1
|
Krawczyk A, Stadler SM, Strzalka-Mrozik B. Nanomedicines for Dry Eye Syndrome: Targeting Oxidative Stress with Modern Nanomaterial Strategies. Molecules 2024; 29:3732. [PMID: 39202812 PMCID: PMC11357096 DOI: 10.3390/molecules29163732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/03/2024] [Accepted: 08/05/2024] [Indexed: 09/03/2024] Open
Abstract
Dry eye syndrome (DES) is a dynamic, chronic disease of the ocular surface and ocular appendages caused by inflammation. The most common symptoms include redness, itching, and blurred vision, resulting from dysfunction of the meibomian glands and impaired tear-film production. Factors contributing to the development of DES include environmental elements, such as UV radiation, and internal elements, such as hormonal imbalances. These factors increase oxidative stress, which exacerbates inflammation on the surface of the eye and accelerates the development of DES. In recent years, the incidence of DES has risen, leading to a greater need to develop effective treatments. Current treatments for dry eye are limited and primarily focus on alleviating individual symptoms, such as reducing inflammation of the ocular surface. However, it is crucial to understand the pathomechanism of the disease and tailor treatment to address the underlying causes to achieve the best possible therapeutic outcomes. Therefore, in this review, we analyzed the impact of oxidative stress on the development of DES to gain a better understanding of its pathomechanism and examined recently developed nanosystems that allow drugs to be delivered directly to the disease site.
Collapse
Affiliation(s)
| | | | - Barbara Strzalka-Mrozik
- Department of Molecular Biology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, 40-055 Katowice, Poland; (A.K.); (S.M.S.)
| |
Collapse
|
2
|
Yu Q, Wang C, Liu Z, Yue Y, Hsiao Y, Zhou Q, Zhou J. Association between inflammatory cytokines and oxidative stress levels in aqueous humor with axial length in human myopia. Exp Eye Res 2023; 237:109670. [PMID: 37806610 DOI: 10.1016/j.exer.2023.109670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/12/2023] [Accepted: 09/27/2023] [Indexed: 10/10/2023]
Abstract
This study investigated the content of inflammatory cytokines and oxidative stress levels in the aqueous humor (AH) of patients with high myopia (HM) and explored the relationship between these factors and the axial length (AL) of the eye, to explore the roles of mild intraocular inflammation and oxidative stress imbalance in the occurrence and development of myopia. AH samples from 40 patients (70 eyes) were collected during implantable collamer lens (ICL-V4c) surgery. The subjects were divided into three groups according to AL: group A (AL ≤ 26 mm), group B (26 < AL ≤ 28 mm), and group C (AL ≥ 28 mm). The concentrations of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), matrix metalloproteinase-2 (MMP-2), and interleukin-1β (IL-1β) in the AH of the three groups were measured using the Luminex system. Oxidative stress levels were measured using reagent kits targeting total antioxidant capacity (T-AOC), catalase (CAT), and nitric oxide (NO) and malonaldehyde (MDA) content. The results showed compared with group A, IL-1β, MMP-2, and IL-6 concentrations were significantly higher and T-AOC levels were significantly lower in group C. There were no significant differences in CAT, NO, MDA, or TNF-α levels among the groups. The concentrations of IL-6 (r = 0.379, p = 0.016), MMP-2 (r = 0.469, p = 0.002), and MDA (r = 0.354, p = 0.025) in AH were positively correlated with the AL, whereas T-AOC (r = -0.678, p = 0.000) was negatively correlated with AL. These results suggest that mild intraocular inflammation and oxidative stress imbalance may be associated with myopia. Further experiments are needed to confirm the role of mild intraocular inflammation and oxidative stress imbalance in the occurrence and development of myopia.
