1
|
Kado T, Tomimaru Y, Kobayashi S, Harada A, Sasaki K, Iwagami Y, Yamada D, Noda T, Takahashi H, Kita S, Shimomura I, Miyagawa S, Doki Y, Eguchi H. Skeletal Myoblast Cells Enhance the Function of Transplanted Islets in Diabetic Mice. J Diabetes Res 2024; 2024:5574968. [PMID: 38800586 PMCID: PMC11126349 DOI: 10.1155/2024/5574968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/23/2024] [Indexed: 05/29/2024] Open
Abstract
Islet transplantation (ITx) is an established and safe alternative to pancreas transplantation for type 1 diabetes mellitus (T1DM) patients. However, most ITx recipients lose insulin independence by 3 years after ITx due to early graft loss, such that multiple donors are required to achieve insulin independence. In the present study, we investigated whether skeletal myoblast cells could be beneficial for promoting angiogenesis and maintaining the differentiated phenotypes of islets. In vitro experiments showed that the myoblast cells secreted angiogenesis-related cytokines (vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and stromal-derived factor-1α (SDF-1α)), contributed to maintenance of differentiated islet phenotypes, and enhanced islet cell insulin secretion capacity. To verify these findings in vivo, we transplanted islets alone or with myoblast cells under the kidney capsule of streptozotocin-induced diabetic mice. Compared with islets alone, the group bearing islets with myoblast cells had a significantly lower average blood glucose level. Histological examination revealed that transplants with islets plus myoblast cells were associated with a significantly larger insulin-positive area and significantly higher number of CD31-positive microvessels compared to islets alone. Furthermore, islets cotransplanted with myoblast cells showed JAK-STAT signaling activation. Our results suggest two possible mechanisms underlying enhancement of islet graft function with myoblast cells cotransplantation: "indirect effects" mediated by angiogenesis and "direct effects" of myoblast cells on islets via the JAK-STAT cascade. Overall, these findings suggest that skeletal myoblast cells enhance the function of transplanted islets, implying clinical potential for a novel ITx procedure involving myoblast cells for patients with diabetes.
Collapse
Affiliation(s)
- Takeshi Kado
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshito Tomimaru
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shogo Kobayashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Akima Harada
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Kazuki Sasaki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yoshifumi Iwagami
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Daisaku Yamada
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Takehiro Noda
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidenori Takahashi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shunbun Kita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
- Department of Adipose Management, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Shigeru Miyagawa
- Department of Cardiovascular Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Yuichiro Doki
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Osaka, Japan
| |
Collapse
|
2
|
Wang LL, Tuohy S, Xu KL, Nace A, Yang R, Zheng Y, Burdick JA, Cotsarelis G. Local and Sustained Baricitinib Delivery to the Skin through Injectable Hydrogels Containing Reversible Thioimidate Adducts. Adv Healthc Mater 2024; 13:e2303256. [PMID: 38207170 PMCID: PMC11076163 DOI: 10.1002/adhm.202303256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/30/2023] [Indexed: 01/13/2024]
Abstract
Janus kinase (JAK) inhibitors are approved for many dermatologic disorders, but their use is limited by systemic toxicities including serious cardiovascular events and malignancy. To overcome these limitations, injectable hydrogels are engineered for the local and sustained delivery of baricitinib, a representative JAK inhibitor. Hydrogels are formed via disulfide crosslinking of thiolated hyaluronic acid macromers. Dynamic thioimidate bonds are introduced between the thiolated hyaluronic acid and nitrile-containing baricitinib for drug tethering, which is confirmed with 1H and 13C nuclear magnetic resonance (NMR). Release of baricitinib is tunable over six weeks in vitro and active in inhibiting JAK signaling in a cell line containing a luciferase reporter reflecting interferon signaling. For in vivo activity, baricitinib hydrogels or controls are injected intradermally into an imiquimod-induced mouse model of psoriasis. Imiquimod increases epidermal thickness in mice, which is unaffected when treated with baricitinib or hydrogel alone. Treatment with baricitinib hydrogels suppresses the increased epidermal thickness in mice treated with imiquimod, suggesting that the sustained and local release of baricitinib is important for a therapeutic outcome. This study is the first to utilize a thioimidate chemistry to deliver JAK inhibitors to the skin through injectable hydrogels, which has translational potential for treating inflammatory disorders.
Collapse
Affiliation(s)
- Leo L. Wang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Spencer Tuohy
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
| | - Karen L. Xu
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| | - Jason A. Burdick
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania
- BioFrontiers Institute and Department of Chemical and Biological Engineering, College of Engineering and Applied Science, University of Colorado Boulder
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania
| |
Collapse
|
3
|
Duan Q, Zheng H, Qin Y, Yan J, Wang J, Burgess SM, Fan C. Stat3 Has a Different Role in Axon Growth During Development Than It Does in Axon Regeneration After Injury. Mol Neurobiol 2024; 61:1753-1768. [PMID: 37775721 DOI: 10.1007/s12035-023-03644-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 09/07/2023] [Indexed: 10/01/2023]
Abstract
Signal transducer and activator of transcription 3 (STAT3) is essential for neural development and regeneration as a key transcription factor and mitochondrial activator. However, the mechanism of Stat3 in axon development and regeneration has not been fully understood. In this study, using zebrafish posterior lateral line (PLL) axons, we demonstrate that Stat3 plays distinct roles in PLL axon embryonic growth and regeneration. Our experiments indicate that stat3 is required for PLL axon extension. In stat3 mutant zebrafish, the PLL axon ends were stalled at the level of the cloaca, and expression of stat3 rescues the PLL axon growth in a cell-autonomous manner. Jak/Stat signaling inhibition did not affect PLL axon growth indicating Jak/Stat was dispensable for PLL axon growth. In addition, we found that Stat3 was co-localized with mitochondria in PLL axons and important for the mitochondrial membrane potential and ATPase activity. The PLL axon growth defect of stat3 mutants was mimicked and rescued by rotenone and DCHC treatment, respectively, which suggests that Stat3 regulates PLL axon growth through mitochondrial Stat3. By contrast, mutation of stat3 or Jak/Stat signaling inhibition retarded PLL axon regeneration. Meanwhile, we also found Schwann cell migration was also inhibited in stat3 mutants. Taken together, Stat3 is required for embryonic PLL axon growth by regulating the ATP synthesis efficiency of mitochondria, whereas Stat3 stimulates PLL axon regeneration by regulating Schwann cell migration via Jak/Stat signaling. Our findings show a new mechanism of Stat3 in axon growth and regeneration.
Collapse
Affiliation(s)
- Qinwen Duan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Hongfei Zheng
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yanjun Qin
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jizhou Yan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Jian Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Chunxin Fan
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China.
- Marine Biomedical Science and Technology Innovation Platform of Lingang New Area, Shanghai, China.
| |
Collapse
|
4
|
Suprewicz Ł, Szczepański A, Lenart M, Piktel E, Fiedoruk K, Barreto-Duran E, Kula-Pacurar A, Savage PB, Milewska A, Bucki R, Pyrć K. Ceragenins exhibit antiviral activity against SARS-CoV-2 by increasing the expression and release of type I interferons upon activation of the host's immune response. Antiviral Res 2023; 217:105676. [PMID: 37481038 DOI: 10.1016/j.antiviral.2023.105676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 07/13/2023] [Accepted: 07/15/2023] [Indexed: 07/24/2023]
Abstract
The COVID-19 pandemic caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) heavily burdened the entire world socially and economically. Despite a generation of vaccines and therapeutics to confront infection, it remains a threat. Most available antivirals target viral proteins and block their activity or function. While such an approach is considered effective and safe, finding treatments for specific viruses of concern leaves us unprepared for developed resistance and future viral pandemics of unknown origin. Here, we propose ceragenins (CSAs), synthetic amphipathic molecules designed to mimic the properties of cationic antimicrobial peptides (cAMPs), as potential broad-spectrum antivirals. We show that selected CSAs exhibit antiviral activity against SARS-CoV-2 and low-pathogenic human coronaviruses 229E, OC43, and NL63. The mechanism of action of CSAs against coronaviruses is mainly attributed to the stimulation of antiviral cytokines, such as type I interferons or IL-6. Our study provides insight into a novel immunomodulatory strategy that might play an essential role during the current pandemic and future outbreaks.
Collapse
Affiliation(s)
- Łukasz Suprewicz
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Artur Szczepański
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marzena Lenart
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Bialystok, Bialystok, Poland
| | - Krzysztof Fiedoruk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland
| | - Emilia Barreto-Duran
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Anna Kula-Pacurar
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Paul B Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA
| | - Aleksandra Milewska
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Bialystok, Bialystok, Poland.
| | - Krzysztof Pyrć
- Virogenetics Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland.
| |
Collapse
|
5
|
Zeghal M, Laroche G, Freitas JD, Wang R, Giguère PM. Profiling of basal and ligand-dependent GPCR activities by means of a polyvalent cell-based high-throughput platform. Nat Commun 2023; 14:3684. [PMID: 37407564 DOI: 10.1038/s41467-023-39132-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 05/25/2023] [Indexed: 07/07/2023] Open
Abstract
Representing the most attractive and successful druggable receptors of the proteome, GPCRs regulate a myriad of physiological and pathophysiological functions. Although over half of present pharmaceuticals target GPCRs, the advancement of drug discovery is hampered by a lack of adequate screening tools, the majority of which are limited to probing agonist-induced G-protein and β-arrestin-2-mediated events as a measure of receptor activation. Here, we develop Tango-Trio, a comprehensive cell-based high-throughput platform comprising cumate-inducible expression of transducers, capable of the parallelized profiling of both basal and agonist-dependent GPCR activities. We capture the functional diversity of GPCRs, reporting β-arrestin-1/2 couplings, selectivities, and receptor internalization signatures across the GPCRome. Moreover, we present the construction of cumate-induced basal activation curves at approximately 200 receptors, including over 50 orphans. Overall, Tango-Trio's robustness is well-suited for the functional characterization and screening of GPCRs, especially for parallel interrogation, and is a valuable addition to the pharmacological toolbox.
