1
|
Yu F, Wang G, Chen X, Zhang Y, Yang C, Hu H, Wei L. Luteolin alleviates cerebral ischemia/reperfusion injury by regulating cell pyroptosis. Open Med (Wars) 2024; 19:20241063. [PMID: 39507105 PMCID: PMC11538924 DOI: 10.1515/med-2024-1063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 11/08/2024] Open
Abstract
Objective This study aimed to clarify the roles and underlying mechanisms of luteolin in the progression of cerebral ischemia/reperfusion injury (CIRI). Methods A mouse model of CIRI was established using the middle cerebral artery occlusion (MCAO) method, after which luteolin was administered. Subsequently, neuronal apoptosis and pyroptosis were measured and the brain tissues of each group were subjected to RNA sequencing. Results Luteolin alleviated MCAO-induced brain infarction, apoptosis, and pyroptosis. RNA sequencing identified 3,379, 2,777, and 3,933 differentially expressed genes (DEGs) in the MCAO vs sham, MCAO vs MCAO + luteolin, and MCAO + luteolin vs sham groups, respectively. The identified DEGs showed enrichment in multiple processes, including pattern specification, forebrain development, anion transport, leukocyte migration, regulation of cell-cell adhesion, and positive regulation of the response to external stimuli, as well as the calcium, PI3K-AKT, JAK-STAT, NF-kappa B, IL-17, cAMP, cGMP-PKG, and Wnt signaling pathways. In addition, Ccl2 and Angpt2 interacted more with the other top 30 DEGs with high interaction weights. Finally, RT-qPCR results showed that MCAO induction significantly up-regulated the expression of Stoml3, Eomes, and Ms4a15 and down-regulated Nms, Ttr, and Avpr1a; however, luteolin could partially reverse the expression caused by MCAO. Conclusion Luteolin can alleviate brain infarction, apoptosis, and pyroptosis in CIRI, and may improve MCAO-induced CIRI by targeting the identified DEGs and their enriched pathways.
Collapse
Affiliation(s)
- Fei Yu
- Department of Neurology, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Guangxue Wang
- Research Center for Translational Medicine, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Xingyi Chen
- Department of Medical Department, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Yanfei Zhang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Cheng Yang
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Hui Hu
- Department of Neurology, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| | - Liang Wei
- Department of Neurosurgery, East Hospital, Tongji University School of Medicine, 150 Jimo Road, Shanghai, 200120, China
| |
Collapse
|
2
|
Li Z, Xing J. Nuclear factor erythroid 2-related factor-mediated signaling alleviates ferroptosis during cerebral ischemia-reperfusion injury. Biomed Pharmacother 2024; 180:117513. [PMID: 39341075 DOI: 10.1016/j.biopha.2024.117513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/30/2024] Open
Abstract
Cardiac arrest (CA) is a significant challenge for emergency physicians worldwide and leads to increased morbidity and mortality rates. The poor prognosis of CA primarily stems from the complexity and irreversibility of cerebral ischemia-reperfusion injury (CIRI). Ferroptosis, a form of programmed cell death characterized by iron overload and lipid peroxidation, plays a crucial role in the progression and treatment of CIRI. In this review, we highlight the mechanisms of ferroptosis within the context of CIRI, focusing on its role as a key contributor to neuronal damage and dysfunction post-CA. We explore the crucial involvement of the nuclear factor erythroid 2-related factor (Nrf2)-mediated signaling pathway in modulating ferroptosis-associated processes during CIRI. Through comprehensive analysis of the regulatory role of Nrf2 in the cellular responses to oxidative stress, we highlight its potential as a therapeutic target for mitigating ferroptotic cell death and improving the neurological prognosis of patients experiencing CA. Furthermore, we discuss interventions targeting the Kelch-like ECH-associated protein 1/Nrf2/antioxidant response element pathway, including the use of traditional Chinese medicine and Western medicine, which demonstrate potential for attenuating ferroptosis and preserving neuronal function in CIRI. Owing to the limitations in the safety, specificity, and effectiveness of Nrf2-targeted drugs, as well as the technical difficulties and ethical constraints in obtaining the results related to the brain pathological examination of patients, most of the studies focusing on Nrf2-related regulation of ferroptosis in CIRI are still in the basic research stage. Overall, this review aims to provide a comprehensive understanding of the mechanisms underlying ferroptosis in CIRI, offering insights into novel therapeutics aimed at enhancing the clinical outcomes of patients with CA.
Collapse
Affiliation(s)
- Zheng Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
3
|
Zhu X, Han X, Wang J. Sufentanil-induced Nrf2 protein ameliorates cerebral ischemia-reperfusion injury through suppressing neural ferroptosis. Int J Biol Macromol 2024; 279:135109. [PMID: 39197624 DOI: 10.1016/j.ijbiomac.2024.135109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
As an oxidative stress and inflammation-related disease, cerebral ischemia-reperfusion injury (CIRI) is a prevalent pathogenic factor of ischemic stroke (IS) and seriously degrades the life quality of human beings. As an opioid analgesic for anesthesia, Sufentanil (SUF) can activate the Nrf2 protein-induced anti-oxidant effects, which indicate that SUF may be used as alternative drug for CIRI therapy, but little is known regarding to its molecular mechanisms. Thus, this research aimed to examine whether SUF pre-treatment alleviated CIRI through the modulation of Nrf2 protein-mediated antioxidant activity. Our research revealed that middle cerebral artery occlusion/reperfusion (MCAO/R)-treated rats exhibited apparent CIRI-related symptoms and induced damages in rats' brain, which were all notably mitigated in the MCAO/R rats. The subsequent in vitro cellular experiments verified that oxygen-glucose deprivation/reoxygenation (OGD/R)-induced cytotoxicity were apparently reversed by SUF co-treatment in HT22 and BV2 cells, and it was also validated that SUF was capable of suppressing inflammation and ferroptosis in CIRI models by inhibiting oxidative stress-related damages. Mechanistically, the Akt/GSK-3β pathway was excessively activated by SUF to promote Nrf2 protein expressions and enhance Nrf2-meidated anti-oxidant effects, and it was found that SUF-induced protective effects during CIRI progression were all abrogated by co-treating cells with MK2206 (Akt inhibitor), NP-12 (GSK-3β inhibitor), or ML385 (Nrf2 inhibitor). In conclusion, SUF activated the Akt/GSK-3β pathway to initiate Nrf2 protein-mediated antioxidant effects, which further suppressed oxidative stress-related inflammation and ferroptosis to ameliorate CIRI progression, and SUF could potentially be used as novel therapeutic agent for CIRI treatment in clinic.
Collapse
Affiliation(s)
- Xuelian Zhu
- Key laboratory of Microecology-immune Regulatory Network and Related Diseases School of Basic Medicine, Jiamusi University, Jiamusi 154000, China; Department of Anesthesiology, the First Affiliated Hospital of Jiamusi University, Jiamusi 154003, China
| | - Xi Han
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China
| | - Jingtao Wang
- Department of Anatomy, School of Basic Medical Sciences, Jiamusi University, Jiamusi 154007, China.
| |
Collapse
|
4
|
Liu H, Wang K, Shang T, Cai Z, Lu C, Shen M, Yu S, Yao X, Shen Y, Chen X, Xu F, Sun H. Astragaloside IV Improves Muscle Atrophy by Modulating the Activity of UPS and ALP via Suppressing Oxidative Stress and Inflammation in Denervated Mice. Mol Neurobiol 2024:10.1007/s12035-024-04590-x. [PMID: 39480556 DOI: 10.1007/s12035-024-04590-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/02/2024]
Abstract
Peripheral nerve injury is common clinically and can lead to neuronal degeneration and atrophy and fibrosis of the target muscle. The molecular mechanisms of muscle atrophy induced by denervation are complex and not fully understood. Inflammation and oxidative stress play an important triggering role in denervated muscle atrophy. Astragaloside IV (ASIV), a monomeric compound purified from astragalus membranaceus, has antioxidant and anti-inflammatory properties. The aim of this study was to investigate the effect of ASIV on denervated muscle atrophy and its molecular mechanism, so as to provide a new potential therapeutic target for the prevention and treatment of denervated muscle atrophy. In this study, an ICR mouse model of muscle atrophy was generated through sciatic nerve dissection. We found that ASIV significantly inhibited the reduction of tibialis anterior muscle mass and muscle fiber cross-sectional area in denervated mice, reducing ROS and oxidative stress-related protein levels. Furthermore, ASIV inhibits the increase in inflammation-associated proteins and infiltration of inflammatory cells, protecting the denervated microvessels in skeletal muscle. We also found that ASIV reduced the expression levels of MAFbx, MuRF1 and FoxO3a, while decreasing the expression levels of autophagy-related proteins, it inhibited the activation of ubiquitin-proteasome and autophagy-lysosome hydrolysis systems and the slow-to-fast myofiber shift. Our results show that ASIV inhibits oxidative stress and inflammatory responses in skeletal muscle due to denervation, inhibits mitophagy and proteolysis, improves microvascular circulation and reverses the transition of muscle fiber types; Therefore, the process of skeletal muscle atrophy caused by denervation can be effectively delayed.
Collapse
Affiliation(s)
- Hua Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Kexin Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Tongxin Shang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Zhigang Cai
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China
| | - Chunfeng Lu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China
| | - Mi Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Shu Yu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xinlei Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Yuntian Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China
| | - Xiaofang Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Nantong, Jiangsu Province, 226600, P. R. China.
| | - Feng Xu
- Department of Endocrinology, Affiliated Hospital 2 of Nantong University and First People's Hospital of Nantong City, Nantong, Jiangsu Province, 226006, P. R. China.
| | - Hualin Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu Province, 226001, P. R. China.
| |
Collapse
|
5
|
Kang X, Wang W, Zuo Y, Wang Y, Zhang L, Liu L. Dopamine receptor agonist pramipexole exerts neuroprotection on global cerebral ischemia/reperfusion injury by inhibiting ferroptosis. J Stroke Cerebrovasc Dis 2024; 34:108101. [PMID: 39490461 DOI: 10.1016/j.jstrokecerebrovasdis.2024.108101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/24/2024] [Accepted: 10/25/2024] [Indexed: 11/05/2024] Open
Abstract
OBJECTIVE To explore the mechanism of dopamine receptor agonist pramipexole in exerting neuroprotection on global cerebral ischemia/reperfusion injury (GCI/R). MATERIAL AND METHOD Male Sprague-Dawley rats were randomly divided into four groups (n = 36 in each group), and the Pulsinelli's four-vessel occlusion method was used to establish the rat model of GCI/R injury. Pramipexole administration group was intraperitoneally injected with pramipexole 0.5 mg kg-1 once a day for 14 days. Pramipexole combined with levodopa administration group was intraperitoneally injected with pramipexole 0.5 mg kg-1 and levodopa 50 mg kg-1 once a day for 14 days. The mNSS scores and Y maze test were used to evaluate neurological behaviors. Nissl staining and transmission electron microscopy were used to respectively observe hippocampal neurons and mitochondrial ultrastructure. Molecular biological tests including tissue iron concentration, GSH, MDA were used to detect the degree of ferroptosis. Western blotting was used to detect the expression levels of Nrf2, GPX4, X-CT and p53 proteins at 3 days, 7 days and 14 days after GCI/R injury. RESULTS Pramipexole alone or combined with levodopa for 14 days improved neurological behaviors, improved the morphology of neurons, increased the number of surviving neurons in the hippocampal CA1 region of GCI/R rats, which showed similar neuroprotective effects. Pramipexole alone or combined with levodopa for 14 days restored mitochondrial ultrastructure, decreased tissue iron concentration and MDA concentration, increased GSH concentration in the brain of GCI/R rats, which also induced the relative expressions of Nrf2, GPX4 and X-CT proteins and reduced p53 protein. CONCLUSION Pramipexole alone or combined with levodopa exert neuroprotection by inhibiting ferroptosis after GCI/R injury via Nrf2/GPX4/SLC7A11 pathway, and long-term intervention could be applied as an effective therapeutic strategy for neuroprotection against GCI/R injury.
Collapse
Affiliation(s)
- Xiaoyu Kang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai hospital, China Rehabilitation Research Center, Beijing, China
| | - Wenzhu Wang
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China; Institute of Rehabilitation Medicine of China, Chinese Institute of Rehabilitation Science, Beijing, China
| | - Yao Zuo
- Beijing Bo'ai hospital, China Rehabilitation Research Center, Beijing, China; Shandong University Cheeloo College of Medicine, Jinan, Shandong, China
| | - Yunlei Wang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai hospital, China Rehabilitation Research Center, Beijing, China
| | - Linyao Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai hospital, China Rehabilitation Research Center, Beijing, China
| | - Lixu Liu
- School of Rehabilitation, Capital Medical University, Beijing, China; Beijing Bo'ai hospital, China Rehabilitation Research Center, Beijing, China; Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China.
| |
Collapse
|
6
|
Zhang Q, Guo S, Wang H. The Protective Role of Baicalin in the Regulation of NLRP3 Inflammasome in Different Diseases. Cell Biochem Biophys 2024:10.1007/s12013-024-01597-y. [PMID: 39443419 DOI: 10.1007/s12013-024-01597-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 10/25/2024]
Abstract
The NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome consists of pro-caspase-1, NLRP3 and apoptosis-related speckle-like protein (ASC). It can detect multiple microorganisms, endogenous danger signals and environmental stimulus including adenosine triphosphate (ATP), urate, cholesterol crystals, and so on, thereby forming activated NLRP3 inflammasome. During the course of the activation of NLRP3 inflammasome, pro-caspase-1 is transformed into activated caspase-1 that results in the maturation and secretion of interleukin-1beta (IL-1β) and IL-18. The dysfunction of NLRP3 inflammasome participates in multiple diseases such as liver diseases, renal diseases, nervous system diseases and diabetes. Baicalin is the primary bioactive component of Scutellaria baicalensis, which has been used since ancient times. Baicalin has many types of biological functions, such as anti-bacterial, anti-tumor and antioxidant. More and more evidence suggests that baicalin regulation of NLRP3 inflammasome is involved in different diseases. However, the mechanism is still elusive. Here, we reviewed the progress of baicalin regulation of NLRP3 inflammasome in many kinds of diseases to lay a foundation for future researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
7
|
Feng J, Ji K, Pan Y, Huang P, He T, Xing Y. Resveratrol Ameliorates Retinal Ischemia-Reperfusion Injury by Modulating the NLRP3 Inflammasome and Keap1/Nrf2/HO-1 Signaling Pathway. Mol Neurobiol 2024; 61:8454-8466. [PMID: 38517616 DOI: 10.1007/s12035-024-04105-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 03/06/2024] [Indexed: 03/24/2024]
Abstract
Glaucoma, as an ischemia-reperfusion (I/R) injury disease, leading irreversible blindness through the loss of retinal ganglion cells (RGCs), mediated by various pathways. Resveratrol (Res) is a polyphenolic compound that exerts protective effects against I/R injury in many tissues. This article aimed to expound the underlying mechanisms through which Res protects RGCs and reduces visual dysfunction in vivo. An experimental glaucoma model was created using 6-8-week wild-type male C57BL/6J mice. Res was injected intraperitoneally for 5 days. The mice were then grouped according to the number of days after surgery and whether Res treatment was administered. We applied the Brn3a-labeled immunofluorescence staining and flash electroretinography (ERG) to assess the survival of RGCs and visual function. The expression of components of the NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome, the interleukin-1-beta (IL-1β), and vital indicators of kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/heme-oxygenase 1 (HO-1) pathway at the protein and RNA levels were detected respectively. The survival of RGCs was reduced after surgery compared to controls, whereas Res application rescued RGCs and improved visual dysfunction. In conclusion, our results discovered that Res administration showed neuroprotective effects through inhibition of the NLRP3 inflammasome pathway and activation of Keap1/Nrf2/HO-1 pathway. Thus, we further elucidated the potential of Res in glaucoma therapy.
