1
|
Singh J, Narayan G, Dixit VK. The long intergenic non-coding RNA LINC01140 modulates gastric cancer phenotypes and cancer cell lines aggressiveness. Dig Liver Dis 2024; 56:1776-1783. [PMID: 38556409 DOI: 10.1016/j.dld.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 03/06/2024] [Accepted: 03/09/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Long-intergenic non-protein coding gene 01140 (LINC01140) a long non-coding RNA is highly expressed in various cancers. However, its biological functions in gastric cancer progression is still unknown. METHOD To elucidate LINC01140 function, 70 GC tumor samples and 30 normal gastric tissues were collected. LINC01140 expression level were determined by qRT-PCR analysis and correlated with different clinico-pathological parameters. Then we tried to see the impact of LINC01140 on gastric cell line aggressiveness by knocking down the target gene and performing cell viability assay, migration assay and invasive capacity of the cell lines along with immunoblotting to check several protein levels. RESULT LINC01140 RNA is found to be positively correlated with FGF9 and significantly up regulated in GC tissues. LINC01140 knockdown inhibited the viability, migratory capacity and invasive capacity of AGS cells. LINC01140 targets miR-140-5p, while miR-140-5p targeted FGF9 to form lncRNA-miRNA-mRNA axis. The affect of miR-140-5p inhibition on gastric cancer cell aggressiveness were opposite to those of LINC01140 or FGF9 knockdown. Additionally, inhibition partially reversed the effects of LINC01140 knockdown on FGF9 protein levels, gastric cancer cell phenotypes. CONCLUSION LINC01140, miR-140-5p and FGF9 form a lncRNA-miRNA-mRNA axis that modulates the gastric cancer phenotypes and in turn affects gastric cancer cell aggressiveness.
Collapse
Affiliation(s)
- Juhi Singh
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India
| | - Gopeshwar Narayan
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod Kumar Dixit
- Department of Gastroenterology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
2
|
Liu Q, Huang J, Yan W, Liu Z, Liu S, Fang W. FGFR families: biological functions and therapeutic interventions in tumors. MedComm (Beijing) 2023; 4:e367. [PMID: 37750089 PMCID: PMC10518040 DOI: 10.1002/mco2.367] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/28/2023] [Accepted: 08/11/2023] [Indexed: 09/27/2023] Open
Abstract
There are five fibroblast growth factor receptors (FGFRs), namely, FGFR1-FGFR5. When FGFR binds to its ligand, namely, fibroblast growth factor (FGF), it dimerizes and autophosphorylates, thereby activating several key downstream pathways that play an important role in normal physiology, such as the Ras/Raf/mitogen-activated protein kinase kinase/extracellular signal-regulated kinase, phosphoinositide 3-kinase (PI3K)/AKT, phospholipase C gamma/diacylglycerol/protein kinase c, and signal transducer and activator of transcription pathways. Furthermore, as an oncogene, FGFR genetic alterations were found in 7.1% of tumors, and these alterations include gene amplification, gene mutations, gene fusions or rearrangements. Therefore, FGFR amplification, mutations, rearrangements, or fusions are considered as potential biomarkers of FGFR therapeutic response for tyrosine kinase inhibitors (TKIs). However, it is worth noting that with increased use, resistance to TKIs inevitably develops, such as the well-known gatekeeper mutations. Thus, overcoming the development of drug resistance becomes a serious problem. This review mainly outlines the FGFR family functions, related pathways, and therapeutic agents in tumors with the aim of obtaining better outcomes for cancer patients with FGFR changes. The information provided in this review may provide additional therapeutic ideas for tumor patients with FGFR abnormalities.
Collapse
Affiliation(s)
- Qing Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Jiyu Huang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Weiwei Yan
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| | - Zhen Liu
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
- Key Laboratory of Protein Modification and DegradationBasic School of Guangzhou Medical UniversityGuangzhouGuangdongChina
| | - Shu Liu
- Department of Breast SurgeryThe Affiliated Hospital of Guizhou Medical UniversityGuiyangGuizhouChina
| | - Weiyi Fang
- Cancer CenterIntegrated Hospital of Traditional Chinese MedicineSouthern Medical UniversityGuangzhouGuangdongChina
| |
Collapse
|
3
|
FGFR Inhibitors in Cholangiocarcinoma-A Novel Yet Primary Approach: Where Do We Stand Now and Where to Head Next in Targeting This Axis? Cells 2022; 11:cells11233929. [PMID: 36497187 PMCID: PMC9737583 DOI: 10.3390/cells11233929] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 11/20/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
Cholangiocarcinomas (CCAs) are rare but aggressive tumours with poor diagnosis and limited treatment options. Molecular targeted therapies became a promising proposal for patients after progression under first-line chemical treatment. In light of an escalating prevalence of CCA, it is crucial to fully comprehend its pathophysiology, aetiology, and possible targets in therapy. Such knowledge would play a pivotal role in searching for new therapeutic approaches concerning diseases' symptoms and their underlying causes. Growing evidence showed that fibroblast growth factor/fibroblast growth factor receptor (FGF/FGFR) pathway dysregulation is involved in a variety of processes during embryonic development and homeostasis as well as tumorigenesis. CCA is known for its close correlation with the FGF/FGFR pathway and targeting this axis has been proposed in treatment guidelines. Bearing in mind the significance of molecular targeted therapies in different neoplasms, it seems most reasonable to move towards intensive research and testing on these in the case of CCA. However, there is still a need for more data covering this topic. Although positive results of many pre-clinical and clinical studies are discussed in this review, many difficulties lie ahead. Furthermore, this review presents up-to-date literature regarding the outcomes of the latest clinical data and discussion over future directions of FGFR-directed therapies in patients with CCA.
Collapse
|
4
|
Szklener K, Chmiel P, Michalski A, Mańdziuk S. New Directions and Challenges in Targeted Therapies of Advanced Bladder Cancer: The Role of FGFR Inhibitors. Cancers (Basel) 2022; 14:1416. [PMID: 35326568 PMCID: PMC8946699 DOI: 10.3390/cancers14061416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 03/07/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Bladder neoplasms, including the most common urothelial carcinoma, have been an escalating problem for years, especially in highly developed countries. Recent decades have brought us a steadily growing share of this cancer in terms of both morbidity and mortality statistics. Bladder neoplasms are not only a therapeutic challenge but also an economical one due to the demanding, costly diagnostics and treatment. The treatment of urothelial cancer can be divided depending on the stage and advancement; thus, we can distinguish three main categories: non-muscle invasive bladder cancer, conventionally treated by surgical interventions; muscle invasive bladder cancer, conventionally treated with chemotherapeutics; and advanced bladder cancer with distant metastases, conventionally treated with the intensive chemotherapy in the MVAC scheme (methotrexate, vinblastine, doxorubicin, and cisplatin). Recent years have brought a breakthrough: immunotherapy and targeted therapy were discovered to be beneficial for patients disqualified from chemotherapy or patients who progressed despite treatment. This literature review summarizes the latest research into the use of targeted therapy in the treatment of advanced bladder cancer, its benefits, and its limitations.
Collapse
Affiliation(s)
- Katarzyna Szklener
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, 8 Jaczewskiego Street, 20-090 Lublin, Poland; (P.C.); (A.M.); (S.M.)
| | | | | | | |
Collapse
|
5
|
Chen L, Wang YY, Li D, Wang C, Wang SY, Shao SH, Zhu ZY, Zhao J, Zhang Y, Ruan Y, Han BM, Xia SJ, Jiang CY, Zhao FJ. LMO2 upregulation due to AR deactivation in cancer-associated fibroblasts induces non-cell-autonomous growth of prostate cancer after androgen deprivation. Cancer Lett 2021; 503:138-150. [PMID: 33503448 DOI: 10.1016/j.canlet.2021.01.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/16/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
The androgen receptor (AR) is expressed in prostate fibroblasts in addition to normal prostate epithelial cells and prostate cancer (PCa) cells. Moreover, AR activation in fibroblasts dramatically influences prostate cancer (PCa) cell behavior. Androgen deprivation leads to deregulation of AR downstream target genes in both fibroblasts and PCa cells. Here, we identified LIM domain only 2 (LMO2) as an AR target gene in prostate fibroblasts using ChIP-seq and revealed that LMO2 can be repressed directly by AR through binding to androgen response elements (AREs), which results in LMO2 overexpression after AR deactivation due to normal prostate fibroblasts to cancer-associated fibroblasts (CAFs) transformation or androgen deprivation therapy. Next, we investigated the mechanisms of LMO2 overexpression in fibroblasts and the role of this event in non-cell-autonomous promotion of PCa cells growth in the androgen-independent manner through paracrine release of IL-11 and FGF-9. Collectively, our data suggest that AR deactivation deregulates LMO2 expression in prostate fibroblasts, which induces castration resistance in PCa cells non-cell-autonomously through IL-11 and FGF-9.
Collapse
Affiliation(s)
- Lei Chen
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yue-Yang Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Deng Li
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Cheng Wang
- Department of Urology, Jiangsu Jiangyin People's Hospital, Jiangyin, 214400, China
| | - Shi-Yuan Wang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Si-Hui Shao
- Department of Ultrasound, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Zheng-Yang Zhu
- Clinical Medical College, Shanghai General Hospital, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Jing Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yu Zhang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yuan Ruan
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Bang-Min Han
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Shu-Jie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Chen-Yi Jiang
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Fu-Jun Zhao
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China; Institute of Urology, Shanghai Jiao Tong University, Shanghai, 200080, China.
| |
Collapse
|
6
|
Wu S, Xu R, Zhu X, He H, Zhang J, Zeng Q, Wang Y, Zhao X. The long noncoding RNA LINC01140/miR-140-5p/FGF9 axis modulates bladder cancer cell aggressiveness and macrophage M2 polarization. Aging (Albany NY) 2020; 12:25845-25864. [PMID: 33234721 PMCID: PMC7803526 DOI: 10.18632/aging.202147] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 09/09/2020] [Indexed: 12/15/2022]
Abstract
MIBC (muscle invasive bladder cancer) only accounts for only a minority of bladder cancers, however, the disease-specific and overall survival rates of patients with MIBC are low. Macrophage M2 polarization has been reported to be associated with poorer prognosis in bladder cancer. Through cancer bioinformatics and experimental analyses, FGF9 was found to be upregulated in MIBC tissues. FGF9 knockdown in T24 cells strongly suppressed the viability, migratory capacity, and invasive capacity of cells; culture with medium from FGF9 knockdown T24 cells (si-FGF9-CM) significantly inhibited macrophage M2 polarization, while promoting M1 polarization. The long noncoding RNA (lncRNA) LINC01140 was positively correlated with FGF9 and was significantly upregulated in MIBC tissues. LINC01140 knockdown inhibited the viability, migratory capacity and invasive capacity of T24 cells; culture in si-LINC01140-CM also inhibited macrophage M2 polarization, while promoting M1 polarization. LINC01140 targeted miR-140-5p, while miR-140-5p targeted FGF9 to form a lncRNA-miRNA-mRNA axis. The effects of miR-140-5p inhibition on bladder cancer aggressiveness and macrophage M2 polarization were opposite to those of LINC01140 or FGF9 knockdown; additionally, miR-140-5p inhibition partially reversed the effects of LINC01140 knockdown on FGF9 protein levels, bladder cancer phenotype, and macrophage M2 polarization. In conclusion, LINC01140, miR-140-5p, and FGF9 form a lncRNA-miRNA-mRNA axis that modulates the bladder cancer phenotype, affects macrophage M2 polarization through the tumor microenvironment, and in turn affects bladder cancer cell aggressiveness.
