1
|
Bodenstab ML, Varghese RT, Iacobellis G. Cardio-Lipotoxicity of Epicardial Adipose Tissue. Biomolecules 2024; 14:1465. [PMID: 39595641 PMCID: PMC11591820 DOI: 10.3390/biom14111465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Epicardial adipose tissue is a unique visceral adipose tissue depot that plays a crucial role in myocardial metabolism. Epicardial adipose tissue is a major source of energy and free fatty acids for the adjacent myocardium. However, under pathological conditions, epicardial fat can affect the heart through the excessive and abnormal influx of lipids. The cardio-lipotoxicity of the epicardial adipose tissue is complex and involves different pathways, such as increased inflammation, the infiltration of lipid intermediates such as diacylglycerol and ceramides, mitochondrial dysfunction, and oxidative stress, ultimately leading to cardiomyocyte dysfunction and coronary artery ischemia. These changes can contribute to the pathogenesis of various cardio-metabolic diseases including atrial fibrillation, coronary artery disease, heart failure, and obstructive sleep apnea. Hence, the role of the cardio-lipotoxicity of epicardial fat and its clinical implications are discussed in this review.
Collapse
Affiliation(s)
- Monica L. Bodenstab
- Department of Internal Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Ron T. Varghese
- Sleep—Endocrinology Integrated Clinic, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA;
| | - Gianluca Iacobellis
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL 33136, USA
| |
Collapse
|
2
|
Kronberger C, Mascherbauer K, Willixhofer R, Duca F, Rettl R, Binder-Rodriguez C, Poledniczek M, Ermolaev N, Donà C, Koschutnik M, Nitsche C, Camuz Ligios L, Beitzke D, Badr Eslam R, Bergler-Klein J, Kastner J, Kammerlander AA. Native skeletal muscle T1-time on cardiac magnetic resonance: A predictor of outcome in patients with heart failure with preserved ejection fraction. Eur J Intern Med 2024; 129:93-99. [PMID: 39048334 DOI: 10.1016/j.ejim.2024.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is associated with heart failure (HF) hospitalizations and death. Previous studies have shown that altered muscle composition is associated with higher risk of adverse outcome in HFpEF patients. AIM The purpose of our study was to investigate the association between skeletal muscle composition, as measured by skeletal muscle T1-times on cardiac magnetic resonance (CMR) imaging, and adverse outcome. METHODS We measured skeletal muscle T1-times of the back muscles on standard CMR images in a prospective cohort of HFpEF patients. Cox regression models were used to test the association of skeletal muscle T1-times and adverse outcome defined as hospitalization for HF and/or cardiovascular death. RESULTS We included 101 patients (mean age 72±7 years, 71 % female) in our study. The median skeletal muscle T1-times were 842 ms (IQR 806-881 ms). In univariate analysis high muscle T1-time was associated with adverse outcome (HR=1.96 [95 % CI, 1.31-2.94] per every 100 ms increase; p=.001). After adjustment for age, sex, body mass index, left- and right ventricular ejection fraction, N-terminal pro-brain natriuretic peptide and myocardial native T1-times, native skeletal muscle T1-time remained an independent predictor for adverse outcome (HR=1.94 [95 % CI, 1.24-3.03] per every 100 ms increase; p=.004). CONCLUSION In patients with HFpEF, high skeletal muscle T1-times on standard CMR scans are associated with higher rates of HF hospitalizations and cardiovascular death. CONDENSED ABSTRACT Skeletal muscle abnormalities are common in patients with heart failure with preserved ejection fraction (HFpEF). The present study evaluates skeletal muscle composition, as quantified by native skeletal muscle T1-times of the back muscles on standard cardiac magnetic resonance imaging, and assessed the association with adverse outcome, defined as hospitalization for heart failure and/or cardiovascular death. In a prospective cohort of 101 patients with HFpEF, we found that high native skeletal muscle T1-times are associated with an increased risk for adverse outcome. These findings suggest that native skeletal muscle T1-time may serve as marker for improved risk prediction.
Collapse
Affiliation(s)
- Christina Kronberger
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Katharina Mascherbauer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Robin Willixhofer
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Franz Duca
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - René Rettl
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christina Binder-Rodriguez
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Michael Poledniczek
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Nikita Ermolaev
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Carolina Donà
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Matthias Koschutnik
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Christian Nitsche
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Luciana Camuz Ligios
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Dietrich Beitzke
- Division of Cardiovascular and Interventional Radiology, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Roza Badr Eslam
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Jutta Bergler-Klein
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Johannes Kastner
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria
| | - Andreas A Kammerlander
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Babar S, Saboor M. Erythroferrone in focus: emerging perspectives in iron metabolism and hematopathologies. BLOOD SCIENCE 2024; 6:e00198. [PMID: 39027903 PMCID: PMC11254117 DOI: 10.1097/bs9.0000000000000198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024] Open
Abstract
Beyond its core role in iron metabolism, erythroferrone (ERFE) has emerged as a key player with far-reaching implications in various hematologic disorders. Its regulatory effect on hepcidin underlines its significance in conditions characterized by disrupted iron homeostasis. In β-thalassemia and myelodysplastic syndromes, its dysregulation intricately contributes to the clinical challenges of anemia and iron overload which highlights its potential as a therapeutic target. In anemia of chronic disease and iron deficiency anemia, ERFE presents a unique profile. In chronic kidney disease (CKD), the intricate interplay between ERFE, erythropoietin, and hepcidin undergoes dysregulation, contributing to the complex iron imbalance characteristic of this condition. Recent research suggests that ERFE plays a multifaceted role in restoring iron balance in CKD, beyond simply suppressing hepcidin production. The potential to modulate ERFE activity offers a novel approach to treating a spectrum of disorders associated with iron dysregulation. As our understanding of ERFE continues to evolve, it is poised to become a key focus in the development of targeted treatments, making it an exciting and dynamic area of ongoing research. Modulating ERFE activity presents a groundbreaking approach to treat iron dysregulation in conditions like iron deficiency anemia, thalassemia, and hemochromatosis. As new research unveils its intricate roles, ERFE has rapidly emerged as a key target for developing targeted therapies like ERFE agonists and antagonists. With promising studies underway, this dynamic field holds immense potential to improve patient outcomes, reduce complications, and offer personalized treatment options in hematology research. This comprehensive overview of ERFE's role across various conditions underscores its pivotal function in iron metabolism and associated pathologies.
Collapse
Affiliation(s)
- Sadia Babar
- Baqai Institute of Hematology, Baqai Medical University, Karachi, Pakistan
- Baqai Institute of Medical Technology, Baqai Medical University, Karachi, Pakistan
| | - Muhammad Saboor
- Department of Medical Laboratory Sciences, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Guo Y, Zhou F, Fan J, Wu T, Jia S, Li J, Chen N. Swimming alleviates myocardial fibrosis of type II diabetic rats through activating miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway. PLoS One 2024; 19:e0310136. [PMID: 39250437 PMCID: PMC11383238 DOI: 10.1371/journal.pone.0310136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 08/24/2024] [Indexed: 09/11/2024] Open
Abstract
Myocardial fibrosis can trigger heart failure in diabetic cardiomyopathy (DCM), and irisin, an exercise-induced myokine, may have a beneficial effect on cardiac function. However, the specific molecular mechanism between exercise and irisin in the diabetic heart remains not fully explored. This study aimed to investigate how miR-34a mediates exercise-induced irisin to ameliorate myocardial fibrosis and its underlying mechanisms. Type 2 diabetes mellitus (T2DM) with DCM was induced in adult male rats with high-fat diet and streptozotocin injection. The DCM rats were subjected to swimming (60 min/d) and recombinant irisin (r-irisin, 500 μg/kg/d) interventions for 8 weeks, respectively. Cardiac function, cardiomyocyte structure, myocardial fibrosis and its correlated gene and protein expression were analyzed. Swimming intervention alleviated insulin resistance, myocardial fibrosis, and myocardial hypertrophy, and promoted blood glucose homeostasis in T2DM model rats. This improvement was associated with irisin upregulation and miR-34a downregulation in the myocardium, thus enhancing cardiac function. Similar efficacy was observed via intraperitoneal injection of exogenous recombinant irisin. Inhibition of miR-34a in vivo exhibited an anti-myocardial fibrotic effect by promoting irisin secretion through activating sirtuin 1 (SIRT1)/peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α)/fibronectin type III domain-containing protein 5 (FNDC5) signal pathway and downregulating myocardial fibrosis markers (collagen I, collagen III, and transforming growth factor-β1). Therefore, swimming-induced irisin has the potential therapeutic effect on diabetic myocardial fibrosis through activating the miR-34a-mediated SIRT1/PGC-1α/FNDC5 signal pathway.
Collapse
Affiliation(s)
- Yanju Guo
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
- College of Physical Education and Health, Guangxi Normal University, Guilin, China
| | - Fengmin Zhou
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jingjing Fan
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Shaohui Jia
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Jinxiu Li
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Ning Chen
- Tianjiu Research and Development Centre for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| |
Collapse
|
5
|
Zhaoyu L, Xiaomeng Y, Na L, Jiamin S, Guanhua D, Xiuying Y. Roles of natural products on myokine expression and secretion in skeletal muscle atrophy. Gen Comp Endocrinol 2024; 355:114550. [PMID: 38768928 DOI: 10.1016/j.ygcen.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Skeletal muscles serve both in movement and as endocrine organs. Myokines secreted by skeletal muscles activate biological functions within muscles and throughout the body via autocrine, paracrine, and/or endocrine pathways. Skeletal muscle atrophy can influence myokine expression and secretion, while myokines can impact the structure and function of skeletal muscles. Regulating the expression and secretion of myokines through the pharmacological approach is a strategy for alleviating skeletal muscle atrophy. Natural products possess complex structures and chemical properties. Previous studies have demonstrated that various natural products exert beneficial effects on skeletal muscle atrophy. This article reviewed the regulatory effects of natural products on myokines and summarized the research progress on skeletal muscle atrophy associated with myokine regulation. The focus is on how small-molecule natural products affect the regulation of interleukin 6 (IL-6), irisin, myostatin, IGF-1, and FGF-21 expression. We contend that the development of small-molecule natural products targeting the regulation of myokines holds promise in combating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Liu Zhaoyu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ye Xiaomeng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Na
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shang Jiamin
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Du Guanhua
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Xiuying
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
6
|
Xu Y, Jiang YC, Xu L, Zhou W, Zhang Z, Qi Y, Kuang H, Yan S. Independent risk factors of left ventricular hypertrophy in non-diabetic individuals in Sierra Leone - a cross-sectional study. Lipids Health Dis 2024; 23:259. [PMID: 39169399 PMCID: PMC11337744 DOI: 10.1186/s12944-024-02232-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 07/30/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND Left ventricular hypertrophy (LVH) is a critical factor in heart failure and cardiovascular event-related mortality. While the prevalence of LVH in diabetic patients is well-documented, its occurrence and risk factors in non-diabetic populations remain largely unexplored. This study addresses this issue by investigating the independent risk factors of LVH in non-diabetic individuals. METHODS This cross-sectional study, conducted meticulously, utilized data from a robust and comprehensive source, DATADRYAD, in the Sierra Leone database, collected between October 2019 and October 2021, including LVH and various variables. All variables were described and screened using univariate analysis, Spearman correlation, and principal component analysis (PCA). The lipid profile, including total cholesterols (TC), triglycerides (TG), high-density lipoprotein (HDL-C), non-high-density lipoprotein (Non-HDL-C), and low-density lipoprotein cholesterol (LDL-C), TC/HDL-C ratio, TG/HDL-C ratio, Non-HDL-C /HDL-C ratio and LDL-C/HDL-C ratio, which quartiles were treated as categorical variables, with the lowest quartile serving as the reference category. Three adjusted models were constructed to mitigate the influence of other variables. To ensure the robustness of the model, receiver operating characteristic (ROC) curves were used to calculate the cutoff values by analyzing the ROC curves. A sensitivity analysis was performed to validate the findings further. RESULTS The dataset encompasses information from 2092 individuals. After adjusting for potential factors that could influence the results, we found that TC (OR = 2.773, 95%CI: 1.805-4.26), Non-HDL-C (OR = 2.74, 95%CI: 1.7723-4.236), TC/HDL-C ratio (OR = 2.237, 95%CI: 1.445-3.463), Non-HDL-C/HDL-C ratio (OR = 2.357, 95%CI: 1.548-3.588), TG/HDL-C ratio (OR = 1.513, 95%CI: 1.02-2.245) acts as independent risk factors of LVH. ROC curve analysis revealed the predictive ability of blood lipids for LVH, with Non-HDL-C exhibiting area under the curve (AUC = 0.6109), followed by TC (AUC = 0.6084). CONCLUSIONS TC, non-HDL-C, TC/HDL-C ratio, Non-HDL-C/HDL-C ratio, and TG/HDL-C ratio were independent risk factors of LVH in non-diabetic people. Non-HDL-C and TC were found to be essential indicators for predicting the prevalence of LVH.
