1
|
Jones MG, Sun D, Min KH(J, Colgan WN, Tian L, Weir JA, Chen VZ, Koblan LW, Yost KE, Mathey-Andrews N, Russell AJ, Stickels RR, Balderrama KS, Rideout WM, Chang HY, Jacks T, Chen F, Weissman JS, Yosef N, Yang D. Spatiotemporal lineage tracing reveals the dynamic spatial architecture of tumor growth and metastasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.21.619529. [PMID: 39484491 PMCID: PMC11526908 DOI: 10.1101/2024.10.21.619529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Tumor progression is driven by dynamic interactions between cancer cells and their surrounding microenvironment. Investigating the spatiotemporal evolution of tumors can provide crucial insights into how intrinsic changes within cancer cells and extrinsic alterations in the microenvironment cooperate to drive different stages of tumor progression. Here, we integrate high-resolution spatial transcriptomics and evolving lineage tracing technologies to elucidate how tumor expansion, plasticity, and metastasis co-evolve with microenvironmental remodeling in a Kras;p53-driven mouse model of lung adenocarcinoma. We find that rapid tumor expansion contributes to a hypoxic, immunosuppressive, and fibrotic microenvironment that is associated with the emergence of pro-metastatic cancer cell states. Furthermore, metastases arise from spatially-confined subclones of primary tumors and remodel the distant metastatic niche into a fibrotic, collagen-rich microenvironment. Together, we present a comprehensive dataset integrating spatial assays and lineage tracing to elucidate how sequential changes in cancer cell state and microenvironmental structures cooperate to promote tumor progression.
Collapse
Affiliation(s)
- Matthew G. Jones
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- These authors contributed equally
| | - Dawei Sun
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- These authors contributed equally
| | - Kyung Hoi (Joseph) Min
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William N. Colgan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Luyi Tian
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jackson A. Weir
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Biological and Biomedical Sciences Program, Harvard University, Cambridge, MA, USA
| | - Victor Z. Chen
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
| | - Luke W. Koblan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn E. Yost
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Andrew J.C. Russell
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | | | | | - William M. Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Tyler Jacks
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nir Yosef
- Department of Systems Immunology, Weizmann Institute of Science, 234 Herzl Street, Rehovot 7610001, Israel
| | - Dian Yang
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York City, NY, USA
- Department of Systems Biology, Columbia University, New York City, NY, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA
- Lead Contact
| |
Collapse
|
2
|
Qayoom H, Haq BU, Sofi S, Jan N, Jan A, Mir MA. Targeting mutant p53: a key player in breast cancer pathogenesis and beyond. Cell Commun Signal 2024; 22:484. [PMID: 39390510 PMCID: PMC11466041 DOI: 10.1186/s12964-024-01863-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024] Open
Abstract
The p53 mutation is the most common genetic mutation associated with human neoplasia. TP53 missense mutations, which frequently arise early in breast cancer, are present in over thirty percent of breast tumors. In breast cancer, p53 mutations are linked to a more aggressive course of the disease and worse overall survival rates. TP53 mutations are mostly seen in triple-negative breast cancer, a very diverse kind of the disease. The majority of TP53 mutations originate in the replacement of individual amino acids within the p53 protein's core domain, giving rise to a variety of variations referred to as "mutant p53s." In addition to gaining carcinogenic qualities through gain-of-function pathways, these mutants lose the typical tumor-suppressive features of p53 to variable degrees. The gain-of-function impact of stabilized mutant p53 causes tumor-specific dependency and resistance to therapy. P53 is a prospective target for cancer therapy because of its tumor-suppressive qualities and the numerous alterations that it experiences in tumors. Phenotypic abnormalities in breast cancer, notably poorly differentiated basal-like tumors are frequently linked to high-grade tumors. By comparing data from cell and animal models with clinical outcomes in breast cancer, this study investigates the molecular mechanisms that convert gene alterations into the pathogenic consequences of mutant p53's tumorigenic activity. The study delves into current and novel treatment approaches aimed at targeting p53 mutations, taking into account the similarities and differences in p53 regulatory mechanisms between mutant and wild-type forms, as well.
Collapse
Affiliation(s)
- Hina Qayoom
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Burhan Ul Haq
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Shazia Sofi
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Nusrat Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Asma Jan
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India
| | - Manzoor A Mir
- Cancer Biology Lab, Department of Bioresources, School of Biological Sciences, University of Kashmir Srinagar, Kashmir Srinagar, J&K, 190006, India.
| |
Collapse
|
3
|
Ji X, Zhang T, Sun J, Song X, Ma G, Xu L, Cao X, Jing Y, Xue F, Zhang W, Sun S, Wan Q, Liu Y. UBASH3B-mediated MRPL12 Y60 dephosphorylation inhibits LUAD development by driving mitochondrial metabolism reprogramming. J Exp Clin Cancer Res 2024; 43:268. [PMID: 39343960 PMCID: PMC11441236 DOI: 10.1186/s13046-024-03181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/04/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Metabolic reprogramming plays a pivotal role in tumorigenesis and development of lung adenocarcinoma (LUAD). However, the precise mechanisms and potential targets for metabolic reprogramming in LUAD remain elusive. Our prior investigations revealed that the mitochondrial ribosomal protein MRPL12, identified as a novel mitochondrial transcriptional regulatory gene, exerts a critical influence on mitochondrial metabolism. Despite this, the role and regulatory mechanisms underlying MRPL12's transcriptional activity in cancers remain unexplored. METHODS Human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD mouse models, LUAD patient-derived organoids (PDO), and LUAD cell lines were used to explored the expression and function of MRPL12. The posttranslational modification of MRPL12 was analyzed by mass spectrometry, and the oncogenic role of key phosphorylation sites of MRPL12 in LUAD development was verified in vivo and in vitro. RESULTS MRPL12 was upregulated in human LUAD tissues, Tp53fl/fl;KrasG12D-driven LUAD tissues in mice, LUAD PDO, and LUAD cell lines, correlating with poor patient survival. Overexpression of MRPL12 significantly promoted LUAD tumorigenesis, metastasis, and PDO formation, while MRPL12 knockdown elicited the opposite phenotype. Additionally, MRPL12 deletion in a Tp53fl/fl;KrasG12D-driven mouse LUAD model conferred a notable survival advantage, delaying tumor onset and reducing malignant progression. Mechanistically, we discovered that MRPL12 promotes tumor progression by upregulating mitochondrial oxidative phosphorylation. Furthermore, we identified UBASH3B as a specific binder of MRPL12, dephosphorylating tyrosine 60 in MRPL12 (MRPL12 Y60) and inhibiting its oncogenic functions. The decrease in MRPL12 Y60 phosphorylation impeded the binding of MRPL12 to POLRMT, downregulating mitochondrial metabolism in LUAD cells. In-depth in vivo, in vitro, and organoid models validated the inhibitory effect of MRPL12 Y60 mutation on LUAD. CONCLUSION This study establishes MRPL12 as a novel oncogene in LUAD, contributing to LUAD pathogenesis by orchestrating mitochondrial metabolism reprogramming towards oxidative phosphorylation (OXPHOS). Furthermore, it confirms Y60 as a specific phosphorylation modification site regulating MRPL12's oncogenic functions, offering insights for the development of LUAD-specific targeted drugs and clinical interventions.
Collapse
Affiliation(s)
- Xingzhao Ji
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tianyi Zhang
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jian Sun
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaojia Song
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Guoyuan Ma
- Department of Thoracic Surgery Department, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Li Xu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xueru Cao
- Department of Pulmonary and Critical Care Medicine, Heze Municipal Hospital, Heze, Shandong, 274000, China
| | - Yongjian Jing
- Department of Pulmonary and Critical Care Medicine, the First People's Hospital of Pingyuan, Dezhou, Shandong, 253000, China
| | - Fuyuan Xue
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Weiying Zhang
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Shengnan Sun
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qiang Wan
- Shandong Provincial Key Medical and Health Laboratory of Cell Metabolism, Central Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
| | - Yi Liu
- Department of Pulmonary and Critical Care Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
4
|
Samson SC, Rojas A, Zitnay RG, Carney KR, Hettinga W, Schaelling MC, Sicard D, Zhang W, Gilbert-Ross M, Dy GK, Cavnar MJ, Furqan M, Browning RF, Naqash AR, Schneider BP, Tarhini A, Tschumperlin DJ, Venosa A, Marcus AI, Emerson LL, Spike BT, Knudsen BS, Mendoza MC. Tenascin-C in the early lung cancer tumor microenvironment promotes progression through integrin αvβ1 and FAK. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613509. [PMID: 39345541 PMCID: PMC11429853 DOI: 10.1101/2024.09.17.613509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Pre-cancerous lung lesions are commonly initiated by activating mutations in the RAS pathway, but do not transition to lung adenocarcinomas (LUAD) without additional oncogenic signals. Here, we show that expression of the extracellular matrix protein Tenascin-C (TNC) is increased in and promotes the earliest stages of LUAD development in oncogenic KRAS-driven lung cancer mouse models and in human LUAD. TNC is initially expressed by fibroblasts and its expression extends to tumor cells as the tumor becomes invasive. Genetic deletion of TNC in the mouse models reduces early tumor burden and high-grade pathology and diminishes tumor cell proliferation, invasion, and focal adhesion kinase (FAK) activity. TNC stimulates cultured LUAD tumor cell proliferation and migration through engagement of αv-containing integrins and subsequent FAK activation. Intringuingly, lung injury causes sustained TNC accumulation in mouse lungs, suggesting injury can induce additional TNC signaling for early tumor cell transition to invasive LUAD. Biospecimens from patients with stage I/II LUAD show TNC in regions of FAK activation and an association of TNC with tumor recurrence after primary tumor resection. These results suggest that exogenous insults that elevate TNC in the lung parenchyma interact with tumor-initiating mutations to drive early LUAD progression and local recurrence.
Collapse
Affiliation(s)
- Shiela C Samson
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Anthony Rojas
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Rebecca G Zitnay
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Keith R Carney
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Wakeiyo Hettinga
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| | - Mary C Schaelling
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Delphine Sicard
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Wei Zhang
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Melissa Gilbert-Ross
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
| | - Grace K Dy
- Department of Medicine, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14203
| | - Michael J Cavnar
- Department of Surgery, University of Kentucky, Lexington, KY 40508
| | - Muhammad Furqan
- Department of Internal Medicine, University of Iowa Health Care, Iowa City, IA 52246
| | - Robert F Browning
- Department of Medicine, Walter Reed National Military Medical Center, Bethesda, MD 20889
| | - Abdul R Naqash
- Division of Medical Oncology, Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Bryan P Schneider
- Department of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN 46202
| | - Ahmad Tarhini
- Departments of Cutaneous Oncology and Immunology, H. Lee Moffit Cancer Center & Research Institute, Tampa, FL 33612
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905
| | - Alessandro Venosa
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 84112
| | - Adam I Marcus
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, GA 30322
- Long Island University, College of Veterinary Medicine, Brookville, NY 11548
| | - Lyska L Emerson
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Benjamin T Spike
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
| | - Beatrice S Knudsen
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Pathology, University of Utah, Salt Lake City, UT 84112
| | - Michelle C Mendoza
- Department of Oncological Sciences, University of Utah, Salt Lake City, UT 84112
- Huntsman Cancer Institute, Salt Lake City, UT 84112
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT 84112
| |
Collapse
|
5
|
Shanahan SL, Kunder N, Inaku C, Hagan NB, Gibbons G, Mathey-Andrews N, Anandappa G, Soares S, Pauken KE, Jacks T, Schenkel JM. Longitudinal Intravascular Antibody Labeling Identified Regulatory T Cell Recruitment as a Therapeutic Target in a Mouse Model of Lung Cancer. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2024; 213:906-918. [PMID: 39082930 PMCID: PMC11460633 DOI: 10.4049/jimmunol.2400268] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/15/2024] [Indexed: 09/05/2024]
Abstract
Anticancer immunity is predicated on leukocyte migration into tumors. Once recruited, leukocytes undergo substantial reprogramming to adapt to the tumor microenvironment. A major challenge in the field is distinguishing recently recruited from resident leukocytes in tumors. In this study, we developed an intravascular Ab technique to label circulating mouse leukocytes before they migrate to tissues, providing unprecedented insight into the kinetics of recruitment. This approach unveiled the substantial role of leukocyte migration in tumor progression using a preclinical mouse model of lung adenocarcinoma. Regulatory T cells (Tregs), critical mediators of immunosuppression, were continuously and rapidly recruited into tumors throughout cancer progression. Moreover, leukocyte trafficking depended on the integrins CD11a/CD49d, and CD11a/CD49d blockade led to significant tumor burden reduction in mice. Importantly, preventing circulating Treg recruitment through depletion or sequestration in lymph nodes was sufficient to decrease tumor burden, indicating that Treg migration was crucial for suppressing antitumor immunity. These findings underscore the dynamic nature of the immune compartment within mouse lung tumors and demonstrate the relevance of a temporal map of leukocyte recruitment into tumors, thereby advancing our understanding of leukocyte migration in the context of tumor development.
Collapse
Affiliation(s)
- Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Nikesh Kunder
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Charles Inaku
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Natalie B. Hagan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Grace Gibbons
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Gayathri Anandappa
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shawn Soares
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Kristen E. Pauken
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA 02139, USA
| | - Jason M. Schenkel
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA 02115, USA
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
6
|
Harris E, Thawani R. Current perspectives of KRAS in non-small cell lung cancer. Curr Probl Cancer 2024; 51:101106. [PMID: 38879917 DOI: 10.1016/j.currproblcancer.2024.101106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024]
Abstract
NSCLC has a diverse genomic background with mutations in key proto-oncogenic drivers including Kirsten rat sarcoma (KRAS) and epidermal growth factor receptor (EGFR). Roughly 40% of adenocarcinoma harbor Kras activating mutations regardless of smoking history. Most KRAS mutations are located at G12, which include G12C (roughly 40%), G12V (roughly 20%), and G12D (roughly 15%). KRAS mutated NSCLC have higher tumor mutational burden and some have increased PD-1 expression, which has resulted in better responses to immunotherapy than other oncogenes. While initial treatment for metastatic NSCLC still relies on chemo-immunotherapy, directly targeting KRAS has proven to be efficacious in treating patients with KRAS mutated metastatic NSCLC. To date, two G12C inhibitors have been FDA-approved, namely sotorasib and adagrasib. In this review, we summarize the different drug combinations used to target KRAS G12c, upcoming G12D inhibitors and novel therapies targeting KRAS.
