1
|
Soboh S, Vorontsova A, Farhoud M, Barash U, Naroditsky I, Gross-Cohen M, Weissmann M, Yasuhiko N, Woolf AS, Roberts NA, Shaked Y, Ilan N, Vlodavsky I. Tumor- and host-derived heparanase-2 (Hpa2) attenuates tumorigenicity: role of Hpa2 in macrophage polarization and BRD7 nuclear localization. Cell Death Dis 2024; 15:894. [PMID: 39695102 DOI: 10.1038/s41419-024-07262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/14/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
Little attention was given to heparanase 2 (Hpa2) over the last two decades, possibly because it lacks a heparan sulfate (HS)-degrading activity typical of heparanase. Emerging results suggest, nonetheless, that Hpa2 plays a role in human pathologies, including cancer progression where it functions as a tumor suppressor. Here, we examined the role of Hpa2 in cervical carcinoma. We report that high levels of Hpa2 correlate with prolonged survival of cervical carcinoma patients. Strong staining intensity of Hpa2 also correlates with low tumor grade. Overexpression of Hpa2 in SiHa cervical carcinoma cells resulted in tumor xenografts that were two-fold smaller than control tumors. Interestingly, even smaller tumor xenografts were developed by SiHa cells overexpressing the Pro140Arg and Asn543Ile Hpa2 missense mutations that were identified in patients diagnosed with urofacial syndrome (UFS). Utilizing the Ras recruitment system, we identified bromodomain-containing protein 7 (BRD7) to interact with Hpa2 and found that both BRD7 and the Hpa2 mutants are translocated to the cell nucleus in tumors developed by the Pro140Arg and Asn543Ile Hpa2 mutants. Utilizing our newly developed conditional Hpa2-KO mice, we further show that Hpa2 plays a critical role in macrophage polarization; in the absence of Hpa2, macrophages are shifted towards pro-tumorigenic, M2 phenotype. Notably, implanting SiHa cervical carcinoma cells together with Hpa2-KO macrophages promoted tumor growth. These results support, and further expand, the notion that Hpa2 functions as a tumor suppressor, co-operating with another tumor suppressor, BRD7.
Collapse
Affiliation(s)
- Soaad Soboh
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Avital Vorontsova
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Malik Farhoud
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Uri Barash
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Inna Naroditsky
- Departments of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Miriam Gross-Cohen
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Marina Weissmann
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Nishioka Yasuhiko
- Department of Respiratory Medicine and Rheumatology, Tokushima University, Tokushima, Japan
| | - Adrian S Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Neil A Roberts
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Yuval Shaked
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Neta Ilan
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
- Department of Cell Biology and Cancer Science, Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| |
Collapse
|
2
|
Abubakar M, Irfan U, Abdelkhalek A, Javed I, Khokhar MI, Shakil F, Raza S, Salim SS, Altaf MM, Habib R, Ahmed S, Ahmed F. Comprehensive Quality Analysis of Conventional and Novel Biomarkers in Diagnosing and Predicting Prognosis of Coronary Artery Disease, Acute Coronary Syndrome, and Heart Failure, a Comprehensive Literature Review. J Cardiovasc Transl Res 2024; 17:1258-1285. [PMID: 38995611 DOI: 10.1007/s12265-024-10540-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024]
Abstract
Coronary artery disease (CAD), acute coronary syndrome (ACS), and heart failure (HF) are major global health issues with high morbidity and mortality rates. Biomarkers like cardiac troponins (cTn) and natriuretic peptides (NPs) are crucial tools in cardiology, but numerous new biomarkers have emerged, proving increasingly valuable in CAD/ACS. These biomarkers are classified based on their mechanisms, such as fibrosis, metabolism, inflammation, and congestion. The integration of established and emerging biomarkers into clinical practice is an ongoing process, and recognizing their strengths and limitations is crucial for their accurate interpretation, incorporation into clinical settings, and improved management of CVD patients. We explored established biomarkers like cTn, NPs, and CRP, alongside newer biomarkers such as Apo-A1, IL-17E, IgA, Gal-3, sST2, GDF-15, MPO, H-FABP, Lp-PLA2, and ncRNAs; provided evidence of their utility in CAD/ACS diagnosis and prognosis; and empowered clinicians to confidently integrate these biomarkers into clinical practice based on solid evidence.
Collapse
Affiliation(s)
- Muhammad Abubakar
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan.
| | - Umema Irfan
- Department of Internal Medicine, Deccan College of Medical Sciences, Hyderabad, India
| | - Ahmad Abdelkhalek
- Department of Internal Medicine, Zhejiang University, Zhejiang, China
| | - Izzah Javed
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | | | - Fraz Shakil
- Department of Emergency Medicine, Mayo Hospital, Lahore, Pakistan
| | - Saud Raza
- Department of Anesthesia, Social Security Teaching Hospital, Lahore, Punjab, Pakistan
| | - Siffat Saima Salim
- Department of Surgery, Holy Family Red Crescent Medical College Hospital, Dhaka, Bangladesh
| | - Muhammad Mahran Altaf
- Department of Internal Medicine, Ameer-Ud-Din Medical College, 6 Birdwood Road, Jinnah Town, Lahore, 54000, Punjab, Pakistan
| | - Rizwan Habib
- Department of Internal Medicine and Emergency, Indus Hospital, Lahore, Pakistan
| | - Simra Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| | - Farea Ahmed
- Department of Internal Medicine, Ziauddin Medical College, Karachi, Pakistan
| |
Collapse
|
3
|
Wu D, Liu Y, Luo X, Chen Z, Fu Q, Yao K. Involvement of Lgals3/Galectin-3 in Choroidal Neovascularization and Subretinal Fibrosis Formation. Biomedicines 2024; 12:2649. [PMID: 39595213 PMCID: PMC11592115 DOI: 10.3390/biomedicines12112649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024] Open
Abstract
Background:Lgals3/galectin-3 plays a pivotal role in many vascular diseases. However, the involvement of Lgals3/galectin-3 in eyes with neovascular age-related macular degeneration (nAMD) remains unknown. Methods: In the laser-induced CNV model, a whole mount retina stained with Isolectin B4 and collagen type I revealed the vascular bed and CNV-associated subretinal fibrosis on day 7 after laser treatment. Results: We show that the expression levels of Lgals3/galectin-3 were significantly increased in the RPE/choroidal complex of CNV mice. An intravitreal injection of Lgals3-siRNA significantly suppressed the area of CNV and subretinal fibrosis, together with Mcp-1 decline. The mixture of Lgals3-siRNA and Ranibizumab showed more efficiency than each drug used separately. Hypoxia induced Lgals3/galectin-3 production in ARPE-19 cells, which was reduced by the silencing hypoxia-inducible factor -1α (Hif-1a). Conclusions: Our data indicated that Lgals3/galectin-3 is involved in the pathogenesis of CNV and subretinal fibrosis, and Lgals3/galectin-3 could be a potential therapeutic target for nAMD.
Collapse
Affiliation(s)
| | | | | | | | | | - Ke Yao
- Eye Center, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang Provincial Key Laboratory of Ophthalmology, Zhejiang Provincial Clinical Research Center for Eye Diseases, Zhejiang Provincial Engineering Institute on Eye Diseases, Hangzhou 310051, China; (D.W.); (Y.L.); (X.L.); (Z.C.); (Q.F.)
| |
Collapse
|
4
|
Yi H, Ye R, Wang J, Gao L, Zhang W, Liu C. Diagnostic Value of Serum Ficolin-3 and Gal-3 in Sepsis Complicated with Acute Kidney Injury. Int J Gen Med 2024; 17:5299-5307. [PMID: 39569323 PMCID: PMC11577257 DOI: 10.2147/ijgm.s478736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Abstract
Objective To investigate the diagnostic value of serum fibrinogen domain-containing lectin-3 (Ficolin-3) and galectin-3 (Gal-3) in sepsis-associated acute kidney injury (SA-AKI). Methods This study retrospectively analyzed 126 SA-AKI patients with SA-AKI and 103 septic patients without AKI as controls. Based on the severity of renal injury, the SA-AKI patients were divided into three groups: mild (41 cases), moderate (53 cases), and severe (32 cases). Serum levels of Ficolin-3 and Gal-3 were measured using ELISA, and their correlation was determined through Pearson analysis. Multivariate logistic regression was used to identify factors associated with the occurrence of SA-AKI. Results The serum creatinine (SCr), blood urea nitrogen (BUN), as well as the expression levels of serum Ficolin-3 and Gal-3 in the SA-AKI group were higher than those in the non SA-AKI group (P<0.05). The expression levels of Ficolin-3 and Gal-3 in the serum of the SA-AKI group were also higher than those of the non SA-AKI group (P<0.05). The expression levels of Ficolin-3 and Gal-3 in serum gradually increased with the severity of renal injury in SA-AKI patients (P<0.05). The expression levels of Ficolin-3 and Gal-3 in serum were greatly positively correlated (P<0.001). Elevated levels of BUN, Ficolin-3, and Gal-3 were risk factors affecting the occurrence of SA-AKI (P<0.05). The area under the curve (AUC) of serum Ficolin-3 and Gal-3 for individual diagnosis of SA-AKI was 0.877 and 0.867, respectively, the AUC of their combined diagnosis was 0.953, and the diagnostic sensitivity was higher than that of their individual diagnosis (P<0.001). Conclusion The expression levels of serum Ficolin-3 and Gal-3 are closely related to associated with the onset and progression of SA-AKI and hold diagnostic value for its detection. Furthermore, the combined use of both markers provides a more accurate diagnosis than either marker alone.
Collapse
Affiliation(s)
- Hang Yi
- Department of Intensive Care Medicine, Qianjiang Central Hospital, Qianjiang City, Hubei Province, 433100, People's Republic of China
| | - Ruiping Ye
- Department of Intensive Care Medicine, The First People's Hospital of Dingnan County, Ganzhou City, Jiangxi Province, 341900, People's Republic of China
| | - Jinfeng Wang
- Department of Oncology, The First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Lin Gao
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Weiwei Zhang
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| | - Chao Liu
- Department of Intensive Care Medicine, Ganzhou People's Hospital, Ganzhou City, Jiangxi Province, 341000, People's Republic of China
| |
Collapse
|
5
|
Moric-Janiszewska E, Wawszczyk J, Morka A, Kapral M. Usefulness of Galectin-3 as a Biochemical Marker to Detect Ventricular and Supraventricular Arrhythmias in Children. Curr Issues Mol Biol 2024; 46:11270-11281. [PMID: 39451549 PMCID: PMC11505990 DOI: 10.3390/cimb46100669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/26/2024] Open
Abstract
Galectin-3 (Gal-3) has been demonstrated to play a pivotal role in the pathogenesis of several fibrotic disorders. A number of studies have examined the relationship between galectin-3 levels and cardiac fibrosis in heart failure. Nevertheless, the role of galectin-3 in the etiology of supraventricular (SVa) and ventricular (Va) arrhythmias remains largely unexamined. The objective of this prospective study was to investigate the potential correlation between galectin concentration and the occurrence of idiopathic cardiac arrhythmias in pediatric patients. Biochemistry analysis was performed on 30 children (11-18 years; 14 boys and 16 girls). The control group consisted of 20 children. Cardiac arrhythmia was confirmed by a 24 h Holter ECG recording. Serum galectin-3 levels were measured via enzyme-linked immunosorbent assay (ELISA). Statistical analysis of the data showed significant associations between creatinine kinase (CK) and Gal-3 in patients with SVa (SVT-supraventricular tachycardia) arrhythmias, suggesting a potential effect of CK on Gal-3 levels. However, no correlation was identified between Gal-3 concentration and the occurrence of cardiac arrhythmias under investigation. We concluded that galectin-3 does not have the potential to be a biomarker in the diagnosis of idiopathic arrhythmias in pediatric patients.
Collapse
Affiliation(s)
- Ewa Moric-Janiszewska
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland; (J.W.); (M.K.)
| | - Joanna Wawszczyk
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland; (J.W.); (M.K.)
| | - Aleksandra Morka
- Department of Pediatric Cardiology, Faculty of Medical Sciences in Katowice, Medical University of Silesia in Katowice, Medyków 16, 40-752 Katowice, Poland;
| | - Małgorzata Kapral
- Department of Biochemistry, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia in Katowice, Jedności 8B, 41-200 Sosnowiec, Poland; (J.W.); (M.K.)
| |
Collapse
|
6
|
Souissi A, Dergaa I, Hajri SE, Chamari K, Saad HB. A new perspective on cardiovascular function and dysfunction during endurance exercise: identifying the primary cause of cardiovascular risk. Biol Sport 2024; 41:131-144. [PMID: 39416509 PMCID: PMC11474989 DOI: 10.5114/biolsport.2024.134757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/12/2023] [Accepted: 01/04/2024] [Indexed: 10/19/2024] Open
Abstract
Exercise mechanical efficiency typically falls within the range of approximately 20 to 25%. This means that a great part of the metabolic energy converted to generate movement is released as heat. Therefore, the rise in core temperature during endurance exercise in humans is proportional to generated work. Cutaneous vasodilation occurs when the core temperature threshold is reached. The rise in heart rate in response to thermal stress is a cardiovascular response that increases cardiac output and skin blood flow. The cardiovascular response during endurance exercise is a complex phenomenon potentially influenced by the involvement of nitric oxide in active thermoregulatory vasodilation. Excessive exercise can create high oxidative stress by disrupting the balance between free radicals' production and scavenging, resulting in impaired cardiovascular function. The above considerations are related to the severity and duration of endurance exercise. The first focus of this narrative review is to provide an updated understanding of cardiovascular function during endurance exercise. We aim to explore the potential role of oxidative stress in causing cardiovascular dysfunction during endurance exercise from a fresh perspective. Additionally, we aim to identify the primary factors contributing to cardiovascular risk during strenuous prolonged exercise by highlighting recent progress in this area, which may shed light on previously unexplained physiological responses. To ascertain the effect of endurance exercise on cardiovascular function and dysfunction, a narrative review of the literature was undertaken using PubMed, ScienceDirect, Medline, Google Scholar, and Scopus. The review highlighted that high oxidative stress (due to high levels of catecholamines, shear stress, immune system activation, and renal dysfunction) leads to a rise in platelet aggregation during endurance exercise. Importantly, we clearly revealed for the first time that endothelial damage, vasoconstriction, and blood coagulation (inducing thrombosis) are potentially the primary factors of cardiovascular dysfunction and myocardial infarction during and/or following endurance exercise.