Collapse
Affiliation(s)
- Shuiqing Wu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Xuan Zhu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Haiqing He
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Jinhua Zhang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Qi Zeng
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Yinhuai Wang
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| | - Xiaokun Zhao
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan Province, People’s Republic of China
| |
Collapse
|
7
|
Pan XW, Zhang H, Xu D, Chen JX, Chen WJ, Gan SS, Qu FJ, Chu CM, Cao JW, Fan YH, Song X, Ye JQ, Zhou W, Cui XG. Identification of a novel cancer stem cell subpopulation that promotes progression of human fatal renal cell carcinoma by single-cell RNA-seq analysis. Int J Biol Sci 2020; 16:3149-3162. [PMID: 33162821 PMCID: PMC7645996 DOI: 10.7150/ijbs.46645] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Cancer stem cells (CSCs) are biologically characterized by self-renewal, multi-directional differentiation and infinite proliferation, inducing anti-tumor drug resistance and metastasis. In the present study, we attempted to depict the baseline landscape of CSC-mediated biological properties, knowing that it is vital for tumor evolution, anti-tumor drug selection and drug resistance against fatal malignancy. Methods: We performed single-cell RNA sequencing (scRNA-seq) analysis in 15208 cells from a pair of primary and metastatic sites of collecting duct renal cell carcinoma (CDRCC). Cell subpopulations were identified and characterized by t-SNE, RNA velocity, monocle and other computational methods. Statistical analysis of all single-cell sequencing data was performed in R and Python. Results: A CSC population of 1068 cells was identified and characterized, showing excellent differentiation and self-renewal properties. These CSCs positioned as a center of the differentiation process and transformed into CDRCC primary and metastatic cells in spatial and temporal order, and played a pivotal role in promoting the bone destruction process with a positive feedback loop in the bone metastasis microenvironment. In addition, CSC-specific marker genes BIRC5, PTTG1, CENPF and CDKN3 were observed to be correlated with poor prognosis of CDRCC. Finally, we pinpointed that PARP, PIGF, HDAC2, and FGFR inhibitors for effectively targeting CSCs may be the potential therapeutic strategies for CDRCC. Conclusion: The results of the present study may shed new light on the identification of CSCs, and help further understand the mechanism underlying drug resistance, differentiation and metastasis in human CDRCC.
Collapse
Affiliation(s)
- Xiu-Wu Pan
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China.,Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Hao Zhang
- Department of Bone Tumor Surgery, The Changzheng Hospital of Second Military Medical University, Shanghai 200003, China
| | - Da Xu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Jia-Xin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Wen-Jin Chen
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Si-Shun Gan
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Fa-Jun Qu
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China
| | - Chuan-Min Chu
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Jian-Wei Cao
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Ying-Hui Fan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200127, China
| | - Xu Song
- Department of Urology, The Seventh People's Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai 200137, China
| | - Jian-Qing Ye
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| | - Wang Zhou
- Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China.,Department of Bone Tumor Surgery, The Changzheng Hospital of Second Military Medical University, Shanghai 200003, China
| | - Xin-Gang Cui
- Department of Urology, The Gongli Hospital of Second Military Medical University, Shanghai 200135, China.,Department of Urology, The Third Affiliated Hospital of Second Military Medical University, Shanghai 201805, China
| |
Collapse
|
8
|
Giacomini A, Grillo E, Rezzola S, Ribatti D, Rusnati M, Ronca R, Presta M. The FGF/FGFR system in the physiopathology of the prostate gland. Physiol Rev 2020; 101:569-610. [PMID: 32730114 DOI: 10.1152/physrev.00005.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fibroblast growth factors (FGFs) are a family of proteins possessing paracrine, autocrine, or endocrine functions in a variety of biological processes, including embryonic development, angiogenesis, tissue homeostasis, wound repair, and cancer. Canonical FGFs bind and activate tyrosine kinase FGF receptors (FGFRs), triggering intracellular signaling cascades that mediate their biological activity. Experimental evidence indicates that FGFs play a complex role in the physiopathology of the prostate gland that ranges from essential functions during embryonic development to modulation of neoplastic transformation. The use of ligand- and receptor-deleted mouse models has highlighted the requirement for FGF signaling in the normal development of the prostate gland. In adult prostate, the maintenance of a functional FGF/FGFR signaling axis is critical for organ homeostasis and function, as its disruption leads to prostate hyperplasia and may contribute to cancer progression and metastatic dissemination. Dissection of the molecular landscape modulated by the FGF family will facilitate ongoing translational efforts directed toward prostate cancer therapy.
Collapse
Affiliation(s)
- Arianna Giacomini
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Elisabetta Grillo
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Sara Rezzola
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Domenico Ribatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Rusnati
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| | - Marco Presta
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy; Department of Basic Medical Sciences, Neurosciences, and Sensory Organs, University of Bari Medical School, Bari, Italy; and Italian Consortium for Biotechnology, Unit of Brescia, Brescia, Italy
| |
Collapse
|
9
|
Wang J, Tan X, Guo Q, Lin X, Huang Y, Chen L, Zeng X, Li R, Wang H, Wu X. FGF9 inhibition by a novel binding peptide has efficacy in gastric and bladder cancer per se and reverses resistance to cisplatin. Pharmacol Res 2019; 152:104575. [PMID: 31805343 DOI: 10.1016/j.phrs.2019.104575] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/25/2019] [Accepted: 11/25/2019] [Indexed: 02/07/2023]
Abstract
Aberrant over-expressions of FGF9 in gastric cancer (GC) and its high-affinity receptor FGFR3c in bladder cancer (BC) provide possibilities for the treatment of GC and BC via targeting FGF9. In this study, we isolated a novel FGF9-binding peptide (P4) by screening a phage display random heptapeptide library. Sequence comparison showed that P4 shared high homology with the conserved motif in the immunoglobulin-like (Ig-like) domain II∼III (D2-D3) linker of the FGF9 high-affinity receptor (FGFR3c). The interaction between P4 and FGF9 was confirmed by the surface plasmon resonance (SPR) assay. Functional analysis indicated that P4 counteracted FGF9-induced aggressive phenotype, including cell proliferation, migration, and invasion in vitro, as well as suppressed tumor growth in vivovia down-regulation of the MAPKs and Akt cascades. More importantly, we found that FGF9 served as an underlying mechanism of the chemoresistance in GC and BC cells, and P4 could increase the sensitivity to the chemical agent via antagonizing the suppression effects of FGF9 on cell apoptosis. Taken together, our study identified a novel binding peptide for FGF9, which may serve as a potential therapeutic agent for malignant tumors featured by abnormally up-regulation of FGF9.
Collapse
Affiliation(s)
- Jizhong Wang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Xiangpeng Tan
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China; Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Qiuxiao Guo
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Xiaomian Lin
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Yishan Huang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Liankuai Chen
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Xiangfeng Zeng
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Rongzhen Li
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Heng Wang
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China
| | - Xiaoping Wu
- Institute of Tissue Transplantation and Immunology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
10
|
Cui G, Shao M, Gu X, Guo H, Zhang S, Lu J, Ma H. The value of FGF9 as a novel biomarker in the diagnosis of prostate cancer. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2241-2245. [PMID: 31174436 DOI: 10.1080/21691401.2019.1620250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background: Fibroblast growth factor 9 (FGF9) is reported to be associated with the pathogenesis of cancers. However, its clinic significance in prostate cancer (PCa) had not yet to be elucidated. The aim of this study was to investigate the diagnostic value of FGF9 in PCa. Methods: Quantitative real-time polymerase chain reaction (qRT-PCR) and western blot analyses were used to detect the expression of serum FGF9 at mRNA and protein level in 90 PCa patients, 48 prostatic benign diseases (PBD) patients and 30 normal individuals. The association between FGF9 and clinicopathological features was determined by Chi-square test. Receiver-operator characteristic (ROC) was established to evaluate the diagnostic performance of FGF9 and PSA. Results: Serum FGF9 expression was significantly elevated in PCa patients (p < .001) and was obviously decreased after surgery (p < .001). FGF9 expression was also associated with lymph node metastasis (p = .010). The diagnostic value of FGF9 was higher than the conventional tumor marker PSA with a AUC of 0.846 combined with a sensitivity of 83.3% and a specificity of 81.1%. Conclusions: Serum FGF9 may be employed as a potential diagnostic biomarker of PCa.
Collapse
Affiliation(s)
- Genggang Cui
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Mingming Shao
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Xingzhou Gu
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Hongbo Guo
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Shiqing Zhang
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Jianlei Lu
- a Department of Urology Surgery, The First People's Hospital of Jining , Jining , Shandong , China
| | - Hongbin Ma
- b Department of Urology Surgery, Yanzhou Branch of Jining Medical University , Jining , Shandong , China
| |
Collapse
|
11
|
Abstract
Members of the fibroblast growth factor (FGF) family play pleiotropic roles in cellular and metabolic homeostasis. During evolution, the ancestor FGF expands into multiple members by acquiring divergent structural elements that enable functional divergence and specification. Heparan sulfate-binding FGFs, which play critical roles in embryonic development and adult tissue remodeling homeostasis, adapt to an autocrine/paracrine mode of action to promote cell proliferation and population growth. By contrast, FGF19, 21, and 23 coevolve through losing binding affinity for extracellular matrix heparan sulfate while acquiring affinity for transmembrane α-Klotho (KL) or β-KL as a coreceptor, thereby adapting to an endocrine mode of action to drive interorgan crosstalk that regulates a broad spectrum of metabolic homeostasis. FGF19 metabolic axis from the ileum to liver negatively controls diurnal bile acid biosynthesis. FGF21 metabolic axes play multifaceted roles in controlling the homeostasis of lipid, glucose, and energy metabolism. FGF23 axes from the bone to kidney and parathyroid regulate metabolic homeostasis of phosphate, calcium, vitamin D, and parathyroid hormone that are important for bone health and systemic mineral balance. The significant divergence in structural elements and multiple functional specifications of FGF19, 21, and 23 in cellular and organismal metabolism instead of cell proliferation and growth sufficiently necessitate a new unified and specific term for these three endocrine FGFs. Thus, the term "FGF Metabolic Axis," which distinguishes the unique pathways and functions of endocrine FGFs from other autocrine/paracrine mitogenic FGFs, is coined.