Collapse
Affiliation(s)
- Ethan Harris
- Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA
| | - Rajat Thawani
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, 5841 S Maryland Ave, Chicago, IL 60637. USA.
| |
Collapse
|
7
|
Lee JY, Reyes N, Woo SH, Goel S, Stratton F, Kuang C, Mansfield AS, LaFave LM, Peng T. Senescent fibroblasts in the tumor stroma rewire lung cancer metabolism and plasticity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.29.605645. [PMID: 39131266 PMCID: PMC11312578 DOI: 10.1101/2024.07.29.605645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Senescence has been demonstrated to either inhibit or promote tumorigenesis. Resolving this paradox requires spatial mapping and functional characterization of senescent cells in the native tumor niche. Here, we identified senescent p16 Ink4a + cancer-associated fibroblasts with a secretory phenotype that promotes fatty acid uptake and utilization by aggressive lung adenocarcinoma driven by Kras and p53 mutations. Furthermore, rewiring of lung cancer metabolism by p16 Ink4a + cancer-associated fibroblasts also altered tumor cell identity to a highly plastic/dedifferentiated state associated with progression in murine and human LUAD. Our ex vivo senolytic screening platform identified XL888, a HSP90 inhibitor, that cleared p16 Ink4a + cancer-associated fibroblasts in vivo. XL888 administration after establishment of advanced lung adenocarcinoma significantly reduced tumor burden concurrent with the loss of plastic tumor cells. Our study identified a druggable component of the tumor stroma that fulfills the metabolic requirement of tumor cells to acquire a more aggressive phenotype.
Collapse
Affiliation(s)
- Jin Young Lee
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Nabora Reyes
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Sang-Ho Woo
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Sakshi Goel
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Fia Stratton
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Chaoyuan Kuang
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Aaron S. Mansfield
- Department of Oncology, Division of Medical Oncology, Mayo Clinic, Rochester, MN 55905
| | - Lindsay M. LaFave
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Tien Peng
- Department of Medicine, Division of Pulmonary, Critical Care, Allergy and Sleep Medicine
- Bakar Aging Research Institute, University of California San Francisco, San Francisco, CA 94143
- Lead contact
| |
Collapse
|
8
|
Moye AL, Dost AF, Ietswaart R, Sengupta S, Ya V, Aluya C, Fahey CG, Louie SM, Paschini M, Kim CF. Early-stage lung cancer is driven by a transitional cell state dependent on a KRAS-ITGA3-SRC axis. EMBO J 2024; 43:2843-2861. [PMID: 38755258 PMCID: PMC11251082 DOI: 10.1038/s44318-024-00113-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/04/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Glycine-12 mutations in the GTPase KRAS (KRASG12) are an initiating event for development of lung adenocarcinoma (LUAD). KRASG12 mutations promote cell-intrinsic rewiring of alveolar type-II progenitor (AT2) cells, but to what extent such changes interplay with lung homeostasis and cell fate pathways is unclear. Here, we generated single-cell RNA-seq (scRNA-seq) profiles from AT2-mesenchyme organoid co-cultures, mice, and stage-IA LUAD patients, identifying conserved regulators of AT2 transcriptional dynamics and defining the impact of KRASG12D mutation with temporal resolution. In AT2WT organoids, we found a transient injury/plasticity state preceding AT2 self-renewal and AT1 differentiation. Early-stage AT2KRAS cells exhibited perturbed gene expression dynamics, most notably retention of the injury/plasticity state. The injury state in AT2KRAS cells of patients, mice, and organoids was distinguishable from AT2WT states via altered receptor expression, including co-expression of ITGA3 and SRC. The combination of clinically relevant KRASG12D and SRC inhibitors impaired AT2KRAS organoid growth. Together, our data show that an injury/plasticity state essential for lung repair is co-opted during AT2 self-renewal and LUAD initiation, suggesting that early-stage LUAD may be susceptible to interventions that target specifically the oncogenic nature of this cell state.
Collapse
Affiliation(s)
- Aaron L Moye
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Antonella Fm Dost
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Hubrecht Institute, Oncode Institute, Royal Netherlands Academy of Arts and Sciences (KNAW), Utrecht, The Netherlands
| | | | - Shreoshi Sengupta
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - VanNashlee Ya
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Chrystal Aluya
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Caroline G Fahey
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Harvard University and Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sharon M Louie
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Margherita Paschini
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Carla F Kim
- Stem Cell Program and Divisions of Hematology/Oncology and Pulmonary Medicine, Boston Children's Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Zhuang X, Wang Q, Joost S, Ferrena A, Humphreys DT, Li Z, Blum M, Bastl K, Ding S, Landais Y, Zhan Y, Zhao Y, Chaligne R, Lee JH, Carrasco SE, Bhanot UK, Koche RP, Bott MJ, Katajisto P, Soto-Feliciano YM, Pisanic T, Thomas T, Zheng D, Wong ES, Tammela T. Aging limits stemness and tumorigenesis in the lung by reprogramming iron homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.23.600305. [PMID: 38979280 PMCID: PMC11230188 DOI: 10.1101/2024.06.23.600305] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Aging is associated with a decline in the number and fitness of adult stem cells 1-4 . Aging-associated loss of stemness is posited to suppress tumorigenesis 5,6 , but this hypothesis has not been tested in vivo . Here, using physiologically aged autochthonous genetically engineered mouse models and primary cells 7,8 , we demonstrate aging suppresses lung cancer initiation and progression by degrading stemness of the alveolar cell of origin. This phenotype is underpinned by aging-associated induction of the transcription factor NUPR1 and its downstream target lipocalin-2 in the cell of origin in mice and humans, leading to a functional iron insufficiency in the aged cells. Genetic inactivation of the NUPR1-lipocalin-2 axis or iron supplementation rescue stemness and promote tumorigenic potential of aged alveolar cells. Conversely, targeting the NUPR1- lipocalin-2 axis is detrimental to young alveolar cells via induction of ferroptosis. We find that aging-associated DNA hypomethylation at specific enhancer sites associates with elevated NUPR1 expression, which is recapitulated in young alveolar cells by inhibition of DNA methylation. We uncover that aging drives a functional iron insufficiency, which leads to loss of stemness and tumorigenesis, but promotes resistance to ferroptosis. These findings have significant implications for the therapeutic modulation of cellular iron homeostasis in regenerative medicine and in cancer prevention. Furthermore, our findings are consistent with a model whereby most human cancers initiate in young individuals, revealing a critical window for such cancer prevention efforts.
Collapse
|
10
|
Hegde S, Giotti B, Soong BY, Halasz L, Berichel JL, Magen A, Kloeckner B, Mattiuz R, Park MD, Marks A, Belabed M, Hamon P, Chin T, Troncoso L, Lee JJ, Ahimovic D, Bale M, Chung G, D'souza D, Angeliadis K, Dawson T, Kim-Schulze S, Flores RM, Kaufman AJ, Ginhoux F, Josefowicz SZ, Ma S, Tsankov AM, Marron TU, Brown BD, Merad M. Myeloid progenitor dysregulation fuels immunosuppressive macrophages in tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600383. [PMID: 38979166 PMCID: PMC11230224 DOI: 10.1101/2024.06.24.600383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Monocyte-derived macrophages (mo-macs) drive immunosuppression in the tumor microenvironment (TME) and tumor-enhanced myelopoiesis in the bone marrow (BM) fuels these populations. Here, we performed paired transcriptome and chromatin analysis over the continuum of BM myeloid progenitors, circulating monocytes, and tumor-infiltrating mo-macs in mice and in patients with lung cancer to identify myeloid progenitor programs that fuel pro-tumorigenic mo-macs. Analyzing chromatin accessibility and histone mark changes, we show that lung tumors prime accessibility for Nfe2l2 (NRF2) in BM myeloid progenitors as a cytoprotective response to oxidative stress. NRF2 activity is sustained and increased during monocyte differentiation into mo-macs in the lung TME to regulate oxidative stress, in turn promoting metabolic adaptation, resistance to cell death, and contributing to immunosuppressive phenotype. NRF2 genetic deletion and pharmacological inhibition significantly reduced mo-macs' survival and immunosuppression in the TME, enabling NK and T cell therapeutic antitumor immunity and synergizing with checkpoint blockade strategies. Altogether, our study identifies a targetable epigenetic node of myeloid progenitor dysregulation that sustains immunoregulatory mo-macs in the TME.
Collapse
|
11
|
Martinez-Terroba E, Plasek-Hegde LM, Chiotakakos I, Li V, de Miguel FJ, Robles-Oteiza C, Tyagi A, Politi K, Zamudio JR, Dimitrova N. Overexpression of Malat1 drives metastasis through inflammatory reprogramming of the tumor microenvironment. Sci Immunol 2024; 9:eadh5462. [PMID: 38875320 DOI: 10.1126/sciimmunol.adh5462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/23/2024] [Indexed: 06/16/2024]
Abstract
Expression of the long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) correlates with tumor progression and metastasis in many tumor types. However, the impact and mechanism of action by which MALAT1 promotes metastatic disease remain elusive. Here, we used CRISPR activation (CRISPRa) to overexpress MALAT1/Malat1 in patient-derived lung adenocarcinoma (LUAD) cell lines and in the autochthonous K-ras/p53 LUAD mouse model. Malat1 overexpression was sufficient to promote the progression of LUAD to metastatic disease in mice. Overexpression of MALAT1/Malat1 enhanced cell mobility and promoted the recruitment of protumorigenic macrophages to the tumor microenvironment through paracrine secretion of CCL2/Ccl2. Ccl2 up-regulation was the result of increased global chromatin accessibility upon Malat1 overexpression. Macrophage depletion and Ccl2 blockade counteracted the effects of Malat1 overexpression. These data demonstrate that a single lncRNA can drive LUAD metastasis through reprogramming of the tumor microenvironment.
Collapse
Affiliation(s)
- Elena Martinez-Terroba
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Leah M Plasek-Hegde
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Ioannis Chiotakakos
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Vincent Li
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | | | - Camila Robles-Oteiza
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Antariksh Tyagi
- Yale Center for Genome Analysis, Yale University, New Haven, CT 06516, USA
| | - Katerina Politi
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
- Departments of Pathology and Internal Medicine (Section of Medical Oncology), Yale School of Medicine, New Haven, CT 06511, USA
| | - Jesse R Zamudio
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095, USA
| | - Nadya Dimitrova
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| |
Collapse
|
12
|
Hobor S, Al Bakir M, Hiley CT, Skrzypski M, Frankell AM, Bakker B, Watkins TBK, Markovets A, Dry JR, Brown AP, van der Aart J, van den Bos H, Spierings D, Oukrif D, Novelli M, Chakrabarti T, Rabinowitz AH, Ait Hassou L, Litière S, Kerr DL, Tan L, Kelly G, Moore DA, Renshaw MJ, Venkatesan S, Hill W, Huebner A, Martínez-Ruiz C, Black JRM, Wu W, Angelova M, McGranahan N, Downward J, Chmielecki J, Barrett C, Litchfield K, Chew SK, Blakely CM, de Bruin EC, Foijer F, Vousden KH, Bivona TG, Hynds RE, Kanu N, Zaccaria S, Grönroos E, Swanton C. Mixed responses to targeted therapy driven by chromosomal instability through p53 dysfunction and genome doubling. Nat Commun 2024; 15:4871. [PMID: 38871738 PMCID: PMC11176322 DOI: 10.1038/s41467-024-47606-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 03/28/2024] [Indexed: 06/15/2024] Open
Abstract
The phenomenon of mixed/heterogenous treatment responses to cancer therapies within an individual patient presents a challenging clinical scenario. Furthermore, the molecular basis of mixed intra-patient tumor responses remains unclear. Here, we show that patients with metastatic lung adenocarcinoma harbouring co-mutations of EGFR and TP53, are more likely to have mixed intra-patient tumor responses to EGFR tyrosine kinase inhibition (TKI), compared to those with an EGFR mutation alone. The combined presence of whole genome doubling (WGD) and TP53 co-mutations leads to increased genome instability and genomic copy number aberrations in genes implicated in EGFR TKI resistance. Using mouse models and an in vitro isogenic p53-mutant model system, we provide evidence that WGD provides diverse routes to drug resistance by increasing the probability of acquiring copy-number gains or losses relative to non-WGD cells. These data provide a molecular basis for mixed tumor responses to targeted therapy, within an individual patient, with implications for therapeutic strategies.