Collapse
Affiliation(s)
- Amine Souissi
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Ismail Dergaa
- Primary Health Care Corporation (PHCC), Doha, P.O. Box 26555, Qatar
| | - Samia Ernez Hajri
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| | - Karim Chamari
- High Institute of Sport and Physical Education of Ksar-Said, University of La Manouba, Tunis, Tunisia
- Naufar Wellness & Recovery Center, Doha, Qatar
| | - Helmi Ben Saad
- Université de Sousse, Faculté de Médecine de Sousse, Hôpital Farhat HACHED, Laboratoire de Recherche (Insuffisance Cardiaque, LR12SP09), Sousse, Tunisie
| |
Collapse
|
7
|
Luo Z, Tang YY, Zhou L. Melatonin as an adjunctive therapy in cardiovascular disease management. Sci Prog 2024; 107:368504241299993. [PMID: 39574322 PMCID: PMC11585022 DOI: 10.1177/00368504241299993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2024]
Abstract
Melatonin, N-acetyl-5-methoxytryptamine, is a neuroendocrine hormone secreted by the pineal gland. This pleiotropic indoleamine possesses amphiphilic properties, allowing it to penetrate most biological barriers and exert its effects at the subcellular level. Importantly, melatonin also plays a crucial role in regulating the body's response to circadian rhythms, adapting to internal and external environmental cues. Melatonin functions as a powerful antioxidant and free radical scavenger, protecting cells from oxidative damage. Its diverse physiological roles include maintaining the functional integrity of endothelial cells, thereby preventing atherosclerosis, a major contributor to cardiovascular disease. Additionally, melatonin exhibits antioxidant and free radical scavenging properties, potentially improving metabolic disorders. These combined effects suggest a unique adjunctive therapeutic potential for melatonin in treating cardiovascular diseases. This review aims to explore the mechanisms by which melatonin interacts with the cardiovascular system and investigates its potential use as an adjunctive therapeutic agent in managing cardiovascular disease.
Collapse
Affiliation(s)
- Zan Luo
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuan Yuan Tang
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Liang Zhou
- Department of Cardiovascular Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Clinical Medicine, Hangzhou, China
| |
Collapse
|
8
|
Pàmies A, Llop D, Ibarretxe D, Rosales R, Girona J, Masana L, Vallvé JC, Paredes S. Enhanced Association of Novel Cardiovascular Biomarkers Fetuin-A and Catestatin with Serological and Inflammatory Markers in Rheumatoid Arthritis Patients. Int J Mol Sci 2024; 25:9910. [PMID: 39337398 PMCID: PMC11431854 DOI: 10.3390/ijms25189910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic autoimmune disease associated with increased cardiovascular disease (CVD) risk and mortality. This work aimed to evaluate the serum levels of the novel CV biomarkers fetuin-A (fet-A), Dickkopf-1 (DKK-1), galectin-3 (Gal-3), interleukin-32 (IL-32), and catestatin (CST) in RA patients and their associations with RA parameters and CVD markers. A cohort of 199 RA patients was assessed for traditional CVD risk factors, RA disease activity, and biomarker levels. Carotid ultrasound was used to measure carotid intima-media thickness (cIMT) and carotid plaque presence (cPP). Multivariate analyses examined correlations between biomarkers and RA parameters, serological markers, and CVD markers. Adjusted models showed that elevated CST expression levels were associated with rheumatoid factor (RF) and anti-citrullinated protein antibody (ACPA) positivity (OR = 2.45, p = 0.0001 and OR = 1.48, p = 0.04, respectively) in the overall cohort and for RF in men and women, respectively. In addition, fet-A concentration was inversely associated with the erythrocyte sedimentation rate (ESR) in the overall cohort (β = -0.15, p = 0.038) and in women (β = -0.25, p = 0.004). Fet-A levels were also negatively correlated with disease activity (DAS28-ESR) scores (β = -0.29, p = 0.01) and fibrinogen concentration (β = -0.22, p = 0.01) in women. No adjusted associations were observed for Gal-3, DKK-1 or IL32 concentration. The study revealed no significant associations between the biomarkers and cIMT or cPP. The measurement of CST and fet-A levels could enhance RA patient management and prognosis. However, the utility of biomarkers for evaluating CV risk via traditional surrogate markers is limited, highlighting the need for continued investigations into their roles in RA.
Collapse
Affiliation(s)
- Anna Pàmies
- Secció de Reumatologia, Hospital Verge de la Cinta, 43500 Tortosa, Spain;
| | - Dídac Llop
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Daiana Ibarretxe
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Unitat Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Roser Rosales
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Josefa Girona
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Lluís Masana
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Unitat Medicina Vascular i Metabolisme, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| | - Joan-Carles Vallvé
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Silvia Paredes
- Unitat de Recerca en Lípids i Arteriosclerosi, Universitat Rovira i Virgili, 43201 Reus, Spain; (D.L.); (D.I.); (R.R.); (J.G.); (L.M.); (S.P.)
- Institut Investigació Sanitaria Pere Virgili, 43204 Reus, Spain
- Secció de Reumatologia, Hospital Universitari Sant Joan de Reus, 43204 Reus, Spain
| |
Collapse
|
9
|
Luo J, Cai Y, Xiao P, Cao C, Huang M, Zhang X, Guo J, Huo Y, Tang Q, Zhao L, Liu J, Ma Y, Yang A, Zhou M, Wang Y. Inflammation-Derived and Clinical Indicator-Based Predictive Model for Ischemic Stroke Recovery. J Am Heart Assoc 2024; 13:e035609. [PMID: 39041609 DOI: 10.1161/jaha.124.035609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 06/24/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Neuroinflammatory responses are closely associated with poststroke prognosis severity. This study aimed to develop a predictive model, combining inflammation-derived markers and clinical indicators, for distinguishing functional outcomes in patients with subacute ischemic stroke. METHODS AND RESULTS Based on activities of daily living assessments, ischemic stroke participants were categorized into groups with little effective (LE) recovery and obvious effective (OE) recovery. Initial biocandidates were identified by overlapping differentially expressed proteins from proteomics of clinical serum samples (5 LE, 5 OE, and 6 healthy controls) and differentially expressed genes from an RNA sequence of the ischemic cortex in middle cerebral artery occlusion mice (n=3). Multidimensional validations were conducted in ischemia-reperfusion models and a clinical cohort (15 LE, 11 OE, and 18 healthy controls). Models of robust biocandidates combined with clinical indicators were developed with machine learning in the training data set and prediction in another test data set (15 LE and 11 OE). We identified 194 differentially expressed proteins (LE versus healthy controls) and 174 differentially expressed proteins (OE versus healthy controls) in human serum, and 5121 differentially expressed genes (day 3) and 5906 differentially expressed genes (day 7) in middle cerebral artery occlusion mice cortex. Inflammation-derived biomarkers TIMP1 (tissue inhibitor metalloproteinase-1) and galactosidase-binding protein LGLAS3 (galectin-3) exhibited robust increases under ischemic injury in mice and humans. TIMP1 and LGALS3 coupled with clinical indicators (hemoglobin, low-density lipoprotein cholesterol, and uric acid) were developed into a combined model for differentiating functional outcome with high accuracy (area under the curve, 0.8). CONCLUSIONS The combined model is a valuable tool for evaluating prognostic outcomes, and the predictive factors can facilitate development of better treatment strategies.
Collapse
Affiliation(s)
- Jiao Luo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - You Cai
- Greater Bay Biomedical Innocenter Shenzhen Bay Laboratory Shenzhen China
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Peng Xiao
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Changchun Cao
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Meiling Huang
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Xiaohua Zhang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Jie Guo
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Yongyang Huo
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Qiaoyan Tang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Liuyang Zhao
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Rehabilitation Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong Province People's Republic of China
| | - Jiabang Liu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Yaqi Ma
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
- Department of Rehabilitation Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong Province People's Republic of China
| | - Anqun Yang
- Department of Rehabilitation Medicine, Dapeng New District Nan'ao People's Hospital Rehabilitation Branch of the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Mingchao Zhou
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| | - Yulong Wang
- Department of Rehabilitation, Shenzhen Second People's Hospital the First Affiliated Hospital of Shenzhen University Shenzhen China
| |
Collapse
|
10
|
Mouskeftara T, Deda O, Liapikos T, Panteris E, Karagiannidis E, Papazoglou AS, Gika H. Lipidomic-Based Algorithms Can Enhance Prediction of Obstructive Coronary Artery Disease. J Proteome Res 2024; 23:3598-3611. [PMID: 39008891 DOI: 10.1021/acs.jproteome.4c00249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Lipidomics emerges as a promising research field with the potential to help in personalized risk stratification and improve our understanding on the functional role of individual lipid species in the metabolic perturbations occurring in coronary artery disease (CAD). This study aimed to utilize a machine learning approach to provide a lipid panel able to identify patients with obstructive CAD. In this posthoc analysis of the prospective CorLipid trial, we investigated the lipid profiles of 146 patients with suspected CAD, divided into two categories based on the existence of obstructive CAD. In total, 517 lipid species were identified, from which 288 lipid species were finally quantified, including glycerophospholipids, glycerolipids, and sphingolipids. Univariate and multivariate statistical analyses have shown significant discrimination between the serum lipidomes of patients with obstructive CAD. Finally, the XGBoost algorithm identified a panel of 17 serum biomarkers (5 sphingolipids, 7 glycerophospholipids, a triacylglycerol, galectin-3, glucose, LDL, and LDH) as totally sensitive (100% sensitivity, 62.1% specificity, 100% negative predictive value) for the prediction of obstructive CAD. Our findings shed light on dysregulated lipid metabolism's role in CAD, validating existing evidence and suggesting promise for novel therapies and improved risk stratification.
Collapse
Affiliation(s)
- Thomai Mouskeftara
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Olga Deda
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Theodoros Liapikos
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Eleftherios Panteris
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| | - Efstratios Karagiannidis
- Second Department of Cardiology, General Hospital "Hippokration", Aristotle University of Thessaloniki, Konstantinoupoleos 49, 54642 Thessaloniki, Greece
| | | | - Helen Gika
- Laboratory of Forensic Medicine and Toxicology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
- Biomic_AUTh, CIRI-AUTH Center for Interdisciplinary Research and Innovation Aristotle University of Thessaloniki, 57001 Thessaloniki, Greece
| |
Collapse
|
11
|
Zhou H, Zhang R, Li M, Wang F, Gao Y, Fang K, Zong J, Chang X. Methazolamide Can Treat Atherosclerosis by Increasing Immunosuppressive Cells and Decreasing Expressions of Genes Related to Proinflammation, Calcification, and Tissue Remodeling. J Immunol Res 2024; 2024:5009637. [PMID: 39081633 PMCID: PMC11288698 DOI: 10.1155/2024/5009637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/01/2024] [Accepted: 06/29/2024] [Indexed: 08/02/2024] Open
Abstract
It has been reported that carbonic anhydrase I (CA1) is a target for the diagnosis and therapy of atherosclerosis (AS) since CA1 can promote AS aortic calcification. We also found that methazolamide (MTZ), a drug for glaucoma treatment and an inhibitor of carbonic anhydrases, can treat AS by inhibiting calcification in aortic tissues. This study focused on the therapeutic mechanism of MTZ and the pathogenic mechanism of AS. In this study, a routine AS animal model was established in ApoE-/- mice, which were treated with MTZ. The aortic tissues were analyzed using single-cell sequencing. MTZ significantly increased the proportions of B-1/MZB B cells with high expressions of Nr4A1 and Ccr7, CD8+CD122+ Treg-like cells with high Nr4A1 expression, and smooth muscle cells with high Tpm2 expression. These cells or their marker genes were reported to exert immunosuppressive, anti-proinflammatory, and atheroprotective effects. MTZ also decreased the proportions of endothelial cells with high expressions of Retn, Apoc1, Lcn2, Mt1, Serpina3, Lpl, and Lgals3; nonclassical CD14+CD16++ monocytes with high expressions of Mt1, Tyrobp, Lgals3, and Cxcl2; and Spp1+ macrophages with high expressions of Mmp-12, Trem2, Mt1, Lgals3, Cxcl2, and Lpl. These cells or their marker genes have been reported to promote inflammation, calcification, tissue remodeling, and atherogenesis. A significant decrease in the proportion of CD8+CD183 (CXCR3)+ T cells, the counterpart of murine CD8+CD122+ T cells, was detected in the peripheral blood of newly diagnosed AS patients rather than in that of patients receiving anti-AS treatments. These results suggest that MTZ can treat AS by increasing immunosuppressive cells and decreasing expressions of genes related to inflammation, calcification, and tissue remodeling.
Collapse
Affiliation(s)
- Hongji Zhou
- Medical Research CenterThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
- Department of CardiologyThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| | - Rui Zhang
- Department of CardiologyThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| | - Min Li
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Fuyan Wang
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Yuxia Gao
- Shandong Engineering Research Center of Bacterial Anti-tumor Drugs and Cell Therapy, Jingshi Road 7000, Jinan 250000, Shandong Province, China
| | - Kehua Fang
- Clinical LaboratoryThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao, Shandong 266000, China
| | - Jinbao Zong
- Clinical Laboratory and Central LaboratoryQingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Road Renmin 4, Qingdao 266033, Shandong Province, China
| | - Xiaotian Chang
- Medical Research CenterThe Affiliated Hospital of Qingdao University, Wutaishan Road 1677, Qingdao 266000, China
| |
Collapse
|
12
|
Wenjing S, Mengmeng L, Lingling S, Tian D, Wenyan K, Shaohua G. Galectin-3 inhibition alleviated LPS-induced periodontal inflammation in gingival fibroblasts and experimental periodontitis mice. Clin Sci (Lond) 2024; 138:725-739. [PMID: 38840496 DOI: 10.1042/cs20240036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/20/2024] [Accepted: 06/05/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVES Clinical studies have confirmed that galectin-3 (Gal-3) levels are significantly elevated in periodontitis patients. The present study aimed to explore the effects of Gal-3 inhibition on periodontal inflammation in vitro and in vivo. METHODS Human gingival fibroblasts (HGFs) with or without Gal-3 knockdown were stimulated by lipopolysaccharide (LPS), and a ligation-induced mouse periodontitis model treated with a Gal-3 inhibitor was established. Hematoxylin-eosin (H&E) and immunohistochemistry (IHC) staining were used to evaluate Gal-3 levels in gingival tissues. Quantitative real-time polymerase chain reaction (qRT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect Gal-3, interleukin (IL)-6, IL-8, and C-C motif ligand 2 (CCL2) expression. Immunofluorescence and western blotting were used to detect NF-κB and ERK signaling pathway activation. Micro-computed tomography was used to analyse the degree of bone loss. RESULTS Gal-3 was significantly up-regulated in inflamed gingival tissues and LPS-induced HGFs. Gal-3 knockdown markedly decreased LPS-induced IL-6, IL-8, and CCL2 expression and blocked NF-κB and ERK signaling pathway activation in HGFs. In the mouse periodontitis model, Gal-3 inhibition significantly alleviated IL-1β and IL-6 infiltration in gingival tissue and mitigated periodontal bone loss. CONCLUSIONS Gal-3 inhibition notably alleviated periodontal inflammation partly through blocking NF-κB and ERK signaling pathway activation.
