1
|
Fan Y, Kang S, Shao T, Xu L, Chen J. Activation of SIRT3 by Tanshinone IIA ameliorates renal fibrosis by suppressing the TGF-β/TSP-1 pathway and attenuating oxidative stress. Cell Signal 2024; 122:111348. [PMID: 39153586 DOI: 10.1016/j.cellsig.2024.111348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Although doxorubicin (DOX) is a common chemotherapeutic drug, the serious nephrotoxicity caused by DOX-induced renal fibrosis remains a considerable clinical problem. Tanshinone IIA (Tan IIA), a compound extracted from Salvia miltiorrhiza, has been reported to have an anti-fibrotic effect. Therefore, this study investigated the molecular pathway whereby Tan IIA protects the kidneys from DOX administration. DOX (3 mg/kg body weight) was intraperitoneally administered every 3 d for a total of 7 injections (cumulative dose of 21 mg/kg) to induce nephrotoxicity. Then, Tan IIA (5 or 10 mg/kg/d) was administered by intraperitoneal injection for 28 d. In an in vitro study, 293 T cells were cultured and treated with DOX and Tan IIA for 24 h. Tan IIA reduced the blood urea nitrogen levels elevated by DOX while increasing superoxide dismutase activity, down-regulating reactive oxygen species, ameliorating renal-tubule thickening, and rescuing mitochondrial morphology. Additionally, Tan IIA reduced the renal collagen deposition, increased ATP production and complex-I activity, down-regulated transforming growth factor-β1 (TGF-β1) and thrombospondin-1 (TSP-1), and up-regulated sirtuin 3 (SIRT3). Tan IIA significantly increased cell viability. Additionally, RNA interference was employed to silence the expression of SIRT3, which eliminated the effect of Tan IIA in suppressing the expression of TGF-β1 and TSP-1. In conclusion, Tan IIA ameliorated DOX-induced nephrotoxicity by attenuating oxidative injury and fibrosis. The Tan IIA-induced rescue of mitochondrial morphology and function while alleviating renal fibrosis may be associated with the activation of SIRT3 to suppress the TGF-β/TSP-1 pathway.
Collapse
Affiliation(s)
- Yifeng Fan
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Shengyu Kang
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Tong Shao
- School of Medical Imaging, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China
| | - Linhao Xu
- Department of Cardiology, Hangzhou, First People's Hospital, Hangzhou, 310006, China; Translational Medicine Research Center, Hangzhou First People's Hospital, Hangzhou, 310006, China.
| | - Jian Chen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou medical college, No. 481 Binwen Road, Binjiang District, Hangzhou, 310053, Zhejiang, China.
| |
Collapse
|
2
|
Balkrishna A, Singh S, Mishra S, Rana M, Mishra RK, Rajput SK, Arya V. Impact of Biosensors and Biomarkers in Diabetes Care: A Review. BIOMEDICAL MATERIALS & DEVICES 2024. [DOI: 10.1007/s44174-024-00230-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 08/27/2024] [Indexed: 01/04/2025]
|
3
|
Russo C, Valle MS, D’Angeli F, Surdo S, Malaguarnera L. Resveratrol and Vitamin D: Eclectic Molecules Promoting Mitochondrial Health in Sarcopenia. Int J Mol Sci 2024; 25:7503. [PMID: 39062745 PMCID: PMC11277153 DOI: 10.3390/ijms25147503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024] Open
Abstract
Sarcopenia refers to the progressive loss and atrophy of skeletal muscle function, often associated with aging or secondary to conditions involving systemic inflammation, oxidative stress, and mitochondrial dysfunction. Recent evidence indicates that skeletal muscle function is not only influenced by physical, environmental, and genetic factors but is also significantly impacted by nutritional deficiencies. Natural compounds with antioxidant properties, such as resveratrol and vitamin D, have shown promise in preventing mitochondrial dysfunction in skeletal muscle cells. These antioxidants can slow down muscle atrophy by regulating mitochondrial functions and neuromuscular junctions. This review provides an overview of the molecular mechanisms leading to skeletal muscle atrophy and summarizes recent advances in using resveratrol and vitamin D supplementation for its prevention and treatment. Understanding these molecular mechanisms and implementing combined interventions can optimize treatment outcomes, ensure muscle function recovery, and improve the quality of life for patients.