Collapse
Affiliation(s)
- Yuanxin Xu
- Department of Endocrine and Metabolic Diseases, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
- Centenary Institute of Cancer Medicine and Cell biology, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Yingxin Celia Jiang
- Centenary Institute of Cancer Medicine and Cell biology, The University of Sydney, Sydney, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
- Charles Perkins Centre, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Lihua Xu
- Faculty of health and medicine, Sanya University, Sanya, 572000, China
| | - Weiyu Zhou
- Department of Endocrine and Metabolic Diseases, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Zhiying Zhang
- Department of Endocrine and Metabolic Diseases, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China
| | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell biology, The University of Sydney, Sydney, NSW, 2050, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Hongyu Kuang
- Department of Endocrinology, First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Harbin Medical University, Harbin, 150081, China.
| | - Shuang Yan
- Department of Endocrine and Metabolic Diseases, Fourth Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.
- Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
7
|
de Jorge-Huerta L, Marco-Alacid C, Grande C, Velardo Andrés C. A Narrative Review of the Diagnosis and Treatment of Sarcopenia and Malnutrition in Patients with Heart Failure. Nutrients 2024; 16:2717. [PMID: 39203852 PMCID: PMC11357594 DOI: 10.3390/nu16162717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 07/16/2024] [Accepted: 07/31/2024] [Indexed: 09/03/2024] Open
Abstract
The prevalence of sarcopenia (loss of muscle strength, mass and function) in individuals with heart failure (HF) stands at a considerable level (approximately 20%), contributing to heightened mortality rates and diminished quality of life. The underlying pathophysiological mechanisms involve the presence of low-grade inflammation and a disturbance of the anabolic-catabolic protein balance. The nutritional assessment of patients with HF is a key aspect, and diverse diagnostic tools are employed based on patient profiles (outpatient, inpatient and nursing home). The Global Leadership Initiative on Malnutrition (GLIM) criteria serves as a consensus for diagnosing malnutrition. Given that edema can impact body mass index (BMI) in patients with HF, alternative body assessment technical methods, such as bioelectrical vector impedance (BiVA), BIA (without vector mode), computer tomography (CT) or clinical ultrasound (US), are useful. Scientific evidence supports the efficacy of both aerobic and resistance physical exercises in ameliorating and preventing muscle wasting associated with HF. Dietary strategies emphasize the importance of protein intake, while certain micronutrients like coenzyme Q10 or intravenous iron may offer benefits. This narrative review aims to present the current understanding of the pathogenesis, diagnosis and treatment of muscle loss in individuals with heart failure and its consequential impact on prognosis.
Collapse
Affiliation(s)
| | | | - Cristina Grande
- Medical Scientific Liaison, Abbott Nutrición, 28050 Madrid, Spain;
| | | |
Collapse
|
8
|
Li B, Shaikh F, Zamzam A, Syed MH, Abdin R, Qadura M. The Identification and Evaluation of Interleukin-7 as a Myokine Biomarker for Peripheral Artery Disease Prognosis. J Clin Med 2024; 13:3583. [PMID: 38930112 PMCID: PMC11205196 DOI: 10.3390/jcm13123583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
Background/Objectives: Myokines have been demonstrated to be associated with cardiovascular diseases; however, they have not been studied as biomarkers for peripheral artery disease (PAD). We identified interleukin-7 (IL-7) as a prognostic biomarker for PAD from a panel of myokines and developed predictive models for 2-year major adverse limb events (MALEs) using clinical features and plasma IL-7 levels. Methods: A prognostic study was conducted with a cohort of 476 patients (312 with PAD and 164 without PAD) that were recruited prospectively. Their plasma concentrations of five circulating myokines were measured at recruitment, and the patients were followed for two years. The outcome of interest was two-year MALEs (composite of major amputation, vascular intervention, or acute limb ischemia). Cox proportional hazards analysis was performed to identify IL-7 as the only myokine that was associated with 2-year MALEs. The data were randomly divided into training (70%) and test sets (30%). A random forest model was trained using clinical characteristics (demographics, comorbidities, and medications) and plasma IL-7 levels with 10-fold cross-validation. The primary model evaluation metric was the F1 score. The prognostic model was used to classify patients into low vs. high risk of developing adverse limb events based on the Youden Index. Freedom from MALEs over 2 years was compared between the risk-stratified groups using Cox proportional hazards analysis. Results: Two-year MALEs occurred in 28 (9%) of patients with PAD. IL-7 was the only myokine that was statistically significantly correlated with two-year MALE (HR 1.56 [95% CI 1.12-1.88], p = 0.007). For the prognosis of 2-year MALEs, our model achieved an F1 score of 0.829 using plasma IL-7 levels in combination with clinical features. Patients classified as high-risk by the predictive model were significantly more likely to develop MALEs over a 2-year period (HR 1.66 [95% CI 1.22-1.98], p = 0.006). Conclusions: From a panel of myokines, IL-7 was identified as a prognostic biomarker for PAD. Using a combination of clinical characteristics and plasma IL-7 levels, we propose an accurate predictive model for 2-year MALEs in patients with PAD. Our model may support PAD risk stratification, guiding clinical decisions on additional vascular evaluation, specialist referrals, and medical/surgical management, thereby improving outcomes.
Collapse
Affiliation(s)
- Ben Li
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.); (M.H.S.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Temerty Centre for Artificial Intelligence Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.); (M.H.S.)
| | - Abdelrahman Zamzam
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.); (M.H.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.); (M.H.S.)
| | - Rawand Abdin
- Department of Medicine, McMaster University, Hamilton, ON L8S 4L8, Canada;
| | - Mohammad Qadura
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A1, Canada;
- Division of Vascular Surgery, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, 30 Bond Street, Suite 7-076, Toronto, ON M5B 1W8, Canada; (F.S.); (A.Z.); (M.H.S.)
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A1, Canada
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, University of Toronto, Toronto, ON M5B 1W8, Canada
| |
Collapse
|
9
|
Broberg O, Feldreich T, Weismann CG, Øra I, Wiebe T, Ärnlöv J, Liuba P. Circulating leptin is associated with adverse vascular changes in young adult survivors of childhood cancer. Cardiol Young 2024; 34:1325-1333. [PMID: 38305049 DOI: 10.1017/s1047951124000076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
INTRODUCTION Proteomics may help discover novel biomarkers and underlying mechanisms for cardiovascular disease. This could be useful for childhood cancer survivors as they show an increased risk of cardiovascular disease. The aim of this study was to investigate circulating cardiovascular proteins in young adult survivors of childhood cancer and their relationship to previously reported subclinical cardiovascular disease. METHODS Ninety-two cardiovascular proteins were measured in 57 childhood cancer survivors and in 52 controls. For proteins that were significantly different between childhood cancer survivors and controls, we performed correlations between protein levels and measures of peripheral arterial stiffness (carotid distensibility and stiffness index, and augmentation index) and endothelial dysfunction (reactive hyperemia index). RESULTS Leptin was significantly higher in childhood cancer survivors compared to controls (normalized protein expression units: childhood cancer survivors 6.4 (1.5) versus 5.1 (1.7), p < 0.0000001) after taking multiple tests into account. Kidney injury molecule-1, MER proto-oncogene tyrosine kinase, selectin P ligand, decorin, alpha-1-microglobulin/bikunin precursor protein, and pentraxin 3 showed a trend towards group differences (p < 0.05). Among childhood cancer survivors, leptin was associated with anthracycline treatment after adjustment for age, sex, and body mass index (p < 0.0001). Higher leptin correlated with lower carotid distensibility after adjustment for age, sex, body mass index, and treatments with radiotherapy and anthracyclines (p = 0.005). CONCLUSION This proteomics approach identified that leptin is higher in young asymptomatic adult survivors of childhood cancer than in healthy controls and is associated with adverse vascular changes. This could indicate a role for leptin in driving the cardiovascular disease burden in this population.
Collapse
Affiliation(s)
- Olof Broberg
- Department of Pediatric Cardiology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| | | | - Constance G Weismann
- Department of Pediatric Cardiology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
- Department of Pediatric Cardiology and Pediatric Intensive Care, Ludwig-Maximilian University, Munich, DE, Germany
| | - Ingrid Øra
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
- Department of Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Thomas Wiebe
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
- Department of Pediatric Oncology, Skåne University Hospital, Lund, Sweden
| | - Johan Ärnlöv
- School of Health and Welfare Dalarna University, Falun, Sweden
- Division of Family Medicine and Primary Care, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institute, Huddinge, Sweden
| | - Petru Liuba
- Department of Pediatric Cardiology, Skåne University Hospital, Lund, Sweden
- Department of Clinical Sciences, Pediatrics, Lund University, Lund, Sweden
| |
Collapse
|
10
|
Berezin OO, Berezina TA, Hoppe UC, Lichtenauer M, Berezin AE. Diagnostic and predictive abilities of myokines in patients with heart failure. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 142:45-98. [PMID: 39059994 DOI: 10.1016/bs.apcsb.2023.12.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Myokines are defined as a heterogenic group of numerous cytokines, peptides and metabolic derivates, which are expressed, synthesized, produced, and released by skeletal myocytes and myocardial cells and exert either auto- and paracrine, or endocrine effects. Previous studies revealed that myokines play a pivotal role in mutual communications between skeletal muscles, myocardium and remote organs, such as brain, vasculature, bone, liver, pancreas, white adipose tissue, gut, and skin. Despite several myokines exert complete divorced biological effects mainly in regulation of skeletal muscle hypertrophy, residential cells differentiation, neovascularization/angiogenesis, vascular integrity, endothelial function, inflammation and apoptosis/necrosis, attenuating ischemia/hypoxia and tissue protection, tumor growth and malignance, for other occasions, their predominant effects affect energy homeostasis, glucose and lipid metabolism, adiposity, muscle training adaptation and food behavior. Last decade had been identified 250 more myokines, which have been investigating for many years further as either biomarkers or targets for heart failure management. However, only few myokines have been allocated to a promising tool for monitoring adverse cardiac remodeling, ischemia/hypoxia-related target-organ dysfunction, microvascular inflammation, sarcopenia/myopathy and prediction for poor clinical outcomes among patients with HF. This we concentrate on some most plausible myokines, such as myostatin, myonectin, brain-derived neurotrophic factor, muslin, fibroblast growth factor 21, irisin, leukemia inhibitory factor, developmental endothelial locus-1, interleukin-6, nerve growth factor and insulin-like growth factor-1, which are suggested to be useful biomarkers for HF development and progression.
Collapse
Affiliation(s)
- Oleksandr O Berezin
- Luzerner Psychiatrie AG, Department of Senior Psychiatrie, St. Urban, Switzerland
| | - Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, Ukraine
| | - Uta C Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria
| | - Alexander E Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Salzburg, Austria.
| |
Collapse
|
11
|
Vistnes M. Survival of the strongest: can muscular strength measurements be used in prevention of heart failure in patients with acute coronary syndromes? Eur J Prev Cardiol 2024; 31:832-833. [PMID: 38381591 DOI: 10.1093/eurjpc/zwae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Maria Vistnes
- Department of Cardiology, Oslo University Hospital Ullevål, Kirkeveien 166, 0456 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0456 Oslo, Norway
| |
Collapse
|
12
|
Berezina TA, Fushtey IM, Berezin AA, Pavlov SV, Berezin AE. Predictors of Kidney Function Outcomes and Their Relation to SGLT2 Inhibitor Dapagliflozin in Patients with Type 2 Diabetes Mellitus Who Had Chronic Heart Failure. Adv Ther 2024; 41:292-314. [PMID: 37935870 PMCID: PMC10796534 DOI: 10.1007/s12325-023-02683-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 09/07/2023] [Indexed: 11/09/2023]
Abstract
INTRODUCTION Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have a favorable impact on the kidney function in patients with heart failure (HF), while there is no clear evidence of what factors predict this effect. The aim of the study was to identify plausible predictors for kidney function outcome among patients with HF and investigate their association with SGLT2i. METHODS We prospectively enrolled 480 patients with type 2 diabetes mellitus (T2DM) treated with diet and metformin and concomitant chronic HF and followed them for 52 weeks. In the study, we determined kidney outcome as a composite of ≥ 40% reduced estimated glomerular filtration rate from baseline, newly diagnosed end-stage kidney disease or kidney replacement therapy. The relevant medical information and measurement of the biomarkers (N-terminal natriuretic pro-peptide, irisin, apelin, adropin, C-reactive protein, tumor necrosis factor-alpha) were collected at baseline and at the end of the study. RESULTS The composite kidney outcome was detected in 88 (18.3%) patients of the entire population. All patients received guideline-recommended optimal therapy, which was adjusted to phenotype/severity of HF, cardiovascular risk and comorbidity profiles, and fasting glycemia. Levels of irisin, adropin and apelin significantly increased in patients without clinical endpoint, whereas in those with composite endpoint the biomarker levels exhibited a decrease with borderline statistical significance (p = 0.05). We noticed that irisin ≤ 4.50 ng/ml at baseline and a ≤ 15% increase in irisin serum levels added more valuable predictive information than the reference variable. However, the combination of irisin ≤ 4.50 ng/ml at baseline and ≤ 15% increase in irisin serum levels (area under curve = 0.91; 95% confidence interval = 0.87-0.95) improved the discriminative value of each biomarker alone. CONCLUSION We suggest that low levels of irisin and its inadequate increase during administration of SGLT2i are promising predictors for unfavorable kidney outcome among patients with T2DM and concomitant HF.
