1
|
Haq SU, Ling W, Aqib AI, Danmei H, Aleem MT, Fatima M, Ahmad S, Gao F. Exploring the intricacies of antimicrobial resistance: Understanding mechanisms, overcoming challenges, and pioneering innovative solutions. Eur J Pharmacol 2025; 998:177511. [PMID: 40090539 DOI: 10.1016/j.ejphar.2025.177511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/07/2025] [Accepted: 03/14/2025] [Indexed: 03/18/2025]
Abstract
Antimicrobial resistance (AMR) poses a growing global threat. This review examines AMR from diverse angles, tracing the story of antibiotic resistance from its origins to today's crisis. It explores the rise of AMR, from its historical roots to the urgent need to counter this escalating menace. The review explores antibiotic classes, mechanisms, resistance profiles, and genetics. It details bacterial resistance mechanisms with illustrative examples. Multidrug-resistant bacteria spotlight AMR's resilience. Modern AMR control offers hope through precision medicine, stewardship, combination therapy, surveillance, and international cooperation. Converging traditional and innovative treatments presents an exciting frontier as novel compounds seek to enhance antibiotic efficacy. This review calls for global unity and proactive engagement to address AMR collectively, emphasizing the quest for innovative solutions and responsible antibiotic use. It underscores the interconnectedness of science, responsibility, and action in combatting AMR. Humanity faces a choice between antibiotic efficacy and obsolescence. The call is clear: unite, innovate, and prevail against AMR.
Collapse
Affiliation(s)
- Shahbaz Ul Haq
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| | - Wang Ling
- Key Laboratory of New Animal Drug Project, Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agriculture Sciences, Lanzhou, 730050, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Huang Danmei
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Muhammad Tahir Aleem
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China
| | - Mahreen Fatima
- Faculty of Biosciences, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, 63100, Pakistan
| | - Saad Ahmad
- Engineering & Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou, 730050, China
| | - Fenfei Gao
- Department of Pharmacology, Shantou University Medical College, Shantou, 515041, China.
| |
Collapse
|
2
|
Manik MRK, Mishu ID, Mahmud Z, Muskan MN, Emon SZ. Association of fluoroquinolone resistance with rare quinolone resistance-determining region (QRDR) mutations and protein-quinolone binding affinity (PQBA) in multidrug-resistant Escherichia coli isolated from patients with urinary tract infection. J Infect Public Health 2025; 18:102766. [PMID: 40153979 DOI: 10.1016/j.jiph.2025.102766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) caused by Escherichia coli pose significant public health risks, particularly in developing countries like Bangladesh. This study aimed to elucidate resistance patterns among UTI isolates and comprehensively investigate the mutational spectrum and its impact on drug-microbe interactions. METHODS We collected and identified E. coli isolates from hospitalized UTI patients at Dhaka Medical College Hospital and determined their resistance patterns using the disc diffusion method and broth microdilution. Quinolone resistance-determining regions (QRDRs) of the target genes (gyrA, gyrB, parC, and parE) associated with fluoroquinolone resistance were amplified by polymerase chain reaction (PCR) and analyzed through BTSeq™ sequencing for mutations, followed by molecular docking analysis using PyMOL and AutoDock for the protein-quinolone binding affinity (PQBA) study. RESULTS All isolates (100 %) displayed multidrug resistance, with chloramphenicol (16 % resistant) and colistin (28 % resistant) demonstrating superior efficacy compared to other antibiotics. The isolates resistant to colistin, as determined by disc diffusion testing, exhibited remarkably high minimum inhibitory concentrations (MICs), with one isolate registering an MIC exceeding 512 µg/mL. Alarming resistance rates were observed for five antibiotic classes, except for polymyxins (28 % resistant) and protein synthesis inhibitors (48 % resistant). Fifty-two percent (52 %) of the isolates exhibited resistance to all five tested quinolones. Sequence analysis revealed a novel L88Q mutation in ParC, affecting PQBA and binding conformation. Additionally, three ParC mutations (S80I, E84V, and E84G) and two ParE mutations (S458A and I529L) were identified, which had not been previously reported in Bangladesh. Among these, S80I appeared in all isolates. Double-mutations (S83L+D87N) in GyrA, L88Q and S80I in ParC, and I529L in ParE were identified as key drivers of fluoroquinolone resistance. CONCLUSION Our findings underscore the accumulation of significant mutations within QRDRs of UTI isolates, potentially compromising fluoroquinolone efficacy. The emergence of these novel mutations warrants further investigation to impede their dissemination and combat quinolone resistance.
Collapse
Affiliation(s)
- Md Rasel Khan Manik
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | | | - Zimam Mahmud
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | | | - Sharmin Zaman Emon
- Centre for Advanced Research in Sciences, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
3
|
Muteeb G, Kazi RNA, Aatif M, Azhar A, Oirdi ME, Farhan M. Antimicrobial resistance: Linking molecular mechanisms to public health impact. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2025; 33:100232. [PMID: 40216324 DOI: 10.1016/j.slasd.2025.100232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/20/2025] [Accepted: 04/08/2025] [Indexed: 04/21/2025]
Abstract
BACKGROUND Antimicrobial resistance (AMR) develops into a worldwide health emergency through genetic and biochemical adaptations which enable microorganisms to resist antimicrobial treatment. β-lactamases (blaNDM, blaKPC) and efflux pumps (MexAB-OprM) working with mobile genetic elements facilitate fast proliferation of multidrug-resistant (MDR) and exttreme drug-resistant (XDR) phenotypes thus creating major concerns for healthcare systems and community health as well as the agricultural sector. OBJECTIVES The review dissimilarly unifies molecular resistance pathways with public health implications through the study of epidemiological data and monitoring approaches and innovative therapeutic solutions. Previous studies separating their attention between molecular genetics and clinical outcomes have been combined into our approach which delivers an all-encompassing analysis of AMR. KEY INSIGHTS The report investigates the resistance mechanisms which feature enzymatic degradation and efflux pump overexpression together with target modification and horizontal gene transfer because these factors represent important contributors to present-day AMR developments. This review investigates AMR effects on hospital and community environments where it affects pathogens including MRSA, carbapenem-resistant Klebsiella pneumoniae, and drug-resistant Pseudomonas aeruginosa. This document explores modern AMR management methods that comprise WHO GLASS molecular surveillance systems and three innovative strategies such as CRISPR-modified genome editing and bacteriophage treatments along with antimicrobial peptides and artificial intelligence diagnostic tools. CONCLUSION The resolution of AMR needs complete scientific and global operational methods alongside state-of-the-art therapeutic approaches. Worldwide management of drug-resistant infection burden requires both enhanced infection prevention procedures with next-generation antimicrobial strategies to reduce cases effectively.
Collapse
Affiliation(s)
- Ghazala Muteeb
- Department of Nursing, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia.
| | - Raisa Nazir Ahmed Kazi
- Department of Respiratory Therapy, College of Applied Medical Science, King Faisal, University, Al-Ahsa, Saudi Arabia
| | - Mohammad Aatif
- Department of Public Health, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Asim Azhar
- NAP Life Sciences; Metropolitan Region, Maharashtra 401208, India
| | - Mohamed El Oirdi
- Department of Biological Sciences, College of Science, King Faisal University, Al Ahsa, Saudi Arabia; Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohd Farhan
- Department of Basic Sciences, Preparatory Year, King Faisal University, Al-Ahsa, Saudi Arabia; Department of Chemistry, College of Science, King Faisal University, Al Ahsa, Saudi Arabia.
| |
Collapse
|
4
|
Baindara P, Kumari S, Dinata R, Mandal SM. Antimicrobial peptides: evolving soldiers in the battle against drug-resistant superbugs. Mol Biol Rep 2025; 52:432. [PMID: 40293554 DOI: 10.1007/s11033-025-10533-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 04/22/2025] [Indexed: 04/30/2025]
Abstract
The discovery of antibiotics was one of the greatest achievements in human history, however, antibiotic resistance evolved no later than the introduction of antibiotics. The rapid evolution of antibiotic-resistant pathogens soon became frightening and remained a global healthcare threat. There is an urgent need to have new alternatives or new strategies to combat the multi-drug resistant superbugs such as methicillin-resistant Staphylococcus aureus (MRSA), vancomycin-resistant enterococci (VRE), carbapenem-resistant Pseudomonas aeruginosa (CR-PA), extended-spectrum β-lactamases (ESBL) bearing multidrug-resistant Acinetobacter baumannii (MDR-AB), Escherichia coli (E. coli), and Klebsiella pneumoniae (K. pneumoniae). Antimicrobial peptides (AMPs) have been considered promising agents equipped with unique mechanisms of action along with several other benefits to fight the battle against drug-resistant superbugs. Overall, the current review summarizes the mechanisms of drug-resistant development, the mechanism of action adopted by AMPs to combat drug-resistant pathogens, and the immunomodulatory properties of AMPs. Additionally, we have also reviewed the synergistic potential of AMPs with conventional antibiotics along with the associated challenges and limitations of AMPs in the way of pharmacological development for therapeutic applications in clinical settings.