Collapse
Affiliation(s)
- Manel Zeghal
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Geneviève Laroche
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Julia Douglas Freitas
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Rebecca Wang
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada
| | - Patrick M Giguère
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
- Brain and Mind Research Institute, University of Ottawa, Ottawa, ON, K1H8M5, Canada.
| |
Collapse
|
6
|
Saber M, Shekari F, Mousavi SA, Moini A, Miri MS, Esfandiari F. JAK/STAT3 pathway promotes proliferation of ovarian aggregate-derived stem cells in vitro. Exp Cell Res 2023:113689. [PMID: 37355151 DOI: 10.1016/j.yexcr.2023.113689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/13/2023] [Accepted: 06/17/2023] [Indexed: 06/26/2023]
Abstract
BACKGROUND The accurate identification and isolation of ovarian stem cells from mammalian ovaries remain a major challenge because of the lack of specific surface markers and suitable in vitro culture systems. Optimized culture conditions for in vitro expansion of ovarian stem cells would allow for identifying requirements of these stem cells for proliferation and differentiation that would pave the way to uncover role of ovarian stem cells in ovarian pathophysiology. Here, we used three-dimensional (3D) aggregate culture system for enrichment of ovarian stem cells and named them aggregate-derived stem cells (ASCs). We hypothesized that mimicking the ovarian microenvironment in vitro by using an aggregate model of the ovary would provide a suitable niche for the isolation of ovarian stem cells from adult mouse and human ovaries and wanted to find out the main cellular pathway governing the proliferation of these stem cells. RESULTS We showed that ovarian aggregates take an example from ovary microenvironment in terms of expression of ovarian markers, hormone secretion and supporting the viability of the cells. We found that aggregates-derived stem cells proliferate in vitro as long-term while remained expression of germline markers. These ovarian stem cells differentiated to oocyte like cells in vitro spontaneously. Transplantation of these stem cells in to chemotherapy mouse ovary could restore ovarian structure. RNA-sequencing analysis revealed that interleukin6 is upregulated pathway in ovarian aggregate-derived stem cells. Our data showed that JAK/Stat3 signaling pathway which is activated downstream of IL6 is critical for ovarian stem cells proliferation. CONCLUSIONS We developed a platform that is highly reproducible for in vitro propagation of ovarian stem cells. Our study provides a primary insight into cellular pathway governing the proliferation of ovarian stem cells.
Collapse
Affiliation(s)
- Maryam Saber
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Seyed-Ahmad Mousavi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ashraf Moini
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; Department of Gynecology and Obstetrics, Arash Women's Hospital, Tehran University of Medical Sciences, Tehran, Iran; Breast Disease Research Center (BDRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Monireh-Sadat Miri
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Fereshteh Esfandiari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
7
|
Barker KH, Higham JP, Pattison LA, Chessell IP, Welsh F, Smith ESJ, Bulmer DC. Sensitization of colonic nociceptors by IL-13 is dependent on JAK and p38 MAPK activity. Am J Physiol Gastrointest Liver Physiol 2023; 324:G250-G261. [PMID: 36749569 PMCID: PMC10010921 DOI: 10.1152/ajpgi.00280.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The effective management of visceral pain is a significant unmet clinical need for those affected by gastrointestinal diseases, such as inflammatory bowel disease (IBD). The rational design of novel analgesics requires a greater understanding of the mediators and mechanisms underpinning visceral pain. Interleukin-13 (IL-13) production by immune cells residing in the gut is elevated in IBD, and IL-13 appears to be important in the development of experimental colitis. Furthermore, receptors for IL-13 are expressed by neurons innervating the colon, though it is not known whether IL-13 plays any role in visceral nociception per se. To resolve this, we used Ca2+ imaging of cultured sensory neurons and ex vivo electrophysiological recording from the lumbar splanchnic nerve innervating the distal colon. Ca2+ imaging revealed the stimulation of small-diameter, capsaicin-sensitive sensory neurons by IL-13, indicating that IL-13 likely stimulates nociceptors. IL-13-evoked Ca2+ signals were attenuated by inhibition of Janus (JAK) and p38 kinases. In the lumbar splanchnic nerve, IL-13 did not elevate baseline firing, nor sensitize the response to capsaicin application, but did enhance the response to distention of the colon. In line with Ca2+ imaging experiments, IL-13-mediated sensitization of the afferent response to colon distention was blocked by inhibition of either JAK or p38 kinase signaling. Together, these data highlight a potential role for IL-13 in visceral nociception and implicate JAK and p38 kinases in pronociceptive signaling downstream of IL-13.
Collapse
Affiliation(s)
- Katie H Barker
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - James P Higham
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Luke A Pattison
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Iain P Chessell
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Fraser Welsh
- Department of Neuroscience, BioPharmaceuticals R&D, AstraZeneca, Cambridge, United Kingdom
| | - Ewan St J Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - David C Bulmer
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
8
|
Gandhi M, Bakhai V, Trivedi J, Mishra A, De Andrés F, LLerena A, Sharma R, Nair S. Current perspectives on interethnic variability in multiple myeloma: Single cell technology, population pharmacogenetics and molecular signal transduction. Transl Oncol 2022; 25:101532. [PMID: 36103755 PMCID: PMC9478452 DOI: 10.1016/j.tranon.2022.101532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 11/15/2022] Open
Abstract
This review discusses the emerging single cell technologies and applications in Multiple myeloma (MM), population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction. The role(s) of epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of MM are also discussed. It is understood that ethnic component acts as a driver of variable response to chemotherapy in different sub-populations globally. This review augments our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, myeloma microenvironment at the molecular and cellular level, and developing precision medicine strategies to combat this malignancy. The emerging single cell technologies hold great promise for enhancing our understanding of MM tumor heterogeneity and clonal diversity.
Multiple myeloma (MM) is an aggressive cancer characterised by malignancy of the plasma cells and a rising global incidence. The gold standard for optimum response is aggressive chemotherapy followed by autologous stem cell transplantation (ASCT). However, majority of the patients are above 60 years and this presents the clinician with complications such as ineligibility for ASCT, frailty, drug-induced toxicity and differential/partial response to treatment. The latter is partly driven by heterogenous genotypes of the disease in different subpopulations. In this review, we discuss emerging single cell technologies and applications in MM, population pharmacogenetics of MM, resistance to chemotherapy, genetic determinants of drug-induced toxicity, molecular signal transduction, as well as the role(s) played by epigenetics and noncoding RNAs including microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) that influence the risk and severity of the disease. Taken together, our discussions further our understanding of genetic variability in ‘myelomagenesis’ and drug-induced toxicity, augment our understanding of the myeloma microenvironment at the molecular and cellular level and provide a basis for developing precision medicine strategies to combat this malignancy.
Collapse
Affiliation(s)
- Manav Gandhi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, 6900 Lake Nona Blvd., Orlando, FL 32827, USA
| | - Viral Bakhai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Jash Trivedi
- University of Mumbai, Santa Cruz, Mumbai 400055, India
| | - Adarsh Mishra
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS University, V. L. Mehta Road, Vile Parle (West), Mumbai 400056, India
| | - Fernando De Andrés
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Adrián LLerena
- INUBE Extremadura Biosanitary Research Institute, Badajoz, Spain; Faculty of Medicine, University of Extremadura, Badajoz, Spain; CICAB Clinical Research Center, Pharmacogenetics and Personalized Medicine Unit, Badajoz University Hospital, Extremadura Health Service, Badajoz, Spain
| | - Rohit Sharma
- Department of Rasa Shastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| | - Sujit Nair
- University of Mumbai, Santa Cruz, Mumbai 400055, India.
| |
Collapse
|
9
|
Sanachai K, Mahalapbutr P, Hengphasatporn K, Shigeta Y, Seetaha S, Tabtimmai L, Langer T, Wolschann P, Kittikool T, Yotphan S, Choowongkomon K, Rungrotmongkol T. Pharmacophore-Based Virtual Screening and Experimental Validation of Pyrazolone-Derived Inhibitors toward Janus Kinases. ACS OMEGA 2022; 7:33548-33559. [PMID: 36157769 PMCID: PMC9494641 DOI: 10.1021/acsomega.2c04535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Janus kinases (JAKs) are nonreceptor protein tyrosine kinases that play a role in a broad range of cell signaling. JAK2 and JAK3 have been involved in the pathogenesis of common lymphoid-derived diseases and leukemia cancer. Thus, inhibition of both JAK2 and JAK3 can be a potent strategy to reduce the risk of these diseases. In the present study, the pharmacophore models built based on the commercial drug tofacitinib and the JAK2/3 proteins derived from molecular dynamics (MD) trajectories were employed to search for a dual potent JAK2/3 inhibitor by a pharmacophore-based virtual screening of 54 synthesized pyrazolone derivatives from an in-house data set. Twelve selected compounds from the virtual screening procedure were then tested for their inhibitory potency against both JAKs in the kinase assay. The in vitro kinase inhibition experiment indicated that compounds 3h, TK4g, and TK4b can inhibit both JAKs in the low nanomolar range. Among them, the compound TK4g showed the highest protein kinase inhibition with the half-maximal inhibitory concentration (IC50) value of 12.61 nM for JAK2 and 15.80 nM for JAK3. From the MD simulations study, it could be found that the sulfonamide group of TK4g can form hydrogen bonds in the hinge region at residues E930 and L932 of JAK2 and E903 and L905 of JAK3, while van der Waals interaction also plays a dominant role in ligand binding. Altogether, TK4g, found by virtual screening and biological tests, could serve as a novel therapeutical lead candidate.
Collapse
Affiliation(s)
- Kamonpan Sanachai
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
| | - Panupong Mahalapbutr
- Department
of Biochemistry, Faculty of Medicine, Khon
Kaen University, Khon Kaen40002, Thailand
| | - Kowit Hengphasatporn
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Yasuteru Shigeta
- Center
for Computational Sciences, University of
Tsukuba, 1-1-1 Tennodai, Tsukuba305-8577, Ibaraki, Japan
| | - Supaphorn Seetaha
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Lueacha Tabtimmai
- Department
of Biotechnology, Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Bangkok10800, Thailand
| | - Thierry Langer
- Department
of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna, Althanstraße 14, ViennaA-1090, Austria
| | - Peter Wolschann
- Institute
of Theoretical Chemistry, University of
Vienna, Vienna1090, Austria
| | - Tanakorn Kittikool
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Sirilata Yotphan
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry,
Faculty of Science, Mahidol University, Rama VI Road, Bangkok10400, Thailand
| | - Kiattawee Choowongkomon
- Department
of Biochemistry, Faculty of Science, Kasetsart
University, Bangkok10900, Thailand
| | - Thanyada Rungrotmongkol
- Center
of Excellence in Structural and Computational Biology Research Unit,
Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok10330, Thailand
- Program
in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok10330, Thailand
| |
Collapse
|
10
|
Hinay AA, Kakee S, Kageyama S, Tsuneki-Tokunaga A, Perdana WY, Akena Y, Nishiyama S, Kanai K. Pro-Inflammatory Cytokines and Interferon-Stimulated Gene Responses Induced by Seasonal Influenza A Virus with Varying Growth Capabilities in Human Lung Epithelial Cell Lines. Vaccines (Basel) 2022; 10:vaccines10091507. [PMID: 36146585 PMCID: PMC9503125 DOI: 10.3390/vaccines10091507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/05/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
In a previous study, we described the diverse growth capabilities of circulating seasonal influenza A viruses (IAVs) with low to high viral copy numbers in vitro. In this study, we analyzed the cause of differences in growth capability by evaluating pro-inflammatory cytokines (TNF-α, IL-6, IFN-β) and antiviral interferon-stimulated genes (ISG-15, IFIM1, and TRIM22). A549 cells (3.0 × 105 cells) were inoculated with circulating seasonal IAV strains and incubated for 6 and 24 h. In cells inoculated for 6 h, IAV production was assessed using IAV-RNA copies in the culture supernatant and cell pellets to evaluate gene expression. At 24 h post-infection, cells were collected for IFN-β and ISG-15 protein expression. A549 cells inoculated with seasonal IAV strains with a high growth capability expressed lower levels of IFN-β and ISGs than strains with low growth capabilities. Moreover, suppression of the JAK/STAT pathway enhanced the viral copies of seasonal IAV strains with a low growth capability. Our results suggest that the expression of ISG-15, IFIM1, and TRIM22 in seasonal IAV-inoculated A549 cells could influence the regulation of viral replication, indicating the existence of strains with high and low growth capability. Our results may contribute to the development of new and effective therapeutic strategies to reduce the risk of severe influenza infections.
