1
|
Nielsen BU, Mikkelsen CR, Oturai PS, Krogh-Madsen R, Katzenstein TL, Ritz C, Pressler T, Almdal TP, Mathiesen IHM, Faurholt-Jepsen D. A cross-sectional study in adiponectin, glucose metabolism, and body composition in cystic fibrosis. Front Endocrinol (Lausanne) 2024; 15:1382241. [PMID: 39530118 PMCID: PMC11550925 DOI: 10.3389/fendo.2024.1382241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 10/07/2024] [Indexed: 11/16/2024] Open
Abstract
Objective We hypothesized that the insulin-sensitizing adipokine adiponectin (ADP) is upregulated in cystic fibrosis (CF) related diabetes (CFRD) and underweight adults with CF. We aimed to assess correlations between glucose metabolism, body composition and ADP in CF. Methods We performed a cross-sectional study among adults with CF at the Copenhagen CF Center. The study included a fasting level of ADP, an oral glucose tolerance test (OGTT), and a dual energy-x-ray absorptiometry scan. Results In total, 115 patients were included of whom 104 had an OGTT performed. Glucose intolerance was not correlated with ADP in multivariable analysis, while increased hepatic insulin resistance (i.e., HOMA-IR) was correlated with reduced ADP levels. ADP declined by 4% (eβ 0.96, 95% CI: 0.94, 0.98), 5% (eβ 0.95, 95% CI: 0.93, 0.98), 9% (eβ 0.91, 95% CI: 0.87, 0.95), and 83% (eβ 0.17, 95% CI: 0.08, 0.37) for each one unit (kg/m2) increase in body mass index, fat mass index, muscle mass index, and bone mineral content index, respectively. Conclusions In CF, ADP was negatively correlated with hepatic insulin resistance as well as low fat, muscle, and bone mass, but not with glucose intolerance. This suggests that malnutrition leads to higher ADP levels in CF.
Collapse
Affiliation(s)
- Bibi Uhre Nielsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Christine Råberg Mikkelsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Peter Sandor Oturai
- Department of Clinical Physiology and Nuclear Medicine, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Rikke Krogh-Madsen
- Centre for Physical Activity Research, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
- Department of Infectious Diseases, Copenhagen University Hospital – Hvidovre, Copenhagen, Denmark
| | - Terese Lea Katzenstein
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Christian Ritz
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Tacjana Pressler
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Thomas Peter Almdal
- Department of Endocrinology, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Inger Hee Mabuza Mathiesen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| | - Daniel Faurholt-Jepsen
- Cystic Fibrosis Center Copenhagen, Department of Infectious Diseases, Copenhagen University Hospital – Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
2
|
Akbari A, Hadizadeh S, Heidary L. Effects of Glucagon-Like Peptide-1 Receptor Agonists and Sodium-Glucose Cotransporter 2 Inhibitors on Intima-Media Thickness: Systematic Review and Meta-Analysis. J Diabetes Res 2024; 2024:3212795. [PMID: 38529046 PMCID: PMC10963118 DOI: 10.1155/2024/3212795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/23/2024] [Indexed: 03/27/2024] Open
Abstract
Background Beyond glycemic control, glucagon-like peptide-1 receptor agonists (GLP-1 RAs) and sodium-glucose cotransporter 2 inhibitors (SGLT2is) have been proposed to reduce the risk of cardiovascular events. The aim of the present systematic review and meta-analysis is to demonstrate the effects of GLP-1 RA and SGLT2is on intima-media thickness (IMT). Methods PubMed, EMBASE, Web of Science, SCOPUS, and Google Scholar databases were searched from inception to September 9, 2023. All interventional and observational studies that provided data on the effects of GLP-1 RAs or SGLT2is on IMT were included. Critical appraisal was performed using the Joanna Briggs Institute checklists. IMT changes (preintervention and postintervention) were pooled and meta-analyzed using a random-effects model. Subgroup analyses were based on type of medication (GLP-1 RA: liraglutide and exenatide; SGLT2i: empagliflozin, ipragliflozin, tofogliflozin, and dapagliflozin), randomized clinical trials (RCTs), and diabetic patients. Results The literature search yielded 708 related articles after duplicates were removed. Eighteen studies examined the effects of GLP-1 RA, and eleven examined the effects of SGLT2i. GLP-1 RA and SGLT2i significantly decreased IMT (MD = -0.123, 95% CI (-0.170, -0.076), P < 0.0001, I2 = 98% and MD = -0.048, 95% CI (-0.092, -0.004), P = 0.031, I2 = 95%, respectively). Metaregression showed that IMT change correlated with baseline IMT, whereas it did not correlate with gender, duration of diabetes, and duration of treatment. Conclusions Treatment with GLP-1 RA and SGLT2i can lower IMT in diabetic patients, and GLP-1 RA may be more effective than SGLT2i.