Collapse
Affiliation(s)
- Piyush Baindara
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA.
| | - Sumeeta Kumari
- Department of Oral Biology, School of Dental Medicine, University of Buffalo, Buffalo, NY, 14214, USA
| | - Roy Dinata
- Animal Science Research Center, Division of Animal Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Santi M Mandal
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92093, USA
| |
Collapse
|
5
|
Cheung S, Zhou NA, Ruhanya V, J Jesser K, Nezomba I, Musvibe J, Manyisa B, Nyandoro G, Chibukira P, Mukaratirwa A, Muserere ST, Masunda K, Ong A, Meschke JS. Characterization of enteric pathogens in Harare, Zimbabwe using environmental surveillance and metagenomics. JOURNAL OF WATER AND HEALTH 2025; 23:477-492. [PMID: 40298267 DOI: 10.2166/wh.2025.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/03/2025] [Indexed: 04/30/2025]
Abstract
High diarrheal disease burden remains an urgent concern in low- and middle-income countries, greatly affecting children under the age of 5 years and those living with HIV and AIDS. Treatment of infectious diseases has also become increasingly difficult with the rapid rise of antimicrobial resistance (AMR). Environmental surveillance of wastewater can supplement gaps in clinical surveillance as residents on a sewage system contribute to the wastewater, providing simple, composite samples that can improve understanding about both pathogens and AMR in the community. This study evaluated the effectiveness of environmental surveillance with shotgun metagenomics as a tool to characterize a broad range of enteric pathogens, antibiotic resistance genes, and virulence factor genes (VFGs) in wastewater from six neighborhoods in Harare, Zimbabwe. Alpha and beta diversity of the microbial community were similar between high-income and low-income suburbs. Enteric pathogens of high AMR and clinical concern, including Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica, were detected in all samples. The top VFGs were encoded for delivery, adherence, and motility, functions important in toxin secretion, colonization, and immune modulation. The findings provide a foundation for future studies to explore environmental surveillance and shotgun metagenomics as a public health monitoring tool for enteric diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Angelo Ong
- University of Washington, Seattle, WA, USA
| | | |
Collapse
|
6
|
Gashaw Y, Asmare Z, Tigabie M, Sisay A, Getatachew E, Tadesse S, Bitew G, Ashagre A, Misganaw T, Gashaw M, Kassahun W, Dejazimach Z, Jemal A, Gedfie S, Kumie G, Nigatie M, Abebe W, Kidie AA, Abate BB, Reta MA, Gelaw B. Prevalence of colistin-resistant Enterobacteriaceae isolated from clinical samples in Africa: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:437. [PMID: 40158103 PMCID: PMC11955131 DOI: 10.1186/s12879-025-10826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 03/19/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND Antimicrobial resistance among Enterobacteriaceae poses a significant global threat, particularly in developing countries. Colistin, a critical last-resort treatment for infections caused by carbapenem-resistant and multidrug-resistant strains, is increasingly facing resistance due to inappropriate use of colistin and the spread of plasmid-mediated resistance genes. Despite the significance of this issue, comprehensive and updated data on colistin resistance in Africa is lacking. Thus, the current study was aimed to determine the pooled prevalence of colistin-resistant Enterobacteriaceae in Africa. METHODS A systematic search was conducted across PubMed, Scopus, ScienceDirect, and Google Scholar to identify relevant studies. Forty-one studies reporting on the prevalence of colistin resistance in Enterobacteriaceae isolates from clinical specimens in Africa were included in the analysis. Stata 17 software was used to calculate the pooled prevalence of colistin resistance, employing a random-effects model to determine the event rate of resistance. Heterogeneity across studies was assessed using the I2 statistic, and publication bias was evaluated using Egger's test. Subgroup analyses were performed to address any identified heterogeneity. RESULTS This systematic review analyzed the colistin resistance profile of 9,636 Enterobacteriaceae isolates. The overall pooled prevalence of colistin resistance was 26.74% (95% CI: 16.68-36.80). Subgroup analysis by country revealed significant variability in resistance rates, ranging from 0.5% in Djibouti to 50.95% in South Africa. Species-specific prevalence of colistin resistance was as follows: K. pneumoniae 28.8% (95% CI: 16.64%-41.05%), E. coli 24.5% (95% CI: 11.68%-37.3%), Proteus spp. 50.0% (95% CI: 6.0%-106.03%), and Enterobacter spp. 1.22% (95% CI: -0.5%-3.03%). Analysis based on AST methods revealed significant differences in colistin resistance rates (p = 0.001). The resistance rates varied between 12.60% for the disk diffusion method and 28.0% for the broth microdilution method. Additionally, a subgroup analysis of clinical specimens showed significant variation (p < 0.001) in colistin resistance. Stool specimen isolates had the highest resistance rate at 42.0%, while blood specimen isolates had a much lower resistance rate of 3.58%. CONCLUSIONS Colistin resistance in Enterobacteriaceae is notably high in Africa, with significant variation across countries. This underscores the urgent need for effective antimicrobial stewardship, improved surveillance, and the development of new antibiotics.
Collapse
Affiliation(s)
- Yalewayker Gashaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia.
| | - Zelalem Asmare
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Injibara University, Injibara, Ethiopia
| | - Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Asefa Sisay
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Ermias Getatachew
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Selamyhun Tadesse
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Getachew Bitew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Agenagnew Ashagre
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Tadesse Misganaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Muluken Gashaw
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Woldeteklehaymanot Kassahun
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Zelalem Dejazimach
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Abdu Jemal
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Solomon Gedfie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Getinet Kumie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Marye Nigatie
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Wagaw Abebe
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Atitegeb Abera Kidie
- Department of Public Health, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Biruk Beletew Abate
- Department of Nursing, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
| | - Melese Abate Reta
- Department of Medical Laboratory Science, College of Health Sciences, Woldia University, P.O Box 400, Woldia, Ethiopia
- Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshofaq , Pretoria, 0084, South Africa
| | - Baye Gelaw
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
7
|
Chauhan S, Shinu P, Kaur N, Saini AK, Bala R, Nair AB, Rahman A, Morsy MA. Dynamics of Antimicrobial Susceptibility and Risk Factors Associated with Infections Caused by Colistin-Resistant Bacteria: A Study from the Northern Region of Haryana, India. Pol J Microbiol 2025; 74:95-105. [PMID: 40146792 PMCID: PMC11949382 DOI: 10.33073/pjm-2025-008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 02/05/2025] [Indexed: 03/29/2025] Open
Abstract
Antimicrobial resistance poses a significant threat to global health, with colistin as a last-resort antibiotic against multidrug-resistant (MDR) microorganisms. The present study aimed to investigate the dynamics of antimicrobial susceptibility patterns and risk factors associated with infections caused by colistin-resistant bacteria in the Northern region of Haryana, India. Clinical samples (n = 12,652) collected from a single hospital in Haryana were subjected to microbiological analysis for five months. Among the total samples (n = 12,652) processed, 24% (n = 3,061) showed growth of pathogenic bacteria. Within the Gram-negative isolates, 56% (n = 1,242) were non-MDR, while 44% (n = 995) were MDR. Among MDR isolates (n = 995), 6% (n = 57) showed resistance to colistin. Notably, Pseudomonas spp. (12%, n = 19) and Acinetobacter spp. (11%, n = 8) demonstrated the highest resistance to colistin, followed by Klebsiella spp. (5%, n = 13), Escherichia coli (3%, n = 16), and Citrobacter freundii (1%, n = 1), respectively. The study revealed significant associations between the level of education (demographic variable) and the occurrence of colistin resistance. Prolonged hospital stays (> 5 days) and specific comorbidities, including diabetes (p < 0.01) and chronic obstructive pulmonary disease (p < 0.01), were identified as risk factors for colistin-resistant infections. Importantly, none of the colistin-resistant bacteria harbored mcr genes, suggesting alternative resistance mechanisms. Antibiotic sensitivity analysis indicated promising efficacy of antibiotics such as amikacin and gentamicin against colistin-resistant strains, though with variations across bacterial species. In summary, the study emphasizes the urgent need for enhanced surveillance, infection control protocols, and antimicrobial stewardship programs in healthcare settings to minimize the dissemination of MDR and colistin-resistant bacteria.