Collapse
Affiliation(s)
- Song Wenjing
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
- Shanghai Key Laboratory of Stomatology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, No.639 Zhizaoju Road, 200011, Shanghai, China
| | - Liu Mengmeng
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Shang Lingling
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Ding Tian
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Kang Wenyan
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| | - Ge Shaohua
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University and Shandong Key Laboratory of Oral Tissue Regeneration and Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration and Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012, Jinan, Shandong, China
| |
Collapse
|
13
|
Khan H, Zamzam A, Shaikh F, Saposnik G, Mamdani M, Qadura M. Predicting Major Adverse Carotid Cerebrovascular Events in Patients with Carotid Stenosis: Integrating a Panel of Plasma Protein Biomarkers and Clinical Features-A Pilot Study. J Clin Med 2024; 13:3382. [PMID: 38929911 PMCID: PMC11203750 DOI: 10.3390/jcm13123382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Background: Carotid stenosis (CS) is an atherosclerotic disease of the carotid artery that can lead to devastating cardiovascular outcomes such as stroke, disability, and death. The currently available treatment for CS is medical management through risk reduction, including control of hypertension, diabetes, and/or hypercholesterolemia. Surgical interventions are currently suggested for patients with symptomatic disease with stenosis >50%, where patients have suffered from a carotid-related event such as a cerebrovascular accident, or asymptomatic disease with stenosis >60% if the long-term risk of death is <3%. There is a lack of current plasma protein biomarkers available to predict patients at risk of such adverse events. Methods: In this study, we investigated several growth factors and biomarkers of inflammation as potential biomarkers for adverse CS events such as stroke, need for surgical intervention, myocardial infarction, and cardiovascular-related death. In this pilot study, we use a support vector machine (SVM), random forest models, and the following four significantly elevated biomarkers: C-X-C Motif Chemokine Ligand 6 (CXCL6); Interleukin-2 (IL-2); Galectin-9; and angiopoietin-like protein (ANGPTL4). Results: Our SVM model best predicted carotid cerebrovascular events with an area under the curve (AUC) of >0.8 and an accuracy of 0.88, demonstrating strong prognostic capability. Conclusions: Our SVM model may be used for risk stratification of patients with CS to determine those who may benefit from surgical intervention.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, ON M5T 1P5, Canada
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (A.Z.); (F.S.)
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital—Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (G.S.); (M.M.)
| |
Collapse
|
14
|
Hudson JA, Ferrand RA, Gitau SN, Mureithi MW, Maffia P, Alam SR, Shah ASV. HIV-Associated Cardiovascular Disease Pathogenesis: An Emerging Understanding Through Imaging and Immunology. Circ Res 2024; 134:1546-1565. [PMID: 38781300 DOI: 10.1161/circresaha.124.323890] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Cardiac abnormalities were identified early in the epidemic of AIDS, predating the isolation and characterization of the etiologic agent, HIV. Several decades later, the causation and pathogenesis of cardiovascular disease (CVD) linked to HIV infection continue to be the focus of intense speculation. Before the widespread use of antiretroviral therapy, HIV-associated CVD was primarily characterized by HIV-associated cardiomyopathy linked to profound immunodeficiency. With increasing antiretroviral therapy use, viral load suppression, and establishment of immune competency, the effects of HIV on the cardiovascular system are more subtle. Yet, people living with HIV still face an increased incidence of cardiovascular pathology. Advances in cardiac imaging modalities and immunology have deepened our understanding of the pathogenesis of HIV-associated CVD. This review provides an overview of the pathogenesis of HIV-associated CVD integrating data from imaging and immunologic studies with particular relevance to the HIV population originating from high-endemic regions, such as sub-Saharan Africa. The review highlights key evidence gaps in the field and suggests future directions for research to better understand the complex HIV-CVD interactions.
Collapse
Affiliation(s)
- Jonathan A Hudson
- Kings College London BHF Centre, School of Cardiovascular and Metabolic Medicine & Sciences, United Kingdom (J.A.H.)
| | - Rashida A Ferrand
- Department of Clinical Research (R.A.F.), London School of Hygiene and Tropical Medicine, United Kingdom
- Biomedical Research and Training Institute, Harare, Zimbabwe (R.A.F.)
| | - Samuel N Gitau
- Department of Radiology, Aga Khan University Nairobi, Kenya (S.N.G.)
| | - Marianne Wanjiru Mureithi
- Department of Medical Microbiology and Immunology, Faculty of Health Sciences (M.W.M.), University of Nairobi, Kenya
| | - Pasquale Maffia
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom (P.M.)
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, Italy (P.M.)
- Africa-Europe Cluster of Research Excellence in Non-Communicable Diseases and Multimorbidity, African Research Universities Alliance and The Guild of European Research-Intensive Universities, Glasgow, United Kingdom (P.M.)
| | - Shirjel R Alam
- Department of Cardiology, North Bristol NHS Trust, United Kingdom (S.R.A.)
| | - Anoop S V Shah
- Department of Non-Communicable Disease Epidemiology (A.S.V.S.), London School of Hygiene and Tropical Medicine, United Kingdom
- Department of Cardiology, Imperial College NHS Trust, London, United Kingdom (A.S.V.S.)
| |
Collapse
|
15
|
Lofaro FD, Costa S, Simone ML, Quaglino D, Boraldi F. Fibroblasts' secretome from calcified and non-calcified dermis in Pseudoxanthoma elasticum differently contributes to elastin calcification. Commun Biol 2024; 7:577. [PMID: 38755434 PMCID: PMC11099146 DOI: 10.1038/s42003-024-06283-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Pseudoxanthoma elasticum (PXE) is a rare disease characterized by ectopic calcification, however, despite the widely spread effect of pro/anti-calcifying systemic factors associated with this genetic metabolic condition, it is not known why elastic fibers in the same patient are mainly fragmented or highly mineralized in clinically unaffected (CUS) and affected (CAS) skin, respectively. Cellular morphology and secretome are investigated in vitro in CUS and CAS fibroblasts. Here we show that, compared to CUS, CAS fibroblasts exhibit: a) differently distributed and organized focal adhesions and stress fibers; b) modified cell-matrix interactions (i.e., collagen gel retraction); c) imbalance between matrix metalloproteinases and tissue inhibitor of metalloproteinases; d) differentially expressed pro- and anti-calcifying proteoglycans and elastic-fibers associated glycoproteins. These data emphasize that in the development of pathologic mineral deposition fibroblasts play an active role altering the stability of elastic fibers and of the extracellular matrix milieu creating a local microenvironment guiding the level of matrix remodeling at an extent that may lead to degradation (in CUS) or to degradation and calcification (in CAS) of the elastic component. In conclusion, this study contributes to a better understanding of the mechanisms of the mineral deposition that can be also associated with several inherited or age-related diseases (e.g., diabetes, atherosclerosis, chronic kidney diseases).
Collapse
Affiliation(s)
| | - Sonia Costa
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Luisa Simone
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| |
Collapse
|
16
|
Jin Q, Zhang C, Chen R, Jiang L, Li H, Wu P, Li L. Quinic acid regulated TMA/TMAO-related lipid metabolism and vascular endothelial function through gut microbiota to inhibit atherosclerotic. J Transl Med 2024; 22:352. [PMID: 38622667 PMCID: PMC11017595 DOI: 10.1186/s12967-024-05120-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/20/2024] [Indexed: 04/17/2024] Open
Abstract
BACKGROUND Quinic acid (QA) and its derivatives have good lipid-lowering and hepatoprotective functions, but their role in atherosclerosis remains unknown. This study attempted to investigate the mechanism of QA on atherogenesis in Apoe-/- mice induced by HFD. METHODS HE staining and oil red O staining were used to observe the pathology. The PCSK9, Mac-3 and SM22a expressions were detected by IHC. Cholesterol, HMGB1, TIMP-1 and CXCL13 levels were measured by biochemical and ELISA. Lipid metabolism and the HMGB1-SREBP2-SR-BI pathway were detected by PCR and WB. 16 S and metabolomics were used to detect gut microbiota and serum metabolites. RESULTS QA or low-frequency ABX inhibited weight gain and aortic tissue atherogenesis in HFD-induced Apoe-/- mice. QA inhibited the increase of cholesterol, TMA, TMAO, CXCL13, TIMP-1 and HMGB1 levels in peripheral blood of Apoe-/- mice induced by HFD. Meanwhile, QA or low-frequency ABX treatment inhibited the expression of CAV-1, ABCA1, Mac-3 and SM22α, and promoted the expression of SREBP-1 and LXR in the vascular tissues of HFD-induced Apoe-/- mice. QA reduced Streptococcus_danieliae abundance, and promoted Lactobacillus_intestinalis and Ileibacterium_valens abundance in HFD-induced Apoe-/- mice. QA altered serum galactose metabolism, promoted SREBP-2 and LDLR, inhibited IDOL, FMO3 and PCSK9 expression in liver of HFD-induced Apoe-/- mice. The combined treatment of QA and low-frequency ABX regulated microbe-related Glycoursodeoxycholic acid and GLYCOCHENODEOXYCHOLATE metabolism in HFD-induced Apoe-/- mice. QA inhibited TMAO or LDL-induced HCAECs damage and HMGB1/SREBP2 axis dysfunction, which was reversed by HMGB1 overexpression. CONCLUSIONS QA regulated the gut-liver lipid metabolism and chronic vascular inflammation of TMA/TMAO through gut microbiota to inhibit the atherogenesis in Apoe-/- mice, and the mechanism may be related to the HMGB1/SREBP2 pathway.
Collapse
Affiliation(s)
- Qiao Jin
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
- Department of Cardiovascular Medicine, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, 410013, China
| | - Chiyuan Zhang
- Department of Cardiovascular Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ran Chen
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Luping Jiang
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China
| | - Hongli Li
- Department of Hematology, Xiangya Hospital, Central South University, Changsha, Hunan, 410000, China
| | - Pengcui Wu
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| | - Liang Li
- Department of Cardiovascular Medicine, Hengyang Medical School, The Changsha central Affiliated Hospital, University of South China, Changsha, Hunan, 410004, China.
| |
Collapse
|
17
|
An L, Chang G, Zhang L, Wang P, Gao W, Li X. Pectin: Health-promoting properties as a natural galectin-3 inhibitor. Glycoconj J 2024; 41:93-118. [PMID: 38630380 DOI: 10.1007/s10719-024-10152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/17/2023] [Accepted: 04/10/2024] [Indexed: 05/03/2024]
Abstract
Galectin-3 has a variety of important pathophysiological significance in the human body. Much evidence shows that the abnormal expression of galectin-3 is related to the formation and development of many diseases. Pectin is mostly obtained from processed citrus fruits and apples and is a known natural inhibitor of galactin-3. A large number of peels produced each year are discarded, and it is necessary to recycle some of the economically valuable active compounds in these by-products to reduce resource waste and environmental pollution. By binding with galectin-3, pectin can directly reduce the expression level of galectin-3 on the one hand, and regulate the expression level of cytokines by regulating certain signaling pathways on the other hand, to achieve the effect of treating diseases. This paper begins by presenting an overview of the basic structure of pectin, subsequently followed by a description of the structure of galectin-3 and its detrimental impact on human health when expressed abnormally. The health effects of pectin as a galectin-3 inhibitor were then summarized from the perspectives of anticancer, anti-inflammatory, ameliorating fibrotic diseases, and anti-diabetes. Finally, the challenges and prospects of future research on pectin are presented, which provide important references for expanding the application of pectin in the pharmaceutical industry or developing functional dietary supplements.
Collapse
Affiliation(s)
- Lingzhuo An
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Guanglu Chang
- Key Laboratory of Modern Chinese Medicine Resources Research Enterprises, Tianjin, 300402, China
| | - Luyao Zhang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Pengwang Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China
| | - Wenyuan Gao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| | - Xia Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300193, China.
| |
Collapse
|
18
|
Elliott W, Tsung AJ, Guda MR, Velpula KK. Galectin inhibitors and nanoparticles as a novel therapeutic strategy for glioblastoma multiforme. Am J Cancer Res 2024; 14:774-795. [PMID: 38455415 PMCID: PMC10915327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/11/2024] [Indexed: 03/09/2024] Open
Abstract
Over the past two decades, the gold standard of glioblastoma multiforme (GBM) treatment is unchanged and adjunctive therapy has offered little to prolong both quality and quantity of life. To improve pharmacotherapy for GBM, galectins are being studied provided their positive correlation with the malignancy and disease severity. Despite the use of galectin inhibitors and literature displaying the ability of the lectin proteins to decrease tumor burden and decrease mortality within various malignancies, galectin inhibitors have not been studied for GBM therapy. Interestingly, anti-galectin siRNA delivered in nanoparticle capsules, assisting in blood brain barrier penetrance, is well studied for GBM, and has demonstrated a remarkable ability to attenuate both galectin and tumor count. Provided that the two therapies have an analogous anti-galectin effect, it is hypothesized that galectin inhibitors encapsuled within nanoparticles will likely have a similar anti-galectin effect in GBM cells and further correlate to a repressed tumor burden.
