples were subjected to genomic DNA isolation followed by polymerase chain reaction (PCR) and restriction fragment length polymorphism (PCR-RFLP). Results The prevalence of both homozygous and heterozygous mutation in GC cases is 4% and 8%, respectively. The overall association of cytochrome P450 family 2 subfamily C member 9 (CYP2C9) mutation in GC cases is 12% whereas 88% were detected as wild/standard type. The mutation CYP2C9 SNP has been seen in Helicobacter pylori-infected cases and as well as those without H. pylori infection. Conclusions The CYP2C9*3 genetic polymorphism might play a significant role as a risk factor for the development of gastric malignancy irrespective of H. pylori infection, among the eastern Indian population.
Collapse
|
26
|
Mizerska-Kowalska M, Sowa S, Donarska B, Płaziński W, Sławińska-Brych A, Tomasik A, Ziarkowska A, Łączkowski KZ, Zdzisińska B. New Borane-Protected Derivatives of α-Aminophosphonous Acid as Anti-Osteosarcoma Agents: ADME Analysis and Molecular Modeling, In Vitro Studies on Anti-Cancer Activities, and NEP Inhibition as a Possible Mechanism of Anti-Proliferative Activity. Int J Mol Sci 2022; 23:ijms23126716. [PMID: 35743158 PMCID: PMC9223658 DOI: 10.3390/ijms23126716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/18/2022] Open
Abstract
Many organophosphorus compounds (OPs), especially various α-aminophosphonates, exhibit anti-cancer activities. They act, among others, as inhibitors of the proteases implicated in cancerogenesis. Thesetypes of inhibitors weredescribed, e.g., for neutral endopeptidase (NEP) expressed in different cancer cells, including osteosarcoma (OS). The aim of the present study isto evaluate new borane-protected derivatives of phosphonous acid (compounds 1–7) in terms of their drug-likeness properties, anti-osteosarcoma activities in vitro (against HOS and Saos-2 cells), and use as potential NEP inhibitors. The results revealed that all tested compounds exhibited the physicochemical and ADME properties typical for small-molecule drugs. However, compound 4 did not show capability of blood–brain barrier penetration (Lipiński and Veber rules;SwissAdme tool). Moreover, the α-aminophosphonite-boranes (compounds 4–7) exhibited stronger anti-proliferative activity against OS cells than the other phosphonous acid-borane derivatives (compounds 1–3),especially regarding HOS cells (MTT assay). The most promising compounds 4 and 6 induced apoptosis through the activation of caspase 3 and/or cell cycle arrest at the G2 phase (flow cytometry). Compound 4 inhibited the migration and invasiveness of highly aggressive HOS cells (wound/transwell and BME-coated transwell assays, respectively). Additionally, compound 4 and, to a lesser extent, compound 6 inhibited NEP activity (fluorometric assay). This activity of compound 4 was involved in its anti-proliferative potential (BrdU assay). The present study shows that compound 4 can be considered a potential anti-osteosarcoma agent and a scaffold for the development of new NEP inhibitors.
Collapse
Affiliation(s)
- Magdalena Mizerska-Kowalska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
- Correspondence:
| | - Sylwia Sowa
- Faculty of Chemistry, Department of Organic Chemistry, Maria Curie-Skłodowska University, Gliniana 33 Street, 20-614 Lublin, Poland;
| | - Beata Donarska
- Faculty of Pharmacy, Collegium Medicum, Department of Chemical Technology and Pharmaceuticals, Nicolaus Copernicus University, Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (B.D.); (K.Z.Ł.)
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8 Street, 30-239 Cracow, Poland;
- Department of Biopharmacy, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Adrianna Sławińska-Brych
- Department of Cell Biology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland;
| | - Aleksandra Tomasik
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| | - Anna Ziarkowska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| | - Krzysztof Z. Łączkowski
- Faculty of Pharmacy, Collegium Medicum, Department of Chemical Technology and Pharmaceuticals, Nicolaus Copernicus University, Jurasza 2 Street, 85-089 Bydgoszcz, Poland; (B.D.); (K.Z.Ł.)
| | - Barbara Zdzisińska
- Department of Virology and Immunology, Faculty of Biology and Biotechnology, Maria Curie-Skłodowska University, Akademicka 19 Street, 20-033 Lublin, Poland; (A.T.); (A.Z.); (B.Z.)
| |
Collapse
|
27
|
Dhyani P, Quispe C, Sharma E, Bahukhandi A, Sati P, Attri DC, Szopa A, Sharifi-Rad J, Docea AO, Mardare I, Calina D, Cho WC. Anticancer potential of alkaloids: a key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int 2022; 22:206. [PMID: 35655306 PMCID: PMC9161525 DOI: 10.1186/s12935-022-02624-9] [Citation(s) in RCA: 135] [Impact Index Per Article: 67.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 05/25/2022] [Indexed: 01/09/2023] Open
Abstract
Cancer, one of the leading illnesses, accounts for about 10 million deaths worldwide. The treatment of cancer includes surgery, chemotherapy, radiation therapy, and drug therapy, along with others, which not only put a tremendous economic effect on patients but also develop drug resistance in patients with time. A significant number of cancer cases can be prevented/treated by implementing evidence-based preventive strategies. Plant-based drugs have evolved as promising preventive chemo options both in developing and developed nations. The secondary plant metabolites such as alkaloids have proven efficacy and acceptability for cancer treatment. Apropos, this review deals with a spectrum of promising alkaloids such as colchicine, vinblastine, vincristine, vindesine, vinorelbine, and vincamine within different domains of comprehensive information on these molecules such as their medical applications (contemporary/traditional), mechanism of antitumor action, and potential scale-up biotechnological studies on an in-vitro scale. The comprehensive information provided in the review will be a valuable resource to develop an effective, affordable, and cost effective cancer management program using these alkaloids.