Collapse
Affiliation(s)
- Qi Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China; Department of Ophthalmology, Xin Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China
| | - Chuqiao Wang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China; Department of Ophthalmology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai, 200072, China
| | - Zhihao Liu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China; Department of Ophthalmology, Tenth People's Hospital, Shanghai Tongji University School of Medicine, Shanghai, 200072, China
| | - Yu Yue
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China; The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing Branch of National Clinical Research Center for Ocular Diseases, Chongqing, China
| | - Yuwen Hsiao
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China; Department of Ophthalmology, Shanghai Aier Eye Hospital, Shanghai, 200336, China
| | - Qimin Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Jibo Zhou
- Department of Ophthalmology, Shanghai Ninth People's Hospital, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, China; Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, 200011, China.
| |
Collapse
|
3
|
Yazdani M. Tear film lipid layer and corneal oxygenation: a new function? Eye (Lond) 2023; 37:3534-3541. [PMID: 37138094 PMCID: PMC10686381 DOI: 10.1038/s41433-023-02557-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/22/2023] [Accepted: 04/20/2023] [Indexed: 05/05/2023] Open
Abstract
The classic model of tear film is composed of mucin layer, aqueous layer and the outermost tear film lipid layer (TFLL). The complex mixture of different classes of lipids, mainly secreted by meibomian glands, gives the TFLL unique physicochemical properties. Based on these properties, several functions of TFLL have been found and/or proposed such as the resistance to evaporation and facilitating the formation of a thin film. However, the role of TFLL in the oxygenation of the cornea, a transparent avascular tissue, has never been discussed in the literature. The continuous metabolic activity of the corneal surface and the replenishment of atmospheric gas creates an O2 gradient in the tear film. The molecules of O2 must therefore be transferred from the gas phase to the liquid phase through the TFLL. This process is a function of the diffusion and solubility of the lipid layer as well as interface transfer, which is influenced by alterations in the physical state and lipid composition. In the absence of research on TFLL, the present paper aims to bring the topic into the spotlight for the first time based on existing knowledge on O2 permeability of the lipid membranes and evaporation resistance of the lipid layers. The oxidative stress generated in perturbed lipid layers and the consequent adverse effects are also covered. The function of the TFLL proposed here intends to encourage future research in both basic and clinical sciences, e.g., opening new avenues for the diagnosis and treatment of ocular surface conditions.
Collapse
Affiliation(s)
- Mazyar Yazdani
- Department of Medical Biochemistry, Oslo University Hospital, Rikshospitalet, 0027, Oslo, Norway.
| |
Collapse
|
4
|
Liang Q, Guo R, Tsao JR, He Y, Wang C, Jiang J, Zhang D, Chen T, Yue T, Hu K. Salidroside alleviates oxidative stress in dry eye disease by activating autophagy through AMPK-Sirt1 pathway. Int Immunopharmacol 2023; 121:110397. [PMID: 37302369 DOI: 10.1016/j.intimp.2023.110397] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/14/2023] [Accepted: 05/24/2023] [Indexed: 06/13/2023]
Abstract
Dry eye disease (DED) is a multifactorial disease, and oxidative stress plays a crucial role in its pathogenesis. Recently, multiple studies have shown that upregulation of autophagy can protect the cornea from oxidative stress damage. The present study investigated the therapeutic effects of salidroside, the main component of Rhodiola crenulata, in both in vivo and in vitro dry eye models. The results showed that topical eye drop treatment with salidroside restored corneal epithelium damage, increased tear secretion, and reduced cornea inflammation in the DED mice. Salidroside activated autophagy through AMP-activated protein kinase (AMPK)-sirtuin-1 (Sirt1) signaling pathway, which promoted the nuclear translocation of nuclear factor erythroid-2-related factor 2 (Nrf2) and increased the expression of downstream antioxidant factors heme oxygenase-1 (HO-1) and NAD(P)H quinone dehydrogenase 1 (NQO1). This process restored antioxidant enzyme activity, reduced reactive oxygen species (ROS) accumulation, and alleviated oxidative stress. The application of autophagy inhibitor chloroquine and AMPK inhibitor Compound C reversed the therapeutic efficacy of salidroside, validating the above findings. In conclusion, our data suggest that salidroside is a promising candidate for DED treatment.