Collapse
Affiliation(s)
- Willie Elliott
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of MedicinePeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of MedicinePeoria, IL, USA
- Department of Pediatrics, University of Illinois College of MedicinePeoria, IL, USA
| |
Collapse
|
19
|
Ahmad S, Kumar R. An update of new/potential cardiovascular markers: a narrative review. Mol Biol Rep 2024; 51:179. [PMID: 38252393 DOI: 10.1007/s11033-023-08978-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 11/07/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Cardiovascular and their associated disease (CVD) is a leading cause of death worldwide, in developed and developing countries, and its prevalence has increased over the past few decades, due to changes in the lifestyle of people. Biomarkers are important tools for diagnosing, analyzing, and providing evidence of pathological conditions of CVD and their associated diseases. METHODS This study reviews historical cardiovascular biomarkers used to diagnose various diseases, their uses, and limitations, as well as the importance of new and emerging biomarkers. CONCLUSION sST2, GDF-15, CD-40, IL-6, and Micro-RNA. Initial studies of the future of cardiac biomarkers are promising, but more research is needed to demonstrate that they are more effective biomarkers of risk factors for CVD development. They also lack the analytical foundation needed for adoption in the medical industry. It is also necessary to determine whether these biomarkers can be used for diagnosis.
Collapse
Affiliation(s)
- Sharique Ahmad
- Department of Pathology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India
| | - Raushan Kumar
- Department of Pathology, Era's Lucknow Medical College & Hospital, Era University, Lucknow, India.
| |
Collapse
|
20
|
Seropian IM, Cassaglia P, Miksztowicz V, González GE. Unraveling the role of galectin-3 in cardiac pathology and physiology. Front Physiol 2023; 14:1304735. [PMID: 38170009 PMCID: PMC10759241 DOI: 10.3389/fphys.2023.1304735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
Galectin-3 (Gal-3) is a carbohydrate-binding protein with multiple functions. Gal-3 regulates cell growth, proliferation, and apoptosis by orchestrating cell-cell and cell-matrix interactions. It is implicated in the development and progression of cardiovascular disease, and its expression is increased in patients with heart failure. In atherosclerosis, Gal-3 promotes monocyte recruitment to the arterial wall boosting inflammation and atheroma. In acute myocardial infarction (AMI), the expression of Gal-3 increases in infarcted and remote zones from the beginning of AMI, and plays a critical role in macrophage infiltration, differentiation to M1 phenotype, inflammation and interstitial fibrosis through collagen synthesis. Genetic deficiency of Gal-3 delays wound healing, impairs cardiac remodeling and function after AMI. On the contrary, Gal-3 deficiency shows opposite results with improved remodeling and function in other cardiomyopathies and in hypertension. Pharmacologic inhibition with non-selective inhibitors is also protective in cardiac disease. Finally, we recently showed that Gal-3 participates in normal aging. However, genetic absence of Gal-3 in aged mice exacerbates pathological hypertrophy and increases fibrosis, as opposed to reduced fibrosis shown in cardiac disease. Despite some gaps in understanding its precise mechanisms of action, Gal-3 represents a potential therapeutic target for the treatment of cardiovascular diseases and the management of cardiac aging. In this review, we summarize the current knowledge regarding the role of Gal-3 in the pathophysiology of heart failure, atherosclerosis, hypertension, myocarditis, and ischemic heart disease. Furthermore, we describe the physiological role of Gal-3 in cardiac aging.
Collapse
Affiliation(s)
- Ignacio M. Seropian
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Servicio de Hemodinamia, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Cassaglia
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| | - Verónica Miksztowicz
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
| | - Germán E. González
- Laboratorio de Patología Cardiovascular Experimental e Hipertensión Arterial, Instituto de Investigaciones Biomédicas (UCA-CONICET), Facultad de Ciencias Médicas Universidad Católica Argentina, Buenos Aires, Argentina
- Departamento de Patología, Instituto de Salud Comunitaria, Universidad Nacional de Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
21
|
Huang Y, Liu Q, Liu M, Xu L, Li Y, Chen Q, Guan D, Xu J, Lin C, Wang S. System pharmacology-based determination of the functional components and mechanisms in chronic heart failure treatment: an example of Zhenwu decoction. J Biomol Struct Dyn 2023; 42:12935-12953. [PMID: 37921741 DOI: 10.1080/07391102.2023.2274515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 09/17/2023] [Indexed: 11/04/2023]
Abstract
Chronic heart failure (CHF) is the primary cause of death among patients with cardiovascular diseases, representing the advanced stage in the development of several cardiovascular conditions. Zhenwu decoction (ZWD) has gained widespread recognition as an efficacious remedy for CHF due to its potent therapeutic properties and absence of adverse effects. Nevertheless, the precise molecular mechanisms underlying its actions remain elusive. This study endeavors to unravel the intricate pharmacological underpinnings of five herbs within ZWD concerning CHF through an integrated approach. Initially, pertinent data regarding ZWD and CHF were compiled from established databases, forming the foundation for constructing an intricate network of active component-target interactions. Subsequently, a pioneering method for evaluating node significance was formulated, culminating in the creation of core functional association space (CFAS). To discern vital components, a novel dynamic programming algorithm was devised and used to determine the core component group (CCG) within the CFAS. Enrichment analysis of the CCG targets unveiled the potential coordinated molecular mechanisms of ZWD, illuminating its capacity to ameliorate CHF by modulating genes and related signaling pathways involved in pathological remodeling. Notable pathways encompass PI3K-Akt, diabetic cardiomyopathy, cAMP and MAPK signaling. Concluding the computational analyses, in vitro experiments were executed to assess the effects of vanillic acid, paradol, 10-gingerol and methyl cinnamate. Remarkably, these compounds demonstrated efficacy in reducing the production of ANP and BNP within isoprenaline-induced AC 16 cells, further validating their potential therapeutic utility. This investigation underscores the efficacy of the proposed model in enhancing the precision and reliability of CCG selection within ZWD, thereby presenting a novel avenue for mechanistic inquiries, compound refinement and the secondary development of TCM herbs.
Collapse
Affiliation(s)
- Yisheng Huang
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Department of Anesthesiology, Ganzhou People's Hospital, Ganzhou, China
| | - Qinwen Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Meiyu Liu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Liqian Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Yi Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Quanlin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Daogang Guan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Single Cell Technology and Application, Guangzhou, China
| | - Jindong Xu
- Department of Anesthesiology, Guangdong Provincial People's Hospital, Southern Medical University, Guangzhou, China
| | - Chunshui Lin
- Department of Anesthesiology, Nanfang Hospital Affiliated to Southern Medical University, Guangzhou, China
| | - Sheng Wang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
- Department of Anesthesiology, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Li X, Wang Y, Liu C, Fu G, Li J, Zhang J. Beraprost sodium attenuates the development of myocardial fibrosis after myocardial infarction by regulating GSK-3β expression in rats. Immun Inflamm Dis 2023; 11:e1050. [PMID: 38018586 PMCID: PMC10633815 DOI: 10.1002/iid3.1050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/21/2023] [Accepted: 10/05/2023] [Indexed: 11/30/2023] Open
Abstract
OBJECTIVE The aim of this study was to elucidate the mechanism of beraprost sodium (BPS) in the intervention of myocardial fibrosis after myocardial infarction (MI) through glycogen synthase kinase-3β (GSK-3β) and to provide new ideas for intervention in myocardial fibrosis. MATERIALS AND METHODS MI model rats given BPS and cardiac fibroblasts (CFs) treated with BPS and TGF-β. HE staining and Masson staining were used to detect the pathological changes of myocardial tissue. Fibrotic markers were detected by immunohistochemical staining. The expressions of GSK-3β, cAMP response element binding protein (CREB), and p-CREB were analyzed by qPCR and western blot analysis. EDU staining was used to detect the proliferation of CFs. The promoter activity of GSK-3β was detected by luciferase assay. Chromatin immunoprecipitation assay was used to detect the binding levels of GSK-3β promoter and Y-box binding protein 1 (YBX1). The levels of intracellular cyclic adenosine monophosphate (cAMP) were analyzed by enzyme-linked immunosorbent assay (ELISA). RESULTS After operation, BPS improved myocardial fibrosis and upregulated GSK-3β protein expression in male SD rats. BPS can down-regulate α-smooth muscle actin (α-SMA) level and up-regulate GSK-3β protein expression in CFs after TGF-β stimulation. Furthermore, GSK-3β knockdown can reverse the effect of BPS on TGF-β-activated CFs, enhance α-SMA expression, and promote the proliferation of CFs. BPS could regulate GSK-3β expression by promoting the binding of GSK-3β promoter to YBX1. BPS induced upregulation of p-CREB and cAMP, resulting in reduced fibrosis, which was reversed by the knockdown of GSK-3β or prostaglandin receptor (IPR) antagonists. CONCLUSION BPS treatment increased the binding of YBX1 to the GSK-3β promoter, and GSK-3β protein expression was upregulated, which further caused the upregulation of p-CREB and cAMP, and finally inhibited myocardial fibrosis.
Collapse
Affiliation(s)
- Xing‐Xing Li
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yun‐Zhe Wang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Chuang Liu
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Guo‐Wei Fu
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jun Li
- Department of Extracorporeal Life Support CenterThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jin‐Ying Zhang
- Department of CardiologyThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
- Henan Province′s Key Laboratory of Cardiac Injury and RepairZhengzhouChina
- Henan Province Clinical Research Center for Cardiovascular DiseasesZhengzhouChina
| |
Collapse
|
23
|
Matilla L, Martín-Núñez E, Garaikoetxea M, Navarro A, Tamayo I, Fernández-Celis A, Gainza A, Fernández-Irigoyen J, Santamaría E, Muntendam P, Álvarez V, Sádaba R, Jover E, López-Andrés N. Sex-specific role of galectin-3 in aortic stenosis. Biol Sex Differ 2023; 14:72. [PMID: 37875993 PMCID: PMC10598900 DOI: 10.1186/s13293-023-00556-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/10/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Aortic stenosis (AS) is characterized by inflammation, fibrosis, osteogenesis and angiogenesis. Men and women develop these mechanisms differently. Galectin-3 (Gal-3) is a pro-inflammatory and pro-osteogenic lectin in AS. In this work, we aim to analyse a potential sex-differential role of Gal-3 in AS. METHODS 226 patients (61.50% men) with severe AS undergoing surgical aortic valve (AV) replacement were recruited. In AVs, Gal-3 expression and its relationship with inflammatory, osteogenic and angiogenic markers was assessed. Valve interstitial cells (VICs) were primary cultured to perform in vitro experiments. RESULTS Proteomic analysis revealed that intracellular Gal-3 was over-expressed in VICs of male AS patients. Gal-3 secretion was also higher in men's VICs as compared to women's. In human AVs, Gal-3 protein levels were significantly higher in men, with stronger immunostaining in VICs with myofibroblastic phenotype and valve endothelial cells. Gal-3 levels in AVs were positively correlated with inflammatory markers in both sexes. Gal-3 expression was also positively correlated with osteogenic markers mainly in men AVs, and with angiogenic molecules only in this sex. In vitro, Gal-3 treatment induced expression of inflammatory, osteogenic and angiogenic markers in male's VICs, while it only upregulated inflammatory and osteogenic molecules in women-derived cells. Gal-3 blockade with pharmacological inhibitors (modified citrus pectin and G3P-01) prevented the upregulation of inflammatory, osteogenic and angiogenic molecules. CONCLUSIONS Gal-3 plays a sex-differential role in the setting of AS, and it could be a new sex-specific therapeutic target controlling pathological features of AS in VICs.
Collapse
Affiliation(s)
- Lara Matilla
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Mattie Garaikoetxea
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Adela Navarro
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Ibai Tamayo
- Research Methodology Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Amaya Fernández-Celis
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Alicia Gainza
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | | | - Virginia Álvarez
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Rafael Sádaba
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain
| | - Eva Jover
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain.
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Navarrabiomed (Miguel Servet Foundation), Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, C/Irunlarrea 3., 31008, Pamplona, Spain.
| |
Collapse
|
24
|
Padgett CA, Bátori RK, Speese AC, Rosewater CL, Bush WB, Derella CC, Haigh SB, Sellers HG, Corley ZL, West MA, Mintz JD, Ange BB, Harris RA, Brands MW, Fulton DJR, Stepp DW. Galectin-3 Mediates Vascular Dysfunction in Obesity by Regulating NADPH Oxidase 1. Arterioscler Thromb Vasc Biol 2023; 43:e381-e395. [PMID: 37586054 PMCID: PMC10695282 DOI: 10.1161/atvbaha.123.319476] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/25/2023] [Indexed: 08/18/2023]
Abstract
BACKGROUND Obesity is associated with increased risk of cardiovascular disease, but underlying mechanisms remain elusive. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor, but how glucose impacts vascular function is unclear. GAL3 (galectin-3) is a sugar-binding lectin upregulated by hyperglycemia, but its role as a causative mechanism of cardiovascular disease remains poorly understood. Therefore, the objective of this study was to determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. METHODS GAL3 was measured and found to be markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate causative mechanisms in cardiovascular disease, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout, obese, and obese GAL3 knockout genotypes. Endothelial cell-specific GAL3 knockout mice with novel AAV-induced obesity recapitulated whole-body knockout studies to confirm cell specificity. RESULTS Deletion of GAL3 did not alter body mass, adiposity, or plasma indices of glycemia and lipidemia, but levels of plasma reactive oxygen species as assessed by plasma thiobarbituric acid reactive substances were normalized in obese GAL3 knockout mice. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells from obese mice had increased expression of NOX1 (nicotinamide adenine dinucleotide phosphate oxidase 1), which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, which was normalized in microvascular endothelium from mice lacking GAL3. Cell-specific deletion confirmed that endothelial GAL3 regulates obesity-induced NOX1 overexpression and subsequent microvascular function. Furthermore, improvement of metabolic syndrome by increasing muscle mass, improving insulin signaling, or treating with metformin decreased microvascular GAL3, and thereby NOX1, expression levels. CONCLUSIONS Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3, and in turn NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.