Collapse
Affiliation(s)
- Cristina Russo
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| | - Maria Stella Valle
- Section of Physiology, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| | - Floriana D’Angeli
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Sofia Surdo
- Italian Center for the Study of Osteopathy (CSDOI), 95124 Catania, Italy;
| | - Lucia Malaguarnera
- Section of Pathology, Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
4
|
Haga M, Iida K, Okada M. Positive and negative feedback regulation of the TGF-β1 explains two equilibrium states in skin aging. iScience 2024; 27:109708. [PMID: 38706856 PMCID: PMC11066433 DOI: 10.1016/j.isci.2024.109708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 02/05/2024] [Accepted: 04/06/2024] [Indexed: 05/07/2024] Open
Abstract
During aging, skin homeostasis is essential for maintaining appearance, as well as biological defense of the human body. In this study, we identified thrombospondin-1 (THBS1) and fibromodulin (FMOD) as positive and negative regulators, respectively, of the TGF-β1-SMAD4 axis in human skin aging, based on in vitro and in vivo omics analyses and mathematical modeling. Using transcriptomic and epigenetic analyses of senescent dermal fibroblasts, TGF-β1 was identified as the key upstream regulator. Bifurcation analysis revealed a binary high-/low-TGF-β1 switch, with THBS1 as the main controller. Computational simulation of the TGF-β1 signaling pathway indicated that THBS1 expression was sensitively regulated, whereas FMOD was regulated robustly. Results of sensitivity analysis and validation showed that inhibition of SMAD4 complex formation was a promising method to control THBS1 production and senescence. Therefore, this study demonstrated the potential of combining data-driven target discovery with mathematical approaches to determine the mechanisms underlying skin aging.
Collapse
Affiliation(s)
- Masatoshi Haga
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Basic Research Development Division, ROHTO Pharmaceutical Co., Ltd, Osaka 544-8666, Japan
| | - Keita Iida
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
5
|
Pan H, Lu X, Ye D, Feng Y, Wan J, Ye J. The molecular mechanism of thrombospondin family members in cardiovascular diseases. Front Cardiovasc Med 2024; 11:1337586. [PMID: 38516004 PMCID: PMC10954798 DOI: 10.3389/fcvm.2024.1337586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Cardiovascular diseases have been identified as vital factors in global morbidity and mortality in recent years. The available evidence suggests that various cytokines and pathological proteins participate in these complicated and changeable diseases. The thrombospondin (TSP) family is a series of conserved, multidomain calcium-binding glycoproteins that cause cell-matrix and cell-cell effects via interactions with other extracellular matrix components and cell surface receptors. The TSP family has five members that can be divided into two groups (Group A and Group B) based on their different structures. TSP-1, TSP-2, and TSP-4 are the most studied proteins. Among recent studies and findings, we investigated the functions of several family members, especially TSP-5. We review the basic concepts of TSPs and summarize the relevant molecular mechanisms and cell interactions in the cardiovascular system. Targeting TSPs in CVD and other diseases has a remarkable therapeutic benefit.
Collapse
Affiliation(s)
- Heng Pan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Xiyi Lu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Di Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Yongqi Feng
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jun Wan
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Jing Ye
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute, Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| |
Collapse
|
6
|
WAN F, YANG R, TANG Y. Uncovering pharmacological mechanisms of Phellinus linteus on focal segmental glomeruloscleosis rats through tandem mass tag-based quantitative proteomic analysis, network pharmacology analysis and experimental validation. J TRADIT CHIN MED 2023; 43:744-750. [PMID: 37454259 PMCID: PMC10320453 DOI: 10.19852/j.cnki.jtcm.20230524.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/15/2022] [Indexed: 07/18/2023]
Abstract
OBJECTIVE To explore the underlying molecular mechanism of (). METHODS We used a tandem mass tag-based quantitative proteomic method to determine the differentially expressed proteins. Network pharmacology analysis was used to analysis the main components of and construct the compound-target network. Western blotting and quantitative real-time polymerase chain reaction (qRT-PCR) were used to validate the analyses results. RESULTS The expression levels of thrombospondin-1 (TSP-1) and transforming growth factor (TGF)-β1/Smad3 signaling pathway proteins were significantly upregulated in focal segmental glomeruloscleosis (FSGS) rats. The reduced the expression levels of TSP-1 and TGF-β1 signaling pathway proteins. Network pharmacology analysis revealed that protocatechualdehyde was the main active component. Subsequent and experiments validated the results of proteomic and network pharmacology analyses. CONCLUSIONS Our results suggested that may inhibit renal sclerosis by inhibiting TSP-1-activated TGF-β1 signaling and may have potential applications in the treatment of FSGS.