Collapse
Affiliation(s)
- Jiazhen Feng
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Kaibao Ji
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Yiji Pan
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
- Eye Institute of Wuhan University, Hubei, China
| | - Pingping Huang
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China
| | - Tao He
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
| | - Yiqiao Xing
- Department of Ophthalmology, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan, Hubei, 430060, China.
- Eye Institute of Wuhan University, Hubei, China.
| |
Collapse
|
8
|
Wang L, Wang Y, Wu M, Jin X, Chen Y, Guo Z, Meng X, Zhang J, Ji F. Minocycline alleviates microglia ferroptosis by inhibiting HO-1 during cerebral ischemia-reperfusion injury. Inflamm Res 2024; 73:1727-1745. [PMID: 39112649 PMCID: PMC11445363 DOI: 10.1007/s00011-024-01927-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE Ischemic stroke is a leading cause of death and disability in individuals worldwide. Cerebral ischemia-reperfusion injury (CIRI) typically results in severe secondary injury and complications following reperfusion therapy. Microglia play critical roles in the inflammatory reaction of CIRI. However, less attention has been given to microglial death in this process. Our study aims to explore microglial death in CIRI and the effects and mechanism of minocycline treatment on microglia. METHODS A middle cerebral artery occlusion (MCAO) model was applied to induce CIRI in rats. At 0 h, 24 h and 48 h post-operation, rats were intraperitoneally injected with 45 mg/kg minocycline. Neurological deficit scoring, 2,3,5-triphenyltetrazolium chloride (TTC) staining, assessment of activated microglia and examination of mitochondrial structure were conducted and checked at 72 h after reperfusion. Additionally, an in vitro model of oxygen-glucose deprivation/reperfusion (OGD/R) model was established. BV-2 cells were treated with various pharmacological inhibitors of cell death or minocycline. Cell viability, lipid peroxidation, mitochondrial structure and function, and labile Fe2+ and ferroptosis-associated gene/protein levels were measured. Hemin was used for further validation after transcriptome analysis. RESULTS In the MCAO and OGD/R models, ferroptosis was identified as a major form of microglial death. Minocycline inhibited microglia ferroptosis by reducing HO-1 expression. In addition, minocycline improved mitochondrial membrane potential, mitochondrial structures and microglial survival in vivo. Minocycline also decreased labile Fe2+ levels, lipid peroxidation, and expression of ferritin heavy chain (FTH) and it improved mitochondrial structure and function in vitro. Upregulation of HO-1 counteracted the protective effect of minocycline. CONCLUSION Ferroptosis is a major form of microglial death in CIRI. The protective mechanism of minocycline in CIRI partially hinges on its ability to effectively ameliorate microglia ferroptosis by downregulating HO-1 expression. Consequently, targeting microglia ferroptosis is a promising treatment for CIRI.
Collapse
Affiliation(s)
- Lin Wang
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yao Wang
- Department of Nephrology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Mengyue Wu
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
- Medical College, Yangzhou University, Yangzhou, 215000, Jiangsu, China
| | - Xing Jin
- Department of Laboratory Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Yifei Chen
- Department of Emergency Medicine, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Zhenhuan Guo
- Department of Ophthalmology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China
| | - Xiaowen Meng
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China
| | - Jianyou Zhang
- Department of Anesthesiology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225012, Jiangsu, China.
| | - Fuhai Ji
- Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, 215006, Jiangsu, China.
- Institute of Anesthesiology, Soochow University, Suzhou, 215006, Jiangsu, China.
| |
Collapse
|
9
|
Liu F, Chen Y, Huang K. Electro-acupuncture Suppresses Ferroptosis to Alleviate Cerebral Ischemia-Reperfusion Injury Through KAT3B-Mediated Succinylation of ACSL4. Appl Biochem Biotechnol 2024:10.1007/s12010-024-05063-6. [PMID: 39340629 DOI: 10.1007/s12010-024-05063-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
Electro-acupuncture (EA) is identified as an effective therapeutic method for cerebral ischemia/reperfusion injury (CIRI), which is a combination of Chinese traditional acupuncture and modern electro-therapy. However, the downstream molecular mechanisms of EA in CIRI process remains largely unknown. The purpose of the present study is to unveil the therapeutic effect of EA on CIRI rat and its regulatory mechanisms. At first, we constructed middle cerebral artery occlusion (MCAO) rat models and then treated them with EA to observe the pathological changes. The results indicated that EA decreased the infarct volume (43.81 ± 3.34 vs 15.96 ± 2.22) and the neurological scores (3.33 ± 0.52 vs 1.67 ± 0.52) and suppressed the apoptosis in MCAO model rats. For ferroptosis analysis, EA decreased the Fe2 + (0.08 ± 0.01 vs 0.06 ± 0.01), MDA (36.61 ± 4.29 vs 21.72 ± 2.79), and LPS (5.25 ± 0.69 vs 2.89 ± 0.42) contents and increased the GSH (4.94 ± 1.04 vs 11.69 ± 1.88) content in MCAO model rats. We next detected whether succinylation mediated EA-treated I/R injury. According to immunoprecipitation and western blot analysis, EA treatment could lower both levels of succinylation and KAT3B in MCAO rats. Moreover, mechanism experiments unveiled that KAT3B promoted the succinylation of the ferroptosis-related protein ACSL4 at K661 site and thus stabilizing ACSL4. Finally, EA-treated MCAO rats were further injected with KAT3B expression vector. The results showed that KAT3B overexpression increased the infarct volume (31.44 ± 3.92 vs 7.94 ± 2.84) and the neurological scores (2.67 ± 0.51 vs 1.33 ± 0.51) and promoted the apoptosis in EA treated MCAO model rats. For ferroptosis analysis, KAT3B overexpression increased the Fe2 + (0.08 ± 0.01 vs 0.05 ± 0.01), MDA (29.24 ± 4.30 vs 22.06 ± 1.89), and LPO (5.07 ± 0.45 vs 2.88 ± 0.49) contents and decreased the GSH (7.86 ± 1.09 vs 11.06 ± 1.76) content in EA treated MCAO model rats. Collectively, our study demonstrates that EA plays a therapeutic role in CIRI through suppressing KAT3B-induced stabilization of ACSL4 to inhibit ferroptosis. These findings contribute to our understanding of the molecular mechanisms underlying the neuroprotective effects of EA and open new avenues for the development of innovative therapeutic strategies for CIRI.
Collapse
Affiliation(s)
- Fang Liu
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Ying Chen
- Department of Chinese Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Kangbai Huang
- Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, No. 12, Jichang Road, Baiyun District, Guangzhou, 510405, China.
| |
Collapse
|
10
|
Lu F, Wang R, Cheng Y, Li X. Preconditioning with β-hydroxybutyrate attenuates lung ischemia-reperfusion injury by suppressing alveolar macrophage pyroptosis through the SIRT1-FOXO3 signaling pathway. FASEB J 2024; 38:e70027. [PMID: 39221615 DOI: 10.1096/fj.202401188r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/23/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
The complex pathogenesis of lung ischemia-reperfusion injury (LIRI) was examined in a murine model, focusing on the role of pyroptosis and its exacerbation of lung injury. We specifically examined the levels and cellular localization of pyroptosis within the lung, which revealed alveolar macrophages as the primary site. The inhibition of pyroptosis by VX-765 reduced the severity of lung injury, underscoring its significant role in LIRI. Furthermore, the therapeutic potential of β-hydroxybutyrate (β-OHB) in ameliorating LIRI was examined. Modulation of β-OHB levels was evaluated by ketone ester supplementation and 3-hydroxybutyrate dehydrogenase 1 (BDH-1) gene knockout, along with the manipulation of the SIRT1-FOXO3 signaling pathway using EX-527 and pCMV-SIRT1 plasmid transfection. This revealed that β-OHB exerts lung-protective and anti-pyroptotic effects, which were mediated through the upregulation of SIRT1 and the enhancement of FOXO3 deacetylation, leading to decreased pyroptosis markers and lung injury. In addition, β-OHB treatment of MH-S cells in vitro showed a concentration-dependent improvement in pyroptosis, linking its therapeutic benefits to specific cell mechanisms. Overall, this study highlights the significance of alveolar macrophage pyroptosis in the exacerbation of LIRI and indicates the potential of β-OHB in mitigating injury by modulating the SIRT1-FOXO3 signaling pathway.
Collapse
Affiliation(s)
- Fan Lu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
- Department of Pain Management, West China Hospital, Sichuan University, Chengdu, China
| | - Rurong Wang
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| | - Yan Cheng
- Laboratory of Anesthesia & Critical Care Medicine, Translational Neuroscience Center, West China Hospital, Sichuan University, Chengdu, China
| | - XueHan Li
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
11
|
Zou H, Zhang M, Yang X, Shou H, Chen Z, Zhu Q, Luo T, Mou X, Chen X. Cynaroside regulates the AMPK/SIRT3/Nrf2 pathway to inhibit doxorubicin-induced cardiomyocyte pyroptosis. J Zhejiang Univ Sci B 2024; 25:756-772. [PMID: 39308066 PMCID: PMC11422794 DOI: 10.1631/jzus.b2300691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/17/2023] [Indexed: 09/25/2024]
Abstract
Doxorubicin (DOX) is a commonly administered chemotherapy drug for treating hematological malignancies and solid tumors; however, its clinical application is limited by significant cardiotoxicity. Cynaroside (Cyn) is a flavonoid glycoside distributed in honeysuckle, with confirmed potential biological functions in regulating inflammation, pyroptosis, and oxidative stress. Herein, the effects of Cyn were evaluated in a DOX-induced cardiotoxicity (DIC) mouse model, which was established by intraperitoneal injections of DOX (5 mg/kg) once a week for three weeks. The mice in the treatment group received dexrazoxane, MCC950, and Cyn every two days. Blood biochemistry, histopathology, immunohistochemistry, reverse transcription-quantitative polymerase chain reaction (RT-qPCR), and western blotting were conducted to investigate the cardioprotective effects and potential mechanisms of Cyn treatment. The results demonstrated the significant benefits of Cyn treatment in mitigating DIC; it could effectively alleviate oxidative stress to a certain extent, maintain the equilibrium of cell apoptosis, and enhance the cardiac function of mice. These effects were realized via regulating the transcription levels of pyroptosis-related genes, such as nucleotide-binding oligomerization domain-like receptor protein 3 (NLRP3), caspase-1, and gasdermin D (GSDMD). Mechanistically, for DOX-induced myocardial injury, Cyn could significantly modulate the expression of pivotal genes, including adenosine monophosphate-activated protein kinase (AMPK), peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α), sirtuin 3 (SIRT3), and nuclear factor erythroid 2-related factor 2 (Nrf2). We attribute it to the mediation of AMPK/SIRT3/Nrf2 pathway, which plays a central role in preventing DOX-induced cardiomyocyte injury. In conclusion, the present study confirms the therapeutic potential of Cyn in DIC by regulating the AMPK/SIRT3/Nrf2 pathway.
Collapse
Affiliation(s)
- Hai Zou
- Department of Critical Care Medicine, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | | | - Xue Yang
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Huafeng Shou
- Center for Reproductive Medicine, Department of Gynecology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China
| | - Zhenglin Chen
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Quanfeng Zhu
- Graduate School of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaozhou Mou
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China.
| | - Xiaoyi Chen
- Clinical Research Institute, Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
- General Surgery, Cancer Center, Department of Hepatobiliary & Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou 310014, China. ,
| |
Collapse
|
12
|
Hao J, Hu R, Zhao J, Li Y, Li Q, Zhang X. Metabolomics combined with network pharmacology reveals the protective effect of astragaloside IV on alcoholic liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156032. [PMID: 39270570 DOI: 10.1016/j.phymed.2024.156032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/13/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
BACKGROUND Alcoholic liver disease (ALD) is a significant contributor to liver damage. However, the clinical options for the treatment of ALD are limited. Astragaloside IV (AST-IV) is a saponin isolated from Astragalus membranaceus (AM). This study aimed to explore the underlying mechanisms of action of AST-IV in ALD by integrating metabolomics and network pharmacology. METHODS Sprague-Dawley (SD) rats were used to establish a rat model of ALD. AST-IV and polyene phosphatidyl choline (PPC; a positive control drug) were administered to rats with ALD for 4 weeks. We measured the body weight, liver index, ALT, AST, TC, TG, inflammatory markers (IL-1β, IL-6, and TNF-α), and oxidative stress markers (SOD, MDA) and used H&E and ORO staining to evaluate the hepatoprotective effect of both AST-IV and PPC on ALD. Subsequently, we performed untargeted metabolomics to predict the influence of AST-IV on lipid metabolism in rats with ALD. We then used a network pharmacology approach to identify the core targets through which AST-IV corrected lipid metabolism disorders and validated these targets through molecular docking, qRT-PCR and western blot analyses. Finally, we calculated the relationships between ALD-related biochemical markers, differential liver metabolites, and core targets using Spearman's correlation analysis. RESULTS AST-IV improved pathological damage and reduced lipid accumulation in the hepatocytes of rats with ALD. Furthermore, AST-IV inhibited oxidative stress and inflammatory responses in rats with ALD. The metabolomic results showed that AST-IV corrected hepatic lipid metabolism disorders by targeting linoleic acid, necrosis, sphingolipid, and glycerophospholipid metabolism. The Network pharmacology analysis revealed that the core targets of AST-IV exerting the above effects were p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, PCSK9. Spearman's correlation analysis showed a strong correlation between ALD-related serum biochemical indices, core targets, and liver differential metabolites. CONCLUSION AST-IV corrects the metabolic disorders of linoleic acid, sphingolipid, and glycerophospholipid, and alleviates necrosis in rats with ALD through the core targets p-RIPK3, p-MLKL, CYP1A2, CYP2C19, PPARα, and PCSK9. This study is the first to reveal the mechanism of ALD protection through AST-IV from the perspective of metabolomics and network pharmacology. Therefore, a novel target has been identified to exert protection against ALD. This study provides a reference for ALD treatment.