Collapse
Affiliation(s)
- Sebastijan Hobor
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Maise Al Bakir
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Crispin T Hiley
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
| | - Marcin Skrzypski
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK
- Department of Oncology and Radiotherapy, Medical University of Gdańsk, ul. Mariana Smoluchowskiego 17, 80-214, Gdańsk, Poland
| | - Alexander M Frankell
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Bjorn Bakker
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Thomas B K Watkins
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Jonathan R Dry
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Andrew P Brown
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Hilda van den Bos
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Diana Spierings
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Dahmane Oukrif
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Marco Novelli
- Research Department of Pathology, University College London Medical School, University Street, London, WC1E 6JJ, UK
| | - Turja Chakrabarti
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Adam H Rabinowitz
- Furlong Laboratory, EMBL Meyerhofstraße 1, 69117, Heidelberg, Germany
| | - Laila Ait Hassou
- European Organization for Research and Treatment of Cancer, Brussels, Belgium
| | - Saskia Litière
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - D Lucas Kerr
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Lisa Tan
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Gavin Kelly
- Bioinformatics & Biostatistics; Francis Crick Institute, London, UK
| | - David A Moore
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Department of Cellular Pathology, University College London Hospitals, London, UK
| | - Matthew J Renshaw
- Advanced Light Microscopy, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Subramanian Venkatesan
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - William Hill
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Ariana Huebner
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Carlos Martínez-Ruiz
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - James R M Black
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Wei Wu
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Mihaela Angelova
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
- Cancer Genome Evolution Research Group, Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | | | - Carl Barrett
- Late Development, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kevin Litchfield
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Su Kit Chew
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Collin M Blakely
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
| | - Elza C de Bruin
- Research and Early Development, Oncology R&D, AstraZeneca, Cambridge, UK
| | - Floris Foijer
- European Research Institute for the Biology of Ageing, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, Groningen, 9713, the Netherlands
| | - Karen H Vousden
- p53 and Metabolism Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, CA, 94158, USA
- Chan-Zuckerberg Biohub, San Francisco, USA
| | - Robert E Hynds
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Nnennaya Kanu
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
| | - Simone Zaccaria
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Computational Cancer Genomics Research Group, University College London Cancer Institute, London, UK.
| | - Eva Grönroos
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, 1 Midland Rd, London, NW1 1AT, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK.
- Department of Medical Oncology, University College London Hospitals, 235 Euston Rd, Fitzrovia, London, NW1 2BU, UK.
| |
Collapse
|
13
|
Sweet-Cordero E, Marini K, Champion E, Lee A, Young I, Leung S, Mathey-Andrews N, Jacks T, Jackson P, Cochran J. The CLCF1-CNTFR axis drives an immunosuppressive tumor microenvironment and blockade enhances the effects of established cancer therapies. RESEARCH SQUARE 2024:rs.3.rs-4046823. [PMID: 38562778 PMCID: PMC10984090 DOI: 10.21203/rs.3.rs-4046823/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Tumors comprise a complex ecosystem consisting of many cell types that communicate through secreted factors. Targeting these intercellular signaling networks remains an important challenge in cancer research. Cardiotrophin-like cytokine factor 1 (CLCF1) is an interleukin-6 (IL-6) family member secreted by cancer-associated fibroblasts (CAFs) that binds to ciliary neurotrophic factor receptor (CNTFR), promoting tumor growth in lung and liver cancer1,2. A high-affinity soluble receptor (eCNTFR-Fc) that sequesters CLCF1 has anti-oncogenic effects3. However, the role of CLCF1 in mediating cell-cell interactions in cancer has remained unclear. We demonstrate that eCNTFR-Fc has widespread effects on both tumor cells and the tumor microenvironment and can sensitize cancer cells to KRAS inhibitors or immune checkpoint blockade. After three weeks of treatment with eCNTFR-Fc, there is a shift from an immunosuppressive to an immunostimulatory macrophage phenotype as well as an increase in activated T, NKT, and NK cells. Combination of eCNTFR-Fc and αPD1 was significantly more effective than single-agent therapy in a syngeneic allograft model, and eCNTFR-Fc sensitizes tumor cells to αPD1 in a non-responsive GEM model of lung adenocarcinoma. These data suggest that combining eCNTFR-Fc with KRAS inhibition or with αPD1 is a novel therapeutic strategy for lung cancer and potentially other cancers in which these therapies have been used but to date with only modest effect. Overall, we demonstrate the potential of cancer therapies that target cytokines to alter the immune microenvironment.
Collapse
Affiliation(s)
| | - Kieren Marini
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Emma Champion
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Alex Lee
- University of California, San Francisco
| | - Isabelle Young
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | - Stanley Leung
- Division of Oncology, Department of Pediatrics, University of California San Francisco
| | | | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research
| | | | | |
Collapse
|
14
|
Ely ZA, Mathey-Andrews N, Naranjo S, Gould SI, Mercer KL, Newby GA, Cabana CM, Rideout WM, Jaramillo GC, Khirallah JM, Holland K, Randolph PB, Freed-Pastor WA, Davis JR, Kulstad Z, Westcott PMK, Lin L, Anzalone AV, Horton BL, Pattada NB, Shanahan SL, Ye Z, Spranger S, Xu Q, Sánchez-Rivera FJ, Liu DR, Jacks T. A prime editor mouse to model a broad spectrum of somatic mutations in vivo. Nat Biotechnol 2024; 42:424-436. [PMID: 37169967 PMCID: PMC11120832 DOI: 10.1038/s41587-023-01783-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 04/05/2023] [Indexed: 05/13/2023]
Abstract
Genetically engineered mouse models only capture a small fraction of the genetic lesions that drive human cancer. Current CRISPR-Cas9 models can expand this fraction but are limited by their reliance on error-prone DNA repair. Here we develop a system for in vivo prime editing by encoding a Cre-inducible prime editor in the mouse germline. This model allows rapid, precise engineering of a wide range of mutations in cell lines and organoids derived from primary tissues, including a clinically relevant Kras mutation associated with drug resistance and Trp53 hotspot mutations commonly observed in pancreatic cancer. With this system, we demonstrate somatic prime editing in vivo using lipid nanoparticles, and we model lung and pancreatic cancer through viral delivery of prime editing guide RNAs or orthotopic transplantation of prime-edited organoids. We believe that this approach will accelerate functional studies of cancer-associated mutations and complex genetic combinations that are challenging to construct with traditional models.
Collapse
Affiliation(s)
- Zackery A Ely
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nicolas Mathey-Andrews
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Santiago Naranjo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Samuel I Gould
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kim L Mercer
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Christina M Cabana
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - William M Rideout
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Grissel Cervantes Jaramillo
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Katie Holland
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Angelo State University, San Angelo, TX, USA
| | - Peyton B Randolph
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - William A Freed-Pastor
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessie R Davis
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Zachary Kulstad
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Peter M K Westcott
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Cold Spring Harbor Laboratory, Huntington, NY, USA
| | - Lin Lin
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Andrew V Anzalone
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Brendan L Horton
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Nimisha B Pattada
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Sean-Luc Shanahan
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Zhongfeng Ye
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Stefani Spranger
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Qiaobing Xu
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA
| | - Francisco J Sánchez-Rivera
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA, USA
| | - Tyler Jacks
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
15
|
Reeves MQ, Balmain A. Mutations, Bottlenecks, and Clonal Sweeps: How Environmental Carcinogens and Genomic Changes Shape Clonal Evolution during Tumor Progression. Cold Spring Harb Perspect Med 2024; 14:a041388. [PMID: 38052482 PMCID: PMC10910358 DOI: 10.1101/cshperspect.a041388] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The transition from a single, initiated cell to a full-blown malignant tumor involves significant genomic evolution. Exposure to carcinogens-whether directly mutagenic or not-can drive progression toward malignancy, as can stochastic acquisition of cancer-promoting genetic events. Mouse models using both carcinogens and germline genetic manipulations have enabled precise inquiry into the evolutionary dynamics that take place as a tumor progresses from benign to malignant to metastatic stages. Tumor progression is characterized by changes in somatic point mutations and copy-number alterations, even though any single tumor can itself have a high or low burden of genomic alterations. Further, lineage-tracing, single-cell analyses and CRISPR barcoding have revealed the distinct clonal dynamics within benign and malignant tumors. Application of these tools in a range of mouse models can shed unique light on the patterns of clonal evolution that take place in both mouse and human tumors.
Collapse
Affiliation(s)
- Melissa Q Reeves
- Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah 84112, USA
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Allan Balmain
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California 94158, USA
| |
Collapse
|
16
|
Li Z, Zhuang X, Pan CH, Yan Y, Thummalapalli R, Hallin J, Torborg S, Singhal A, Chang JC, Manchado E, Dow LE, Yaeger R, Christensen JG, Lowe SW, Rudin CM, Joost S, Tammela T. Alveolar Differentiation Drives Resistance to KRAS Inhibition in Lung Adenocarcinoma. Cancer Discov 2024; 14:308-325. [PMID: 37931288 PMCID: PMC10922405 DOI: 10.1158/2159-8290.cd-23-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/08/2023]
Abstract
Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but the clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples, we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intratumoral heterogeneity and suggest that targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. SIGNIFICANCE Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy. This article is featured in Selected Articles from This Issue, p. 201.
Collapse
Affiliation(s)
- Zhuxuan Li
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, New York 10065, USA
| | - Xueqian Zhuang
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Chun-Hao Pan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Yan Yan
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- College of Biomedicine and Health and College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Rohit Thummalapalli
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jill Hallin
- Mirati Therapeutics, San Diego, California 92121, USA
| | - Stefan Torborg
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
| | - Anupriya Singhal
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jason C. Chang
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Eusebio Manchado
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Novartis Institute for Biomedical Research, Oncology Disease Area, Novartis Pharma AD, Basel, Switzerland
| | - Lukas E. Dow
- Weill Cornell Graduate School of Medical Science, Weill Cornell Medicine, New York, New York 10065, USA
- Meyer Cancer Center, Weill Cornell Medicine, New York, New York 10065, USA
- Department of Medicine, Weill Cornell Medicine, New York, New York 10065, USA
| | - Rona Yaeger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | | | - Scott W. Lowe
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Charles M. Rudin
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Druckenmiller Center for Lung Cancer Research, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Simon Joost
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Tuomas Tammela
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
17
|
Lasse-Opsahl E, Baliira R, Barravecchia I, McLintock E, Lee JM, Ferris SF, Espinoza CE, Hinshaw R, Cavanaugh S, Robotti M, Brown K, Donahue K, Abdelmalak KY, Galban CJ, Frankel TL, Zhang Y, di Magliano MP, Galban S. WITHDRAWN: Oncogenic KRAS G12D extrinsically induces an immunosuppressive microenvironment in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.16.568090. [PMID: 38293141 PMCID: PMC10827108 DOI: 10.1101/2024.01.16.568090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
This manuscript has been withdrawn by the authors due to a dispute over co-first authorship that is currently being arbitrated by the medical school at our institution. Therefore, the authors do not wish this work to be cited as reference for the project. Upon completion of the arbitration process, we will take steps to revert the current withdrawn status. If you have any questions, please contact the corresponding author.
Collapse
|
18
|
Montgomery MK, Duan C, Manzuk L, Chang S, Cubias A, Brun S, Giddabasappa A, Jiang ZK. Applying deep learning to segmentation of murine lung tumors in pre-clinical micro-computed tomography. Transl Oncol 2024; 40:101833. [PMID: 38128467 PMCID: PMC10776660 DOI: 10.1016/j.tranon.2023.101833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 12/23/2023] Open
Abstract
Lung cancer remains a leading cause of cancer-related death, but scientists have made great strides in developing new treatments recently, partly owing to the use of genetically engineered mouse models (GEMMs). GEMM tumors represent a translational model that recapitulates human disease better than implanted models because tumors develop spontaneously in the lungs. However, detection of these tumors relies on in vivo imaging tools, specifically micro-Computed Tomography (micro-CT or µCT), and image analysis can be laborious with high inter-user variability. Here we present a deep learning model trained to perform fully automated segmentation of lung tumors without the interference of other soft tissues. Trained and tested on 100 3D µCT images (18,662 slices) that were manually segmented, the model demonstrated a high correlation to manual segmentations on the testing data (r2=0.99, DSC=0.78) and on an independent dataset (n = 12 3D scans or 2328 2D slices, r2=0.97, DSC=0.73). In a comparison against manual segmentation performed by multiple analysts, the model (r2=0.98, DSC=0.78) performed within inter-reader variability (r2=0.79, DSC=0.69) and close to intra-reader variability (r2=0.99, DSC=0.82), all while completing 5+ hours of manual segmentations in 1 minute. Finally, when applied to a real-world longitudinal study (n = 55 mice), the model successfully detected tumor progression over time and the differences in tumor burden between groups induced with different virus titers, aligning well with more traditional analysis methods. In conclusion, we have developed a deep learning model which can perform fast, accurate, and fully automated segmentation of µCT scans of murine lung tumors.
Collapse
Affiliation(s)
| | - Chong Duan
- Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States
| | - Lisa Manzuk
- Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States
| | - Stephanie Chang
- Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States
| | - Aiyana Cubias
- Early Clinical Development, Pfizer Inc., 1 Portland Street, Cambridge, MA 02139, United States
| | - Sonja Brun
- Oncology Research and Development, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States
| | - Anand Giddabasappa
- Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States
| | - Ziyue Karen Jiang
- Comparative Medicine, Pfizer Inc., 10646 Science Center Drive, La Jolla, CA 92121, United States.
| |
Collapse
|
19
|
Blomberg R, Sompel K, Hauer C, Smith AJ, Peña B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Hydrogel-Embedded Precision-Cut Lung Slices Model Lung Cancer Premalignancy Ex Vivo. Adv Healthc Mater 2024; 13:e2302246. [PMID: 37953708 PMCID: PMC10872976 DOI: 10.1002/adhm.202302246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/17/2023] [Indexed: 11/14/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best prevention, 50% of lung cancer diagnoses occur in people who have quit smoking. Research into treatment options for high-risk patients is constrained to rodent models, which are time-consuming, expensive, and require large cohorts. Embedding precision-cut lung slices (PCLS) within an engineered hydrogel and exposing this tissue to vinyl carbamate, a carcinogen from cigarette smoke, creates an in vitro model of lung cancer premalignancy. Hydrogel formulations are selected to promote early lung cancer cellular phenotypes and extend PCLS viability to six weeks. Hydrogel-embedded PCLS are exposed to vinyl carbamate, which induces adenocarcinoma in mice. Analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content after six weeks reveals that vinyl carbamate induces premalignant lesions with a mixed adenoma/squamous phenotype. Putative chemoprevention agents diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue are validated with hydrogel-embedded human PCLS and results show increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the foundation for more sophisticated ex vivo models that enable the study of carcinogenesis and chemoprevention strategies.