Collapse
|
11
|
Cho CH, Roh KH, Lim NY, Park SJ, Park S, Kim HW. Role of the JAK/STAT pathway in a streptozotocin-induced diabetic retinopathy mouse model. Graefes Arch Clin Exp Ophthalmol 2022; 260:3553-3563. [DOI: 10.1007/s00417-022-05694-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 03/30/2022] [Accepted: 05/02/2022] [Indexed: 11/29/2022] Open
|
12
|
Interferon-γ Preferentially Promotes Necroptosis of Lung Epithelial Cells by Upregulating MLKL. Cells 2022; 11:cells11030563. [PMID: 35159372 PMCID: PMC8833897 DOI: 10.3390/cells11030563] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/30/2022] [Accepted: 02/04/2022] [Indexed: 12/15/2022] Open
Abstract
Necroptosis, a form of programmed lytic cell death, has emerged as a driving factor in the pathogenesis of acute lung injury (ALI). As ALI is often associated with a cytokine storm, we determined whether pro-inflammatory cytokines modulate the susceptibility of lung cells to necroptosis and which mediators dominate to control necroptosis. In this study, we pretreated/primed mouse primary lung epithelial and endothelial cells with various inflammatory mediators and assessed cell type-dependent responses to different necroptosis inducers and their underlying mechanisms. We found that interferon-γ (IFNγ) as low as 1 ng/mL preferentially promoted necroptosis and accelerated the release of damage-associated molecular patterns from primary alveolar and airway epithelial cells but not lung microvascular endothelial cells. Type-I IFNα was about fifty-fold less effective than IFNγ. Conversely, TNFα or agonists of Toll-like receptor-3 (TLR3), TLR4, TLR7 and TLR9 had a minor effect. The enhanced necroptosis in IFNγ-activated lung epithelial cells was dependent on IFNγ signaling and receptor-interacting protein kinase-3. We further showed that necroptosis effector mixed lineage kinase domain-like protein (MLKL) was predominantly induced by IFNγ, contributing to the enhanced necroptosis in lung epithelial cells. Collectively, our findings indicate that IFNγ is a potent enhancer of lung epithelial cell susceptibility to necroptosis.
Collapse
|
13
|
Li B, Wan Q, Li Z, Chng WJ. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers (Basel) 2021; 13:cancers13205147. [PMID: 34680295 PMCID: PMC8533975 DOI: 10.3390/cancers13205147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Janus kinases (JAKs) are transmembrane receptors that pass signals from extracellular ligands to downstream. Increasing evidence has suggested that JAK family aberrations promote lymphoid cancer pathogenesis and progression through mediating gene expression via the JAK/STAT pathway or noncanonical JAK signaling. We are here to review how canonical JAK/STAT and noncanonical JAK signalings are represented and deregulated in lymphoid malignancies and how to target JAK for therapeutic purposes. Abstract The Janus kinase (JAK) family are known to respond to extracellular cytokine stimuli and to phosphorylate and activate signal transducers and activators of transcription (STAT), thereby modulating gene expression profiles. Recent studies have highlighted JAK abnormality in inducing over-activation of the JAK/STAT pathway, and that the cytoplasmic JAK tyrosine kinases may also have a nuclear role. A couple of anti-JAK therapeutics have been developed, which effectively harness lymphoid cancer cells. Here we discuss mutations and fusions leading to JAK deregulations, how upstream nodes drive JAK expression, how classical JAK/STAT pathways are represented in lymphoid malignancies and the noncanonical and nuclear role of JAKs. We also summarize JAK inhibition therapeutics applied alone or synergized with other drugs in treating lymphoid malignancies.
Collapse
Affiliation(s)
- Boheng Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Qin Wan
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
| | - Zhubo Li
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China; or (Q.W.)
- Correspondence: or (Z.L.); (W.-J.C.)
| | - Wee-Joo Chng
- Department of Haematology-Oncology, National University Cancer Institute of Singapore, Singapore 119074, Singapore
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
- Correspondence: or (Z.L.); (W.-J.C.)
| |
Collapse
|
14
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn B, Kaye D, Liew D, Wang BH. Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1. Cell Signal 2020; 72:109629. [PMID: 32278008 DOI: 10.1016/j.cellsig.2020.109629] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/03/2023]
Abstract
Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia.
| |
Collapse
|
15
|
Corsetti G, Yuan Z, Romano C, Chen-Scarabelli C, Fanzani A, Pasini E, Dioguardi FS, Onorati F, Linardi D, Knight R, Patel H, Faggian G, Saravolatz L, Scarabelli TM. Urocortin Induces Phosphorylation of Distinct Residues of Signal Transducer and Activator of Transcription 3 (STAT3) via Different Signaling Pathways. Med Sci Monit Basic Res 2019; 25:139-152. [PMID: 31073117 PMCID: PMC6532558 DOI: 10.12659/msmbr.914611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Urocortin (Ucn) is a member of the hypothalamic corticotrophin-releasing factor family and has been shown to reduce cell death in the heart caused by ischemia/reperfusion (I/R) injury. Signal transducer and activator of transcription 3 (STAT3) is a transcription factor known to function as a pro-survival and anti-apoptotic factor, whose activation depends on a variety of cytokines, including IL-6. A recent study demonstrated that urocortin induced IL-6 release from cardiomyocytes in a CRF-R2-dependent manner, suggesting a possible link between CRF-R2 stimulation and STAT3 activation. MATERIAL AND METHODS Experimental work was carried out in HL-1 cardiac myocytes exposed to serum starvation for 16-24 h. RESULTS Ucn stimulation led to IL-6 expression and release from mouse atrial HL-1 cardiomyocytes. Ucn treatment led to rapid phosphorylation of JAK2, which was blocked by the protein synthesis inhibitor cycloheximide or the JAK inhibitor AG490. Urocortin treatment induced STAT3 phosphorylation at Y705 and S727 through transactivation of JAK2 in an IL-6-dependent manner, but had no effect on STAT1 activity. Kinase inhibition experiments revealed that urocortin induces STAT3 S727 phosphorylation through ERK1/2 and Y705 phosphorylation through Src tyrosine kinase. In line with this finding, urocortin failed to induce phosphorylation of Y705 residue in SYF cells bearing null mutation of Src, while phosphorylation of S727 residue was unchanged. CONCLUSIONS Here, we have shown that Ucn induces activation of STAT3 through diverging signaling pathways. Full understanding of these signaling pathways will help fully exploit the cardioprotective properties of endogenous and exogenous Ucn.
Collapse
Affiliation(s)
- Giovanni Corsetti
- Division of Human Anatomy and Physiopathology, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Zhaokan Yuan
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Claudia Romano
- Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Carol Chen-Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| | - Alessandro Fanzani
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Evasio Pasini
- Scientific Clinical Institutes Maugeri, Cardiac Rehabilitation Lumezzane Institute, Brescia, Italy
| | | | - Francesco Onorati
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Daniele Linardi
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Richard Knight
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, United Kingdom
| | - Hemang Patel
- Department of Internal Medicine, General Medical Education, Ascension St. John Hospital, Detroit, MI, USA.,Department of Internal Medicine, Wayne State University - School of Medicine, Detroit, MI, USA
| | - Giuseppe Faggian
- Division of Cardiovascular Surgery, Verona University Hospital, Verona, Italy
| | - Louis Saravolatz
- Department of Medicine, Ascension St John Hospital and Wayne State University School of Medicine, Detroit, MI, USA
| | - Tiziano M Scarabelli
- Center for Heart and Vessel Preclinical Studies, Department of Internal Medicine, St. John Hospital and Medical Center, Wayne State University, Detroit, MI, USA
| |
Collapse
|
16
|
Koseki T, Suehiro N, Masuda Y, Miyoshi N, Muraoka D, Ogo N, Asai A. Discovery of a New STAT3 Inhibitor Acting on the Linker Domain. Biol Pharm Bull 2019; 42:792-800. [DOI: 10.1248/bpb.b18-00992] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuya Koseki
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Naoya Suehiro
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Yoshiaki Masuda
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Nao Miyoshi
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Daisuke Muraoka
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Naohisa Ogo
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| | - Akira Asai
- Center for Drug Discovery, Graduate Division of Pharmaceutical Sciences, University of Shizuoka
| |
Collapse
|
17
|
Li W, Zhang Q, Chen K, Sima Z, Liu J, Yu Q, Liu J. 2-Ethoxystypandrone, a novel small-molecule STAT3 signaling inhibitor from Polygonum cuspidatum, inhibits cell growth and induces apoptosis of HCC cells and HCC Cancer stem cells. Altern Ther Health Med 2019; 19:38. [PMID: 30709346 PMCID: PMC6359800 DOI: 10.1186/s12906-019-2440-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 01/15/2019] [Indexed: 12/26/2022]
Abstract
Background Signal transducer and activator of transcription 3 (STAT3) is an oncogene constitutively activated in hepatocellular carcinoma (HCC) cells and HCC cancer stem cells (CSCs). Constitutively activated STAT3 plays a pivotal role in holding cancer stemness of HCC CSCs, which are essential for hepatoma initiation, relapse, metastasis and drug resistance. Therefore, STAT3 has been validated as a novel anti-cancer drug target and the strategies targeting HCC CSCs may bring new hopes to HCC therapy. This study aimed to isolate and identify small-molecule STAT3 signaling inhibitors targeting CSCs from the ethyl acetate (EtOAc) extract of the roots of Polygonum cuspidatum and to evaluate their in vitro anti-cancer activities. Methods The chemical components of the EtOAc extract and the subfractions of P. cuspidatum were isolated by using various column chromatographies on silical gel, Sephadex LH-20, and preparative HPLC. Their chemical structures were then determined on the basis of spectroscopic data including NMR, MS and IR analysis and their physicochemical properties. The inhibitory effects of the isolated compounds against STAT3 signaling were screened by a STAT3-dependent luciferase reporter gene assay. The tyrosine phosphorylation of STAT3 was examined by Western Blot analysis. In vitro anti-cancer effects of the STAT3 pathway inhibitor were further evaluated on cell growth of human HCC cells by a MTT assay, on self-renewal capacity of HCC CSCs by the tumorsphere formation assay, and on cell cycle and apoptosis by flow cytometry analysis, respectively. Results The EtOAc extract of the roots of P. cuspidatum was investigated and a novel juglone analogue 2-ethoxystypandrone (1) along with seven known compounds (2–8) was isolated. Among the eight isolated compounds 1–8, 2-ethoxystypandrone was a novel and potent STAT3 signaling inhibitor (IC50 = 7.75 ± 0.18 μM), and inhibited the IL-6-induced and constitutive activation of phosphorylation of STAT3 in HCC cells. Moreover, 2-ethoxystypandrone inhibited cell survival of HCC cells (IC50 = 3.69 ± 0.51 μM ~ 20.36 ± 2.90 μM), blocked the tumorspheres formation (IC50 = 2.70 ± 0.28 μM), and induced apoptosis of HCC CSCs in a dose-dependent manner. Conclusion A novel juglone analogue 2-ethoxystypandrone was identified from the EtOAc extract of the roots of P. cuspidatum and was demonstrated to be a potent small-molecule STAT3 signaling inhibitor, which strongly blocked STAT3 activation, inhibited proliferation, and induced cell apoptosis of HCC cells and HCC CSCs. 2-Ethoxystypandrone as a STAT3 signaling inhibitor might be a promising lead compound for further development into an anti-CSCs drug. Electronic supplementary material The online version of this article (10.1186/s12906-019-2440-9) contains supplementary material, which is available to authorized users.