Collapse
Affiliation(s)
- Jinfang Hao
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong 030619, China
| | - Ruixian Hu
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Department of Nutrition and Food Hygiene, School of Public Health, Shanxi Medical University, Taiyuan 030001, China
| | - Jianming Zhao
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China
| | - Yuanhong Li
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China
| | - Qingshan Li
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China; Medicinal Basic Research Innovation Center of Chronic Kidney Disease, Ministry of Education, Shanxi Medical University, Taiyuan 030001, China; Shanxi Key Laboratory of Innovative Drug for the Treatment of Serious Diseases Basing on the Chronic Inflammation, Shanxi University of Chinese Medicine, Jinzhong 030619, China.
| | - Xiaoyan Zhang
- School of Pharmaceutical Science, Department of Laboratory Medicine of Fenyang College, Shanxi Medical University, Taiyuan 030001, China.
| |
Collapse
|
13
|
Liu T, Ai L, Jiang A, Wang Y, Jiang R, Liu L. Astragaloside IV suppresses the proliferation and inflammatory response of human epidermal keratinocytes and ameliorates imiquimod-induced psoriasis-like skin damage in mice. Allergol Immunopathol (Madr) 2024; 52:44-50. [PMID: 39278850 DOI: 10.15586/aei.v52i5.1140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 07/03/2024] [Indexed: 09/18/2024]
Abstract
The primary pathological features of psoriasis include excessive epidermal keratinocytes and infiltration of inflammatory cells, which are pivotal targets for psoriasis therapy. Astragaloside IV (AS-IV), the principal active compound of astragalus, exhibits anti-inflammatory, antioxidant, and immune-modulatory properties. This study aims to investigate AS-IV's anti--psoriatic effects and underlying mechanisms. Normal human epidermal keratinocytes (NHEKs) were stimulated with a combination of TNF-α, IL-17A, IL-1α, IL-22, and oncostatin M (M5) to replicate psoriatic keratinocyte pathology in vitro. Cell proliferation was assessed using CCK8 and EDU staining. Pro-inflammatory cytokine levels were measured via qRT-PCR. In addition, an imiquimod (IMQ)-induced psoriasis mouse model was utilized. Skin histology changes were evaluated with HE staining, while IL-6 and TNF-α levels in mouse serum were quantified using ELISA. NF-κB pathway protein expression was analyzed by western blotting. The results demonstrated that AS-IV inhibited M5-induced proliferation of NHEKs. AS-IV reduced M5-stimulated IL-1β, IL-6, IL-8, TNF-α, IL-23, and MCP-1 expression in NHEKs. Moreover, M5-induced phosphorylation of IκBα and p65 was significantly attenuated by AS-IV. Furthermore, AS-IV application ameliorated erythema, scale formation, and epidermal thickening in IMQ-induced psoriasis-like mouse models. AS-IV also decreased IL-6 and TNF-α levels in mouse serum and inhibited IκBα and p65 phosphorylation in skin tissues. However, prostratin treatment reversed these effects. These findings underscore AS-IV's capacity to mitigate M5-induced NHEK proliferation and inflammation. AS-IV shows promise in alleviating IMQ-induced psoriasis-like skin lesions and inflammation by suppressing the NF-κB pathway.
Collapse
Affiliation(s)
- Ting Liu
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Lin Ai
- Department of Dermatology, Nanbu County People's Hospital, Nanchong, Sichuan, 637000, China
| | - Aibo Jiang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Yujuan Wang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Ruimin Jiang
- Department of Dermatology, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China
| | - Liang Liu
- Office of Educational Administration, Affiliated Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, China;
| |
Collapse
|
14
|
Song C, Li Y, Han H, Zhang Y, Wang N. Lipid nanoparticle-encapsulated lncRNA DLX6-AS1 knockdown ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. Neurol Res 2024; 46:706-716. [PMID: 38735062 DOI: 10.1080/01616412.2024.2345024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 04/13/2024] [Indexed: 05/14/2024]
Abstract
OBJECTIVE Cerebral ischemia is a neurological disorder that leads to permanent disability. This research focuses on exploring the ameliorative effects of lipid nanoparticle (LNP)-encapsulated lncRNA DLX6-AS1 knockdown in cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis. METHODS LNP-encapsulated lncRNA DLX6-AS1 was prepared. Cerebral ischemic injury mouse models were established utilizing middle cerebral artery occlusion (MCAO). The mice were treated by intravenous injection of LNP-encapsulated lncRNA DLX6-AS1. The neurological deficits, Inflammatory factor levels, pathological characteristics were observed. In vitro N2a cell oxygen and glucose deprivation (OGD) models were established, and the cells were treated with LNP-encapsulated lncRNA DLX6-AS1 or Nrf2 inhibitor (ML385). Cell viability and apoptosis were tested. DLX6-AS1, Nrf2, HO-1, and NLRP3 expression levels were assessed. RESULTS LncRNA DLX6-AS1 levels were elevated in the brain tissues of mice with cerebral ischemic injury and OGD-induced N2a cells. LNP-encapsulated DLX6-AS1 siRNA (si-DLX6-AS1) improved neurological deficit scores, reduced the levels of inflammatory factors, improved brain tissue pathological damage, and raised the number of survival neurons in CA1. LNP-encapsulated si-DLX6-AS1 ameliorated the OGD-induced N2a cell viability decrease and apoptosis rate increase, and ML385 (Nrf2 inhibitor) reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1. In cerebral ischemic injury mice and OGD-induced N2a cells, Nrf2 and HO-1 levels were reduced and NLRP3 levels were increased. LNP-encapsulated si-DLX6-AS1 raised Nrf2 and HO-1 levels and reduced NLRP3 levels. Nrf2 inhibitor ML385 treatment reversed the ameliorative effects of LNP-encapsulated si-DLX6-AS1 on OGD-induced N2a cell viability and apoptosis. CONCLUSION Lipid nanoparticle-encapsulated si-DLX6-AS1 ameliorates cerebral ischemic injury via the Nrf2/HO-1/NLRP3 axis.
Collapse
Affiliation(s)
- Chang Song
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yan Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiying Han
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yueyue Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ning Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
15
|
Zhang W, Fan C, Yi Z, Du T, Wang N, Tian W, Pan Q, Ma X, Wang Z. TMEM79 Ameliorates Cerebral Ischemia/Reperfusion Injury Through Regulating Inflammation and Oxidative Stress via the Nrf2/NLRP3 Pathway. Immunol Invest 2024; 53:872-890. [PMID: 38809063 DOI: 10.1080/08820139.2024.2354268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
BACKGROUND Cerebral ischemia/reperfusion injury (CIRI) is still a complicated disease with high fatality rates worldwide. Transmembrane Protein 79 (TMEM79) regulates inflammation and oxidative stress in some other diseases. METHODS CIRI mouse model was established using C57BL/6J mice through middle cerebral artery occlusion-reperfusion (MCAO/R), and BV2 cells were subjected to oxygen and glucose deprivation/reoxygenation (OGD/R) to simulate CIRI. Brain tissue or BV2 cells were transfected or injected with lentivirus-carried TMEM79 overexpression vector. The impact of TMEM79 on CIRI-triggered oxidative stress was ascertained by dihydroethidium (DHE) staining and examination of oxidative stress indicators. Regulation of TMEM79 in neuronal apoptosis and inflammation was determined using TUNEL staining and ELISA. RESULTS TMEM79 overexpression mitigated neurological deficit induced by MCAO/R and decreased the extent of cerebral infarct. TMEM79 prevented neuronal death in brain tissue of MCAO/R mouse model and suppressed inflammatory response by reducing inflammatory cytokines levels. Moreover, TMEM79 significantly attenuated inflammation and oxidative stress caused by OGD/R in BV2 cells. TMEM79 facilitated the activation of Nrf2 and inhibited NLRP3 and caspase-1 expressions. Rescue experiments indicated that the Nrf2/NLRP3 signaling pathway mediated the mitigative effect of TMEM79 on CIRI in vivo and in vitro. CONCLUSION Overall, TMEM79 was confirmed to attenuate CIRI via regulating the Nrf2/NLRP3 signaling pathway.
Collapse
Affiliation(s)
- Wei Zhang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Chengcheng Fan
- Organization Department of the Party Committee, Department of Basic Sciences of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhongxue Yi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Tao Du
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Nana Wang
- Fifth Department of Encephalopathy Rehabilitation, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Weizhu Tian
- Department of Encephalopathy, The Affiliated Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Qian Pan
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xiande Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Zhe Wang
- Department of Pathology, College of Integrated Chinese and Western Medicine, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
16
|
Tork MAB, Fotouhi S, Roozi P, Negah SS. Targeting NLRP3 Inflammasomes: A Trojan Horse Strategy for Intervention in Neurological Disorders. Mol Neurobiol 2024:10.1007/s12035-024-04359-2. [PMID: 39042218 DOI: 10.1007/s12035-024-04359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 07/09/2024] [Indexed: 07/24/2024]
Abstract
Recently, a growing focus has been on identifying critical mechanisms in neurological diseases that trigger a cascade of events, making it easier to target them effectively. One such mechanism is the inflammasome, an essential component of the immune response system that plays a crucial role in disease progression. The NLRP3 (nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 3) inflammasome is a subcellular multiprotein complex that is widely expressed in the central nervous system (CNS) and can be activated by a variety of external and internal stimuli. When activated, the NLRP3 inflammasome triggers the production of proinflammatory cytokines interleukin-1β (IL-1β) and interleukin-18 (IL-18) and facilitates rapid cell death by assembling the inflammasome. These cytokines initiate inflammatory responses through various downstream signaling pathways, leading to damage to neurons. Therefore, the NLRP3 inflammasome is considered a significant contributor to the development of neuroinflammation. To counter the damage caused by NLRP3 inflammasome activation, researchers have investigated various interventions such as small molecules, antibodies, and cellular and gene therapy to regulate inflammasome activity. For instance, recent studies indicate that substances like micro-RNAs (e.g., miR-29c and mR-190) and drugs such as melatonin can reduce neuronal damage and suppress neuroinflammation through NLRP3. Furthermore, the transplantation of bone marrow mesenchymal stem cells resulted in a significant reduction in the levels of pyroptosis-related proteins NLRP3, caspase-1, IL-1β, and IL-18. However, it would benefit future research to have an in-depth review of the pharmacological and biological interventions targeting inflammasome activity. Therefore, our review of current evidence demonstrates that targeting NLRP3 inflammasomes could be a pivotal approach for intervention in neurological disorders.
Collapse
Affiliation(s)
- Mohammad Amin Bayat Tork
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Soroush Fotouhi
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvin Roozi
- Department of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Sahab Negah
- Clinical Research Development Unit, Imam Reza Hospital, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neuroscience Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran.
- Department of Neuroscience, Faculty of Medicine, Mashhad University of Medical Sciences, Pardis Campus, Azadi Square, Kalantari Blvd., Mashhad, Iran.
| |
Collapse
|
17
|
Li R, Lou Q, Ji T, Li Y, Yang H, Ma Z, Zhu Y, Qian C, Yang W, Wang Y, Luo S. Mechanism of Astragalus mongholicus Bunge ameliorating cerebral ischemia-reperfusion injury: Based on network pharmacology analysis and experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2024; 329:118157. [PMID: 38588987 DOI: 10.1016/j.jep.2024.118157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Astragalus mongholicus Bunge (AMB) is a herb with wide application in traditional Chinese medicine, exerting a wealth of pharmacological effects. AMB has been proven to have an evident therapeutic effect on ischemic cerebrovascular diseases, including cerebral ischemia-reperfusion injury (CIRI). However, the specific mechanism underlying AMB in CIRI remains unclear. AIM OF THE STUDY This study aimed to investigate the potential role of AMB in CIRI through a comprehensive approach of network pharmacology and in vivo experimental research. METHODS The intersection genes of drugs and diseases were obtained through analysis of the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database and Gene Expression Omnibus (GEO) database. The protein-protein interaction (PPI) network was created through the string website. Meanwhile, the gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis was carried out using R studio, and thereafter the key genes were screened. Then, the molecular docking prediction was made between the main active ingredients and target genes, and hub genes with high binding energy were obtained. In addition, molecular dynamic (MD) simulation was used to validate the result of molecular docking. Based on the results of network pharmacology, we used animal experiments to verify the predicted hub genes. First, the rat middle cerebral artery occlusion and reperfusion (MACO/R) model was established and the effective dose of AMB in CIRI was determined by behavioral detection and 2,3,5-Triphenyltetrazolium chloride (TTC) staining. Then the target proteins corresponding to the hub genes were measured by Western blot. Moreover, the level of neuronal death was measured using hematoxylin and eosin (HE) and Nissl staining. RESULTS Based on the analysis of the TCMSP database and GEO database, a total of 62 intersection target genes of diseases and drugs were obtained. The KEGG enrichment analysis showed that the therapeutic effect of AMB on CIRI might be realized through the advanced glycation endproduct-the receptor of advanced glycation endproduct (AGE-RAGE) signaling pathway in diabetic complications, nuclear factor kappa-B (NF-κB) signaling pathway and other pathways. Molecular docking results showed that the active ingredients of AMB had good binding potential with hub genes that included Prkcb, Ikbkb, Gsk3b, Fos and Rela. Animal experiments showed that AWE (60 g/kg) could alleviate CIRI by regulating the phosphorylation of PKCβ, IKKβ, GSK3β, c-Fos and NF-κB p65 proteins. CONCLUSION AMB exerts multi-target and multi-pathway effects against CIRI, and the underlying mechanism may be related to anti-apoptosis, anti-inflammation, anti-oxidative stress and inhibiting calcium overload.