Collapse
Affiliation(s)
- Xiaokun Li
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
12
|
Fibroblast Growth Factor Family in the Progression of Prostate Cancer. J Clin Med 2019; 8:jcm8020183. [PMID: 30720727 PMCID: PMC6406580 DOI: 10.3390/jcm8020183] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/27/2022] Open
Abstract
Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) play an important role in the maintenance of tissue homeostasis and the development and differentiation of prostate tissue through epithelial-stromal interactions. Aberrations of this signaling are linked to the development and progression of prostate cancer (PCa). The FGF family includes two subfamilies, paracrine FGFs and endocrine FGFs. Paracrine FGFs directly bind the extracellular domain of FGFRs and act as a growth factor through the activation of tyrosine kinase signaling. Endocrine FGFs have a low affinity of heparin/heparan sulfate and are easy to circulate in serum. Their biological function is exerted as both a growth factor binding FGFRs with co-receptors and as an endocrine molecule. Many studies have demonstrated the significance of these FGFs and FGFRs in the development and progression of PCa. Herein, we discuss the current knowledge regarding the role of FGFs and FGFRs—including paracrine FGFs, endocrine FGFs, and FGFRs—in the development and progression of PCa, focusing on the representative molecules in each subfamily.
Collapse
|
13
|
|
14
|
Tang L, Wu X, Zhang H, Lu S, Wu M, Shen C, Chen X, Wang Y, Wang W, Shen Y, Gu M, Ding X, Jin X, Fei J, Wang Z. A point mutation in Fgf9 impedes joint interzone formation leading to multiple synostoses syndrome. Hum Mol Genet 2017; 26:1280-1293. [PMID: 28169396 DOI: 10.1093/hmg/ddx029] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 01/19/2017] [Indexed: 01/02/2023] Open
Abstract
Human multiple synostoses syndrome (SYNS) is an autosomal dominant disorder characterized by multiple joint fusions. We previously identified a point mutation (S99N) in FGF9 that causes human SYNS3. However, the physiological function of FGF9 during joint development and comprehensive molecular portraits of SYNS3 remain elusive. Here, we report that mice harboring the S99N mutation in Fgf9 develop the curly tail phenotype and partially or fully fused caudal vertebrae and limb joints, which mimic the major phenotypes of SYNS3 patients. Further study reveals that the S99N mutation in Fgf9 disrupts joint interzone formation by affecting the chondrogenic differentiation of mesenchymal cells at the early stage of joint development. Consistently, the limb bud micromass culture (LBMMC) assay shows that Fgf9 inhibits mesenchymal cell differentiation into chondrocytes by downregulating the expression of Sox6 and Sox9. However, the mutant protein does not exhibit the same inhibitory effect. We also show that Fgf9 is required for normal expression of Gdf5 in the prospective elbow and knee joints through its activation of Gdf5 promoter activity. Signal transduction assays indicate that the S99N mutation diminishes FGF signaling in developmental limb joints. Finally, we demonstrate that the conformational change in FGF9 resulting from the S99N mutation disrupts FGF9/FGFR/heparin interaction, which impedes FGF signaling in developmental joints. Taken together, we conclude that the S99N mutation in Fgf9 causes SYNS3 via the disturbance of joint interzone formation. These results further implicate the crucial role of Fgf9 during embryonic joint development.
Collapse
Affiliation(s)
- Lingyun Tang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Xiaolin Wu
- Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Hongxin Zhang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Shunyuan Lu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Min Wu
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Chunling Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Xuejiao Chen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Yicheng Wang
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Weigang Wang
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Yan Shen
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China
| | - Mingmin Gu
- Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China
| | - Xiaoyi Ding
- Department of Radiology and Department of Pathology of Rui-Jin Hospital, SJTUSM, Shanghai, P.R. China
| | - Xiaolong Jin
- Department of Radiology and Department of Pathology of Rui-Jin Hospital, SJTUSM, Shanghai, P.R. China
| | - Jian Fei
- Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| | - Zhugang Wang
- State Key Laboratory of Medical Genomics, Research Center for Experimental Medicine, Rui-Jin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine (SJTUSM), Shanghai, P.R. China.,Department of Medical Genetics, E-Institutes of Shanghai Universities, SJTUSM, Shanghai, P.R. China.,Shanghai Research Center for Model Organisms, Shanghai, P.R. China and
| |
Collapse
|
15
|
Li X, Wang C, Xiao J, McKeehan WL, Wang F. Fibroblast growth factors, old kids on the new block. Semin Cell Dev Biol 2016; 53:155-67. [PMID: 26768548 DOI: 10.1016/j.semcdb.2015.12.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/18/2015] [Indexed: 01/08/2023]
Abstract
The fibroblast growth factors (FGFs) are a family of cell intrinsic regulatory peptides that control a broad spectrum of cellular activities. The family includes canonic FGFs that elicit their activities by activating the FGF receptor (FGFR) tyrosine kinase and non-canonic members that elicit their activities intracellularly and via FGFR-independent mechanisms. The FGF signaling axis is highly complex due to the existence of multiple isoforms of both ligands and receptors, as well as cofactors that include the chemically heterogeneous heparan sulfate (HS) cofactors, and in the case of endocrine FGFs, the Klotho coreceptors. Resident FGF signaling controls embryonic development, maintains tissue homeostasis, promotes wound healing and tissue regeneration, and regulates functions of multiple organs. However, ectopic or aberrant FGF signaling is a culprit for various diseases, including congenital birth defects, metabolic disorder, and cancer. The molecular mechanisms by which the specificity of FGF signaling is achieved remain incompletely understood. Since its application as a druggable target has been gradually recognized by pharmaceutical companies and translational researchers, understanding the determinants of FGF signaling specificity has become even more important in order to get into the position to selectively suppress a particular pathway without affecting others to minimize side effects.
Collapse
Affiliation(s)
- Xiaokun Li
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Cong Wang
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Jian Xiao
- College of Pharmacy, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wallace L McKeehan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States
| | - Fen Wang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, TX 77030-3303, United States.
| |
Collapse
|
16
|
Yin H, Frontini MJ, Arpino JM, Nong Z, O'Neil C, Xu Y, Balint B, Ward AD, Chakrabarti S, Ellis CG, Gros R, Pickering JG. Fibroblast Growth Factor 9 Imparts Hierarchy and Vasoreactivity to the Microcirculation of Renal Tumors and Suppresses Metastases. J Biol Chem 2015; 290:22127-42. [PMID: 26183774 DOI: 10.1074/jbc.m115.652222] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Indexed: 12/11/2022] Open
Abstract
Tumor vessel normalization has been proposed as a therapeutic paradigm. However, normal microvessels are hierarchical and vasoreactive with single file transit of red blood cells through capillaries. Such a network has not been identified in malignant tumors. We tested whether the chaotic tumor microcirculation could be reconfigured by the mesenchyme-selective growth factor, FGF9. Delivery of FGF9 to renal tumors in mice yielded microvessels that were covered by pericytes, smooth muscle cells, and a collagen-fortified basement membrane. This was associated with reduced pulmonary metastases. Intravital microvascular imaging revealed a haphazard web of channels in control tumors but a network of arterioles, bona fide capillaries, and venules in FGF9-expressing tumors. Moreover, whereas vasoreactivity was absent in control tumors, arterioles in FGF9-expressing tumors could constrict and dilate in response to adrenergic and nitric oxide releasing agents, respectively. These changes were accompanied by reduced hypoxia in the tumor core and reduced expression of the angiogenic factor VEGF-A. FGF9 was found to selectively amplify a population of PDGFRβ-positive stromal cells in the tumor and blocking PDGFRβ prevented microvascular differentiation by FGF9 and also worsened metastases. We conclude that harnessing local mesenchymal stromal cells with FGF9 can differentiate the tumor microvasculature to an extent not observed previously.
Collapse
Affiliation(s)
- Hao Yin
- From the Robarts Research Institute and
| | | | | | | | | | - Yiwen Xu
- From the Robarts Research Institute and Medical Biophysics
| | | | | | | | | | - Robert Gros
- From the Robarts Research Institute and Physiology and Pharmacology, and Medicine, University of Western Ontario
| | - J Geoffrey Pickering
- From the Robarts Research Institute and Departments of Biochemistry, Medical Biophysics, Medicine, University of Western Ontario, London Health Sciences Centre, London, Ontario N6A 5A5, Canada
| |
Collapse
|
17
|
Huang Y, Jin C, Hamana T, Liu J, Wang C, An L, McKeehan WL, Wang F. Overexpression of FGF9 in prostate epithelial cells augments reactive stroma formation and promotes prostate cancer progression. Int J Biol Sci 2015; 11:948-60. [PMID: 26157349 PMCID: PMC4495412 DOI: 10.7150/ijbs.12468] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 05/15/2015] [Indexed: 12/31/2022] Open
Abstract
Bone metastasis is the major cause of morbidity and mortality of prostate cancer (PCa). Fibroblast growth factor 9 (FGF9) has been reported to promote PCa bone metastasis. However, the mechanism by which overexpression of FGF9 promotes PCa progression and metastasis is still unknown. Herein, we report that transgenic mice forced to express FGF9 in prostate epithelial cells (F9TG) developed high grade prostatic intraepithelial neoplasia (PIN) in an expression level- and time-dependent manner. Moreover, FGF9/TRAMP bigenic mice (F9TRAMP) grew advanced PCa earlier and had higher frequencies of metastasis than TRAMP littermates. We observed tumor microenvironmental changes including hypercellularity and hyperproliferation in the stromal compartment of F9TG and F9TRAMP mice. Expression of TGFβ1, a key signaling molecule overexpressed in reactive stroma, was increased in F9TG and F9TRAMP prostates. Both in vivo and in vitro data indicated that FGF9 promoted TGFβ1 expression via increasing cJun-mediated signaling. Moreover, in silico analyses showed that the expression level of FGF9 was positively associated with expression of TGFβ1 and its downstream signaling molecules in human prostate cancers. Collectively, our data demonstrated that overexpressing FGF9 in PCa cells augmented the formation of reactive stroma and promoted PCa initiation and progression.