Collapse
Affiliation(s)
- Tetiana A Berezina
- Department of Internal Medicine and Nephrology, VitaCenter, Zaporozhye, 69000, Ukraine
| | - Ivan M Fushtey
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, 69096, Ukraine
| | - Alexander A Berezin
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, 69096, Ukraine
- Department of Psychosomatic Medicine and Psychotherapy, Klinik Barmelweid, 5017, Erlinsbach, Switzerland
| | - Sergii V Pavlov
- Department Clinical and Laboratory Diagnostics, Zaporozhye State Medical University, Zaporozhye, 69035, Ukraine
| | - Alexander E Berezin
- Department of Cardiology, Vita Center, Zaporozhye, 69000, Ukraine.
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, 5020, Salzburg, Austria.
| |
Collapse
|
13
|
Li S, Chen J, Wei P, Zou T, You J. Fibroblast Growth Factor 21: A Fascinating Perspective on the Regulation of Muscle Metabolism. Int J Mol Sci 2023; 24:16951. [PMID: 38069273 PMCID: PMC10707024 DOI: 10.3390/ijms242316951] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Fibroblast growth factor 21 (FGF21) plays a vital role in normal eukaryotic organism development and homeostatic metabolism under the influence of internal and external factors such as endogenous hormone changes and exogenous stimuli. Over the last few decades, comprehensive studies have revealed the key role of FGF21 in regulating many fundamental metabolic pathways, including the muscle stress response, insulin signaling transmission, and muscle development. By coordinating these metabolic pathways, FGF21 is thought to contribute to acclimating to a stressful environment and the subsequent recovery of cell and tissue homeostasis. With the emphasis on FGF21, we extensively reviewed the research findings on the production and regulation of FGF21 and its role in muscle metabolism. We also emphasize how the FGF21 metabolic networks mediate mitochondrial dysfunction, glycogen consumption, and myogenic development and investigate prospective directions for the functional exploitation of FGF21 and its downstream effectors, such as the mammalian target of rapamycin (mTOR).
Collapse
Affiliation(s)
| | | | | | - Tiande Zou
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| | - Jinming You
- Jiangxi Province Key Laboratory of Animal Nutrition, Jiangxi Agricultural University, Nanchang 330045, China; (S.L.); (J.C.); (P.W.)
| |
Collapse
|
14
|
Zoico E, Giani A, Saatchi T, Rizzatti V, Mazzali G, Fantin F, Benfari G, Onorati F, Urbani S, Zamboni M. Myocardial Fibrosis and Steatosis in Patients with Aortic Stenosis: Roles of Myostatin and Ceramides. Int J Mol Sci 2023; 24:15508. [PMID: 37958492 PMCID: PMC10648018 DOI: 10.3390/ijms242115508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023] Open
Abstract
Aortic stenosis (AS) involves progressive valve obstruction and a remodeling response of the left ventriculum (LV) with systolic and diastolic dysfunction. The roles of interstitial fibrosis and myocardial steatosis in LV dysfunction in AS have not been completely characterized. We enrolled 31 patients (19 women and 12 men) with severe AS undergoing elective aortic valve replacement. The subjects were clinically evaluated, and transthoracic echocardiography was performed pre-surgery. LV septal biopsies were obtained to assess fibrosis and apoptosis and fat deposition in myocytes (perilipin 5 (PLIN5)), or in the form of adipocytes within the heart (perilipin 1 (PLIN1)), the presence of ceramides and myostatin were assessed via immunohistochemistry. After BMI adjustment, we found a positive association between fibrosis and apoptotic cardiomyocytes, as well as fibrosis and the area covered by PLIN5. Apoptosis and PLIN5 were also significantly interrelated. LV fibrosis increased with a higher medium gradient (MG) and peak gradient (PG). Ceramides and myostatin levels were higher in patients within the higher MG and PG tertiles. In the linear regression analysis, increased fibrosis correlated with increased apoptosis and myostatin, independent from confounding factors. After adjustment for age and BMI, we found a positive relationship between PLIN5 and E/A and a negative correlation between septal S', global longitudinal strain (GLS), and fibrosis. Myostatin was inversely correlated with GLS and ejection fraction. Fibrosis and myocardial steatosis altogether contribute to ventricular dysfunction in severe AS. The association of myostatin and fibrosis with systolic dysfunction, as well as between myocardial steatosis and diastolic dysfunction, highlights potential therapeutic targets.
Collapse
Affiliation(s)
- Elena Zoico
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Anna Giani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Tanaz Saatchi
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Vanni Rizzatti
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Gloria Mazzali
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Francesco Fantin
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Giovanni Benfari
- Division of Cardiology, Department of Medicine, University of Verona, 37126 Verona, Italy
| | - Francesco Onorati
- Division of Cardiac Surgery, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| | - Silvia Urbani
- Division of Geriatric Medicine, Department of Medicine, University of Verona, 37126 Verona, Italy; (A.G.)
| | - Mauro Zamboni
- Division of Geriatric Medicine, Department of Surgery, Dentistry, Pediatric and Gynecology, University of Verona, 37126 Verona, Italy
| |
Collapse
|
15
|
Kaur R, Krishan P, Kumari P, Singh T, Singh V, Singh R, Ahmad SF. Clinical Significance of Adropin and Afamin in Evaluating Renal Function and Cardiovascular Health in the Presence of CKD-MBD Biomarkers in Chronic Kidney Disease. Diagnostics (Basel) 2023; 13:3158. [PMID: 37835901 PMCID: PMC10572291 DOI: 10.3390/diagnostics13193158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023] Open
Abstract
AIM The study aims to test the hypothesis that concentrations of adropin and afamin differ between patients in various stages of chronic kidney disease when compared with healthy controls. The study also investigates the association of the biomarkers (adropin and afamin) with CKD-MBD and traditional cardiovascular risk parameters in CKD patients. METHODOLOGY The cross-sectional study includes the subjects divided into four groups comprising the control group (healthy volunteers = 50), CKD stages 1-2 patients (n = 50), CKD stages 3-4 patients (n = 50), CKD stage 5 patients (n = 50). Serum concentrations of adropin and afamin were determined using ELISA. Clinical variables (renal, lipid, and CKD-MBD parameters) were correlated to adropin and afamin concentrations. RESULTS Afamin concentration was found to be higher in group IV, followed by groups III and II when compared to the control group, i.e., (83.243 ± 1.46, 64.233 ± 0.99, and 28.948 ± 0.72 vs. 14.476 ± 0.5) mg/L (p < 0.001), and adropin concentration was found to be lower in group IV as compared to groups III, II, and I (200.342 ± 8.37 vs. 284.682 ± 9.89 vs. 413.208 ± 12.32 vs. 706.542 ± 11.32) pg/mL (p < 0.001), respectively. Pearson correlation analysis showed that afamin was positively correlated with traditional cardiovascular risk biomarkers, while adropin showed a negative correlation. CONCLUSIONS Adropin and afamin may potentially serve as futuristic predictors for the deterioration of renal function and may be involved in the pathological mechanisms of CKD and its associated complications such as CKD-MBD and high lipid levels.
Collapse
Affiliation(s)
- Rupinder Kaur
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Pawan Krishan
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India;
| | - Pratima Kumari
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Tanveer Singh
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M Health Science Center, Bryan, TX 77807, USA;
| | - Varinder Singh
- Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda 151001, Punjab, India;
| | - Ravinder Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India; (R.K.); (P.K.)
| | - Sheikh F. Ahmad
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| |
Collapse
|
16
|
Böhme R, Daniel C, Ferrazzi F, Angeloni M, Ekici AB, Winkler TH, Hilgers KF, Wellmann U, Voll RE, Amann K. Cardiovascular changes in the NZB/W F1 mouse model of lupus nephritis. Front Cardiovasc Med 2023; 10:1182193. [PMID: 37554366 PMCID: PMC10405627 DOI: 10.3389/fcvm.2023.1182193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/04/2023] [Indexed: 08/10/2023] Open
Abstract
BACKGROUND Patients with systemic lupus erythematosus (SLE), an autoimmune disease, have a higher risk of cardiovascular (CV) disease and death. In addition, up to 40%-50% of SLE patients develop lupus nephritis (LN) and chronic kidney disease, which is an additional CV risk factor. Thus, the individual contributions of LN and other SLE-specific factors to CV events are unclear. METHODS In this study, we investigated the effect of LN on the development of CV changes using the female NZBxNZW F1 (NZB/W) mouse model of lupus-like disease, with female NZW mice as controls. Standard serologic, morphologic, immunohistologic, and molecular analyses were performed. In a separate group of NZB/W mice, systolic blood pressure (BP) was measured during the course of the disease using tail plethysmography. RESULTS Our data show marked CV changes in NZB/W mice, i.e., increased heart weight, hypertrophy of the left ventricle (LV) and septum, and increased wall thickness of the intramyocardial arteries and the aorta, which correlated with the progression of renal damage, but not with the age of the mice. In addition, systolic BP was increased in NZB/W mice only when kidney damage progressed and proteinuria was present. Pathway analysis based on gene expression data revealed a significant upregulation of the response to interferon beta in NZB/W mice with moderate kidney injury compared with NZB mice. Furthermore, IFI202b and IL-6 mRNA expression is correlated with CV changes. Multiple linear regression analysis demonstrated serum urea as a surrogate marker of kidney function and IFI202b expression as an independent predictor for LV wall thickness. In addition, deposition of complement factors CFD and C3c in hearts from NZB/W mice was seen, which correlated with the severity of kidney disease. CONCLUSIONS Thus, we postulate that the pathogenesis of CV disease in SLE is affected by renal impairment, i.e., LN, but it can also be partly influenced by lupus-specific cardiac expression of pro-inflammatory factors and complement deposition.
Collapse
Affiliation(s)
- Romy Böhme
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Christoph Daniel
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Fulvia Ferrazzi
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
- Institute of Pathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Miriam Angeloni
- Institute of Pathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Arif Bülent Ekici
- Institute of Human Genetics, University Hospital Erlangen, Friedrich–Alexander–Universität Erlangen–Nürnberg, Erlangen, Germany
| | - Thomas H. Winkler
- Divison of Genetics, Department of Biology, Nikolaus–Fiebiger–Center of Molecular Medicine, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Karl-Friedrich Hilgers
- Department of Nephrology and Hypertension, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Ute Wellmann
- Divison of Genetics, Department of Biology, Nikolaus–Fiebiger–Center of Molecular Medicine, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| | - Reinhard E. Voll
- Department of Rheumatology and Clinical Immunology, Medical Center–University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Kerstin Amann
- Department of Nephropathology, Friedrich–Alexander–Universität (FAU) Erlangen–Nürnberg, Erlangen, Germany
| |
Collapse
|
17
|
Pierucci F, Chirco A, Meacci E. Irisin Is Target of Sphingosine-1-Phosphate/Sphingosine-1-Phosphate Receptor-Mediated Signaling in Skeletal Muscle Cells. Int J Mol Sci 2023; 24:10548. [PMID: 37445724 DOI: 10.3390/ijms241310548] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/17/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Irisin is a hormone-like myokine produced in abundance by skeletal muscle (SkM) in response to exercise. This myokine, identical in humans and mice, is involved in many signaling pathways related to metabolic processes. Despite much evidence on the regulators of irisin and the relevance of sphingolipids for SkM cell biology, the contribution of these latter bioactive lipids to the modulation of the myokine in SkM is missing. In particular, we have examined the potential involvement in irisin formation/release of sphingosine-1-phosphate (S1P), an interesting bioactive molecule able to act as an intracellular lipid mediator as well as a ligand of specific G-protein-coupled receptors (S1PR). We demonstrate the existence of distinct intracellular pools of S1P able to affect the expression of the irisin precursor FNDC. In addition, we establish the crucial role of the S1P/S1PR axis in irisin formation/release as well as the autocrine/paracrine effects of irisin on myoblast proliferation and myogenic differentiation. Altogether, these findings provide the first evidence for a functional crosstalk between the S1P/S1PR axis and irisin signaling, which may open new windows for potential therapeutic treatment of SkM dysfunctions.