Collapse
Affiliation(s)
- Caleb A. Padgett
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Róbert K. Bátori
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Andrew C. Speese
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cody L. Rosewater
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Weston B. Bush
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Cassandra C. Derella
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA
| | - Stephen B. Haigh
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Hunter G. Sellers
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Zachary L. Corley
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Madison A. West
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - James D. Mintz
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
| | - Brittany B. Ange
- Department of Surgery, Medical College of Georgia, Augusta University, Augusta, GA
| | - Ryan A. Harris
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
- Georgia Prevention Institute, Medical College of Georgia, Augusta University, Augusta, GA
| | - Michael W. Brands
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David J. R. Fulton
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, GA
| | - David W. Stepp
- Vascular Biology Center, Medical College of Georgia, Augusta University, Augusta, GA
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA
| |
Collapse
|
25
|
Nowowiejska J, Baran A, Hermanowicz JM, Sieklucka B, Pawlak D, Flisiak I. Evaluation of Plasma Concentrations of Galectins-1, 2 and 12 in Psoriasis and Their Clinical Implications. Biomolecules 2023; 13:1472. [PMID: 37892153 PMCID: PMC10604582 DOI: 10.3390/biom13101472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/28/2023] [Accepted: 09/29/2023] [Indexed: 10/29/2023] Open
Abstract
Psoriasis is a complex disease that nowadays is considered not only a dermatosis but a kind of systemic disorder associated with many accompanying diseases. Metabolic complications leading to cardiovascular incidences are the cause of increased mortality in psoriatic patients. Galectins (gal) are beta-galactoside-binding lectins that exert different functions, including engagement in metabolic processes. Our aim was to assess the concentrations of gal-1, 2 and 12 in psoriatics, to establish their potential clinical implications, including in metabolic complications. Plasma galectins were assessed by ELISA in 60 psoriatic patients and 30 controls without dermatoses and a negative family history of psoriasis. Plasma concentrations of all galectins were significantly higher in patients than controls (gal-1 with p < 0.001, gal-2 and 12 with p < 0.05). There were no correlations between galectins concentrations and psoriasis severity in PASI or disease duration (p > 0.05). Gal-1 and 12 were significantly negatively correlated with GFR (p < 0.05, p < 0.01, respectively) and gal-2 with HDL (p < 0.05). Gal-2 was significantly positively correlated with CRP (p < 0.05) and gal-12 with fasting glucose (p < 0.01). Based on the results and given the reported role of galectins in metabolic disorders we may conclude that gal-1, 2 and 12 could be potentially engaged in metabolic complications in psoriatics, most probably in atherosclerosis. Gal-2 could be perhaps further investigated as a marker of metabolically induced inflammation in psoriasis, gal-1 and gal-12 as predictors of renal impairment in psoriatics due to metabolic disorders. Potentially, gal-12 could be considered in the future as a marker of carbohydrate metabolism disorders in psoriatics.
Collapse
Affiliation(s)
- Julia Nowowiejska
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Anna Baran
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| | - Justyna Magdalena Hermanowicz
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Beata Sieklucka
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, Mickiewicza 2C St., 15-089 Bialystok, Poland; (J.M.H.); (B.S.); (D.P.)
| | - Iwona Flisiak
- Department of Dermatology and Venereology, Medical University of Bialystok, Zurawia 14 St., 15-540 Bialystok, Poland; (A.B.); (I.F.)
| |
Collapse
|
26
|
Mayyas F, Ibrahim K. Evaluating Plasma Galectin-3 Levels in Patients With an Increased Risk of Atherosclerotic Cardiovascular Disease Who Underwent Coronary Artery Revascularization. Am J Cardiol 2023; 203:73-80. [PMID: 37481815 DOI: 10.1016/j.amjcard.2023.06.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/25/2023]
Abstract
Coronary artery disease (CAD) is a common atherosclerotic cardiovascular disease (ASCVD) associated with significant mortality. Galectin-3 is a novel inflammatory factor implicated in the initiation and progression of atherosclerosis. We aimed to evaluate the association of plasma galectin-3 with the risk of ASCVD and the need for coronary artery revascularization. Patients with angina who underwent coronary angiography were divided into groups per their risk of ASCVD. Patients (n = 385) were stratified into having low (n = 21), moderate (n = 40), high (n = 41), and very high risk (n = 283) for ASCVD. The mean age ± standard error of the mean was 53.9 ± 0.5 years and 73% of patients were men. Plasma galectin-3 levels were higher in patients with CAD than non-CAD primarily in patients with stable and unstable angina. Patients with stable CAD had higher levels of galectin-3 relative to acute coronary syndrome patients. Increased plasma galectin-3 level was associated with increased risk of ASCVD and degree of coronary stenosis. By multivariate analysis, the plasma galectin-3 level was independently associated with increased ASCVD risk and body mass index. Plasma galectin-3 levels were independently higher in patients who underwent percutaneous coronary intervention (PCI) than medically treated patients. In addition, age, male gender, smoking, and diabetes mellitus were associated with PCI. In conclusion, plasma galectin-3 levels are elevated in patients with CAD and associated with increased risk of ASCVD and the need for PCI. Plasma galectin-3 could be used as a potential improving predictor of ASCVD risk and when making therapeutic guidance or selecting patients who underwent PCI when the decision is difficult.
Collapse
Affiliation(s)
- Fadia Mayyas
- Department of Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan.
| | - Khalid Ibrahim
- Division of Cardiac Surgery, Department of General Surgery, Faculty of Medicine, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
27
|
Bouffette S, Botez I, De Ceuninck F. Targeting galectin-3 in inflammatory and fibrotic diseases. Trends Pharmacol Sci 2023; 44:519-531. [PMID: 37391294 DOI: 10.1016/j.tips.2023.06.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 06/02/2023] [Accepted: 06/02/2023] [Indexed: 07/02/2023]
Abstract
Galectin (Gal)-3 is a β-galactoside-binding lectin emerging as a key player in cardiac, hepatic, renal, and pulmonary fibrosis and inflammation, respiratory infections caused by COVID-19, and neuroinflammatory disorders. Here, we review recent information highlighting Gal-3 as a relevant therapeutic target in these specific disease conditions. While a causal link was difficult to establish until now, we discuss how recent strategic breakthroughs allowed us to identify new-generation Gal-3 inhibitors with improved potency, selectivity, and bioavailability, and report their usefulness as valuable tools for proof-of-concept studies in various preclinical models of the aforementioned diseases, with emphasis on those actually in clinical stages. We also address critical views and suggestions intended to expand the therapeutic opportunities provided by this complex target.
Collapse
Affiliation(s)
- Selena Bouffette
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France; Université Paris-Saclay, Inserm, Inflammation Microbiome and Immunosurveillance, Orsay, France
| | - Iuliana Botez
- Servier, Drug Design Small Molecules Unit, Servier R&D Center, Gif-sur-Yvette, France
| | - Frédéric De Ceuninck
- Servier, Neurology and Immuno-inflammation Therapeutic Area, Servier R&D Center, Gif-sur-Yvette, France.
| |
Collapse
|
28
|
Liu Y, Guan S, Xu H, Zhang N, Huang M, Liu Z. Inflammation biomarkers are associated with the incidence of cardiovascular disease: a meta-analysis. Front Cardiovasc Med 2023; 10:1175174. [PMID: 37485268 PMCID: PMC10360053 DOI: 10.3389/fcvm.2023.1175174] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/26/2023] [Indexed: 07/25/2023] Open
Abstract
Background Inflammation is a risk factor for cardiovascular disease (CVD), and particular inflammatory parameters can be used to predict the incidence of CVD. The aim of this study was to assess the association between fibrinogen (FIB), interleukin-6 (IL-6), C-reactive protein (CRP) and galectin-3 (Gal-3) and the risk of cardiovascular disease using meta-analysis. Methods PubMed, Embase, Scopus, and Web of Science databases were searched with the appropriate strategies to identify observational studies relevant to this meta-analysis. A random-effects model was used to combine inflammation factor-associated outcomes and cardiovascular disease outcomes, except in the case of galectin-3, where a fixed-effects model was used because of less heterogeneity. Location, age, type of cardiovascular disease, and sample size factors were used to explore heterogeneity in stratification and metaregression for subgroup analysis. A case-by-case literature exclusion approach was used for sensitivity analysis. The funnel plot and Begg's test were combined to assess publication bias. Results Thirty-three papers out of 11,456 were screened for inclusion in the analysis. Four inflammation biomarkers were significantly associated with the development of CVD: FIB (OR: 1.21, 95% CI: 1.15-1.27, P < 0.001; HR: 1.04, 95% CI: 1.00-1.07, P < 0.05), IL-6 (HR: 1.16, 95% CI: 1.10-1.22, P < 0.001), CRP (OR: 1.25, 95% CI: 1.15-1.35, P < 0.001; HR: 1.20, 95% CI: 1.14-1.25, P < 0.001) and Gal-3 (HR: 1.09, 95% CI: 1.05-1.14, P < 0.001). Location factors help explain the source of heterogeneity, and there is publication bias in the Gal-3 related literature. Conclusion Taken together, the current research evidence suggests that high levels of fibrinogen, interleukin-6, C-reactive protein and galectin-3 are risk factors for cardiovascular disease and can be used as biomarkers to predict the development of cardiovascular disease to some extent. Systematic Review Registration https://www.crd.york.ac.uk/PROSPERO, identifier: CRD42023391844.
Collapse
Affiliation(s)
- Yifei Liu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Suzhen Guan
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Haiming Xu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Na Zhang
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Min Huang
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| | - Zhihong Liu
- School of Public Health, Ningxia Medical University, Yinchuan, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia, China
| |
Collapse
|
29
|
Yeh CB, Yeh LT, Yang SF, Wang BY, Wang YH, Chan CH. Association between psoriasis and peripheral artery occlusive disease: a population-based retrospective cohort study. Front Cardiovasc Med 2023; 10:1136540. [PMID: 37378400 PMCID: PMC10291070 DOI: 10.3389/fcvm.2023.1136540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Psoriasis (PSO) is a chronic skin condition that affects a variety of disorders, especially the cardiovascular system. This study investigated the association between PSO and peripheral arterial disease (PAOD). Methods A retrospective cohort study design was carried out between 2000 and 2018. The exposure subject was a newly diagnosed PSO. The diagnosis of PSO was never elaborated as a comparison subject. Balanced heterogeneity of the two groups was used by propensity score matching. The cumulative incidence of PAOD between the two groups was performed using Kaplan-Meier analysis. The Cox proportional hazard model was used to measure the risk of PAOD risk hazard ratio. Results After matching the 1: 1 propensity score, 15,696 subjects with PSO and the same number of subjects without the diagnosis of PSO were recruited. The PSO subject had a higher risk of PAOD than the non-PSO subject (adjusted HR = 1.25; 95% CI = 1.03-1.50). In the 40-64-year-old subgroup, the subject of PSO exhibited an increased risk of PAOD than the subject without PSO. Conclusion Psoriasis is associated with an increased risk of peripheral arterial disease and curative care is necessary to reduce the risk of PAOD..
Collapse
Affiliation(s)
- Chao-Bin Yeh
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Liang-Tsai Yeh
- Department of Anesthesiology, Changhua Christian Hospital, Changhua, Taiwan
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Shun-Fa Yang
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Bo-Yuan Wang
- Department of Emergency Medicine, School of Medicine, Chung Shan Medical University, Taichung, Taiwan
- Department of Emergency Medicine, Chung Shan Medical University Hospital, Taichung, Taiwan
- Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yu-Hsun Wang
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Chi-Ho Chan
- Department of Medical Research, Chung Shan Medical University Hospital, Taichung, Taiwan
- Department of Microbiology and Immunology, Chung Shan Medical University, Taichung, Taiwan
| |
Collapse
|
30
|
Huang PY, Huang CS, Lin YL, Chen YH, Hung SC, Tsai JP, Hsu BG. Positive Association of Serum Galectin-3 with the Development of Aortic Stiffness of Patients on Peritoneal Dialysis. J Clin Med 2023; 12:jcm12103519. [PMID: 37240626 DOI: 10.3390/jcm12103519] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
A novel cardiovascular stress biomarker known as galectin-3 might be useful for anticipating adverse cardiovascular outcomes. The objective of the current investigation was to assess the association between serum galectin-3 levels and aortic stiffness (AS) in 196 patients on peritoneal dialysis. An enzyme-linked immunosorbent examination and a cuff-based volumetric displacement were employed to determine the levels of serum galectin-3 and the carotid-femoral pulse wave velocity (cfPWV), respectively. The AS group had 48 patients in total (24.5%) with cfPWV greater than 10 m/s. The AS group, when compared with the group without AS, had a significantly higher prevalence of diabetes mellitus and hypertension in addition to greater fasting glucose levels, waist circumference, systolic blood pressure, and serum galectin-3 levels. Multivariate logistic and linear regression analysis demonstrated that serum glactin-3 levels, in addition to gender and age, were significantly and independently associated with cfPWV and AS. Serum galectin-3 levels were linked with AS, according to a receiver operating characteristic curve analysis, with an area under the curve of 0.648 (95% confidence interval, 0.576-0.714; p = 0.0018). In summary, there was a significant correlation between serum galectin-3 levels and cfPWV in patients undergoing peritoneal dialysis therapy for end-stage kidney disease.