Collapse
Affiliation(s)
- Feng WAN
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Ruchun YANG
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| | - Yuewen TANG
- Department of Nephrology, Key Laboratory of Kidney Disease Prevention and Control Technology, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou 310007, China
| |
Collapse
|
7
|
Toniolo L, Concato M, Giacomello E. Resveratrol, a Multitasking Molecule That Improves Skeletal Muscle Health. Nutrients 2023; 15:3413. [PMID: 37571349 PMCID: PMC10421121 DOI: 10.3390/nu15153413] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Resveratrol is a natural polyphenol utilized in Chinese traditional medicine and thought to be one of the determinants of the "French Paradox". More recently, some groups evidenced its properties as a calorie-restriction mimetic, suggesting that its action passes through the modulation of skeletal muscle metabolism. Accordingly, the number of studies reporting the beneficial effects of resveratrol on skeletal muscle form and function, in both experimental models and humans, is steadily increasing. Although studies on animal models confer to resveratrol a good potential to ameliorate skeletal muscle structure, function and performance, clinical trials still do not provide clear-cut information. Here, we first summarize the effects of resveratrol on the distinct components of the skeletal muscle, such as myofibers, the neuromuscular junction, tendons, connective sheaths and the capillary bed. Second, we review clinical trials focused on the analysis of skeletal muscle parameters. We suggest that the heterogeneity in the response to resveratrol in humans could depend on sample characteristics, treatment modalities and parameters analyzed; as well, this heterogeneity could possibly reside in the complexity of skeletal muscle physiology. A systematic programming of treatment protocols and analyses could be helpful to obtain consistent results in clinical trials involving resveratrol administration.
Collapse
Affiliation(s)
- Luana Toniolo
- Laboratory of Muscle Biophysics, Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
| | - Monica Concato
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| | - Emiliana Giacomello
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34149 Trieste, Italy;
| |
Collapse
|
8
|
Mitsui Y, Yamabe F, Hori S, Uetani M, Kobayashi H, Nagao K, Nakajima K. Molecular Mechanisms and Risk Factors Related to the Pathogenesis of Peyronie's Disease. Int J Mol Sci 2023; 24:10133. [PMID: 37373277 PMCID: PMC10299070 DOI: 10.3390/ijms241210133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/29/2023] Open
Abstract
Peyronie's disease (PD) is a benign condition caused by plaque formation on the tunica albuginea of the penis. It is associated with penile pain, curvature, and shortening, and contributes to erectile dysfunction, which worsens patient quality of life. In recent years, research into understanding of the detailed mechanisms and risk factors involved in the development of PD has been increasing. In this review, the pathological mechanisms and several closely related signaling pathways, including TGF-β, WNT/β-catenin, Hedgehog, YAP/TAZ, MAPK, ROCK, and PI3K/AKT, are described. Findings regarding cross-talk among these pathways are then discussed to elucidate the complicated cascade behind tunica albuginea fibrosis. Finally, various risk factors including the genes involved in the development of PD are presented and their association with the disease summarized. The purpose of this review is to provide a better understanding regarding the involvement of risk factors in the molecular mechanisms associated with PD pathogenesis, as well as to provide insight into disease prevention and novel therapeutic interventions.