Collapse
Affiliation(s)
- Shubham Chauhan
- Department of Microbiology, Maharishi Marksandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, India
| | - Pottathil Shinu
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Narinder Kaur
- Department of Microbiology, Maharishi Marksandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, India
| | - Adesh K. Saini
- Department of Biotechnology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, India
| | - Rosy Bala
- Department of Microbiology, Maharishi Marksandeshwar Institute of Medical Science and Research, Maharishi Markandeshwar (Deemed to be) University, Mullana, Ambala, India
| | - Anroop B. Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Aminur Rahman
- Department of Biomedical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mohamed A. Morsy
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
8
|
Sedrakyan A, Gevorgyan Z, Zakharyan M, Arakelova K, Hakobyan S, Hovhannisyan A, Aminov R. Molecular Epidemiology and In-Depth Characterization of Klebsiella pneumoniae Clinical Isolates from Armenia. Int J Mol Sci 2025; 26:504. [PMID: 39859219 PMCID: PMC11764700 DOI: 10.3390/ijms26020504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/21/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
The global dissemination of Klebsiella pneumoniae pathotypes with multidrug-resistant (MDR) and hypervirulent traits poses a threat to public health. The situation in Armenia is unclear, and we performed a comprehensive characterisation of 48 clinical isolates of K. pneumoniae, collected from 2018 to 2024. The majority of the isolates (64.58%) were extensively drug-resistant (XDR) and MDR. Genomic analysis of 21 isolates revealed the presence of international high-risk MDR clones (ST395, ST15, and ST307). The ST395 strains were isolated from children and resisted the first-line drugs such as beta-lactams. These isolates harboured a range of virulence determinants, from capsule polysaccharides to siderophores to regulators of the mucoid phenotype. The ST395 strains are enriched by ICEs, plasmids, and prophages, on which antimicrobial resistance (AMR) and virulence genes are located and which may lead to the convergence of MDR and hypervirulent traits. There is a widespread non-specific AMR mechanism among our K. pneumoniae strains. These are mutations in the porin genes, which reduce permeability to antimicrobials, and mutations in the regulators of efflux pumps, which lead to overexpression of drug efflux pumps such as AcrAB. These mechanisms may contribute to the elevated MICs and confer AMR to strains with no specific AMR genes.
Collapse
Affiliation(s)
- Anahit Sedrakyan
- Institute of Molecular Biology, National Academy of Sciences of RA, Yerevan 0014, Armenia; (A.S.); (M.Z.); (K.A.); (S.H.); (A.H.)
| | - Zaruhi Gevorgyan
- Department of Clinical Laboratory Diagnostics, Yerevan State Medical University After M. Heratsi, Yerevan 0025, Armenia;
| | - Magdalina Zakharyan
- Institute of Molecular Biology, National Academy of Sciences of RA, Yerevan 0014, Armenia; (A.S.); (M.Z.); (K.A.); (S.H.); (A.H.)
| | - Karine Arakelova
- Institute of Molecular Biology, National Academy of Sciences of RA, Yerevan 0014, Armenia; (A.S.); (M.Z.); (K.A.); (S.H.); (A.H.)
| | - Shoghik Hakobyan
- Institute of Molecular Biology, National Academy of Sciences of RA, Yerevan 0014, Armenia; (A.S.); (M.Z.); (K.A.); (S.H.); (A.H.)
| | - Alvard Hovhannisyan
- Institute of Molecular Biology, National Academy of Sciences of RA, Yerevan 0014, Armenia; (A.S.); (M.Z.); (K.A.); (S.H.); (A.H.)
| | - Rustam Aminov
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK
| |
Collapse
|
9
|
Selim HMRM, Gomaa FAM, Alshahrani MY, Kamel NA, Aboshanab KM, Elsayed KM. Colistin, doxycycline and Labetalol-meropenem combination are the most active against XDR-Carbapenem-resistant Acinetobacter baumannii: Role of a novel transferrable plasmid conferring carbapenem resistance. Diagn Microbiol Infect Dis 2024; 110:116558. [PMID: 39413660 DOI: 10.1016/j.diagmicrobio.2024.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/03/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
This study aimed to evaluate the antimicrobial susceptibility and combination of a beta-blocker, labetalol (LAB) and meropenem (MEM) on Carbapenem-resistant (CR) A. baumannii clinical isolates. A total of 43 CR- A. baumannii were isolated of which 37 (86.6 %) and 28 (65 %) exhibited MDR and XDR phenotypes, respectively. Colistin and doxycycline still retain their activities in 93.1 % and 72.1 % of the isolates, respectively. Combining MEM with LAB at 0.25 mg /mL, decreased MIC values in 91.4 % (32/35) however, at 0.5 mg /mL, it decreased MIC value and restored susceptibility to MEM in 100 % and 91.4 % of the tested isolates, respectively. A novel transferable plasmid pAcbGIM3 harboring aph-3', blaoxa-58,blaGIM3 and blaCTX-M3 and eight mobile genetic elements were successfully isolated from a pan-drug resistant (PDR) isolate. In conclusion, LAB-MEM is a promising combination and should be clinically examined. This is the first report of a transmissible plasmid harboring blaGIM3 gene in Egypt.
Collapse
Affiliation(s)
- Heba Mohammed Refat M Selim
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, AlMaarefa University, Diriyah, Riyadh 13713, Saudi Arabia
| | - Fatma Alzahraa M Gomaa
- Department of Pharmacognosy and Medicinal Herbs, Faculty of Pharmacy, Al-Baha University, Al Baha, Saudi Arabia
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, P.O. Box 61413, Abha 9088, Saudi Arabia
| | - Noha A Kamel
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| | - Khaled M Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain shams University, Cairo 11566, Egypt; Department of Pharmaceutical Life Sciences, Faculty of Pharmacy, University Technology MARA (UiTM), Campus Puncak Alam, Bandar Puncak Alam, Selangor 42300, Malaysia.