Collapse
Affiliation(s)
- Rui Li
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Qi Lou
- Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Hefei, 230031, PR China
| | - Tingting Ji
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, PR China
| | - Yincan Li
- Department of Pharmacology, Basic Medical College, Anhui Medical University, Hefei, 230032, PR China
| | - Haoran Yang
- Department of Pharmacy, Anhui Medical College, Hefei, 230601, PR China
| | - Zheng Ma
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Yu Zhu
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Can Qian
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China
| | - Wulin Yang
- Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, PR China.
| | - Yijun Wang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 Changjiang West Road, Hefei, 230036, PR China.
| | - Shengyong Luo
- Anhui Medical College (Anhui Academy of Medical Sciences), Hefei, 230061, PR China; Department of Pharmacology, School of Basic Medicine, Anhui Medical University, Hefei, 230031, PR China.
| |
Collapse
|
18
|
Wang Z, Yang Y, Wang N, Lu L, Xu C, Ren J, Yang L. RIP3 orchestrates oxidative stress and pyroptosis in doxorubicin-induced cardiotoxicity through regulation of AKT/Nrf2 signaling cascade. Mol Cell Biochem 2024:10.1007/s11010-024-05029-6. [PMID: 38955910 DOI: 10.1007/s11010-024-05029-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/04/2024] [Indexed: 07/04/2024]
Abstract
This study was designed to explore the role of RIP3 in DOX-induced cardiotoxicity and its underlying molecular mechanisms. Our results demonstrate that RIP3 exacerbates DOX-induced cardiotoxicity through promoting oxidative stress and pyroptosis by regulating the AKT/Nuclear factor erythroid 2-related factor 2 (Nrf2) signal pathway. Inhibition of RIP3 using GSK-872 attenuated DOX-induced cardiac remodeling and contractile dysfunction. Moreover, using GSK-872 in vivo, the results revealed that inhibition of RIP3 alleviated DOX-induced cardiotoxicity by the resulting inhibition of oxidative stress and pyroptosis. In addition, inhibition of RIP3 increased the protein levels of AKT and Nrf2 in DOX-treated mouse hearts. Furthermore, the AKT inhibitor LY294002 lessened RIP3 reduction-offered protection against DOX-induced H9c2 cell injury by moderating oxidative stress and pyroptosis. Taken together, these data demonstrate that RIP3 activation orchestrates DOX-induced cardiotoxicity through elevated oxidative stress and pyroptosis in an AKT/Nrf2-dependent manner. Those findings highlight the clinical relevance and therapeutic potential of targeting RIP3 for the treatment of DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Zhenyi Wang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China
| | - Yitong Yang
- Department of Children's Respiratory Asthma, Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xian Yang, 712046, Shaanxi, China
| | - Nisha Wang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China
| | - Linhe Lu
- Department of Cardiovascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Chennian Xu
- Key Laboratory of Gastrointestinal Pharmacology of Chinese Materia Medica of the State Administration of Traditional Chinese Medicine, Department of Pharmacology, School of Pharmacy, Air Force Medical University, Xi'an, 710032, Shaanxi, China
| | - Jun Ren
- Department of Cardiology and Shanghai Institute of Cardiovascular Diseases, Zhong Shan Hospital Fudan University, Shanghai, China
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, USA
| | - Lifang Yang
- Department of Anesthesiology, Children's Hospital Affiliated to Xi'an Jiao Tong University, Xi'an, 710003, Shaanxi, China.
| |
Collapse
|
19
|
Sun Q, Hu M, Yuan C, Ren B, Zhong M, Zhou S, Wang X, Gao Q, Zeng M, Cai X, Song H. Astragaloside IV ameliorates indomethacin-induced intestinal inflammation in rats through inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 135:112281. [PMID: 38762925 DOI: 10.1016/j.intimp.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1β and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1β and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1β and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.
Collapse
Affiliation(s)
- Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaojuan Wang
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
20
|
Li Q, Zhang C, Sun X, Wang M, Zhang Z, Chen R, Sun X. Forsythoside B alleviates cerebral ischemia-reperfusion injury via inhibiting NLRP3 inflammasome mediated by SIRT1 activation. PLoS One 2024; 19:e0305541. [PMID: 38885233 PMCID: PMC11182500 DOI: 10.1371/journal.pone.0305541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 05/31/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND The inflammatory response is a key factor in the pathogenesis of cerebral ischemia/reperfusion injury (CIRI), and anti-inflammatory interventions may offer a promising therapeutic strategy. Forsythoside B (FB) is a phenylethanoid glycoside isolated from Forsythiae fructus, which has been reported to have anti-inflammatory effects. However, the mechanism of the neuroprotective effect of FB on CIRI remains unclear. METHODS Adult male Sprague-Dawley rats were subjected to transient middle cerebral artery occlusion/reperfusion (MCAO/R). FB was administered intraperitoneally for 3 days prior to MCAO/R. Cerebral infarct volume and neurological deficit score were used as indices to evaluate MCAO/R injury. The serum levels of inflammatory factors and antioxidant enzymes were measured. The activation of silent information regulator 2 homolog 1 (Sirt1) and the inhibition of the nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) pathway were assessed through western blot and immunohistochemistry analysis. Furthermore, the rats were treated with Sirt1 shRNA 3 days before MCAO/R by stereotactical injection into the ipsilateral hemispheric region to assess the impact of Sirt1 knockdown on the protection of FB during MCAO/R. RESULTS FB reduced cerebral infarct volume and neurological deficit score in MCAO/R rats. FB reduced pathological changes and cell apoptosis in the hippocampal CA1 region and cortex on the ischemic side of rats. FB inhibited the serum levels of inflammatory factors and increased the activities of antioxidant enzymes. Further study showed that FB inhibited the activation of the NLRP3 pathway and induced Sirt1 activation. CONCLUSION FB demonstrated neuroprotective and anti-inflammatory effects by inhibiting the NLRP3 pathway through Sirt1 activation in CIRI.
Collapse
Affiliation(s)
- Qiaoyu Li
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chongyang Zhang
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xiao Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mengchen Wang
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhixiu Zhang
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Rongchang Chen
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaobo Sun
- Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glycolipid Metabolic Disorders, State Administration of Traditional Chinese Medicine, Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
21
|
Wang LL, Kang ML, Liu CW, Liu L, Tang B. Panax notoginseng Saponins Activate Nuclear Factor Erythroid 2-Related Factor 2 to Inhibit Ferroptosis and Attenuate Inflammatory Injury in Cerebral Ischemia-Reperfusion. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2024; 52:821-839. [PMID: 38699996 DOI: 10.1142/s0192415x24500332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Panax notoginseng saponins (PNS), the primary medicinal ingredient of Panax notoginseng, mitigates cerebral ischemia-reperfusion injury (CIRI) by inhibiting inflammation, regulating oxidative stress, promoting angiogenesis, and improving microcirculation. Moreover, PNS activates nuclear factor erythroid 2-related factor 2 (Nrf2), which is known to inhibit ferroptosis and reduce inflammation in the rat brain. However, the molecular regulatory roles of PNS in CIRI-induced ferroptosis remain unclear. In this study, we aimed to investigate the effects of PNS on ferroptosis and inflammation in CIRI. We induced ferroptosis in SH-SY5Y cells via erastin stimulation and oxygen glucose deprivation/re-oxygenation (OGD/R) in vitro. Furthermore, we determined the effect of PNS treatment in a rat model of middle cerebral artery occlusion/reperfusion and assessed the underlying mechanism. We also analyzed the changes in the expression of ferroptosis-related proteins and inflammatory factors in the established rat model. OGD/R led to an increase in the levels of ferroptosis markers in SH-SY5Y cells, which were reduced by PNS treatment. In the rat model, combined treatment with an Nrf2 agonist, Nrf2 inhibitor, and PNS-Nrf2 inhibitor confirmed that PNS promotes Nrf2 nuclear localization and reduces ferroptosis and inflammatory responses, thereby mitigating brain injury. Mechanistically, PNS treatment facilitated Nrf2 activation, thereby regulating the expression of iron overload and lipid peroxidation-related proteins and the activities of anti-oxidant enzymes. This cascade inhibited ferroptosis and mitigated CIRI. Altogether, these results suggest that the ferroptosis-mediated activation of Nrf2 by PNS reduces inflammation and is a promising therapeutic approach for CIRI.
Collapse
Affiliation(s)
- Lin-Lin Wang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Man-Lin Kang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Can-Wen Liu
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Liang Liu
- People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, Hunan 410600, P. R. China
| | - Biao Tang
- Key Laboratory of Vascular Biology and Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
- National Key Laboratory Cultivation Base of Chinese Medicinal Powder & Innovative Medicinal Jointly Established by Province and Ministry, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
- People's Hospital of Ningxiang City, Hunan University of Chinese Medicine, Changsha, Hunan 410600, P. R. China
| |
Collapse
|
22
|
Yuan L, Liu Y, Sun Y, Ren L, Gu X, Chen L, Zhou G, Sun X, Huang Q, Chen X, Gong G. Puerarin attenuates remifentanil‑induced postoperative hyperalgesia via targeting PAX6 to regulate the transcription of TRPV1. Mol Med Rep 2024; 29:81. [PMID: 38516772 PMCID: PMC10975072 DOI: 10.3892/mmr.2024.13204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 02/02/2024] [Indexed: 03/23/2024] Open
Abstract
Remifentanil‑induced hyperalgesia (RIH) is characterized by the emergence of stimulation‑induced pain, including phenomena such as allodynia and thermal hyperalgesia following remifentanil infusion. As a sequence‑specific DNA binding transcription factor, PAX6 positively and negatively regulates transcription and is expressed in multiple cell types in the developing and adult central nervous system. It was hypothesized that puerarin could relieve RIH via targeting PAX6 to regulate transcription of transient receptor potential cation channel subfamily V Member 1 (TRPV1). A total of 32 rats were randomly divided into five groups, namely control group, RI group, RI + 10 mg/kg puerarin group (RI + puerarin10), RI + 20 mg/kg puerarin group (RI + puerarin20), and RI + 40 mg/kg puerarin group (RI + puerarin40). Mechanical and thermal hyperalgesia were tested at ‑24, 2, 6, 24 and 48 h after remifentanil infusion. Following the sacrifice of rats after the last behavioral test, western blot was used to detect the expression levels of TRPV1 in the tissues; Immunofluorescence staining and western blotting were used to detect the expression of PAX6 in the spinal cord. PharmMapper and JASPAR were used to predict the binding sites of puerarin/PAX6/TRPV1. Chromatin immunoprecipitation‑PCR and dual luciferase reporter assay were used to verify the targeting relationship between PAX6 and TRPV1. Immunofluorescence was used to detect the expression levels of TRPV1 and p‑NR2B. The results revealed that puerarin (10, 20, 40 mg/kg) dose‑dependently reduced thermal and mechanical hyperalgesia from 2 to 48 h after remifentanil infusion. Remifentanil infusion remarkably stimulated the expression of phosphorylated (p‑)NR2B. Nevertheless, the increased amount of p‑NR2B by RIH was dose‑dependently suppressed by puerarin in rats. In conclusion, puerarin was revealed to attenuate postoperative RIH via targeting PAX6 to regulate the transcription of TRPV1.
Collapse
Affiliation(s)
- Libang Yuan
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yinghai Liu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Yangyang Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Ling Ren
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoping Gu
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Liang Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gongrui Zhou
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xiaoqin Sun
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Qingqing Huang
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Xufei Chen
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| | - Gu Gong
- Department of Anesthesiology, The General Hospital of Western Theater Command PLA, Chengdu, Sichuan 610083, P.R. China
| |
Collapse
|
23
|
Jin F, Jin L, Wei B, Li X, Li R, Liu W, Guo S, Fan H, Duan C. miR-96-5p alleviates cerebral ischemia-reperfusion injury in mice by inhibiting pyroptosis via downregulating caspase 1. Exp Neurol 2024; 374:114676. [PMID: 38190934 DOI: 10.1016/j.expneurol.2024.114676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/12/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Ischemic stroke is one of the leading causes of global mortality and disability. Nevertheless, successful treatment remains limited. In this study, we investigated the efficacy and the mechanism of miR-96-5p in protecting acute ischemic brain injury in adult mice. Focal cerebral ischemia was induced by middle cerebral artery occlusion (MCAO) in adult male C57BL/6 mice. MiR-96-5p or the negative control was administered via intracerebroventricular injection. The expression of pyroptosis-related genes and activation of various resident cells in the brain was assessed by RT-qPCR, western blot, immunohistochemistry, and immunofluorescence. Modified neurological severity score, rotarod test, cylinder test, brain water content, and cerebral infarction volume were used to evaluate the behavioral deficits and the severity of brain injury after MCAO. Flow cytometry, TUNEL staining, and Nissl staining were employed to assess the neuron damage. MiR-96-5p decreased markedly in the ischemic stroke model in vivo and in vitro. MiR-96-5p mimics suppressed the expression of caspase 1 and alleviated the apoptosis rate in OGD/R treatment N2a cells, however, the miR-96-5p inhibitor caused the opposite results. Intracerebroventricular delivery of miR-96-5p agomir significantly mitigated behavioral deficits, brain water content, and cerebral infarction volume after MCAO. In addition, treatment with miR-96-5p agomir downregulated the expression of caspase 1/cleaved caspase 1 and Gsdmd/Gsdmd-N, while alleviating the neuron damage. In summary, overexpression of miR-96-5p suppresses pyroptosis and reduces brain damage in the acute phase of ischemic stroke, providing new insight into the treatment of acute ischemic stroke.
Collapse
Affiliation(s)
- Fa Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Lei Jin
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Boyang Wei
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Xifeng Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Ran Li
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenchao Liu
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Shenquan Guo
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Haiyan Fan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Chuanzhi Duan
- Neurosurgery Center, Department of Cerebrovascular Surgery, The National Key Clinical Specialty, The Engineering Technology Research Center of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, The Neurosurgery Institute of Guangdong Province, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.
| |
Collapse
|
24
|
Chen X, Yang T, Zhou Y, Mei Z, Zhang W. Astragaloside IV combined with ligustrazine ameliorates abnormal mitochondrial dynamics via Drp1 SUMO/deSUMOylation in cerebral ischemia-reperfusion injury. CNS Neurosci Ther 2024; 30:e14725. [PMID: 38615367 PMCID: PMC11016344 DOI: 10.1111/cns.14725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/13/2024] [Accepted: 03/31/2024] [Indexed: 04/16/2024] Open
Abstract
OBJECTIVES Astragaloside IV (AST IV) and ligustrazine (Lig), the main ingredients of Astragali Radix and Chuanxiong Rhizoma respectively, have demonstrated significant benefits in treatment of cerebral ischemia -reperfusion injury (CIRI); however, the mechanisms underlying its benificial effects remain unclear. SUMO-1ylation and deSUMO-2/3ylation of dynamin-related protein 1 (Drp1) results in mitochondrial homeostasis imbalance following CIRI, which subsequently aggravates cell damage. This study investigates the mechanisms by which AST IV combined with Lig protects against CIRI, focusing on the involvement of SUMOylation in mitochondrial dynamics. METHODS Rats were administrated AST IV and Lig for 7 days, and middle cerebral artery occlusion was established to mimic CIRI. Neural function, cerebral infarction volume, cerebral blood flow, cognitive function, cortical pathological lesions, and mitochondrial morphology were measured. SH-SY5Y cells were subjected to oxygen-glucose deprivation/reoxygenation (OGD/R) injury. Mitochondrial membrane potential and lactic dehydrogenase (LDH), reactive oxygen species (ROS), and adenosine triphosphate (ATP) levels were assessed with commercial kits. Moreover, co-immunoprecipitation (Co-IP) was used to detect the binding of SUMO1 and SUMO2/3 to Drp1. The protein expressions of Drp1, Fis1, MFF, OPA1, Mfn1, Mfn2, SUMO1, SUMO2/3, SENP1, SENP2, SENP3, SENP5, and SENP6 were measured using western blot. RESULTS In rats with CIRI, AST IV and Lig improved neurological and cognitive functions, restored CBF, reduced brain infarct volume, and alleviated cortical neuron and mitochondrial damage. Moreover, in SH-SY5Y cells, the combination of AST IV and Lig enhanced cellular viability, decreased release of LDH and ROS, increased ATP content, and improved mitochondrial membrane potential. Furthermore, AST IV combined with Lig reduced the binding of Drp1 with SUMO1, increased the binding of Drp1 with SUMO2/3, suppressed the expressions of Drp1, Fis1, MFF, and SENP3, and increased the expressions of OPA1, Mfn1, Mfn2, SENP1, SENP2, and SENP5. SUMO1 overexpression promoted mitochondrial fission and inhibited mitochondrial fusion, whereas SUMO2/3 overexpression suppressed mitochondrial fission. AST IV combined with Lig could reverse the effects of SUMO1 overexpression while enhancing those of SUMO2/3 overexpression. CONCLUSIONS This study posits that the combination of AST IV and Lig has the potential to reduce the SUMO-1ylation of Drp1, augment the SUMO-2/3ylation of Drp1, and thereby exert a protective effect against CIRI.