Collapse
Affiliation(s)
- Yanqing Huang
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Chengliu Jin
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Tomoaki Hamana
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Junchen Liu
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Cong Wang
- 2. Wenzhou Medical College, Wenzhou, Zhejiang, China
| | - Lei An
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Wallace L McKeehan
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA
| | - Fen Wang
- 1. Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX, USA ; 2. Wenzhou Medical College, Wenzhou, Zhejiang, China ; 3. Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M, Health Science Center, College Station, TX, USA
| |
Collapse
|
18
|
Abstract
FGFR (fibroblast growth factor receptor) signalling plays critical roles in embryogensis, adult physiology, tissue repair and many pathologies. Of particular interest over recent years, it has been implicated in a wide range of cancers, and concerted efforts are underway to target different aspects of FGFR signalling networks. A major focus has been identifying the canonical downstream signalling pathways in cancer cells, and these are now relatively well understood. In the present review, we focus on two distinct but emerging hot topics in FGF biology: its role in stromal cross-talk during cancer progression and the potential roles of FGFR signalling in the nucleus. These neglected areas are proving to be of great interest clinically and are intimately linked, at least in pancreatic cancer. The importance of the stroma in cancer is well accepted, both as a conduit/barrier for treatment and as a target in its own right. Nuclear receptors are less acknowledged as targets, largely due to historical scepticism as to their existence or importance. However, increasing evidence from across the receptor tyrosine kinase field is now strong enough to make the study of nuclear growth factor receptors a major area of interest.
Collapse
|
19
|
Corn PG, Wang F, McKeehan WL, Navone N. Targeting fibroblast growth factor pathways in prostate cancer. Clin Cancer Res 2013; 19:5856-66. [PMID: 24052019 DOI: 10.1158/1078-0432.ccr-13-1550] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Advanced prostate cancer carries a poor prognosis and novel therapies are needed. Research has focused on identifying mechanisms that promote angiogenesis and cellular proliferation during prostate cancer progression from the primary tumor to bone-the principal site of prostate cancer metastases. One candidate pathway is the fibroblast growth factor (FGF) axis. Aberrant expression of FGF ligands and FGF receptors leads to constitutive activation of multiple downstream pathways involved in prostate cancer progression including mitogen-activated protein kinase, phosphoinositide 3-kinase, and phospholipase Cγ. The involvement of FGF pathways in multiple mechanisms relevant to prostate tumorigenesis provides a rationale for the therapeutic blockade of this pathway, and two small-molecule tyrosine kinase inhibitors-dovitinib and nintedanib-are currently in phase II clinical development for advanced prostate cancer. Preliminary results from these trials suggest that FGF pathway inhibition represents a promising new strategy to treat castrate-resistant disease.
Collapse
Affiliation(s)
- Paul G Corn
- Authors' Affiliations: The University of Texas MD Anderson Cancer Center; and Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | | | | | | |
Collapse
|
20
|
Molecular profiling predicts the existence of two functionally distinct classes of ovarian cancer stroma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:846387. [PMID: 23762861 PMCID: PMC3665167 DOI: 10.1155/2013/846387] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/16/2013] [Accepted: 04/18/2013] [Indexed: 01/12/2023]
Abstract
Although stromal cell signaling has been shown to play a significant role in the progression of many cancers, relatively little is known about its importance in modulating ovarian cancer development. The purpose of this study was to investigate the process of stroma activation in human ovarian cancer by molecular analysis of matched sets of cancer and surrounding stroma tissues. RNA microarray profiling of 45 tissue samples was carried out using the Affymetrix (U133 Plus 2.0) gene expression platform. Laser capture microdissection (LCM) was employed to isolate cancer cells from the tumors of ovarian cancer patients (Cepi) and matched sets of surrounding cancer stroma (CS). For controls, ovarian surface epithelial cells (OSE) were isolated from the normal (noncancerous) ovaries and normal stroma (NS). Hierarchical clustering of the microarray data resulted in clear separations between the OSE, Cepi, NS, and CS samples. Expression patterns of genes encoding signaling molecules and compatible receptors in the CS and Cepi samples indicate the existence of two subgroups of cancer stroma (CS) with different propensities to support tumor growth. Our results indicate that functionally significant variability exists among ovarian cancer patients in the ability of the microenvironment to modulate cancer development.
Collapse
|
21
|
Kalinina J, Dutta K, Ilghari D, Beenken A, Goetz R, Eliseenkova AV, Cowburn D, Mohammadi M. The alternatively spliced acid box region plays a key role in FGF receptor autoinhibition. Structure 2012; 20:77-88. [PMID: 22244757 DOI: 10.1016/j.str.2011.10.022] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 10/18/2011] [Accepted: 10/19/2011] [Indexed: 10/14/2022]
Abstract
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human malignancies necessitating multiple layers of self-regulatory control mechanisms. Fibroblast growth factor receptor (FGFR) autoinhibition mediated by the alternatively spliced immunoglobulin (Ig) domain 1 (D1) and the acid box (AB)-containing linker between D1 and Ig domain 2 (D2) serves as the first line of defense to minimize inadvertent FGF signaling. In this report, nuclear magnetic resonance and surface plasmon resonance spectroscopy are used to demonstrate that the AB subregion of FGFR electrostatically engages the heparan sulfate (HS)-binding site on the D2 domain in cis to directly suppress HS-binding affinity of FGFR. Furthermore, the cis electrostatic interaction sterically autoinhibits ligand-binding affinity of FGFR because of the close proximity of HS-binding and primary ligand-binding sites on the D2 domain. These data, together with the strong amino acid sequence conservation of the AB subregion among FGFR orthologs, highlight the universal role of the AB subregion in FGFR autoinhibition.
Collapse
Affiliation(s)
- Juliya Kalinina
- Department of Pharmacology, New York University School of Medicine, 550, First Avenue, New York, NY 10016, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fritz V, Brondello JM, Gordeladze JO, Reseland JE, Bony C, Yssel H, Noël D, Jorgensen C. Bone-metastatic prostate carcinoma favors mesenchymal stem cell differentiation toward osteoblasts and reduces their osteoclastogenic potential. J Cell Biochem 2012; 112:3234-45. [PMID: 22009438 DOI: 10.1002/jcb.23258] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone homeostasis is achieved by the balance between osteoclast-dependent bone resorption and osteoblastic events involving differentiation of adult mesenchymal stem cells (MSCs). Prostate carcinoma (PC) cells display the propensity to metastasize to bone marrow where they disrupt bone homeostasis as a result of mixed osteolytic and osteoblastic lesions. The PC-dependent activation of osteoclasts represents the initial step of tumor engraftment into bone, followed by an accelerated osteoblastic activity and exaggerated bone formation. However, the interactions between PC cells and MSCs and their participation in the disease progression remain as yet unclear. In this study, we show that bone metastatic PC-3 carcinoma cells release factors that increase the expression by human (h)MSCs of several known pro-osteoblastic commitment factors, such as α5/β1 integrins, fibronectin, and osteoprotegerin. As a consequence, as shown in an osteogenesis assay, hMSCs treated with conditioned medium (C(ed) M) derived from PC-3 cells have an enhanced potential to differentiate into osteoblasts, as compared to hMSCs treated with control medium or with C(ed) M from non-metastatic 22RV1 cells. We demonstrate that FGF-9, one of the factors produced by PC-3 cells, is involved in this process. Furthermore, we show that PC-3 C(ed) M decreases the pro-osteoclastic activity of hMSCs. Altogether, these findings allow us to propose clues to understand the mechanisms by which PC favors bone synthesis by regulating MSC outcome and properties.
Collapse
Affiliation(s)
- V Fritz
- Inserm U844, Hôpital Saint-Eloi, Montpellier, F-34295, France.
| | | | | | | | | | | | | | | |
Collapse
|
23
|
The structural biology of the FGF19 subfamily. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 728:1-24. [PMID: 22396159 DOI: 10.1007/978-1-4614-0887-1_1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The ability of the Fibroblast Growth Factor (FGF) 19 subfamily to signal in an endocrine fashion sets this subfamily apart from the remaining five FGF subfamilies known for their paracrine functions during embryonic development. Compared to the members of paracrine FGF subfamiles, the three members of the FGF19 subfamily, namely FGF19, FGF21 and FGF23, have poor affinity for heparan sulfate (HS) and therefore can diffuse freely in the HS-rich extracellular matrix to enter into the bloodstream. In further contrast to paracrine FGFs, FGF19 subfamily members have unusually poor affinity for their cognate FGF receptors (FGFRs) and therefore cannot bind and activate them in a solely HS-dependent fashion. As a result, the FGF19 subfamily requires α/βklotho coreceptor proteins in order to bind, dimerize and activate their cognate FGFRs. This klotho-dependency also determines the tissue specificity of endocrine FGFs. Recent structural and biochemical studies have begun to shed light onto the molecular basis for the klotho-dependent endocrine mode of action of the FGF19 subfamily. Crystal structures of FGF19 and FGF23 show that the topology of the HS binding site (HBS) of FGF19 subfamily members deviates drastically from the common topology adopted by the paracrine FGFs. The distinct topologies of the HBS of FGF19 and FGF23 prevent HS from direct hydrogen bonding with the backbone atoms of the HBS of these ligands and accordingly decrease the HS binding affinity of this subfamily. Recent biochemical data reveal that the ?klotho ectodomain binds avidly to the ectodomain of FGFR1c, the main cognate FGFR of FGF23, creating a de novo high affinity binding site for the C-terminal tail of FGF23. The isolated FGF23 C-terminus can be used to effectively inhibit the formation of the FGF23-FGFR1c-αklotho complex and alleviate hypophosphatemia in renal phosphate disorders due to elevated levels of FGF23.