Collapse
Affiliation(s)
- Qi Liang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Rongjie Guo
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Jia-Ruei Tsao
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Yun He
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Chenchen Wang
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 618 Fengqi East Rd, Hangzhou, Zhejiang, China
| | - Jiaxuan Jiang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Di Zhang
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Taige Chen
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China; Department of Rheumatology and Immunology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China
| | - Tingting Yue
- Department of Neurosurgery, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| | - Kai Hu
- Department of Ophthalmology, Affiliated Drum Tower Hospital, Medical School, Nanjing University, 321 Zhongshan Rd, Nanjing, Jiangsu, China.
| |
Collapse
|
5
|
Ma F, Feng J, Liu X, Tian Y, Wang WJ, Luan FX, Wang YJ, Yang WQ, Bai JY, Zhang YQ, Tao Y. A synergistic therapeutic nano-eyedrop for dry eye disease based on ascorbic acid-coupled exosomes. NANOSCALE 2023; 15:1890-1899. [PMID: 36606731 DOI: 10.1039/d2nr05178h] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Dry eye disease (DED), a complex ocular surface disease with a high prevalence rate, is associated with corneal injury, excess oxidative stress and inflammation. Current therapeutic strategies, including artificial tears and anti-inflammatory agents, are unable to address all the deleterious factors or to achieve a clinical cure due to their temporary or side effects. Here, we prepared a multiple-functional eyedrop based on the deposition of gold nanoparticles (AuNPs) reduced by ascorbic acid (AA) onto the exosomal phospholipid membrane of mesenchymal stem cell (mExo)-derived exosomes in situ (mExo@AA). The therapeutic value of mExo@AA for DED was demonstrated in a mouse DED model. Combining the benefits of mExo and AA, mExo@AA effectively improves corneal epithelium recovery and anti-inflammation capacity, decreases corneal reactive oxygen species, and restores tear secretion without adverse effects. Thus, this study suggests that mExo@AA is effective and safe as a therapeutic agent for the treatment of DED.
Collapse
Affiliation(s)
- Fang Ma
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Jing Feng
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Xi Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College, Beijing 100048, P. R. China
| | - Ying Tian
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Wen-Jing Wang
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People's Hospital, Shenzhen 518035, P. R. China
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Fu-Xiao Luan
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Ying-Jie Wang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Wei-Qiang Yang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Jing-Yi Bai
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Department of Ophthalmology, Beijing Huairou Hospital, Capital Medical University, Beijing 101400, P.R. China
| | - Yi-Quan Zhang
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
- Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100080, P. R. China
| | - Yong Tao
- Department of Ophthalmology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, P. R. China.
| |
Collapse
|
6
|
Weinberg J, Gaur M, Swaroop A, Taylor A. Proteostasis in aging-associated ocular disease. Mol Aspects Med 2022; 88:101157. [PMID: 36459837 PMCID: PMC9742340 DOI: 10.1016/j.mam.2022.101157] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Vision impairment has devastating consequences for the quality of human life. The cells and tissues associated with the visual process must function throughout one's life span and maintain homeostasis despite exposure to a variety of insults. Maintenance of the proteome is termed proteostasis, and is vital for normal cellular functions, especially at an advanced age. Here we describe basic aspects of proteostasis, from protein synthesis and folding to degradation, and discuss the current status of the field with a particular focus on major age-related eye diseases: age-related macular degeneration, cataract, and glaucoma. Our intent is to allow vision scientists to determine where and how to harness the proteostatic machinery for extending functional homeostasis in the aging retina, lens, and trabecular meshwork. Several common themes have emerged despite these tissues having vastly different metabolisms. Continued exposure to insults, including chronic stress with advancing age, increases proteostatic burden and reduces the fidelity of the degradation machineries including the ubiquitin-proteasome and the autophagy-lysosome systems that recognize and remove damaged proteins. This "double jeopardy" results in an exponential accumulation of cytotoxic proteins with advancing age. We conclude with a discussion of the challenges in maintaining an appropriate balance of protein synthesis and degradation pathways, and suggest that harnessing proteostatic capacities should provide new opportunities to design interventions for attenuating age-related eye diseases before they limit sight.