Collapse
Affiliation(s)
- Xiangyu Chen
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- The First Clinical Medicine School of Guangdong Pharmaceutical UniversityGuangzhouGuangdongChina
| | - Tong Yang
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
| | - Yue Zhou
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Hunan Provincial Hospital of Integrated Traditional Chinese and Western MedicineChangshaHunanChina
| | - Zhigang Mei
- Key Laboratory of Hunan Province for Integrated Traditional Chinese and Western Medicine on Prevention and Treatment of Cardio‐Cerebral DiseasesCollege of Integrated Traditional Chinese and Western MedicineHunan University of Chinese MedicineChangshaHunanChina
- Third‐Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese MedicineCollege of Medicine and Health SciencesChina Three Gorges UniversityYichangHubeiChina
| | - Wenli Zhang
- School of PharmacyHunan University of Chinese MedicineChangshaHunanChina
| |
Collapse
|
25
|
Duan WL, Wang XJ, Ma YP, Sheng ZM, Dong H, Zhang LY, Zhang BG, He MT. Therapeutic strategies targeting the NLRP3‑mediated inflammatory response and pyroptosis in cerebral ischemia/reperfusion injury (Review). Mol Med Rep 2024; 29:46. [PMID: 38275110 PMCID: PMC10835666 DOI: 10.3892/mmr.2024.13170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/12/2024] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke poses a major threat to human health. Therefore, the molecular mechanisms of cerebral ischemia/reperfusion injury (CIRI) need to be further clarified, and the associated treatment approaches require exploration. The NOD‑like receptor thermal protein domain associated protein 3 (NLRP3) inflammasome serves an important role in causing CIRI, and its activation exacerbates the underlying injury. Activation of the NLRP3 inflammasome triggers the maturation and production of the inflammatory molecules IL‑1β and IL‑18, as well as gasdermin‑D‑mediated pyroptosis and CIRI damage. Thus, the NLRP3 inflammasome may be a viable target for the treatment of CIRI. In the present review, the mechanisms of the NLRP3 inflammasome in the intense inflammatory response and pyroptosis induced by CIRI are discussed, and the therapeutic strategies that target the NLRP3‑mediated inflammatory response and pyroptosis in CIRI are summarized. At present, certain drugs have already been studied, highlighting future therapeutic perspectives.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Weifang Medical University, Weifang, Shandong 261041, P.R. China
- Department of Pathology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
26
|
Khassafi N, Azami Tameh A, Mirzaei H, Rafat A, Barati S, Khassafi N, Vahidinia Z. Crosstalk between Nrf2 signaling pathway and inflammation in ischemic stroke: Mechanisms of action and therapeutic implications. Exp Neurol 2024; 373:114655. [PMID: 38110142 DOI: 10.1016/j.expneurol.2023.114655] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/03/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023]
Abstract
One of the major causes of long-term disability and mortality is ischemic stroke that enjoys limited treatment approaches. On the one hand, oxidative stress, induced by excessive generation of reactive oxygen species (ROS), plays a critical role in post-stroke inflammatory response. Increased ROS generation is one of the basic factors in the progression of stroke-induced neuroinflammation. Moreover, intravenous (IV) thrombolysis using recombinant tissue plasminogen activator (rtPA) as the only medication approved for patients with acute ischemic stroke who suffer from some clinical restrictions it could not cover the complicated episodes that happen after stroke. Thus, identifying novel therapeutic targets is crucial for successful preparation of new medicines. Recent evidence indicates that the transcription factor Nuclear factor erythroid 2-related factor 2 (Nrf2) contributes significantly to regulating the antioxidant production in cytosol, which causes antiinflammatory effects on neurons. New findings have shown a relationship between activation of the Nrf2 and glial cells, nuclear factor kappa B (NF-κB) pathway, the nucleotide-binding domain (NOD)-like receptor family pyrin domain containing 3 (NLRP3) inflammasome signaling, and expression of inflammatory markers, suggesting induction of Nrf2 activation can represent a promising therapeutic alternative as the modulators of Nrf2 dependent pathways for targeting inflammatory responses in neural tissue. Hence, this review addresses the relationship of Nrf2 signaling with inflammation and Nrf2 activators' potential as therapeutic agents. This review helps to improve required knowledge for focused therapy and the creation of modern and improved treatment choices for patients with ischemic stroke.
Collapse
Affiliation(s)
- Negar Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Abolfazl Azami Tameh
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Hamed Mirzaei
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Ali Rafat
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Shirin Barati
- Department of Anatomy, Saveh University of Medical Sciences, Saveh, Iran
| | - Negin Khassafi
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Zeinab Vahidinia
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
27
|
Li Q, Qu Z, Jia L, Wang W. Expression and correlation of the NOD-like receptor family, pyrin domain-containing 3 inflammasome and the silent information regulator 1 in patients with drug-resistant epilepsy. Epilepsy Res 2024; 201:107338. [PMID: 38447234 DOI: 10.1016/j.eplepsyres.2024.107338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/07/2024] [Accepted: 02/29/2024] [Indexed: 03/08/2024]
Abstract
BACKGROUND The NOD-like receptor family, pyrin domain-containing 3 (NLRP3) inflammatory pathway is implicated in the development of epilepsy and can be suppressed by the activation of the silent information regulator 1 (SIRT1). However, the expression and correlation of the NLRP3 pathway and SIRT1 in drug-resistant epilepsy (DRE) remain unknown. METHODS This study evaluated the histopathology of the cerebral cortex from nine patients with DRE and eight patients with cavernous haemangioma undergoing surgical treatment. It analysed the expression of the NLRP3, interleukin-1β (IL-1β), caspase-1 and SIRT1 using immunohistochemistry. Additionally, the contents of NLRP3, caspase-1, IL-1β and SIRT1 in the serum samples of the included study participants were determined using ELISA method. The correlation between the NLRP3 pathway and the SIRT1 was assessed using Spearman's correlation analysis. RESULTS The expression of NLRP3, caspase-1 and IL-1β in the cerebral cortex of patients with DRE was elevated, with the NLRP3 expression being negatively correlated with the SIRT1 expression. Furthermore, IL-1β in serum was upregulated in patients with DRE. The correlation between the content of serum SIRT1 and NLRP3, caspase-1 and IL-1β in patients with DRE was not significant. Notably, serum caspase-1 levels were obviously higher in patients with bilateral hippocampal sclerosis than in patients with unilateral hippocampal sclerosis. CONCLUSIONS The current results indicate that the expression of the NLRP3/caspase-1/IL-1β pathway is significantly upregulated in patients with DRE and that it is partially correlated with the SIRT1 expression. This study is important for understanding the pathophysiology of DRE and developing new treatment strategies for it.
Collapse
Affiliation(s)
- Qing Li
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Zhenzhen Qu
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Lijing Jia
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China
| | - Weiping Wang
- Department of Neurology, Key Laboratory of Neurology of Hebei Province, The Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, People's Republic of China.
| |
Collapse
|
28
|
Huang X, Yan X, Chen G, Feng Y, Bai Y, Yan P, Lai J, Wei S. Insufficient autophagy enables the nuclear factor erythroid 2-related factor 2 (NRF2) to promote ferroptosis in morphine-treated SH-SY5Y cells. Psychopharmacology (Berl) 2024; 241:291-304. [PMID: 38049617 DOI: 10.1007/s00213-023-06485-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 10/09/2023] [Indexed: 12/06/2023]
Abstract
RATIONALE While morphine has important therapeutic value it is also one of the most widely abused drugs in the world. As a newly discovered style of cell death, ferroptosis is involved in the occurrence and development of many diseases, however, the current understanding of the relationship between ferroptosis and morphine is still limited. OBJECTIVE To clarify the role of opioid receptors in morphine-induced ferroptosis and to investigate the role of NRF2 in morphine-induced ferroptosis. METHODS We first used different doses of morphine (0, 0.5, 1, and 1.5 mM) to investigate morphine-induced ferroptosis in SH-SY5Y cells, and we choose 1.5 mM morphine for subsequent experiments. We next inhibited opioid receptors and NRF2 separately and examined their influence on morphine-induced ferroptosis. Finally, we tested morphine-induced insufficient autophagy. RESULTS Morphine triggered ferroptosis in a dose-dependent manner, which could be significantly rescued by the ferroptosis-specific inhibitor DFO. Moreover, GPX4 rather than xCT antiporter might be involved in morphine-induced ferroptosis. We also found naloxone could inhibit morphine-induced ferroptosis. Interestingly, our results demonstrated that NRF2 could promote rather than defend morphine-induced ferroptosis; this may be due to the increased p62-related insufficient autophagy. CONCLUSION Morphine-induced ferroptosis is regulated by the opioid receptor and GPX4 rather than the xCT antiporter. NRF2-mediated ferroptosis in morphine-exposed cells may stem from increased p62-related insufficient autophagy.
Collapse
Affiliation(s)
- Xin Huang
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Xinyue Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Gang Chen
- Department of Forensic Medicine, School of Basic Medical Science, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, People's Republic of China
| | - Yue Feng
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Yuying Bai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Peng Yan
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Jianghua Lai
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China
| | - Shuguang Wei
- College of Forensic Science, Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, People's Republic of China.
| |
Collapse
|
29
|
You G, Zheng L, Zhang Y, Zhang Y, Wang Y, Guo W, Liu H, Tatiana P, Vladimir K, Zan J. Tangeretin Attenuates Cerebral Ischemia-Reperfusion-Induced Neuronal Pyroptosis by Inhibiting AIM2 Inflammasome Activation via Regulating NRF2. Inflammation 2024; 47:145-158. [PMID: 37725272 DOI: 10.1007/s10753-023-01900-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/27/2023] [Accepted: 09/05/2023] [Indexed: 09/21/2023]
Abstract
Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human's life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.
Collapse
Affiliation(s)
- Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Linbo Zheng
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China
| | - Yuanyuan Zhang
- The Affiliated Traditional Chinese Medicine Hospital of Guangzhou Medical University, Guangzhou, 510130, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yupeng Wang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Hao Liu
- Department of Traditional Chinese Medicine, Guangdong Second Provincial General Hospital, Guangzhou, 510310, China
| | - Philipovich Tatiana
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Kulchitsky Vladimir
- Institute of Physiology, National Academy of Sciences of Belarus, Minsk, 220072, Republic of Belarus
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
30
|
Li L, Gong J, Zhang W. Treatment of Intracerebral Hemorrhage with Traditional Chinese Medicine Monomer Wogonin by Modifying NLRP3 with METTL14 to Inhibit Neuronal Cell Pyroptosis. Appl Biochem Biotechnol 2024:10.1007/s12010-023-04849-4. [PMID: 38224394 DOI: 10.1007/s12010-023-04849-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/19/2023] [Indexed: 01/16/2024]
Abstract
The aim of this study was to investigate the alleviating effect of wogonin on intracerebral hemorrhage (ICH) and its mechanism. The hemin-treated PC-12 cells were constructed to mimic ICH in vitro. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) analysis was used for cell viability measurement and flow cytometry was for pyroptosis detection. Enzyme-linked immunosorbent assay (ELISA) assay and western blot were used to detect the protein levels of pyroptosis-related proteins. The modification level of N6-methyladenosine (m6A) methylation was detected by quantitative real-time polymerase chain reaction (qRT-PCR) combined with m6A dot blot assays. Molecular docking experiments analyzed the binding of wogonin and METTL14 protein. The correlation between METTL14 and NLRP3 was confirmed by bioinformatics analysis and dual luciferase reporter gene detection. ICH was induced in mice injected with collagenase into the basal ganglia, and the neurobehavioral damage was evaluated. Triphenyltetrazolium chloride monohydrate (TTC) staining and neurological scores were used to assess brain damage in mice. The results demonstrated that wogonin alleviated neuronal cell pyroptosis, and was molecularly docked with METTL14. Overexpression of METTL14 partly reversed the protecting effects of wogonin on brain in vitro and in vivo. Furthermore, NLRP3 was methylated by METTL14. Taken together, wogonin inhibits neuronal pyroptosis and thus treats IHC by inhibiting METTL14 and its methylated NLRP3.
Collapse
Affiliation(s)
- Libo Li
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Jinbing Gong
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China
| | - Wenjia Zhang
- Neurosurgery Department, The First Affiliated Hospital of Hunan University of Traditional Chinese Medicine, 95 Shaoshan Middle Road, Yuhua District, Changsha, 410007, China.