Collapse
Affiliation(s)
- Praveen Dhyani
- Department of Biotechnology, Kumaun University, Bhimtal, Uttarakhand 263 136 India
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939 Iquique, Chile
| | - Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab 143 005 India
| | - Amit Bahukhandi
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand 248 001 India
| | - Dharam Chand Attri
- G.B. Pant National Institute of Himalayan Environment, Kosi-Katarmal, Almora, Uttarakhand 263 643 India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Medyczna 9, 30-688 Kraków, Poland
| | | | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy Bucharest, 050463 Bucharest, Romania
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong People’s Republic of China
| |
Collapse
|
28
|
Lagunas‐Rangel FA, Linnea‐Niemi JV, Kudłak B, Williams MJ, Jönsson J, Schiöth HB. Role of the Synergistic Interactions of Environmental Pollutants in the Development of Cancer. GEOHEALTH 2022; 6:e2021GH000552. [PMID: 35493962 PMCID: PMC9036628 DOI: 10.1029/2021gh000552] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/01/2022] [Accepted: 04/04/2022] [Indexed: 05/08/2023]
Abstract
There is a growing awareness that the large number of environmental pollutants we are exposed to on a daily basis are causing major health problems. Compared to traditional studies that focus on individual pollutants, there are relatively few studies on how pollutants mixtures interact. Several studies have reported a relationship between environmental pollutants and the development of cancer, even when pollutant levels are below toxicity reference values. The possibility of synergistic interactions between different pollutants could explain how even low concentrations can cause major health problems. These intricate that molecular interactions can occur through a wide variety of mechanisms, and our understanding of the physiological effects of mixtures is still limited. The purpose of this paper is to discuss recent reports that address possible synergistic interactions between different types of environmental pollutants that could promote cancer development. Our literature studies suggest that key biological pathways are frequently implicated in such processes. These include increased production of reactive oxygen species, activation by cytochrome P450, and aryl hydrocarbon receptor signaling, among others. We discuss the need to understand individual pathological vulnerability not only in relation to basic genetics and gene expression, but also in terms of measurable exposure to contaminants. We also mention the need for significant improvements in future studies using a multitude of disciplines, such as the development of high-throughput study models, better tools for quantifying pollutants in cancer patients, innovative pharmacological and toxicological studies, and high-efficiency computer analysis, which allow us to analyze the molecular mechanisms of mixtures.
Collapse
Affiliation(s)
| | - Jenni Viivi Linnea‐Niemi
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Błażej Kudłak
- Faculty of ChemistryDepartment of Analytical ChemistryGdańsk University of TechnologyGdańskPoland
| | - Michael J. Williams
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Jörgen Jönsson
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and NeuroscienceUppsala UniversityUppsalaSweden
- Institute of Translational Medicine and BiotechnologyI. M. Sechenov First Moscow State Medical UniversityMoscowRussia
| |
Collapse
|
29
|
Khayeka-Wandabwa C, Ma X, Jia Y, Bureik M. Monitoring of autoantibodies against CYP4Z1 in patients with colon, ovarian, or prostate cancer. Immunobiology 2022; 227:152174. [PMID: 34999392 DOI: 10.1016/j.imbio.2021.152174] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/27/2021] [Accepted: 12/30/2021] [Indexed: 12/09/2022]
Abstract
We have previously monitored the detection of autoantibodies (aAbs) directed against CYP4Z1 in the sera of breast and lung cancer patients. In the present study, the occurence of anti-CYP4Z1 aAbs in patients suffering from colon (n = 100), ovarian (n = 72), or prostate (n = 85) cancer was examined. Determination of aAbs was done using our previously established ELISA method. On average, the levels of anti-CYP4Z1 aAbs detected in sera from all cancer patients were not significantly higher than controls. No correlations were found with respect to gender or tumor stage. However, a subgroup of colon cancer patients with increased anti-CYP4Z1 aAb titers exhibited positive fecal occult blood test (FOBT) results and higher levels of both carbohydrate antigen 19-9 (CA19-9) and carcinoembryonic antigen (CEA). These results do not suggest that anti-CYP4Z1 aAbs have value as an independent biomarker for the detection of either colon, ovarian, or prostate cancer. However, they might be useful in combination with other biomarkers for the identification of a subset of colon cancers. Investigations involving a more powered sample size of this subgroup are needed to support this notion.
Collapse
Affiliation(s)
| | - Xiaoshuang Ma
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yingjie Jia
- Dept. of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
30
|
Niwa AM, Semprebon SC, D'Epiro GFR, Marques LA, Zanetti TA, Mantovani MS. Salinomycin induces cell cycle arrest and apoptosis and modulates hepatic cytochrome P450 mRNA expression in HepG2/C3a cells. Toxicol Mech Methods 2021; 32:341-351. [PMID: 34806536 DOI: 10.1080/15376516.2021.2008570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Salinomycin (SAL) is a monocarboxylic polyether ionophore antibiotic isolated from Streptomyces albus. It exhibits an effective antitumor potential against numerous human cancer cells. This study aimed to assess the antiproliferative effects of SAL in human hepatocellular carcinoma HepG2/C3a cell line. We investigated the effects of SAL on cell growth, DNA damage induction, cell cycle changes and apoptosis; and relative changes in expression of cell cycle-related, apoptosis-related, and CYP450 genes. SAL induced cell cycle arrest in the G2/M phase, upregulation of CDKN1A and GADD45A and downregulation of cyclin genes including CCNB1 and CCNA2. SAL effectively suppressed mRNA levels of CTNNB1 gene, an important oncogene that promotes tumorigenesis. The decrease of HepG2/C3A cells' survival can also be due to downregulation of antiapoptotic BCL-2 expression, thus promoting the induction of apoptosis by SAL. This study also demonstrated the ability of SAL in modulating hepatic cytochrome P450 (CYP) mRNA expression, such that SAL caused the upregulation of CYP1A members and CYP3A5; and downregulation of CYP3A4. Taken together, these data contribute to the understanding of the mechanism of action of SAL, highlighting that metabolizing enzymes modulated by SAL can interfere with chemotherapy treatment and it must be considered in associated treatments.