Collapse
Affiliation(s)
- Federica Pierucci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Antony Chirco
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| | - Elisabetta Meacci
- Department of Experimental and Clinical Biomedical Sciences "Mario Serio", University of Florence, 50134 Firenze, Italy
| |
Collapse
|
18
|
Demirel O, Berezin AE, Mirna M, Boxhammer E, Gharibeh SX, Hoppe UC, Lichtenauer M. Biomarkers of Atrial Fibrillation Recurrence in Patients with Paroxysmal or Persistent Atrial Fibrillation Following External Direct Current Electrical Cardioversion. Biomedicines 2023; 11:1452. [PMID: 37239123 PMCID: PMC10216298 DOI: 10.3390/biomedicines11051452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Atrial fibrillation (AF) is associated with atrial remodeling, cardiac dysfunction, and poor clinical outcomes. External direct current electrical cardioversion is a well-developed urgent treatment strategy for patients presenting with recent-onset AF. However, there is a lack of accurate predictive serum biomarkers to identify the risks of AF relapse after electrical cardioversion. We reviewed the currently available data and interpreted the findings of several studies revealing biomarkers for crucial elements in the pathogenesis of AF and affecting cardiac remodeling, fibrosis, inflammation, endothelial dysfunction, oxidative stress, adipose tissue dysfunction, myopathy, and mitochondrial dysfunction. Although there is ample strong evidence that elevated levels of numerous biomarkers (such as natriuretic peptides, C-reactive protein, galectin-3, soluble suppressor tumorigenicity-2, fibroblast growth factor-23, turn-over collagen biomarkers, growth differential factor-15) are associated with AF occurrence, the data obtained in clinical studies seem to be controversial in terms of their predictive ability for post-cardioversion outcomes. Novel circulating biomarkers are needed to elucidate the modality of this approach compared with conventional predictive tools. Conclusions: Biomarker-based strategies for predicting events after AF treatment require extensive investigation in the future, especially in the presence of different gender and variable comorbidity profiles. Perhaps, a multiple biomarker approach exerts more utilization for patients with different forms of AF than single biomarker use.
Collapse
Affiliation(s)
- Ozan Demirel
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| | - Moritz Mirna
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Sarah X. Gharibeh
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Uta C. Hoppe
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (O.D.); (M.M.); (E.B.); (S.X.G.); (U.C.H.); (M.L.)
| |
Collapse
|
19
|
Berezin AE, Berezin AA. Biomarkers in Heart Failure: From Research to Clinical Practice. Ann Lab Med 2023; 43:225-236. [PMID: 36544334 DOI: 10.3343/alm.2023.43.3.225] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/19/2022] [Accepted: 12/03/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this narrative review is to summarize contemporary evidence on the use of circulating cardiac biomarkers of heart failure (HF) and to identify a promising biomarker model for clinical use in personalized point-of-care HF management. We discuss the reported biomarkers of HF classified into clusters, including myocardial stretch and biomechanical stress; cardiac myocyte injury; systemic, adipocyte tissue, and microvascular inflammation; cardiac fibrosis and matrix remodeling; neurohumoral activation and oxidative stress; impaired endothelial function and integrity; and renal and skeletal muscle dysfunction. We focus on the benefits and drawbacks of biomarker-guided assistance in daily clinical management of patients with HF. In addition, we provide clear information on the role of alternative biomarkers and future directions with the aim of improving the predictive ability and reproducibility of multiple biomarker models and advancing genomic, transcriptomic, proteomic, and metabolomic evaluations.
Collapse
Affiliation(s)
- Alexander E Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine
| | - Alexander A Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine
| |
Collapse
|
20
|
Njire Braticevic M, Zarak M, Simac B, Perovic A, Dumic J. Effects of recreational SCUBA diving practiced once a week on neurohormonal response and myokines-mediated communication between muscles and the brain. Front Cardiovasc Med 2023; 10:1074061. [PMID: 37063956 PMCID: PMC10090300 DOI: 10.3389/fcvm.2023.1074061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/02/2023] [Indexed: 03/30/2023] Open
Abstract
ObjectiveDuring physical activity, activation of muscular, endocrine, and nervous systems, results in intensive crosstalk between muscles and other organs, which enables response to physiological stress. In SCUBA diving, extreme environmental conditions represent an additional challenge for homeostasis maintenance, but underlying mechanisms are largely unknown. We aimed to contribute to the understanding of neurohormonal response and muscle-brain crosstalk by measuring the concentrations of the selected hormones secreted by the pituitary-target organ axis and myokines involved in the muscle-brain endocrine loop in recreational SCUBA (rSCUBA) divers.MethodsFourteen male divers performed five open-water recreational dives (one per week, depth of 20–30 m, lasting 30 min, between 9 and 10 am), after a winter non-diving period of 5 months. Blood samples were collected immediately before and after the first, third, and fifth dives. Adrenocorticotropic hormone (ACTH), cortisol, thyroid-stimulating hormone (TSH), free thyroxine (fT4), prolactin, total testosterone, growth hormone (GH), insulin-like growth factor-1 (IGF-1), irisin, brain-derived neurotrophic factor (BDNF), S100B, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) were measured using commercially available immunoassays.ResultsCortisol and ACTH levels decreased after every dive, while total testosterone decreased only after the first dive. No significant changes in post-dive values, as well as the cumulative effect on any other measured hormone, were observed. Although irisin and BDNF levels decreased after the first and third dives, the fifth dive caused a significant increase in both myokines. Changes in IGF-1 levels were not observed. All three dives caused a significant increase in S100B levels. A statistically significant decrease in GFAP concentration was observed after every dive, while NSE pre-dive concentration declined over the studied period. The cumulative effect on myokine levels was reflected in a continuous decline in irisin and BDNF pre-dive levels throughout the studied period, but an increasing trend after the fifth dive was observed.ConclusionsObserved changes in myokines and hormone levels point to a specific response to rSCUBA practiced once a week, most likely due to extreme environmental conditions. Further studies on communication between muscles and other organ systems, particularly on the muscle-brain endocrine loop, are required for a deeper understanding of the adaptation mechanisms to this kind of physiological stress.
Collapse
Affiliation(s)
- Marina Njire Braticevic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
- Correspondence: Marina Njire Braticevic
| | - Marko Zarak
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| | - Brankica Simac
- Clinical Department for Laboratory Diagnostics, Dubrava University Hospital, Zagreb, Croatia
| | - Antonija Perovic
- Department of Laboratory Diagnostics, Dubrovnik General Hospital, Dubrovnik, Croatia
| | - Jerka Dumic
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy and Biochemistry, University of Zagreb, Zagreb, Croatia
| |
Collapse
|
21
|
Berezin AA, Obradovic AB, Fushtey IM, Berezina TA, Lichtenauer M, Berezin AE. Low Plasma Levels of Irisin Predict Acutely Decompensated Heart Failure in Type 2 Diabetes Mellitus Patients with Chronic Heart Failure. J Cardiovasc Dev Dis 2023; 10:136. [PMID: 37103015 PMCID: PMC10144964 DOI: 10.3390/jcdd10040136] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/28/2023] Open
Abstract
The aim of this study was to determine the discriminative value of irisin for acutely decompensated heart failure (ADHF) in type 2 diabetes mellitus (T2DM) patients with chronic HF. We included 480 T2DM patients with any phenotype of HF and followed them for 52 weeks. Hemodynamic performances and the serum levels of biomarkers were detected at the study entry. The primary clinical end-point was ADHF that led to urgent hospitalization. We found that the serum levels of N-terminal natriuretic pro-peptide (NT-proBNP) were higher (1719 [980-2457] pmol/mL vs. 1057 [570-2607] pmol/mL, respectively) and the levels of irisin were lower (4.96 [3.14-6.85] ng/mL vs. 7.95 [5.73-9.16] ng/mL) in ADHF patients than in those without ADHF. The ROC curve analysis showed that the estimated cut-off point for serum irisin levels (ADHF versus non-ADHF) was 7.85 ng/mL (area under curve [AUC] = 0.869 (95% CI = 0.800-0.937), sensitivity = 82.7%, specificity = 73.5%; p = 0.0001). The multivariate logistic regression yielded that the serum levels of irisin < 7.85 ng/mL (OR = 1.20; p = 0.001) and NT-proBNP > 1215 pmol/mL (OR = 1.18; p = 0.001) retained the predictors for ADHF. Kaplan-Meier plots showed a significant difference of clinical end-point accumulations in patients with HF depending on irisin levels (<7.85 ng/mL versus ≥7.85 ng/mL). In conclusion, we established that decreased levels of irisin were associated with ADHF presentation in chronic HF patients with T2DM independently from NT-proBNP.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, 69096 Zaporozhye, Ukraine
| | | | - Ivan M. Fushtey
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, 69096 Zaporozhye, Ukraine
| | - Tetiana A Berezina
- Vita Center, Department of Internal Medicine and Nephrology, 69000 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
| | - Alexander E Berezin
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University, 5020 Salzburg, Austria
- Department of Internal Medicine, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
| |
Collapse
|
22
|
Berezina TA, Obradovic Z, Boxhammer E, Berezin AA, Lichtenauer M, Berezin AE. Adropin Predicts Chronic Kidney Disease in Type 2 Diabetes Mellitus Patients with Chronic Heart Failure. J Clin Med 2023; 12:2231. [PMID: 36983232 PMCID: PMC10059962 DOI: 10.3390/jcm12062231] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/20/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Adropin is a multifunctional secreted protein, which is involved in the metabolic modulation of the heart-brain-kidney axis in heart failure (HF). The aim of the study was to detect the plausible predictive value of serum levels of adropin for chronic kidney disease (CKD) grades 1-3 in type 2 diabetes mellitus (T2DM) patients with chronic HF. We enrolled 417 T2DM individuals with chronic HF and subdivided them into two groups depending on the presence of CKD. The control group was composed of 25 healthy individuals and 30 T2DM patients without HF and CKD. All eligible patients underwent an ultrasound examination. Adropin was detected by ELISA in blood samples at the study baseline. We found that adropin levels in T2DM patients without HF and CKD were significantly lower than in healthy volunteers, but they were higher than in T2DM patients with known HF. The optimal cut-off point for adropin levels was 2.3 ng/mL (area under the curve [AUC] = 0.86; 95% CI = 0.78-0.95; sensitivity = 81.3%, specificity = 77.4%). The multivariate logistic regression adjusted for albuminuria/proteinuria showed that serum levels of adropin <2.30 ng/mL (OR = 1.55; p = 0.001) independently predicted CKD. Conclusions: Low levels of adropin in T2DM patients with chronic CH seem to be an independent predictor of CKD at stages 1-3.