Collapse
Affiliation(s)
- Abolfazl Akbari
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Shiva Hadizadeh
- Research Center for Advanced Technologies in Cardiovascular Medicine, Cardiovascular Research Institute, Tehran University of Medical Sciences, Tehran, Iran
- Women Reproductive Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Leida Heidary
- Laboratory of Medical Genetics, ART and Stem Cell Research Centre (ACECR), Tabriz, Iran
- Nahal Infertility Center, Tabriz, Iran
| |
Collapse
|
3
|
Vachliotis ID, Valsamidis I, Polyzos SA. Tumor Necrosis Factor-Alpha and Adiponectin in Nonalcoholic Fatty Liver Disease-Associated Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:5306. [PMID: 37958479 PMCID: PMC10650629 DOI: 10.3390/cancers15215306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 10/28/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is emerging as an important risk factor for hepatocellular carcinoma (HCC), whose prevalence is rising. Although the mechanisms of progression from NAFLD to HCC are not fully elucidated, tumor necrosis factor-α (TNF-α) and adiponectin, as well as their interplay, which seems to be antagonistic, may contribute to the pathophysiology of NAFLD-associated HCC. TNF-α initially aims to protect against hepatocarcinogenesis, but during the progression of NAFLD, TNF-α is increased, thus probably inducing hepatocarcinogenesis in the long-term, when NAFLD is not resolved. On the other hand, adiponectin, which is expected to exert anti-tumorigenic effects, is decreased during the progression of the disease, a trend that may favor hepatocarcinogenesis, but is paradoxically increased at end stage disease, i.e., cirrhosis and HCC. These observations render TNF-α and adiponectin as potentially diagnostic biomarkers and appealing therapeutic targets in the setting of NAFLD-associated HCC, possibly in combination with systematic therapy. In this regard, combination strategy, including immune checkpoint inhibitors (ICIs) with anti-TNF biologics and/or adiponectin analogs or medications that increase endogenous adiponectin, may warrant investigation against NAFLD-associated HCC. This review aims to summarize evidence on the association between TNF-α and adiponectin with NAFLD-associated HCC, based on experimental and clinical studies, and to discuss relevant potential therapeutic considerations.
Collapse
Affiliation(s)
- Ilias D. Vachliotis
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Gastroenterology, 424 General Military Hospital, 56429 Thessaloniki, Greece
| | - Ioannis Valsamidis
- First Department of Internal Medicine, 424 General Military Hospital, 56429 Thessaloniki, Greece;
| | - Stergios A. Polyzos
- First Laboratory of Pharmacology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| |
Collapse
|
4
|
Yaribeygi H, Maleki M, Nasimi F, Jamialahmadi T, Stanford FC, Sahebkar A. Benefits of GLP-1 Mimetics on Epicardial Adiposity. Curr Med Chem 2023; 30:4256-4265. [PMID: 36642880 PMCID: PMC10293101 DOI: 10.2174/0929867330666230113110431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 01/17/2023]
Abstract
The epicardial adipose tissue, which is referred to as fats surrounding the myocardium, is an active organ able to induce cardiovascular problems in pathophysiologic conditions through several pathways, such as inflammation, fibrosis, fat infiltration, and electrophysiologic problems. So, control of its volume and thickness, especially in patients with diabetes, is highly important. Incretin-based pharmacologic agents are newly developed antidiabetics that could provide further cardiovascular benefits through control and modulating epicardial adiposity. They can reduce cardiovascular risks by rapidly reducing epicardial adipose tissues, improving cardiac efficiency. We are at the first steps of a long way, but current evidence demonstrates the sum of possible mechanisms. In this study, we evaluate epicardial adiposity in physiologic and pathologic states and the impact of incretin-based drugs.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nasimi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Tannaz Jamialahmadi
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatima C. Stanford
- Massachusetts General Hospital, MGH Weight Center, Department of Medicine-Division of Endocrinology-Neuroendocrine, Department of Pediatrics-Division of Endocrinology, Nutrition Obesity Research Center at Harvard (NORCH), Harvard Medical School, Boston, MA, USA
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
Mukherjee AG, Wanjari UR, Gopalakrishnan AV, Bradu P, Sukumar A, Patil M, Renu K, Dey A, Vellingiri B, George A, Ganesan R. Implications of cancer stem cells in diabetes and pancreatic cancer. Life Sci 2022; 312:121211. [PMID: 36414089 DOI: 10.1016/j.lfs.2022.121211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/15/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
This review provides a detailed study of pancreatic cancer (PC) and the implication of different types of cancers concerning diabetes. The combination of anti-diabetic drugs with other anti-cancer drugs and phytochemicals can help prevent and treat this disease. PC cancer stem cells (CSCs) and how they migrate and develop into malignant tumors are discussed. A detailed explanation of the different mechanisms of diabetes development, which can enhance the pancreatic CSCs' proliferation by increasing the IGF factor levels, epigenetic modifications, DNA damage, and the influence of lifestyle factors like obesity, and inflammation, has been discussed. It also explains how cancer due to diabetes is associated with high mortality rates. One of the well-known diabetic drugs, metformin, can be combined with other anti-cancer drugs and prevent the development of PC and has been taken as one of the prime focus in this review. Overall, this paper provides insight into the relationship between diabetes and PC and the methods that can be employed to diagnose this disease at an earlier stage successfully.