Collapse
Affiliation(s)
- Andressa Megumi Niwa
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Londrina, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Londrina, Brazil
| | | | - Lilian Areal Marques
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Londrina, Brazil
| | - Thalita Alves Zanetti
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Londrina, Brazil
| | - Mário Sérgio Mantovani
- Department of General Biology, Center of Biological Sciences, Londrina State University - UEL, Londrina, Brazil
| |
Collapse
|
31
|
Establishment of non-small-cell lung cancer risk prediction model based on prognosis-associated ADME genes. Biosci Rep 2021; 41:229783. [PMID: 34522968 PMCID: PMC8527211 DOI: 10.1042/bsr20211433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022] Open
Abstract
PURPOSE ADME genes are those involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs. In the present study, a non-small-cell lung cancer (NSCLC) risk prediction model was established using prognosis-associated ADME genes, and the predictive performance of this model was evaluated and verified. In addition, multifaceted difference analysis was performed on groups with high and low risk scores. METHODS An NSCLC sample transcriptome and clinical data were obtained from public databases. The prognosis-associated ADME genes were obtained by univariate Cox and lasso regression analyses to build a risk model. Tumor samples were divided into high-risk and low-risk score groups according to the risk score. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of the differentially expressed genes and the differences in the immune infiltration, mutation, and medication reactions in the two groups were studied in detail. RESULTS A risk prediction model was established with seven prognosis-associated ADME genes. Its good predictive ability was confirmed by studies of the model's effectiveness. Univariate and multivariate Cox regression analyses showed that the model's risk score was an independent prognostic factor for patients with NSCLC. The study also showed that the risk score closely correlated with immune infiltration, mutations, and medication reactions. CONCLUSION The risk prediction model established with seven ADME genes in the present study can predict the prognosis of patients with NSCLC. In addition, significant differences in immune infiltration, mutations, and therapeutic efficacy exist between the high- and low-risk score groups.
Collapse
|
32
|
Potential lncRNA Biomarkers for HBV-Related Hepatocellular Carcinoma Diagnosis Revealed by Analysis on Coexpression Network. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9972011. [PMID: 34692847 PMCID: PMC8536424 DOI: 10.1155/2021/9972011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022]
Abstract
Background Increasing evidence demonstrated that long noncoding RNA (lncRNA) could affect inflammatory tumor immune microenvironment by modulating gene expression and could be used as a biomarker for HBC-related hepatocellular carcinoma (HCC) but still needs further research. The aim of the present study was to determine an lncRNA signature for the diagnosis of HBV-related HCC. Methods HBV-related HCC expression profiles (GSE55092, GSE19665, and GSE84402) were abstracted from the GEO (Gene Expression Omnibus) data resource, and R package limma and RobustRankAggreg were employed to identify common differentially expressed genes (DEGs). Using machine learning, optimal diagnostic lncRNA molecular markers for HBV-related HCC were identified. The expression of candidate lncRNAs was cross-validated in GSE121248, and an ROC (receiver operating characteristic) curve of lncRNA biomarkers was carried out. Additionally, a coexpression network and functional annotation was built, after which a PPI (protein-protein interaction) network along with module analysis were conducted with the Cytoscape open source software. Result A total of 38 DElncRNAs and 543 DEmRNAs were identified with a fold change larger than 2.0 and a P value < 0.05. By machine learning, AL356056.2, AL445524.1, TRIM52-AS1, AC093642.1, EHMT2-AS1, AC003991.1, AC008040.1, LINC00844, and LINC01018 were screened out as optional diagnostic lncRNA biosignatures for HBV-related HCC. The AUC (areas under the curve) of the SVM (support vector machine) model and random forest model were 0.957 and 0.904, respectively, and the specificity and sensitivity were 95.7 and 100% and 94.3 and 86.5%, respectively. The results of functional enrichment analysis showed that the integrated coexpressed DEmRNAs shared common cascades in the p53 signaling pathway, retinol metabolism, PI3K-Akt signaling cascade, and chemical carcinogenesis. The integrated DEmRNA PPI network complex was found to be comprised of 87 nodes, and two vital modules with a high degree were selected with the MCODE app. Conclusion The present study identified nine potential diagnostic biomarkers for HBV-related HCC, all of which could potentially modulated gene expression related to inflammatory conditions in the tumor immune microenvironment. The functional annotation of the target DEmRNAs yielded novel evidence in evaluating the precise functions of lncRNA in HBV-related HCC.
Collapse
|
33
|
Vetrichelvan O, Gorjala P, Goodman O, Mitra R. Bergamottin a CYP3A inhibitor found in grapefruit juice inhibits prostate cancer cell growth by downregulating androgen receptor signaling and promoting G0/G1 cell cycle block and apoptosis. PLoS One 2021; 16:e0257984. [PMID: 34570813 PMCID: PMC8476002 DOI: 10.1371/journal.pone.0257984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/14/2021] [Indexed: 01/05/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer related death in American men. Several therapies have been developed to treat advanced prostate cancer, but these therapies often have severe side effects. To improve the outcome with fewer side effects we focused on the furanocoumarin bergamottin, a natural product found in grapefruit juice and a potent CYP3A inhibitor. Our recent studies have shown that CYP3A5 inhibition can block androgen receptor (AR) signaling, critical for prostate cancer growth. We observed that bergamottin reduces prostate cancer (PC) cell growth by decreasing both total and nuclear AR (AR activation) reducing downstream AR signaling. Bergamottin’s role in reducing AR activation was confirmed by confocal microscopy studies and reduction in prostate specific antigen (PSA) levels, which is a marker for prostate cancer. Further studies revealed that bergamottin promotes cell cycle block and accumulates G0/G1 cells. The cell cycle block was accompanied with reduction in cyclin D, cyclin B, CDK4, P-cdc2 (Y15) and P-wee1 (S642). We also observed that bergamottin triggers apoptosis in prostate cancer cell lines as evident by TUNEL staining and PARP cleavage. Our data suggests that bergamottin may suppress prostate cancer growth, especially in African American (AA) patients carrying wild type CYP3A5 often presenting aggressive disease.