Collapse
Affiliation(s)
- Po-Yu Huang
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chen-Sen Huang
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
| | - Yu-Li Lin
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| | - Yi-Hsin Chen
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung 40201, Taiwan
| | - Szu-Chun Hung
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 23142, Taiwan
| | - Jen-Pi Tsai
- Division of Nephrology, Department of Internal Medicine, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Chiayi 62247, Taiwan
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Bang-Gee Hsu
- School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
- Division of Nephrology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 97004, Taiwan
| |
Collapse
|
31
|
Padgett CA, Bátori RK, Speese AC, Rosewater CL, Bush WB, Derella CC, Haigh SB, Sellers HG, Corley ZL, West MA, Mintz JD, Ange BB, Harris RA, Brands MW, Fulton DJR, Stepp DW. Galectin-3 Mediates Vascular Dysfunction in Obesity by Regulating NADPH Oxidase 1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537592. [PMID: 37131826 PMCID: PMC10153253 DOI: 10.1101/2023.04.19.537592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Rationale Obesity increases the risk of cardiovascular disease (CVD) through mechanisms that remain incompletely defined. Metabolic dysfunction, especially hyperglycemia, is thought to be a major contributor but how glucose impacts vascular function is unclear. Galectin-3 (GAL3) is a sugar binding lectin upregulated by hyperglycemia but its role as a causative mechanism of CVD remains poorly understood. Objective To determine the role of GAL3 in regulating microvascular endothelial vasodilation in obesity. Methods and Results GAL3 was markedly increased in the plasma of overweight and obese patients, as well as in the microvascular endothelium of diabetic patients. To investigate a role for GAL3 in CVD, mice deficient in GAL3 were bred with obese db/db mice to generate lean, lean GAL3 knockout (KO), obese, and obese GAL3 KO genotypes. GAL3 KO did not alter body mass, adiposity, glycemia or lipidemia, but normalized elevated markers of reactive oxygen species (TBARS) in plasma. Obese mice exhibited profound endothelial dysfunction and hypertension, both of which were rescued by GAL3 deletion. Isolated microvascular endothelial cells (EC) from obese mice had increased NOX1 expression, which we have previously shown to contribute to increased oxidative stress and endothelial dysfunction, and NOX1 levels were normalized in EC from obese mice lacking GAL3. EC-specific GAL3 knockout mice made obese using a novel AAV-approach recapitulated whole-body knockout studies, confirming that endothelial GAL3 drives obesity-induced NOX1 overexpression and endothelial dysfunction. Improved metabolism through increased muscle mass, enhanced insulin signaling, or metformin treatment, decreased microvascular GAL3 and NOX1. GAL3 increased NOX1 promoter activity and this was dependent on GAL3 oligomerization. Conclusions Deletion of GAL3 normalizes microvascular endothelial function in obese db/db mice, likely through a NOX1-mediated mechanism. Pathological levels of GAL3 and in turn, NOX1, are amenable to improvements in metabolic status, presenting a potential therapeutic target to ameliorate pathological cardiovascular consequences of obesity.
Collapse
|
32
|
Wang Z, Gao Z, Zheng Y, Kou J, Song D, Yu X, Dong B, Chen T, Yang Y, Gao X, Wang Q, Ye T, Yang W, Zhang X, Li H, Yang L. Melatonin inhibits atherosclerosis progression via galectin-3 downregulation to enhance autophagy and inhibit inflammation. J Pineal Res 2023; 74:e12855. [PMID: 36692032 DOI: 10.1111/jpi.12855] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/24/2022] [Accepted: 01/19/2023] [Indexed: 01/25/2023]
Abstract
Autophagy deficiency in macrophages exacerbates inflammation in atherosclerosis (AS), and recently, galectin-3 (Gal-3) has been implicated as a critical promoter of inflammation in AS. Further, melatonin (Mel) exerts an autophagy-promoting effect in many chronic inflammatory diseases. In this study, we aimed to investigate whether Mel inhibits AS progression by downregulating Gal-3 to enhance autophagy and inhibit inflammation. Thus, we performed in vivo and in vitro experiments using high-fat diet (HFD)-fed ApoE-/- mice and THP-1 macrophages, respectively. Smart-seq of AS plaque macrophages revealed that the differentially expressed genes (DEGs) downregulated by Mel were enriched in immune-related processes, and changes in inflammation status were confirmed based on lower levels of proinflammatory factors in Mel-treated HFD-fed ApoE-/- mice and THP-1 macrophages. Further, via transcriptome-based multiscale network pharmacology platform (TMNP), the upstream target genes of the smart-seq DEGs were identified, and Gal-3 showed a high score. Gal-3 was downregulated both in vivo and in vitro by Mel treatment. Besides, the enrichment of the target genes predicted via the TMNP method indicated that autophagy considerably affected the DEGs. Mel treatment as well as Gal-3 knockdown downregulated most inflammatory response-related proteins could attribute to enhancing autophagy. Mechanistically, Mel treatment inhibited Gal-3 leading to lowering the activity of the nuclear transcription factor-kappa B (NF-κB) pathway, and promoting the nuclear localization of transcription factor EB (TFEB). However, increased secretion of Gal-3 activated the phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT) pathway and impaired autophagy via binding to CD98. Thus, Mel promoted autophagy and restrained inflammation by downregulating Gal-3, implying that it holds promise as a treatment for AS.
Collapse
Affiliation(s)
- Zitong Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ziyu Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- Science and Research Department, National Center for Cardiovascular Diseases, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinghong Zheng
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Jiayuan Kou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, China
| | - Dan Song
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xue Yu
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Bowen Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Tianzuo Chen
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Yan Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Xi Gao
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Qianxue Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Ting Ye
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Wei Yang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
- School of Public Health, Qiqihar Medical University, Qiqihar, China
| | - Xu Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Hong Li
- Department of Pathophysiology, School of Basic Medical Sciences, Harbin Medical University, Harbin, China
| | - Liming Yang
- Department of Pathophysiology, Harbin Medical University (Daqing), Daqing, China
| |
Collapse
|
33
|
Jiang B, Zhou X, Yang T, Wang L, Feng L, Wang Z, Xu J, Jing W, Wang T, Su H, Yang G, Zhang Z. The role of autophagy in cardiovascular disease: Cross-interference of signaling pathways and underlying therapeutic targets. Front Cardiovasc Med 2023; 10:1088575. [PMID: 37063954 PMCID: PMC10090687 DOI: 10.3389/fcvm.2023.1088575] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/13/2023] [Indexed: 03/31/2023] Open
Abstract
Autophagy is a conserved lysosomal pathway for the degradation of cytoplasmic proteins and organelles, which realizes the metabolic needs of cells and the renewal of organelles. Autophagy-related genes (ATGs) are the main molecular mechanisms controlling autophagy, and their functions can coordinate the whole autophagic process. Autophagy can also play a role in cardiovascular disease through several key signaling pathways, including PI3K/Akt/mTOR, IGF/EGF, AMPK/mTOR, MAPKs, p53, Nrf2/p62, Wnt/β-catenin and NF-κB pathways. In this paper, we reviewed the signaling pathway of cross-interference between autophagy and cardiovascular diseases, and analyzed the development status of novel cardiovascular disease treatment by targeting the core molecular mechanism of autophagy as well as the critical signaling pathway. Induction or inhibition of autophagy through molecular mechanisms and signaling pathways can provide therapeutic benefits for patients. Meanwhile, we hope to provide a unique insight into cardiovascular treatment strategies by understanding the molecular mechanism and signaling pathway of crosstalk between autophagy and cardiovascular diseases.
Collapse
Affiliation(s)
- Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Xuan Zhou
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Yang
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Linlin Wang
- Department of First Clinical Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Longfei Feng
- Department of Basic Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Zheng Wang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Jin Xu
- Department of First Clinical Medicine, Lanzhou University, Lanzhou, China
| | - Weiyao Jing
- Department of Acupuncture-Moxibustion and Tuina, Gansu University of Traditional Chinese Medicine, Lanzhou, China
| | - Tao Wang
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - Haixiang Su
- Research Center for Translational Medicine, Gansu Province Academic Institute for Medical Research, Gansu Provincial Cancer Hospital, Lanzhou, China
| | - GuoWei Yang
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| | - Zheng Zhang
- Department of Integrated Chinese and Western Medicine, Gansu University of Traditional Chinese Medicine, Lanzhou, China
- Center for Heart, First Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
34
|
Bianchi L, Damiani I, Castiglioni S, Carleo A, De Salvo R, Rossi C, Corsini A, Bellosta S. Smooth Muscle Cell Phenotypic Switch Induced by Traditional Cigarette Smoke Condensate: A Holistic Overview. Int J Mol Sci 2023; 24:ijms24076431. [PMID: 37047404 PMCID: PMC10094728 DOI: 10.3390/ijms24076431] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/19/2023] [Accepted: 03/25/2023] [Indexed: 04/01/2023] Open
Abstract
Cigarette smoke (CS) is a risk factor for inflammatory diseases, such as atherosclerosis. CS condensate (CSC) contains lipophilic components that may represent a systemic cardiac risk factor. To better understand CSC effects, we incubated mouse and human aortic smooth muscle cells (SMCs) with CSC. We evaluated specific markers for contractile [i.e., actin, aortic smooth muscle (ACTA2), calponin-1 (CNN1), the Kruppel-like factor 4 (KLF4), and myocardin (MYOCD) genes] and inflammatory [i.e., IL-1β, and IL-6, IL-8, and galectin-3 (LGALS-3) genes] phenotypes. CSC increased the expression of inflammatory markers and reduced the contractile ones in both cell types, with KLF4 modulating the SMC phenotypic switch. Next, we performed a mass spectrometry-based differential proteomic approach on human SMCs and could show 11 proteins were significantly affected by exposition to CSC (FC ≥ 2.7, p ≤ 0.05). These proteins are active in signaling pathways related to expression of pro-inflammatory cytokines and IFN, inflammasome assembly and activation, cytoskeleton regulation and SMC contraction, mitochondrial integrity and cellular response to oxidative stress, proteostasis control via ubiquitination, and cell proliferation and epithelial-to-mesenchymal transition. Through specific bioinformatics resources, we showed their tight functional correlation in a close interaction niche mainly orchestrated by the interferon-induced double-stranded RNA-activated protein kinase (alternative name: protein kinase RNA-activated; PKR) (EIF2AK2/PKR). Finally, by combining gene expression and protein abundance data we obtained a hybrid network showing reciprocal integration of the CSC-deregulated factors and indicating KLF4 and PKR as the most relevant factors.
Collapse
|
35
|
Aggarwal A, Jennings CL, Manning E, Cameron SJ. Platelets at the Vessel Wall in Non-Thrombotic Disease. Circ Res 2023; 132:775-790. [PMID: 36927182 PMCID: PMC10027394 DOI: 10.1161/circresaha.122.321566] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/15/2023] [Indexed: 03/18/2023]
Abstract
Platelets are small, anucleate entities that bud from megakaryocytes in the bone marrow. Among circulating cells, platelets are the most abundant cell, traditionally involved in regulating the balance between thrombosis (the terminal event of platelet activation) and hemostasis (a protective response to tissue injury). Although platelets lack the precise cellular control offered by nucleate cells, they are in fact very dynamic cells, enriched in preformed RNA that allows them the capability of de novo protein synthesis which alters the platelet phenotype and responses in physiological and pathological events. Antiplatelet medications have significantly reduced the morbidity and mortality for patients afflicted with thrombotic diseases, including stroke and myocardial infarction. However, it has become apparent in the last few years that platelets play a critical role beyond thrombosis and hemostasis. For example, platelet-derived proteins by constitutive and regulated exocytosis can be found in the plasma and may educate distant tissue including blood vessels. First, platelets are enriched in inflammatory and anti-inflammatory molecules that may regulate vascular remodeling. Second, platelet-derived microparticles released into the circulation can be acquired by vascular endothelial cells through the process of endocytosis. Third, platelets are highly enriched in mitochondria that may contribute to the local reactive oxygen species pool and remodel phospholipids in the plasma membrane of blood vessels. Lastly, platelets are enriched in proteins and phosphoproteins which can be secreted independent of stimulation by surface receptor agonists in conditions of disturbed blood flow. This so-called biomechanical platelet activation occurs in regions of pathologically narrowed (atherosclerotic) or dilated (aneurysmal) vessels. Emerging evidence suggests platelets may regulate the process of angiogenesis and blood flow to tumors as well as education of distant organs for the purposes of allograft health following transplantation. This review will illustrate the potential of platelets to remodel blood vessels in various diseases with a focus on the aforementioned mechanisms.
Collapse
Affiliation(s)
- Anu Aggarwal
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Courtney L. Jennings
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
| | - Emily Manning
- Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Scott J. Cameron
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, Ohio
- Heart Vascular and Thoracic Institute, Department of Cardiovascular Medicine, Section of Vascular Medicine, Cleveland Clinic Foundation, Cleveland, Ohio, USA
- Case Western Reserve University School of Medicine, Cleveland, Ohio
- Department of Hematology, Taussig Cancer Center, Cleveland, Ohio
| |
Collapse
|
36
|
Li H, Cao Z, Wang L, Li J, Cheng X, Tang Y, Xing M, Yao P. Chronic high-fat diet induces galectin-3 and TLR4 to activate NLRP3 inflammasome in NASH. J Nutr Biochem 2023; 112:109217. [PMID: 36402251 DOI: 10.1016/j.jnutbio.2022.109217] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 05/01/2022] [Accepted: 09/27/2022] [Indexed: 11/19/2022]
Abstract
NOD-like receptor protein 3 (NLRP3) inflammasome activation triggers inflammation progression in some metabolism disorders, frequently accompanying the up-regulation of galectin-3 (Gal-3). However, the precise mechanisms of Gal-3 activating NLRP3 inflammasome remain unclear in nonalcoholic steatohepatitis (NASH). Here, male C57BL/6J mice were fed by high-fat diet (HFD) for 32 weeks to induce NASH and then the hepatic damage, cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation were examined. Such indicators were similarly determined when HepG2 cells were co-incubated with palmitic acid (PA, 200 μM), β-lactose, and TAK-242, or pre-transfected with TLR4. Immunofluorescence, immunohistochemistry, and co-immunoprecipitation were conducted to confirm the potential interaction between Gal-3 and TLR4. To further identify the inflammatory regulation roles of Gal-3 and its terminals in TLR4/NLRP3, HepG2 cells were transfected with Gal-3 and its variants. Chronic HFD induced sustained hepatic steatosis and inflammatory injury, with increased inflammatory cytokines, Gal-3 and TLR4 expression, and NLRP3 inflammasome activation. Similar changes were found in PA-dosed HepG2 cells, which were rescued by β-lactose but deteriorated with TLR4 overexpression. However, TAK-242 treatment decreased AST, ALT, cytokines, and normalized NLRP3, caspase-1, and ASC expression. Furthermore, TLR4 was pulled down when Gal-3 was enriched. Only full-length Gal-3 and its carbohydrate recognition domain (CRD) promoted cytokines, TLR4 expression, and NLRP3 inflammasome activation. Thus, gal-3 may induce chronic HFD-derived NASH progression by activating TLR4-mediating NLRP3 inflammasome via its CRD, which sheds new light on candidate target for the treatment and prevention of NASH inflammation despite further research for its precise roles in the future.