Collapse
|
24
|
Kobayashi M, Huang Y, Jin C, Luo Y, Okamoto T, Wang F, McKeehan WL. FGFR1 abrogates inhibitory effect of androgen receptor concurrent with induction of androgen-receptor variants in androgen receptor-negative prostate tumor epithelial cells. Prostate 2011; 71:1691-700. [PMID: 21446013 PMCID: PMC3513346 DOI: 10.1002/pros.21386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Accepted: 02/24/2011] [Indexed: 11/06/2022]
Abstract
BACKGROUND Despite dramatic positive effects, there is evidence that the androgen receptor (AR) may negatively influence prostate tumor progression. Understanding the AR repressor function and how it is subverted is of particular importance in anti-androgen and AR intervention strategies. METHODS AR, resident FGFR2IIIb, and ectopic FGFR1 were expressed by transfection in the AR-negative epithelial cell line DTE that predominates in cell culture of AR-positive androgen-responsive model Dunning R3327 rat prostate tumors. Androgen-responsiveness at transcription was measured by a luciferase reporter. Cell population growth rates were assessed by cell counts, DNA synthesis, and expression of cell cycle genes. AR variants (ARVs) were assessed by immunochemistry and nuclease protection of mRNA. RESULTS Expression of AR inhibited cell population growth of AR-negative DTE cells at the G1-S phase of the cell cycle. Ectopic FGFR1, but not resident FGFR2IIIb abrogated the growth inhibitory effects of AR. Appearance of ARVs was coincident with co-expression of FGFR1 and AR and abrogation of the AR-dependent inhibition of cell growth. CONCLUSIONS DTE cells may represent non-malignant AR-negative progenitors whose population is restricted by activation of AR in vivo. Ectopic expression of epithelial FGFR1, a common observation in tumors, overrides the inhibition of AR and thus may contribute to evolution of androgen and AR independent tumors. These results are consistent with the notion that some tumor cells are negatively restricted by AR and are unleased by androgen-deprivation or ectopic expression of FGFR1. ARV's may play a role in the bypass of the negative restrictions of AR.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Gene Expression Regulation, Neoplastic
- Genetic Variation
- Immunohistochemistry
- Male
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Protein Isoforms
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- Rats
- Receptor, Fibroblast Growth Factor, Type 1/metabolism
- Receptors, Androgen/genetics
- Receptors, Androgen/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
Collapse
Affiliation(s)
- Masashi Kobayashi
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Yanqing Huang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Chengliu Jin
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Yongde Luo
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Tetsuji Okamoto
- Department of Molecular Oral Medicine and Maxillofacial Surgery, Division of Frontier Medical Science, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Fen Wang
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Wallace L. McKeehan
- Center for Cancer and Stem Cell Biology, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| |
Collapse
|
25
|
Teishima J, Shoji K, Hayashi T, Miyamoto K, Ohara S, Matsubara A. Relationship between the localization of fibroblast growth factor 9 in prostate cancer cells and postoperative recurrence. Prostate Cancer Prostatic Dis 2011; 15:8-14. [PMID: 22006051 DOI: 10.1038/pcan.2011.48] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
BACKGROUND Fibroblast growth factor 9 (FGF9) enhances cell proliferation and invasiveness in several malignant diseases. The aim of the present study is to investigate the role of FGF9 in postoperative recurrence after radical prostatectomy. METHODS Cell viability and invasion of LNCaP cells were assessed using MTT assay and Matrigel invasion assay, respectively, in the presence or absence of treatment with recombinant FGF9. Tissues obtained during a radical prostatectomy in 133 male patients were immunohistochemically stained using anti-FGF9 antibody. RESULTS Cell viability and invasion of LNCaP was significantly enhanced by treatment with recombinant FGF9. Immunohistochemical staining detected FGF9-positive cells in 20 samples. The prevalence of FGF9-positive cells in cases with a Gleason score of 8 or higher was 34.2%, which was significantly higher than that in those with Gleason scores of 7 or lower (7.3%, P=0.0003), respectively. The 3-year biochemical relapse-free survival rate was 17.5% in cases with FGF9-positive cells, which was significantly lower than that in cases in which FGF9-positive cells were not detectable (75.5%, P < 0.0001). CONCLUSIONS These results indicate that FGF9 can stimulate proliferation and invasion in prostate cancer cells, thus FGF9 could be a candidate of a predictive factor for recurrence after radical prostatectomy.
Collapse
Affiliation(s)
- J Teishima
- Department of Urology, Division of Frontier Medical Science, Programs for Biomedical Research, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Simanainen U, McNamara K, Gao YR, McPherson S, Desai R, Jimenez M, Handelsman DJ. Anterior prostate epithelial AR inactivation modifies estrogen receptor expression and increases estrogen sensitivity. Am J Physiol Endocrinol Metab 2011; 301:E727-35. [PMID: 21750267 DOI: 10.1152/ajpendo.00580.2010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Androgens influence prostate growth and development, so androgen withdrawal can control progression of prostate diseases. Although estrogen treatment was originally used to induce androgen withdrawal, more recently direct estrogen effects on the prostate have been recognized, but the nature of androgen-estrogen interactions within the prostate remain poorly understood. To characterize androgen effects on estrogen sensitivity in the mouse prostate, we contrasted models of castration-induced androgen withdrawal in the prostate stromal and epithelial compartments with a prostate epithelial androgen receptor (AR) knockout (PEARKO) mouse model of selective epithelial AR inactivation. Castration markedly increased prostate epithelial estrogen receptor (ER)α immunoreactivity compared with very low ERα expression in intact males. Similarly, strong basal and luminal ERα expression was detected in PEARKO prostate of intact males, suggesting that epithelial AR activity regulated epithelial ERα expression. ERβ was strongly expressed in intact, castrated, and PEARKO prostate. However, strong clusters of epithelial ERβ positivity coincided with epithelial stratification in PEARKO prostate. In vivo estrogen sensitivity was increased in PEARKO males, with greater estradiol-induced prostate growth and epithelial proliferation leading to squamous metaplasia, featuring markedly increased epithelial proliferation, thickening, and keratinization compared with littermate controls. Our results suggest that ERα expression in the prostate epithelial cells is regulated by local, epithelia-specific, androgen-dependent mechanisms, and this imbalance in the AR- and ER-mediated signaling sensitizes the mature prostate to exogenous estrogens.
Collapse
Affiliation(s)
- Ulla Simanainen
- ANZAC Research Institute, University of Sydney, NSW, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Jin C, Yang C, Wu X, Wang F, McKeehan WL. FGFR3-expressing smooth muscle-like stromal cells differentiate in response to FGFR2IIIb-expressing prostate tumor cells and delay tumor progression. In Vitro Cell Dev Biol Anim 2011; 47:500-5. [PMID: 21691921 DOI: 10.1007/s11626-011-9432-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Accepted: 05/30/2011] [Indexed: 11/24/2022]
Abstract
Evolution of unresponsiveness to homeostasis-promoting signals from the microenvironment is a hallmark of malignant tumor cells. In Dunning R3327 model rat prostate tumors that are comprised of distinct stromal and epithelial compartments, progression from non-malignant, androgen-responsive tumors to malignancy is characterized by loss of compartmentation coincident with a loss of resident epithelial cell FGFR2IIIb that receives instructive signals from stromal FGF7 and FGF10. Restoration of FGFR2IIIb to malignant tumor cells restores responsiveness to stromal cells, restores distinct stromal and epithelial compartments, and retards malignant progression. Cultured stromal cells from two-compartment tumors are comprised of smooth muscle α-actin-positive cells that express predominantly FGFR3 and fibroblast-like cells devoid of α-actin and FGFR3. Here, we show that it is primarily the smooth muscle cell-like α-actin-expressing stromal cells that survive, morphologically differentiate, and delay tumor incidence and size in the presence of malignant cells in which FGFR2IIIb has been restored. Expression of FGFR3 by transfection in the fibroblast-like stromal cells conferred ability to respond similar to the smooth muscle cell-like stromal cells in which FGFR3 is normally resident. These results highlight the importance of the two-way communication back and forth between stroma and epithelium that is mediated by signaling within the FGFR family during progression to malignancy.
Collapse
Affiliation(s)
- Chengliu Jin
- Center for Cancer and Stem Cell Biology, Texas A&M Health Science Center, Institute of Biosciences and Technology, 2121 W. Holcombe Blvd., Houston, TX 77030-3303, USA
| | | | | | | | | |
Collapse
|
28
|
Ueng TH, Chang YL, Tsai YY, Su JL, Chan PK, Shih JY, Lee YC, Ma YC, Kuo ML. Potential roles of fibroblast growth factor-9 in the benzo(a)pyrene-induced invasion in vitro and the metastasis of human lung adenocarcinoma. Arch Toxicol 2010; 84:651-60. [DOI: 10.1007/s00204-010-0547-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 04/19/2010] [Indexed: 11/30/2022]
|
29
|
Abstract
The FGFs (fibroblast growth factors) regulate a broad spectrum of biological activities by activating transmembrane FGFR (FGF receptor) tyrosine kinases and their coupled intracellular signalling pathways. In the prostate, the mesenchymal-epithelial interactions mediated by androgen signalling and paracrine factors are essential for gland organogenesis, homoeostasis and tumorigenesis. FGFs mediate these mesenchymal-epithelial interactions in the prostate by paracrinal crosstalk through a diverse set of ligands and receptors. Gain- and loss-of-function studies in mouse models have demonstrated the requirement for the FGF signalling axis in prostate development and homoeostasis. The aberrant induction of this axis in either compartment of the prostate results in developmental disorders, disrupts the homoeostatic balance and leads to prostate carcinogenesis. FGFs are also implicated in mediating androgen signalling in the prostate between mesenchymal and epithelial compartments. Therefore studying FGF signalling in the prostate will help us to better understand the underlying molecular mechanisms by which the gland develops, maintains homoeostasis and undergoes carcinogenesis; as well as yield clues on how androgens mediate these processes and how advanced-tumour prostate cells escape strict androgen regulations.
Collapse
|
30
|
Mandinova A, Kolev V, Neel V, Hu B, Stonely W, Lieb J, Wu X, Colli C, Han R, Pazin MJ, Pazin M, Ostano P, Dummer R, Brissette JL, Dotto GP. A positive FGFR3/FOXN1 feedback loop underlies benign skin keratosis versus squamous cell carcinoma formation in humans. J Clin Invest 2010; 119:3127-37. [PMID: 19729838 DOI: 10.1172/jci38543] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2009] [Accepted: 07/01/2009] [Indexed: 01/01/2023] Open
Abstract
Seborrheic keratoses (SKs) are common, benign epithelial tumors of the skin that do not, or very rarely, progress into malignancy, for reasons that are not understood. We investigated this by gene expression profiling of human SKs and cutaneous squamous cell carcinomas (SCCs) and found that several genes previously connected with keratinocyte tumor development were similarly modulated in SKs and SCCs, whereas the expression of others differed by only a few fold. In contrast, the tyrosine kinase receptor FGF receptor-3 (FGFR3) and the transcription factor forkhead box N1 (FOXN1) were highly expressed in SKs, and close to undetectable in SCCs. We also showed that increased FGFR3 activity was sufficient to induce FOXN1 expression, counteract the inhibitory effect of EGFR signaling on FOXN1 expression and differentiation, and induce differentiation in a FOXN1-dependent manner. Knockdown of FOXN1 expression in primary human keratinocytes cooperated with oncogenic RAS in the induction of SCC-like tumors, whereas increased FOXN1 expression triggered the SCC cells to shift to a benign SK-like tumor phenotype, which included increased FGFR3 expression. Thus,we have uncovered a positive regulatory loop between FGFR3 and FOXN1 that underlies a benign versus malignant skin tumor phenotype.