Collapse
|
18
|
Meyer AN, Gallo LH, Ko J, Cardenas G, Nelson KN, Siari A, Campos AR, Whisenant TC, Donoghue DJ. Oncogenic mutations in IKKβ function through global changes induced by K63-linked ubiquitination and result in autocrine stimulation. PLoS One 2018; 13:e0206014. [PMID: 30335863 PMCID: PMC6193727 DOI: 10.1371/journal.pone.0206014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mutations at position K171 in the kinase activation loop of Inhibitor of κB kinase beta (IKKβ) occur in multiple myeloma, spleen marginal zone lymphoma and mantle cell lymphoma. Previously, we demonstrated that these result in constitutive kinase activation and stimulate Signal Transducer and Activator of Transcription 3 (STAT3). This work also identified K147 as a site of K63-linked regulatory ubiquitination required for activation of signaling pathways. We now present a more detailed analysis of ubiquitination sites together with a comprehensive examination of the signaling pathways activated by IKKβ K171E mutants. Downstream activation of STAT3 is dependent upon the activity of: UBE2N, the E2 ubiquitin ligase involved in K63-linked ubiquitination; TAK1 (MAP3K7), or TGFβ Activated Kinase, which forms a complex required for NFκB activation; JAK kinases, involved proximally in the phosphorylation of STAT transcription factors in response to inflammatory cytokines; and gp130, or IL-6 Receptor Subunit Beta which, upon binding IL-6 or other specific cytokines, undergoes homodimerization leading to activation of associated JAKs, resulting in STAT activation. We further demonstrate, using an IL-6-responsive cell line, that IKKβ K171E mutants stimulate the release of IL-6 activity into conditioned media. These results show that IKKβ K171E mutants trigger an autocrine loop in which IL-6 is secreted and binds to the IL-6 receptor complex gp130, resulting in JAK activation. Lastly, by examining the differential abundance of proteins associated with K63-only-ubiquitinated IKKβ K171E, proteomic analysis demonstrates the global activation of proliferative responses. As cancers harboring K171-mutated IKKβ are likely to also exhibit activated STAT3 and p44/42 MAPK (Erk1/2), this suggests the possibility of using MAPK (Erk1/2) and JAK inhibitors, or specific ubiquitination inhibitors. K63-linked ubiquitination occurs in other kinases at sites homologous to K147 in IKKβ, including K578 in BRAF V600E, which serves as an oncogenic driver in melanoma and other cancers.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Guillermo Cardenas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Katelyn N. Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Asma Siari
- Université Joseph Fourier Grenoble, Grenoble, France
| | - Alexandre R. Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
19
|
Honda-Ozaki F, Terashima M, Niwa A, Saiki N, Kawasaki Y, Ito H, Hotta A, Nagahashi A, Igura K, Asaka I, Li HL, Yanagimachi M, Furukawa F, Kanazawa N, Nakahata T, Saito MK. Pluripotent Stem Cell Model of Nakajo-Nishimura Syndrome Untangles Proinflammatory Pathways Mediated by Oxidative Stress. Stem Cell Reports 2018; 10:1835-1850. [PMID: 29731430 PMCID: PMC5989695 DOI: 10.1016/j.stemcr.2018.04.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 01/10/2023] Open
Abstract
Nakajo-Nishimura syndrome (NNS) is an immunoproteasome-associated autoinflammatory disorder caused by a mutation of the PSMB8 gene. Although dysfunction of the immunoproteasome causes various cellular stresses attributed to the overproduction of inflammatory cytokines and chemokines in NNS, the underlying mechanisms of the autoinflammation are still largely unknown. To investigate and understand the mechanisms and signal pathways in NNS, we established a panel of isogenic pluripotent stem cell (PSC) lines with PSMB8 mutation. Activity of the immunoproteasome in PSMB8-mutant PSC-derived myeloid cell lines (MT-MLs) was reduced even without stimulation compared with non-mutant-MLs. In addition, MT-MLs showed an overproduction of inflammatory cytokines and chemokines, with elevated reactive oxygen species (ROS) and phosphorylated p38 MAPK levels. Treatment with p38 MAPK inhibitor and antioxidants decreased the abnormal production of cytokines and chemokines. The current PSC model revealed a specific ROS-mediated inflammatory pathway, providing a platform for the discovery of alternative therapeutic options for NNS and related immunoproteasome disorders. An isogenic PSC panel for Nakajo-Nishimura syndrome was prepared Mutant myeloid cell lines showed increased proinflammatory response p38 MAPK inhibitor and antioxidant treatment restored the proinflammatory phenotype
Collapse
Affiliation(s)
- Fumiko Honda-Ozaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Madoka Terashima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akira Niwa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Norikazu Saiki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Haruna Ito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Akitsu Hotta
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Ayako Nagahashi
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koichi Igura
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Isao Asaka
- Department of Fundamental Cell Technology, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Hongmei Lisa Li
- Department of Life Science Frontiers, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Masakatsu Yanagimachi
- Department of Pediatrics, Tokyo Medical and Dental University, Tokyo 113-8519, Japan
| | - Fukumi Furukawa
- Department of Dermatology, Wakayama Medical University, Wakayama 641-0012, Japan
| | - Nobuo Kanazawa
- Department of Dermatology, Wakayama Medical University, Wakayama 641-0012, Japan.
| | - Tatsutoshi Nakahata
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan.
| |
Collapse
|
20
|
Xie L, Zeng Y, Dai Z, He W, Ke H, Lin Q, Chen Y, Bu J, Lin D, Zheng M. Chemical and genetic inhibition of STAT3 sensitizes hepatocellular carcinoma cells to sorafenib induced cell death. Int J Biol Sci 2018; 14:577-585. [PMID: 29805309 PMCID: PMC5968850 DOI: 10.7150/ijbs.22220] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 03/01/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) has become the second leading cause of cancer related death, with an increasing death rate in recent years. For advanced HCC, sorafenib is the first-line FDA approved drug, with no more than 3 months' overall survival advantage. Recently, a novel strategy has been proposed to improve sorafenib efficacy through enhancing the ability of sorafenib to induce cell death. STAT3 plays a key role in cancer development and recurrence by promoting cell proliferation, survival and immune evasion through its well-established function as a transcription factor in cancer. Notably, STAT3 transcription activity, indicated by its phosphorylation on Y705 is heterogeneous in different liver cancer cell lines. And sorafenib attenuates STAT3 phosphorylation on Y705. However, the role of STAT3 in sorafenib induced cell death is still largely unknown. Here, we show that liver cancer cells also exhibit heterogeneous sensitivities to sorafenib induced cell death, which co-relates with the STAT3-Y705 phosphorylation levels and JAK1/2 expression levels in Hep3B, Huh7 and HepG2 cells. Furthermore, overexpression or knockdown of STAT3 could switch HCC cells between resistant and sensitive to sorafenib induced cell death, which could be partially due to its regulation on Mcl-1, an anti-apoptotic protein. Finally, both inhibitors of STAT3 SH2 domain (S3i-201) or STAT3 upstream kinases JAKs (JAK inhibitor I) could synergistically enhance sorafenib induced cell death. Taken together, these data strongly suggest that STAT3 is not only a downstream effector of sorafenib, but also a key regulator of cellular sensitivity to sorafenib induced cell death, which provide support for the notion to develop STAT3-targeting drugs to improve clinical efficacy of sorafenib in liver cancer.
Collapse
Affiliation(s)
- Linna Xie
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Yanhua Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Zichan Dai
- Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Wensheng He
- Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Huozhao Ke
- Department of Food and Bioengineering, Fujian Vocational College of Bioengineering, Fuzhou, Fujian, 350007, China
| | - Qiaofa Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Yan Chen
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Jingjing Bu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Dexin Lin
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China
| | - Min Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, Fujian, 350108, China.,Fujian Key Laboratory for Translational Research in Cancer and Neurodegenerative Diseases, Institute for Translational Medicine, Fujian Medical University, Fuzhou, Fujian, 350108, China
| |
Collapse
|
21
|
Babaei R, Schuster M, Meln I, Lerch S, Ghandour RA, Pisani DF, Bayindir-Buchhalter I, Marx J, Wu S, Schoiswohl G, Billeter AT, Krunic D, Mauer J, Lee YH, Granneman JG, Fischer L, Müller-Stich BP, Amri EZ, Kershaw EE, Heikenwälder M, Herzig S, Vegiopoulos A. Jak-TGFβ cross-talk links transient adipose tissue inflammation to beige adipogenesis. Sci Signal 2018; 11:11/527/eaai7838. [PMID: 29692363 DOI: 10.1126/scisignal.aai7838] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The transient activation of inflammatory networks is required for adipose tissue remodeling including the "browning" of white fat in response to stimuli such as β3-adrenergic receptor activation. In this process, white adipose tissue acquires thermogenic characteristics through the recruitment of so-called beige adipocytes. We investigated the downstream signaling pathways impinging on adipocyte progenitors that promote de novo formation of adipocytes. We showed that the Jak family of kinases controlled TGFβ signaling in the adipose tissue microenvironment through Stat3 and thereby adipogenic commitment, a function that was required for beige adipocyte differentiation of murine and human progenitors. Jak/Stat3 inhibited TGFβ signaling to the transcription factors Srf and Smad3 by repressing local Tgfb3 and Tgfb1 expression before the core transcriptional adipogenic cascade was activated. This pathway cross-talk was triggered in stromal cells by ATGL-dependent adipocyte lipolysis and a transient wave of IL-6 family cytokines at the onset of adipose tissue remodeling induced by β3-adrenergic receptor stimulation. Our results provide insight into the activation of adipocyte progenitors and are relevant for the therapeutic targeting of adipose tissue inflammatory pathways.