Collapse
Affiliation(s)
- Opalina Vetrichelvan
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Priyatham Gorjala
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| | - Oscar Goodman
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America.,Comprehensive Cancer Centers of Nevada, Las Vegas, Nevada, United States of America
| | - Ranjana Mitra
- Department of Biomedical Sciences, College of Medicine, Roseman University of Health Sciences, Las Vegas, Nevada, United States of America
| |
Collapse
|
34
|
Cytochrome 4Z1 Expression Is Correlated with Poor Prognosis in Patients with Cervical Cancer. ACTA ACUST UNITED AC 2021; 28:3573-3584. [PMID: 34590601 PMCID: PMC8482276 DOI: 10.3390/curroncol28050306] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/01/2021] [Accepted: 09/11/2021] [Indexed: 12/24/2022]
Abstract
Background: cervical cancer is one of the most common malignancies in women worldwide and its management remains challenging and complex. As Cytochrome4Z1 (CYP4Z1) is overexpressed in many tumours, its expression in cervical cancer is unknown. Therefore, the present study aimed to evaluate CYP4Z1 expression in cervical cancers. Methods: CYP4Z1 expression was immunohistochemically assessed in 100 cases of cervical cancers along with ten normal cervix tissues, and the enzyme’s relationship to several clinicopathological features and survival was explored. Results: CYP4Z1 was strongly expressed in 55% of cervical cancer patients. Normal cervix samples were negative for CYP4Z1 expression. Importantly, this expression was significantly found in patients with the late stage of the disease, lymph node metastasis, and high tumour invasion (p < 0.05). Interestingly, CYP4Z1 expression was significantly correlated with shorter survival times of cervical cancer patients. Univariate analysis showed that CYP4Z1 expression, tumour stage, lymph node metastasis, and tumour invasion were significantly correlated with patient survival (p < 0.05). The multivariate analysis revealed that only CYP4Z1 expression and tumour stage were significantly correlated with patient survival (p < 0.05). Conclusions: CYP4Z1 expression is associated with cervical cancer patients’ survival and may serve as an independent predictor of poor prognosis in cervical cancer patients.
Collapse
|
35
|
Khayeka-Wandabwa C, Ma X, Jia Y, Bureik M. Concomitant occurence of multiple autoantibodies against human cytochromes P450. Int Immunopharmacol 2021; 100:108087. [PMID: 34464888 DOI: 10.1016/j.intimp.2021.108087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/18/2021] [Indexed: 12/17/2022]
Abstract
Cytochromes P450 (CYPs) are a large superfamily of heme-containing enzymes that are essential for the metabolism of a variety of endogenous and xenobiotic compounds. The role and the possible diagnostic or prognostic value of the occurrence of anti-CYP autoantibodies (aAbs) in cancer patients are essentially unclear. Recently we reported the monitoring of aAbs against CYP4Z1 and CYP19A1 in breast cancer patients and healthy controls. In the present study, we extended this investigation by screening the sera of 47 lung cancer patients (17 female and 30 male; age range 49-84) and 119 healthy controls (60 female and 59 male; age range 21-72) for the presence of aAbs directed against CYP2D6, CYP4Z1, or CYP17A1, respectively. Determination of anti-CYP aAb levels was done using our previously established ELISA method. Most sera gave low signals while a small fraction showed stronger responses; however, there were no statistically significant differences between the different test groups. Also, there was no significant difference in aAb signals between the various subtypes of lung cancer. Unexpectedly, sera from two female lung cancer patients (age 67 (adenocarcinoma) and 70 (small cell carcinoma)) and from four healthy controls (one female and three male; age range 34-48) showed significantly elevated signals for more than one of the three CYPs tested. These findings corroborate earlier reports that anti-CYP aAbs occur with low frequency in the general population and, moreover, suggest that the simultaneous presence of multiple aAbs targeting different CYPs should be taken into consideration when evaluating anti-CYP aAbs as biomarkers.
Collapse
Affiliation(s)
- Christopher Khayeka-Wandabwa
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Xiaoshuang Ma
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China
| | - Yingjie Jia
- Dept. of Oncology, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Matthias Bureik
- School of Pharmaceutical Science and Technology, Health Sciences Platform, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
36
|
Pan H, Yang L, Bai H, Luo J, Deng Y. Ginsenoside Rg3 increases gemcitabine sensitivity of pancreatic adenocarcinoma via reducing ZFP91 mediated TSPYL2 destabilization. J Ginseng Res 2021; 46:636-645. [PMID: 36090681 PMCID: PMC9459078 DOI: 10.1016/j.jgr.2021.08.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 08/08/2021] [Accepted: 08/18/2021] [Indexed: 01/26/2023] Open
Abstract
Background Ginsenoside Rg3 and gemcitabine have mutual enhancing antitumor effects. However, the underlying mechanisms are not clear. This study explored the influence of ginsenoside Rg3 on Zinc finger protein 91 homolog (ZFP91) expression in pancreatic adenocarcinoma (PAAD) and their regulatory mechanisms on gemcitabine sensitivity. Methods RNA-seq and survival data from The Cancer Genome Atlas (TCGA)-PAAD and Genotype-Tissue Expression (GTEx) were used for in-silicon analysis. PANC-1, BxPC-3, and PANC-1 gemcitabine-resistant (PANC-1/GR) cells were used for in vitro analysis. PANC-1 derived tumor xenograft nude mice model was used to assess the influence of ginsenoside Rg3 and ZFP91 on tumor growth in vivo. Results Ginsenoside Rg3 reduced ZFP91 expression in PAAD cells in a dose-dependent manner. ZFP91 upregulation was associated with significantly shorter survival of patients with PAAD. ZFP91 overexpression induced gemcitabine resistance, which was partly conquered by ginsenoside Rg3 treatment. ZFP91 depletion sensitized PANC-1/GR cells to gemcitabine treatment. ZFP91 interacted with Testis-Specific Y-Encoded-Like Protein 2 (TSPYL2), induced its poly-ubiquitination, and promoted proteasomal degradation. Ginsenoside Rg3 treatment weakened ZFP91-induced TSPYL2 poly-ubiquitination and degradation. Enforced TSPYL2 expression increased gemcitabine sensitivity of PAAD cells and partly reversed induced gemcitabine resistance in PANC-1/GR cells. Conclusion Ginsenoside Rg3 can increase gemcitabine sensitivity of pancreatic adenocarcinoma at least via reducing ZFP91 mediated TSPYL2 destabilization.