Collapse
Affiliation(s)
- Jasper Weinberg
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA
| | - Mohita Gaur
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Anand Swaroop
- Neurobiology, Neurodegeneration & Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Allen Taylor
- Laboratory for Nutrition and Vision Research, USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA, 02111, USA.
| |
Collapse
|
7
|
Nebbioso M, Franzone F, Lambiase A, Bonfiglio V, Limoli PG, Artico M, Taurone S, Vingolo EM, Greco A, Polimeni A. Oxidative Stress Implication in Retinal Diseases-A Review. Antioxidants (Basel) 2022; 11:antiox11091790. [PMID: 36139862 PMCID: PMC9495599 DOI: 10.3390/antiox11091790] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 09/06/2022] [Indexed: 11/16/2022] Open
Abstract
Oxidative stress (OS) refers to an imbalance between free radicals (FRs), namely highly reactive molecules normally generated in our body by several pathways, and intrinsic antioxidant capacity. When FR levels overwhelm intrinsic antioxidant defenses, OS occurs, inducing a series of downstream chemical reactions. Both reactive oxygen species (ROS) and reactive nitrogen species (RNS) are produced by numerous chemical reactions that take place in tissues and organs and are then eliminated by antioxidant molecules. In particular, the scientific literature focuses more on ROS participation in the pathogenesis of diseases than on the role played by RNS. By its very nature, the eye is highly exposed to ultraviolet radiation (UVR), which is directly responsible for increased OS. In this review, we aimed to focus on the retinal damage caused by ROS/RNS and the related retinal pathologies. A deeper understanding of the role of oxidative and nitrosative stress in retinal damage is needed in order to develop targeted therapeutic interventions to slow these pathologies.
Collapse
Affiliation(s)
- Marcella Nebbioso
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
- Correspondence:
| | | | - Alessandro Lambiase
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
| | - Vincenza Bonfiglio
- Department of Experimental Biomedicine and Clinical Neuroscience, Ophthalmology Section, University of Palermo, Via del Vespro 129, 90127 Palermo, Italy
| | | | - Marco Artico
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
| | | | - Enzo Maria Vingolo
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
| | - Antonio Greco
- Department of Sense Organs, Faculty of Medicine and Odontology, Sapienza University of Rome, p.le A. Moro 5, 00185 Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome 5, p.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
8
|
Hou X, Zhang X, Zhang Z. Role of surfactant protein-D in ocular bacterial infection. Int Ophthalmol 2022; 42:3611-3623. [PMID: 35639299 PMCID: PMC9151998 DOI: 10.1007/s10792-022-02354-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/18/2022] [Indexed: 02/07/2023]
Abstract
Purpose Our review explains the role of surfactant protein D (SP-D) in different kinds of bacterial infection based on its presence in different ocular surface tissues. We discuss the potential role of SP-D against invasion by pathogens, with the aim of identifying new prospects for the possible mechanism of SP-D-mediated immune processes, and the diagnosis, prognosis, or treatment of ocular bacterial infection. Methods We reviewed articles about the role of SP-D in various ocular bacterial infections or infection-related ocular diseases through PubMed, Google Scholar, and the Web of Science databases. Results SP-D acts as an important immune factor that can resemble molecules in different polymerization states and that defends against pathogen invasion. The increased SP-D production and secretion in tear fluid and the cornea after ocular bacterial infections such as Staphylococcus aureus, Pseudomonas aeruginosa keratitis, and infection-related ocular diseases, was shown to have potential anti-inflammatory effects. The mechanisms of SP-D’s action against ocular bacterial infections include presenting, aggregating, opsonizing, and phagocytizing antigens, as well as regulating anti-bacterial immunity processes, including toll-like receptor-5 (TLR-5) pathway and IL-8 effect, TLR-4 and TLR-2 pathways and other possible ways remained to be elucidated in more detail. The findings demonstrate the potential of SP-D as an important clinical diagnostic biomarker prognosis predictor, and target for ocular immunotherapy. Conclusion SP-D participates in invasion by different ocular bacteria and infection-related ocular diseases through multiple immune mechanisms. This finding provides new prospects for the diagnosis, prognosis and treatment of ocular bacterial infection.