Collapse
Affiliation(s)
- Tetiana A. Berezina
- Department of Nephrology, “Vita Center”, 3, Sedov Str., 69000 Zaporozhye, Ukraine
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Alexander A. Berezin
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
- Department of Internal Medicine, Zaporozhye Medical Academy of Postgraduate Education, 20, Vinter Av., 69096 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University, Strubergasse 21, 5020 Salzburg, Austria
- Department of Internal Medicine, Zaporozhye State Medical University, 26, Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
23
|
Hsu CC, Wang JS, Shyu YC, Fu TC, Juan YH, Yuan SS, Wang CH, Yeh CH, Liao PC, Wu HY, Hsu PH. Hypermethylation of ACADVL is involved in the high-intensity interval training-associated reduction of cardiac fibrosis in heart failure patients. J Transl Med 2023; 21:187. [PMID: 36894992 PMCID: PMC9999524 DOI: 10.1186/s12967-023-04032-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Emerging evidence suggests that DNA methylation can be affected by physical activities and is associated with cardiac fibrosis. This translational research examined the implications of DNA methylation associated with the high-intensity interval training (HIIT) effects on cardiac fibrosis in patients with heart failure (HF). METHODS Twelve HF patients were included and received cardiovascular magnetic resonance imaging with late gadolinium enhancement for cardiac fibrosis severity and a cardiopulmonary exercise test for peak oxygen consumption ([Formula: see text]O2peak). Afterwards, they underwent 36 sessions of HIIT at alternating 80% and 40% of [Formula: see text]O2peak for 30 min per session in 3-4 months. Human serum from 11 participants, as a means to link cell biology to clinical presentations, was used to investigate the exercise effects on cardiac fibrosis. Primary human cardiac fibroblasts (HCFs) were incubated in patient serum, and analyses of cell behaviour, proteomics (n = 6) and DNA methylation profiling (n = 3) were performed. All measurements were conducted after completing HIIT. RESULTS A significant increase (p = 0.009) in [Formula: see text]O2peak (pre- vs. post-HIIT = 19.0 ± 1.1 O2 ml/kg/min vs. 21.8 ± 1.1 O2 ml/kg/min) was observed after HIIT. The exercise strategy resulted in a significant decrease in left ventricle (LV) volume by 15% to 40% (p < 0.05) and a significant increase in LV ejection fraction by approximately 30% (p = 0.010). LV myocardial fibrosis significantly decreased from 30.9 ± 1.2% to 27.2 ± 0.8% (p = 0.013) and from 33.4 ± 1.6% to 30.1 ± 1.6% (p = 0.021) in the middle and apical LV myocardium after HIIT, respectively. The mean single-cell migration speed was significantly (p = 0.044) greater for HCFs treated with patient serum before (2.15 ± 0.17 μm/min) than after (1.11 ± 0.12 μm/min) HIIT. Forty-three of 1222 identified proteins were significantly involved in HIIT-induced altered HCF activities. There was significant (p = 0.044) hypermethylation of the acyl-CoA dehydrogenase very long chain (ACADVL) gene with a 4.474-fold increase after HIIT, which could activate downstream caspase-mediated actin disassembly and the cell death pathway. CONCLUSIONS Human investigation has shown that HIIT is associated with reduced cardiac fibrosis in HF patients. Hypermethylation of ACADVL after HIIT may contribute to impeding HCF activities. This exercise-associated epigenetic reprogramming may contribute to reduce cardiac fibrosis and promote cardiorespiratory fitness in HF patients. TRIAL REGISTRATION NCT04038723. Registered 31 July 2019, https://clinicaltrials.gov/ct2/show/NCT04038723 .
Collapse
Affiliation(s)
- Chih-Chin Hsu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan.
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan.
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan.
| | - Jong-Shyan Wang
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
- Institute of Rehabilitation Science, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Tieh-Cheng Fu
- Department of Physical Medicine and Rehabilitation, Keelung Chang Gung Memorial Hospital, No. 200, Lane 208, Jijin 1St Rd., Anle Dist, Keelung, 204, Taiwan
| | - Yu-Hsiang Juan
- Department of Medical Imaging and intervention, Linkou and Taoyuan Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, 115, Taiwan
| | - Chao-Hung Wang
- Department of Cardiology, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Chi-Hsiao Yeh
- School of Medicine, College of Medicine, Chang Gung University, Taoyuan, 333, Taiwan
- Division of Thoracic and Cardiovascular Surgery, Linkou Chang Gung Memorial Hospital, Taoyuan, 333, Taiwan
| | - Po-Cheng Liao
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, 204, Taiwan
| | - Hsin-Yi Wu
- Instrumentation Center, National Taiwan University, Taipei, 106, Taiwan
| | - Pang-Hung Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, No. 2, Beining Rd., Zhongzheng Dist., Keelung, 202, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, 202, Taiwan.
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, 112, Taiwan.
| |
Collapse
|
24
|
Berezin AA, Obradovic Z, Berezina TA, Boxhammer E, Lichtenauer M, Berezin AE. Cardiac Hepatopathy: New Perspectives on Old Problems through a Prism of Endogenous Metabolic Regulations by Hepatokines. Antioxidants (Basel) 2023; 12:antiox12020516. [PMID: 36830074 PMCID: PMC9951884 DOI: 10.3390/antiox12020516] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/12/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Cardiac hepatopathy refers to acute or chronic liver damage caused by cardiac dysfunction in the absence of any other possible causative reasons of liver injury. There is a large number of evidence of the fact that cardiac hepatopathy is associated with poor clinical outcomes in patients with acute or actually decompensated heart failure (HF). However, the currently dominated pathophysiological background does not explain a role of metabolic regulative proteins secreted by hepatocytes in progression of HF, including adverse cardiac remodeling, kidney injury, skeletal muscle dysfunction, osteopenia, sarcopenia and cardiac cachexia. The aim of this narrative review was to accumulate knowledge of hepatokines (adropin; fetuin-A, selenoprotein P, fibroblast growth factor-21, and alpha-1-microglobulin) as adaptive regulators of metabolic homeostasis in patients with HF. It is suggested that hepatokines play a crucial, causative role in inter-organ interactions and mediate tissue protective effects counteracting oxidative stress, inflammation, mitochondrial dysfunction, apoptosis and necrosis. The discriminative potencies of hepatokines for HF and damage of target organs in patients with known HF is under on-going scientific discussion and requires more investigations in the future.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 69000 Zaporozhye, Ukraine
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Zeljko Obradovic
- Klinik Barmelweid, Department of Psychosomatic Medicine and Psychotherapy, 5017 Barmelweid, Switzerland
| | - Tetiana A. Berezina
- Department of Internal Medicine & Nephrology, VitaCenter, 69000 Zaporozhye, Ukraine
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Alexander E. Berezin
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
- Internal Medicine Department, Zaporozhye State Medical University, 69035 Zaporozhye, Ukraine
- Correspondence:
| |
Collapse
|
25
|
Muacevic A, Adler JR. The Importance of Diaphragmatic Function in Neuromuscular Expression in Patients With Chronic Heart Failure. Cureus 2023; 15:e34629. [PMID: 36751571 PMCID: PMC9899102 DOI: 10.7759/cureus.34629] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2023] [Indexed: 02/05/2023] Open
Abstract
Chronic heart failure (CHF) is a set of symptoms and physical manifestations caused by the inability of the heart to perform its normal contractile function and satisfy the blood needs of all organs. This dysfunction leads to a non-physiological adaptation of all body systems, including the skeletal muscles and the diaphragm. The myopathy found in patients brings symptoms such as fatigue and intolerance to exercise, with an entity not always attributable to cardiac function. Neuromuscular incoordination is one of the symptoms related to CHF, causing an increased risk of mortality and hospitalization. The article reviews diaphragmatic adaptation in the presence of CHF and seeks to emphasize the importance of the diaphragm in understanding skeletal muscle incoordination in patients.
Collapse
|
26
|
Drapkina OM, Skripnikova IA, Yaralieva EK, Myasnikov RP. Body composition in patients with heart failure. КАРДИОВАСКУЛЯРНАЯ ТЕРАПИЯ И ПРОФИЛАКТИКА 2023. [DOI: 10.15829/1728-8800-2022-3451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The redistribution of body composition components in heart failure (CHF) is an urgent and poorly understood issue. Despite the significant impact of a decrease in muscle mass, redistribution of fat mass on the course and prognosis of HF, body composition is rarely taken into account in the treatment of this disease. In this regard, the purpose of this review was to systematize the available data and draw the attention of clinicians to this problem. The data presented in the review make it possible to consider the components of body composition as controllable factors, the normalization of which improves the prognosis in patients with HF. The study of pathophysiological mechanisms for the development of body composition anomalies in HF will make it possible to search for new therapeutic targets. Assessment of body composition will make it possible to develop an individual strategy for the treatment of HF, including a set of non-drug measures.
Collapse
Affiliation(s)
- O. M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine
| | - I. A. Skripnikova
- National Medical Research Center for Therapy and Preventive Medicine
| | - E. K. Yaralieva
- National Medical Research Center for Therapy and Preventive Medicine
| | - R. P. Myasnikov
- National Medical Research Center for Therapy and Preventive Medicine
| |
Collapse
|
27
|
Inflammageing and Cardiovascular System: Focus on Cardiokines and Cardiac-Specific Biomarkers. Int J Mol Sci 2023; 24:ijms24010844. [PMID: 36614282 PMCID: PMC9820990 DOI: 10.3390/ijms24010844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The term "inflammageing" was introduced in 2000, with the aim of describing the chronic inflammatory state typical of elderly individuals, which is characterized by a combination of elevated levels of inflammatory biomarkers, a high burden of comorbidities, an elevated risk of disability, frailty, and premature death. Inflammageing is a hallmark of various cardiovascular diseases, including atherosclerosis, hypertension, and rapid progression to heart failure. The great experimental and clinical evidence accumulated in recent years has clearly demonstrated that early detection and counteraction of inflammageing is a promising strategy not only to prevent cardiovascular disease, but also to slow down the progressive decline of health that occurs with ageing. It is conceivable that beneficial effects of counteracting inflammageing should be most effective if implemented in the early stages, when the compensatory capacity of the organism is not completely exhausted. Early interventions and treatments require early diagnosis using reliable and cost-effective biomarkers. Indeed, recent clinical studies have demonstrated that cardiac-specific biomarkers (i.e., cardiac natriuretic peptides and cardiac troponins) are able to identify, even in the general population, the individuals at highest risk of progression to heart failure. However, further clinical studies are needed to better understand the usefulness and cost/benefit ratio of cardiac-specific biomarkers as potential targets in preventive and therapeutic strategies for early detection and counteraction of inflammageing mechanisms and in this way slowing the progressive decline of health that occurs with ageing.
Collapse
|
28
|
Ramírez-Vélez R, González A, García-Hermoso A, Amézqueta IL, Izquierdo M, Díez J. Revisiting skeletal myopathy and exercise training in heart failure: Emerging role of myokines. Metabolism 2023; 138:155348. [PMID: 36410495 DOI: 10.1016/j.metabol.2022.155348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022]
Abstract
Exercise intolerance remains a major unmet medical need in patients with heart failure (HF). Skeletal myopathy is currently considered as the major limiting factor for exercise capacity in HF patients. On the other hand, emerging evidence suggest that physical exercise can decrease morbidity and mortality in HF patients. Therefore, mechanistic insights into skeletal myopathy may uncover critical aspects for therapeutic interventions to improve exercise performance in HF. Emerging data reviewed in this article suggest that the assessment of circulating myokines (molecules synthesized and secreted by skeletal muscle in response to contraction that display autocrine, paracrine and endocrine actions) may provide new insights into the pathophysiology, phenotyping and prognostic stratification of HF-related skeletal myopathy. Further studies are required to determine whether myokines may also serve as biomarkers to personalize the modality and dose of physical training prescribed for patients with HF and exercise intolerance. In addition, the production and secretion of myokines in patients with HF may interact with systemic alterations (e.g., inflammation and metabolic disturbances), frequently present in patients with HF. Furthermore, myokines may exert beneficial or detrimental effects on cardiac structure and function, which may influence adverse cardiac remodelling and clinical outcomes in HF patients. Collectively, these data suggest that a deeper knowledge on myokines regulation and actions may lead to the identification of novel physical exercise-based therapeutic approaches for HF patients.
Collapse
Affiliation(s)
- Robinson Ramírez-Vélez
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain
| | - Arantxa González
- Institute for Health Research of Navarra (IDISNA), Pamplona, Spain; Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain
| | - Antonio García-Hermoso
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain
| | - Iñigo Latasa Amézqueta
- Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain
| | - Mikel Izquierdo
- Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Spain; CIBERFES, Carlos III Institute of Health, Madrid, Spain; Institute for Health Research of Navarra (IDISNA), Pamplona, Spain.
| | - Javier Díez
- Institute for Health Research of Navarra (IDISNA), Pamplona, Spain; Program of Cardiovascular Diseases, Center of Applied Medical Research (CIMA), Universidad deNavarra, Pamplona, Spain; CIBERCV, Carlos III Institute of Health, Madrid, Spain.
| |
Collapse
|
29
|
da Silva ML, de Sousa Neto IV, de Lima ACGB, Barin F, de Toledo Nóbrega O, de Cássia Marqueti R, Cipriano GFB, Durigan JLQ, Ferreira EA, Bottaro M, Arena R, Cahalin LP, Neder JA, Junior GC. Effects of Home-Based Electrical Stimulation on Plasma Cytokines Profile, Redox Biomarkers, and Metalloproteinases in the Heart Failure with Reduced Ejection Fraction: A Randomized Trial. J Cardiovasc Dev Dis 2022; 9:jcdd9120463. [PMID: 36547460 PMCID: PMC9785395 DOI: 10.3390/jcdd9120463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 10/01/2022] [Accepted: 10/20/2022] [Indexed: 12/23/2022] Open
Abstract
Background: Low-frequency electrical stimulation (LFES) is an adjuvant method for heart failure (HF) patients with restrictions to start an exercise. However, the impact on molecular changes in circulating is unknown. We investigated the effects of 10 weeks of home-based LFES on plasma cytokines profile, redox biomarkers, metalloproteinases (MMPs) activity, and exercise performance in HF patients. Methods: Twenty-four HF patients (52.45 ± 9.15 years) with reduced ejection fraction (HFrEF) (EF < 40%), were randomly assigned to a home-based LFES or sham protocol. Plasma cytokines profile was assessed through interleukins, interferon-gamma, and tumor necrosis factor levels. Oxidative stress was evaluated through ferric reducing antioxidant power, thiobarbituric acid-reactive substances, and inducible nitric oxide synthase. The MMPs activity were analyzed by zymography. Cardiorespiratory capacity and muscle strength were evaluated by cardiopulmonary test and isokinetic. Results: LFES was able to increase the active-MMP2 activity post compared to pre-training (0.057 to 0.163, p = 0.0001), while it decreased the active-MMP9 (0.135 to 0.093, p = 0.02). However, it did not elicit changes in cytokines, redox biomarkers, or exercise performance (p > 0.05). Conclusion: LFES protocol is a promising intervention to modulate MMPs activity in HFrEF patients, although with limited functional effects. These preliminary responses may help the muscle to adapt to future mechanical demands dynamically.