| | - Khaled M Elsayed
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), PO:19648, Cairo, Egypt
| |
Collapse
|
10
|
Yadav KS, Pawar S, Datkhile K, Patil SR. Study on the Mobile Colistin Resistance (mcr-1) Gene in Gram-Negative Bacilli in a Rural Tertiary Care Hospital in Western Maharashtra. Cureus 2024; 16:e75569. [PMID: 39803089 PMCID: PMC11724157 DOI: 10.7759/cureus.75569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/11/2024] [Indexed: 01/16/2025] Open
Abstract
BACKGROUND Colistin, a last-resort antibiotic for treating multidrug-resistant Gram-negative bacterial infections, has increased resistance as a result of the emergence of the mcr-1 gene. The mcr-1gene, which confers colistin resistance, is often carried on plasmids, facilitating its spread by horizontal gene transfer among bacterial populations. The rising prevalence of mcr-1-mediated resistance poses significant challenges for infection control and treatment efficacy. This study aimed to detect and investigate the prevalence of the mcr-1 gene among Gram-negative bacilli isolated from clinical specimens in a rural tertiary care hospital and to analyze the plasmid-mediated mechanisms of colistin resistance. MATERIALS AND METHODS A cross-sectional study was conducted over two years at Krishna Institute of Medical Sciences, Karad. Gram-negative bacilli were isolated from clinical specimens and identified using standard methodology. Antimicrobial susceptibility testing was performed by using the Vitek-2 Compact (bioMerieux, Marcy-l'Étoile, France) method and the colistin-resistance broth microdilution method (BMD). Polymerase chain reaction (PCR) was done for the presence of mcr-1 gene in colistin-resistant isolates. RESULTS Out of 359 Gram-negative bacilli isolates, 93 (25.90%) demonstrated resistance to colistin. Among these resistant strains, the mcr-1 gene was identified in 13 (13.97%) of the isolates. The gene was predominantly found in Pseudomonas aeruginosa (8, 61.53%), followed by Klebsiella pneumoniae (3, 23.07%), Acinetobacter baumannii (2, 15.38%) among the 13 isolates. Out of the various specimens received, mcr-1 gene was found in endotracheal tube (4, 30.76%), urine (4, 30.76%), pus (3, 23.07%), sputum (1, 7.69%), and blood (1, 7.69%). Colistin minimum inhibitory concentration (MIC) value for these resistant isolates ranged from 4 to 16 µg/ml. CONCLUSION The study highlights a significant prevalence of mcr-1 plasmid-mediated colistin resistance gene among Gram-negative bacilli in the hospital. This possibly highlights the frequent misuse of colistin in animal husbandry from this rural area. The findings underscore the importance of monitoring resistance patterns and implementing stringent infection control measures.
Collapse
Affiliation(s)
- Kajal S Yadav
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satyajeet Pawar
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Kailas Datkhile
- Krishna Institute of Allied Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| | - Satish R Patil
- Department of Microbiology, Krishna Institute of Medical Sciences, Krishna Vishwa Vidyapeeth, Karad, IND
| |
Collapse
|
11
|
Islam MM, Jung DE, Shin WS, Oh MH. Colistin Resistance Mechanism and Management Strategies of Colistin-Resistant Acinetobacter baumannii Infections. Pathogens 2024; 13:1049. [PMID: 39770308 PMCID: PMC11728550 DOI: 10.3390/pathogens13121049] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Accepted: 11/26/2024] [Indexed: 01/16/2025] Open
Abstract
The emergence of antibiotic-resistant Acinetobacter baumannii (A. baumannii) is a pressing threat in clinical settings. Colistin is currently a widely used treatment for multidrug-resistant A. baumannii, serving as the last line of defense. However, reports of colistin-resistant strains of A. baumannii have emerged, underscoring the urgent need to develop alternative medications to combat these serious pathogens. To resist colistin, A. baumannii has developed several mechanisms. These include the loss of outer membrane lipopolysaccharides (LPSs) due to mutation of LPS biosynthetic genes, modification of lipid A (a constituent of LPSs) structure through the addition of phosphoethanolamine (PEtN) moieties to the lipid A component by overexpression of chromosomal pmrCAB operon genes and eptA gene, or acquisition of plasmid-encoded mcr genes through horizontal gene transfer. Other resistance mechanisms involve alterations of outer membrane permeability through porins, the expulsion of colistin by efflux pumps, and heteroresistance. In response to the rising threat of colistin-resistant A. baumannii, researchers have developed various treatment strategies, including antibiotic combination therapy, adjuvants to potentiate antibiotic activity, repurposing existing drugs, antimicrobial peptides, nanotechnology, photodynamic therapy, CRISPR/Cas, and phage therapy. While many of these strategies have shown promise in vitro and in vivo, further clinical trials are necessary to ensure their efficacy and widen their clinical applications. Ongoing research is essential for identifying the most effective therapeutic strategies to manage colistin-resistant A. baumannii. This review explores the genetic mechanisms underlying colistin resistance and assesses potential treatment options for this challenging pathogen.
Collapse
Affiliation(s)
- Md Minarul Islam
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Da Eun Jung
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
| | - Woo Shik Shin
- Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, OH 44272, USA
| | - Man Hwan Oh
- Smart Animal Bio Institute, Dankook University, Cheonan 31116, Republic of Korea;
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 31116, Republic of Korea;
- Center for Bio-Medical Engineering Core Facility, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
12
|
Hossain AKMZ, Chowdhury AMMA. Understanding the Evolution and Transmission Dynamics of Antibiotic Resistance Genes: A Comprehensive Review. J Basic Microbiol 2024; 64:e2400259. [PMID: 39113256 DOI: 10.1002/jobm.202400259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 10/05/2024]
Abstract
Antibiotic resistance poses a formidable challenge to global public health, necessitating comprehensive understanding and strategic interventions. This review explores the evolution and transmission dynamics of antibiotic resistance genes, with a focus on Bangladesh. The indiscriminate use of antibiotics, compounded by substandard formulations and clinical misdiagnosis, fuels the emergence and spread of resistance in the country. Studies reveal high resistance rates among common pathogens, emphasizing the urgent need for targeted interventions and rational antibiotic use. Molecular assessments uncover a diverse array of antibiotic resistance genes in environmental reservoirs, highlighting the complex interplay between human activities and resistance dissemination. Horizontal gene transfer mechanisms, particularly plasmid-mediated conjugation, facilitate the exchange of resistance determinants among bacterial populations, driving the evolution of multidrug-resistant strains. The review discusses clinical implications, emphasizing the interconnectedness of environmental and clinical settings in resistance dynamics. Furthermore, bioinformatic and experimental evidence elucidates novel mechanisms of resistance gene transfer, underscoring the dynamic nature of resistance evolution. In conclusion, combating antibiotic resistance requires a multifaceted approach, integrating surveillance, stewardship, and innovative research to preserve the efficacy of antimicrobial agents and safeguard public health.
Collapse
Affiliation(s)
- A K M Zakir Hossain
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| | - A M Masudul Azad Chowdhury
- Laboratory of Microbial and Cancer Genomics, Department of Genetic Engineering and Biotechnology, University of Chittagong, Chattogram, Bangladesh
| |
Collapse
|
13
|
Li X, Hu H, Zhu Y, Wang T, Lu Y, Wang X, Peng Z, Sun M, Chen H, Zheng J, Tan C. Population structure and antibiotic resistance of swine extraintestinal pathogenic Escherichia coli from China. Nat Commun 2024; 15:5811. [PMID: 38987310 PMCID: PMC11237156 DOI: 10.1038/s41467-024-50268-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) pose a significant threat to human and animal health. However, the diversity and antibiotic resistance of animal ExPEC, and their connection to human infections, remain largely unexplored. The study performs large-scale genome sequencing and antibiotic resistance testing of 499 swine-derived ExPEC isolates from China. Results show swine ExPEC are phylogenetically diverse, with over 80% belonging to phylogroups B1 and A. Importantly, 15 swine ExPEC isolates exhibit genetic relatedness to human-origin E. coli strains. Additionally, 49 strains harbor toxins typical of enteric E. coli pathotypes, implying hybrid pathotypes. Notably, 97% of the total strains are multidrug resistant, including resistance to critical human drugs like third- and fourth-generation cephalosporins. Correspondingly, genomic analysis unveils prevalent antibiotic resistance genes (ARGs), often associated with co-transfer mechanisms. Furthermore, analysis of 20 complete genomes illuminates the transmission pathways of ARGs within swine ExPEC and to human pathogens. For example, the transmission of plasmids co-harboring fosA3, blaCTX-M-14, and mcr-1 genes between swine ExPEC and human-origin Salmonella enterica is observed. These findings underscore the importance of monitoring and controlling ExPEC infections in animals, as they can serve as a reservoir of ARGs with the potential to affect human health or even be the origin of pathogens infecting humans.