Collapse
Affiliation(s)
- Rohollah Babaei
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Maximilian Schuster
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Irina Meln
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Sarah Lerch
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Rayane A Ghandour
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice 06100, France
| | - Didier F Pisani
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice 06100, France
| | - Irem Bayindir-Buchhalter
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Julia Marx
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany
| | - Shuang Wu
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany.,Department of Toxicology, School of Public Health, Peking University, Beijing 100191, China
| | - Gabriele Schoiswohl
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Adrian T Billeter
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Damir Krunic
- Light Microscopy Facility, German Cancer Research Center, Heidelberg 69120, Germany
| | - Jan Mauer
- Max Planck Institute for Metabolism Research Cologne, Cologne 50931, Germany
| | - Yun-Hee Lee
- College of Pharmacy, Yonsei University, Incheon 406-840, South Korea
| | - James G Granneman
- Center for Integrative Metabolic and Endocrine Research, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Lars Fischer
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Beat P Müller-Stich
- Department of General, Visceral, and Transplantation Surgery, University of Heidelberg, Heidelberg 69120, Germany
| | - Ez-Zoubir Amri
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Nice 06100, France
| | - Erin E Kershaw
- Division of Endocrinology, Department of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mathias Heikenwälder
- Division of Chronic Inflammation and Cancer (F180), German Cancer Research Center, Heidelberg 69120, Germany
| | - Stephan Herzig
- Helmholtz Center Munich, Institute for Diabetes and Cancer (IDC), Neuherberg 85764, Germany. .,Joint Heidelberg-Institute for Diabetes and Cancer Translational Diabetes Program, Heidelberg University Hospital, Heidelberg 69120, Germany
| | - Alexandros Vegiopoulos
- DKFZ Junior Group Metabolism and Stem Cell Plasticity (A171), German Cancer Research Center, Heidelberg 69120, Germany.
| |
Collapse
|
22
|
Activation of Signal Transduction and Activator of Transcription 3 Signaling Contributes to Helicobacter-Associated Gastric Epithelial Proliferation and Inflammation. Gastroenterol Res Pract 2018; 2018:9050715. [PMID: 29849601 PMCID: PMC5911338 DOI: 10.1155/2018/9050715] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/25/2017] [Accepted: 01/14/2018] [Indexed: 02/08/2023] Open
Abstract
Background/Aim Although IL-6-mediated activation of the signal transduction and activator of transcription 3 (STAT3) axis is involved in inflammation and cancer, the role of STAT3 in Helicobacter-associated gastric inflammation and carcinogenesis is unclear. This study investigated the role of STAT3 in gastric inflammation and carcinogenesis and examined the molecular mechanism of Helicobacter-induced gastric phenotypes. Methods To evaluate the contribution of STAT3 to gastric inflammation and carcinogenesis, we used wild-type (WT) and gastric epithelial conditional Stat3-knockout (Stat3Δgec) mice. Mice were infected with Helicobacter felis and euthanized at 18 months postinfection. Mouse gastric organoids were treated with recombinant IL-6 (rIL-6) or rIL-11 and a JAK inhibitor (JAKi) to assess the role of IL-6/STAT3 signaling in vitro. Results Inflammation and mucous metaplasia were more severe in WT mice than in Stat3Δgec mice. The epithelial cell proliferation rate and STAT3 activation were increased in WT mice. Application of rIL-6 and rIL-11 induced expression of intestinal metaplasia-associated genes, such as Tff2; this induction was suppressed by JAKi administration. Conclusions Loss of STAT3 signaling in the gastric mucosa leads to decreased epithelial cell proliferation, atrophy, and metaplasia in the setting of Helicobacter infection. Therefore, activation of STAT3 signaling may play a key role in Helicobacter-associated gastric carcinogenesis.
Collapse
|
23
|
Abramson HN. Kinase inhibitors as potential agents in the treatment of multiple myeloma. Oncotarget 2018; 7:81926-81968. [PMID: 27655636 PMCID: PMC5348443 DOI: 10.18632/oncotarget.10745] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/30/2016] [Indexed: 12/13/2022] Open
Abstract
Recent years have witnessed a dramatic increase in the number of therapeutic options available for the treatment of multiple myeloma (MM) - from immunomodulating agents to proteasome inhibitors to histone deacetylase (HDAC) inhibitors and, most recently, monoclonal antibodies. Used in conjunction with autologous hematopoietic stem cell transplantation, these modalities have nearly doubled the disease's five-year survival rate over the last three decades to about 50%. In spite of these advances, MM still is considered incurable as resistance and relapse are common. While small molecule protein kinase inhibitors have made inroads in the therapy of a number of cancers, to date their application to MM has been less than successful. Focusing on MM, this review examines the roles played by a number of kinases in driving the malignant state and the rationale for target development in the design of a number of kinase inhibitors that have demonstrated anti-myeloma activity in both in vitro and in vivo xenograph models, as well as those that have entered clinical trials. Among the targets and their inhibitors examined are receptor and non-receptor tyrosine kinases, cell cycle control kinases, the PI3K/AKT/mTOR pathway kinases, protein kinase C, mitogen-activated protein kinase, glycogen synthase kinase, casein kinase, integrin-linked kinase, sphingosine kinase, and kinases involved in the unfolded protein response.
Collapse
Affiliation(s)
- Hanley N Abramson
- Department of Pharmaceutical Sciences, Wayne State University, Detroit, MI, USA
| |
Collapse
|
24
|
Targeting signaling pathways in multiple myeloma: Pathogenesis and implication for treatments. Cancer Lett 2018; 414:214-221. [DOI: 10.1016/j.canlet.2017.11.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 11/14/2017] [Accepted: 11/17/2017] [Indexed: 12/15/2022]
|
25
|
Ma JF, Sanchez BJ, Hall DT, Tremblay AMK, Di Marco S, Gallouzi IE. STAT3 promotes IFNγ/TNFα-induced muscle wasting in an NF-κB-dependent and IL-6-independent manner. EMBO Mol Med 2017; 9:622-637. [PMID: 28264935 PMCID: PMC5412921 DOI: 10.15252/emmm.201607052] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cachexia is a debilitating syndrome characterized by involuntary muscle wasting that is triggered at the late stage of many cancers. While the multifactorial nature of this syndrome and the implication of cytokines such as IL‐6, IFNγ, and TNFα is well established, we still do not know how various effector pathways collaborate together to trigger muscle atrophy. Here, we show that IFNγ/TNFα promotes the phosphorylation of STAT3 on Y705 residue in the cytoplasm of muscle fibers by activating JAK kinases. Unexpectedly, this effect occurs both in vitro and in vivo independently of IL‐6, which is considered as one of the main triggers of STAT3‐mediated muscle wasting. pY‐STAT3 forms a complex with NF‐κB that is rapidly imported to the nucleus where it is recruited to the promoter of the iNos gene to activate the iNOS/NO pathway, a well‐known downstream effector of IFNγ/TNFα‐induced muscle loss. Together, these findings show that STAT3 and NF‐κB respond to the same upstream signal and cooperate to promote the expression of pro‐cachectic genes, the identification of which could provide effective targets to combat this deadly syndrome.
Collapse
Affiliation(s)
- Jennifer F Ma
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Brenda J Sanchez
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Derek T Hall
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Anne-Marie K Tremblay
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Sergio Di Marco
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada
| | - Imed-Eddine Gallouzi
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre, McGill University, Montreal, QC, Canada .,Life Sciences Division, College of Science and Engineering, Hamad Bin Khalifa University (HBKU), Education City, Doha, Qatar
| |
Collapse
|
26
|
Wang Y, Mumm JB, Herbst R, Kolbeck R, Wang Y. IL-22 Increases Permeability of Intestinal Epithelial Tight Junctions by Enhancing Claudin-2 Expression. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2017; 199:3316-3325. [PMID: 28939759 DOI: 10.4049/jimmunol.1700152] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 08/23/2017] [Indexed: 12/14/2022]
Abstract
Dysfunction of the epithelial barrier is a hallmark of inflammatory intestinal diseases. The intestinal epithelial barrier is maintained by expression of tight junctions that connect adjacent epithelial cells and seal the paracellular space. IL-22 is critical for the maintenance of intestinal barrier function through promoting antipathogen responses and regeneration of epithelial tissues in the gut. However, little is known about the effects of IL-22 on the regulation of tight junctions in the intestinal epithelium. In this study we report that IL-22 signals exclusively through the basolateral side of polarized Caco-2 cell monolayers. IL-22 treatment does not affect the flux of uncharged macromolecules across cell monolayers but significantly reduces transepithelial electrical resistance (TEER), indicating an increase of paracellular permeability for ions. IL-22 treatment on Caco-2 monolayers and on primary human intestinal epithelium markedly induces the expression of Claudin-2, a cation-channel-forming tight junction protein. Furthermore, treatment of IL-22 in mice upregulates Claudin-2 protein in colonic epithelial cells. Knocking down Claudin-2 expression with small interfering RNA reverses the reduction of TEER in IL-22-treated cells. Moreover, IL-22-mediated upregulation of Claudin-2 and loss of TEER can be suppressed with the treatment of JAK inhibitors. In summary, our results reveal that IL-22 increases intestinal epithelial permeability by upregulating Claudin-2 expression through the JAK/STAT pathway. These results provide novel mechanistic insights into the role of IL-22 in the regulation and maintenance of the intestinal epithelial barrier.
Collapse
Affiliation(s)
- Yaya Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - John Brian Mumm
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - Ronald Herbst
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| | - Roland Kolbeck
- Department of Respiratory, Inflammation and Autoimmune Research, MedImmune, Gaithersburg, MD 20878
| | - Yue Wang
- Department of Oncology Research, MedImmune, Gaithersburg, MD 20878; and
| |
Collapse
|
27
|
Iriyama N, Hino H, Moriya S, Hiramoto M, Hatta Y, Takei M, Miyazawa K. The cyclin-dependent kinase 4/6 inhibitor, abemaciclib, exerts dose-dependent cytostatic and cytocidal effects and induces autophagy in multiple myeloma cells. Leuk Lymphoma 2017; 59:1439-1450. [DOI: 10.1080/10428194.2017.1376741] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Noriyoshi Iriyama
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Hirotsugu Hino
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Shota Moriya
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Masaki Hiramoto
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| | - Yoshihiro Hatta
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Masami Takei
- Department of Medicine, Division of Hematology and Rheumatology, Nihon University School of Medicine, Tokyo, Japan
| | - Keisuke Miyazawa
- Department of Biochemistry, Tokyo Medical University, Tokyo, Japan
| |
Collapse
|
28
|
Ramakrishnan V, D'Souza A. Signaling Pathways and Emerging Therapies in Multiple Myeloma. Curr Hematol Malig Rep 2017; 11:156-64. [PMID: 26922744 DOI: 10.1007/s11899-016-0315-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Multiple myeloma (MM) is a devastating malignancy of antibody-producing plasma cells. In the absence of a single unifying genetic event contributing to disease manifestation, efforts have focused on understanding signaling events deregulated in myeloma plasma cells. MM cells are dependent on both cellular and non-cellular components of the tumor microenvironment such as bone marrow stromal cells, endothelial cells, and cytokines such as interleukin 6 (IL6), vascular endothelial growth factor (VEGF), and insulin-like growth factor (IGF) for their growth and survival. The cumulative effect of such interactions is the aberrant activation of numerous signal transduction pathways within the MM plasma cells leading to uncontrolled growth and prevention of apoptosis. Here, we will review our current understanding of some of the key signal transduction pathways dysregulated in MM and emerging therapies targeting these pathways in MM.