Collapse
Affiliation(s)
- Rachel Blomberg
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
| | - Kayla Sompel
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Caroline Hauer
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Alex J Smith
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Brisa Peña
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Cardiovascular Institute & Adult Medical Genetics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Jennifer Driscoll
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Patrick S Hume
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, National Jewish Health, Denver, CO, 80206, USA
| | - Daniel T Merrick
- Department of Pathology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Meredith A Tennis
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Chelsea M Magin
- Department of Bioengineering, University of Colorado, Denver |Anschutz, Aurora, CO, 80045, USA
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
- Department of Pediatrics, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA
| |
Collapse
|
20
|
Mendoza RP, Chen‐Yost HI, Wanjari P, Wang P, Symes E, Johnson DN, Reeves W, Mueller J, Antic T, Biernacka A. Lung adenocarcinomas with isolated TP53 mutation: A comprehensive clinical, cytopathologic and molecular characterization. Cancer Med 2024; 13:e6873. [PMID: 38164123 PMCID: PMC10824142 DOI: 10.1002/cam4.6873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/14/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND TP53 mutation is present in about 50.8% of lung adenocarcinomas, frequently in combination with other genetic alterations. However, a rare subset harbors the TP53 mutation alone. METHODS Next-generation sequencing was performed in 844 lung adenocarcinomas diagnosed by fine needle aspiration. Fourteen cases (1.7%) showed isolated TP53 alteration and were subjected to a comprehensive analysis. RESULTS The average age at diagnosis was 65.7 years (range 48-79); 9 males and 5 females. All were smokers with an average pack-year of 40.7 (range 10-70). Ten had metastases, mostly in the brain (n = 4) and pleura (n = 4). After a follow-up period of up to 102 months, 9 died, 3 were alive free of disease, 1 was alive with disease, and 1 was lost to follow-up. The median survival was 12.2 months. Most tumors exhibited poor differentiation, composed of solid sheets with moderate to severe atypia, increased mitotic activity, and necrotic background. Half were positive for TTF-1 and showed p53 overexpression. PD-L1 was positive in 5 cases. Most alterations were missense mutations in exons 5-8, and this mutation type was associated with p53 overexpression. Tumors with combined missense mutation and truncated protein had higher PD-L1 expression along with a trend towards an increase in tumor mutational burden (TMB). CEBPA deletion of undetermined significance was the most common copy number alteration. CONCLUSION Isolated TP53 mutation was seen in association with smoking, high-grade cytomorphologic features, adverse prognosis, and recurrent CEBPA deletions. These tumors tend to have strong PD-L1 expression and high TMB, suggesting potential benefit from immune checkpoint inhibitors. Hence, the recognition of this molecular group has prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Rachelle P. Mendoza
- Department of PathologyUniversity of Rochester Medical CenterRochesterNew YorkUSA
| | | | - Pankhuri Wanjari
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Peng Wang
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Emily Symes
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Daniel N. Johnson
- Department of PathologyOSF Little Company of Mary Medical CenterEvergreen ParkIllinoisUSA
| | - Ward Reeves
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Jeffrey Mueller
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Tatjana Antic
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| | - Anna Biernacka
- Department of PathologyThe University of Chicago HospitalsChicagoIllinoisUSA
| |
Collapse
|
21
|
Darville LNF, Lockhart JH, Putty Reddy S, Fang B, Izumi V, Boyle TA, Haura EB, Flores ER, Koomen JM. A Fast-Tracking Sample Preparation Protocol for Proteomics of Formalin-Fixed Paraffin-Embedded Tumor Tissues. Methods Mol Biol 2024; 2823:193-223. [PMID: 39052222 DOI: 10.1007/978-1-0716-3922-1_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Archived tumor specimens are routinely preserved by formalin fixation and paraffin embedding. Despite the conventional wisdom that proteomics might be ineffective due to the cross-linking and pre-analytical variables, these samples have utility for both discovery and targeted proteomics. Building on this capability, proteomics approaches can be used to maximize our understanding of cancer biology and clinical relevance by studying preserved tumor tissues annotated with the patients' medical histories. Proteomics of formalin-fixed paraffin-embedded (FFPE) tissues also integrates with histological evaluation and molecular pathology strategies, so that additional collection of research biopsies or resected tumor aliquots is not needed. The acquisition of data from the same tumor sample also overcomes concerns about biological variation between samples due to intratumoral heterogeneity. However, the protein extraction and proteomics sample preparation from FFPE samples can be onerous, particularly for small (i.e., limited or precious) samples. Therefore, we provide a protocol for a recently introduced kit-based EasyPep method with benchmarking against a modified version of the well-established filter-aided sample preparation strategy using laser-capture microdissected lung adenocarcinoma tissues from a genetically engineered mouse model. This model system allows control over the tumor preparation and pre-analytical variables while also supporting the development of methods for spatial proteomics to examine intratumoral heterogeneity. Data are posted in ProteomeXchange (PXD045879).
Collapse
Affiliation(s)
| | | | | | - Bin Fang
- H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | | | | | | | - John M Koomen
- H. Lee Moffitt Cancer Center, Tampa, FL, USA.
- Molecular Oncology/Pathology, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
22
|
Liu Z, Dong S, Liu M, Liu Y, Ye Z, Zeng J, Yao M. Experimental models for cancer brain metastasis. CANCER PATHOGENESIS AND THERAPY 2024; 2:15-23. [PMID: 38328712 PMCID: PMC10846332 DOI: 10.1016/j.cpt.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 02/09/2024]
Abstract
Brain metastases are a leading cause of cancer-related mortality. However, progress in their treatment has been limited over the past decade, due to an incomplete understanding of the underlying biological mechanisms. Employing accurate in vitro and in vivo models to recapitulate the complexities of brain metastasis offers the most promising approach to unravel the intricate cellular and physiological processes involved. Here, we present a comprehensive review of the currently accessible models for studying brain metastasis. We introduce a diverse array of in vitro and in vivo models, including cultured cells using the Transwell system, organoids, microfluidic models, syngeneic models, xenograft models, and genetically engineered models. We have also provided a concise summary of the merits and limitations inherent to each model while identifying the optimal contexts for their effective utilization. This review serves as a comprehensive resource, aiding researchers in making well-informed decisions regarding model selection that align with specific research questions.
Collapse
Affiliation(s)
- Zihao Liu
- Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong 510182, China
| | - Shanshan Dong
- Department of Medical Genetics and Cell Biology, GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, China
| | - Mengjie Liu
- Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong 510182, China
| | - Yuqiang Liu
- Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong 510182, China
| | - Zhiming Ye
- Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong 510182, China
| | - Jianhao Zeng
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia Health System, Charlottesville, VA 22908, USA
| | - Maojin Yao
- Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, China State Key Laboratory of Respiratory Disease, Guangzhou, Guangdong 510182, China
| |
Collapse
|
23
|
Kwon J, Zhang J, Mok B, Allsup S, Kim C, Toretsky J, Han C. USP13 drives lung squamous cell carcinoma by switching lung club cell lineage plasticity. Mol Cancer 2023; 22:204. [PMID: 38093367 PMCID: PMC10717271 DOI: 10.1186/s12943-023-01892-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 10/27/2023] [Indexed: 12/17/2023] Open
Abstract
Lung squamous cell carcinoma (LUSC) is associated with high mortality and limited targeted therapies. USP13 is one of the most amplified genes in LUSC, yet its role in lung cancer is largely unknown. Here, we established a novel mouse model of LUSC by overexpressing USP13 on KrasG12D/+; Trp53flox/flox background (KPU). KPU-driven lung squamous tumors faithfully recapitulate key pathohistological, molecular features, and cellular pathways of human LUSC. We found that USP13 altered lineage-determining factors such as NKX2-1 and SOX2 in club cells of the airway and reinforced the fate of club cells to squamous carcinoma development. We showed a strong molecular association between USP13 and c-MYC, leading to the upregulation of squamous programs in murine and human lung cancer cells. Collectively, our data demonstrate that USP13 is a molecular driver of lineage plasticity in club cells and provide mechanistic insight that may have potential implications for the treatment of LUSC.
Collapse
Affiliation(s)
- Juntae Kwon
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Jinmin Zhang
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Boram Mok
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
| | - Samuel Allsup
- Department of Biochemistry and Molecular & Cellular Biology, Georgetown University School of Medicine, Washington D.C, USA
| | - Chul Kim
- Division of Hematology and Oncology, Georgetown University School of Medicine, Washington D.C, USA
- MedStar Georgetown University Hospital, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
| | - Jeffrey Toretsky
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA
- Lombardi Comprehensive Cancer Center, Washington D.C, USA
- Departments of Pediatrics, Washington D.C, USA
| | - Cecil Han
- Department of Oncology, Georgetown University School of Medicine, Washington D.C, USA.
- Lombardi Comprehensive Cancer Center, Washington D.C, USA.
| |
Collapse
|
24
|
Hasanzadeh A, Ebadati A, Dastanpour L, Aref AR, Sahandi Zangabad P, Kalbasi A, Dai X, Mehta G, Ghasemi A, Fatahi Y, Joshi S, Hamblin MR, Karimi M. Applications of Innovation Technologies for Personalized Cancer Medicine: Stem Cells and Gene-Editing Tools. ACS Pharmacol Transl Sci 2023; 6:1758-1779. [PMID: 38093832 PMCID: PMC10714436 DOI: 10.1021/acsptsci.3c00102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 02/16/2024]
Abstract
Personalized medicine is a new approach toward safer and even cheaper treatments with minimal side effects and toxicity. Planning a therapy based on individual properties causes an effective result in a patient's treatment, especially in a complex disease such as cancer. The benefits of personalized medicine include not only early diagnosis with high accuracy but also a more appropriate and effective therapeutic approach based on the unique clinical, genetic, and epigenetic features and biomarker profiles of a specific patient's disease. In order to achieve personalized cancer therapy, understanding cancer biology plays an important role. One of the crucial applications of personalized medicine that has gained consideration more recently due to its capability in developing disease therapy is related to the field of stem cells. We review various applications of pluripotent, somatic, and cancer stem cells in personalized medicine, including targeted cancer therapy, cancer modeling, diagnostics, and drug screening. CRISPR-Cas gene-editing technology is then discussed as a state-of-the-art biotechnological advance with substantial impacts on medical and therapeutic applications. As part of this section, the role of CRISPR-Cas genome editing in recent cancer studies is reviewed as a further example of personalized medicine application.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Arefeh Ebadati
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Lida Dastanpour
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Advances
Nanobiotechnology and Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran 14535, Iran
| | - Amir R. Aref
- Department
of Medical Oncology and Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, Massachusetts 02115, United States
| | - Parham Sahandi Zangabad
- Monash
Institute of Pharmaceutical Sciences, Department of Pharmacy and Pharmaceutical
Sciences, Monash University, Parkville, Melbourne, Victoria 3052, Australia
| | - Alireza Kalbasi
- Department
of Medical Oncology, Dana-Farber Cancer
Institute, Boston, Massachusetts 02115, United States
| | - Xiaofeng Dai
- School of
Biotechnology, Jiangnan University, Wuxi 214122, China
- National
Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi 214122, China
- Jiangsu Provincial
Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi 214122, China
| | - Geeta Mehta
- Department
of Biomedical Engineering, University of
Michigan, Ann Arbor, Michigan 48109, United States
- Department
of Materials Science and Engineering, University
of Michigan, Ann Arbor, Michigan 48109, United States
- Macromolecular
Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- Rogel Cancer
Center, University of Michigan, Ann Arbor, Michigan 48109, United States
- Precision
Health, University of Michigan, Ann Arbor, Michigan 48105, United States
| | - Amir Ghasemi
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department
of Materials Science and Engineering, Sharif
University of Technology, Tehran 14588, Iran
| | - Yousef Fatahi
- Nanotechnology
Research Centre, Faculty of Pharmacy, Tehran
University of Medical Sciences, Tehran 14166, Iran
- Department
of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 14166, Iran
- Universal
Scientific Education and Research Network (USERN), Tehran 14166, Iran
| | - Suhasini Joshi
- Chemical
Biology Program, Memorial Sloan Kettering
Cancer Center, New York, New York 10065, United States
| | - Michael R. Hamblin
- Laser Research
Centre, Faculty of Health Science, University
of Johannesburg, Doornfontein 2028, South Africa
- Radiation
Biology Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
| | - Mahdi Karimi
- Cellular
and Molecular Research Center, Iran University
of Medical Sciences, Tehran 14535, Iran
- Department
of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Oncopathology
Research Center, Iran University of Medical
Sciences, Tehran 14535, Iran
- Research
Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran 14166, Iran
- Applied
Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran 14166, Iran
| |
Collapse
|
25
|
You X, Koop K, Weigert A. Heterogeneity of tertiary lymphoid structures in cancer. Front Immunol 2023; 14:1286850. [PMID: 38111571 PMCID: PMC10725932 DOI: 10.3389/fimmu.2023.1286850] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023] Open
Abstract
The success of immunotherapy approaches, such as immune checkpoint blockade and cellular immunotherapy with genetically modified lymphocytes, has firmly embedded the immune system in the roadmap for combating cancer. Unfortunately, the majority of cancer patients do not yet benefit from these therapeutic approaches, even when the prognostic relevance of the immune response in their tumor entity has been demonstrated. Therefore, there is a justified need to explore new strategies for inducing anti-tumor immunity. The recent connection between the formation of ectopic lymphoid aggregates at tumor sites and patient prognosis, along with an effective anti-tumor response, suggests that manipulating the occurrence of these tertiary lymphoid structures (TLS) may play a critical role in activating the immune system against a growing tumor. However, mechanisms governing TLS formation and a clear understanding of their substantial heterogeneity are still lacking. Here, we briefly summarize the current state of knowledge regarding the mechanisms driving TLS development, outline the impact of TLS heterogeneity on clinical outcomes in cancer patients, and discuss appropriate systems for modeling TLS heterogeneity that may help identify new strategies for inducing protective TLS formation in cancer patients.