| |
Collapse
|
31
|
Gong Z, Guo J, Liu B, Guo Y, Cheng C, Jiang Y, Liang N, Hu M, Song T, Yang L, Li H, Zhang H, Zong X, Che Q, Shi N. Mechanisms of immune response and cell death in ischemic stroke and their regulation by natural compounds. Front Immunol 2024; 14:1287857. [PMID: 38274789 PMCID: PMC10808662 DOI: 10.3389/fimmu.2023.1287857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/27/2024] Open
Abstract
Ischemic stroke (IS), which is the third foremost cause of disability and death worldwide, has inflammation and cell death as its main pathological features. IS can lead to neuronal cell death and release factors such as damage-related molecular patterns, stimulating the immune system to release inflammatory mediators, thereby resulting in inflammation and exacerbating brain damage. Currently, there are a limited number of treatment methods for IS, which is a fact necessitating the discovery of new treatment targets. For this review, current research on inflammation and cell death in ischemic stroke was summarized. The complex roles and pathways of the principal immune cells (microglia, astrocyte, neutrophils, T lymphocytes, and monocytes/macrophage) in the immune system after IS in inflammation are discussed. The mechanisms of immune cell interactions and the cytokines involved in these interactions are summarized. Moreover, the cell death mechanisms (pyroptosis, apoptosis, necroptosis, PANoptosis, and ferroptosis) and pathways after IS are explored. Finally, a summary is provided of the mechanism of action of natural pharmacological active ingredients in the treatment of IS. Despite significant recent progress in research on IS, there remain many challenges that need to be overcome.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Qianzi Che
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| | - Nannan Shi
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
32
|
Wei X, Zhang T, Ma C, Zhang M, Jin L, Ma X, Zhang Z. TRIM27 ameliorates ischemic stroke by regulating NLRP3 inflammasome-mediated pyroptosis via the Akt/Nrf2/HO-1 signaling. Exp Neurol 2024; 371:114599. [PMID: 37914066 DOI: 10.1016/j.expneurol.2023.114599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/21/2023] [Accepted: 10/27/2023] [Indexed: 11/03/2023]
Abstract
Tripartite motif-containing 27 (TRIM27) is a member of TRIM family that exerts a protective effect against cardiac and hepatic ischemia/reperfusion (I/R) injury; however, little is known about its role in ischemic stroke. In our experiment, mice were intracerebroventricular injected with recombinant lentiviruses carrying TRIM27 or empty vector, and then they were subjected to middle cerebral artery occlusion/reperfusion (MCAO/R) 2 weeks after the injection. Mouse microglial BV-2 cells were infected with lentiviruses carrying TRIM27 or empty vector before exposure to oxygen-glucose deprivation/reoxygenation (OGD/R). TRIM27's role was assessed in vivo and in vitro. TRIM27 overexpression reduced infarct size, improved neurological function, inhibited activation of NLRP3 inflammasome, and activated the Akt/Nrf2/HO-1 pathway in mice subjected to MCAO/R. Furthermore, TRIM27 overexpression suppressed activation of NLRP3 inflammasome and activated this signaling pathway in OGD/R-exposed microglial cells. GSK690693 or ML385 treatment partially reversed the effect of TRIM27 overexpression in vitro. These findings indicate that TRIM27 overexpression ameliorates ischemic stroke by regulating NLRP3 inflammasome and Akt/Nrf2/HO-1 signaling. This study provides a novel target for treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xinya Wei
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tianqi Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chi Ma
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Minxue Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Liwei Jin
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xu Ma
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Zhuobo Zhang
- Department of Neurology, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
33
|
Wang M, Sun F, Han X, Wang N, Liu Y, Cai J, Tong S, Wang R, Wang H. Astragaloside IV Inhibits Rotenone-Induced α-syn Presentation and the CD4 T-Cell Immune Response. Mol Neurobiol 2024; 61:252-265. [PMID: 37603153 DOI: 10.1007/s12035-023-03566-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023]
Abstract
The increased α-synuclein (α-syn)-dependent activation of CD4 T cells leads to the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) in Parkinson's disease (PD). Astragaloside IV (AS-IV) protects DA neurons against neuroinflammation. The effects of AS-IV on CD4 T-cell-mediated immune responses in PD remain unknown. Rotenone (ROT) injected unilaterally into the substantia nigra pars compacta (SNc) of rats induced PD. AS-IV (20 mg/kg) was intraperitoneally injected once a day for 14 days. The limb hanging test and rotarod test were performed to evaluate the alteration of behavior at 4 and 6 weeks. Total gastrointestinal transit tests were performed at 4 weeks. Western blotting was used to detect the expression of proinflammatory cytokine proteins. Immunofluorescence staining was conducted to test the expression and localization of major histocompatibility complex class II (MHCII), cleaved caspase-1 and α-syn in astrocytes. Flow cytometry analysis, immunohistochemistry and immunofluorescence staining were used to measure the expression of CD4 T-cell subsets in the SN. The application of AS-IV protected against the loss of DA neurons and behavioral deficits in ROT-induced PD rat models. AS-IV administration inhibited the aggregation of α-syn in DA neurons and the expression of proinflammatory cytokines such as TNF-α, IL-18, IL-6 and IL-1β. AS-IV decreased the activation of CD4 T cells and three CD4 T-cell subsets: Tfh, Treg and Th1. AS-IV interrupted the ROT-induced interaction between astrocytes and CD4 T cells and the colocalization of MHCII and α-syn in astrocytes. AS-IV inhibited the expression of α-syn in astrocytes and the colocalization of α-syn and cleaved caspase-1 in astrocytes. AS-IV prevents the loss of DA neurons in PD by inhibiting the activation of α-syn-specific CD4 T cells, which is regulated by MHCII-mediated antigen presentation in astrocytes.
Collapse
Affiliation(s)
- Mengdi Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Fengjiao Sun
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Xiaofeng Han
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Nan Wang
- Medical Research Center, Binzhou Medical University Hospital, Binzhou, Shandong, 256603, China
| | - Yalan Liu
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Jinfeng Cai
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Shanshan Tong
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Rui Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China
| | - Hongcai Wang
- Department of Neurology, Binzhou Medical University Hospital, No. 661, the 2nd Yellow River Road, Shandong Province, 256603, Binzhou City, China.
| |
Collapse
|
34
|
Liu J, Sun Y, Chen W, Deng L, Chen M, Dong J. Proteomic analysis reveals the molecular mechanism of Astragaloside in the treatment of non-small cell lung cancer by inducing apoptosis. BMC Complement Med Ther 2023; 23:461. [PMID: 38102661 PMCID: PMC10722856 DOI: 10.1186/s12906-023-04305-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/10/2023] [Indexed: 12/17/2023] Open
Abstract
BACKGROUND Astragaloside III (AS III), a saponin-like metabolite derived from the traditional Chinese medicine Astragali Radix, has been shown to be effective in the treatment of cancer and heart failure, and a variety of digestive disorders. However, its molecular mechanism in the treatment of non-small cell lung cancer (NSCLC) is unknown. METHODS Human lung cancer A549 cells and NCI-H460 cells and a normal human lung epithelial cell BEAS-2B were treated with different concentrations of AS III. CCK-8 and EdU staining were used to determine the anti-proliferative effects of AS III in vitro. Quantitative proteomic analysis was performed on A549 cells treated with the indicated concentrations of AS III, and the expression levels of apoptosis-related proteins were examined by Western blotting. RESULTS AS III treatment significantly inhibited proliferation and increased apoptosis in A549 and H460 cells and modulated functional signaling pathways associated with apoptosis and metabolism. At the molecular level, AS III promoted a reduction in the expression of ANXA1 (p < 0.01), with increased levels of cleaved Caspase 3 and PARP 1. In addition, AS III treatment significantly decreased the LC3-I/LC3-II ratio. The results of experiment in vitro showed that AS III promoted NSCLC apoptosis by down-regulating the phosphorylation levels of P38, JNK, and AKT (p < 0.01), inhibiting the expression of Bcl-2 (p < 0.01), and up-regulating the expression of Bax (p < 0.01). CONCLUSION These findings provide a mechanism whereby AS III treatment induces apoptosis in NSCLC cells, which may be achieved in part via modulation of the P38, ERK and mTOR signaling pathways.
Collapse
Affiliation(s)
- Jiaqi Liu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Yan Sun
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Wenjing Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Lingling Deng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Mengmeng Chen
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China
- Institutes of Integrative Medicine, Fudan University, Shanghai, China
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, 12 Middle Urumqi Road, Shanghai, 200040, China.
- Institutes of Integrative Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
35
|
Ou Z, Wang Y, Yao J, Chen L, Miao H, Han Y, Hu X, Chen J. Astragaloside IV promotes angiogenesis by targeting SIRT7/VEGFA signaling pathway to improve brain injury after cerebral infarction in rats. Biomed Pharmacother 2023; 168:115598. [PMID: 37820565 DOI: 10.1016/j.biopha.2023.115598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/16/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Cerebral infarction (CI) has become one of the leading causes of death and acquired disability worldwide. Astragaloside IV (AST IV), one of the basic components of Astragalus membranaceus, has a protective effect on CI. However, the underlying mechanism has not been conclusively elucidated. Therefore, this study aims to explore the underlying mechanism of AST IV improving brain injury after CI. Middle cerebral artery occlusion (MCAO) and oxygen-glucose deprivation/reoxygenation (OGD/R) were used to simulate cerebral infarction injury in SD rats and HUVECs cells. Neurologic score, Evans blue, TTC and HE staining were used to observe brain injury in rats. Cell viability and migration were measured in vitro. Angiogenesis was detected by immunofluorescence and tube formation assay, and cell cycle was detected by flow cytometry. Western blot was used to find the expression of related proteins. Molecular docking, virtual mutation, site-directed mutagenesis, MST, and lentivirus silencing were used for target validation. The results showed that AST IV alleviated neurological impairment and promoted angiogenesis after CI. Moreover, AST IV greatly increased the transcription levels of SIRT6 and SIRT7, but had no effect on SIRT1-SIRT5, and promoted cell viability, migration, angiogenesis and S phase ratio in OGD/R-induced HUVECs. Furthermore, AST IV up-regulated the protein expressions of CDK4, cyclin D1, VEGFA and VEGF2R. Interestingly, AST IV not only bound to SIRT7, but also increased the expression of SIRT7. Silencing SIRT7 by lentivirus neutralizes the positive effects of AST IV. Taken together, the present study revealed that AST IV may improve brain tissue damage after CI by targeting SIRT7/VEGFA signaling pathway to promote angiogenesis.
Collapse
Affiliation(s)
- Zhijie Ou
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Wang
- Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jianxin Yao
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Li Chen
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Hong Miao
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Yang Han
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Xin Hu
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China
| | - Juping Chen
- Department of neurology, Changshu Hospital affiliated to Nanjing University of Chinese Medicine, 6 Huanghe Road, Changshu, Jiangsu 215500, China; Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
36
|
Ao L, Chen Z, Yin J, Leng Y, Luo Y, Fu X, Liu H, Liu X, Gao H, Xie C. Chinese herbal medicine and active ingredients for diabetic cardiomyopathy: molecular mechanisms regulating endoplasmic reticulum stress. Front Pharmacol 2023; 14:1290023. [PMID: 38027018 PMCID: PMC10661377 DOI: 10.3389/fphar.2023.1290023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Background: Diabetic cardiomyopathy (DCM) is one of the serious microvascular complications of diabetes mellitus. It is often associated with clinical manifestations such as arrhythmias and heart failure, and significantly reduces the quality of life and years of survival of patients. Endoplasmic reticulum stress (ERS) is the removal of unfolded and misfolded proteins and is an important mechanism for the maintenance of cellular homeostasis. ERS plays an important role in the pathogenesis of DCM by causing cardiomyocyte apoptosis, insulin resistance, calcium imbalance, myocardial hypertrophy and fibrosis. Targeting ERS is a new direction in the treatment of DCM. A large number of studies have shown that Chinese herbal medicine and active ingredients can significantly improve the clinical outcome of DCM patients through intervention in ERS and effects on myocardial structure and function, which has become one of the hot research directions. Purpose: The aim of this review is to elucidate and summarize the roles and mechanisms of Chinese herbal medicine and active ingredients that have the potential to modulate endoplasmic reticulum stress, thereby contributing to better management of DCM. Methods: Databases such as PubMed, Web of Science, China National Knowledge Internet, and Wanfang Data Knowledge Service Platform were used to search, analyze, and collect literature, in order to review the mechanisms by which phytochemicals inhibit the progression of DCM by targeting the ERS and its key signaling pathways. Keywords used included "diabetic cardiomyopathy" and "endoplasmic reticulum stress." Results: This review found that Chinese herbs and their active ingredients can regulate ERS through IRE1, ATF6, and PERK pathways to reduce cardiomyocyte apoptosis, ameliorate myocardial fibrosis, and attenuate myocardial hypertrophy for the treatment of DCM. Conclusion: A comprehensive source of information on potential ERS inhibitors is provided in this review. The analysis of the literature suggests that Chinese herbal medicine and its active ingredients can be used as potential drug candidates for the treatment of DCM. In short, we cannot ignore the role of traditional Chinese medicine in regulating ERS and treating DCM, and look forward to more research and new drugs to come.
Collapse
Affiliation(s)
- Lianjun Ao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhengtao Chen
- Affiliated Hospital of Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China
| | - Jiacheng Yin
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yulin Leng
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Yue Luo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoxu Fu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hanyu Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Xiaoke Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hong Gao
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chunguang Xie
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Chengdu, Sichuan, China
- Department of Endocrinology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
37
|
Ma Y, Li Y, Wu T, Li Y, Wang Q. Astragaloside IV Attenuates Programmed Death-Ligand 1-Mediated Immunosuppression during Liver Cancer Development via the miR-135b-5p/CNDP1 Axis. Cancers (Basel) 2023; 15:5048. [PMID: 37894415 PMCID: PMC10605108 DOI: 10.3390/cancers15205048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Astragaloside IV (AS-IV) is a pivotal contributor to anti-tumour effects and has garnered extensive attention in research. Tumour cell immune suppression is closely related to the increase in Programmed Death-Ligand 1 (PD-L1). Hepatocellular carcinoma (HCC) is a malignant tumour originating from hepatic epithelial tissue, and the role of AS-IV in regulating PD-L1 in anti-HCC activity remains unclear. METHODS Various concentrations of AS-IV were administered to both human liver immortalised cells (THEL2) and HCC (Huh-7 and SMMC-7721), and cell growth was assessed using the CCK-8 assay. HCC levels and cell apoptosis were examined using flow cytometry. Mice were orally administered AS-IV at different concentrations to study its effects on HCC in vivo. Immunohistochemistry was employed to evaluate PD-L1 levels. Western blotting was employed to determine PD-L1 and CNDP1 protein levels. We carried out a qRT-PCR to quantify the levels of miR-135b-3p and CNDP1. Finally, a dual-luciferase reporter assay was employed to validate the direct interaction between miR-135b-3p and the 3'UTR of CNDP1. RESULTS AS-IV exhibited a dose-dependent inhibition of proliferation in Huh-7 and SMMC-7721 while inhibiting PD-L1 expression induced by interferon-γ (IFN-γ), thus attenuating PD-L1-mediated immune suppression. MiR-135b-5p showed significant amplification in HCC tissues and cells. AS-IV mitigated PD-L1-mediated immune suppression through miR-135b-5p. MiR-135b-5p targeted CNDP1, and AS-IV mitigated PD-L1-induced immunosuppression by modulating the miR-135b-5p/CNDP1 pathway. CONCLUSION AS-IV decreases cell surface PD-L1 levels and alleviates PD-L1-associated immune suppression via the miR-135b-5p/CNDP1 pathway. AS-IV may be a novel component for treating HCC.