Collapse
Affiliation(s)
- Vijay Ramakrishnan
- Division of Hematology, Mayo Clinic, 200, First Street SW, Rochester, MN, 55905, USA.
| | - Anita D'Souza
- Medical College of Wisconsin Milwaukee, Milwaukee, WI, 53226, USA.
| |
Collapse
|
29
|
Kolosenko I, Yu Y, Busker S, Dyczynski M, Liu J, Haraldsson M, Palm Apergi C, Helleday T, Tamm KP, Page BDG, Grander D. Identification of novel small molecules that inhibit STAT3-dependent transcription and function. PLoS One 2017. [PMID: 28636670 PMCID: PMC5479526 DOI: 10.1371/journal.pone.0178844] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents.
Collapse
Affiliation(s)
- Iryna Kolosenko
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| | - Yasmin Yu
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Sander Busker
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Matheus Dyczynski
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Jianping Liu
- Karolinska High-Throughput Center, Department of Medical Biochemistry and Biophysics, Division of Functional Genomics, Karolinska Institutet Stockholm, Sweden
| | - Martin Haraldsson
- Chemical Biology Consortium Sweden, Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Palm Apergi
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Thomas Helleday
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Katja Pokrovskaja Tamm
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Brent D. G. Page
- Department of Medical Biochemistry and Biophysics, Division of Translational Medicine and Chemical Biology, Science for Life Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Dan Grander
- Cancer Center Karolinska, Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- * E-mail: (IK); (DG)
| |
Collapse
|
30
|
PBMC activation via the ERK and STAT signaling pathways enhances the anti-tumor activity of Staphylococcal enterotoxin A. Mol Cell Biochem 2017; 434:75-87. [DOI: 10.1007/s11010-017-3038-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Accepted: 04/12/2017] [Indexed: 01/11/2023]
|
31
|
Salmiheimo A, Mustonen H, Vainionpää S, Shen Z, Kemppainen E, Puolakkainen P, Seppänen H. Tumour-associated macrophages activate migration and STAT3 in pancreatic ductal adenocarcinoma cells in co-cultures. Pancreatology 2017; 17:635-641. [PMID: 28476581 DOI: 10.1016/j.pan.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tumour-associated macrophages participate in tumour development and progression. The aim of this study was to assess the interactions of pancreatic cancer cells and pro-inflammatory M1 and anti-inflammatory M2 macrophages, specifically their effect on pancreatic cancer cell migration and the changes in STAT-signalling. METHODS Monocytes were isolated from healthy subjects and differentiated into macrophages with M-CSF. The macrophages were polarized towards M1 by IL-12 and towards M2 by IL-10. We studied also the effect of pan-JAK/STAT-inhibitor P6. Macrophage polarization and STAT and NFkB-activation in both MiaPaCa-2 and macrophages were assessed by flow cytometry. We recorded the effect of co-culture on migration rate of pancreatic cancer cells MiaPaCa-2. RESULTS Macrophages increased the migration rate of pancreatic cancer cells. Co-culture activated STAT1, STAT3, STAT5, AKT, and NFkB in macrophages and STAT3 in MiaPaCa-2 cells. IL-12 polarized macrophages towards M1 and decreased the migration rate of pancreatic cancer cells in co-cultures as well as P6. IL-10 skewed macrophage polarization towards M2 and induced increase of pancreatic cancer cells in co-cultures. CONCLUSION Co-culture with macrophages increased pancreatic cancer cell migration and activated STAT3. It is possible to activate and deactivate migration of pancreatic cancer cells trough macrophage polarization.
Collapse
Affiliation(s)
- Aino Salmiheimo
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Sanna Vainionpää
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Esko Kemppainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
32
|
Chuang CH, Greenside PG, Rogers ZN, Brady JJ, Yang D, Ma RK, Caswell DR, Chiou SH, Winters AF, Grüner BM, Ramaswami G, Spencley AL, Kopecky KE, Sayles LC, Sweet-Cordero EA, Li JB, Kundaje A, Winslow MM. Molecular definition of a metastatic lung cancer state reveals a targetable CD109-Janus kinase-Stat axis. Nat Med 2017; 23:291-300. [PMID: 28191885 DOI: 10.1038/nm.4285] [Citation(s) in RCA: 121] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/18/2017] [Indexed: 12/14/2022]
Abstract
Lung cancer is the leading cause of cancer deaths worldwide, with the majority of mortality resulting from metastatic spread. However, the molecular mechanism by which cancer cells acquire the ability to disseminate from primary tumors, seed distant organs, and grow into tissue-destructive metastases remains incompletely understood. We combined tumor barcoding in a mouse model of human lung adenocarcinoma with unbiased genomic approaches to identify a transcriptional program that confers metastatic ability and predicts patient survival. Small-scale in vivo screening identified several genes, including Cd109, that encode novel pro-metastatic factors. We uncovered signaling mediated by Janus kinases (Jaks) and the transcription factor Stat3 as a critical, pharmacologically targetable effector of CD109-driven lung cancer metastasis. In summary, by coupling the systematic genomic analysis of purified cancer cells in distinct malignant states from mouse models with extensive human validation, we uncovered several key regulators of metastatic ability, including an actionable pro-metastatic CD109-Jak-Stat3 axis.
Collapse
Affiliation(s)
- Chen-Hua Chuang
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Peyton G Greenside
- Biomedical Informatics Training Program, Stanford University School of Medicine, Stanford, California, USA
| | - Zoë N Rogers
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Dian Yang
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Rosanna K Ma
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Deborah R Caswell
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Shin-Heng Chiou
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Aidan F Winters
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Barbara M Grüner
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Gokul Ramaswami
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Andrew L Spencley
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA
| | - Kimberly E Kopecky
- Department of Surgery, Stanford University School of Medicine, Stanford, California, USA
| | - Leanne C Sayles
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - E Alejandro Sweet-Cordero
- Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pediatrics, Stanford University School of Medicine, Stanford, California, USA
| | - Jin Billy Li
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Department of Computer Science, Stanford University, Stanford, California, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, California, USA.,Cancer Biology Program, Stanford University School of Medicine, Stanford, California, USA.,Department of Pathology, Stanford University School of Medicine, Stanford, California, USA
| |
Collapse
|
33
|
Hsia HC, Hutti JE, Baldwin AS. Cytosolic DNA Promotes Signal Transducer and Activator of Transcription 3 (STAT3) Phosphorylation by TANK-binding Kinase 1 (TBK1) to Restrain STAT3 Activity. J Biol Chem 2017; 292:5405-5417. [PMID: 28188292 DOI: 10.1074/jbc.m116.771964] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 01/31/2017] [Indexed: 12/31/2022] Open
Abstract
Cytosolic DNA can elicit beneficial as well as undesirable immune responses. For example, viral or microbial DNA triggers cell-intrinsic immune responses to defend against infections, whereas aberrant cytosolic accumulation of self-DNA results in pathological conditions, such as autoimmunity. Given the importance of these DNA-provoked responses, a better understanding of their molecular mechanisms is needed. Cytosolic DNA engages stimulator of interferon genes (STING) to activate TANK-binding kinase 1 (TBK1), which subsequently phosphorylates the transcription factor interferon regulatory factor 3 (IRF3) to promote interferon expression. Recent studies have reported that additional transcription factors, including nuclear factor κB (NF-κB) and signal transducer and activator of transcription 6 (STAT6), are also activated by cytosolic DNA, suggesting that cytosolic DNA-induced gene expression is orchestrated by multiple factors. Here we show that cytosolic DNA activates STAT3, another member of the STAT family, via an autocrine mechanism involving interferon β (IFNβ) and IL-6. Additionally, we observed a novel cytosolic DNA-induced phosphorylation at serine 754 in the transactivation domain of STAT3. Upon cytosolic DNA stimulation, Ser754 is directly phosphorylated by TBK1 in a STING-dependent manner. Moreover, Ser754 phosphorylation inhibits cytosolic DNA-induced STAT3 transcriptional activity and selectively reduces STAT3 target genes that are up-regulated in response to cytosolic DNA. Taken together, our results suggest that cytosolic DNA-induced STAT3 activation via IFNβ and IL-6 is restrained by Ser754 phosphorylation of STAT3. Our findings reveal a new signaling axis downstream of the cytosolic DNA pathway and suggest potential interactions between innate immune responses and STAT3-driven oncogenic pathways.
Collapse
Affiliation(s)
- Hung-Ching Hsia
- From the Department of Cell Biology and Physiology and.,the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jessica E Hutti
- the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Albert S Baldwin
- From the Department of Cell Biology and Physiology and .,the Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina 27599
| |
Collapse
|
34
|
Dedoni S, Olianas MC, Onali P. Interferon-β counter-regulates its own pro-apoptotic action by activating p38 MAPK signalling in human SH-SY5Y neuroblastoma cells. Apoptosis 2015; 19:1509-26. [PMID: 25086905 DOI: 10.1007/s10495-014-1024-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Type I interferons (IFNs) induce apoptosis of neuroblastoma cells, but the molecular mechanisms regulating this event have not been completely elucidated. Here, we investigated the role of p38 mitogen activated protein kinase (MAPK) activity, a key regulator of apoptosis and a known modulator of IFN-induced responses in non-neuronal cells. We show that in SH-SY5Y human neuroblastoma cells IFN-β induced a delayed and sustained increase of p38 MAPK activity through a novel mechanism involving the sequential activation of Janus kinase-signal transducer and activator of transcription-1 signalling, enhanced expression of the NADPH oxidase catalytic subunit gp91(phox), increased reactive oxygen species production and stimulation of the MAPK kinase kinase transforming growth factor-β-activated kinase 1. Either blockade of p38 MAPK by the second generation inhibitors BIRB0796 and VX745 or siRNA knockdown of p38α MAPK enhanced IFN-β-induced apoptosis of neuroblastoma cells. Exposure to IFN-β increased the phosphorylation of the small heat shock protein HSP27 at Ser15, Ser78 and Ser82 with a time course similar to p38 MAPK activation and this response was suppressed by either p38α MAPK depletion or pharmacological inhibition of p38 MAPK and MAPK-activated protein kinase 2 (MK2). Either silencing of HSP27 expression by siRNA or MK2 inhibition potentiated IFN-β-induced apoptotic death. These results indicate that IFN-β-induced apoptosis of human SH-SY5Y neuroblastoma cells is associated with a long-lasting up-regulation of p38 MAPK activity, stimulation of MK2 and phosphorylation of the pro-survival protein HSP27. Moreover, the data show that inhibition of p38 MAPK signalling potentiates the anti-neuroblastoma activity of the cytokine, indicating that this pathway mediates a counter-regulatory response.