Collapse
Affiliation(s)
- Marianne Lucena da Silva
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Health Sciences Academic Unit, Federal University of Jataí, Jataí 75801-615, GO, Brazil
| | - Ivo Vieira de Sousa Neto
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Alexandra C. G. B. de Lima
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Fabrício Barin
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Otávio de Toledo Nóbrega
- Department of Medicine, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Rita de Cássia Marqueti
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Graziella F. B. Cipriano
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - João Luiz Quagliotti Durigan
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Eduardo Antônio Ferreira
- Department of Pharmacy, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
| | - Martim Bottaro
- Department of Physical Education, University of Brasilia (UnB), Campus Universitário Darcy Ribeiro, Asa Norte, Brasilia 70910-900, DF, Brazil
| | - Ross Arena
- Department of Physical Therapy, University of Illinois, 1919 W Taylor St., Chicago, IL 60612, USA
| | - Larry P. Cahalin
- Department of Physical Therapy, Leonard M. Miller School of Medicine, University of Miami, 5915 Ponce de Leon Blvd., 5th Floor, Coral Gables, FL 33101, USA
| | - José Alberto Neder
- Department of Medicine, School of Medicine at the Queen’s University, Queen’s University & Kingston General Hospital, Etherington Hall, Rooms 3032-3043, 94 Stuart Street, Kingston, ON K7L 3N6, Canada
| | - Gerson Cipriano Junior
- Rehabilitation Sciences and Health Sciences and Technologies Ph.D. Program, University of Brasilia (UnB), Campus Universitário, s/n, Centro Metropolitano, Brasilia 72220-275, DF, Brazil
- Correspondence:
| |
Collapse
|
30
|
Chiang JY, Lin L, Wu CC, Hwang JJ, Yang WS, Wu YW. Serum myostatin level is associated with myocardial scar burden by SPECT myocardial perfusion imaging. Clin Chim Acta 2022; 537:9-15. [DOI: 10.1016/j.cca.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022]
|
31
|
Torregrosa C, Chorin F, Beltran EEM, Neuzillet C, Cardot-Ruffino V. Physical Activity as the Best Supportive Care in Cancer: The Clinician's and the Researcher's Perspectives. Cancers (Basel) 2022; 14:5402. [PMID: 36358820 PMCID: PMC9655932 DOI: 10.3390/cancers14215402] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/27/2022] [Accepted: 10/31/2022] [Indexed: 08/11/2023] Open
Abstract
Multidisciplinary supportive care, integrating the dimensions of exercise alongside oncological treatments, is now regarded as a new paradigm to improve patient survival and quality of life. Its impact is important on the factors that control tumor development, such as the immune system, inflammation, tissue perfusion, hypoxia, insulin resistance, metabolism, glucocorticoid levels, and cachexia. An increasing amount of research has been published in the last years on the effects of physical activity within the framework of oncology, marking the appearance of a new medical field, commonly known as "exercise oncology". This emerging research field is trying to determine the biological mechanisms by which, aerobic exercise affects the incidence of cancer, the progression and/or the appearance of metastases. We propose an overview of the current state of the art physical exercise interventions in the management of cancer patients, including a pragmatic perspective with tips for routine practice. We then develop the emerging mechanistic views about physical exercise and their potential clinical applications. Moving toward a more personalized, integrated, patient-centered, and multidisciplinary management, by trying to understand the different interactions between the cancer and the host, as well as the impact of the disease and the treatments on the different organs, this seems to be the most promising method to improve the care of cancer patients.
Collapse
Affiliation(s)
- Cécile Torregrosa
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- Département de Chirurgie Digestive et Oncologique, Hôpital Universitaire Ambroise Paré, Assistance Publique-Hôpitaux de Paris, 9 avenue Charles de Gaulle, 92100 Boulogne Billancourt, France
| | - Frédéric Chorin
- Laboratoire Motricité Humaine, Expertise, Sport, Santé (LAMHESS), HEALTHY Graduate School, Université Côte d’Azur, 06205 Nice, France
- Clinique Gériatrique du Cerveau et du Mouvement, Centre Hospitalier Universitaire de Nice, Université Côte d’Azur, 06205 Nice, France
| | - Eva Ester Molina Beltran
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
| | - Cindy Neuzillet
- Oncologie Digestive, Département d’Oncologie Médicale Institut Curie, Université Versailles Saint-Quentin—Université Paris Saclay, 35, rue Dailly, 92210 Saint-Cloud, France
- GERCOR, 151 rue du Faubourg Saint-Antoine, 75011 Paris, France
| | - Victoire Cardot-Ruffino
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
- Department of Immunology, Harvard Medical School, Boston, MA 02215, USA
| |
Collapse
|
32
|
Bosanac J, Straus L, Novaković M, Košuta D, Božič Mijovski M, Tasič J, Jug B. HFpEF and Atrial Fibrillation: The Enigmatic Interplay of Dysmetabolism, Biomarkers, and Vascular Endothelial Dysfunction. DISEASE MARKERS 2022; 2022:9539676. [PMID: 36330203 PMCID: PMC9626230 DOI: 10.1155/2022/9539676] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/20/2022] [Indexed: 12/22/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) has a complex pathophysiology that encompasses systemic proinflammatory state and dysregulated levels of cardiometabolic and oxidative stress biomarkers. The prevalence of both HFpEF and atrial fibrillation (AF) is continuously rising, especially in the elderly. The aim of our study was to explore if there were any differences in biomarker levels and vascular function in the elderly patients with HFpEF with and without AF and to assess interconnections between clinically relevant biomarkers and cardiac and vascular function. METHODS This was a cross-sectional study of patients ≥ 65 years with HFpEF who were divided into 2 groups based on the presence or absence of AF. We have sonographically assessed echocardiographic parameters of left ventricular systolic and diastolic function and the peripheral vascular function parameters, namely, pulse wave velocity (PWV) and flow-mediated dilation (FMD). NT-proBNP, irisin, leptin, adiponectin, insulin-like growth factor 1 (IGF-1), and malondialdehyde (MDA) blood levels were determined. RESULTS Fifty-two patients (mean age 80 ± 7 years, 67% females) were included. Patients with HFpEF and AF had significantly lower levels of irisin (median 4.75 vs. 13.5 ng/mL, p = 0.007), leptin (median 9.5 vs. 15.0 ng/L, p = 0.023), and MDA (median 293 vs. 450 ng/mL, p = 0.017) and significantly higher values of NT-proBNP (median 2365 vs. 529 ng/L, p < 0.001) but not vascular function parameters, as compared to HFpEF patients without AF. MDA was significantly correlated with diastolic function (r = 0.395, p = 0.007) and FMD (r = 0.394, p = 0.011), while adiponectin was inversely associated with FMD (r = -0.325, p = 0.038) and left ventricular ejection fraction (r = -0.319, p = 0.029). CONCLUSIONS Our results have demonstrated that patients with HFpEF and AF have significantly lower leptin, irisin, and MDA levels compared to patients with HFpEF but without AF. These results offer new insights into the complexity of vascular function and cardiometabolic and oxidative stress biomarkers in the context of HFpEF, AF, and aging.
Collapse
Affiliation(s)
- Jure Bosanac
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Lara Straus
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Marko Novaković
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Department of Vascular Diseases, Ljubljana, Slovenia
| | - Daniel Košuta
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Department of Vascular Diseases, Ljubljana, Slovenia
| | - Mojca Božič Mijovski
- University Medical Centre Ljubljana, Department of Vascular Diseases, Ljubljana, Slovenia
| | - Jerneja Tasič
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Department of Vascular Diseases, Ljubljana, Slovenia
| | - Borut Jug
- University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
- University Medical Centre Ljubljana, Department of Vascular Diseases, Ljubljana, Slovenia
| |
Collapse
|
33
|
García-Carrizo F, Galmés S, Picó C, Palou A, Rodríguez AM. Supplementation with the Prebiotic High-Esterified Pectin Improves Blood Pressure and Cardiovascular Risk Biomarker Profile, Counteracting Metabolic Malprogramming. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:13200-13211. [PMID: 36214580 PMCID: PMC9585587 DOI: 10.1021/acs.jafc.2c03143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/01/2023]
Abstract
Supplementation with the prebiotic pectin is associated with beneficial health effects. We aimed to characterize the cardioprotective actions of chronic high-esterified pectin (HEP) supplementation (10%) in a model of metabolic malprogramming in rats, prone to obesity and associated disorders: the progeny of mild calorie-restricted dams during the first half of pregnancy. Results show that pectin supplementation reverses metabolic malprogramming associated with gestational undernutrition. In this sense, HEP supplementation improved blood pressure, reduced heart lipid content, and regulated cardiac gene expression of atrial natriuretic peptide and lipid metabolism-related genes. Moreover, it caused an elevation in circulating levels of fibroblast growth factor 21 and a higher expression of its co-receptor β-klotho in the heart. Most effects are correlated with the gut levels of beneficial bacteria promoted by HEP. Therefore, chronic HEP supplementation shows cardioprotective actions, and hence, it is worth considering as a strategy to prevent programmed cardiometabolic alterations.
Collapse
Affiliation(s)
- Francisco García-Carrizo
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Department
of Adipocyte Development and Nutrition (ADE), German Institute of Human Nutrition (DIfE), 14558 Potsdam-Rehbrücke, Germany
| | - Sebastià Galmés
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Catalina Picó
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Andreu Palou
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| | - Ana María Rodríguez
- Laboratory
of Molecular Biology, Nutrition and Biotechnology (Nutrigenomics,
Biomarkers and Risk Evaluation−NuBE), University of the Balearic Islands, 07122 Palma, Spain
- Health
Research Institute of the Balearic Islands (IdISBa), 07120 Palma, Spain
- Centro
de Investigación Biomédica en Red de Fisiopatología
de la Obesidad y Nutrición, Instituto
de Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
34
|
Berezin AA, Lichtenauer M, Boxhammer E, Stöhr E, Berezin AE. Discriminative Value of Serum Irisin in Prediction of Heart Failure with Different Phenotypes among Patients with Type 2 Diabetes Mellitus. Cells 2022; 11:2794. [PMID: 36139374 PMCID: PMC9496790 DOI: 10.3390/cells11182794] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 11/22/2022] Open
Abstract
Recent studies have shown that circulating levels of irisin are prognostic factors in heart failure (HF), but no data are available on the predictive role of irisin in patients with type 2 diabetes mellitus (T2DM) and different phenotypes of HF. The aim of the study was to investigate whether serum levels of irisin predict HF in T2DM patients. We prospectively included 183 participants with T2DM aged 41 to 62 years (30 non-HF patients and 153 HF patients) and 25 healthy volunteers in the study and evaluated clinical data, hemodynamics and biomarkers (N-terminal pro-brain natriuretic peptide (NT-proBNP) and irisin). Serum levels of irisin < 8.30 ng/mL were found to be a better indicator of HF with reduced ejection fraction (HFrEF) than irisin ≥ 8.30 ng/mL, but the predictive cut-off point for NT-proBNP remained the same as for HF with mildly reduced ejection fraction (HFmrEF). Serum levels of irisin < 10.4 ng/mL significantly improved the predictive ability of NT-proBNP for HF with preserved ejection fraction (HFpEF). In conclusion, we found that decreased serum levels of irisin significantly predicted HFpEF, rather than HFmrEF and HFrEF, in T2DM patients. This finding may open a new approach to HF risk stratification in T2DM patients.