Collapse
Affiliation(s)
- Yang Ma
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Yan Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Taotao Wu
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yingshuai Li
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| | - Qi Wang
- National Institute of TCM Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China; (Y.M.)
| |
Collapse
|
38
|
Xie X, Wang F, Ge W, Meng X, Fan L, Zhang W, Wang Z, Ding M, Gu S, Xing X, Sun X. Scutellarin attenuates oxidative stress and neuroinflammation in cerebral ischemia/reperfusion injury through PI3K/Akt-mediated Nrf2 signaling pathways. Eur J Pharmacol 2023; 957:175979. [PMID: 37611841 DOI: 10.1016/j.ejphar.2023.175979] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/23/2023] [Accepted: 08/08/2023] [Indexed: 08/25/2023]
Abstract
Cerebral ischemia/reperfusion injury (CIRI) seriously threatens human life and health. Scutellarin (Scu) exhibits neuroprotective effects, but little is known about its underlying mechanism. Therefore, we explored its protective effect on CIRI and the underlying mechanism. Our results demonstrated that Scu rescued HT22 cells from cytotoxicity induced by oxygen and glucose deprivation/reoxygenation (OGD/R). Scu also showed antioxidant activity by promoting nuclear factor erythroid 2-related factor 2 (Nrf2) nuclear translocation, upregulating heme oxygenase-1 (HO-1) expression, increasing superoxide dismutase (SOD) activity, and inhibiting reactive oxygen species (ROS) generation in vitro. Additionally, Scu reduced nuclear factor-kappa B (NF-κB) activity and the levels of pro-inflammatory factors. Interestingly, these effects were abolished by Nrf2 inhibition. Furthermore, Scu reduced infarct volume and blood-brain barrier (BBB) permeability, improved sensorimotor functions and depressive behaviors, and alleviated oxidative stress and neuroinflammation in rats subjected to middle cerebral artery occlusion/reperfusion (MCAO/R). Mechanistically, Scu-induced Nrf2 nuclear accumulation and inactivation of NF-κB were accompanied by an enhanced level of phosphorylated protein kinase B (p-AKT) both in vitro and in vivo. Pharmacologically inhibiting the phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) pathway blocked Scu-induced Nrf2 nuclear translocation and inactivation of NF-κB, as well as its antioxidant and anti-inflammatory activities. In summary, these results suggest that Scu exhibits antioxidant, anti-inflammatory, and neuroprotective effects in CIRI through Nrf2 activation mediated by the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Xueheng Xie
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Fan Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Wenxiu Ge
- Research Center on Life Sciences and Environmental Sciences, Harbin University of Commerce, Harbin, 150076, China
| | - Xiangbao Meng
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Lijuan Fan
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Wei Zhang
- Kunming Longjin Pharmaceutical Co., Ltd, Kunming, 650503, China
| | - Zhen Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China
| | - Meng Ding
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Shengliang Gu
- Guizhou University of Traditional Chinese Medicine, Guizhou, 550025, China
| | - Xiaoyan Xing
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| | - Xiaobo Sun
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China; Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicines, Ministry of Education, Beijing, 100193, China; Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, 100193, China; Key Laboratory of Efficacy Evaluation of Chinese Medicine Against Glyeolipid Metabolism Disorder Disease, State Administration of Traditional Chinese Medicine, Beijing, 100193, China.
| |
Collapse
|
39
|
Xi J, Ma Y, Liu D, Li R. Astragaloside IV restrains pyroptosis and fibrotic development of pulmonary artery smooth muscle cells to ameliorate pulmonary artery hypertension through the PHD2/HIF1α signaling pathway. BMC Pulm Med 2023; 23:386. [PMID: 37828459 PMCID: PMC10568875 DOI: 10.1186/s12890-023-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Astragaloside (AS)-IV, extracted from traditional Chinese medicine Astragalus mongholicus, has been widely used in the anti-inflammatory treatment for cardiovascular disease. However, the mechanism by which AS-IV affects pulmonary artery hypertension (PAH) development remains largely unknown. METHODS Monocrotaline (MCT)-induced PAH model rats were administered with AS-IV, and hematoxylin-eosin staining and Masson staining were performed to evaluate the histological change in pulmonary tissues of rats. Pulmonary artery smooth muscle cells (PASMCs) were treated by hypoxia and AS-IV. Pyroptosis and fibrosis were assessed by immunofluorescence, western blot and enzyme-linked immunosorbent assay. RESULTS AS-IV treatment alleviated pulmonary artery structural remodeling and pulmonary hypertension progression induced by MCT in rats. AS-IV suppressed the expression of pyroptosis-related markers, the release of pro-inflammatory cytokine interleukin (IL)-1β and IL-18 and fibrosis development in pulmonary tissues of PAH rats and in hypoxic PAMSCs. Interestingly, the expression of prolyl-4-hydroxylase 2 (PHD2) was restored by AS-IV administration in PAH model in vivo and in vitro, while hypoxia inducible factor 1α (HIF1α) was restrained by AS-IV. Mechanistically, silencing PHD2 reversed the inhibitory effect of AS-IV on pyroptosis, fibrosis trend and pyroptotic necrosis in hypoxia-cultured PASMCs, while the HIF1α inhibitor could prevent these PAH-like phenomena. CONCLUSION Collectively, AS-IV elevates PHD2 expression to alleviate pyroptosis and fibrosis development during PAH through downregulating HIF1α. These findings may provide a better understanding of AS-IV preventing PAH, and the PHD2/HIF1α axis may be a potential anti-pyroptosis target during PAH.
Collapse
Affiliation(s)
- Jie Xi
- Outpatient department, Urumqi Youai Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| | - Yan Ma
- Department of Critical Care Medicine, Urumqi Youai Hospital, Urumqi, 830063, Xinjiang Uygur Autonomous Region, China.
- Department of Critical Care Medicine, Urumqi Youai Hospital, Xinjiang Uygur Autonomous Region, No. 3838, Convention and Exhibition Avenue, Midong District, Urumqi, 830063, China.
| | - Dongmei Liu
- Department of Gynaecology, Urumqi Maternal and Child Health Care Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| | - Rong Li
- Traditional Chinese Medicine department, Urumqi Maternal and Child Health Care Hospital, Xinjiang Uygur Autonomous Region, Urumqi, 830063, China
| |
Collapse
|
40
|
Liu J, Mu D, Xu J, Liu Y, Zhang G, Tang Y, Wang D, Wang F, Liang D, Hou Y. Inhibition of TLR4 Signaling by Isorhapontigenin Targeting of the AHR Alleviates Cerebral Ischemia/Reperfusion Injury. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13270-13283. [PMID: 37624928 DOI: 10.1021/acs.jafc.3c00152] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Ischemic stroke is a major risk factor in human health, yet there are no drugs to cure cerebral ischemia/reperfusion injury (CIRI). Inflammation plays a fundamental role in the consequences of CIRI. Isorhapontigenin (ISOR) exhibits great anti-inflammatory activity; however, it is unclear whether ISOR can treat ischemic stroke through an anti-inflammation effect. Here, middle cerebral artery occlusion/reperfusion (MCAO/R) was used to investigate the effects of ISOR on CIRI. The in vitro activity was measured in BV-2 cells exposed to oxygen-glucose deprivation/reperfusion. As measured by neurological scores, brain water content, and infarction, neurological dysfunction was improved in the ISOR group. The neuronal death and microglial activation in the ipsilateral cortex were reduced by ISOR. TLR4 signaling was significantly inhibited by ISOR in vivo and in vitro. By reverse molecular docking, cellular thermal shift, and drug affinity-responsive target stability assays, an aryl hydrocarbon receptor (AHR) was found to be a target of ISOR. Furthermore, AHR knockdown blocked the effect of ISOR on TLR4 signaling, suggesting that ISOR may regulate TLR4-mediated inflammation through AHR, thereby protecting neurons from CIRI. This study demonstrated that ISOR is a promising drug candidate for the treatment of ischemic stroke and provided a theoretical basis for the development of the medicinal value of ISOR-derived foods, such as grapes.
Collapse
Affiliation(s)
- Jingyu Liu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Danyang Mu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Jikai Xu
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| | - Yueyang Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Guijie Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541004, China
| | - Yue Tang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Dequan Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Feng Wang
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
| | - Dong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China
| | - Yue Hou
- Key Laboratory of Bioresource Research and Development of Liaoning Province, College of Life and Health Sciences, Northeastern University, Shenyang 110167, China
- National Frontiers Science Center for Industrial Intelligence and Systems Optimization, Key Laboratory of Data Analytics and Optimization for Smart Industry, Ministry of Education, Northeastern University, Shenyang 110167, China
| |
Collapse
|
41
|
Lei Y, Xu T, Sun W, Wang X, Gao M, Lin H. Evodiamine alleviates DEHP-induced hepatocyte pyroptosis, necroptosis and immunosuppression in grass carp through ROS-regulated TLR4 / MyD88 / NF-κB pathway. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108995. [PMID: 37573970 DOI: 10.1016/j.fsi.2023.108995] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/05/2023] [Accepted: 08/10/2023] [Indexed: 08/15/2023]
Abstract
Di (2-ethylhexyl) phthalate (DEHP) is a neuroendocrine disruptor that can cause multi-tissue organ damage by inducing oxidative stress. Evodiamine (EVO) is an indole alkaloid with anti-inflammatory, antitumor, and antioxidant pharmacological activity. In this manuscript, the effects of DEHP and EVO on the pyroptosis, necroptosis and immunology of grass carp hepatocytes (L8824) were investigated using DCFH-DA staining, PI staining, IF staining, AO/EB staining, LDH kit, qRT-PCR and protein Western blot. The results showed that DEHP exposure upregulated reactive oxygen species (ROS) levels, promoted the expression of TLR4/MyD88/NF-κB pathway, increased the expression of genes involved in cell pyroptosis pathway (LDH, NLRP3, ASC, caspase1, IL-1β, IL-18 and GSDMD) and necroptosis-related genes (RIPK1, RIPK3 and MLKL). The expression of DEHP can also affect immune function, which can be demonstrated by variationsin the activation of antimicrobial peptides (LEAP2, HEPC, and β-defensin) and inflammatory cytokines (TNF-α, IL-2, IL-6 and IL-10). EVO regulates cellular antioxidant capacity by inhibiting ROS burst, reduces DEHP-induced cell pyroptosis and necroptosis to some extent, and restores cellular immune function, after co-exposure with EVO. The TLR4 pathway was inhibited by the co-treatment of TLR4 inhibitor TLR-IN-C34 and DEHP, which attenuated the expression of cell pyroptosis, necroptosis, and immunosuppression. Thus, DEHP induced pyroptosis, necroptosis and abnormal immune function in L8824 cells by activating TLR4/MyD88/NF-κB pathway. In addition, EVO has a therapeutic effect on DEHP-induced toxic injury. This study further provides a theoretical basis for the risk assessment of plasticizer DEHP on aquatic organisms.
Collapse
Affiliation(s)
- Yutian Lei
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Tong Xu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Wenying Sun
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xiaodan Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Meichen Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Hongjin Lin
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Laboratory of Embryo Biotechnology, College of Life Science, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
42
|
Bai W, Huo S, Zhou G, Li J, Yang Y, Shao J. Biliverdin modulates the Nrf2/A20/eEF1A2 axis to alleviate cerebral ischemia-reperfusion injury by inhibiting pyroptosis. Biomed Pharmacother 2023; 165:115057. [PMID: 37399716 DOI: 10.1016/j.biopha.2023.115057] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 07/05/2023] Open
Abstract
This study aimed to examine whether Biliverdin, which is a common metabolite of haem, can alleviate cerebral ischemia reperfusion injury (CIRI) by inhibiting pyroptosis. Here, CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in C57BL/6 J mice and modelled by oxygen and glucose deprivation/reoxygenation (OGD/R) in HT22 cells, it was treated with or without Biliverdin. The spatiotemporal expression of GSDMD-N and infarction volumes were assessed by immunofluorescence staining and triphenyltetrazolium chloride (TTC), respectively. The NLRP3/Caspase-1/GSDMD pathway, which is central to the pyroptosis process, as well as the expression of Nrf2, A20, and eEF1A2 were determined by Western-blots. Nrf2, A20, and eEF1A2 interactions were verified using dual-luciferase reporter assays, chromatin immunoprecipitation, or co-immunoprecipitation. Additionally, the role of Nrf2/A20/eEF1A2 axis in modulating the neuroprotective properties of Biliverdin was investigated using A20 or eEF1A2 gene interference (overexpression and/or silencing). 40 mg/kg of Biliverdin could significantly alleviate CIRI both in vivo and in vitro, promoted the activation of Nrf2, elevated A20 expression, but decreased eEF1A2 expression. Nrf2 can bind to the promoter of A20, thereby transcriptionally regulating the expression of A20. A20 can furthermore interacted with eEF1A2 through its ZnF4 domain to ubiquitinate and degrade it, leading to the downregulation of eEF1A2. Our studies have also demonstrated that either the knock-down of A20 or over-expression of eEF1A2 blunted the protective effect of Biliverdin. Rescue experiments further confirmed that Biliverdin could regulate the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. In summary, our study demonstrates that Biliverdin ameliorates CIRI by inhibiting the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. Our findings can help identify novel therapeutic targets for the treatment of CIRI.
Collapse
Affiliation(s)
- Wenya Bai
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Siying Huo
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Guilin Zhou
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Junjie Li
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Yuan Yang
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China
| | - Jianlin Shao
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, 650032 Kunming, Yunnan Province, China.
| |
Collapse
|
43
|
Zheng T, Jiang T, Huang Z, Ma H, Wang M. Role of traditional Chinese medicine monomers in cerebral ischemia/reperfusion injury:a review of the mechanism. Front Pharmacol 2023; 14:1220862. [PMID: 37654609 PMCID: PMC10467294 DOI: 10.3389/fphar.2023.1220862] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 08/04/2023] [Indexed: 09/02/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is a pathological process wherein reperfusion of an ischemic organ or tissue exacerbates the injury, posing a significant health threat and economic burden to patients and their families. I/R triggers a multitude of physiological and pathological events, such as inflammatory responses, oxidative stress, neuronal cell death, and disruption of the blood-brain barrier (BBB). Hence, the development of effective therapeutic strategies targeting the pathological processes resulting from I/R is crucial for the rehabilitation and long-term enhancement of the quality of life in patients with cerebral ischemia/reperfusion injury (CIRI). Traditional Chinese medicine (TCM) monomers refer to bioactive compounds extracted from Chinese herbal medicine, possessing anti-inflammatory and antioxidative effects, and the ability to modulate programmed cell death (PCD). TCM monomers have emerged as promising candidates for the treatment of CIRI and its subsequent complications. Preclinical studies have demonstrated that TCM monomers can enhance the recovery of neurological function following CIRI by mitigating oxidative stress, suppressing inflammatory responses, reducing neuronal cell death and functional impairment, as well as minimizing cerebral infarction volume. The neuroprotective effects of TCM monomers on CIRI have been extensively investigated, and a comprehensive understanding of their mechanisms can pave the way for novel approaches to I/R treatment. This review aims to update and summarize evidence of the protective effects of TCMs in CIRI, with a focus on their role in modulating oxidative stress, inflammation, PCD, glutamate excitotoxicity, Ca2+ overload, as well as promoting blood-brain barrier repairment and angiogenesis. The main objective is to underscore the significant contribution of TCM monomers in alleviating CIRI.
Collapse
Affiliation(s)
| | | | | | | | - Manxia Wang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, China
| |
Collapse
|
44
|
Song K, Yu JY, Li J, Li M, Peng LY, Yi PF. Astragaloside IV Regulates cGAS-STING Signaling Pathway to Alleviate Immunosuppression Caused by PRRSV Infection. Viruses 2023; 15:1586. [PMID: 37515271 PMCID: PMC10383485 DOI: 10.3390/v15071586] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/01/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) poses a global threat to pig health and results in significant economic losses. Impaired innate and adaptive immune responses are evident during PRRSV infection. Cyclic GMP-AMP synthase (cGAS), a classical pattern recognition receptor recognizing mainly intracytoplasmic DNA, induces type I IFN responses through the cGAS-STING signaling pathway. It has also been demonstrated that cGAS-STING is involved in PRRSV infection. This study utilized the qRT-PCR, ELISA, and WB methods to examine the effects of Astragaloside IV (AS-IV) on the regulation of innate immune function and cGAS-STING signaling pathway in porcine alveolar macrophages. The results showed that AS-IV attenuated the decreased innate immune function caused by PRRSV infection, restored the inhibited cGAS-STING signaling pathway, and increased the expression of interferon, ultimately exerting antiviral effects. Moreover, these results suggest that AS-IV may be a promising candidate for a new anti-PRRSV antiviral, and its mechanism of action may provide insights for developing novel antiviral agents.