Collapse
Affiliation(s)
- Xin You
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
| | - Kristina Koop
- First Department of Medicine, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andreas Weigert
- Goethe-University Frankfurt, Faculty of Medicine, Institute of Biochemistry I, Frankfurt, Germany
- Frankfurt Cancer Institute, Goethe-University Frankfurt, Frankfurt, Germany
- German Cancer Consortium (DKTK), Partner Site Frankfurt, Frankfurt, Germany
- Cardiopulmonary Institute (CPI), Frankfurt, Germany
| |
Collapse
|
26
|
Deng H, Ge H, Dubey C, Losmanova T, Medová M, Konstantinidou G, Mutlu SM, Birrer FE, Brodie TM, Stroka D, Wang W, Peng RW, Dorn P, Marti TM. An optimized protocol for the generation and monitoring of conditional orthotopic lung cancer in the KP mouse model using an adeno-associated virus vector compatible with biosafety level 1. Cancer Immunol Immunother 2023; 72:4457-4470. [PMID: 37796299 PMCID: PMC10700219 DOI: 10.1007/s00262-023-03542-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 09/05/2023] [Indexed: 10/06/2023]
Abstract
BACKGROUND The inducible Kras/p53 lung adenocarcinoma mouse model, which faithfully recapitulates human disease, is routinely initiated by the intratracheal instillation of a virus-based Cre recombinase delivery system. Handling virus-based delivery systems requires elevated biosafety levels, e.g., biosafety level 2 (BSL-2). However, in experimental animal research facilities, following exposure to viral vectors in a BSL-2 environment, rodents may not be reclassified to BSL-1 according to standard practice, preventing access to small animal micro-computed tomography (micro-CT) scanners that are typically housed in general access areas such as BSL-1 rooms. Therefore, our goal was to adapt the protocol so that the Cre-induced KP mouse model could be handled under BSL-1 conditions during the entire procedure. RESULTS The Kras-Lox-STOP-Lox-G12D/p53 flox/flox (KP)-based lung adenocarcinoma mouse model was activated by intratracheal instillation of either an adenoviral-based or a gutless, adeno-associated viral-based Cre delivery system. Tumor growth was monitored over time by micro-CT. We have successfully substituted the virus-based Cre delivery system with a commercially available, gutless, adeno-associated, Cre-expressing vector that allows the KP mouse model to be handled and imaged in a BSL-1 facility. By optimizing the anesthesia protocol and switching to a microscope-guided vector instillation procedure, productivity was increased and procedure-related complications were significantly reduced. In addition, repeated micro-CT analysis of individual animals allowed us to monitor tumor growth longitudinally, dramatically reducing the number of animals required per experiment. Finally, we documented the evolution of tumor volume for different doses, which revealed that individual tumor nodules induced by low-titer AAV-Cre transductions can be monitored over time by micro-CT. CONCLUSION Modifications to the anesthesia and instillation protocols increased the productivity of the original KP protocol. In addition, the switch to a gutless, adeno-associated, Cre-expressing vector allowed longitudinal monitoring of tumor growth under BSL-1 conditions, significantly reducing the number of animals required for an experiment, in line with the 3R principles.
Collapse
Affiliation(s)
- Haibin Deng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Thoracic Surgery Department 2, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Huixiang Ge
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Christelle Dubey
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Michaela Medová
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Radiation Oncology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Seyran Mathilde Mutlu
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Pulmonary Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Fabienne Esther Birrer
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Tess Melinda Brodie
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Deborah Stroka
- Department for BioMedical Research, University of Bern, Bern, Switzerland
- Department of Visceral Surgery and Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Wenxiang Wang
- Thoracic Surgery Department 2, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Thomas Michael Marti
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, Murtenstrasse 28, 3008, Bern, Switzerland.
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
27
|
Salahudeen AA, Seoane JA, Yuki K, Mah AT, Smith AR, Kolahi K, De la O SM, Hart DJ, Ding J, Ma Z, Barkal SA, Shukla ND, Zhang CH, Cantrell MA, Batish A, Usui T, Root DE, Hahn WC, Curtis C, Kuo CJ. Functional screening of amplification outlier oncogenes in organoid models of early tumorigenesis. Cell Rep 2023; 42:113355. [PMID: 37922313 PMCID: PMC10841581 DOI: 10.1016/j.celrep.2023.113355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 08/30/2023] [Accepted: 10/12/2023] [Indexed: 11/05/2023] Open
Abstract
Somatic copy number gains are pervasive across cancer types, yet their roles in oncogenesis are insufficiently evaluated. This inadequacy is partly due to copy gains spanning large chromosomal regions, obscuring causal loci. Here, we employed organoid modeling to evaluate candidate oncogenic loci identified via integrative computational analysis of extreme copy gains overlapping with extreme expression dysregulation in The Cancer Genome Atlas. Subsets of "outlier" candidates were contextually screened as tissue-specific cDNA lentiviral libraries within cognate esophagus, oral cavity, colon, stomach, pancreas, and lung organoids bearing initial oncogenic mutations. Iterative analysis nominated the kinase DYRK2 at 12q15 as an amplified head and neck squamous carcinoma oncogene in p53-/- oral mucosal organoids. Similarly, FGF3, amplified at 11q13 in 41% of esophageal squamous carcinomas, promoted p53-/- esophageal organoid growth reversible by small molecule and soluble receptor antagonism of FGFRs. Our studies establish organoid-based contextual screening of candidate genomic drivers, enabling functional evaluation during early tumorigenesis.
Collapse
Affiliation(s)
- Ameen A Salahudeen
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA; University of Illinois at Chicago College of Medicine, Department of Medicine, Division of Hematology and Oncology, Chicago, IL 60612, USA; Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago College of Medicine, Chicago, IL 60612, USA; University of Illinois Cancer Center, Chicago, IL 60612, USA.
| | - Jose A Seoane
- Stanford University School of Medicine, Department of Medicine, Divisions of Oncology, Stanford, CA 94305, USA; Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain.
| | - Kanako Yuki
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Amanda T Mah
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Amber R Smith
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Kevin Kolahi
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Sean M De la O
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Daniel J Hart
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Jie Ding
- Stanford University School of Medicine, Department of Medicine, Divisions of Oncology, Stanford, CA 94305, USA
| | - Zhicheng Ma
- Stanford University School of Medicine, Department of Medicine, Divisions of Oncology, Stanford, CA 94305, USA
| | - Sammy A Barkal
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Navika D Shukla
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Chuck H Zhang
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Michael A Cantrell
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Arpit Batish
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - Tatsuya Usui
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA
| | - David E Root
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - William C Hahn
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Dana-Farber Cancer Institute, Department of Medical Oncology, 450 Brookline Avenue, Boston, MA 02215, USA
| | - Christina Curtis
- Stanford University School of Medicine, Department of Medicine, Divisions of Oncology, Stanford, CA 94305, USA; Stanford University School of Medicine, Department of Medicine, Divisions of Genetics, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Stanford University School of Medicine, Department of Medicine, Divisions of Hematology, Stanford, CA 94305, USA.
| |
Collapse
|
28
|
Freeburg NF, Peterson N, Ruiz DA, Gladstein AC, Feldser DM. Metastatic Competency and Tumor Spheroid Formation Are Independent Cell States Governed by RB in Lung Adenocarcinoma. CANCER RESEARCH COMMUNICATIONS 2023; 3:1992-2002. [PMID: 37728504 PMCID: PMC10545537 DOI: 10.1158/2767-9764.crc-23-0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/08/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
Inactivation of the retinoblastoma (RB) tumor suppressor in lung adenocarcinoma is associated with the rapid acquisition of metastatic ability and the loss of lung cell lineage commitment. We previously showed that restoration of RB in advanced lung adenocarcinomas in the mouse was correlated with a decreased frequency of lineage decommitted tumors and overt metastases. To identify a causal relationship for RB and its role in reprogramming lineage commitment and reducing metastatic competency in lung adenocarcinoma, we developed multiple tumor spheroid forming lines where RB restoration could be achieved after characterization of the degree of each spheroid's lineage commitment and metastatic ability. Surprisingly, we discovered that RB inactivation dramatically promoted tumor spheroid forming potential in tumors that arise in the KrasLSL-G12D/+; p53flox/flox lung adenocarcinoma model. However, RB reactivation had no effect on the maintenance of tumor spheroid lines once established. In addition, we show that RB-deficient tumor spheroid lines are not uniformly metastatically competent but are equally likely to be nonmetastatic. Interestingly, unlike tumor spheroid maintenance, RB restoration could functionally revert metastatic tumor spheroids to a nonmetastatic cell state. Thus, strategies to reinstate RB pathway activity in lung cancer may reverse metastatic ability and have therapeutic potential. Finally, the acquisition of tumor spheroid forming potential reflects underlying cell state plasticity, which is often predictive of, or even conflated with metastatic ability. Our data support that each is a discrete cell state restricted by RB and question the suitability of tumor spheroid models for their predictive potential of advanced metastatic tumor cell states. SIGNIFICANCE Members of the RB pathway are frequently mutated in lung adenocarcinoma. We show that RB regulates cell state plasticity, tumor spheroid formation, and metastatic competency. Our data indicate that these are independent states where spheroid formation is distinct from metastatic competency. Thus, we caution against conflating spheroid formation and other signs of cell state plasticity with advanced metastatic cell states. Nevertheless, our work supports clinical strategies to reactivate RB pathways.
Collapse
Affiliation(s)
- Nelson F. Freeburg
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nia Peterson
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Dain A. Ruiz
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Amy C. Gladstein
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David M. Feldser
- Department of Cancer Biology, University of Pennsylvania, Philadelphia, Pennsylvania
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, Pennsylvania
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
29
|
Li Z, Zhuang X, Pan CH, Yan Y, Thummalapalli R, Hallin J, Torborg S, Singhal A, Chang JC, Manchado E, Dow LE, Yaeger R, Christensen JG, Lowe SW, Rudin CM, Joost S, Tammela T. Alveolar differentiation drives resistance to KRAS inhibition in lung adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.29.560194. [PMID: 37808711 PMCID: PMC10557782 DOI: 10.1101/2023.09.29.560194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Lung adenocarcinoma (LUAD), commonly driven by KRAS mutations, is responsible for 7% of all cancer mortality. The first allele-specific KRAS inhibitors were recently approved in LUAD, but clinical benefit is limited by intrinsic and acquired resistance. LUAD predominantly arises from alveolar type 2 (AT2) cells, which function as facultative alveolar stem cells by self-renewing and replacing alveolar type 1 (AT1) cells. Using genetically engineered mouse models, patient-derived xenografts, and patient samples we found inhibition of KRAS promotes transition to a quiescent AT1-like cancer cell state in LUAD tumors. Similarly, suppressing Kras induced AT1 differentiation of wild-type AT2 cells upon lung injury. The AT1-like LUAD cells exhibited high growth and differentiation potential upon treatment cessation, whereas ablation of the AT1-like cells robustly improved treatment response to KRAS inhibitors. Our results uncover an unexpected role for KRAS in promoting intra-tumoral heterogeneity and suggest targeting alveolar differentiation may augment KRAS-targeted therapies in LUAD. Significance Treatment resistance limits response to KRAS inhibitors in LUAD patients. We find LUAD residual disease following KRAS targeting is composed of AT1-like cancer cells with the capacity to reignite tumorigenesis. Targeting the AT1-like cells augments responses to KRAS inhibition, elucidating a therapeutic strategy to overcome resistance to KRAS-targeted therapy.
Collapse
|
30
|
Kastana P, Ntenekou D, Mourkogianni E, Enake MK, Xanthopoulos A, Choleva E, Marazioti A, Nikou S, Akwii RG, Papadaki E, Gramage E, Herradón G, Stathopoulos GT, Mikelis CM, Papadimitriou E. Genetic deletion or tyrosine phosphatase inhibition of PTPRZ1 activates c-Met to up-regulate angiogenesis and lung adenocarcinoma growth. Int J Cancer 2023; 153:1051-1066. [PMID: 37260355 PMCID: PMC10524925 DOI: 10.1002/ijc.34564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 04/12/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023]
Abstract
Protein tyrosine phosphatase receptor zeta 1 (PTPRZ1) is a transmembrane tyrosine phosphatase (TP) expressed in endothelial cells and required for stimulation of cell migration by vascular endothelial growth factor A165 (VEGFA165 ) and pleiotrophin (PTN). It is also over or under-expressed in various tumor types. In this study, we used genetically engineered Ptprz1-/- and Ptprz1+/+ mice to study mechanistic aspects of PTPRZ1 involvement in angiogenesis and investigate its role in lung adenocarcinoma (LUAD) growth. Ptprz1-/- lung microvascular endothelial cells (LMVEC) have increased angiogenic features compared with Ptprz1+/+ LMVEC, in line with the increased lung angiogenesis and the enhanced chemically induced LUAD growth in Ptprz1-/- compared with Ptprz1+/+ mice. In LUAD cells isolated from the lungs of urethane-treated mice, PTPRZ1 TP inhibition also enhanced proliferation and migration. Expression of beta 3 (β3 ) integrin is decreased in Ptprz1-/- LMVEC, linked to enhanced VEGF receptor 2 (VEGFR2), c-Met tyrosine kinase (TK) and Akt kinase activities. However, only c-Met and Akt seem responsible for the enhanced endothelial cell activation in vitro and LUAD growth and angiogenesis in vivo in Ptprz1-/- mice. A selective PTPRZ1 TP inhibitor, VEGFA165 and PTN also activate c-Met and Akt in a PTPRZ1-dependent manner in endothelial cells, and their stimulatory effects are abolished by the c-Met TK inhibitor (TKI) crizotinib. Altogether, our data suggest that low PTPRZ1 expression is linked to worse LUAD prognosis and response to c-Met TKIs and uncover for the first time the role of PTPRZ1 in mediating c-Met activation by VEGFA and PTN.