Collapse
Affiliation(s)
- Yozo Mitsui
- Department of Urology, Toho University Faculty of Medicine, Tokyo 143-8540, Japan; (F.Y.); (S.H.); (M.U.); (H.K.); (K.N.); (K.N.)
| | | | | | | | | | | | | |
Collapse
|
9
|
Padovani-Claudio DA, Ramos CJ, Capozzi ME, Penn JS. Elucidating glial responses to products of diabetes-associated systemic dyshomeostasis. Prog Retin Eye Res 2023; 94:101151. [PMID: 37028118 PMCID: PMC10683564 DOI: 10.1016/j.preteyeres.2022.101151] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 04/08/2023]
Abstract
Diabetic retinopathy (DR) is a leading cause of blindness in working age adults. DR has non-proliferative stages, characterized in part by retinal neuroinflammation and ischemia, and proliferative stages, characterized by retinal angiogenesis. Several systemic factors, including poor glycemic control, hypertension, and hyperlipidemia, increase the risk of DR progression to vision-threatening stages. Identification of cellular or molecular targets in early DR events could allow more prompt interventions pre-empting DR progression to vision-threatening stages. Glia mediate homeostasis and repair. They contribute to immune surveillance and defense, cytokine and growth factor production and secretion, ion and neurotransmitter balance, neuroprotection, and, potentially, regeneration. Therefore, it is likely that glia orchestrate events throughout the development and progression of retinopathy. Understanding glial responses to products of diabetes-associated systemic dyshomeostasis may reveal novel insights into the pathophysiology of DR and guide the development of novel therapies for this potentially blinding condition. In this article, first, we review normal glial functions and their putative roles in the development of DR. We then describe glial transcriptome alterations in response to systemic circulating factors that are upregulated in patients with diabetes and diabetes-related comorbidities; namely glucose in hyperglycemia, angiotensin II in hypertension, and the free fatty acid palmitic acid in hyperlipidemia. Finally, we discuss potential benefits and challenges associated with studying glia as targets of DR therapeutic interventions. In vitro stimulation of glia with glucose, angiotensin II and palmitic acid suggests that: 1) astrocytes may be more responsive than other glia to these products of systemic dyshomeostasis; 2) the effects of hyperglycemia on glia are likely to be largely osmotic; 3) fatty acid accumulation may compound DR pathophysiology by promoting predominantly proinflammatory and proangiogenic transcriptional alterations of macro and microglia; and 4) cell-targeted therapies may offer safer and more effective avenues for DR treatment as they may circumvent the complication of pleiotropism in retinal cell responses. Although several molecules previously implicated in DR pathophysiology are validated in this review, some less explored molecules emerge as potential therapeutic targets. Whereas much is known regarding glial cell activation, future studies characterizing the role of glia in DR and how their activation is regulated and sustained (independently or as part of retinal cell networks) may help elucidate mechanisms of DR pathogenesis and identify novel drug targets for this blinding disease.
Collapse
Affiliation(s)
- Dolly Ann Padovani-Claudio
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3321A Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Carla J Ramos
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, AA1324 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| | - Megan E Capozzi
- Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke Street, Durham, NC, 27701, USA.
| | - John S Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, B3307 Medical Center North, 1161 21st Avenue South, Nashville, TN, 37232-0011, USA.