Collapse
Affiliation(s)
- Hongxia Li
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhiqiang Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lili Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Li
- Key Laboratory of Environmental Health, Ministry of Education, Department of Toxicology, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xueer Cheng
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yuhan Tang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mingyou Xing
- Department of Infectious Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Ping Yao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Ministry of Education Key Laboratory of Environment, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Han X, Geng B, Deng F, Ma Y, Fan N, Huang S, Xue M, Wu L, Li B, Liao S, Ye Q, Liu Y. Galectin-3 is associated with the functional outcome and mortality in stroke patients: A systematic review and meta-analysis. Heliyon 2023; 9:e13279. [PMID: 36846691 PMCID: PMC9947260 DOI: 10.1016/j.heliyon.2023.e13279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 12/12/2022] [Accepted: 01/24/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction There is still a lack of sensitive predictive tools for stroke outcomes. High galectin-3 concentration is associated with an increased risk of stroke. This study investigated the relationship between blood galectin-3 levels and stroke prognosis. Methods The PubMed, EMBASE, and Cochrane Library databases were searched as of May 2021. Data from eligible studies on the relationship between galectin-3 and stroke prognosis were extracted for the meta-analysis. Results The outcomes included the modified Rankin Scale (mRS), mortality rate, and prognostic accuracy of galectin-3 on mRS after stroke. Odds ratio (OR) and 95% CI were used to assess the association between galectin-3 and the prognostic outcomes. Subgroup analysis based on the study design was performed to evaluate the correlation of galectin-3 with mRS and mortality. A random-effects model was adopted for this meta-analysis. A total of 5 studies involving 3607 stroke patients were included. Higher serum galectin-3 level was associated with mRS (OR [95% CI]: 2.02 [1.08, 3.77]) and mortality (OR [95% CI]: 2.17 [1.17, 4.02]) after stroke. Subgroup analysis revealed a similar relationship between galectin-3 and mRS for both prospective and retrospective studies. There were no associations between galectin-3 level and mortality rate in prospective studies. Galectin-3 had a good predictive ability on mRS after stroke (AUC: 0.88, 95% CI:0.85, 0.91). Conclusion Elevated blood galectin-3 levels were associated with prognostic outcomes after stroke, including functional outcome mRS and mortality rate. Moreover, galectin-3 had a good predictive ability for the prognosis of stroke.
Collapse
Affiliation(s)
- Xiaoling Han
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Bingbing Geng
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Feiyan Deng
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Ying Ma
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Ningning Fan
- Ophthalmology Department, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Shaomin Huang
- Ophthalmology Department, Zhuhai People’s Hospital, Zhuhai, Guangdong, China
| | - Ming Xue
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Lei Wu
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Bixia Li
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China
| | - Shaoqin Liao
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China,Corresponding author.
| | - Qiao Ye
- Nursing Department, Zhuhai People’s Hospital, Zhuhai, Guangdong, China,Corresponding author.
| | - Yu Liu
- Interventional Medical Center, Zhuhai People’s Hospital (Zhuhai People’s Hospital of Jinan University), Zhuhai, Guangdong, China,Corresponding author.
| |
Collapse
|
38
|
Kruk L, Braun A, Cosset E, Gudermann T, Mammadova-Bach E. Galectin functions in cancer-associated inflammation and thrombosis. Front Cardiovasc Med 2023; 10:1052959. [PMID: 36873388 PMCID: PMC9981828 DOI: 10.3389/fcvm.2023.1052959] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/12/2023] [Indexed: 02/19/2023] Open
Abstract
Galectins are carbohydrate-binding proteins that regulate many cellular functions including proliferation, adhesion, migration, and phagocytosis. Increasing experimental and clinical evidence indicates that galectins influence many steps of cancer development by inducing the recruitment of immune cells to the inflammatory sites and modulating the effector function of neutrophils, monocytes, and lymphocytes. Recent studies described that different isoforms of galectins can induce platelet adhesion, aggregation, and granule release through the interaction with platelet-specific glycoproteins and integrins. Patients with cancer and/or deep-venous thrombosis have increased levels of galectins in the vasculature, suggesting that these proteins could be important contributors to cancer-associated inflammation and thrombosis. In this review, we summarize the pathological role of galectins in inflammatory and thrombotic events, influencing tumor progression and metastasis. We also discuss the potential of anti-cancer therapies targeting galectins in the pathological context of cancer-associated inflammation and thrombosis.
Collapse
Affiliation(s)
- Linus Kruk
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| | - Attila Braun
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany
| | - Erika Cosset
- CRCL, UMR INSERM 1052, CNRS 5286, Centre Léon Bérard, Lyon, France
| | - Thomas Gudermann
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,German Center for Lung Research (DZL), Munich, Germany
| | - Elmina Mammadova-Bach
- Walther-Straub-Institute for Pharmacology and Toxicology, Ludwig-Maximilians-University, Munich, Germany.,Division of Nephrology, Department of Medicine IV, Ludwig-Maximilians-University Hospital, Munich, Germany
| |
Collapse
|
39
|
Chiorescu RM, Mocan M, Inceu AI, Buda AP, Blendea D, Vlaicu SI. Vulnerable Atherosclerotic Plaque: Is There a Molecular Signature? Int J Mol Sci 2022; 23:13638. [PMID: 36362423 PMCID: PMC9656166 DOI: 10.3390/ijms232113638] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 10/30/2022] [Accepted: 10/31/2022] [Indexed: 08/18/2023] Open
Abstract
Atherosclerosis and its clinical manifestations, coronary and cerebral artery diseases, are the most common cause of death worldwide. The main pathophysiological mechanism for these complications is the rupture of vulnerable atherosclerotic plaques and subsequent thrombosis. Pathological studies of the vulnerable lesions showed that more frequently, plaques rich in lipids and with a high level of inflammation, responsible for mild or moderate stenosis, are more prone to rupture, leading to acute events. Identifying the vulnerable plaques helps to stratify patients at risk of developing acute vascular events. Traditional imaging methods based on plaque appearance and size are not reliable in prediction the risk of rupture. Intravascular imaging is a novel technique able to identify vulnerable lesions, but it is invasive and an operator-dependent technique. This review aims to summarize the current data from literature regarding the main biomarkers involved in the attempt to diagnose vulnerable atherosclerotic lesions. These biomarkers could be the base for risk stratification and development of the new therapeutic drugs in the treatment of patients with vulnerable atherosclerotic plaques.
Collapse
Affiliation(s)
- Roxana Mihaela Chiorescu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Mihaela Mocan
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| | - Andreea Ioana Inceu
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Iuliu Hatieganu University of Medicine, 400349 Cluj-Napoca, Romania
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Andreea Paula Buda
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
| | - Dan Blendea
- Department of Cardiology, Nicolae Stăncioiu Heart Institute, 400001 Cluj-Napoca, Romania
- Department of Cardiology, Iuliu Hațieganu University of Medicine and Pharmacy, 400437 Cluj-Napoca, Romania
| | - Sonia Irina Vlaicu
- Internal Medicine Department, Iuliu Hatieganu University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Internal Medicine, Emergency Clinical County Hospital, 400006 Cluj-Napoca, Romania
| |
Collapse
|
40
|
Wensvoort G. Human C-peptide is a ligand of the elastin-receptor-complex and therewith central to human vascular remodelling and disease in metabolic syndrome. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
41
|
Nangia-Makker P, Hogan V, Balan V, Raz A. Chimeric galectin-3 and collagens: Biomarkers and potential therapeutic targets in fibroproliferative diseases. J Biol Chem 2022; 298:102622. [PMID: 36272642 PMCID: PMC9706532 DOI: 10.1016/j.jbc.2022.102622] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/27/2022] Open
Abstract
Fibrosis, stiffening and scarring of an organ/tissue due to genetic abnormalities, environmental factors, infection, and/or injury, is responsible for > 40% of all deaths in the industrialized world, and to date, there is no cure for it despite extensive research and numerous clinical trials. Several biomarkers have been identified, but no effective therapeutic targets are available. Human galectin-3 is a chimeric gene product formed by the fusion of the internal domain of the collagen alpha gene [N-terminal domain (ND)] at the 5'-end of galectin-1 [C-terminal domain (CRD)] that appeared during evolution together with vertebrates. Due to the overlapping structural similarities between collagen and galectin-3 and their shared susceptibility to cleavage by matrix metalloproteases to generate circulating collagen-like peptides, this review will discuss present knowledge on the role of collagen and galectin-3 as biomarkers of fibrosis. We will also highlight the need for transformative approaches targeting both the ND and CRD domains of galectin-3, since glycoconjugate binding by the CRD is triggered by ND-mediated oligomerization and the therapies targeted only at the CRD have so far achieved limited success.
Collapse
Affiliation(s)
- Pratima Nangia-Makker
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Redwood City, California, USA,For correspondence: Pratima Nangia-Makker; Avraham Raz
| | - Victor Hogan
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Redwood City, California, USA
| | - Vitaly Balan
- Guardant Health, Bioinformatics, Redwood City, California, USA
| | - Avraham Raz
- Barbara Ann Karmanos Cancer Institute, Department of Oncology, School of Medicine, Redwood City, California, USA,Department of Pathology, School of Medicine, Wayne State University, Detroit, Michigan, USA,For correspondence: Pratima Nangia-Makker; Avraham Raz
| |
Collapse
|
42
|
Podzolkov VI, Dragomiretskaya NA, Kazadaeva AV, Belyaev YG, Tolmacheva AV. Galectin-3 as a Marker of Cardiorenal Syndrome in Patients with Chronic Heart Failure. RATIONAL PHARMACOTHERAPY IN CARDIOLOGY 2022. [DOI: 10.20996/1819-6446-2022-04-04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aim. To assess the effect of renal dysfunction on the galectin-3 level in patients with chronic heart failure (HF) with preserved, intermediate and reduced left ventricular ejection fraction (EF).Material and methods. Along with a clinical examination, 69 patients with HF (NYHA class II-IV) underwent tests for the level of NT-proBNP and galectin-3 in serum using enzyme immunoassay.Results. Study participants were divided into 3 groups: 23 patients with preserved EF (HFpEF), 26 patients with midrange EF (HFmrEF), 20 patients with reduced EF (HFrEF). There was a trend to increase the concentration of galectin-3 with increase in NT-proBNP level. Correlation analysis showed significant feedback (r=−0.41, p<0.05) between galectin-3 and EF only in patients with preserved systolic function. In the same group of HFpEF patients, the maximum serum galectin-3 level was 10.5 [6.5; 14.5] ng/ml. Serum galectin-3 level showed negative correlated with the GFR in patients with CHF (r=−0.513, p<0.05). In patients with HF and glomerular filtration rate (GFR) <60 ml/min/1.73 m2 it was higher than in patients with GFR>60 ml/min/1.72 m2 (9 [5.3; 12.6] ng/mL vs 11.8 [6.2; 15.3] ng/mL, p<0.05). According to the ROC-analysis data, galectin-3 level >10.3 ng/ml indicates a high risk of chronic kidney disease stage 3-4 stage development (sensitivity 60%, specificity 75%) and can be considered as a risk factor for development of cardiorenal syndrome in HF patients.Conclusion. Galectin-3 level in patients with HF is more influenced by the degree of reduction in GFR rather than the left ventricular systolic function impairment.
Collapse
Affiliation(s)
- V. I. Podzolkov
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | | | - A. V. Kazadaeva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - Yu. G. Belyaev
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| | - A. V. Tolmacheva
- I.M. Sechenov First Moscow State Medical University (Sechenov University)
| |
Collapse
|
43
|
Shin J, Tkachenko S, Chaklader M, Pletz C, Singh K, Bulut GB, Han YM, Mitchell K, Baylis RA, Kuzmin AA, Hu B, Lathia JD, Stenina-Adognravi O, Podrez E, Byzova TV, Owens GK, Cherepanova OA. Endothelial OCT4 is atheroprotective by preventing metabolic and phenotypic dysfunction. Cardiovasc Res 2022; 118:2458-2477. [PMID: 35325071 PMCID: PMC9890633 DOI: 10.1093/cvr/cvac036] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/22/2022] [Accepted: 03/05/2022] [Indexed: 02/04/2023] Open
Abstract
AIMS Until recently, the pluripotency factor Octamer (ATGCAAAT)-binding transcriptional factor 4 (OCT4) was believed to be dispensable in adult somatic cells. However, our recent studies provided clear evidence that OCT4 has a critical atheroprotective role in smooth muscle cells. Here, we asked if OCT4 might play a functional role in regulating endothelial cell (EC) phenotypic modulations in atherosclerosis. METHODS AND RESULTS Specifically, we show that EC-specific Oct4 knockout resulted in increased lipid, LGALS3+ cell accumulation, and altered plaque characteristics consistent with decreased plaque stability. A combination of single-cell RNA sequencing and EC-lineage-tracing studies revealed increased EC activation, endothelial-to-mesenchymal transitions, plaque neovascularization, and mitochondrial dysfunction in the absence of OCT4. Furthermore, we show that the adenosine triphosphate (ATP) transporter, ATP-binding cassette (ABC) transporter G2 (ABCG2), is a direct target of OCT4 in EC and establish for the first time that the OCT4/ABCG2 axis maintains EC metabolic homeostasis by regulating intracellular heme accumulation and related reactive oxygen species production, which, in turn, contributes to atherogenesis. CONCLUSIONS These results provide the first direct evidence that OCT4 has a protective metabolic function in EC and identifies vascular OCT4 and its signalling axis as a potential target for novel therapeutics.