Collapse
Affiliation(s)
- Anna Mandinova
- Cutaneous Biology Research Center, Massachusetts General Hospital (MGH), Charlestown, Massachusetts, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Valta MP, Tuomela J, Vuorikoski H, Loponen N, Väänänen RM, Pettersson K, Väänänen HK, Härkönen PL. FGF-8b induces growth and rich vascularization in an orthotopic PC-3 model of prostate cancer. J Cell Biochem 2009; 107:769-84. [PMID: 19415685 DOI: 10.1002/jcb.22175] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 8 (FGF-8) is expressed at an increased level in a high proportion of prostate cancers and it is associated with a poor prognosis of the disease. Our aim was to study the effects of FGF-8b on proliferation of PC-3 prostate cancer cells and growth of PC-3 tumors, and to identify FGF-8b-associated molecular targets. Expression of ectopic FGF-8b in PC-3 cells caused a 1.5-fold increase in cell proliferation in vitro and a four- to fivefold increase in the size of subcutaneous and orthotopic prostate tumors in nude mice. Tumors expressing FGF-8b showed a characteristic morphology with a very rich network of capillaries. This was associated with increased spread of the cancer cells to the lungs as measured by RT-qPCR of FGF-8b mRNA. Microarray analyses revealed significantly altered, up- and downregulated, genes in PC-3 cell cultures (169 genes) and in orthotopic PC-3 tumors (61 genes). IPA network analysis of the upregulated genes showed the strongest association with development, cell proliferation (CRIP1, SHC1), angiogenesis (CCL2, DDAH2), bone metastasis (SPP1), cell-to-cell signaling and energy production, and the downregulated genes associated with differentiation (DKK-1, VDR) and cell death (CYCS). The changes in gene expression were confirmed by RT-qPCR. In conclusion, our results demonstrate that FGF-8b increases the growth and angiogenesis of orthotopic prostate tumors. The associated gene expression signature suggests potential mediators for FGF-8b actions on prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Maija P Valta
- Department of Cell Biology and Anatomy, Institute of Biomedicine, University of Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Differences in the nemosis response of normal and cancer-associated fibroblasts from patients with oral squamous cell carcinoma. PLoS One 2009; 4:e6879. [PMID: 19721715 PMCID: PMC2730537 DOI: 10.1371/journal.pone.0006879] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 08/06/2009] [Indexed: 11/25/2022] Open
Abstract
Background Tumor-stroma reaction is associated with activation of fibroblasts. Nemosis is a novel type of fibroblast activation. It leads to an increased production of growth factors and proinflammatory and proteolytic proteins, while at the same time cytoskeletal proteins are degraded. Here we used paired normal skin fibroblasts and cancer-associated fibroblasts (CAF) and primary and recurrent oral squamous cell carcinoma (SCC) cells to study the nemosis response. Principal Findings Fibroblast nemosis was analyzed by protein and gene expression and the paracrine regulation with colony formation assay. One of the normal fibroblast strains, FB-43, upregulated COX-2 in nemosis, but FB-74 cells did not. In contrast, CAF-74 spheroids expressed COX-2 but CAF-43 cells did not. Alpha-SMA protein was expressed in both CAF strains and in FB-74 cells, but not in FB-43 fibroblasts. Its mRNA levels were downregulated in nemosis, but the CAFs started to regain the expression. FSP1 mRNA was downregulated in normal fibroblasts and CAF-74 cells, but not in CAF-43 fibroblasts. Serine protease FAP was upregulated in all fibroblasts, more so in nemotic CAFs. VEGF, HGF/SF and FGF7 mRNA levels were upregulated to variable degree in nemosis. CAFs increased the colony formation of primary tumor cell lines UT-SCC-43A and UT-SCC-74A, but normal fibroblasts inhibited the anchorage-independent growth of recurrent UT-SCC-43B and UT-SCC-74B cells. Conclusions Nemosis response, as observed by COX-2 and growth factor induction, and expression of CAF markers α-SMA, FSP1 and FAP, varies between fibroblast populations. The expression of CAF markers differs between normal fibroblasts and CAFs in nemosis. These results emphasize the heterogeneity of fibroblasts and the evolving tumor-promoting properties of CAFs.
Collapse
|
33
|
Wang CK, Chang H, Chen PH, Chang JT, Kuo YC, Ko JL, Lin P. Aryl hydrocarbon receptor activation and overexpression upregulated fibroblast growth factor-9 in human lung adenocarcinomas. Int J Cancer 2009; 125:807-15. [PMID: 19358281 DOI: 10.1002/ijc.24348] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We had previously reported that aryl hydrocarbon receptors (AhRs) are overexpressed in lung adenocarcinomas. Benzo[a]pyrene (BaP), an AhR agonist, increased FGF-9 expression in human lung adenocarcinoma cells. Similarly, several AhR agonists increased FGF-9 mRNA levels, and BaP-induced FGF-9 expression was prevented by cotreatment with AhR antagonist in human lung adenocarcinoma cells. Furthermore, AhR agonists increased transcriptional activity of FGF-9 promoter. Modulation of AhR expression via RNA interference or transient overexpression respectively reduced or increased both constitutive and BaP-induced FGF-9 expression in human lung cells. These results suggested that AhR activation and overexpression increased FGF-9 expression in lung cells. FGF-9 increased growth of lung fibroblasts but not that of lung adenocarcinoma cells. However, conditioned media collected from FGF-9-treated fibroblasts increased cell growth of lung adenocarcinoma cells. Furthermore, lung adenocarcinoma cells expressed FGF receptor 2 and cotreatment with anti-FGF receptor 2 prevented the interaction between fibroblasts and tumor cells. It is likely that FGF-9-stimulated fibroblasts secreted unknown factors, which activated FGF receptor 2 and subsequently promoted growth of lung adenocarcinoma cells. We further compared AhR and FGF-9 expression in 146 non-small cell lung cancer (NSCLC) cases by immunohistochemistry. FGF-9 expression was more common in adenocarcinomas than in squamous cell carcinomas. Furthermore, FGF-9 and AhR expression were well correlated in lung adenocarcinomas. These results suggest that AhR expression correlated positively with FGF-9 expression in lung adenocarcinomas, which might promote tumor growth by modulating communication between tumor cells and fibroblasts. Preventing AhR overexpression or disturbing FGF-9 function may reduce the development of lung adenocarcinomas. (c) 2009 UICC.
Collapse
Affiliation(s)
- Chien-Kai Wang
- Division of Environmental Health and Occupational Medicine, National Health Research Institutes, Zhunan, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
34
|
Korc M, Friesel RE. The role of fibroblast growth factors in tumor growth. Curr Cancer Drug Targets 2009; 9:639-51. [PMID: 19508171 DOI: 10.2174/156800909789057006] [Citation(s) in RCA: 271] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2008] [Accepted: 05/02/2009] [Indexed: 12/13/2022]
Abstract
Biological processes that drive cell growth are exciting targets for cancer therapy. The fibroblast growth factor (FGF) signaling network plays a ubiquitous role in normal cell growth, survival, differentiation, and angiogenesis, but has also been implicated in tumor development. Elucidation of the roles and relationships within the diverse FGF family and of their links to tumor growth and progression will be critical in designing new drug therapies to target FGF receptor (FGFR) pathways. Recent studies have shown that FGF can act synergistically with vascular endothelial growth factor (VEGF) to amplify tumor angiogenesis, highlighting that targeting of both the FGF and VEGF pathways may be more efficient in suppressing tumor growth and angiogenesis than targeting either factor alone. In addition, through inducing tumor cell survival, FGF has the potential to overcome chemotherapy resistance highlighting that chemotherapy may be more effective when used in combination with FGF inhibitor therapy. Furthermore, FGFRs have variable activity in promoting angiogenesis, with the FGFR-1 subgroup being associated with tumor progression and the FGFR-2 subgroup being associated with either early tumor development or decreased tumor progression. This review highlights the growing knowledge of FGFs in tumor cell growth and survival, including an overview of FGF intracellular signaling pathways, the role of FGFs in angiogenesis, patterns of FGF and FGFR expression in various tumor types, and the role of FGFs in tumor progression.
Collapse
Affiliation(s)
- M Korc
- Department of Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH 03756, USA.
| | | |
Collapse
|
35
|
Homodimerization controls the fibroblast growth factor 9 subfamily's receptor binding and heparan sulfate-dependent diffusion in the extracellular matrix. Mol Cell Biol 2009; 29:4663-78. [PMID: 19564416 DOI: 10.1128/mcb.01780-08] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Uncontrolled fibroblast growth factor (FGF) signaling can lead to human diseases, necessitating multiple layers of self-regulatory control mechanisms to keep its activity in check. Herein, we demonstrate that FGF9 and FGF20 ligands undergo a reversible homodimerization, occluding their key receptor binding sites. To test the role of dimerization in ligand autoinhibition, we introduced structure-based mutations into the dimer interfaces of FGF9 and FGF20. The mutations weakened the ability of the ligands to dimerize, effectively increasing the concentrations of monomeric ligands capable of binding and activating their cognate FGF receptor in vitro and in living cells. Interestingly, the monomeric ligands exhibit reduced heparin binding, resulting in their increased radii of heparan sulfate-dependent diffusion and biologic action, as evidenced by the wider dilation area of ex vivo lung cultures in response to implanted mutant FGF9-loaded beads. Hence, our data demonstrate that homodimerization autoregulates FGF9 and FGF20's receptor binding and concentration gradients in the extracellular matrix. Our study is the first to implicate ligand dimerization as an autoregulatory mechanism for growth factor bioactivity and sets the stage for engineering modified FGF9 subfamily ligands, with desired activity for use in both basic and translational research.