Collapse
Affiliation(s)
- Pinelopi Kastana
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Despoina Ntenekou
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Eleni Mourkogianni
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Michaela-Karina Enake
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | | | - Effrosyni Choleva
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
| | - Antonia Marazioti
- Laboratory of Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Greece
| | - Sophia Nikou
- Department of Anatomy, Faculty of Medicine, University of Patras, Greece
| | - Racheal G. Akwii
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Centre, Amarillo, TX, USA
| | - Eleni Papadaki
- Department of Anatomy, Faculty of Medicine, University of Patras, Greece
| | - Esther Gramage
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Gonzalo Herradón
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain
| | - Georgios T. Stathopoulos
- Laboratory of Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Greece
| | - Constantinos M. Mikelis
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Greece
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Centre, Amarillo, TX, USA
| | | |
Collapse
|
31
|
DuCote TJ, Naughton KJ, Skaggs EM, Bocklage TJ, Allison DB, Brainson CF. Using Artificial Intelligence to Identify Tumor Microenvironment Heterogeneity in Non-Small Cell Lung Cancers. J Transl Med 2023; 103:100176. [PMID: 37182840 PMCID: PMC10527157 DOI: 10.1016/j.labinv.2023.100176] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/01/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023] Open
Abstract
Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only the malignant epithelial cell phenotypes and genetics but also the diverse tumor-associated cell types. Current techniques used to investigate the tumor microenvironment can be time-consuming, expensive, complicated to interpret, and often involves destruction of the sample. Here we use standard hematoxylin and eosin-stained tumor sections and the HALO AI nuclear phenotyping software to characterize 6 distinct cell types (epithelial, mesenchymal, macrophage, neutrophil, lymphocyte, and plasma cells) in both murine lung cancer models and human lung cancer samples. CD3 immunohistochemistry and lymph node sections were used to validate lymphocyte calls, while F4/80 immunohistochemistry was used for macrophage validation. Consistent with numerous prior studies, we demonstrated that macrophages predominate the adenocarcinomas, whereas neutrophils predominate the squamous cell carcinomas in murine samples. In human samples, we showed a strong negative correlation between neutrophils and lymphocytes as well as between mesenchymal cells and lymphocytes and that higher percentages of mesenchymal cells correlate with poor prognosis. Taken together, we demonstrate the utility of this AI software to identify, quantify, and compare distributions of cell types on standard hematoxylin and eosin-stained slides. Given the simplicity and cost-effectiveness of this technique, it may be widely beneficial for researchers designing new therapies and clinicians working to select favorable treatments for their patients.
Collapse
Affiliation(s)
- Tanner J DuCote
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Kassandra J Naughton
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Erika M Skaggs
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky
| | - Therese J Bocklage
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Derek B Allison
- Markey Cancer Center, University of Kentucky, Lexington, Kentucky; Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, Kentucky
| | - Christine F Brainson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, Kentucky; Markey Cancer Center, University of Kentucky, Lexington, Kentucky.
| |
Collapse
|
32
|
Acosta J, Li Q, Freeburg NF, Murali N, Indeglia A, Grothusen GP, Cicchini M, Mai H, Gladstein AC, Adler KM, Doerig KR, Li J, Ruiz-Torres M, Manning KL, Stanger BZ, Busino L, Murphy M, Wan L, Feldser DM. p53 restoration in small cell lung cancer identifies a latent cyclophilin-dependent necrosis mechanism. Nat Commun 2023; 14:4403. [PMID: 37479684 PMCID: PMC10362054 DOI: 10.1038/s41467-023-40161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 07/12/2023] [Indexed: 07/23/2023] Open
Abstract
The p53 tumor suppressor regulates multiple context-dependent tumor suppressive programs. Although p53 is mutated in ~90% of small cell lung cancer (SCLC) tumors, how p53 mediates tumor suppression in this context is unknown. Here, using a mouse model of SCLC in which endogenous p53 expression can be conditionally and temporally regulated, we show that SCLC tumors maintain a requirement for p53 inactivation. However, we identify tumor subtype heterogeneity between SCLC tumors such that p53 reactivation induces senescence in a subset of tumors, while in others, p53 induces necrosis. We pinpoint cyclophilins as critical determinants of a p53-induced transcriptional program that is specific to SCLC tumors and cell lines poised to undergo p53-mediated necrosis. Importantly, inhibition of cyclophilin isomerase activity, or genetic ablation of specific cyclophilin genes, suppresses p53-mediated necrosis by limiting p53 transcriptional output without impacting p53 chromatin binding. Our study demonstrates that intertumoral heterogeneity in SCLC influences the biological response to p53 restoration, describes a cyclophilin-dependent mechanism of p53-regulated cell death, and uncovers putative mechanisms for the treatment of this most-recalcitrant tumor type.
Collapse
Affiliation(s)
- Jonuelle Acosta
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Qinglan Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nelson F Freeburg
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nivitha Murali
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alexandra Indeglia
- Biochemistry and Molecular Biophysics Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Grant P Grothusen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michelle Cicchini
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hung Mai
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amy C Gladstein
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keren M Adler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine R Doerig
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jinyang Li
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Miguel Ruiz-Torres
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kimberly L Manning
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ben Z Stanger
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Luca Busino
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - Maureen Murphy
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Program in Molecular and Cellular Oncogenesis, The Wistar Institute, Philadelphia, PA, USA
| | - Liling Wan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Feldser
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Lockhart JH, Ackerman HD, Lee K, Abdalah M, Davis AJ, Hackel N, Boyle TA, Saller J, Keske A, Hänggi K, Ruffell B, Stringfield O, Cress WD, Tan AC, Flores ER. Grading of lung adenocarcinomas with simultaneous segmentation by artificial intelligence (GLASS-AI). NPJ Precis Oncol 2023; 7:68. [PMID: 37464050 DOI: 10.1038/s41698-023-00419-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
Preclinical genetically engineered mouse models (GEMMs) of lung adenocarcinoma are invaluable for investigating molecular drivers of tumor formation, progression, and therapeutic resistance. However, histological analysis of these GEMMs requires significant time and training to ensure accuracy and consistency. To achieve a more objective and standardized analysis, we used machine learning to create GLASS-AI, a histological image analysis tool that the broader cancer research community can utilize to grade, segment, and analyze tumors in preclinical models of lung adenocarcinoma. GLASS-AI demonstrates strong agreement with expert human raters while uncovering a significant degree of unreported intratumor heterogeneity. Integrating immunohistochemical staining with high-resolution grade analysis by GLASS-AI identified dysregulation of Mapk/Erk signaling in high-grade lung adenocarcinomas and locally advanced tumor regions. Our work demonstrates the benefit of employing GLASS-AI in preclinical lung adenocarcinoma models and the power of integrating machine learning and molecular biology techniques for studying the molecular pathways that underlie cancer progression.
Collapse
Affiliation(s)
- John H Lockhart
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Hayley D Ackerman
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Kyubum Lee
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Mahmoud Abdalah
- Quantitative Imaging Core, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Andrew John Davis
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Nicole Hackel
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Theresa A Boyle
- Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - James Saller
- Anatomic Pathology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Aysenur Keske
- Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Kay Hänggi
- Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Brian Ruffell
- Immunology, H. Lee Moffitt Cancer Center, Tampa, FL, 33612, USA
| | - Olya Stringfield
- Quantitative Imaging Core, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - W Douglas Cress
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Aik Choon Tan
- Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA
| | - Elsa R Flores
- Departments of Molecular Oncology, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA.
- Cancer Biology and Evolution Program, H. Lee Moffitt Cancer Center, Tampa, 33612, FL, USA.
| |
Collapse
|
34
|
Kaiser AM, Gatto A, Hanson KJ, Zhao RL, Raj N, Ozawa MG, Seoane JA, Bieging-Rolett KT, Wang M, Li I, Trope WL, Liou DZ, Shrager JB, Plevritis SK, Newman AM, Van Rechem C, Attardi LD. p53 governs an AT1 differentiation programme in lung cancer suppression. Nature 2023; 619:851-859. [PMID: 37468633 PMCID: PMC11288504 DOI: 10.1038/s41586-023-06253-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 05/24/2023] [Indexed: 07/21/2023]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide1. Mutations in the tumour suppressor gene TP53 occur in 50% of lung adenocarcinomas (LUADs) and are linked to poor prognosis1-4, but how p53 suppresses LUAD development remains enigmatic. We show here that p53 suppresses LUAD by governing cell state, specifically by promoting alveolar type 1 (AT1) differentiation. Using mice that express oncogenic Kras and null, wild-type or hypermorphic Trp53 alleles in alveolar type 2 (AT2) cells, we observed graded effects of p53 on LUAD initiation and progression. RNA sequencing and ATAC sequencing of LUAD cells uncovered a p53-induced AT1 differentiation programme during tumour suppression in vivo through direct DNA binding, chromatin remodelling and induction of genes characteristic of AT1 cells. Single-cell transcriptomics analyses revealed that during LUAD evolution, p53 promotes AT1 differentiation through action in a transitional cell state analogous to a transient intermediary seen during AT2-to-AT1 cell differentiation in alveolar injury repair. Notably, p53 inactivation results in the inappropriate persistence of these transitional cancer cells accompanied by upregulated growth signalling and divergence from lung lineage identity, characteristics associated with LUAD progression. Analysis of Trp53 wild-type and Trp53-null mice showed that p53 also directs alveolar regeneration after injury by regulating AT2 cell self-renewal and promoting transitional cell differentiation into AT1 cells. Collectively, these findings illuminate mechanisms of p53-mediated LUAD suppression, in which p53 governs alveolar differentiation, and suggest that tumour suppression reflects a fundamental role of p53 in orchestrating tissue repair after injury.
Collapse
Affiliation(s)
- Alyssa M Kaiser
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Alberto Gatto
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Kathryn J Hanson
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Richard L Zhao
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Nitin Raj
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael G Ozawa
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - José A Seoane
- Cancer Computational Biology Group, Vall d'Hebron Institute of Oncology, Barcelona, Spain
| | - Kathryn T Bieging-Rolett
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mengxiong Wang
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA
| | - Irene Li
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Winston L Trope
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Douglas Z Liou
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Joseph B Shrager
- Division of Thoracic Surgery, Department of Cardiothoracic Surgery, Stanford University School of Medicine, Stanford, CA, USA
| | - Sylvia K Plevritis
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Aaron M Newman
- Department of Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA
| | - Capucine Van Rechem
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Laura D Attardi
- Division of Radiation and Cancer Biology, Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
35
|
DeBlasi JM, Falzone A, Caldwell S, Prieto-Farigua N, Prigge JR, Schmidt EE, Chio IIC, Karreth FA, DeNicola GM. Distinct Nrf2 Signaling Thresholds Mediate Lung Tumor Initiation and Progression. Cancer Res 2023; 83:1953-1967. [PMID: 37062029 PMCID: PMC10267679 DOI: 10.1158/0008-5472.can-22-3848] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 03/03/2023] [Accepted: 04/12/2023] [Indexed: 04/17/2023]
Abstract
Mutations in the KEAP1-NRF2 (Kelch-like ECH-associated protein 1-nuclear factor-erythroid 2 p45-related factor 2) pathway occur in up to a third of non-small cell lung cancer (NSCLC) cases and often confer resistance to therapy and poor outcomes. Here, we developed murine alleles of the KEAP1 and NRF2 mutations found in human NSCLC and comprehensively interrogated their impact on tumor initiation and progression. Chronic NRF2 stabilization by Keap1 or Nrf2 mutation was not sufficient to induce tumorigenesis, even in the absence of tumor suppressors, p53 or LKB1. When combined with KrasG12D/+, constitutive NRF2 activation promoted lung tumor initiation and early progression of hyperplasia to low-grade tumors but impaired their progression to advanced-grade tumors, which was reversed by NRF2 deletion. Finally, NRF2 overexpression in KEAP1 mutant human NSCLC cell lines was detrimental to cell proliferation, viability, and anchorage-independent colony formation. Collectively, these results establish the context-dependence and activity threshold for NRF2 during the lung tumorigenic process. SIGNIFICANCE Stabilization of the transcription factor NRF2 promotes oncogene-driven tumor initiation but blocks tumor progression, indicating distinct, threshold-dependent effects of the KEAP1/NRF2 pathway in different stages of lung tumorigenesis.
Collapse
Affiliation(s)
- Janine M. DeBlasi
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Cancer Biology PhD Program, University of South Florida, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Justin R. Prigge
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Edward E. Schmidt
- Microbiology & Cell Biology Department, Montana State University, Bozeman, Montana
| | - Iok In Christine Chio
- Department of Genetics and Development, Institute for Cancer Genetics, Columbia University Irving Medical Center, New York, New York
- Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, New York
| | - Florian A. Karreth
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism & Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
36
|
Bychkov I, Deneka A, Topchu I, Pangeni RP, Lengner C, Karanicolas J, Golemis EA, Makhov P, Boumber Y. Musashi-2 (MSI2) regulation of DNA damage response in lung cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544756. [PMID: 37398283 PMCID: PMC10312672 DOI: 10.1101/2023.06.13.544756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lung cancer is one of the most common types of cancers worldwide. Non-small cell lung cancer (NSCLC), typically caused by KRAS and TP53 driver mutations, represents the majority of all new lung cancer diagnoses. Overexpression of the RNA-binding protein (RBP) Musashi-2 (MSI2) has been associated with NSCLC progression. To investigate the role of MSI2 in NSCLC development, we compared the tumorigenesis in mice with lung-specific Kras -activating mutation and Trp53 deletion, with and without Msi2 deletion (KP versus KPM2 mice). KPM2 mice showed decreased lung tumorigenesis in comparison with KP mice what supports published data. In addition, using cell lines from KP and KPM2 tumors, and human NSCLC cell lines, we found that MSI2 directly binds ATM/Atm mRNA and regulates its translation. MSI2 depletion impaired DNA damage response (DDR) signaling and sensitized human and murine NSCLC cells to treatment with PARP inhibitors in vitro and in vivo . Taken together, we conclude that MSI2 supports lung tumorigenesis, in part, by direct positive regulation of ATM protein expression and DDR. This adds the knowledge of MSI2 function in lung cancer development. Targeting MSI2 may be a promising strategy to treat lung cancer. Significance This study shows the novel role of Musashi-2 as regulator of ATM expression and DDR in lung cancer.