Collapse
Affiliation(s)
- Haixia Pan
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Linhan Yang
- Outpatient Department, Chengdu Aurora Huan Hua Xiang, Chengdu, China
| | - Hansong Bai
- Department of Radiation Oncology, School of Medicine, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, University of Electronic Science and Technology of China, Chengdu, China
| | - Jing Luo
- Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author. Department of Breast Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ying Deng
- Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
- Corresponding author. Cancer Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
37
|
The Mechanism Underlying the Extreme Sensitivity of Duck to Aflatoxin B1. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021. [DOI: 10.1155/2021/9996503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Most metabolites of aflatoxin B1 (AFB1), especially exo-AFB1-8,9-epoxide (AFBO), can induce the production of reactive oxygen species (ROS) to vary degrees, causing oxidative stress and liver damage, and ultimately induce liver cancer in humans and animals. Duck is one of the most sensitive animals to AFB1, and severe economic losses are caused by duck AFB1 poisoning every year, but the exact mechanism of this high sensitivity is still unclear. This review highlights significant advances in our understanding of the AFB1 metabolic activation, like cytochrome P450s (CYPs), and AFB1 metabolic detoxification, like glutathione S-transferases (GSTs) in poultry. In addition, AFB1 may have other metabolic pathways in poultry, such as the mutual conversion of AFB1 and aflatoxicol (AFL) and the process of AFBO to produce AFB1-8,9-dihydrodiol (AFB1-dhd) and further metabolize it into detoxification substances. This review also summarized some exogenous regulatory substances that can alleviate AFB1-induced oxidative stress.
Collapse
|
38
|
Mohamed BME, Salah Eldin R, Salah Eldin A, Abdelrahim MEA, Hussein RRS. Lung deposition and systemic bioavailability of dose delivered to smoker compared with non-smoker COPD subjects. Int J Clin Pract 2021; 75:e13883. [PMID: 33278071 DOI: 10.1111/ijcp.13883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
INTRODUCTION Inhaled drugs are the most commonly used class of medications for COPD subjects. No studies have been performed to assess the influence of smoking on lung deposition of aerosolized medication, especially for the exacerbated COPD subject. The present study aimed to assess the influence of smoking on the lung deposition of the aerosol delivered to exacerbated COPD subjects. METHODS Twenty-four exacerbated COPD subjects using automatic continuous positive airway pressure (Auto-CPAP), 12 smokers (six females) and 12 non-smokers (six females) were recruited in the study. The subjects participated in the study received four salbutamol study doses; 1200 µg (12 puffs 100 µg/puff) of salbutamol emitted from pMDI canister connected to AeroChamber MV spacer; 1200 µg of salbutamol emitted from pMDI canister connected to Combihaler spacer; 1 mL of salbutamol respirable solution (5000 µg/mL) nebulized by Aerogen Solo connected to its T-piece; and 1 mL of salbutamol respirable solution nebulized by Aerogen Solo connected to Combihaler spacer with 2 puffs salbutamol MDI (200 µg salbutamol) before nebulisation. The subjects were randomised to receive the four selected dose-adaptor combination in a sealed envelope design on days 1, 3, 5 and 7. A washout period of 24 hours was provided between each salbutamol dosing. Auto-CPAP was adjusted at non-invasive ventilation mode with the integrated heated humidifier, as a source of humidity. Urine samples were provided by subjects, 30 minutes and cumulatively 24 hours post inhalation, as an index of the relative and systemic bioavailability, respectively, and aliquots were retained for salbutamol analysis using solid-phase extraction and high-performance liquid chromatography (HPLC). On day 2 of the study, a collecting filter was placed between the aerosol generator and the subject's mask so that the subjects would not inhale the salbutamol delivered. The same study doses and/or adapters were delivered to each subject, with filters changed with each dose-adapter combination. Salbutamol entrained on the filter was desorbed to be analysed by the HPLC. RESULTS Significantly higher lung deposition (30 minutes urinary salbutamol) was detected with the non-smoker compared with smokers (P < .05). Significantly higher systemic bioavailability (pooled 24-hour urinary salbutamol) for smokers compared with non-smokers was found with Aerogen Solo connected to its T-piece and CombiHaler spacer with pMDI (P < .05) only. Significantly higher amount desorbed from the ex-vivo filter were found from pMDI with both spacers in non-smokers (P < .05) compared with the smokers. CONCLUSION The study demonstrated that smoking reduced the lung deposition of inhaled salbutamol delivered by nebulizer or pMDI. However, the smoking effect on cytochrome p450 was observed to increase systemic absorption of the ingested portion of the inhaled dose. The lower lung deposition and possible higher systemic absorption should be taken into consideration while prescribing inhaled medication to COPD smokers especially exacerbated patients that need ventilation. Further studies are needed.
Collapse
Affiliation(s)
- Basma M E Mohamed
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Randa Salah Eldin
- Chest Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Abeer Salah Eldin
- Chest Department, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed E A Abdelrahim
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Raghda R S Hussein
- Clinical Pharmacy Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
39
|
Zhang R, Huang M, Wang H, Wu S, Yao J, Ge Y, Lu Y, Hu Q. Identification of Potential Biomarkers From Hepatocellular Carcinoma With MT1 Deletion. Pathol Oncol Res 2021; 27:597527. [PMID: 34257549 PMCID: PMC8262205 DOI: 10.3389/pore.2021.597527] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 02/01/2021] [Indexed: 12/21/2022]
Abstract
Background: Hepatocellular carcinoma (HCC) is one of the deadliest cancers worldwide. Metallothioneins (MTs) are metal-binding proteins involved in multiple biological processes such as metal homeostasis and detoxification, as well as in oncogenesis. Copy number variation (CNV) plays a vital role in pathogenesis and carcinogenesis. Nevertheless, there is no study on the role of MT1 CNV in HCC. Methods: Array-based Comparative Genomic Hybridization (aCGH) analysis was performed to obtain the CNV data of 79 Guangxi HCC patients. The prognostic effect of MT1-deletion was analyzed by univariate and multivariate Cox regression analysis. The differentially expressed genes (DEGs) were screened based on The Gene Expression Omnibus database (GEO) and the Liver Hepatocellular Carcinoma of The Cancer Genome Atlas (TCGA-LIHC). Then function and pathway enrichment analysis, protein-protein interaction (PPI) and hub gene selection were applied on the DEGs. Lastly, the hub genes were validated by immunohistochemistry, tissue expression and prognostic analysis. Results: The MT1-deletion was demonstrated to affect the prognosis of HCC and can act as an independent prognostic factor. 147 common DEGs were screened. The most significant cluster of DEGs identified by Molecular Complex Detection (MCODE) indicated that the expression of four MT1s were down-regulated. MT1X and other five hub genes (TTK, BUB1, CYP3A4, NR1I2, CYP8B1) were associated with the prognosis of HCC. TTK, could affect the prognosis of HCC with MT1-deletion and non-deletion. NR1I2, CYP8B1, and BUB1 were associated with the prognosis of HCC with MT1-deletion. Conclusions: In the current study, we demonstrated that MT1-deletion can be an independent prognostic factor in HCC. We identified TTK, BUB1, NR1I2, CYP8B1 by processing microarray data, for the first time revealed the underlying function of MT1 deletion in HCC, MT1-deletion may influence the gene expression in HCC, which may be the potential biomarkers for HCC with MT1 deletion.