Collapse
|
36
|
Abstract
Prostate cancer is the second cause of cancer-related death in men of the Western World. The role of FGFR3 and its abnormalities in prostate cancer are not known. FGFR3 mutations have been reported in some human tumors. Few studies have analyzed the mutations of FGFR3 in prostate tumors, and no mutations have been previously reported. Prevalence of FGFR3 somatic mutations was investigated in a series of prostate tumors. The presence of other tumors in these patients, including urothelial, skin, colon, and lung neoplasms, was recorded. Mutational analysis of exons 7, 10, and 15 of FGFR3 revealed 9 mutations in the 112 prostate tumors studied (8%). Most of them consisted of the missense change S249C. The prevalence of mutations in tumors with combined Gleason score=6 is 18% (8/45) compared to 3% (1/36) for tumors with grade=7, and 0% (0/31) for those with grade >or=8 and metastases (P=0.007). The frequency of FGFR3 mutations in autopsy and biopsy samples was 6 and 9%, respectively. The prevalence of FGFR3 mutations in prostate tumors from patients with only prostate cancer was 2% compared to 23% in prostate tumors from patients with other associated neoplasms (P=0.001). This is the first report of molecular changes of FGFR3 in prostate cancer. This gene does not seem to be central to the pathogenesis of prostate cancer, but it is significantly associated with a subgroup of low-grade prostate tumors, and with the finding of other tumors, mainly arising in bladder and skin.
Collapse
|
37
|
Abstract
Fibroblast growth factor receptors (FGFRs) comprise a subfamily of receptor tyrosine kinases (RTKs) that are master regulators of a broad spectrum of cellular and developmental processes, including apoptosis, proliferation, migration and angiogenesis. Due to their broad impact, FGFRs and other RTKs are highly regulated and normally only basally active. Deregulation of FGFR signaling by activating mutations or ligand/receptor overexpression could allow these receptors to become constitutively active, leading to cancer development, including both hematopoietic and solid tumors, such as breast, bladder and prostate carcinomas. In this review, we focus on potential modes of FGFR-mediated tumorigenesis, in particular, the role of FGFR1 during prostate cancer progression.
Collapse
Affiliation(s)
- Victor D Acevedo
- Program in Cell and Molecular Biology, Department of Immunology, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|
38
|
De Wever O, Demetter P, Mareel M, Bracke M. Stromal myofibroblasts are drivers of invasive cancer growth. Int J Cancer 2008; 123:2229-38. [PMID: 18777559 DOI: 10.1002/ijc.23925] [Citation(s) in RCA: 521] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Tissue integrity is maintained by the stroma in physiology. In cancer, however, tissue invasion is driven by the stroma. Myofibroblasts and cancer-associated fibroblasts are important components of the tumor stroma. The origin of myofibroblasts remains controversial, although fibroblasts and bone marrow-derived precursors are considered to be the main progenitor cells. Myofibroblast reactions also occur in fibrosis. Therefore, we wonder whether nontumorous myofibroblasts have different characteristics and different origins as compared to tumor-associated myofibroblasts. The mutual interaction between cancer cells and myofibroblasts is dependent on multiple invasive growth-promoting factors, through direct cell-cell contacts and paracrine signals. Since fibrosis is a major side effect of radiotherapy, we address the question how the main methods of cancer management, including chemotherapy, hormonotherapy and surgery affect myofibroblasts and by inference the surrogate endpoints invasion and metastasis.
Collapse
Affiliation(s)
- Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiotherapy and Nuclear Medicine, Ghent University Hospital, 9000 Ghent, Belgium.
| | | | | | | |
Collapse
|
39
|
Gupta A, Bar-Joseph Z. Extracting dynamics from static cancer expression data. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2008; 5:172-182. [PMID: 18451427 DOI: 10.1109/tcbb.2007.70233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Static expression experiments analyze samples from many individuals. These samples are often snapshots of the progression of a certain disease such as cancer. This raises an intriguing question: Can we determine a temporal order for these samples? Such an ordering can lead to better understanding of the dynamics of the disease and to the identification of genes associated with its progression. In this paper we formally prove, for the first time, that under a model for the dynamics of the expression levels of a single gene, it is indeed possible to recover the correct ordering of the static expression datasets by solving an instance of the traveling salesman problem (TSP). In addition, we devise an algorithm that combines a TSP heuristic and probabilistic modeling for inferring the underlying temporal order of the microarray experiments. This algorithm constructs probabilistic continuous curves to represent expression profiles leading to accurate temporal reconstruction for human data. Applying our method to cancer expression data we show that the ordering derived agrees well with survival duration. A classifier that utilizes this ordering improves upon other classifiers suggested for this task. The set of genes displaying consistent behavior for the determined ordering are enriched for genes associated with cancer progression.
Collapse
Affiliation(s)
- Anupam Gupta
- Department of Computer Science, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
40
|
Drummond AE, Tellbach M, Dyson M, Findlay JK. Fibroblast growth factor-9, a local regulator of ovarian function. Endocrinology 2007; 148:3711-21. [PMID: 17494997 DOI: 10.1210/en.2006-1668] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Fibroblast growth factor 9 (FGF9) is widely expressed in embryos and fetuses and has been shown to be involved in male sex determination, testicular cord formation, and Sertoli cell differentiation. Given its male gender bias, the ovary has not been reported to express FGF9, nor has a role in ovarian function been explored. We report here that FGF9 mRNA and protein are present in the rat ovary and provide evidence that supports a role for FGF9 in ovarian progesterone production. FGF9 mRNA levels as determined by real-time PCR were high in 4-d-old rat ovaries, thereafter declining and stabilizing at levels approximately 30% of d 4 levels at d 12-25. Levels of FGF9 mRNA in the ovary were significantly higher than that present in adult testis, at all ages studied. The FGF9 receptors FGFR2 and FGFR3 mRNAs were present in postnatal and immature rat ovary and appeared to be constitutively expressed. FGF9 protein was localized to theca, stromal cells, and corpora lutea and FGFR2 and FGFR3 proteins to granulosa cells, theca cells, oocytes, and corpora lutea, by immunohistochemistry. Follicular differentiation induced by gonadotropin treatment reduced the expression of FGF9 mRNA by immature rat ovaries, whereas the estrogen-stimulated development of large preantral follicles had no significant effect. In vitro, FGF9 stimulated progesterone production by granulosa cells beyond that elicited by a maximally stimulating dose of FSH. When the granulosa cells were pretreated with FSH to induce LH receptors, FGF9 was found not to be as potent as LH in stimulating progesterone production, nor did it enhance LH-stimulated production. The combined treatments of FSH/FGF9 and FSH/LH, however, were most effective at stimulating progesterone production by these differentiated granulosa cells. Analyses of steroidogenic regulatory proteins indicate that steroidogenic acute regulatory protein and P450 side chain cleavage mRNA levels were enhanced by FGF9, providing a mechanism of action for the increased progesterone synthesis. In summary, the data are consistent with a paracrine role for FGF9 in the ovary.
Collapse
MESH Headings
- 3-Hydroxysteroid Dehydrogenases/genetics
- Animals
- Cells, Cultured
- Cholesterol Side-Chain Cleavage Enzyme/genetics
- Diethylstilbestrol/pharmacology
- Estrogens, Non-Steroidal/pharmacology
- Female
- Fibroblast Growth Factor 9/genetics
- Fibroblast Growth Factor 9/metabolism
- Gene Expression/drug effects
- Gene Expression/physiology
- Granulosa Cells/cytology
- Granulosa Cells/physiology
- Immunohistochemistry
- Male
- Paracrine Communication/physiology
- Phosphoproteins/genetics
- Pregnancy
- Progesterone/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Fibroblast Growth Factor, Type 2/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Receptor, Fibroblast Growth Factor, Type 3/genetics
- Receptor, Fibroblast Growth Factor, Type 3/metabolism
- Steroids/biosynthesis
- Testis/cytology
- Testis/physiology
Collapse
Affiliation(s)
- Ann E Drummond
- Prince Henry's Institute of Medical Research, PO Box 5152, Clayton, Victoria 3168, Australia.
| | | | | | | |
Collapse
|
41
|
Matrix-comparative genomic hybridization from multicenter formalin-fixed paraffin-embedded colorectal cancer tissue blocks. BMC Cancer 2007; 7:58. [PMID: 17407575 PMCID: PMC3225877 DOI: 10.1186/1471-2407-7-58] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2006] [Accepted: 04/02/2007] [Indexed: 12/02/2022] Open
Abstract
Background The identification of genomic signatures of colorectal cancer for risk stratification requires the study of large series of cancer patients with an extensive clinical follow-up. Multicentric clinical studies represent an ideal source of well documented archived material for this type of analyses. Methods To verify if this material is technically suitable to perform matrix-CGH, we performed a pilot study using macrodissected 29 formalin-fixed, paraffin-embedded tissue samples collected within the framework of the EORTC-GI/PETACC-2 trial for colorectal cancer. The scientific aim was to identify prognostic genomic signatures differentiating locally restricted (UICC stages II-III) from systemically advanced (UICC stage IV) colorectal tumours. Results The majority of archived tissue samples collected in the different centers was suitable to perform matrix-CGH. 5/7 advanced tumours displayed 13q-gain and 18q-loss. In locally restricted tumours, only 6/12 tumours showed a gain on 13q and 7/12 tumours showed a loss on 18q. Interphase-FISH and high-resolution array-mapping of the gain on 13q confirmed the validity of the array-data and narrowed the chromosomal interval containing potential oncogenes. Conclusion Archival, paraffin-embedded tissue samples collected in multicentric clinical trials are suitable for matrix-CGH analyses and allow the identification of prognostic signatures and aberrations harbouring potential new oncogenes.
Collapse
|
42
|
Winter SF, Acevedo VD, Gangula RD, Freeman KW, Spencer DM, Greenberg NM. Conditional activation of FGFR1 in the prostate epithelium induces angiogenesis with concomitant differential regulation of Ang-1 and Ang-2. Oncogene 2007; 26:4897-907. [PMID: 17297442 DOI: 10.1038/sj.onc.1210288] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The expression of fibroblast growth factor receptor (FGFR)-1 correlates with angiogenesis and is associated with prostate cancer (CaP) progression. To more precisely define the molecular mechanisms whereby FGFR1 causes angiogenesis in the prostate we exploited a transgenic mouse model, JOCK-1, in which activation of a conditional FGFR1 allele in the prostate epithelium caused rapid angiogenesis and progressive hyperplasia. By labeling the vasculature in vivo and applying a novel method to measure the vasculature in three dimensions, we were able to observe a significant increase in vascular volume 1 week after FGFR1 activation. Although vessel volume and branching both continued to increase throughout a 6-week period of FGFR1 activation, importantly, we discovered that continued activation of FGFR1 was not required to maintain the new vasculature. Exploring the molecular mediators of the angiogenic phenotype, we observed consistent upregulation of HIF-1alpha, vascular endothelial growth factor (VEGF) and angiopoietin 2 (Ang-2), whereas expression of Ang-1 was lost. Further analysis revealed that loss of Ang-1 expression occurred in the basal epithelium, whereas the increase in Ang-2 expression occurred in the luminal epithelium. Reporter assays confirmed that the Ang-2 promoter was regulated by FGFR1 signaling and a small molecule inhibitor of FGFR activity, PD173074, could abrogate this response. These findings establish a method to follow spontaneous angiogenesis in a conditional autochthonous system, implicate the angiopoietins as downstream effectors of FGFR1 activation in vivo, and suggest that therapies targeting FGFR1 could be used to inhibit neovascularization during initiation and progression of CaP.