| |
Collapse
|
10
|
Trink J, Ahmed U, O'Neil K, Li R, Gao B, Krepinsky JC. Cell surface GRP78 regulates TGFβ1-mediated profibrotic responses via TSP1 in diabetic kidney disease. Front Pharmacol 2023; 14:1098321. [PMID: 36909183 PMCID: PMC9998550 DOI: 10.3389/fphar.2023.1098321] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/16/2023] [Indexed: 03/14/2023] Open
Abstract
Introduction: Diabetic kidney disease (DKD) is the leading cause of kidney failure in North America, characterized by glomerular accumulation of extracellular matrix (ECM) proteins. High glucose (HG) induction of glomerular mesangial cell (MC) profibrotic responses plays a central role in its pathogenesis. We previously showed that the endoplasmic reticulum resident GRP78 translocates to the cell surface in response to HG, where it mediates Akt activation and downstream profibrotic responses in MC. Transforming growth factor β1 (TGFβ1) is recognized as a central mediator of HG-induced profibrotic responses, but whether its activation is regulated by cell surface GRP78 (csGRP78) is unknown. TGFβ1 is stored in the ECM in a latent form, requiring release for biological activity. The matrix glycoprotein thrombospondin 1 (TSP1), known to be increased in DKD and by HG in MC, is an important factor in TGFβ1 activation. Here we determined whether csGRP78 regulates TSP1 expression and thereby TGFβ1 activation by HG. Methods: Primary mouse MC were used. TSP1 and TGFβ1 were assessed using standard molecular biology techniques. Inhibitors of csGRP78 were: 1) vaspin, 2) the C-terminal targeting antibody C38, 3) siRNA downregulation of its transport co-chaperone MTJ-1 to prevent GRP78 translocation to the cell surface, and 4) prevention of csGRP78 activation by its ligand, active α2-macroglobulin (α2M*), with the neutralizing antibody Fα2M or an inhibitory peptide. Results: TSP1 transcript and promoter activity were increased by HG, as were cellular and ECM TSP1, and these required PI3K/Akt activity. Inhibition of csGRP78 prevented HG-induced TSP1 upregulation and deposition into the ECM. The HG-induced increase in active TGFβ1 in the medium was also inhibited, which was associated with reduced intracellular Smad3 activation and signaling. Overexpression of csGRP78 increased TSP-1, and this was further augmented in HG. Discussion: These data support an important role for csGRP78 in regulating HG-induced TSP1 transcriptional induction via PI3K/Akt signaling. Functionally, this enables TGFβ1 activation in response to HG, with consequent increase in ECM proteins. Means of inhibiting csGRP78 signaling represent a novel approach to preventing fibrosis in DKD.
Collapse
Affiliation(s)
- Jackie Trink
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Usman Ahmed
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Kian O'Neil
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Renzhong Li
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Bo Gao
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| | - Joan C Krepinsky
- Division of Nephrology, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
11
|
Wang M, Chen M, Guo R, Ding Y, Zhang H, He Y. The improvement of sulforaphane in type 2 diabetes mellitus (T2DM) and related complications: A review. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
The Role of Platelets in Diabetic Kidney Disease. Int J Mol Sci 2022; 23:ijms23158270. [PMID: 35955405 PMCID: PMC9368651 DOI: 10.3390/ijms23158270] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/22/2022] [Accepted: 07/22/2022] [Indexed: 01/10/2023] Open
Abstract
Diabetic kidney disease (DKD) is among the most common microvascular complications in patients with diabetes, and it currently accounts for the majority of end-stage kidney disease cases worldwide. The pathogenesis of DKD is complex and multifactorial, including systemic and intra-renal inflammatory and coagulation processes. Activated platelets play a pivotal role in inflammation, coagulation, and fibrosis. Mounting evidence shows that platelets play a role in the pathogenesis and progression of DKD. The potentially beneficial effects of antiplatelet agents in preventing progression of DKD has been studied in animal models and clinical trials. This review summarizes the current knowledge on the role of platelets in DKD, including the potential therapeutic effects of antiplatelet therapies.
Collapse
|
13
|
Dabravolski SA, Sadykhov NK, Kartuesov AG, Borisov EE, Sukhorukov VN, Orekhov AN. The Role of Mitochondrial Abnormalities in Diabetic Cardiomyopathy. Int J Mol Sci 2022; 23:ijms23147863. [PMID: 35887211 PMCID: PMC9321738 DOI: 10.3390/ijms23147863] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 02/06/2023] Open
Abstract
Diabetic cardiomyopathy (DCM) is defined as the presence in diabetic patients of abnormal cardiac structure and performance (such as left ventricular hypertrophy, fibrosis, and arrhythmia) in the absence of other cardiac risk factors (such as hypertension or coronary artery disease). Although the pathogenesis of DCM remains unclear currently, mitochondrial structural and functional dysfunctions are recognised as a central player in the DCM development. In this review, we focus on the role of mitochondrial dynamics, biogenesis and mitophagy, Ca2+ metabolism and bioenergetics in the DCM development and progression. Based on the crucial role of mitochondria in DCM, application of mitochondria-targeting therapies could be effective strategies to slow down the progression of the disease.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 7/11 Dovatora Str., 210026 Vitebsk, Belarus
- Correspondence:
| | - Nikolay K. Sadykhov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Andrey G. Kartuesov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Russian Academy of Medical Sciences, 125315 Moscow, Russia; (N.K.S.); (A.G.K.)
| | - Evgeny E. Borisov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
| | - Vasily N. Sukhorukov
- Petrovsky National Research Centre of Surgery, 2, Abrikosovsky Lane, 119991 Moscow, Russia; (E.E.B.); (V.N.S.)