Collapse
Affiliation(s)
- Xinzhu Hou
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Xin Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China
| | - Zhiyong Zhang
- The Second Affiliated College of Zhejiang Chinese Medical University, Hangzhou, 310053, Zhejiang, People's Republic of China. .,Eye Center, The Second Affiliated Hospital Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China.
| |
Collapse
|
9
|
Chen X, Wu J, Lin X, Wu X, Yu X, Wang B, Xu W. Tacrolimus Loaded Cationic Liposomes for Dry Eye Treatment. Front Pharmacol 2022; 13:838168. [PMID: 35185587 PMCID: PMC8855213 DOI: 10.3389/fphar.2022.838168] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/13/2022] [Indexed: 12/27/2022] Open
Abstract
Eye drops are ophthalmic formulations routinely used to treat dry eye. However, the low ocular bioavailability is an obvious drawback of eye drops owing to short ocular retention time and weak permeability of the cornea. Herein, to improve the ocular bioavailability of eye drops, a cationic liposome eye drop was constructed and used to treat dry eye. Tacrolimus liposomes exhibit a diameter of around 300 nm and a surface charge of +30 mV. Cationic liposomes could interact with the anionic ocular surface, extending the ocular retention time and improving tacrolimus amount into the cornea. The cationic liposomes notably prolonged the ocular retention time of eye drops, leading to an increased tacrolimus concentration in the ocular surface. The tacrolimus liposomes were also demonstrated to reduce reactive oxygen species and dry eye-related inflammation factors. The use of drug-loaded cationic liposomes is a good formulation in the treatment of ocular disease; the improved ocular retention time and biocompatibility give tremendous scope for application in the treatment of ocular disease, with further work in the area recommended.
Collapse
Affiliation(s)
- Xiang Chen
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Jicheng Wu
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Xueqi Lin
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xingdi Wu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Xuewen Yu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Ben Wang
- Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Translational Medicine, Zhejiang University, Hangzhou, China
| | - Wen Xu
- Eye Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
10
|
The role of intra and inter-molecular disulfide bonds in modulating amyloidogenesis: A review. Arch Biochem Biophys 2021; 716:109113. [PMID: 34958750 DOI: 10.1016/j.abb.2021.109113] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 11/20/2022]
Abstract
All proteins have the inherent ability to undergo transformation from their native structure to a β sheet rich fibrillar structure, called amyloid when subjected to specific conditions. Proteins with a high propensity to form amyloid fibrils have been implicated in a variety of disorders like Alzheimer's disease, Parkinson's disease, Type II diabetes, Amyotrophic Lateral Sclerosis (ALS) and prion diseases. Among the various critical factors that modulate the process of amyloid formation, disulfide bonds have been identified as one of the key determinants of amyloid propensity in proteins. Studies have shown that intra-molecular disulfide bonds impart stability to the native structure of a protein and decrease the tendency for amyloid aggregation, whereas intermolecular disulfide bonds aid in the process of aggregation. In this review, we will analyze the varying effects of both intra as well as inter-molecular disulfide bonds on the amyloid aggregation propensities of a few proteins associated with amyloid disorders.
Collapse
|
11
|
Esmaeili Gouvarchin Ghaleh H, Hosseini A, Aghamollaei H, Fasihi-Ramandi M, Alishiri G, Saeedi-Boroujeni A, Hassanpour K, Mahmoudian-Sani MR, Farnoosh G. NLRP3 inflammasome activation and oxidative stress status in the mild and moderate SARS-CoV-2 infected patients: impact of melatonin as a medicinal supplement. ACTA ACUST UNITED AC 2021; 77:37-42. [PMID: 34355546 DOI: 10.1515/znc-2021-0101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/18/2021] [Indexed: 12/14/2022]
Abstract
The inflammasome as a multiprotein complex has a role in activating ASC and caspase-1 resulting in activating IL-1β in various infections and diseases like corona virus infection in various tissues. It was shown that these tissues are affected by COVID-19 patients. According to the current evidence, melatonin is not veridical while possessing a high safety profile, however, it possesses indirect anti-viral actions owing to its anti-oxidation, anti-inflammation, and immune improving properties. This study aims to assess the impacts of melatonin as the complementary treatments on oxidative stress agents and inflammasome activation in patients with COVID-19. Melatonin supplement (9 mg daily, orally) was provided for the patients hospitalized with a COVID-19 analysis for 14 days. For measuring IL-10, IL-1β, and TNF-α cytokines and malondialdehyde (MDA), nitric oxide (NO), and superoxide dismutase (SOD) level and the expression of CASP1 and ASC genes, blood samples were gathered from the individuals at the start and termination of the therapy. Our findings indicated that melatonin is used as a complementary treatment to reduce the levels of TNF-α and IL-1β cytokines, MDA, and NO levels in COVID-19 patients and significantly increase SOD level, however, the levels of IL-10 cytokine possesses no considerable changes. The findings revealed that genes of CASP1 and ASC were dysregulated by melatonin regulating the inflammasome complex. Based on the findings of the current study, it is found that melatonin can be effective as a medicinal supplement in decreasing the inflammasome multiprotein complex and oxidative stress along with beneficial impacts on lung cytokine storm of COVID-19 patients.