Collapse
Affiliation(s)
- Xudong Li
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huifeng Hu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria
| | - Yongwei Zhu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Taiquan Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Youlan Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Zhong Peng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Jinshui Zheng
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
14
|
Sarker S, Neeloy RM, Habib MB, Urmi UL, Al Asad M, Mosaddek ASM, Khan MRK, Nahar S, Godman B, Islam S. Mobile Colistin-Resistant Genes mcr-1, mcr-2, and mcr-3 Identified in Diarrheal Pathogens among Infants, Children, and Adults in Bangladesh: Implications for the Future. Antibiotics (Basel) 2024; 13:534. [PMID: 38927200 PMCID: PMC11200974 DOI: 10.3390/antibiotics13060534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Colistin is a last-resort antimicrobial for treating multidrug-resistant Gram-negative bacteria. Phenotypic colistin resistance is highly associated with plasmid-mediated mobile colistin resistance (mcr) genes. mcr-bearing Enterobacteriaceae have been detected in many countries, with the emergence of colistin-resistant pathogens a global concern. This study assessed the distribution of mcr-1, mcr-2, mcr-3, mcr-4, and mcr-5 genes with phenotypic colistin resistance in isolates from diarrheal infants and children in Bangladesh. Bacteria were identified using the API-20E biochemical panel and 16s rDNA gene sequencing. Polymerase chain reactions detected mcr gene variants in the isolates. Their susceptibilities to colistin were determined by agar dilution and E-test by minimal inhibitory concentration (MIC) measurements. Over 31.6% (71/225) of isolates showed colistin resistance according to agar dilution assessment (MIC > 2 μg/mL). Overall, 15.5% of isolates carried mcr genes (7, mcr-1; 17, mcr-2; 13, and mcr-3, with co-occurrence occurring in two isolates). Clinical breakout MIC values (≥4 μg/mL) were associated with 91.3% of mcr-positive isolates. The mcr-positive pathogens included twenty Escherichia spp., five Shigella flexneri, five Citrobacter spp., two Klebsiella pneumoniae, and three Pseudomonas parafulva. The mcr-genes appeared to be significantly associated with phenotypic colistin resistance phenomena (p = 0.000), with 100% colistin-resistant isolates showing MDR phenomena. The age and sex of patients showed no significant association with detected mcr variants. Overall, mcr-associated colistin-resistant bacteria have emerged in Bangladesh, which warrants further research to determine their spread and instigate activities to reduce resistance.
Collapse
Affiliation(s)
- Shafiuzzaman Sarker
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Reeashat Muhit Neeloy
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Marnusa Binte Habib
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Umme Laila Urmi
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Mamun Al Asad
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | | | | | - Shamsun Nahar
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
| | - Brian Godman
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, UK;
- Division of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0204, South Africa
| | - Salequl Islam
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka 1342, Bangladesh; (S.S.); (R.M.N.); (M.B.H.); (U.L.U.); (M.A.A.); (S.N.)
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
15
|
Mangoni ML, Loffredo MR, Casciaro B, Ferrera L, Cappiello F. An Overview of Frog Skin-Derived Esc Peptides: Promising Multifunctional Weapons against Pseudomonas aeruginosa-Induced Pulmonary and Ocular Surface Infections. Int J Mol Sci 2024; 25:4400. [PMID: 38673985 PMCID: PMC11049899 DOI: 10.3390/ijms25084400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/08/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Antimicrobial resistance is a silent pandemic harming human health, and Pseudomonas aeruginosa is the most common bacterium responsible for chronic pulmonary and eye infections. Antimicrobial peptides (AMPs) represent promising alternatives to conventional antibiotics. In this review, the in vitro/in vivo activities of the frog skin-derived AMP Esc(1-21) are shown. Esc(1-21) rapidly kills both the planktonic and sessile forms of P. aeruginosa and stimulates migration of epithelial cells, likely favoring repair of damaged tissue. However, to undertake preclinical studies, some drawbacks of AMPs (cytotoxicity, poor biostability, and limited delivery to the target site) must be overcome. For this purpose, the stereochemistry of two amino acids of Esc(1-21) was changed to obtain the diastereomer Esc(1-21)-1c, which is more stable, less cytotoxic, and more efficient in treating P. aeruginosa-induced lung and cornea infections in mouse models. Incorporation of these peptides (Esc peptides) into nanoparticles or immobilization to a medical device (contact lens) was revealed to be an effective strategy to ameliorate and/or to prolong the peptides' antimicrobial efficacy. Overall, these data make Esc peptides encouraging candidates for novel multifunctional drugs to treat lung pathology especially in patients with cystic fibrosis and eye dysfunctions, characterized by both tissue injury and bacterial infection.
Collapse
Affiliation(s)
- Maria Luisa Mangoni
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Maria Rosa Loffredo
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Bruno Casciaro
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| | - Loretta Ferrera
- UOC Genetica Medica, IRCCS Istituto Giannina Gaslini, 16147 Genoa, Italy;
| | - Floriana Cappiello
- Laboratory Affiliated to Pasteur Italia-Fondazione Cenci Bolognetti, Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy; (M.R.L.); (B.C.); (F.C.)
| |
Collapse
|
16
|
Jalil AT, Alrawe RTA, Al-Saffar MA, Shaghnab ML, Merza MS, Abosaooda M, Latef R. The use of combination therapy for the improvement of colistin activity against bacterial biofilm. Braz J Microbiol 2024; 55:411-427. [PMID: 38030866 PMCID: PMC10920569 DOI: 10.1007/s42770-023-01189-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Colistin is used as a last resort for the management of infections caused by multi-drug resistant (MDR) bacteria. However, the use of this antibiotic could lead to different side effects, such as nephrotoxicity, in most patients, and the high prevalence of colistin-resistant strains restricts the use of colistin in the clinical setting. Additionally, colistin could induce resistance through the increased formation of biofilm; biofilm-embedded cells are highly resistant to antibiotics, and as with other antibiotics, colistin is impaired by bacteria in the biofilm community. In this regard, the researchers used combination therapy for the enhancement of colistin activity against bacterial biofilm, especially MDR bacteria. Different antibacterial agents, such as antimicrobial peptides, bacteriophages, natural compounds, antibiotics from different families, N-acetylcysteine, and quorum-sensing inhibitors, showed promising results when combined with colistin. Additionally, the use of different drug platforms could also boost the efficacy of this antibiotic against biofilm. The mentioned colistin-based combination therapy not only could suppress the formation of biofilm but also could destroy the established biofilm. These kinds of treatments also avoided the emergence of colistin-resistant subpopulations, reduced the required dosage of colistin for inhibition of biofilm, and finally enhanced the dosage of this antibiotic at the site of infection. However, the exact interaction of colistin with other antibacterial agents has not been elucidated yet; therefore, further studies are required to identify the precise mechanism underlying the efficient removal of biofilms by colistin-based combination therapy.