Collapse
Affiliation(s)
- Ruohao Zhang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Miao Huang
- Radiology Department, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hong Wang
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Shengming Wu
- Department of Pathology, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Jiali Yao
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yingying Ge
- Department of Histology and Embryology, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Yufei Lu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| | - Qiping Hu
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
40
|
Song Y, Li C, Liu G, Liu R, Chen Y, Li W, Cao Z, Zhao B, Lu C, Liu Y. Drug-Metabolizing Cytochrome P450 Enzymes Have Multifarious Influences on Treatment Outcomes. Clin Pharmacokinet 2021; 60:585-601. [PMID: 33723723 DOI: 10.1007/s40262-021-01001-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/09/2021] [Indexed: 02/06/2023]
Abstract
Drug metabolism is a critical process for the removal of unwanted substances from the body. In humans, approximately 80% of oxidative metabolism and almost 50% of the overall elimination of commonly used drugs can be attributed to one or more of various cytochrome P450 (CYP) enzymes from CYP families 1-3. In addition to the basic metabolic effects for elimination, CYP enzymes in vivo are capable of affecting the treatment outcomes in many cases. Drug-metabolizing CYP enzymes are mainly expressed in the liver and intestine, the two principal drug oxidation and elimination organs, where they can significantly influence the drug action, safety, and bioavailability by mediating phase I metabolism and first-pass metabolism. Furthermore, CYP-mediated local drug metabolism in the sites of action may also have the potential to impact drug response, according to the literature in recent years. This article underlines the ability of CYP enzymes to influence treatment outcomes by discussing CYP-mediated diversified drug metabolism in primary metabolic sites (liver and intestine) and typical action sites (brain and tumors) according to their expression levels and metabolic activity. Moreover, intrinsic and extrinsic factors of personal differential CYP phenotypes that contribute to interindividual variation of treatment outcomes are also reviewed to introduce the multifarious pivotal role of CYP-mediated metabolism and clearance in drug therapy.
Collapse
Affiliation(s)
- Yurong Song
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Chenxi Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Guangzhi Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Rui Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Youwen Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Wen Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhiwen Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Baosheng Zhao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| | - Cheng Lu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| | - Yuanyan Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
41
|
Turrini E, Sestili P, Fimognari C. Overview of the Anticancer Potential of the "King of Spices" Piper nigrum and Its Main Constituent Piperine. Toxins (Basel) 2020; 12:E747. [PMID: 33256185 PMCID: PMC7761056 DOI: 10.3390/toxins12120747] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/18/2020] [Accepted: 11/24/2020] [Indexed: 02/07/2023] Open
Abstract
The main limits of current anticancer therapy are relapses, chemoresistance, and toxic effects resulting from its poor selectivity towards cancer cells that severely impair a patient's quality of life. Therefore, the discovery of new anticancer drugs remains an urgent challenge. Natural products represent an excellent opportunity due to their ability to target heterogenous populations of cancer cells and regulate several key pathways involved in cancer development, and their favorable toxicological profile. Piper nigrum is one of the most popular spices in the world, with growing fame as a source of bioactive molecules with pharmacological properties. The present review aims to provide a comprehensive overview of the anticancer potential of Piper nigrum and its major active constituents-not limited to the well-known piperine-whose undeniable anticancer properties have been reported for different cancer cell lines and animal models. Moreover, the chemosensitizing effects of Piper nigrum in association with traditional anticancer drugs are depicted and its toxicological profile is outlined. Despite the promising results, human studies are missing, which are crucial for supporting the efficacy and safety of Piper nigrum and its single components in cancer patients.
Collapse
Affiliation(s)
- Eleonora Turrini
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| | - Piero Sestili
- Department of Biomolecular Sciences (DISB), Università degli Studi di Urbino Carlo Bo, Via I Maggetti 26, 61029 Urbino, Italy;
| | - Carmela Fimognari
- Department for Life Quality Studies, Alma Mater Studiorum—Università di Bologna, corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
42
|
Szychowski KA, Skóra B, Kryshchyshyn-Dylevych A, Kaminskyy D, Rybczyńska-Tkaczyk K, Lesyk R, Gmiński J. Induction of Cyp450 enzymes by 4-thiazolidinone-based derivatives in 3T3-L1 cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2020; 394:915-927. [PMID: 33219472 PMCID: PMC8102453 DOI: 10.1007/s00210-020-02025-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/15/2020] [Indexed: 12/24/2022]
Abstract
4-Thiazolidinones and related derivatives are regarded as privileged structures in medicinal chemistry and a source of new drug-like compounds. To date it is known that thiazolidinones are able to induce CYP1A1 activity in 3T3-L1 cells. Therefore, to extend the knowledge of the mechanism of thiazolidinones in the cell, four chemically synthesized heterocycles were tested on 3T3-L1 cells. The 3T3-L1 cells were exposed to Les-2194, Les-3640, Les-5935, and Les-6166. Our study showed that 1 μM βNF, Les-2194, and Les-6166 decreased the expression of Ahr mRNA. In turn, βNF, Les-2194, and Les-3640 increased the Cyp1a1 mRNA expression at the same time interval. On the other hand, Les-5935 was found to decrease the Cyp1a1 mRNA expression. Interestingly, the expression of Cyp1a2 mRNA was activated only by βNF and Les-2194. The expression of Cyp1b1 mRNA in the 3T3 cell line increased after the βNF and Les-2194 treatment but declined after the exposure to Les-5935 and Les-6166. Moreover, the Les-2194 and Les-5935 compounds were shown to increase the activity of EROD, MROD, and PROD. Les-3640 increased the activity of EROD and decreased the activity of PROD. In turn, the treatment with Les-6166 resulted in an increase in the activity of EROD and a decrease in the activity of MROD and PROD in the 3T3-L1 cells.