Collapse
Affiliation(s)
- Ke Song
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jia-Ying Yu
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Jiang Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Miao Li
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Lu-Yuan Peng
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| | - Peng-Fei Yi
- College of Veterinary Medicine, Jilin University, Changchun 130062, China
| |
Collapse
|
45
|
Zhou S, Yang L, Hu L, Qin W, Cao Y, Tang Z, Li H, Hu X, Fang Z, Li S, Huang Z, Chen H. Blueberry extract alleviated lipopolysaccharide-induced inflammation responses in mice through activating the FXR/TGR5 signaling pathway and regulating gut microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4638-4648. [PMID: 36935348 DOI: 10.1002/jsfa.12560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/09/2022] [Accepted: 03/19/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Blueberry extract (BE) is rich in phenols, especially anthocyanins. Anthocyanins regulate the inflammatory response in mice and may be related to gut microbiota and bile acid receptors. The aim of the present study was to explore the effects of BE on the inflammatory response by regulating gut microbiota and bile acid receptors in mice administered Escherichia coli lipopolysaccharide (LPS). METHOD Thirty male KM mice were randomly divided into three groups: CON (control diet) group; LPS (LPS stimulation) group; and LPS + BE (LPS stimulation, 5% BE intervention) group. RESULTS our results showed that, compared with the LPS group, the addition of BE decreased the level of inflammatory factors in serum and tissues, inhibited the TLR4/MyD88 signaling pathway, protected the intestinal barrier and activated FXR/TGR5, which was related to gut microbiota (especially Akkermansia). The active component (e.g., cyanidin 3-O-glucoside, C3G) in BE may be an important factor in regulating gut microbiota. CONCLUSION BE alleviated the inflammatory response mainly by activating bile acid receptor expression and regulating the gut microbiota; this effect may be related to the composition of bioactive substances in BE. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shanshan Zhou
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Li Yang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Liang Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Wen Qin
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Yang Cao
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zizhong Tang
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Hua Li
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Xinjie Hu
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhengfeng Fang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Shanshan Li
- College of Food Science, Sichuan Agricultural University, Yaan, China
| | - Zhiqing Huang
- Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, China
| | - Hong Chen
- College of Food Science, Sichuan Agricultural University, Yaan, China
| |
Collapse
|
46
|
Yuan Y, Sheng P, Ma B, Xue B, Shen M, Zhang L, Li D, Hou J, Ren J, Liu J, Yan BC, Jiang Y. Elucidation of the mechanism of Yiqi Tongluo Granule against cerebral ischemia/reperfusion injury based on a combined strategy of network pharmacology, multi-omics and molecular biology. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 118:154934. [PMID: 37393828 DOI: 10.1016/j.phymed.2023.154934] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 06/10/2023] [Accepted: 06/19/2023] [Indexed: 07/04/2023]
Abstract
BACKGROUND Ischemic stroke is caused by local lesions of the central nervous system and is a severe cerebrovascular disease. A traditional Chinese medicine, Yiqi Tongluo Granule (YQTL), shows valuable therapeutic effects. However, the substances and mechanisms remain unclear. PURPOSE We combined network pharmacology, multi-omics, and molecular biology to elucidate the mechanisms by which YQTL protects against CIRI. STUDY DESIGN We innovatively created a combined strategy of network pharmacology, transcriptomics, proteomics and molecular biology to study the active ingredients and mechanisms of YQTL. We performed a network pharmacology study of active ingredients absorbed by the brain to explore the targets, biological processes and pathways of YQTL against CIRI. We also conducted further mechanistic analyses at the gene and protein levels using transcriptomics, proteomics, and molecular biology techniques. RESULTS YQTL significantly decreased the infarction volume percentage and improved the neurological function of mice with CIRI, inhibited hippocampal neuronal death, and suppressed apoptosis. Fifteen active ingredients of YQTL were detected in the brains of rats. Network pharmacology combined with multi-omics revealed that the 15 ingredients regulated 19 pathways via 82 targets. Further analysis suggested that YQTL protected against CIRI via the PI3K-Akt signaling pathway, MAPK signaling pathway, and cAMP signaling pathway. CONCLUSION We confirmed that YQTL protected against CIRI by inhibiting nerve cell apoptosis enhanced by the PI3K-Akt signaling pathway.
Collapse
Affiliation(s)
- Yue Yuan
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Peng Sheng
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Bo Ma
- Chinese Academy of Medical Sciences & Peking Union Medical College Institute of Materia Medica, Beijing 100730, China
| | - Bingjie Xue
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing 100700, China
| | - Mengmeng Shen
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Ling Zhang
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China
| | - Dan Li
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Jincai Hou
- Shineway Pharmaceutical Group Co., Ltd., Shijiazhuang 051430, China
| | - Junguo Ren
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China
| | - Jianxun Liu
- Beijing Key Laboratory of TCM Pharmacology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100730, China.
| | - Bing Chun Yan
- Department of Neurology, Medical College, Institute of Translational Medicine, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, The Key Laboratory of Syndrome Differentiation and Treatment of Gastric Cancer of the State Administration of Traditional Chinese Medicine, Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou 225001, China.
| | - Yunyao Jiang
- Institute for Chinese Materia Medica, School of Pharmaceutical Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
47
|
Wu C, Duan F, Yang R, Dai Y, Chen X, Li S. 15, 16-Dihydrotanshinone I protects against ischemic stroke by inhibiting ferroptosis via the activation of nuclear factor erythroid 2-related factor 2. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 114:154790. [PMID: 37028247 DOI: 10.1016/j.phymed.2023.154790] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key regulator of antioxidative stress responses, which are associated with ferroptosis inhibition. Ferroptosis is closely related to the pathophysiological process of ischemic stroke. 15, 16-Dihydrotanshinone I (DHT), a lipophilic tanshinone extracted from the root of Salvia miltiorrhiza Bunge (Danshen), has various pharmacological effects. However, its effect against ischemic stroke remains to be examined. PURPOSE This study aimed to investigate the protective effect of DHT against ischemic stroke and its underlying mechanism. METHODS Rats with permanent middle cerebral artery occlusion (pMCAO)-induced cerebral ischemia rats and tert-butyl hydroperoxide (t-BHP)-injured PC12 cells were used to investigate the protective effect of DHT against ischemic stroke effect and the potential mechanism. RESULTS The results showed that DHT decreased ferroptosis in-vitro experiment, as indicated by decreased lipid ROS generation, increased Gpx4 expression and the ratio of GSH/GSSG, and improved mitochondrial function. The inhibitory effect of DHT on ferroptosis was decreased after Nrf2 silencing. Furthermore, DHT decreased the neurological score, infarct volume, and cerebral edema, increased regional cerebral blood flow, and improved the microstructure of white-grey matter in pMCAO rats. In addition, DHT activated Nrf2 signaling and inhibited ferroptosis marker events. Nrf2 activator and ferroptosis inhibitor also exerted protective effects on pMCAO rats. CONCLUSIONS These data demonstrated that DHT might have therapeutic potential for ischemic stroke and protects against ferroptosis via the activation of Nrf2. This study provides new insight into DHT-mediated prevention of ferroptosis in ischemic stroke.
Collapse
Affiliation(s)
- Chuanhong Wu
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China; The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes) & the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Feipeng Duan
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ruocong Yang
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yaolan Dai
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiuping Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Avenida da Universidade, Taipa, Macao, China.
| | - Shaojing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
48
|
Islam MT, Sarkar C, Hossain R, Bhuia MS, Mardare I, Kulbayeva M, Ydyrys A, Calina D, Habtemariam S, Kieliszek M, Sharifi-Rad J, Cho WC. Therapeutic strategies for rheumatic diseases and disorders: targeting redox imbalance and oxidative stress. Biomed Pharmacother 2023; 164:114900. [PMID: 37216707 DOI: 10.1016/j.biopha.2023.114900] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 05/08/2023] [Accepted: 05/16/2023] [Indexed: 05/24/2023] Open
Abstract
Rheumatic diseases and disorders (RDDs) are a group of chronic autoimmune diseases that are collectively called "multicausal diseases". They have resulted from predisposing genetic profiles and exposure to a range of environmental, occupational and lifestyle risk factors. Other causative factors include bacterial and viral attacks, sexual habits, trauma, etc. In addition, numerous studies reported that redox imbalance is one of the most serious consequences of RDDs. For example, rheumatoid arthritis (RA) as a classic example of chronic RDDs is linked to oxidative stress. This paper summarizes the contributions of redox imbalance to RDDs. The findings suggest that establishing direct or indirect therapeutic strategies for RDDs requires a more in-depth understanding of the redox dysregulation in these diseases. For example, the recent awareness of the roles of peroxiredoxins (Prdxs, e.g. Prdx2, Prdx3) in RDDs provided one potential route of therapeutic intervention of these pathologies. Changes in stressful lifestyles and dietary habits may also provide additional benefits in the management of RDDs. Future studies should be directed to explore molecular interactions in redox regulations associated with RDDS and potential therapeutic interventions.
Collapse
Affiliation(s)
- Muhammad Torequl Islam
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh.
| | - Chandan Sarkar
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Rajib Hossain
- Department of Pharmacology, School of Medicine, Chungnam National University, Daejeon, South Korea
| | - Md Shimul Bhuia
- Department of Pharmacy, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Ileana Mardare
- Department of Public Health and Management, Carol Davila University of Medicine and Pharmacy of Bucharest, Bucharest, Romania
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi Av. 71, 050040 Almaty, Kazakhstan
| | - Alibek Ydyrys
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi ave. 71, 050040 Almaty, Kazakhstan
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349 Craiova, Romania.
| | - Solomon Habtemariam
- Pharmacognosy Research & Herbal Analysis Services UK, University of Greenwich, Central Avenue, Chatham-Maritime, Kent ME4 4TB, UK
| | - Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland.
| | | | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong Special Administrative Region.
| |
Collapse
|
49
|
Long J, Sun Y, Liu S, Yang S, Chen C, Zhang Z, Chu S, Yang Y, Pei G, Lin M, Yan Q, Yao J, Lin Y, Yi F, Meng L, Tan Y, Ai Q, Chen N. Targeting pyroptosis as a preventive and therapeutic approach for stroke. Cell Death Discov 2023; 9:155. [PMID: 37165005 PMCID: PMC10172388 DOI: 10.1038/s41420-023-01440-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/18/2023] [Accepted: 04/20/2023] [Indexed: 05/12/2023] Open
Abstract
Stroke has caused tremendous social stress worldwide, yet despite decades of research and development of new stroke drugs, most have failed and rt-PA (Recombinant tissue plasminogen activator) is still the accepted treatment for ischemic stroke. the complexity of the stroke mechanism has led to unsatisfactory efficacy of most drugs in clinical trials, indicating that there are still many gaps in our understanding of stroke. Pyroptosis is a programmed cell death (PCD) with inflammatory properties and are thought to be closely associated with stroke. Pyroptosis is regulated by the GSDMD of the gasdermin family, which when cleaved by Caspase-1/Caspase-11 into N-GSDMD with pore-forming activity can bind to the plasma membrane to form small 10-20 nm pores, which would allow the release of inflammatory factors IL-18 and IL-1β before cell rupture, greatly exacerbating the inflammatory response. The pyroptosis occurs mainly in the border zone of cerebral infarction, and glial cells, neuronal cells and brain microvascular endothelial cells (BMECs) all undergo pyroptosis after stroke, which largely exacerbates the breakdown of the blood-brain barrier (BBB) and thus aggravates brain injury. Therefore, pyroptosis may be a good direction for the treatment of stroke. In this review, we focus on the latest mechanisms of action of pyroptosis and the process by which pyroptosis regulates stroke development. We also suggest potential therapeutic stroke drugs that target the pyroptosis pathway, providing additional therapeutic strategies for the clinical management of stroke. The role of pyroptosis after stroke. After stroke, microglia first rush to the damaged area and polarize into M1 and M2 types. Under the influence of various stimuli, microglia undergo pyroptosis, release pro-inflammatory factors, and are converted to the M1 type; astrocytes and neuronal cells also undergo pyroptosis under the stimulation of various pro-inflammatory factors, leading to astrocyte death due to increased osmotic pressure in the membrane, resulting in water absorption and swelling until rupture. BMECs, the main structural component of the BBB, also undergo pyroptosis when stimulated by pro-inflammatory factors released from microglia and astrocytes, leading to the destruction of the structural integrity of the BBB, ultimately causing more severe brain damage. In addition, GSDMD in neutrophils mainly mediate the release of NETs rather than pyroptosis, which also aggravates brain injury. IL-10=interleukin-10; TGF-β = transforming growth factor-β; IL-18=interleukin-18; IL-1β = interleukin-1β; TNF-α = tumor necrosis factor-α; iNOS=induced nitrogen monoxide synthase; MMPs=Matrix metalloproteinases; GSDMD = gasdermin D; BMECs=brain microvascular endothelial cells; BBB = blood-brain barrier.
Collapse
Affiliation(s)
- Junpeng Long
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yang Sun
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Shasha Liu
- Department of Pharmacy, Changsha Hospital for Matemal & Child Health Care, Changsha, P. R. China
| | - Songwei Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, P. R. China
| | - Zhao Zhang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Shifeng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China
| | - Yantao Yang
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Gang Pei
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Meiyu Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Qian Yan
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Jiao Yao
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yuting Lin
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Fan Yi
- Key Laboratory of Cosmetic, China National Light Industry, Beijing Technology and Business University, Beijing, P. R. China
| | - Lei Meng
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China
| | - Yong Tan
- Department of Nephrology, Xiangtan Central Hospital, Xiangtan, P. R. China
| | - Qidi Ai
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
| | - Naihong Chen
- Hunan Engineering Technology Center of Standardization and Function of Chinese Herbal Decoction Pieces, College of Pharmacy, Hunan University of Chinese Medicine, Changsha, P. R. China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P. R. China.
| |
Collapse
|
50
|
He W, Hu Z, Zhong Y, Wu C, Li J. The Potential of NLRP3 Inflammasome as a Therapeutic Target in Neurological Diseases. Mol Neurobiol 2023; 60:2520-2538. [PMID: 36680735 DOI: 10.1007/s12035-023-03229-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
NLRP3 (NLRP3: NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is the best-described inflammasome that plays a crucial role in the innate immune system and a wide range of diseases. The intimate association of NLRP3 with neurological disorders, including neurodegenerative diseases and strokes, further emphasizes its prominence as a clinical target for pharmacological intervention. However, after decades of exploration, the mechanism of NLRP3 activation remains indefinite. This review highlights recent advances and gaps in our insights into the regulation of NLRP3 inflammasome. Furthermore, we present several emerging pharmacological approaches of clinical translational potential targeting the NLRP3 inflammasome in neurological diseases. More importantly, despite small-molecule inhibitors of the NLRP3 inflammasome, we have focused explicitly on Chinese herbal medicine and botanical ingredients, which may be splendid therapeutics by inhibiting NLRP3 inflammasome for central nervous system disorders. We expect that we can contribute new perspectives to the treatment of neurological diseases.
Collapse
Affiliation(s)
- Wenfang He
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanjun Zhong
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chenfang Wu
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jinxiu Li
- Department of Critical Care Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|