Collapse
Affiliation(s)
- Alexander A. Berezin
- Internal Medicine Department, Zaporozhye Medical Academy of Postgraduate Education, 20, Vinter Av., 69096 Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Elke Boxhammer
- Department of Internal Medicine II, Division of Cardiology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria
| | - Eric Stöhr
- COR-HELIX (CardiOvascular Regulation and Human Exercise Laboratory—Integration and Xploration), Leibniz University Hannover, 30167 Hannover, Germany
| | - Alexander E. Berezin
- Internal Medicine Department, Zaporozhye State Medical University, 26, Mayakovsky Av., 69035 Zaporozhye, Ukraine
| |
Collapse
|
35
|
Wang R, Duan J, Liu W, Huang K, Chen Z, Yang C, Yang L. The Role of Sarcopenia in Heart Failure with Depression. Rev Cardiovasc Med 2022; 23:296. [PMID: 39077715 PMCID: PMC11262375 DOI: 10.31083/j.rcm2309296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 07/31/2024] Open
Abstract
Heart failure (HF) and depression are both major medical health issues in our society. Currently, an increasing number of studies demonstrate an association between HF and depression. The prevalence of depression is higher in patients with HF, and depression also increases the incidence of HF. Currently, depression has been listed as a major risk factor for heart disease. Patients with HF and comorbid depression have significantly higher rates of hospitalization and mortality, and clinical symptoms manifest as decreased activity tolerance and decreased muscle mass. Enhancement of the muscle function improves the prognosis of patients with HF and depression. Sarcopenia is defined as age-related loss of skeletal muscle mass plus loss of muscle strength and/or reduced physical performance, and its pathogenesis involves malnutrition, physical inactivity, endocrine disorders and chronic inflammation, which are also involved in the pathogenesis of HF with comorbid depression. Therefore, it would be intriguing to explore the linkage between HF, depression and sarcopenia. This review presents an overview of HF with comorbid depression and sarcopenia, elucidates the mechanisms involved in these disorders, and finally summarizes the treatment strategies of HF with comorbid depression and sarcopenia.
Collapse
Affiliation(s)
- Ruting Wang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Jiahao Duan
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Wei Liu
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Kai Huang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| | - Zijun Chen
- Department of Cardiology, Shanghai East Hospital, School of Medicine, Tongji University, 200092 Shanghai, China
| | - Chun Yang
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, Jiangsu, China
| | - Ling Yang
- Department of Cardiology, The Third Affiliated Hospital of Soochow University, 213003 Changzhou, Jiangsu, China
| |
Collapse
|
36
|
The Effect of SGLT2 Inhibitor Dapagliflozin on Serum Levels of Apelin in T2DM Patients with Heart Failure. Biomedicines 2022; 10:biomedicines10071751. [PMID: 35885056 PMCID: PMC9313111 DOI: 10.3390/biomedicines10071751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/15/2022] [Accepted: 07/19/2022] [Indexed: 11/17/2022] Open
Abstract
Apelin is a multifunctional peptide that plays a pivotal role in cardiac remodeling and HF manifestation because of counteracting angiotensin-II. We hypothesized that positive influence of sodium-glucose co-transporter-2 (SGLT2) inhibitor on cardiac function in T2DM patients with HF might be mediated by apelin and that its levels seem to be a target of management. A total of 153 type 2 diabetes mellitus (T2DM) patients with II/III HF NYHA class and average left ventricular (LV) ejection fraction (EF) of 46% have been enrolled and treated with dapagliflosin. The serum levels of apelin and N-terminal brain natriuretic pro-peptide (NT-proBNP) were measured at baseline and over a 6-month period of dapagliflosin administration. We noticed that administration of dapagliflozin was associated with a significant increase in apelin levels of up to 18.3% and a decrease in NT-proBNP of up to 41.0%. Multivariate logistic regression showed that relative changes of LVEF, LA volume index, and early diastolic blood filling to longitudinal strain ratio were strongly associated with the levels of apelin, whereas NT-proBNP exhibited a borderline significance in this matter. In conclusion, dapagiflosin exerted a positive impact on echocardiographic parameters in close association with an increase in serum apelin levels, which could be a surrogate target for HF management.
Collapse
|
37
|
Ksela J, Rupert L, Djordjevic A, Antonic M, Avbelj V, Jug B. Altered Heart Rate Turbulence and Variability Parameters Predict 1-Year Mortality in Heart Failure with Preserved Ejection Fraction. J Cardiovasc Dev Dis 2022; 9:213. [PMID: 35877575 PMCID: PMC9321795 DOI: 10.3390/jcdd9070213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/16/2022] [Accepted: 06/27/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a complex and heterogeneous clinical syndrome. In the absence of effective and potent treatment strategies, the main challenge in HFpEF management remains the availability of strong predictors of unfavourable outcomes. In our study, we sought to evaluate the potential prognostic value of heart rate turbulence (HRT) and variability (HRV) parameters on mortality in ambulatory HFpEF patients. METHODS This was a case-control study comparing HRT and HRV parameters in HFpEF survivors vs. non-survivors. Patients from the RESPOND Heart Failure Registry with HFpEF who underwent 24 h ECG monitoring (Holter) were included; HRT parameters (i.e., turbulence onset (TO) and turbulence slope (TS)) and HRV parameters (i.e., standard deviation of NN intervals (SDNN)) derived from 24 h Holter ECGs were calculated in patients who died within 12 months, and compared to their age-, gender-, LVEF-, ECHO-, aetiology-, and therapy-matched alive controls. RESULTS A total of 22 patients (mean age 80 ± 7 years, 18% female, mean LVEF 57 ± 9%) were included in the final analysis. In deceased patients, values of TO were significantly higher, and values of TS and SDNN were significantly lower as compared to survivors. CONCLUSIONS HRT and HRV parameters have the ability to differentiate individuals with HFpEF who are at the greatest risk of unfavourable outcomes. The extent of autonomic disbalance as determined by HRT and HRV could potentially assist in the prognostic assessment and risk stratification of HFpEF patients.
Collapse
Affiliation(s)
- Jus Ksela
- Department of Cardiovascular Surgery, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
| | - Lea Rupert
- Department of Anaesthesiology and Perioperative Intensive Therapy, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia;
| | - Anze Djordjevic
- Department of Cardiac Surgery, University Medical Centre Maribor, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Miha Antonic
- Department of Cardiac Surgery, University Medical Centre Maribor, 2000 Maribor, Slovenia;
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - Viktor Avbelj
- Department of Communication Systems, Jozef Stefan Institute, 1000 Ljubljana, Slovenia;
| | - Borut Jug
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia;
- Department of Vascular Diseases, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
38
|
Berezin AA, Lichtenauer M, Boxhammer E, Fushtey IM, Berezin AE. Serum Levels of Irisin Predict Cumulative Clinical Outcomes in Heart Failure Patients With Type 2 Diabetes Mellitus. Front Physiol 2022; 13:922775. [PMID: 35651870 PMCID: PMC9149086 DOI: 10.3389/fphys.2022.922775] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 04/27/2022] [Indexed: 01/15/2023] Open
Abstract
Background: The aim of this study was to investigate the role of serum irisin level in predicting clinical outcome in heart failure (HF) patients with type 2 diabetes mellitus (T2DM).Methods: 153 T2DM patients with HF aged 41–62 years were prospectively recruited for the study. Serum levels of irisin and NT-proBNP were measured by ELISA. Laboratory tests including HbA1c, fasting glucose, blood creatinine, insulin, lipids and creatinine with estimation of GFR were performed along with echocardiography at baseline. The observation period was 56 weeks.Results: We identified 76 composite cardiovascular (CV) outcomes, which included CV death and death from all causes, resuscitated cardiac death, non-fatal/fatal acute myocardial infarction or stroke, and HF hospitalization. Therefore, the entire patient cohort was divided into 2 groups with (n = 76) and without (n = 77) composite CV outcomes. We found that the concentrations of NT-proBNP were higher in HF patients with T2DM who had a CV composite outcome than in patients without CV composite outcome (p = 0.001). In contrast, the relationship was exactly reversed for irisin, as HF and T2DM patients with CV composite outcome had significantly lower irisin levels (p = 0.001). Unadjusted multivariate Cox regression analyses showed that LVEF < 40%, LAVI > 39 ml/m2, NT-proBNP > 2,250 pmol/ml, and irisin < 6.50 ng/ml were the strongest predictors of CV outcomes in HF patients with T2DM. After adjustment for LVEF, serum levels of NT-proBNP and irisin remained independent predictors of end points. Furthermore, divergence of Kaplan-Meier curves pointed out that patients with NT-proBNP > 2,250 pmol/ml and irisin < 6.50 ng/ml had worse prognosis than those with any other compartment of the bomarkers’ levels.Conclusion: Adding irisin to NT-proBNP significantly improved discriminative value of the whole model. HF patients with T2DM had significantly worse clinical outcomes when showing the constellation NT-proBNP > 2,250 pmol/ml and irisin < 6.50 ng/ml, respectively, in comparison to patients with opposite trends for both biomarkers.
Collapse
Affiliation(s)
| | - Michael Lichtenauer
- Department of Internal Medicine IIDivision of Cardiology, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Elke Boxhammer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| | - Ivan M. Fushtey
- Department of Therapy and Endocrinology, Zaporozhye Medical Academy of Postgraduate Education, Zaporozhye, Ukraine
| | - Alexander E. Berezin
- Internal Medicine Department, State Medical University of Zaporozhye, Zaporozhye, Ukraine
- *Correspondence: Alexander E. Berezin,
| |
Collapse
|
39
|
Myokines and Resistance Training: A Narrative Review. Int J Mol Sci 2022; 23:ijms23073501. [PMID: 35408868 PMCID: PMC8998961 DOI: 10.3390/ijms23073501] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
In the last few years, the muscular system has gained attention due to the discovery of the muscle-secretome and its high potency for retaining or regaining health. These cytokines, described as myokines, released by the working muscle, are involved in anti-inflammatory, metabolic and immunological processes. These are able to influence human health in a positive way and are a target of research in metabolic diseases, cancer, neurological diseases, and other non-communicable diseases. Therefore, different types of exercise training were investigated in the last few years to find associations between exercise, myokines and their effects on human health. Particularly, resistance training turned out to be a powerful stimulus to enhance myokine release. As there are different types of resistance training, different myokines are stimulated, depending on the mode of training. This narrative review gives an overview about resistance training and how it can be utilized to stimulate myokine production in order to gain a certain health effect. Finally, the question of why resistance training is an important key regulator in human health will be discussed.
Collapse
|
40
|
Renzini A, D’Onghia M, Coletti D, Moresi V. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs. Front Physiol 2022; 13:706003. [PMID: 35250605 PMCID: PMC8895239 DOI: 10.3389/fphys.2022.706003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 01/31/2022] [Indexed: 12/14/2022] Open
Abstract
Skeletal muscle plays a major role in controlling body mass and metabolism: it is the most abundant tissue of the body and a major source of humoral factors; in addition, it is primarily responsible for glucose uptake and storage, as well as for protein metabolism. Muscle acts as a metabolic hub, in a crosstalk with other organs and tissues, such as the liver, the brain, and fat tissue. Cytokines, adipokines, and myokines are pivotal mediators of such crosstalk. Many of these circulating factors modulate histone deacetylase (HDAC) expression and/or activity. HDACs form a numerous family of enzymes, divided into four classes based on their homology to their orthologs in yeast. Eleven family members are considered classic HDACs, with a highly conserved deacetylase domain, and fall into Classes I, II, and IV, while class III members are named Sirtuins and are structurally and mechanistically distinct from the members of the other classes. HDACs are key regulators of skeletal muscle metabolism, both in physiological conditions and following metabolic stress, participating in the highly dynamic adaptative responses of the muscle to external stimuli. In turn, HDAC expression and activity are closely regulated by the metabolic demands of the skeletal muscle. For instance, NAD+ levels link Class III (Sirtuin) enzymatic activity to the energy status of the cell, and starvation or exercise affect Class II HDAC stability and intracellular localization. SUMOylation or phosphorylation of Class II HDACs are modulated by circulating factors, thus establishing a bidirectional link between HDAC activity and endocrine, paracrine, and autocrine factors. Indeed, besides being targets of adipo-myokines, HDACs affect the synthesis of myokines by skeletal muscle, altering the composition of the humoral milieu and ultimately contributing to the muscle functioning as an endocrine organ. In this review, we discuss recent findings on the interplay between HDACs and circulating factors, in relation to skeletal muscle metabolism and its adaptative response to energy demand. We believe that enhancing knowledge on the specific functions of HDACs may have clinical implications leading to the use of improved HDAC inhibitors for the treatment of metabolic syndromes or aging.