Collapse
Affiliation(s)
- Konrad A Szychowski
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.
| | - Bartosz Skóra
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| | - Anna Kryshchyshyn-Dylevych
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Kamila Rybczyńska-Tkaczyk
- Department of Environmental Microbiology, University of Life Sciences, Leszczyńskiego 7, 20-069, Lublin, Poland
| | - Roman Lesyk
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland.,Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv, 79010, Ukraine
| | - Jan Gmiński
- Department of Lifestyle Disorders and Regenerative Medicine, University of Information Technology and Management in Rzeszow, Sucharskiego 2, 35-225, Rzeszow, Poland
| |
Collapse
|
43
|
The Expression Profiles of ADME Genes in Human Cancers and Their Associations with Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12113369. [PMID: 33202946 PMCID: PMC7697355 DOI: 10.3390/cancers12113369] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/04/2020] [Accepted: 11/11/2020] [Indexed: 02/07/2023] Open
Abstract
ADME genes are a group of genes that are involved in drug absorption, distribution, metabolism, and excretion (ADME). The expression profiles of ADME genes within tumours is proposed to impact on cancer patient survival; however, this has not been systematically examined. In this study, our comprehensive analyses of pan-cancer datasets from the Cancer Genome Atlas (TCGA) revealed differential intratumoral expression profiles for ADME genes in 21 different cancer types. Most genes also showed high interindividual variability within cancer-specific patient cohorts. Using Kaplan-Meier plots and logrank tests, we showed that intratumoral expression levels of twenty of the thirty-two core ADME genes were associated with overall survival (OS) in these cancers. Of these genes, five showed significant association with unfavourable OS in three cancers, including SKCM (ABCC2, GSTP1), KIRC (CYP2D6, CYP2E1), PAAD (UGT2B7); sixteen showed significant associations with favourable OS in twelve cancers, including BLCA (UGT2B15), BRCA (CYP2D6), COAD (NAT1), HNSC (ABCB1), KIRC (ABCG2, CYP3A4, SLC22A2, SLC22A6), KIRP (SLC22A2), LIHC (CYP2C19, CYP2C8, CYP2C9, CYP3A5, SLC22A1), LUAD (SLC15A2), LUSC (UGT1A1), PAAD (ABCB1), SARC (ABCB1), and SKCM (ABCB1, DYPD). Overall, these data provide compelling evidence supporting ADME genes as prognostic biomarkers and potential therapeutic targets. We propose that intratumoral expression of ADME genes may impact cancer patient survival by multiple mechanisms that can include metabolizing/transporting anticancer drugs, activating anticancer drugs, and metabolizing/transporting a variety of endogenous molecules involved in metabolically fuelling cancer cells and/or controlling pro-growth signalling pathways.
Collapse
|
44
|
A new parameter in multiple myeloma: CYP3A4*1B single nucleotide polymorphism. Ann Hematol 2020; 100:421-427. [PMID: 33170343 PMCID: PMC7653211 DOI: 10.1007/s00277-020-04339-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 11/03/2020] [Indexed: 12/19/2022]
Abstract
Multiple myeloma (MM) is a disease caused by malignant plasma cells, causing free light chain release accompanying the increase in monoclonal immunoglobulin. Cytochrome P450 (CYP) is one of the large and functional enzyme families composed of various hemoproteins. This protein network has been shown to play a role in many treatment steps in current practices. We aimed to investigate the relationship between genotypes of CYP3A4*1B and treatment response and prognosis of MM. Seventy-two patients diagnosed with MM between January 2016 and 2020 and 100 healthy people to create a control group participated in our study. Genotypes were classified in 3 separate groups as NN, MN, and MM. Both PFS and OS were significantly higher in the NN genotype (p = 0.001, p = 0.014). Being under the age of 65 was 27.988 times more protective for OS and 4.496 times for PFS (p = 0.006, p = 0.017). NN genotype was shown to be 41.666-fold protective for OS and 3.144-fold protective for PFS (p = 0.004, p = 0.030). This study demonstrated that CYP3A4*1B NN genotype, which is an important cytochrome p450 member for the treatment of MM, was 41.666-fold protective for OS and 3.144-fold protective for PFS. It was shown in this study for the first time in the literature as a valuable contribution.
Collapse
|
45
|
Maloney SM, Hoover CA, Morejon-Lasso LV, Prosperi JR. Mechanisms of Taxane Resistance. Cancers (Basel) 2020; 12:E3323. [PMID: 33182737 PMCID: PMC7697134 DOI: 10.3390/cancers12113323] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 12/17/2022] Open
Abstract
The taxane family of chemotherapy drugs has been used to treat a variety of mostly epithelial-derived tumors and remain the first-line treatment for some cancers. Despite the improved survival time and reduction of tumor size observed in some patients, many have no response to the drugs or develop resistance over time. Taxane resistance is multi-faceted and involves multiple pathways in proliferation, apoptosis, metabolism, and the transport of foreign substances. In this review, we dive deeper into hypothesized resistance mechanisms from research during the last decade, with a focus on the cancer types that use taxanes as first-line treatment but frequently develop resistance to them. Furthermore, we will discuss current clinical inhibitors and those yet to be approved that target key pathways or proteins and aim to reverse resistance in combination with taxanes or individually. Lastly, we will highlight taxane response biomarkers, specific genes with monitored expression and correlated with response to taxanes, mentioning those currently being used and those that should be adopted. The future directions of taxanes involve more personalized approaches to treatment by tailoring drug-inhibitor combinations or alternatives depending on levels of resistance biomarkers. We hope that this review will identify gaps in knowledge surrounding taxane resistance that future research or clinical trials can overcome.