Collapse
Affiliation(s)
- Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Pragya Bradu
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Aarthi Sukumar
- Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Megha Patil
- Department of Biomedical Sciences, School of Bio-Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, 600077, Tamil Nadu, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, West Bengal, 700073, India
| | - Balachandar Vellingiri
- Stem cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda - 151401, Punjab, India
| | - Alex George
- Jubilee Centre for Medical Research, Jubilee Mission Medical College and Research Institute, Thrissur, 680005, Kerala, India
| | - Raja Ganesan
- Institute for Liver and Digestive Diseases, Hallym University, Chuncheon, 24252, Republic of Korea
| |
Collapse
|
6
|
Najafi S, Bahrami M, Butler AE, Sahebkar A. The effect of Glucagon-like peptide-1 receptor agonists on serum uric acid concentration: A systematic review and meta-analysis. Br J Clin Pharmacol 2022; 88:3627-3637. [PMID: 35384008 DOI: 10.1111/bcp.15344] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/12/2022] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are a class of medications mainly used for the treatment of type 2 diabetes. They improve glucose tolerance, increase insulin secretion, and induce weight loss. There is controversy about the effect of GLP-1RAs on serum uric acid (SUA) concentration. Our systematic review aims to objectively answer whether GLP-1RAs affect SUA levels. METHODS We performed a systematic search on PubMed, Web of Science, Embase, Scopus, and Google Scholar datasets up to 27August,2021 with a language restriction of English only. Randomized controlled trials, observational studies, uncontrolled trials, and conference abstracts were included. Studies with insufficient data, irrelevant types of study, and follow-up duration of less than a month were excluded from the review. After critical appraisal by the Joanna Briggs Institute checklists, articles underwent data extraction using a pre-specified Microsoft Excel sheet. RESULTS Of 1004 identified studies, 17 were eligible for inclusion in this systematic review. Pre- to post-administration analysis of GLP-1RA effects on SUA demonstrated that GLP-1RAs could significantly reduce SUA concentration (difference in means=-0.341;SE=0.063;P-value<0.001). However, when compared to placebo, GLP-1 RAs did not perform any better in lowering SUA concentration (difference in means=-0.455;SE=0.259;P-value=0.079). Surprisingly, the active controls, that included insulin, metformin, sodium-glucose co-transporter 2 (SGLT-2) inhibitors, and dipeptidyl-peptidase 4 (DPP-4) inhibitors, did outperform GLP-1RAs in reducing SUA concentration (difference in means=0.250;SE=0.038;P-value<0.001). CONCLUSIONS Administration of GLP-1RAs can result in a significant reduction in SUA concentration. However, this reduction is less than that seen with the use of insulin, metformin, and SGLT-2 inhibitors.
Collapse
Affiliation(s)
- Sara Najafi
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Milad Bahrami
- Student Research Committee, Faculty of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alexandra E Butler
- Research Department, Royal College of Surgeons in Ireland, Bahrain, Adliya, Bahrain
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Medicine, The University of Western Australia, Perth, Australia.,Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
7
|
Yaribeygi H, Maleki M, Butler AE, Jamialahmadi T, Sahebkar A. The Impact of Incretin-Based Medications on Lipid Metabolism. J Diabetes Res 2021; 2021:1815178. [PMID: 35005028 PMCID: PMC8731296 DOI: 10.1155/2021/1815178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/06/2021] [Indexed: 12/13/2022] Open
Abstract
Pathophysiological pathways that are induced by chronic hyperglycemia negatively impact lipid metabolism. Thus, diabetes is commonly accompanied by varying degrees of dyslipidemia which is itself a major risk factor for further macro- and microvascular diabetes complications such as atherosclerosis and nephropathy. Therefore, normalizing lipid metabolism is an attractive goal for therapy in patients with diabetes. Incretin-based medications are a novel group of antidiabetic agents with potent hypoglycemic effects. While the impact of incretins on glucose metabolism is clear, recent evidence indicates their positive modulatory roles on various aspects of lipid metabolism. Therefore, incretins may offer additional beneficial effects beyond that of glucose normalization. In the current review, how these antidiabetic medications can regulate lipid homeostasis and the possible cellular pathways involved are discussed, incorporating related clinical evidence about incretin effects on lipid homeostasis.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Research Center of Physiology, Semnan University of Medical Sciences, Semnan, Iran
| | - Mina Maleki
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Alexandra E. Butler
- Research Department, Royal College of Surgeons in Ireland, PO Box 15503, Adliya, Bahrain
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|