Collapse
Affiliation(s)
| | - Abdolkarim Hosseini
- Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Hossein Aghamollaei
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Gholamhossein Alishiri
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ali Saeedi-Boroujeni
- Department of Immunology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Abadan University of Medical Sciences, Abadan, Iran
| | - Kazem Hassanpour
- Sabzevar University of Medical Sciences, School of Medicine, Sabzevar, Iran
| | - Mohammad-Reza Mahmoudian-Sani
- Thalassemia and Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Chen SJ, Lin TB, Peng HY, Lin CH, Lee AS, Liu HJ, Li CC, Tseng KW. Protective Effects of Fucoxanthin Dampen Pathogen-Associated Molecular Pattern (PAMP) Lipopolysaccharide-Induced Inflammatory Action and Elevated Intraocular Pressure by Activating Nrf2 Signaling and Generating Reactive Oxygen Species. Antioxidants (Basel) 2021; 10:1092. [PMID: 34356327 PMCID: PMC8301160 DOI: 10.3390/antiox10071092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/04/2021] [Accepted: 07/06/2021] [Indexed: 12/19/2022] Open
Abstract
Inflammation and oxidative stress are closely related processes in the pathogenesis of various ocular diseases. Uveitis is a disorder of the uvea and ocular tissues that causes extreme pain, decreases visual acuity, and can eventually lead to blindness. The pharmacological functions of fucoxanthin, isolated from brown algae, induce a variety of therapeutic effects such as oxidative stress reduction and repression of inflammation reactions. However, the specific anti-inflammatory effects of fucoxanthin on pathogen-associated molecular pattern (PAMP) lipopolysaccharide-induced uveitis have yet to be extensively described. Therefore, the aim of present study was to investigate the anti-inflammatory effects of fucoxanthin on uveitis in rats. The results showed that fucoxanthin effectively enhanced the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) in ocular tissues. Furthermore, fucoxanthin significantly increased the ocular activities of superoxide dismutase and decreased the levels of malondialdehyde stimulated by PAMP-induced uveitis. Ocular hypertension and the levels of inflammatory cells and proinflammatory cytokine tumor necrosis factor-alpha in the aqueous humor were alleviated with fucoxanthin treatment. Consequently, compared to the observed effects in lipopolysaccharide groups, fucoxanthin treatment significantly preserved iris sphincter innervation and pupillary function. Additionally, PAMP-induced corneal endothelial disruption was significantly inhibited by fucoxanthin treatment. Overall, these findings suggest that fucoxanthin may protect against inflammation from PAMP-induced uveitis by promoting the Nrf2 pathway and inhibiting oxidative stress.
Collapse
Affiliation(s)
- Shiu-Jau Chen
- Department of Neurosurgery, Mackay Memorial Hospital, Taipei 10449, Taiwan;
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Tzer-Bin Lin
- Department of Physiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11049, Taiwan;
| | - Hsien-Yu Peng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Cheng-Hsien Lin
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - An-Sheng Lee
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Hsiang-Jui Liu
- Department of Optometry, MacKay Junior College of Medicine, Nursing, and Management, New Taipei 11260, Taiwan;
| | - Chun-Chieh Li
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| | - Kuang-Wen Tseng
- Department of Medicine, Mackay Medical College, New Taipei 25245, Taiwan; (H.-Y.P.); (C.-H.L.); (A.-S.L.); (C.-C.L.)