Collapse
Affiliation(s)
- Sara M. Maloney
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
| | - Camden A. Hoover
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Lorena V. Morejon-Lasso
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| | - Jenifer R. Prosperi
- Harper Cancer Research Institute, South Bend, IN 46617, USA;
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, South Bend, IN 46617, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA; (C.A.H.); (L.V.M.-L.)
| |
Collapse
|
46
|
Ahmed S, Khan H, Aschner M, Mirzae H, Küpeli Akkol E, Capasso R. Anticancer Potential of Furanocoumarins: Mechanistic and Therapeutic Aspects. Int J Mol Sci 2020; 21:E5622. [PMID: 32781533 PMCID: PMC7460698 DOI: 10.3390/ijms21165622] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/03/2020] [Indexed: 02/07/2023] Open
Abstract
Cancer is one of the most extreme medical conditions in both developing and developed countries around the world, causing millions of deaths each year. Chemotherapy and/or radiotherapy are key for treatment approaches, but both have numerous adverse health effects. Furthermore, the resistance of cancerous cells to anticancer medication leads to treatment failure. The rising burden of cancer overall requires novel efficacious treatment modalities. Natural medications offer feasible alternative options against malignancy in contrast to western medication. Furanocoumarins' defensive and restorative impacts have been observed in leukemia, glioma, breast, lung, renal, liver, colon, cervical, ovarian, and prostate malignancies. Experimental findings have shown that furanocoumarins activate multiple signaling pathways, leading to apoptosis, autophagy, antioxidant, antimetastatic, and cell cycle arrest in malignant cells. Additionally, furanocoumarins have been shown to have chemo preventive and chemotherapeutic synergistic potential when used in combination with other anticancer drugs. Here, we address different pathways which are activated by furanocoumarins and their therapeutic efficacy in various tumors. Ideally, this review will trigger interest in furanocoumarins and their potential efficacy and safety as a cancer lessening agents.
Collapse
Affiliation(s)
- Salman Ahmed
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan;
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan;
| | - Michael Aschner
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY 10463, USA;
| | - Hamed Mirzae
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan 8715973474, Iran;
| | - Esra Küpeli Akkol
- Department of Pharmacognosy, Faculty of Pharmacy, Gazi University, Etiler, 06330 Ankara, Turkey;
| | - Raffaele Capasso
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055 Portici, Italy
| |
Collapse
|
47
|
Ingelman-Sundberg M, Lauschke VM. Can CYP Inhibition Overcome Chemotherapy Resistance? Trends Pharmacol Sci 2020; 41:503-506. [DOI: 10.1016/j.tips.2020.05.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 05/31/2020] [Indexed: 12/15/2022]
|
48
|
Wang J, Yu L, Jiang H, Zheng X, Zeng S. Epigenetic Regulation of Differentially Expressed Drug-Metabolizing Enzymes in Cancer. Drug Metab Dispos 2020; 48:759-768. [PMID: 32601104 DOI: 10.1124/dmd.120.000008] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/01/2020] [Indexed: 12/14/2022] Open
Abstract
Drug metabolism is a biotransformation process of drugs, catalyzed by drug-metabolizing enzymes (DMEs), including phase I DMEs and phase II DMEs. The aberrant expression of DMEs occurs in the different stages of cancer. It can contribute to the development of cancer and lead to individual variations in drug response by affecting the metabolic process of carcinogen and anticancer drugs. Apart from genetic polymorphisms, which we know the most about, current evidence indicates that epigenetic regulation is also central to the expression of DMEs. This review summarizes differentially expressed DMEs in cancer and related epigenetic changes, including DNA methylation, histone modification, and noncoding RNAs. Exploring the epigenetic regulation of differentially expressed DMEs can provide a basis for implementing individualized and rationalized medication. Meanwhile, it can promote the development of new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer. SIGNIFICANCE STATEMENT: This review summarizes the aberrant expression of DMEs in cancer and the related epigenetic regulation of differentially expressed DMEs. Exploring the epigenetic regulatory mechanism of DMEs in cancer can help us to understand the role of DMEs in cancer progression and chemoresistance. Also, it provides a basis for developing new biomarkers and targets for the diagnosis, treatment, and prognosis of cancer.
Collapse
Affiliation(s)
- Jiaqi Wang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Lushan Yu
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Huidi Jiang
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Xiaoli Zheng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| | - Su Zeng
- Institute of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China (J.W., L.Y., H.J., S.Z.) and Hangzhou Cancer Institution, Hangzhou Cancer Hospital, Hangzhou, China (X.Z.)
| |
Collapse
|
49
|
Kobayashi H, Murata M, Kawanishi S, Oikawa S. Polyphenols with Anti-Amyloid β Aggregation Show Potential Risk of Toxicity Via Pro-Oxidant Properties. Int J Mol Sci 2020; 21:E3561. [PMID: 32443552 PMCID: PMC7279003 DOI: 10.3390/ijms21103561] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 05/13/2020] [Accepted: 05/13/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among older people. Amyloid β (Aβ) aggregation has been the focus for a therapeutic target for the treatment of AD. Naturally occurring polyphenols have an inhibitory effect on Aβ aggregation and have attracted a lot of attention for the development of treatment strategies which could mitigate the symptoms of AD. However, considerable evidence has shown that the pro-oxidant mechanisms of polyphenols could have a deleterious effect. Our group has established an assay system to evaluate the pro-oxidant characteristics of chemical compounds, based on their reactivity with DNA. In this review, we have summarized the anti-Aβ aggregation and pro-oxidant properties of polyphenols. These findings could contribute to understanding the mechanism underlying the potential risk of polyphenols. We would like to emphasize the importance of assessing the pro-oxidant properties of polyphenols from a safety point of view.
Collapse
Affiliation(s)
- Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Mariko Murata
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Mie 513-8670, Japan;
| | - Shinji Oikawa
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; (H.K.); (M.M.)
| |
Collapse
|