Collapse
Affiliation(s)
| | | | - Montaha A Al-Saffar
- Community Health Department, Institute of Medical Technology/Baghdad, Middle Technical University, Baghdad, Iraq
| | | | - Muna S Merza
- Prosthetic Dental Techniques Department, Al-Mustaqbal University College, Babylon, 51001, Iraq
| | - Munther Abosaooda
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Rahim Latef
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| |
Collapse
|
17
|
Bostanghadiri N, Narimisa N, Mirshekar M, Dadgar-Zankbar L, Taki E, Navidifar T, Darban-Sarokhalil D. Prevalence of colistin resistance in clinical isolates of Acinetobacter baumannii: a systematic review and meta-analysis. Antimicrob Resist Infect Control 2024; 13:24. [PMID: 38419112 PMCID: PMC10902961 DOI: 10.1186/s13756-024-01376-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 02/04/2024] [Indexed: 03/02/2024] Open
Abstract
INTRODUCTION The development of colistin resistance in Acinetobacter baumannii during treatment has been identified in certain patients, often leading to prolonged or recurrent infections. As colistin, is the last line of therapy for A. baumannii infections that are resistant to almost all other antibiotics, colistin-resistant A. baumannii strains currently represent a significant public health threat, particularly in healthcare settings where there is significant selective pressure. AIM The aim of this study was to comprehensively determine the prevalence of colistin resistance in A. baumannii from clinical samples. Regional differences in these rates were also investigated using subgroup analyses. METHOD The comprehensive search was conducted using "Acinetobacter baumannii", "Colistin resistant" and all relevant keywords. A systematic literature search was performed after searching in PubMed, Embase, Web of Science, and Scopus databases up to April 25, 2023. Statistical analysis was performed using Stata software version 17 and sources of heterogeneity were evaluated using I2. The potential for publication bias was explored using Egger's tests. A total of 30,307 articles were retrieved. After a thorough evaluation, 734 studies were finally eligible for inclusion in the present systematic review and meta-analysis. RESULT According to the results, the prevalence of resistance to colistin among A. baumannii isolates was 4% (95% CI 3-5%), which has increased significantly from 2% before 2011 to 5% after 2012. South America had the highest resistance rate to this antibiotic. The broth microdilution method had the highest level of resistance, while the agar dilution showed the lowest level. CONCLUSIONS This meta-analysis found a low prevalence of colistin resistance among A. baumannii isolates responsible for infections worldwide from 2000 to 2023. However, there is a high prevalence of colistin-resistant isolates in certain countries. This implies an urgent public health threat, as colistin is one of the last antibiotics available for the treatment of infections caused by XDR strains of A. baumannii.
Collapse
Affiliation(s)
- Narjess Bostanghadiri
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Narimisa
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Mirshekar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar-Zankbar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elahe Taki
- Department of Microbiology, School of Medicine, Kermanshah University of Medical Science, Kermanshah, Iran
| | - Tahereh Navidifar
- Department of Basic Sciences, Shoushtar Faculty of Medical Sciences, Shoushtar, Iran.
| | - Davood Darban-Sarokhalil
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
18
|
Feng J, Pan M, Zhuang Y, Luo J, Chen Y, Wu Y, Fei J, Zhu Y, Xu Z, Yuan Z, Chen M. Genetic epidemiology and plasmid-mediated transmission of mcr-1 by Escherichia coli ST155 from wastewater of long-term care facilities. Microbiol Spectr 2024; 12:e0370723. [PMID: 38353552 PMCID: PMC10913736 DOI: 10.1128/spectrum.03707-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024] Open
Abstract
Long-term care facilities (LTCFs) for older people play an important and unique role in multidrug-resistant organism transmission. Herein, we investigated the genetic characteristics of mobile colistin resistance gene (mcr-1)-carrying Escherichia coli strains isolated from wastewater of LTCFs in Shanghai. Antimicrobial susceptibility test was carried out by agar dilution methods. Whole-genome sequencing and plasmid sequencing were conducted, and resistance genes and sequence types of colistin in E. coli isolates were analyzed. Core genome multilocus sequence typing (cgMLST) analysis was performed by the Ridom SeqSphere+ software. Phylogenetic tree through the maximum likelihood method was constructed by MEGA X. Out of 306 isolates, only 1 E. coli named ECSJ33 was found, and the plasmid pECSJ33 from ECSJ33 harbored the mcr-1 gene that was located with 59,080 bp belonging to IncI2 type. The plasmid pECSJ33 was capable of conjugation with an efficiency of 2.9 × 10-2. Bioinformatic analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. Moreover, the cgMLST analysis revealed that ECSJ33 belongs to different lineages from those reported from previous E. coli strains but shared high similarity to NCTC11129 in cluster 11. The phylogenetic tree revealed MCR-1 of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Our study firstly reports detection of genome sequence of a multidrug-resistant mcr-1-harboring E. coli ST155 from wastewater of LTCF source in China. The data may prove that the plasmid pECSJ33 belongs to food origin and help to understand the antimicrobial resistance mechanisms and genomic features of colistin resistance under One Health approach.IMPORTANCEOne Escherichia coli named ECSJ33 was found from wastewater of a long-term care facility (LTCF) and the plasmid pECSJ33 from ECSJ33 harbored the mobile colistin resistance gene (mcr-1) that was located with 59,080 bp belonging to IncI2 type, which was capable of conjugation with an efficiency of 2.9 × 10-2. This paper firstly reports an mcr-1-carrying E. coli strain ST155 isolated from LTCF in China. Comparative genomics analysis indicated pECSJ33 shared backbone with the previously reported mcr-1-harboring pHNGDF93 isolated from fish source. The phylogenetic tree revealed MCR-1 protein of ECSJ33 in this study was mostly of animal food origin and that they were closely related. Therefore, the pECSJ33 could be considered as food-origin transmission mcr-1-harboring plasmid.
Collapse
Affiliation(s)
- Jun Feng
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Miao Pan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yuan Zhuang
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayuan Luo
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yong Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yitong Wu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Jiayi Fei
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Yanqi Zhu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhen Xu
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Zhengan Yuan
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| | - Min Chen
- Shanghai Municipal Center for Diseases Control and Prevention, Shanghai, China
| |
Collapse
|
19
|
Kigen C, Muraya A, Wachira J, Musila L. The first report of the mobile colistin resistance gene, mcr-10.1, in Kenya and a novel mutation in the phoQ gene (S244T) in a colistin-resistant Enterobacter cloacae clinical isolate. Microbiol Spectr 2024; 12:e0185523. [PMID: 38230935 PMCID: PMC10846102 DOI: 10.1128/spectrum.01855-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 11/10/2023] [Indexed: 01/18/2024] Open
Abstract
This study describes the identification of the mcr-10.1 gene in a clinical isolate of an ST1 Enterobacter cloacae isolate cultured in 2015 in Kenya. The isolate was multidrug resistant, phenotypically non-susceptible to various antibiotics, including colistin. Whole genome sequence analyses indicated carriage of chromosomally encoded antimicrobial resistance genes and the colistin-resistant gene mcr-10.1 located on a 72-kb plasmid designated pECC011b with an IncFIA(HI1) replicon directly adjacent to tyrosine recombinase gene, xerC, and downstream of an ISKPn26 insertion sequence. Studies have shown that expression of mcr-10.1 may not be sufficient to confer colistin resistance, but a novel non-synonymous mutation (S244T) was identified in the phoQ gene known to influence colistin resistance within lipid modification pathways, which could have complemented the mcr-10.1 resistance mechanism. In silico analysis of the mutant phoQ protein shows the location of the mutation to be at the Histidine kinases, Adenyl cyclases, Methyl-accepting proteins and Phosphatases (HAMP) region, which plays a crucial role in the protein's activity. This study and our previous report of mcr-8 in Klebsiella pneumoniae indicate the presence of mobile mcr genes in the Enterobacterales order of bacteria in Kenya. The study points to the importance of regulation of colistin in the animal industry and enhancing surveillance in both human and animal health to curb the spread of mcr genes and accurately assess the risks posed by these mobile genetic elements in both sectors.IMPORTANCEThis paper reports the detection of new colistin resistance mechanisms in Kenya in a clinical isolate of Enterobacter cloacae in a patient with a healthcare-associated infection. The plasmid-mediated resistance gene, mcr-10.1, and a novel amino acid mutation S244T in the phoQ gene, located in a region of the protein involved in membrane cationic stability contributing to colistin resistance, were detected. Colistin is a critical last-line drug for multidrug-resistant (MDR) gram-negative human infections and is used for treatment and growth promotion in the animal industry. The emergence of the resistance mechanisms points to the potential overuse of colistin in the animal sector in Kenya, which enhances resistance, threatens the utility of colistin, and limits treatment options for MDR infections. This study highlights the need to enhance surveillance of colistin resistance across sectors and strengthen One Health policies that ensure antimicrobial stewardship and implementation of strategies to mitigate the spread of antibiotic resistance.