| |
Collapse
|
13
|
Abdel-Aziz MA, Ahmed HMS, El-Nekeety AA, Sharaf HA, Abdel-Aziem SH, Abdel-Wahhab MA. Biosynthesis of gold nanoparticles for the treatment of osteoarthritis alone or in combination with Diacerein ® in a rat model. Inflammopharmacology 2021; 29:705-719. [PMID: 34117571 DOI: 10.1007/s10787-021-00833-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 05/29/2021] [Indexed: 01/08/2023]
Abstract
Gold (Au) compounds were used as an effective therapeutic agent for various inflammatory diseases; however, the use of Au compounds becomes limited because of its association with several side effects. Hence, gold nanoparticles (AuNPs) were developed as a new option for the medical proposes. However, the safety evaluation of gold nanoparticles (AuNPs) in osteoarthritis (OA) treatment remains vague. This study aimed to biosynthesize, characterize and evaluate the therapeutic effects of biosynthesized AuNPs and/or Diacerein® (DIA) in experimental OA. OA was induced by a single injection of monosodium iodoacetate (3 mg/joint) in the intra-articular knee of female rats. Normal rats (N-rats) and OA-rats were treated orally for 5 weeks as follow: untreated N-rats; untreated OA-rats; N-rats received DIA (50 mg/kg b.w); N-rats received AuNPs (30 μg/kg b.w.); N-rats received AuNPs plus DIA; OA-rats received DIA; OA-rats received AuNPs, and OA-rats received AuNPs plus DIA. Blood, knee cartilage, liver and kidney samples were collected for biochemical and histological analysis. The synthesized AuNPs were nearly spherical with average size of 20 nm and zeta potential of 33 mV. AuNPs and DIA induced a significant improvement in serum inflammatory cytokines, biochemical parameters, estrogen level, hepatic and renal oxidative markers, hepatic DNA fragmentation, genomic template stability and cartilage joint histology of OA-rats. AuNPs were more effective than DIA and the combined treatment was more effective than the single treatment. It could be concluded that AuNPs are promising for the treatment of OA alone or in combination with DIA.
Collapse
Affiliation(s)
- Manal A Abdel-Aziz
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Helmy M S Ahmed
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
| | - Aziza A El-Nekeety
- Department of Food Toxicology and Contaminants, National Research Center, Dokki, Cairo, Egypt
| | - Hafiza A Sharaf
- Department of Pathology, National Research Center, Dokki, Cairo, Egypt
| | | | - Mosaad A Abdel-Wahhab
- Department of Food Toxicology and Contaminants, National Research Center, Dokki, Cairo, Egypt.
| |
Collapse
|
14
|
Davinelli S, Ali S, Scapagnini G, Costagliola C. Effects of Flavonoid Supplementation on Common Eye Disorders: A Systematic Review and Meta-Analysis of Clinical Trials. Front Nutr 2021; 8:651441. [PMID: 34124119 PMCID: PMC8189261 DOI: 10.3389/fnut.2021.651441] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022] Open
Abstract
Background: Emerging studies show that certain plant compounds may reduce the severity of most prevalent ocular abnormalities. The aim of this systematic review and meta-analysis was to assess the effect of dietary flavonoids on major eye disorders. Methods: Eligible studies were identified by searching PubMed, Web of Science, Scopus, and Cochrane Library databases for all articles published up to April 2021. The literature search yielded 1,134 articles, and a total of 16 studies were included in the systematic review. A meta-analysis of 11 intervention trials involving a total of 724 participants was performed. Results: Using a random-effects model, the pooled results revealed an overall significant effect of flavonoids on common ophthalmic disorders (standard mean difference = −0.39; 95% CI: −0.56, −0.21, p < 0.01). Of the subclasses of flavonoids, flavan-3-ols (standard mean difference = −0.62; 95% CI: −1.03, −0.22, p < 0.01), and anthocyanins (standard mean difference = −0.42; 95% CI: −0.63, −0.21, p < 0.01) were the only effective intervention for improving the outcomes of ocular conditions. For several of the other flavonoid subclasses, evidence on efficacy was insufficient. Conclusion: Our findings indicate that flavonoids may improve the clinical manifestations associated with ocular disorders. However, further well-constructed clinical trials are required to confirm these results and examine the effect of flavonoids on eye disorders other than those identified in this review. Systematic Review Registration: PROSPERO, identifier CRD42021247332.