Collapse
Affiliation(s)
- Alessandra Renzini
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Marco D’Onghia
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
| | - Dario Coletti
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Biological Adaptation and Ageing, Institut de Biologie Paris-Seine, Sorbonne Université, Paris, France
| | - Viviana Moresi
- Unit of Histology and Medical Embryology, Department of Anatomy, Histology, Forensic Medicine and Orthopedics, Sapienza University of Rome, Rome, Italy
- Institute of Nanotechnology (Nanotec), National Research Council, Rome, Italy
| |
Collapse
|
41
|
Review of Novel Potential Insulin Resistance Biomarkers in PCOS Patients—The Debate Is Still Open. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042099. [PMID: 35206286 PMCID: PMC8871992 DOI: 10.3390/ijerph19042099] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 01/27/2022] [Accepted: 02/09/2022] [Indexed: 12/12/2022]
Abstract
Research on proteins and peptides that play roles in metabolic regulation, which may be considered potential insulin resistance markers in some medical conditions, such as diabetes mellitus, obesity and polycystic ovarian syndrome (PCOS), has recently gained in interest. PCOS is a common endocrine disorder associated with hyperandrogenemia and failure of ovulation, which is often accompanied by metabolic abnormalities, including obesity, dyslipidemia, hyperinsulinemia, and insulin resistance. In this review, we focus on less commonly known peptides/proteins and investigate their role as potential biomarkers for insulin resistance in females affected by PCOS. We summarize studies comparing the serum fasting concentration of particular agents in PCOS individuals and healthy controls. Based on our analysis, we propose that, in the majority of studies, the levels of nesfastin-1, myonectin, omentin, neudesin were decreased in PCOS patients, while the levels of the other considered agents (e.g., preptin, gremlin-1, neuregulin-4, xenopsin-related peptide, xenin-25, and galectin-3) were increased. However, there also exist studies presenting contrary results; in particular, most data existing for lipocalin-2 are inconsistent. Therefore, further research is required to confirm those hypotheses, as well as to elucidate the involvement of these factors in PCOS-related metabolic complications.
Collapse
|
42
|
Latasa Amézqueta Í, Ramírez-Vélez R, Izquierdo M, Díez J. Miopatía esquelética en la insuficiencia cardiaca. Implicación potencial de las miocinas. Rev Esp Cardiol (Engl Ed) 2021. [DOI: 10.1016/j.recesp.2021.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Diagnostic biomarkers of dilated cardiomyopathy. Immunobiology 2021; 226:152153. [PMID: 34784575 DOI: 10.1016/j.imbio.2021.152153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND Dilated cardiomyopathy (DCM) is a condition involving dilation of cardiac chambers, which results in contraction impairment. Besides invasive and non-invasive diagnostic procedures, cardiac biomarkers are of great importance in both diagnosis and prognosis of the disease. These biomarkers are categorized into three groups based on their site; cardiomyocyte biomarkers, microenvironmental biomarkers and macroenvironmental biomarkers. AIMS In this review, an overview of characteristics, epidemiology, etiology and clinical manifestations of DCM is provided. In addition, the most important biomarkers, of all three categories, and their diagnostic and prognostic values are discussed. CONCLUSION Considering the association of DCM with conditions such as infections and autoimmunity, which are prevalent among the population, introducing efficient diagnostic tools is of high value for the early detection of DCM to prevent its severe complications. The three discussed classes of biomarkers are potential candidates for the detection of DCM. However, further studies are necessary in this regard.
Collapse
|
44
|
Malinowska-Borowska J, Kulik A, Buczkowska M, Ostręga W, Stefaniak A, Piecuch M, Garbicz J, Nowak JU, Tajstra M, Jankowska EA, Gąsior M, Rozentryt P. Nutritional and Non-Nutritional Predictors of Low Spot Urinary Creatinine Concentration in Patients with Heart Failure. Nutrients 2021; 13:nu13113994. [PMID: 34836249 PMCID: PMC8619433 DOI: 10.3390/nu13113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 12/04/2022] Open
Abstract
Low spot urinary creatinine concentration (SUCR) is a marker of muscle wasting and clinical outcome. The risk factors for low SUCR in heart failure (HF) remain poorly understood. We explored the risk factors for low SUCR related to poor outcomes. In 721 HF patients (age: 52.3 ± 11 years, female: 14%, NYHA: 2.7 ± 0.7) SUCR and Dexa body composition scans were performed. BMI prior HF-onset, weight loss, and appendicular muscle mass were obtained. Each patient was classified as malnutrition or normal by GLIM criteria and three other biochemical indices (CONUT, PNI, and GRNI). Sarcopenia index (SI) as creatinine to cystatin C ratio was also calculated. Within 1 year, 80 (11.1%) patients died. In ROC curve we identified a SUCR value of 0.628 g/L as optimally discriminating surviving from dead. In low SUCR group more advanced HF, higher weight loss and catabolic components of weight trajectory (CCWT), more frequent under-nutrition by GLIM, and lower SI were observed. In multivariate analysis the independent predictors of low SUCR were SI, CCWT, and GNRI score. In conclusion: the risk of low SUCR was associated with a worse outcome. Low SUCR was associated with greater catabolism and sarcopenia but not with biochemical indices of malnutrition.
Collapse
Affiliation(s)
- Jolanta Malinowska-Borowska
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
- Correspondence: ; Tel.: +48-322755996; Fax: +48-32275995
| | - Aleksandra Kulik
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Marta Buczkowska
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Weronika Ostręga
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Apolonia Stefaniak
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Małgorzata Piecuch
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Jagoda Garbicz
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
| | - Jolanta Urszula Nowak
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland; (J.U.N.); (M.T.); (M.G.)
| | - Mateusz Tajstra
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland; (J.U.N.); (M.T.); (M.G.)
| | - Ewa Anita Jankowska
- Department of Heart Diseases, Faculty of Health Sciences, Wroclaw Medical University, 50-556 Wrocław, Poland;
| | - Mariusz Gąsior
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland; (J.U.N.); (M.T.); (M.G.)
| | - Piotr Rozentryt
- Department of Toxicology and Health Protection, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 41-902 Bytom, Poland; (A.K.); (M.B.); (W.O.); (A.S.); (M.P.); (J.G.); (P.R.)
- Department of Cardiology, Faculty of Medical Sciences in Zabrze, Silesian Centre for Heart Disease, Medical University of Silesia, 41-800 Zabrze, Poland; (J.U.N.); (M.T.); (M.G.)
| |
Collapse
|
45
|
Yi Z, Zhang M, Ma Z, Tuo B, Liu A, Deng Z, Zhao Y, Li T, Liu X. Role of the posterior mucosal defense barrier in portal hypertensive gastropathy. Biomed Pharmacother 2021; 144:112258. [PMID: 34614465 DOI: 10.1016/j.biopha.2021.112258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/15/2022] Open
Abstract
Portal hypertensive gastropathy (PHG) is a complication of cirrhotic or noncirrhotic portal hypertension. PHG is very important in the clinic because it can cause acute or even massive blood loss, and its treatment efficacy and prognosis are poor. Currently, the incidence of PHG in patients with cirrhosis is 20-80%, but its pathogenesis is complicated and poorly understood. Studies have shown that portal hypertension can cause changes in gastric mucosal microcirculation hemodynamics, leading to changes in gastric mucosal histology and function and thereby weakening the mucosal defense barrier. However, no specific drug treatment plans are currently available. This article reviews the current literature to further our understanding of the mechanism underlying PHG and the relationship between PHG and the posterior mucosal defense barrier and to explore new therapeutic targets.
Collapse
Affiliation(s)
- Zhiqiang Yi
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Minglin Zhang
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Zhiyuan Ma
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China; Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Biguang Tuo
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China
| | - Aimin Liu
- Department of Gastroenterology, Fuling Central Hospital of Chongqing City, Chongqing, China
| | - Zilin Deng
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Yingying Zhao
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China
| | - Taolang Li
- Department of Thyroid and Breast Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China.
| | - Xuemei Liu
- Department of Gastroenterology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou Province, China; Digestive Disease Institute of Guizhou Province, Zunyi, Guizhou Province, China.
| |
Collapse
|
46
|
Mancinelli R, Checcaglini F, Coscia F, Gigliotti P, Fulle S, Fanò-Illic G. Biological Aspects of Selected Myokines in Skeletal Muscle: Focus on Aging. Int J Mol Sci 2021; 22:8520. [PMID: 34445222 PMCID: PMC8395159 DOI: 10.3390/ijms22168520] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 12/13/2022] Open
Abstract
In the last decade, clear evidence has emerged that the cellular components of skeletal muscle are important sites for the release of proteins and peptides called "myokines", suggesting that skeletal muscle plays the role of a secretory organ. After their secretion by muscles, these factors serve many biological functions, including the exertion of complex autocrine, paracrine and/or endocrine effects. In sum, myokines affect complex multi-organ processes, such as skeletal muscle trophism, metabolism, angiogenesis and immunological response to different physiological (physical activity, aging, etc.) or pathological states (cachexia, dysmetabolic conditions, chronic inflammation, etc.). The aim of this review is to describe in detail a number of myokines that are, to varying degrees, involved in skeletal muscle aging processes and belong to the group of proteins present in the functional environment surrounding the muscle cell known as the "Niche". The particular myokines described are those that, acting both from within the cell and in an autocrine manner, have a defined relationship with the modulation of oxidative stress in muscle cells (mature or stem) involved in the regulatory (metabolic or regenerative) processes of muscle aging. Myostatin, IGF-1, NGF, S100 and irisin are examples of specific myokines that have peculiar features in their mechanisms of action. In particular, the potential role of one of the most recently characterized myokines-irisin, directly linked to an active lifestyle-in reducing if not reversing senescence-induced oxidative damage is discussed in terms of its possible application as an agent able to counteract the deleterious effects of muscle aging.
Collapse
Affiliation(s)
- Rosa Mancinelli
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Franco Checcaglini
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
| | - Francesco Coscia
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Paola Gigliotti
- Department of Medicine, Laboratory of Sport Physiology, University of Perugia, 39038 San Candido-Innichen, Italy; (F.C.); (P.G.)
| | - Stefania Fulle
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
| | - Giorgio Fanò-Illic
- Department of Neuroscience Imaging and Clinical Sciences, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy; (R.M.); (S.F.)
- IIM-Interuniversity Institute of Myology, University “G. d’Annunzio” of Chieti-Pescara, 66100 Chieti, Italy
- Free University of Alcatraz, Santa Cristina di Gubbio, 06100 Perugia, Italy;
- A&C M-C Foundation for Translational Myology, 35100 Padova, Italy
| |
Collapse
|
47
|
Latasa Amézqueta Í, Ramírez-Vélez R, Izquierdo M, Díez J. Heart failure-related skeletal myopathy. Potential involvement of myokines. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2021; 74:1008-1012. [PMID: 34210605 DOI: 10.1016/j.rec.2021.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 05/21/2021] [Indexed: 02/07/2023]
Affiliation(s)
| | - Robinson Ramírez-Vélez
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Spain
| | - Mikel Izquierdo
- Navarrabiomed, Complejo Hospitalario de Navarra (CHN), Universidad Pública de Navarra (UPNA), Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria de Navarra (IDISNA), Spain
| | - Javier Díez
- Instituto de Investigación Sanitaria de Navarra (IDISNA), Spain; Clínica Universidad de Navarra, y Centro de Investigación Biomédica Aplicada Universidad de Navarra, Pamplona, Navarra, Spain; Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
48
|
Li H, Chen C, Wang DW. Inflammatory Cytokines, Immune Cells, and Organ Interactions in Heart Failure. Front Physiol 2021; 12:695047. [PMID: 34276413 PMCID: PMC8281681 DOI: 10.3389/fphys.2021.695047] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/25/2021] [Indexed: 12/20/2022] Open
Abstract
Despite mounting evidence demonstrating the significance of inflammation in the pathophysiological mechanisms of heart failure (HF), most large clinical trials that target the inflammatory responses in HF yielded neutral or even worsening outcomes. Further in-depth understanding about the roles of inflammation in the pathogenesis of HF is eagerly needed. This review summarizes cytokines, cardiac infiltrating immune cells, and extracardiac organs that orchestrate the complex inflammatory responses in HF and highlights emerging therapeutic targets.
Collapse
Affiliation(s)
- Huihui Li
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Chen
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dao Wen Wang
- Division of Cardiology, Department of Internal Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Genetics and Molecular Mechanisms of Cardiological Disorders, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|