Collapse
Affiliation(s)
- Simona Dedoni
- Section of Neurosciences and Clinical Pharmacology, Laboratory of Cellular and Molecular Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | |
Collapse
|
35
|
Daka P, Liu A, Karunaratne C, Csatary E, Williams C, Xiao H, Lin J, Xu Z, Page RC, Wang H. Design, synthesis and evaluation of XZH-5 analogues as STAT3 inhibitors. Bioorg Med Chem 2015; 23:1348-55. [PMID: 25698618 DOI: 10.1016/j.bmc.2015.01.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 01/03/2015] [Accepted: 01/15/2015] [Indexed: 11/25/2022]
Abstract
Inhibition of the signaling pathways of signal transducer and activator of transcription 3 (STAT 3) has shown to be a promising strategy to combat cancer. In this paper we report the design, synthesis and evaluation of a novel class of small molecule inhibitors, that is, XZH-5 and its analogues, as promising leads for further development of STAT3 inhibitors. Preliminary SARs was established for XZH-5 and its derivatives; and the binding modes were predicted by molecular docking. Lead compounds with IC50 as low as 6.5μM in breast cancer cell lines and 7.6μM in pancreatic cancer cell lines were identified.
Collapse
Affiliation(s)
- Philias Daka
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Aiguo Liu
- Department of Pediatrics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430030, PR China
| | - Chamini Karunaratne
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Erika Csatary
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Cameron Williams
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA
| | - Hui Xiao
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Jiayuh Lin
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Department of Pediatrics, The Ohio State University, Columbus, OH, USA; Molecular, Cellular and Developmental Biology Program, The Ohio State University, Columbus, OH, USA
| | - Zhenghu Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China
| | - Richard C Page
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| | - Hong Wang
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH 45056, USA.
| |
Collapse
|
36
|
Peripheral nerve regeneration and NGF-dependent neurite outgrowth of adult sensory neurons converge on STAT3 phosphorylation downstream of neuropoietic cytokine receptor gp130. J Neurosci 2014; 34:13222-33. [PMID: 25253866 DOI: 10.1523/jneurosci.1209-13.2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
After nerve injury, adult sensory neurons can regenerate peripheral axons and reconnect with their target tissue. Initiation of outgrowth, as well as elongation of neurites over long distances, depends on the signaling of receptors for neurotrophic growth factors. Here, we investigated the importance of gp130, the signaling subunit of neuropoietic cytokine receptors in peripheral nerve regeneration. After sciatic nerve crush, functional recovery in vivo was retarded in SNS-gp130(-/-) mice, which specifically lack gp130 in sensory neurons. Correspondingly, a significantly reduced number of free nerve endings was detected in glabrous skin from SNS-gp130(-/-) compared with control mice after nerve crush. Neurite outgrowth and STAT3 activation in vitro were severely reduced in cultures in gp130-deficient cultured neurons. Surprisingly, in neurons obtained from SNS-gp130(-/-) mice the increase in neurite length was reduced not only in response to neuropoietic cytokine ligands of gp130 but also to nerve growth factor (NGF), which does not bind to gp130-containing receptors. Neurite outgrowth in the absence of neurotrophic factors was partially rescued in gp130-deficient neurons by leptin, which activates STAT3 downstream of leptic receptor and independent of gp130. The neurite outgrowth response of gp130-deficient neurons to NGF was fully restored in the presence of leptin. Based on these findings, gp130 signaling via STAT3 activation is suggested not only to be an important regulator of peripheral nerve regeneration in vitro and in vivo, but as determining factor for the growth promoting action of NGF in adult sensory neurons.
Collapse
|
37
|
Dechow T, Steidle S, Götze KS, Rudelius M, Behnke K, Pechloff K, Kratzat S, Bullinger L, Fend F, Soberon V, Mitova N, Li Z, Thaler M, Bauer J, Pietschmann E, Albers C, Grundler R, Schmidt-Supprian M, Ruland J, Peschel C, Duyster J, Rose-John S, Bassermann F, Keller U. GP130 activation induces myeloma and collaborates with MYC. J Clin Invest 2014; 124:5263-74. [PMID: 25384216 DOI: 10.1172/jci69094] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 10/03/2014] [Indexed: 12/25/2022] Open
Abstract
Multiple myeloma (MM) is a plasma cell neoplasm that results from clonal expansion of an Ig-secreting terminally differentiated B cell. Advanced MM is characterized by tissue damage that involves bone, kidney, and other organs and is typically associated with recurrent genetic abnormalities. IL-6 signaling via the IL-6 signal transducer GP130 has been implicated as an important driver of MM pathogenesis. Here, we demonstrated that ectopic expression of constitutively active GP130 (L-GP130) in a murine retroviral transduction-transplantation model induces rapid MM development of high penetrance. L-GP130-expressing mice recapitulated all of the characteristics of human disease, including monoclonal gammopathy, BM infiltration with lytic bone lesions, and protein deposition in the kidney. Moreover, the disease was easily transplantable and allowed different therapeutic options to be evaluated in vitro and in vivo. Using this model, we determined that GP130 signaling collaborated with MYC to induce MM and was responsible and sufficient for directing the plasma cell phenotype. Accordingly, we identified Myc aberrations in the L-GP130 MM model. Evaluation of human MM samples revealed recurrent activation of STAT3, a downstream target of GP130 signaling. Together, our results indicate that deregulated GP130 activity contributes to MM pathogenesis and that pathways downstream of GP130 activity have potential as therapeutic targets in MM.
Collapse
|
38
|
LaPorte MG, da Paz Lima DJ, Zhang F, Sen M, Grandis JR, Camarco D, Hua Y, Johnston PA, Lazo JS, Resnick LO, Wipf P, Huryn DM. 2-Guanidinoquinazolines as new inhibitors of the STAT3 pathway. Bioorg Med Chem Lett 2014; 24:5081-5. [PMID: 25288188 PMCID: PMC4250329 DOI: 10.1016/j.bmcl.2014.09.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 08/28/2014] [Accepted: 09/01/2014] [Indexed: 12/15/2022]
Abstract
Synthesis and SAR investigation of 2-guanidinoquinazolines, initially identified in a high content screen for selective STAT3 pathway inhibitors, led to a more potent analog (11c) that demonstrated improved anti-proliferative activity against a panel of HNSCC cell lines.
Collapse
Affiliation(s)
- Matthew G LaPorte
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| | - Dimas José da Paz Lima
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Feng Zhang
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Jennifer R Grandis
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, PA 15260, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Paul A Johnston
- University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | - Lynn O Resnick
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Peter Wipf
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; University of Pittsburgh Cancer Institute, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Donna M Huryn
- University of Pittsburgh Chemical Diversity Center, University of Pittsburgh, Pittsburgh, PA 15260, USA; Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA.
| |
Collapse
|
39
|
Ubel C, Mousset S, Trufa D, Sirbu H, Finotto S. Establishing the role of tyrosine kinase 2 in cancer. Oncoimmunology 2014; 2:e22840. [PMID: 23482926 PMCID: PMC3583936 DOI: 10.4161/onci.22840] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tyrosine kinase 2 (TYK2) is a member of the Janus family of non-receptor tyrosine kinases involved in cytokine signaling. TYK2 deficiency is associated with increased susceptibility to mycobacterial and viral infections, hyper IgE syndrome as well as with allergic asthma. However the precise role of TYK2 in oncogenesis and tumor progression is not clear yet. Tyk2-deficient mice are prone to develop tumors because they lack efficient cytotoxic CD8+ T-cell antitumor responses as a result of deficient Type I interferon signaling. However, as TYK2 functions downstream of growth factor receptors that are often hyperactivated in cancer, inhibiting TYK2 might also have beneficial effects for cancer treatment.
Collapse
Affiliation(s)
- Caroline Ubel
- Laboratory of Cellular and Molecular Lung Immunology; Institute of Molecular Pneumology; University of Erlangen-Nürnberg, Erlangen, Germany
| | | | | | | | | |
Collapse
|
40
|
High basal expression of interferon-stimulated genes in human bronchial epithelial (BEAS-2B) cells contributes to influenza A virus resistance. PLoS One 2014; 9:e109023. [PMID: 25313647 PMCID: PMC4196766 DOI: 10.1371/journal.pone.0109023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/27/2014] [Indexed: 11/19/2022] Open
Abstract
Respiratory epithelial cells play a key role in influenza A virus (IAV) pathogenesis and host innate response. Transformed human respiratory cell lines are widely used in the study of IAV-host interactions due to their relative convenience, and inherent difficulties in working with primary cells. Transformed cells, however, may have altered susceptibility to virus infection. Proper characterization of different respiratory cell types in their responses to IAV infection is therefore needed to ensure that the cell line chosen will provide results that are of relevance in vivo. We compared replication kinetics of human H1N1 (A/USSR/77) IAVs in normal primary human bronchial epithelial (NHBE) and two commonly used respiratory epithelial cell lines namely BEAS-2B and A549 cells. We found that IAV replication was distinctly poor in BEAS-2B cells in comparison with NHBE, A549 and Madin-Darby canine kidney (MDCK) cells. IAV resistance in BEAS-2B cells was accompanied by an activated antiviral state with high basal expression of interferon (IFN) regulatory factor-7 (IRF-7), stimulator of IFN genes (STING) and IFN stimulated genes (ISGs). Treatment of BEAS-2B cells with a pan-Janus-activated-kinase (JAK) inhibitor decreased IRF-7 and ISG expression and resulted in increased IAV replication. Therefore, the use of highly resistant BEAS-2B cells in IAV infection may not reflect the cytopathogenicity of IAV in human epithelial cells in vivo.