Collapse
Affiliation(s)
- Collins Kigen
- Department of Emerging Infectious Diseases, USAMRD—Africa, Kenya, Nairobi, Kenya
- Department of Emerging Infectious Diseases, Kenya Medical Research Institute, Nairobi, Kenya
| | - Angela Muraya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - James Wachira
- Department of Emerging Infectious Diseases, USAMRD—Africa, Kenya, Nairobi, Kenya
- Department of Emerging Infectious Diseases, Kenya Medical Research Institute, Nairobi, Kenya
| | - Lillian Musila
- Department of Emerging Infectious Diseases, USAMRD—Africa, Kenya, Nairobi, Kenya
- Department of Emerging Infectious Diseases, Kenya Medical Research Institute, Nairobi, Kenya
| |
Collapse
|
20
|
Behera DU, Gaur M, Sahoo M, Subudhi E, Subudhi BB. Development of pharmacophore models for AcrB protein and the identification of potential adjuvant candidates for overcoming efflux-mediated colistin resistance. RSC Med Chem 2024; 15:127-138. [PMID: 38283226 PMCID: PMC10809322 DOI: 10.1039/d3md00483j] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 10/26/2023] [Indexed: 01/30/2024] Open
Abstract
Growing multi-drug resistance (MDR) among ESKAPE pathogens is a huge challenge. Increased resistance to last-resort antibiotics, like colistin, has further aggravated this. Efflux is identified as a major route of colistin resistance. So, finding an FDA-approved efflux inhibitor for potential application as an adjuvant to colistin was the primary objective of this study. E. coli-AcrB pump inhibitors and substrates were used to develop and validate the pharmacophoric model. Drugs confirming this pharmacophore were subjected to molecular docking to identify hits for the AcrB binding pocket. The efflux inhibition potential of the top hit was validated through the in vitro evaluation of the minimum inhibitory concentration (MIC) in combination with colistin. The checkerboard assay was done to demonstrate synergism, which was further corroborated by the Time-kill assay. Ten common pharmacophore hypotheses were successfully generated using substrate/inhibitors. Following enrichment analysis, AHHNR.100 was identified as the top-ranked hypothesis, and 207 unique compounds were found to conform to this hypothesis. The multi-step docking of these compounds against the AcrB protein revealed argatroban as the top non-antibiotic hit. This significantly inhibited the efflux activity of colistin-resistant clinical isolates K. pneumoniae (n = 1) and M. morganii (n = 2). Further, their combination with colistin enhanced the susceptibility of these isolates, and the effect was found to be synergistic. Accordingly, the time-kill assay of this combination showed 8-log and 2-log reductions against K. pneumoniae and M. morganii, respectively. In conclusion, this study found argatroban as a bacterial efflux inhibitor that can be potentially used to overcome efflux-mediated resistance.
Collapse
Affiliation(s)
- Dibyajyoti Uttameswar Behera
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Mahendra Gaur
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
- Department of Biotechnology & Food Technology, Punjabi University Patiala 147002 India
| | - Maheswata Sahoo
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Enketeswara Subudhi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 9861075829
| | - Bharat Bhusan Subudhi
- Drug Development and Analysis Laboratory, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University) Kalinga Nagar, Ghatikia Bhubaneswar-751003 Odisha India +91 7978085389
| |
Collapse
|
21
|
Vieira T, Dos Santos CA, de Jesus Bertani AM, Costa GL, Campos KR, Sacchi CT, Cunha MPV, Carvalho E, da Costa AJ, de Paiva JB, Rubio MDS, Camargo CH, Tiba-Casas MR. Polymyxin Resistance in Salmonella: Exploring Mutations and Genetic Determinants of Non-Human Isolates. Antibiotics (Basel) 2024; 13:110. [PMID: 38391496 PMCID: PMC10885896 DOI: 10.3390/antibiotics13020110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/24/2024] Open
Abstract
Until 2015, polymyxin resistance was primarily attributed to chromosomal mutations. However, with the first report of mobile colistin resistance (mcr-1) in commensal Escherichia coli from food animals in China, the landscape has changed. To evaluate the presence of polymyxin resistance in Salmonella spp., a drop screening test for colistin and polymyxin B was carried out on 1156 isolates of non-human origin (animals, food, and the environment), received in Brazil, between 2016 and 2021. Subsequently, 210 isolates with resistant results in the drop test were subjected to the gold-standard test (broth microdilution) for both colistin and polymyxin B. Whole-genome sequencing (WGS) of 102 resistant isolates was performed for a comprehensive analysis of associated genes. Surprisingly, none of the isolates resistant to colistin in the drop test harbored any of the mcr variants (mcr-1 to mcr-10). WGS identified that the most common mutations were found in pmrA (n= 22; T89S) and pmrB (n = 24; M15T, G73S, V74I, I83A, A111V). Other resistance determinants were also detected, such as the aac(6')-Iaa gene in 72 isolates, while others carried beta-lactamase genes (blaTEM-1blaCTX-M-2, blaCMY-2). Additionally, genes associated with fluoroquinolone resistance (qnrB19, qnrS1, oqxA/B) were detected in 11 isolates. Colistin and polymyxin B resistance were identified among Salmonella from non-human sources, but not associated with the mcr genes. Furthermore, the already-described mutations associated with polymyxin resistance were detected in only a small number of isolates, underscoring the need to explore and characterize unknown genes that contribute to resistance.
Collapse
Affiliation(s)
- Thais Vieira
- Adolfo Lutz Institute, São Paulo 01246-000, SP, Brazil
| | | | | | | | | | | | | | | | | | | | - Marcela da Silva Rubio
- School of Agriculture and Veterinarian Sciences, University of the State of São Paulo, Jaboticabal 14884-900, SP, Brazil
| | | | | |
Collapse
|
22
|
Asghar A, Khalid A, Baqar Z, Hussain N, Saleem MZ, Sairash, Rizwan K. An insights into emerging trends to control the threats of antimicrobial resistance (AMR): an address to public health risks. Arch Microbiol 2024; 206:72. [PMID: 38252323 DOI: 10.1007/s00203-023-03800-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024]
Abstract
Antimicrobial agents are used to treat microbial ailments, but increased use of antibiotics and exposure to infections in healthcare facilities and hospitals as well as the excessive and inappropriate use of antibiotics at the society level lead to the emergence of multidrug-resistant (MDR) bacteria. Antimicrobial resistance (AMR) is considered a public health concern and has rendered the treatment of different infections more challenging. The bacterial strains develop resistance against antimicrobial agents by limiting intracellular drug accumulation (increasing efflux or decreasing influx of antibiotics), modification and inactivation of drugs and its targets, enzymatic inhibition, and biofilm formation. However, the driving factors of AMR include the sociocultural and economic circumstances of a country, the use of falsified and substandard medicines, the use of antibiotics in farm animals, and food processing technologies. These factors make AMR one of the major menaces faced by mankind. In order to promote reciprocal learning, this article summarizes the current AMR situation in Pakistan and how it interacts with the health issues related to the COVID-19 pandemic. The COVID-19 pandemic aids in illuminating the possible long-term impacts of AMR, which are less immediate but not less severe since their measures and effects are equivalent. Impact on other sectors, including the health industry, the economy, and trade are also discussed. We conclude by summarizing the several approaches that could be used to address this issue.