Collapse
Affiliation(s)
| | | | | | - Connor Pletz
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Kanwardeep Singh
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gamze B Bulut
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Young min Han
- Center for Molecular and Translational Medicine, Georgia State University, Atlanta, GA, USA
| | - Kelly Mitchell
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Richard A Baylis
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA
| | - Andrey A Kuzmin
- Russian Academy of Sciences, Institute of Cytology, St Petersburg, Russian Federation
| | - Bo Hu
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Justin D Lathia
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Olga Stenina-Adognravi
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Eugene Podrez
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Tatiana V Byzova
- Department of Neuroscience, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Gary K Owens
- Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, VA, USA,Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
44
|
Galectin-3: A Novel Marker for the Prediction of Stroke Incidence and Clinical Prognosis. Mediators Inflamm 2022; 2022:2924773. [PMID: 35281427 PMCID: PMC8904909 DOI: 10.1155/2022/2924773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 01/09/2022] [Accepted: 02/03/2022] [Indexed: 12/15/2022] Open
Abstract
Stroke, whether ischemic or haemorrhagic, is one of the main causes of mortality and disability all over the world, which entails huge burdens in both healthcare environments as well as social and economic aspects of life. Therefore, there is a continuous search for novel reliable biomarkers that can enhance the recognition of stroke events in a timely manner and predict the clinical outcomes following a stroke event. Galectins are a group of proteins expressed by many types of cells and tissues including vasculature, certain immune cells, fibroblasts, and gastrointestinal epithelial cells. These proteins vary in their structure and configuration according to their type and have a diversity of functions according to the type of tissue they are expressed in. Among these proteins, a few studies investigated mainly the roles played by galectin-1 (Gal-1) and galectin-3 (Gal-3) in the molecular mechanisms of atherosclerosis and in brain tissue remodeling after a stroke event. In this review, we present an updated overview of the current understanding of Gal-3's functions and implications in stroke occurrence and the response of the brain tissue to stroke events, which may be a key to its utility as a predictor of stroke incidence and clinical prognosis in the future.
Collapse
|
45
|
Li M, Guo K, Huang X, Feng L, Yuan Y, Li J, Lao Y, Guo Z. Association Between Serum Galectin-3 Levels and Coronary Stenosis Severity in Patients With Coronary Artery Disease. Front Cardiovasc Med 2022; 9:818162. [PMID: 35198615 PMCID: PMC8858949 DOI: 10.3389/fcvm.2022.818162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background The relationship between galectin-3 (Gal-3) and coronary artery disease (CAD) has not been fully elucidated. Aim This study aimed to determine the relationship between the presence and severity of CAD and serum Gal-3 levels. Patients and Methods Three-hundred thirty-one consecutive CAD patients were enrolled as the study group. An additional 62 patients without CAD were enrolled as the control group. Serum Gal-3 levels were separately compared between the non-CAD and CAD groups, among the stable CAD and Acute coronary syndrome (ACS) groups, and between CAD patients with low and high SYNTAX scores (SSs). The 1-year cumulative rate of major adverse cardiac events (MACEs) was also compared among ACS patients by Gal-3 levels. Results Serum Gal-3 was significantly higher in the CAD group than in the non-CAD group 3.89 (0.16–63.67) vs. 2.07 (0.23–9.38) ng/ml, P < 0.001. Furthermore, serum Gal-3 was significantly higher in the non-ST-segment elevation ACS (NSTE-ACS) group than that in the stable CAD group, 4.72 (1.0–16.14) vs. 2.23 (0.65–23.8) ng/ml, P = 0.04 and higher in the ST-segment elevation myocardial infarction (STEMI) group than that in the stable CAD group 7.87 (0.59–63.67) vs. 2.23 (0.65–23.8) ng/ml, P < 0.001. Serum Gal-3 level was an independent predictor of ACS compared with stable CAD group (OR = 1.131, 95% CI: 1.051–1.217, P = 0.001) as well as high SS (OR = 1.030, 95% CI: 1.021–1.047, P = 0.038) after adjust other confounding risk factors. Acute coronary syndrome patients with Gal-3 levels above the median (gal-3 = 4.78 ng/ml) showed a higher cumulative MACE rate than those with Gal-3 levels below the median. After adjusting other confounding risk factors, Gal-3 remained an independent risk factor for the cumulative rate of MACEs in ACS patients (6% higher rate of MACEs incidence per 1 ng/ml increment of Gal-3). Conclusion Galectin-3 correlated with the presence of CAD as well as coronary stability and complexity. Galectin-3 may be valuable in predicting mid-term prognosis in ACS patients.
Collapse
Affiliation(s)
- Mingxing Li
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Kai Guo
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Xuansheng Huang
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Li Feng
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yong Yuan
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Jiewen Li
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Yi Lao
- Department of Cardiology, Zhongshan People's Hospital, Zhongshan, China
| | - Zhigang Guo
- Division of Cardiology, Huiqiao Medical Centre, Nanfang Hospital, Southern Medical University, Guangzhou, China
- *Correspondence: Zhigang Guo
| |
Collapse
|
46
|
Galectin-3 as a Novel Multifaceted and Not Only Cardiovascular Biomarker in Patients with Psoriasis with Regard to Systemic Treatment-Preliminary Data. BIOLOGY 2022; 11:biology11010088. [PMID: 35053087 PMCID: PMC8773359 DOI: 10.3390/biology11010088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/03/2022] [Accepted: 01/05/2022] [Indexed: 12/30/2022]
Abstract
Simple Summary Galectin-3 (gal-3) regulates many different biological processes and diseases, which are common accompanying diseases of psoriasis. Psoriasis is one of the most common skin diseases. There is little information about potential diagnostic role of gal-3 in psoriasis. Serum gal-3 concentrations were measured before and after twelve weeks of antipsoriatic treatment in patients with psoriasis and compared to 11 persons without psoriasis (control group). Serum gal-3 level in patients with psoriasis was significantly higher compared to the control group. In obese patients and long-lasting psoriasis positive relations of gal-3 and index of psoriasis severity were noted. In psoriatics with low gal-3 levels, it was noted that the higher the gal-3, the higher the BMI and glucose level. In patients with long history of psoriasis it was observed that the higher gal-3, the lower the lipids levels. The Gal-3 level might be a factor affecting the course of psoriasis and useful in prediction of cardiometabolic comorbidities, especially in patients with a long history of the disease or obesity. Patients with low serum gal-3 and a short history of psoriasis may have greater risk of diabetes. In obese patients with long-lasting psoriasis, gal-3 may have a beneficial influence against abnormal lipid profiles or perhaps further cardiovascular disorder development. Abstract Galectin-3 (gal-3) is a multifunctional regulator of various biological processes and diseases, which are common comorbidities in psoriasis. Data regarding potential diagnostic role of gal-3 in psoriasis are insufficient. Serum gal-3 levels were evaluated before and after twelve weeks of treatment with acitretin or methotrexate in 31 patients with plaque-type psoriasis and compared to 11 healthy control group. The mean serum galectin-3 level in patients with psoriasis was significantly higher compared to the control group (p < 0.01). In patients with obesity and long-lasting psoriasis (>20 years) positive relations of gal-3 and PASI were noted. In psoriatics with low gal-3 levels, positive correlations between the gal-3 and BMI, glucose level, and with the latter in short-lasting psoriasis (<20 years) were noted. In the long history of psoriasis, gal-3 was negatively correlated with lipids levels. The Gal-3 level might be a multifaceted modulator of the course of psoriasis and predictive factor of cardiometabolic comorbidities’ development, especially in patients with a long history of the disease or obesity. Patients with low serum gal-3 and short history of psoriasis are presumably at greater risk of diabetes. In patients with long-lasting psoriasis and concomitant obesity, gal-3 may exert a protective role against dyslipidemia or perhaps further CMD development.
Collapse
|
47
|
Tian L, Ding F, Zhang R. Predictive Value of Galectin-3 and Brachial-Ankle Pulse Wave Velocity for Coronary Artery Calcification in Coronary Arteriography Patients. Int J Clin Pract 2022; 2022:1865736. [PMID: 35685493 PMCID: PMC9159218 DOI: 10.1155/2022/1865736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVES To study the predictive value for coronary artery calcification (CAC) of plasma galectin-3 and brachial-ankle pulse wave velocity (BaPWV) in coronary arteriography (CAG) patients. METHODS Patients who received coronary arteriography (CAG) examination were recruited. The level of plasma galectin-3 was measured by the enzyme-linked immunosorbent assay. The arterial stiffness was analyzed by BaPWV and ankle-brachial index (ABI) which were measured using a volume-plethysmographic device. Receiver operating characteristic (ROC) curve was used to analyze the prognostic value of galectin-3 or BaPWV for coronary artery calcification (CAC). RESULTS The level of galectin-3 and BaPWV was significantly higher in CAC patients compared with that in control (p < 0.01). The level of plasma galectin-3 was positively correlated with BaPWV (r = -0.296, p < 0.01) and negatively correlated with ABI (r = -0.296, p < 0.01). ROC curve analysis revealed that galectin-3 ≥5.90 ng/ml was the most powerful predictor for CAC with sensitivity of 85.5% and specificity of 83.5%. The area under the curve (AUC) was 0.916. When the level of BaPWV was more than 1909 m/s, the sensitivity and specificity were 61.8% and 69.6%, respectively, for predicting CAC. The AUC was 0.646. CONCLUSIONS The level of plasma galectin-3 increases significantly in CAC patients compared to control, and its level is related to BaPWV and ABI. Galectin-3 and BaPWV can be used to predict CAC, and the diagnosis value (sensitivity and specificity) of galectin-3 for CAC is better than that of BaPWV.
Collapse
Affiliation(s)
- Lei Tian
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fenghua Ding
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruiyan Zhang
- Department of Cardiovascular Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
48
|
Wang Q, Wang K, Ma Y, Li S, Xu Y. Serum Galectin-3 as a Potential Predictive Biomarker Is Associated with Poststroke Cognitive Impairment. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5827812. [PMID: 34900086 PMCID: PMC8660241 DOI: 10.1155/2021/5827812] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/21/2021] [Indexed: 12/11/2022]
Abstract
OBJECTIVE Galectin-3, an inflammatory mediator derived from microglia, participates in the pathophysiological process of various neurological diseases. However, the relationship between galectin-3 and poststroke cognitive impairment (PSCI) remains ambiguous. This research purposed to prove whether serum galectin-3 can predict PSCI. METHODS In the end, an aggregate of 416 patients with the first acute ischemic stroke (AIS) were continuously and prospectively enrolled in the study. Upon admission, the baseline data of AIS patients were collected, and their serum galectin-3 levels were measured. Three months after the stroke, the Montreal Cognitive Scale (MoCA) was utilized to measure the cognitive function of AIS patients, and PSCI was defined as a MoCA score less than 26 points. RESULTS Premised on the MoCA scores, patients were categorized into PSCI cohort and non-PSCI cohort. The two AIS patient cohorts did not exhibit any statistical difference in their baseline characteristics (p > 0.05). However, the serum galectin-3 level of AIS patients in the PSCI cohort was considerably elevated (p < 0.001). Pearson correlation analysis illustrated that serum galectin-3 level was negatively linked to MoCA score (r = -0.396, p < 0.05). The findings from the receiver-operating curve (ROC) illustrated that the sensitivity of serum galectin-3 as a possible biomarker for diagnosing PSCI was 66%, and the specificity was 94%. The cut-off value of serum galectin-3 to diagnose PSCI is 6.3 ng/mL (OR = 5.49, p < 0.001). Upon controlling for different variables, serum galectin-3 level remained to be an independent predictor of PSCI (p < 0.001). CONCLUSIONS Elevated serum galectin-3 levels are linked to a higher risk of PSCI. Serum galectin-3 could be a prospective biomarker for predicting PSCI.
Collapse
Affiliation(s)
- Qian Wang
- Postdoctoral Workstation, Taian City Central Hospital, Taian, Shandong Province, China
- Department of Central Laboratory, Taian City Central Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong Province, China
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Kai Wang
- State Key Laboratory of Medical Neurobiology-Ministry of Education (MOE) Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China
- Department of Neurology, Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu Province, China
| | - Yihong Ma
- Department of Neurology, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Simin Li
- Stomatological Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuzhen Xu
- Department of Rehabilitation, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong Province, China
| |
Collapse
|
49
|
Vesela B, Zapletalova M, Svandova E, Ramesova A, Doubek J, Lesot H, Matalova E. General Caspase Inhibition in Primary Chondrogenic Cultures Impacts Their Transcription Profile Including Osteoarthritis-Related Factors. Cartilage 2021; 13:1144S-1154S. [PMID: 34496641 PMCID: PMC8804802 DOI: 10.1177/19476035211044823] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The knowledge about functions of caspases, usually associated with cell death and inflammation, keeps expanding also regarding cartilage. Active caspases are present in the growth plate, and caspase inhibition in limb-derived chondroblasts altered the expression of osteogenesis-related genes. Caspase inhibitors were reported to reduce the severity of cartilage lesions in osteoarthritis (OA), and caspase-3 might represent a promising biomarker for OA prognosis. The objective of this investigation was to decipher the transcriptomic regulation of caspase inhibition in chondrogenic cells. DESIGN Limb-derived chondroblasts were cultured in the presence of 2 different inhibitors: Z-VAD-FMK (FMK) and Q-VD-OPH (OPH). A whole transcriptome RNA sequencing was performed as the key analysis. RESULTS The analysis revealed a statistically significant increase in the expression of 252 genes in the FMK samples and 163 genes in the OPH samples compared with controls. Conversely, there was a significant decrease in the expression of 290 genes in the FMK group and 188 in the OPH group. Among the top up- and downregulated genes (more than 10 times changed), almost half of them were associated with OA. Both inhibitors displayed the highest upregulation of the inflammatory chemokine Ccl5, the most downregulated gene was the one for mannose receptors Mrc1. CONCLUSIONS The obtained datasets pointed to a significant impact of caspase inhibition on the expression of several chondro-/osteogenesis-related markers in an in vitro model of endochondral ossification. Notably, the list of these genes included some encoding for factors associated with cartilage/bone pathologies such as OA.
Collapse
Affiliation(s)
- Barbora Vesela
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic,Barbora Vesela, Institute of Animal
Physiology and Genetics, Czech Academy of Sciences, v.v.i., Veveri 97, Brno 602
00, Czech Republic.
| | - Martina Zapletalova
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Svandova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Alice Ramesova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Jaroslav Doubek
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic
| | - Hervé Lesot
- Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| | - Eva Matalova
- Department of Physiology, University of
Veterinary Sciences, Brno, Czech Republic,Institute of Animal Physiology and
Genetics, Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
50
|
An overview about galectin-3 and its relationship with cardiovascular diseases. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.933280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|