Collapse
|
37
|
Gonzalez MA, Lu DR, Yousefi M, Kroll A, Lo CH, Briseño CG, Watson JEV, Novitskiy S, Arias V, Zhou H, Plata Stapper A, Tsai MK, Ashkin EL, Murray CW, Li CM, Winslow MM, Tarbell KV. Phagocytosis increases an oxidative metabolic and immune suppressive signature in tumor macrophages. J Exp Med 2023; 220:e20221472. [PMID: 36995340 PMCID: PMC10067971 DOI: 10.1084/jem.20221472] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 01/13/2023] [Accepted: 03/06/2023] [Indexed: 03/31/2023] Open
Abstract
Phagocytosis is a key macrophage function, but how phagocytosis shapes tumor-associated macrophage (TAM) phenotypes and heterogeneity in solid tumors remains unclear. Here, we utilized both syngeneic and novel autochthonous lung tumor models in which neoplastic cells express the fluorophore tdTomato (tdTom) to identify TAMs that have phagocytosed neoplastic cells in vivo. Phagocytic tdTompos TAMs upregulated antigen presentation and anti-inflammatory proteins, but downregulated classic proinflammatory effectors compared to tdTomneg TAMs. Single-cell transcriptomic profiling identified TAM subset-specific and common gene expression changes associated with phagocytosis. We uncover a phagocytic signature that is predominated by oxidative phosphorylation (OXPHOS), ribosomal, and metabolic genes, and this signature correlates with worse clinical outcome in human lung cancer. Expression of OXPHOS proteins, mitochondrial content, and functional utilization of OXPHOS were increased in tdTompos TAMs. tdTompos tumor dendritic cells also display similar metabolic changes. Our identification of phagocytic TAMs as a distinct myeloid cell state links phagocytosis of neoplastic cells in vivo with OXPHOS and tumor-promoting phenotypes.
Collapse
Affiliation(s)
- Michael A. Gonzalez
- Amgen Research, Oncology, South San Francisco, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Daniel R. Lu
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Maryam Yousefi
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ashley Kroll
- Amgen Research, Oncology, South San Francisco, CA, USA
| | - Chen Hao Lo
- Amgen Research, Oncology, South San Francisco, CA, USA
| | | | | | | | - Vanessa Arias
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Hong Zhou
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | | | - Min K. Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Emily L. Ashkin
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Chi-Ming Li
- Amgen Research, Research Biomics, South San Francisco, CA, USA
| | - Monte M. Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Cancer Biology Program, Stanford University School of Medicine, Stanford, CA, USA
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | | |
Collapse
|
38
|
Zhong H, Lu W, Tang Y, Wiel C, Wei Y, Cao J, Riedlinger G, Papagiannakopoulos T, Guo JY, Bergo MO, Kang Y, Ganesan S, Sabaawy HE, Pine SR. SOX9 drives KRAS-induced lung adenocarcinoma progression and suppresses anti-tumor immunity. Oncogene 2023:10.1038/s41388-023-02715-5. [PMID: 37258742 DOI: 10.1038/s41388-023-02715-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 04/25/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023]
Abstract
The SOX9 transcription factor ensures proper tissue development and homeostasis and has been implicated in promoting tumor progression. However, the role of SOX9 as a driver of lung adenocarcinoma (LUAD), or any cancer, remains unclear. Using CRISPR/Cas9 and Cre-LoxP gene knockout approaches in the KrasG12D-driven mouse LUAD model, we found that loss of Sox9 significantly reduces lung tumor development, burden and progression, contributing to significantly longer overall survival. SOX9 consistently drove organoid growth in vitro, but SOX9-promoted tumor growth was significantly attenuated in immunocompromised mice compared to syngeneic mice. We demonstrate that SOX9 suppresses immune cell infiltration and functionally suppresses tumor associated CD8+ T, natural killer and dendritic cells. These data were validated by flow cytometry, gene expression, RT-qPCR, and immunohistochemistry analyses in KrasG12D-driven murine LUAD, then confirmed by interrogating bulk and single-cell gene expression repertoires and immunohistochemistry in human LUAD. Notably, SOX9 significantly elevates collagen-related gene expression and substantially increases collagen fibers. We propose that SOX9 increases tumor stiffness and inhibits tumor-infiltrating dendritic cells, thereby suppressing CD8+ T cell and NK cell infiltration and activity. Thus, SOX9 drives KrasG12D-driven lung tumor progression and inhibits anti-tumor immunity at least partly by modulating the tumor microenvironment.
Collapse
Affiliation(s)
- Hua Zhong
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Wen Lu
- Howard Hughes Medical Institute, Rosalind Russell and Ephraim P. Engleman Rheumatology Research Center, Department of Medicine, Department of Microbiology and Immunology, University of California, San Francisco, CA, 94143-0795, USA
| | - Yong Tang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Clotilde Wiel
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, University of Gothenburg, 405 30, Gothenburg, Sweden
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yong Wei
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Jian Cao
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Gregory Riedlinger
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Thales Papagiannakopoulos
- Perlmutter NYU Cancer Center, Department of Pathology, New York University School of Medicine, New York, NY, 10016, USA
| | - Jessie Yanxiang Guo
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Chemical Biology, Rutgers Ernest Mario School of Pharmacy, Piscataway, NJ, 08854, USA
| | - Martin O Bergo
- Sahlgrenska Cancer Center, Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, 405 30, Gothenburg, Sweden
| | - Yibin Kang
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Ludwig Institute for Cancer Research Princeton Branch, Princeton, NJ, 08544, USA
| | - Shridar Ganesan
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Hatim E Sabaawy
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Sharon R Pine
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA.
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
39
|
Berr AL, Wiese K, Dos Santos G, Koch CM, Anekalla KR, Kidd M, Davis JM, Cheng Y, Hu YS, Ridge KM. Vimentin is required for tumor progression and metastasis in a mouse model of non-small cell lung cancer. Oncogene 2023:10.1038/s41388-023-02703-9. [PMID: 37161053 DOI: 10.1038/s41388-023-02703-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 11/15/2022] [Accepted: 04/20/2023] [Indexed: 05/11/2023]
Abstract
Vimentin is highly expressed in metastatic cancers, and its expression correlates with poor patient prognoses. However, no causal in vivo studies linking vimentin and non-small cell lung cancer (NSCLC) progression existed until now. We use three complementary in vivo models to show that vimentin is required for the progression of NSCLC. First, we crossed LSL-KrasG12D; Tp53fl/fl mice (KPV+/+) with vimentin knockout mice (KPV-/-) to demonstrate that KPV-/- mice have attenuated tumor growth and improved survival compared with KPV+/+ mice. Next, we therapeutically treated KPV+/+ mice with withaferin A (WFA), an agent that disrupts vimentin intermediate filaments (IFs). We show that WFA suppresses tumor growth and reduces tumor burden in the lung. Finally, luciferase-expressing KPV+/+, KPV-/-, or KPVY117L cells were implanted into the flanks of athymic mice to track cancer metastasis to the lung. In KPVY117L cells, vimentin forms oligomers called unit-length filaments but cannot assemble into mature vimentin IFs. KPV-/- and KPVY117L cells fail to metastasize, suggesting that cell-autonomous metastasis requires mature vimentin IFs. Integrative metabolomic and transcriptomic analysis reveals that KPV-/- cells upregulate genes associated with ferroptosis, an iron-dependent form of regulated cell death. KPV-/- cells have reduced glutathione peroxidase 4 (GPX4) levels, resulting in the accumulation of toxic lipid peroxides and increased ferroptosis. Together, our results demonstrate that vimentin is required for rapid tumor growth, metastasis, and protection from ferroptosis in NSCLC.
Collapse
Affiliation(s)
- Alexandra L Berr
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, USA
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kristin Wiese
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Gimena Dos Santos
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Clarissa M Koch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Kishore R Anekalla
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Martha Kidd
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer M Davis
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan Cheng
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Yuan-Shih Hu
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, USA.
- Department of Cell and Molecular Biology, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
40
|
Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 2023; 23:391-407. [PMID: 37138029 DOI: 10.1038/s41568-023-00568-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
41
|
Yoon SJ, Combs JA, Falzone A, Prieto-Farigua N, Caldwell S, Ackerman HD, Flores ER, DeNicola GM. Comprehensive Metabolic Tracing Reveals the Origin and Catabolism of Cysteine in Mammalian Tissues and Tumors. Cancer Res 2023; 83:1426-1442. [PMID: 36862034 PMCID: PMC10152234 DOI: 10.1158/0008-5472.can-22-3000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/11/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023]
Abstract
Cysteine plays critical roles in cellular biosynthesis, enzyme catalysis, and redox metabolism. The intracellular cysteine pool can be sustained by cystine uptake or de novo synthesis from serine and homocysteine. Demand for cysteine is increased during tumorigenesis for generating glutathione to deal with oxidative stress. While cultured cells have been shown to be highly dependent on exogenous cystine for proliferation and survival, how diverse tissues obtain and use cysteine in vivo has not been characterized. We comprehensively interrogated cysteine metabolism in normal murine tissues and cancers that arise from them using stable isotope 13C1-serine and 13C6-cystine tracing. De novo cysteine synthesis was highest in normal liver and pancreas and absent in lung tissue, while cysteine synthesis was either inactive or downregulated during tumorigenesis. In contrast, cystine uptake and metabolism to downstream metabolites was a universal feature of normal tissues and tumors. However, differences in glutathione labeling from cysteine were evident across tumor types. Thus, cystine is a major contributor to the cysteine pool in tumors, and glutathione metabolism is differentially active across tumor types. SIGNIFICANCE Stable isotope 13C1-serine and 13C6-cystine tracing characterizes cysteine metabolism in normal murine tissues and its rewiring in tumors using genetically engineered mouse models of liver, pancreas, and lung cancers.
Collapse
Affiliation(s)
- Sang Jun Yoon
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Joseph A. Combs
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Aimee Falzone
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Nicolas Prieto-Farigua
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Samantha Caldwell
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Hayley D. Ackerman
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Elsa R. Flores
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Department of Molecular Oncology, H. Lee. Moffitt Cancer Center, Tampa, Florida
| | - Gina M. DeNicola
- Department of Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, Florida
- Cancer Biology and Evolution Program, H. Lee. Moffitt Cancer Center, Tampa, Florida
| |
Collapse
|
42
|
Salmón M, Álvarez-Díaz R, Fustero-Torre C, Brehey O, Lechuga CG, Sanclemente M, Fernández-García F, López-García A, Martín-Guijarro MC, Rodríguez-Perales S, Bousquet-Mur E, Morales-Cacho L, Mulero F, Al-Shahrour F, Martínez L, Domínguez O, Caleiras E, Ortega S, Guerra C, Musteanu M, Drosten M, Barbacid M. Kras oncogene ablation prevents resistance in advanced lung adenocarcinomas. J Clin Invest 2023; 133:e164413. [PMID: 36928090 PMCID: PMC10065067 DOI: 10.1172/jci164413] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 02/16/2023] [Indexed: 03/17/2023] Open
Abstract
KRASG12C inhibitors have revolutionized the clinical management of patients with KRASG12C-mutant lung adenocarcinoma. However, patient exposure to these inhibitors leads to the rapid onset of resistance. In this study, we have used genetically engineered mice to compare the therapeutic efficacy and the emergence of tumor resistance between genetic ablation of mutant Kras expression and pharmacological inhibition of oncogenic KRAS activity. Whereas Kras ablation induces massive tumor regression and prevents the appearance of resistant cells in vivo, treatment of KrasG12C/Trp53-driven lung adenocarcinomas with sotorasib, a selective KRASG12C inhibitor, caused a limited antitumor response similar to that observed in the clinic, including the rapid onset of resistance. Unlike in human tumors, we did not observe mutations in components of the RAS-signaling pathways. Instead, sotorasib-resistant tumors displayed amplification of the mutant Kras allele and activation of xenobiotic metabolism pathways, suggesting that reduction of the on-target activity of KRASG12C inhibitors is the main mechanism responsible for the onset of resistance. In sum, our results suggest that resistance to KRAS inhibitors could be prevented by achieving a more robust inhibition of KRAS signaling mimicking the results obtained upon Kras ablation.
Collapse
Affiliation(s)
- Marina Salmón
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | - Oksana Brehey
- Experimental Oncology Group, Molecular Oncology Program
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Sagrario Ortega
- Mouse Genome Editing Unit, Centro Nacional de Investigaciones Oncológicas (CNIO), Madrid, Spain
| | - Carmen Guerra
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| | - Monica Musteanu
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Complutense University, Madrid, Spain
| | - Matthias Drosten
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
- Molecular Mechanisms of Cancer Program, Centro de Investigación del Cáncer (CIC) and Instituto de Biología Molecular y Celular del Cáncer (IBMCC), Consejo Superior de Investigaciones Científicas–Universidad de Salamanca (CSIC-USAL), Salamanca, Spain
| | - Mariano Barbacid
- Experimental Oncology Group, Molecular Oncology Program
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Mart Nez-Terroba E, de Miguel FJ, Li V, Robles-Oteiza C, Politi K, Zamudio JR, Dimitrova N. Overexpressed Malat1 Drives Metastasis through Inflammatory Reprogramming of Lung Adenocarcinoma Microenvironment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.20.533534. [PMID: 36993368 PMCID: PMC10055261 DOI: 10.1101/2023.03.20.533534] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Metastasis is the main cause of cancer deaths but the molecular events leading to metastatic dissemination remain incompletely understood. Despite reports linking aberrant expression of long noncoding RNAs (lncRNAs) with increased metastatic incidence , in vivo evidence establishing driver roles for lncRNAs in metastatic progression is lacking. Here, we report that overexpression of the metastasis-associated lncRNA Malat1 (metastasis-associated lung adenocarcinoma transcript 1) in the autochthonous K-ras/p53 mouse model of lung adenocarcinoma (LUAD) is sufficient to drive cancer progression and metastatic dissemination. We show that increased expression of endogenous Malat1 RNA cooperates with p53 loss to promote widespread LUAD progression to a poorly differentiated, invasive, and metastatic disease. Mechanistically, we observe that Malat1 overexpression leads to the inappropriate transcription and paracrine secretion of the inflammatory cytokine, Ccl2, to augment the mobility of tumor and stromal cells in vitro and to trigger inflammatory responses in the tumor microenvironment in vivo . Notably, Ccl2 blockade fully reverses cellular and organismal phenotypes of Malat1 overexpression. We propose that Malat1 overexpression in advanced tumors activates Ccl2 signaling to reprogram the tumor microenvironment to an inflammatory and pro-metastatic state.