Collapse
Affiliation(s)
- Ayesha Asghar
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Aneeza Khalid
- School of Biochemistry and Biotechnology, University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Zulqarnain Baqar
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan.
| | - Muhammad Zafar Saleem
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Quaid-E-Azam Campus, Lahore, Pakistan
| | - Sairash
- Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Komal Rizwan
- Department of Chemistry, University of Sahiwal, Sahiwal, 57000, Pakistan.
| |
Collapse
|
23
|
Gautam G, Satija S, Kaur R, Kumar A, Sharma D, Dhakad MS. Insight into the Burden of Antimicrobial Resistance among Bacterial Pathogens Isolated from Patients Admitted in ICUs of a Tertiary Care Hospital in India. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:7403044. [PMID: 38223353 PMCID: PMC10787651 DOI: 10.1155/2024/7403044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 01/16/2024]
Abstract
Intensive care unit (ICU) patients are prone to develop infections by hospital prevalent organisms. The aim of the study was to determine the bacteriological profiles and their drug resistance pattern among different infections in ICU patients of a tertiary care hospital. The record-based retrospective data of culture reports of the patients admitted to all the ICUs of a tertiary care hospital during the period from January 2020 to May 2022 were analyzed. A total of 3,056 samples were obtained from 2308 patients. The infection rate among ICU patients was found to be 53.40%. Isolates belonged equally to males (50.86%) and females (49.14%). The most common culture-positive clinical specimen received was blood (39.08%) followed by respiratory samples (29.45%). Acinetobacter sp. (33.02%) was the most common organism isolated from various clinical specimens, followed by Klebsiella pneumoniae (20.89%), and Escherichia coli (13.8%). More than 80% of Acinetobacter species were found to be resistant to third-generation cephalosporins, aminoglycosides, and carbapenems, whereas minocycline (56.31% S) and colistin (100% S) were the most effective drugs. Klebsiella sp. was found to be more resistant than E.coli, and the least resistance was observed to be tetracycline (43.97%) and doxycycline (55.84%). Among Staphylococcus aureus, 82.78% of strains were methicillin-resistant (MRSA). Vancomycin-resistant Enterococci (VRE) sp. accounted for 16.67% of the isolates. Evidence-based knowledge regarding the local bacterial organisms and their antimicrobial resistance pattern is pivotal in deciding empirical drug therapy, ultimately leading to the management of antimicrobial resistance (AMR).
Collapse
Affiliation(s)
| | - Shweta Satija
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi 110001, India
| | - Ravinder Kaur
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi 110001, India
| | - Anil Kumar
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi 110001, India
| | - Divakar Sharma
- Department of Microbiology, Lady Hardinge Medical College and Associated Hospitals, New Delhi 110001, India
| | - Megh Singh Dhakad
- Department of Microbiology, Maulana Azad Medical College and Associated Hospitals, New Delhi 110002, India
| |
Collapse
|
24
|
Vasesi D, Gupta V, Gupta P, Singhal L. Risk factor and resistance profile of colistin resistant Acinetobacter baumannii and Klebsiellapneumoniae. Indian J Med Microbiol 2024; 47:100486. [PMID: 37871384 DOI: 10.1016/j.ijmmb.2023.100486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 06/27/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE Antimicrobial resistance is one of the major global health concerns, which is relentless despite multipronged measures. Carbapenems and colistin, drug of choice for multi drug resistant Klebsiella pneumoniae and Acinetobacter species, have also been rendered of less use. This underlines the need to decipher prevalence of colistin resistance comprehensively for formulation of hospital and country-wise antibiogram. We conducted this study to decipher the prevalence of colistin resistance in our tertiary care centre of North India. MATERIALS AND METHODS This was a prospective, case control study conducted over a period of one and half years. All carbapenem resistant Klebsiella pneumoniae and Acinetobacter isolates were included. Kirby-Bauer method of disc diffusion was used for all antibiotics, except colistin for which broth microdilution was performed and interpreted using CLSI guidelines. Demographic details, risk factors and outcome details were recorded. Genotypic characterization was performed using representative strains, for blaNDM, blaKPC and blaOXA-48. RESULTS Of 103 carbapenem resistant isolates, 7 were found to be colistin resistant. Median age was 43 years, with male:female ratio of 1.1:1. 35% isolates were from pus samples, followed by endotracheal aspirate. Colistin resistance was more in ICUs than wards. Presence of indwelling devices was noted as the most common risk factor, followed by previous antibiotic exposure and use of steroids/immunosuppressants. Indwelling devices, steroids/immunosuppressants usage, length of hospital stay, COPD, prior usage of carbapenems, piperacillin-tazobactam and colistin, usage of ampicillin-sulbactam during hospital stay, were statistically significant. Mortality was noted in 4 cases, with statistical difference between control and case arm. The blaNDM and blaOXA-48 were noted in 3 and 2 isolates respectively, with absence of blaKPC. CONCLUSION The present study unravels incidence, risk factors and resistance encoding genes at our centre. This is of immense help in formulation of antibiotic policies and guidance for infection control measures.
Collapse
Affiliation(s)
| | - Varsha Gupta
- Department of Microbiology, GMCH-32, Chandigarh, India.
| | | | | |
Collapse
|
25
|
Faidah H. An Update on Colistin in Clinical Healthcare Unit in the Kingdom of Saudi Arabia: A Narrative Review. Curr Pharm Des 2024; 30:2829-2834. [PMID: 39108120 DOI: 10.2174/0113816128303422240723091231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 06/19/2024] [Indexed: 10/22/2024]
Abstract
Globally, gram-negative bacteria are a significant cause of morbidity. Multi-drug resistance bacteria are responsible for an increasing surge in infections that place a high cost on healthcare systems around the world. Recently, colistin, an antibiotic belonging to the polymyxin family, was reintroduced to combat multidrug- resistant gram-negative bacteria. Excessive and persistent use of colistin has led to the development and spread of colistin-resistant gram-negative bacteria throughout the globe. Healthcare units in various countries, including Saudi Arabia, are currently battling colistin-resistant gram-negative bacteria. Recently, colistin-resistant gram-negative bacteria have become a major health concern in Saudi Arabia. Hence, extensive epidemiological surveys and studies are required to understand the current status of the colistin antibiotic. Examining the knowledge currently available to the medical community on the molecular mechanism, clinical effectiveness, molecular epidemiology, and bacterial resistance to colistin in Saudi Arabia is the aim of this review.
Collapse
Affiliation(s)
- Hani Faidah
- Department of Microbiology and Parasitology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
26
|
Karasiński M, Wnorowska U, Durnaś B, Król G, Daniluk T, Skłodowski K, Głuszek K, Piktel E, Okła S, Bucki R. Ceragenins and Ceragenin-Based Core-Shell Nanosystems as New Antibacterial Agents against Gram-Negative Rods Causing Nosocomial Infections. Pathogens 2023; 12:1346. [PMID: 38003809 PMCID: PMC10674730 DOI: 10.3390/pathogens12111346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
The growing number of infections caused by multidrug-resistant bacterial strains, limited treatment options, multi-species infections, high toxicity of the antibiotics used, and an increase in treatment costs are major challenges for modern medicine. To remedy this, scientists are looking for new antibiotics and treatment methods that will effectively eradicate bacteria while continually developing different resistance mechanisms. Ceragenins are a new group of antimicrobial agents synthesized based on molecular patterns that define the mechanism of antibacterial action of natural antibacterial peptides and steroid-polyamine conjugates such as squalamine. Since ceragenins have a broad spectrum of antimicrobial activity, with little recorded ability of bacteria to develop a resistance mechanism that can bridge their mechanism of action, there are high hopes that this group of molecules can give rise to a new family of drugs effective against bacteria resistant to currently used antibiotics. Experimental data suggests that core-shell nanosystems, in which ceragenins are presented to bacterial cells on metallic nanoparticles, may increase their antimicrobial potential and reduce their toxicity. However, studies should be conducted, among others, to assess potential long-term cytotoxicity and in vivo studies to confirm their activity and stability in animal models. Here, we summarized the current knowledge on ceragenins and ceragenin-containing nanoantibiotics as potential new tools against emerging Gram-negative rods associated with nosocomial infections.
Collapse
Affiliation(s)
- Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Bonita Durnaś
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Grzegorz Król
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Karol Skłodowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| | - Katarzyna Głuszek
- Department of Microbiology and Immunology, Institute of Medical Science, Collegium Medicum, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland; (B.D.); (G.K.); (K.G.)
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, Mickiewicza 2B, 15-222 Białystok, Poland;
| | - Sławomir Okła
- Holy Cross Oncology Center of Kielce, Artwińskiego 3, 25-734 Kielce, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, Mickiewicza 2C, 15-222 Bialystok, Poland; (M.K.); (U.W.); (T.D.); (K.S.)
| |
Collapse
|