Collapse
Affiliation(s)
- S F Winter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | | | | | | | | | |
Collapse
|
43
|
Lin Y, Liu G, Zhang Y, Hu YP, Yu K, Lin C, McKeehan K, Xuan JW, Ornitz DM, Shen MM, Greenberg N, McKeehan WL, Wang F. Fibroblast growth factor receptor 2 tyrosine kinase is required for prostatic morphogenesis and the acquisition of strict androgen dependency for adult tissue homeostasis. Development 2007; 134:723-34. [PMID: 17215304 DOI: 10.1242/dev.02765] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fibroblast growth factor (FGF) family consists of 22 members and regulates a broad spectrum of biological activities by activating diverse isotypes of FGF receptor tyrosine kinases (FGFRs). Among the FGFs, FGF7 and FGF10 have been implicated in the regulation of prostate development and prostate tissue homeostasis by signaling through the FGFR2 isoform. Using conditional gene ablation with the Cre-LoxP system in mice, we demonstrate a tissue-specific requirement for FGFR2 in urogenital epithelial cells--the precursors of prostatic epithelial cells--for prostatic branching morphogenesis and prostatic growth. Most Fgfr2 conditional null (Fgfr2(cn)) embryos developed only two dorsal prostatic (dp) and two lateral prostatic (lp) lobes. This contrasts to wild-type prostate, which has two anterior prostatic (ap), two dp, two lp and two ventral prostatic (vp) lobes. Unlike wild-type prostates, which are composed of well developed epithelial ductal networks, the Fgfr2(cn) prostates, despite retaining a compartmented tissue structure, exhibited a primitive epithelial architecture. Moreover, although Fgfr2(cn) prostates continued to produce secretory proteins in an androgen-dependent manner, they responded poorly to androgen with respect to tissue homeostasis. The results demonstrate that FGFR2 is important for prostate organogenesis and for the prostate to develop into a strictly androgen-dependent organ with respect to tissue homeostasis but not to the secretory function, implying that androgens may regulate tissue homeostasis and tissue function differently. Therefore, Fgfr2(cn) prostates provide a useful animal model for scrutinizing molecular mechanisms by which androgens regulate prostate growth, homeostasis and function, and may yield clues as to how advanced-tumor prostate cells escape strict androgen regulations.
Collapse
Affiliation(s)
- Yongshun Lin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A and M Health Science Center, 2121 W. Holcombe Blvd, Houston, TX 77030-3303, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chuang PC, Sun HS, Chen TM, Tsai SJ. Prostaglandin E2 induces fibroblast growth factor 9 via EP3-dependent protein kinase Cdelta and Elk-1 signaling. Mol Cell Biol 2006; 26:8281-92. [PMID: 16982695 PMCID: PMC1636777 DOI: 10.1128/mcb.00941-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fibroblast growth factor 9 (FGF-9) is a potent mitogen that controls the proper development of many tissues and organs. In contrast, aberrant expression of FGF-9 also results in the evolution of many human diseases, such as cancers and endometriosis. Despite its vital function being reported, the cellular and molecular mechanisms responsible for the regulation of FGF-9 expression are mostly unknown. We report here that prostaglandin E2 (PGE2) induces expression of FGF-9, which promotes endometriotic stromal cell proliferation, through the EP3 receptor-activated protein kinase Cdelta (PKCdelta) signaling pathway. Activation of PKCdelta leads to phosphorylation of ERK1/2, and the transcription factor Elk-1 thereby promotes transcription of FGF-9. Two Elk-1 cis-binding sites located at nucleotides -1324 to -1329 and -1046 to -1051 of the human FGF-9 promoter are identified as crucial for mediating PGE2 actions. Collectively, we demonstrate, for the first time, that PGE2 can directly induce FGF-9 expression via a novel signaling pathway involving EP3, PKCdelta, and a member of the ETS domain-containing transcription factor superfamily in primary human endometriotic stromal cells. Our findings may also provide a molecular framework for considering roles for PGE2 in FGF-9-related embryonic development and/or human diseases.
Collapse
Affiliation(s)
- Pei-Chin Chuang
- Institute of Basic Medical Sciences, National Cheng Kung University Medical College, Tainan 701, Taiwan, Republic of China
| | | | | | | |
Collapse
|
45
|
Kathpalia VP, Mussak EN, Chow SS, Lam PH, Skelley N, Time M, Markelewicz RJ, Kanduc D, Lomas L, Xiang Z, Sinha AA. Genome-wide transcriptional profiling in human squamous cell carcinoma of the skin identifies unique tumor-associated signatures. J Dermatol 2006; 33:309-18. [PMID: 16700662 DOI: 10.1111/j.1346-8138.2006.00075.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The elucidation of specific genetic changes associated with human cancer pathogenesis has focused efforts to relate such changes to the neoplastic phenotype. To further our understanding of the genetic basis of human squamous cell carcinoma (SCC) of the skin, this study used a genome-wide (12 627 sequences) approach to determine transcriptional signatures in lesional and nonlesional sites from five SCC patients. Several novel genes involving the p53 pathway, anti-apoptotic pathways, signal transduction, structural loss and DNA replication, including BCL2A1, MUC4, PTPN11 (SHP2) and FGF9, are upregulated in SCC and could warrant further study regarding their role in disease pathogenesis. SCC pathology is likely combinatorial in nature involving the compounded changes from several cellular processes.
Collapse
Affiliation(s)
- Vinnie P Kathpalia
- Department of Dermatology, Weill Cornell Medical College, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Abstract
The fibroblast growth factor (FGF) family consists of 22 widely expressed regulatory polypeptides and controls a broad spectrum of cellular processes. Accumulating data show that FGF9 plays important roles both in embryogenesis and in adult tissue homeostasis. Ablation of Fgf9 alleles leads to lethality at the neonatal stage mainly due to malformations of the lung, as well as causing male-to-female sex reversal. To circumvent the neonatal lethality resulting from disruption of the Fgf9 gene, which hinders further characterization of the role of FGF9 in adult tissue function and homeostasis, we generated an Fgf9 conditional null allele for spatiotemporal- and tissue-specific disruption of Fgf9. Using gene targeting in mouse embryonic stem (ES) cells, we introduced two loxP sites flanking exon 1 in the Fgf9 allele, which encodes 93 amino acid residues at the N-terminal of FGF9. Our results indicate that the Fgf9 conditional null allele is a true conditional null that encodes wildtype activity and reverts to a null allele after recombination mediated by the Cre recombinase.
Collapse
Affiliation(s)
- Yongshun Lin
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, Texas 77030-3303, USA
| | | | | |
Collapse
|
47
|
Yu C, Wang F, Jin C, Huang X, McKeehan WL. Independent repression of bile acid synthesis and activation of c-Jun N-terminal kinase (JNK) by activated hepatocyte fibroblast growth factor receptor 4 (FGFR4) and bile acids. J Biol Chem 2005; 280:17707-14. [PMID: 15750181 DOI: 10.1074/jbc.m411771200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The fibroblast growth factor (FGF) receptor complex is a regulator of adult organ homeostasis in addition to its central role in embryonic development and wound healing. FGF receptor 4 (FGFR4) is the sole FGFR receptor kinase that is significantly expressed in mature hepatocytes. Previously, we showed that mice lacking mouse FGFR4 (mR4(-/-)) exhibited elevated fecal bile acids, bile acid pool size, and expression of liver cholesterol 7alpha-hydroxylase (CYP7A1), the rate-limiting enzyme for canonical neutral bile acid synthesis. To prove that hepatocyte FGFR4 was a negative regulator of cholesterol metabolism and bile acid synthesis independent of background, we generated transgenic mice overexpressing a constitutively active human FGFR4 (CahR4) in hepatocytes and crossed them with the FGFR4-deficient mice to generate CahR4/mR4(-/-) mice. In mice expressing active FGFR4 in liver, fecal bile acid excretion was 64%, bile acid pool size was 47%, and Cyp7a1 expression was 10-30% of wild-type mice. The repressed level of Cyp7a1 expression was resistant to induction by a high cholesterol diet relative to wild-type mice. Expression of CahR4 in mR4(-/-) mouse livers depressed bile acid synthesis below wild-type levels from the elevated levels observed in mR4(-/-). Levels of phosphorylated c-Jun N-terminal kinase (JNK), which is part of a pathway implicated in bile acid-mediated repression of synthesis, was 30% of wild-type levels in mR4(-/-) livers, whereas CahR4 livers exhibited an average 2-fold increase. However, cholate still strongly induced phospho-JNK in mR4(-/-) livers. These results confirm that hepatocyte FGFR4 regulates bile acid synthesis by repression of Cyp7a1 expression. Hepatocyte FGFR4 may contribute to the repression of bile acid synthesis through JNK signaling but is not required for activation of JNK signaling by bile acids.
Collapse
Affiliation(s)
- Chundong Yu
- Center for Cancer Biology and Nutrition, Institute of Biosciences and Technology, Texas A&M University System Health Science Center
| | | | | | | | | |
Collapse
|
48
|
Abstract
It is widely accepted that the development of carcinoma--the most common form of human cancer--is due to the accumulation of somatic mutations in epithelial cells. The behaviour of carcinomas is also influenced by the tumour microenvironment, which includes extracellular matrix, blood vasculature, inflammatory cells and fibroblasts. Recent studies reveal that fibroblasts have a more profound influence on the development and progression of carcinomas than was previously appreciated. These new findings have important therapeutic implications.
Collapse
Affiliation(s)
- Neil A. Bhowmick
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Urologic Surgery, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram, Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Eric G. Neilson
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram, Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Harold L. Moses
- Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
- Vanderbilt-Ingram, Cancer Center, Vanderbilt University School of Medicine, Nashville, TN 37232
- To whom Correspondence should be addressed. 649 Preston Research Building, Nashville, TN 37232,
| |
Collapse
|