Collapse
|
44
|
Blomberg R, Sompel K, Hauer C, Pe A B, Driscoll J, Hume PS, Merrick DT, Tennis MA, Magin CM. Tissue-engineered models of lung cancer premalignancy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532835. [PMID: 36993773 PMCID: PMC10055140 DOI: 10.1101/2023.03.15.532835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Lung cancer is the leading global cause of cancer-related deaths. Although smoking cessation is the best preventive action, nearly 50% of all lung cancer diagnoses occur in people who have already quit smoking. Research into treatment options for these high-risk patients has been constrained to rodent models of chemical carcinogenesis, which are time-consuming, expensive, and require large numbers of animals. Here we show that embedding precision-cut lung slices within an engineered hydrogel and exposing this tissue to a carcinogen from cigarette smoke creates an in vitro model of lung cancer premalignancy. Hydrogel formulations were selected to promote early lung cancer cellular phenotypes and extend PCLS viability up to six weeks. In this study, hydrogel-embedded lung slices were exposed to the cigarette smoke derived carcinogen vinyl carbamate, which induces adenocarcinoma in mice. At six weeks, analysis of proliferation, gene expression, histology, tissue stiffness, and cellular content revealed that vinyl carbamate induced the formation of premalignant lesions with a mixed adenoma/squamous phenotype. Two putative chemoprevention agents were able to freely diffuse through the hydrogel and induce tissue-level changes. The design parameters selected using murine tissue were validated with hydrogel-embedded human PCLS and results showed increased proliferation and premalignant lesion gene expression patterns. This tissue-engineered model of human lung cancer premalignancy is the starting point for more sophisticated ex vivo models and a foundation for the study of carcinogenesis and chemoprevention strategies.
Collapse
|
45
|
Walter DM, Gladstein AC, Doerig KR, Natesan R, Baskaran SG, Gudiel AA, Adler KM, Acosta JO, Wallace DC, Asangani IA, Feldser DM. Setd2 inactivation sensitizes lung adenocarcinoma to inhibitors of oxidative respiration and mTORC1 signaling. Commun Biol 2023; 6:255. [PMID: 36899051 PMCID: PMC10006211 DOI: 10.1038/s42003-023-04618-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
SETD2 is a tumor suppressor that is frequently inactivated in several cancer types. The mechanisms through which SETD2 inactivation promotes cancer are unclear, and whether targetable vulnerabilities exist in these tumors is unknown. Here we identify heightened mTORC1-associated gene expression programs and functionally higher levels of oxidative metabolism and protein synthesis as prominent consequences of Setd2 inactivation in KRAS-driven mouse models of lung adenocarcinoma. Blocking oxidative respiration and mTORC1 signaling abrogates the high rates of tumor cell proliferation and tumor growth specifically in SETD2-deficient tumors. Our data nominate SETD2 deficiency as a functional marker of sensitivity to clinically actionable therapeutics targeting oxidative respiration and mTORC1 signaling.
Collapse
Affiliation(s)
- David M Walter
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy C Gladstein
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Katherine R Doerig
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saravana G Baskaran
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - A Andrea Gudiel
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Keren M Adler
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jonuelle O Acosta
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Irfan A Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA
| | - David M Feldser
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Zhou Y, Xia J, Xu S, She T, Zhang Y, Sun Y, Wen M, Jiang T, Xiong Y, Lei J. Experimental mouse models for translational human cancer research. Front Immunol 2023; 14:1095388. [PMID: 36969176 PMCID: PMC10036357 DOI: 10.3389/fimmu.2023.1095388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 02/20/2023] [Indexed: 03/12/2023] Open
Abstract
The development and growth of tumors remains an important and ongoing threat to human life around the world. While advanced therapeutic strategies such as immune checkpoint therapy and CAR-T have achieved astonishing progress in the treatment of both solid and hematological malignancies, the malignant initiation and progression of cancer remains a controversial issue, and further research is urgently required. The experimental animal model not only has great advantages in simulating the occurrence, development, and malignant transformation mechanisms of tumors, but also can be used to evaluate the therapeutic effects of a diverse array of clinical interventions, gradually becoming an indispensable method for cancer research. In this paper, we have reviewed recent research progress in relation to mouse and rat models, focusing on spontaneous, induced, transgenic, and transplantable tumor models, to help guide the future study of malignant mechanisms and tumor prevention.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tao Jiang
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Yanlu Xiong
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| | - Jie Lei
- *Correspondence: Jie Lei, ; Yanlu Xiong, ; Tao Jiang,
| |
Collapse
|
47
|
Zaw Thin M, Moore C, Snoeks T, Kalber T, Downward J, Behrens A. Micro-CT acquisition and image processing to track and characterize pulmonary nodules in mice. Nat Protoc 2023; 18:990-1015. [PMID: 36494493 DOI: 10.1038/s41596-022-00769-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/09/2022] [Indexed: 12/14/2022]
Abstract
X-ray computed tomography is a reliable technique for the detection and longitudinal monitoring of pulmonary nodules. In preclinical stages of diagnostic or therapeutic development, the miniaturized versions of the clinical computed tomography scanners are ideally suited for carrying out translationally-relevant research in conditions that closely mimic those found in the clinic. In this Protocol, we provide image acquisition parameters optimized for low radiation dose, high-resolution and high-throughput computed tomography imaging using three commercially available micro-computed tomography scanners, together with a detailed description of the image analysis tools required to identify a variety of lung tumor types, characterized by specific radiological features. For each animal, image acquisition takes 4-8 min, and data analysis typically requires 10-30 min. Researchers with basic training in animal handling, medical imaging and software analysis should be able to implement this protocol across a wide range of lung cancer models in mice for investigating the molecular mechanisms driving lung cancer development and the assessment of diagnostic and therapeutic agents.
Collapse
Affiliation(s)
- May Zaw Thin
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK. .,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.
| | - Christopher Moore
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK
| | - Thomas Snoeks
- Imaging Research Facility, The Francis Crick Institute, London, UK
| | - Tammy Kalber
- Centre for Advanced Biomedical Imaging (CABI), University College London, London, UK
| | - Julian Downward
- Oncogene Biology Laboratory, The Francis Crick Institute, London, UK. .,Lung Cancer Group, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Axel Behrens
- Cancer Stem Cell Laboratory, Institute of Cancer Research, London, UK.,Adult Stem Cell Laboratory, The Francis Crick Institute, London, UK.,Department of Surgery and Cancer, Imperial College London, London, UK.,Cancer Research UK Convergence Science Centre, Imperial College London, London, UK
| |
Collapse
|
48
|
Yang J, Hou C, Wang H, Perez EA, Do-Umehara HC, Dong H, Arunagiri V, Tong F, Van Scoyk M, Cho M, Liu X, Ge X, Winn RA, Ridge KM, Wang X, Chandel NS, Liu J. Miz1 promotes KRAS-driven lung tumorigenesis by repressing the protocadherin Pcdh10. Cancer Lett 2023; 555:216025. [PMID: 36538983 PMCID: PMC9870713 DOI: 10.1016/j.canlet.2022.216025] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/03/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Targeting KRAS-mutated non-small-cell lung cancer (NSCLC) remains clinically challenging. Here we show that loss of function of Miz1 inhibits lung tumorigenesis in a mouse model of oncogenic KRAS-driven lung cancer. In vitro, knockout or silencing of Miz1 decreases cell proliferation, clonogenicity, migration, invasion, or anchorage-independent growth in mutant (MT) KRAS murine or human NSCLC cells but has unremarkable impact on non-tumorigenic cells or wild-type (WT) KRAS human NSCLC cells. RNA-sequencing reveals Protocadherin-10 (Pcdh10) as the top upregulated gene by Miz1 knockout in MT KRAS murine lung tumor cells. Chromatin immunoprecipitation shows Miz1 binding on the Pcdh10 promoter in MT KRAS lung tumor cells but not non-tumorigenic cells. Importantly, silencing of Pcdh10 rescues cell proliferation and clonogenicity in Miz1 knockout/knockdown MT KRAS murine or human tumor cells, and rescues allograft tumor growth of Miz1 knockout tumor cells in vivo. Miz1 is upregulated in MT KRAS lung tumor tissues compared with adjacent non-involved tissues in mice. Consistent with this, Miz1 is upregulated while Pcdh10 is downregulated in human lung adenocarcinomas (LUAD) compared with normal tissues, and high Miz1 levels or low Pcdh10 levels are associated with poor survival in lung cancer patients. Furthermore, the Miz1 signature is associated with worse survival in MT but not WT KRAS LUAD, and Pcdh10 is downregulated in MT compared to WT KRAS LUAD. Taken together, our studies implicate the Miz1/Pcdh10 axis in oncogenic KRAS-driven lung tumorigenesis.
Collapse
Affiliation(s)
- Jing Yang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Changchun Hou
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huashan Wang
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Edith A Perez
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Hanh Chi Do-Umehara
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Huali Dong
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Vinothini Arunagiri
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Fangjia Tong
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Michelle Van Scoyk
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Minsu Cho
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Xinyi Liu
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, 840 S. Wood St., Suite 130 CSN, MC 847, Chicago, IL, 60612, USA
| | - Robert A Winn
- Massey Cancer Center, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | - Karen M Ridge
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Xiaowei Wang
- Department of Pharmacology and Regenerative Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, USA
| | - Navdeep S Chandel
- Division of Pulmonary and Critical Care Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Jing Liu
- Department of Surgery, College of Medicine and University of Illinois Cancer Center, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
49
|
Yang H, Zhang K, Guo Y, Guo X, Hou K, Hou J, Luo Y, Liu J, Jia S. Gain-of-Function p53N236S Mutation Drives the Bypassing of HRas V12-Induced Cellular Senescence via PGC-1α. Int J Mol Sci 2023; 24:ijms24043790. [PMID: 36835200 PMCID: PMC9960896 DOI: 10.3390/ijms24043790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
One of the key steps in tumorigenic transformation is immortalization in which cells bypass cancer-initiating barriers such as senescence. Senescence can be triggered by either telomere erosion or oncogenic stress (oncogene-induced senescence, OIS) and undergo p53- or Rb-dependent cell cycle arrest. The tumor suppressor p53 is mutated in 50% of human cancers. In this study, we generated p53N236S (p53S) mutant knock-in mice and observed that p53S heterozygous mouse embryonic fibroblasts (p53S/+) escaped HRasV12-induced senescence after subculture in vitro and formed tumors after subcutaneous injection into severe combined immune deficiency (SCID) mice. We found that p53S increased the level and nuclear translocation of PGC-1α in late-stage p53S/++Ras cells (LS cells, which bypassed the OIS). The increase in PGC-1α promoted the biosynthesis and function of mitochondria in LS cells by inhibiting senescence-associated reactive oxygen species (ROS) and ROS-induced autophagy. In addition, p53S regulated the interaction between PGC-1α and PPARγ and promoted lipid synthesis, which may indicate an auxiliary pathway for facilitating cell escape from aging. Our results illuminate the mechanisms underlying p53S mutant-regulated senescence bypass and demonstrate the role played by PGC-1α in this process.
Collapse
|
50
|
Akama-Garren EH, Miller P, Carroll TM, Tellier M, Sutendra G, Buti L, Zaborowska J, Goldin RD, Slee E, Szele FG, Murphy S, Lu X. Regulation of immunological tolerance by the p53-inhibitor iASPP. Cell Death Dis 2023; 14:84. [PMID: 36746936 PMCID: PMC9902554 DOI: 10.1038/s41419-023-05567-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/23/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Maintenance of immunological homeostasis between tolerance and autoimmunity is essential for the prevention of human diseases ranging from autoimmune disease to cancer. Accumulating evidence suggests that p53 can mitigate phagocytosis-induced adjuvanticity thereby promoting immunological tolerance following programmed cell death. Here we identify Inhibitor of Apoptosis Stimulating p53 Protein (iASPP), a negative regulator of p53 transcriptional activity, as a regulator of immunological tolerance. iASPP-deficiency promoted lung adenocarcinoma and pancreatic cancer tumorigenesis, while iASPP-deficient mice were less susceptible to autoimmune disease. Immune responses to iASPP-deficient tumors exhibited hallmarks of immunosuppression, including activated regulatory T cells and exhausted CD8+ T cells. Interestingly, iASPP-deficient tumor cells and tumor-infiltrating myeloid cells, CD4+, and γδ T cells expressed elevated levels of PD-1H, a recently identified transcriptional target of p53 that promotes tolerogenic phagocytosis. Identification of an iASPP/p53 axis of immune homeostasis provides a therapeutic opportunity for both autoimmune disease and cancer.
Collapse
Affiliation(s)
- Elliot H Akama-Garren
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
- Harvard-MIT Health Sciences and Technology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Paul Miller
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Thomas M Carroll
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Michael Tellier
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Gopinath Sutendra
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Department of Medicine, University of Alberta, Edmonton, AB, T6G 2B7, Canada
| | - Ludovico Buti
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
- Charles River Laboratories, Leiden, Netherlands
| | - Justyna Zaborowska
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Robert D Goldin
- Centre for Pathology, St. Mary's Hospital, Imperial College, London, W2 1NY, UK
| | - Elizabeth Slee
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK
| | - Francis G Szele
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, OX1 3PT, UK
| | - Shona Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Xin Lu
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, OX3 7DQ, UK.
| |
Collapse
|