Collapse
Affiliation(s)
- Sergio Davinelli
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Sawan Ali
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| | - Ciro Costagliola
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
15
|
Álvarez-Barrios A, Álvarez L, García M, Artime E, Pereiro R, González-Iglesias H. Antioxidant Defenses in the Human Eye: A Focus on Metallothioneins. Antioxidants (Basel) 2021; 10:89. [PMID: 33440661 PMCID: PMC7826537 DOI: 10.3390/antiox10010089] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/03/2021] [Accepted: 01/04/2021] [Indexed: 12/12/2022] Open
Abstract
The human eye, the highly specialized organ of vision, is greatly influenced by oxidants of endogenous and exogenous origin. Oxidative stress affects all structures of the human eye with special emphasis on the ocular surface, the lens, the retina and its retinal pigment epithelium, which are considered natural barriers of antioxidant protection, contributing to the onset and/or progression of eye diseases. These ocular structures contain a complex antioxidant defense system slightly different along the eye depending on cell tissue. In addition to widely studied enzymatic antioxidants, including superoxide dismutase, glutathione peroxidase, catalase, peroxiredoxins and selenoproteins, inter alia, metallothioneins (MTs) are considered antioxidant proteins of growing interest with further cell-mediated functions. This family of cysteine rich and low molecular mass proteins captures and neutralizes free radicals in a redox-dependent mechanism involving zinc binding and release. The state of the art of MTs, including the isoforms classification, the main functions described to date, the Zn-MT redox cycle as antioxidant defense system, and the antioxidant activity of Zn-MTs in the ocular surface, lens, retina and its retinal pigment epithelium, dependent on the number of occupied zinc-binding sites, will be comprehensively reviewed.
Collapse
Affiliation(s)
- Ana Álvarez-Barrios
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Lydia Álvarez
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Montserrat García
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| | - Enol Artime
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
| | - Rosario Pereiro
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo, Julián Clavería, 8, 33006 Oviedo, Spain
| | - Héctor González-Iglesias
- Instituto Universitario Fernández-Vega (Fundación de Investigación Oftalmológica, Universidad de Oviedo), 33012 Oviedo, Spain; (A.Á.-B.); (L.Á.); (M.G.); (E.A.); (R.P.)
- Instituto Oftalmológico Fernández-Vega, Avda. Dres. Fernández-Vega, 34, 33012 Oviedo, Spain
| |
Collapse
|
16
|
Inflammation in Dry Eye Syndrome: Identification and Targeting of Oxylipin-Mediated Mechanisms. Biomedicines 2020; 8:biomedicines8090344. [PMID: 32932827 PMCID: PMC7555241 DOI: 10.3390/biomedicines8090344] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/18/2022] Open
Abstract
Dry eye syndrome (DES) is characterized by decreased tear production and stability, leading to desiccating stress, inflammation and corneal damage. DES treatment may involve targeting the contributing inflammatory pathways mediated by polyunsaturated fatty acids and their derivatives, oxylipins. Here, using an animal model of general anesthesia-induced DES, we addressed these pathways by characterizing inflammatory changes in tear lipidome, in correlation with pathophysiological and biochemical signs of the disease. The decline in tear production was associated with the infiltration of inflammatory cells in the corneal stroma, which manifested one to three days after anesthesia, accompanied by changes in tear antioxidants and cytokines, resulting in persistent damage to the corneal epithelium. The inflammatory response manifested in the tear fluid as a short-term increase in linoleic and alpha-linolenic acid-derived oxylipins, followed by elevation in arachidonic acid and its derivatives, leukotriene B4 (5-lipoxigenase product), 12-hydroxyeicosatetraenoic acid (12-lipoxigeanse product) and prostaglandins, D2, E2 and F2α (cyclooxygenase products) that was observed for up to 7 days. Given these data, DES was treated by a novel ophthalmic formulation containing a dimethyl sulfoxide-based solution of zileuton, an inhibitor of 5-lipoxigenase and arachidonic acid release. The therapy markedly improved the corneal state in DES by attenuating cytokine- and oxylipin-mediated inflammatory responses, without affecting tear production rates. Interestingly, the high efficacy of the proposed therapy resulted from the synergetic action of its components, namely, the general healing activity of dimethyl sulfoxide, suppressing prostaglandins and the more specific effect of zileuton, downregulating leukotriene B4 (inhibition of T-cell recruitment), as well as upregulating docosahexaenoic acid (activation of resolution pathways).
Collapse
|