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| | - Alexander N. Orekhov
- Institute for Atherosclerosis Research, Osennyaya 4-1-207, 121609 Moscow, Russia;
| |
Collapse
|
14
|
Roberts DD, Isenberg JS. CD47 and thrombospondin-1 regulation of mitochondria, metabolism, and diabetes. Am J Physiol Cell Physiol 2021; 321:C201-C213. [PMID: 34106789 DOI: 10.1152/ajpcell.00175.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Thrombospondin-1 (TSP1) is the prototypical member of a family of secreted proteins that modulate cell behavior by engaging with molecules in the extracellular matrix and with receptors on the cell surface. CD47 is widely displayed on many, if not all, cell types and is a high-affinity TSP1 receptor. CD47 is a marker of self that limits innate immune cell activities, a feature recently exploited to enhance cancer immunotherapy. Another major role for CD47 in health and disease is to mediate TSP1 signaling. TSP1 acting through CD47 contributes to mitochondrial, metabolic, and endocrine dysfunction. Studies in animal models found that elevated TSP1 expression, acting in part through CD47, causes mitochondrial and metabolic dysfunction. Clinical studies established that abnormal TSP1 expression positively correlates with obesity, fatty liver disease, and diabetes. The unabated increase in these conditions worldwide and the availability of CD47 targeting drugs justify a closer look into how TSP1 and CD47 disrupt metabolic balance and the potential for therapeutic intervention.
Collapse
Affiliation(s)
- David D Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
15
|
Saik OV, Klimontov VV. Bioinformatic Reconstruction and Analysis of Gene Networks Related to Glucose Variability in Diabetes and Its Complications. Int J Mol Sci 2020; 21:ijms21228691. [PMID: 33217980 PMCID: PMC7698756 DOI: 10.3390/ijms21228691] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Glucose variability (GV) has been recognized recently as a promoter of complications and therapeutic targets in diabetes. The aim of this study was to reconstruct and analyze gene networks related to GV in diabetes and its complications. For network analysis, we used the ANDSystem that provides automatic network reconstruction and analysis based on text mining. The network of GV consisted of 37 genes/proteins associated with both hyperglycemia and hypoglycemia. Cardiovascular system, pancreas, adipose and muscle tissues, gastrointestinal tract, and kidney were recognized as the loci with the highest expression of GV-related genes. According to Gene Ontology enrichment analysis, these genes are associated with insulin secretion, glucose metabolism, glycogen biosynthesis, gluconeogenesis, MAPK and JAK-STAT cascades, protein kinase B signaling, cell proliferation, nitric oxide biosynthesis, etc. GV-related genes were found to occupy central positions in the networks of diabetes complications (cardiovascular disease, diabetic nephropathy, retinopathy, and neuropathy) and were associated with response to hypoxia. Gene prioritization analysis identified new gene candidates (THBS1, FN1, HSP90AA1, EGFR, MAPK1, STAT3, TP53, EGF, GSK3B, and PTEN) potentially involved in GV. The results expand the understanding of the molecular mechanisms of the GV phenomenon in diabetes and provide molecular markers and therapeutic targets for future research.
Collapse
Affiliation(s)
- Olga V. Saik
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
- Laboratory of Computer Proteomics, Federal Research Center Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences (ICG SB RAS), 630090 Novosibirsk, Russia
- Correspondence:
| | - Vadim V. Klimontov
- Laboratory of Endocrinology, Research Institute of Clinical and Experimental Lymphology—Branch of the Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (RICEL—Branch of IC&G SB RAS), 630060 Novosibirsk, Russia;
| |
Collapse
|