Collapse
|
41
|
Zhao XF, Wan J, Powell C, Ramachandran R, Myers MG, Goldman D. Leptin and IL-6 family cytokines synergize to stimulate Müller glia reprogramming and retina regeneration. Cell Rep 2014; 9:272-284. [PMID: 25263554 DOI: 10.1016/j.celrep.2014.08.047] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Revised: 05/09/2014] [Accepted: 08/20/2014] [Indexed: 12/22/2022] Open
Abstract
Unlike mammals, zebrafish can regenerate a damaged retina. This remarkable regenerative response is mediated by Müller glia (MG) that undergo a reprogramming event that drives their proliferation and the generation of multipotent progenitors for retinal repair. The mechanisms that drive MG reprogramming are poorly understood. Here, we report that Leptin and Gp130-coupled receptors, acting via a Jak/Stat signaling pathway, stimulate MG reprogramming and progenitor formation in the injured retina. Importantly, we find that ascl1a gene expression, which drives MG reprogramming in fish and mammals, is regulated in a Jak/Stat-dependent manner and requires consensus Stat-binding sites for injury-dependent activation. Finally, we identify cytokines that are induced by retinal injury and exhibit a remarkable synergy in their ability to activate Jak/Stat signaling and MG reprogramming in the uninjured retina. Our study not only furthers our understanding of retina regeneration in zebrafish but also suggests new strategies for awakening retina regeneration in mammals.
Collapse
Affiliation(s)
- Xiao-Feng Zhao
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jin Wan
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Curtis Powell
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rajesh Ramachandran
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martin G Myers
- Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
42
|
Ferrari SM, Fallahi P, La Motta C, Bocci G, Corrado A, Materazzi G, Galleri D, Piaggi S, Danesi R, Da Settimo F, Miccoli P, Antonelli A. Antineoplastic activity of the multitarget tyrosine kinase inhibitors CLM3 and CLM94 in medullary thyroid cancer in vitro. Surgery 2014; 156:1167-76. [PMID: 25151558 DOI: 10.1016/j.surg.2014.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 05/12/2014] [Indexed: 12/21/2022]
Abstract
BACKGROUND We report the antineoplastic and anti-angiogenic activity of the pyrazolo[3,4-d]pyrimidine derivative CLM3 and the cyclic amide CLM94, both multiple tyrosine kinase inhibitors (TKIs), in human primary medullary thyroid cancer (P-MTC) cells, and in vitro in the medullary thyroid cancer (MTC) cell lines TT (harboring a RET C634W activating mutation) and MZ-CRC-1 (carrying the MEN2B RET mutation Met891Thr). METHODS The antiproliferative and proapoptotic effects of CLM3 and CLM94 (1, 5, 10, 30, and 50 μmol/L) were tested in P-MTC cells obtained at operation, and in TT cells. In addition, the antiproliferative effects of CLM3 and CLM94 (0.005, 0.05, 0.5, and 5 μmol/L) were tested in TT and MZ-CRC-1 cells after 7 days of treatment to compare the results with those previously reported in the literature. RESULTS CLM3 and CLM94 (30 or 50 μmol/L) inhibited (P < .01) the proliferation of the P-MTC cells, TT cells, and MZ-CRC-1 cells and increased the level of apoptosis in a dose-dependent manner at 10, 30, and 50 μmol/L (P < .001), while having no effect on migration or invasion. The inhibition of proliferation by CLM3 and CLM94 was similar among P-MTC cells with/without RET mutations, and similar effects were observed regarding the increased level of apoptosis. Furthermore, CLM3 and CLM94 significantly decreased vascular endothelial growth factor-A expression in TT cells. CONCLUSION The antitumor activities of the multiple TKIs CLM3 and CLM94 were demonstrated in both primary MTC cultures as well as 2 established MTC cell lines in vitro, opening an avenue for future clinical evaluations.
Collapse
Affiliation(s)
| | - Poupak Fallahi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Guido Bocci
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Alda Corrado
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Gabriele Materazzi
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - David Galleri
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Simona Piaggi
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Romano Danesi
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | | | - Paolo Miccoli
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Pisa, Italy
| | - Alessandro Antonelli
- Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy.
| |
Collapse
|
43
|
Gough AH, Chen N, Shun TY, Lezon TR, Boltz RC, Reese CE, Wagner J, Vernetti LA, Grandis JR, Lee AV, Stern AM, Schurdak ME, Taylor DL. Identifying and quantifying heterogeneity in high content analysis: application of heterogeneity indices to drug discovery. PLoS One 2014; 9:e102678. [PMID: 25036749 PMCID: PMC4103836 DOI: 10.1371/journal.pone.0102678] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 06/22/2014] [Indexed: 12/04/2022] Open
Abstract
One of the greatest challenges in biomedical research, drug discovery and diagnostics is understanding how seemingly identical cells can respond differently to perturbagens including drugs for disease treatment. Although heterogeneity has become an accepted characteristic of a population of cells, in drug discovery it is not routinely evaluated or reported. The standard practice for cell-based, high content assays has been to assume a normal distribution and to report a well-to-well average value with a standard deviation. To address this important issue we sought to define a method that could be readily implemented to identify, quantify and characterize heterogeneity in cellular and small organism assays to guide decisions during drug discovery and experimental cell/tissue profiling. Our study revealed that heterogeneity can be effectively identified and quantified with three indices that indicate diversity, non-normality and percent outliers. The indices were evaluated using the induction and inhibition of STAT3 activation in five cell lines where the systems response including sample preparation and instrument performance were well characterized and controlled. These heterogeneity indices provide a standardized method that can easily be integrated into small and large scale screening or profiling projects to guide interpretation of the biology, as well as the development of therapeutics and diagnostics. Understanding the heterogeneity in the response to perturbagens will become a critical factor in designing strategies for the development of therapeutics including targeted polypharmacology.
Collapse
Affiliation(s)
- Albert H. Gough
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Ning Chen
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Tong Ying Shun
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Timothy R. Lezon
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Robert C. Boltz
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Celeste E. Reese
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jacob Wagner
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lawrence A. Vernetti
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jennifer R. Grandis
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Adrian V. Lee
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Andrew M. Stern
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Mark E. Schurdak
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - D. Lansing Taylor
- Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Computational & Systems Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
44
|
Zhong HJ, Lin S, Tam IL, Lu L, Chan DSH, Ma DL, Leung CH. In silico identification of natural product inhibitors of JAK2. Methods 2014; 71:21-5. [PMID: 25038528 DOI: 10.1016/j.ymeth.2014.07.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/02/2014] [Accepted: 07/04/2014] [Indexed: 01/15/2023] Open
Abstract
Emodic acid (1) and 6-chloroemodic acid (2) have been identified from a natural product database as useful scaffolds for the future development of novel JAK2 inhibitors using structure-based high-throughput virtual screening. Low-energy binding conformations of 1 and 2 in the JAK2 PTK domain were generated by virtual ligand docking and were found to overlap considerably with the binding pose of CMP6, a known JAK2 inhibitor. Compounds 1 and 2 displayed low micromolar efficacies against JAK2 enzyme activity and JAK2 autophosphorylation in human erythroleukemia cells, and inhibited STAT3 DNA-binding activity in a human hepatocarcinoma cell line.
Collapse
Affiliation(s)
- Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Sheng Lin
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - I Lam Tam
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Daniel Shiu-Hin Chan
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China.
| |
Collapse
|
45
|
Inhibition of STAT3 activation by KT-18618 via the disruption of the interaction between JAK3 and STAT3. Biochem Pharmacol 2014; 89:62-73. [DOI: 10.1016/j.bcp.2014.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/10/2014] [Accepted: 02/19/2014] [Indexed: 01/02/2023]
|
46
|
Elsaeidi F, Bemben MA, Zhao XF, Goldman D. Jak/Stat signaling stimulates zebrafish optic nerve regeneration and overcomes the inhibitory actions of Socs3 and Sfpq. J Neurosci 2014; 34:2632-44. [PMID: 24523552 PMCID: PMC3921430 DOI: 10.1523/jneurosci.3898-13.2014] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 01/25/2023] Open
Abstract
The regenerative failure of mammalian optic axons is partly mediated by Socs3-dependent inhibition of Jak/Stat signaling (Smith et al., 2009, 2011). Whether Jak/Stat signaling is part of the normal regenerative response observed in animals that exhibit an intrinsic capacity for optic nerve regeneration, such as zebrafish, remains unknown. Nor is it known whether the repression of regenerative inhibitors, such as Socs3, contributes to the robust regenerative response of zebrafish to optic nerve damage. Here we report that Jak/Stat signaling stimulates optic nerve regeneration in zebrafish. We found that IL-6 family cytokines, acting via Gp130-coupled receptors, stimulate Jak/Stat3 signaling in retinal ganglion cells after optic nerve injury. Among these cytokines, we found that CNTF, IL-11, and Clcf1/Crlf1a can stimulate optic axon regrowth. Surprisingly, optic nerve injury stimulated the expression of Socs3 and Sfpq (splicing factor, proline/glutamine rich) that attenuate optic nerve regeneration. These proteins were induced in a Jak/Stat-dependent manner, stimulated each other's expression and suppressed the expression of regeneration-associated genes. In vivo, the injury-dependent induction of Socs3 and Sfpq inhibits optic nerve regeneration but does not block it. We identified a robust induction of multiple cytokine genes in zebrafish retinal ganglion cells that may contribute to their ability to overcome these inhibitory factors. These studies not only identified mechanisms underlying optic nerve regeneration in fish but also suggest new molecular targets for enhancing optic nerve regeneration in mammals.
Collapse
Affiliation(s)
- Fairouz Elsaeidi
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Michael A. Bemben
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Xiao-Feng Zhao
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Daniel Goldman
- Molecular and Behavioral Neuroscience Institute, Department of Biological Chemistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
47
|
Fibach E, Rachmilewitz EA. Does erythropoietin have a role in the treatment of β-hemoglobinopathies? Hematol Oncol Clin North Am 2014; 28:249-63. [PMID: 24589265 DOI: 10.1016/j.hoc.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents the indications and contraindications (pros and cons) for the potential use of erythropoietin (Epo) as a treatment in β-thalassemia and sickle cell anemia (SCA). Its high cost and route of administration (by injection) are obvious obstacles, especially in underdeveloped countries, where thalassemia is prevalent. We believe that from the data summarized in this review, the time has come to define, by studying in vitro and in vivo models, as well as by controlled clinical trials, the rationale for treating patients with various forms of thalassemia and SCA with Epo alone or in combination with other medications.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
48
|
Abstract
Protein arrays have shown potential applications in cancer research. After several decades of research, it has become evident that many cytokines are central to the development of cancer and its treatment. Cytokine antibody arrays that have been designed to simultaneously detect multiple cytokines are not only available, but show a diversity of applications in the study of many diseases in addition to cancer. This review will focus on the implementation of cytokine antibody arrays in many aspects of cancer research, such as biomarker discovery, molecular mechanisms of cancer development, preclinical studies and the effects of cancer compounds.
Collapse
Affiliation(s)
- Ruo-Pan Huang
- Emory University School of Medicine, Department of Gynecology & Obstetrics, Atlanta, GA 30322, USA.
| |
Collapse
|
49
|
Johnston PA, Sen M, Hua Y, Camarco D, Shun TY, Lazo JS, Grandis JR. High-content pSTAT3/1 imaging assays to screen for selective inhibitors of STAT3 pathway activation in head and neck cancer cell lines. Assay Drug Dev Technol 2014; 12:55-79. [PMID: 24127660 PMCID: PMC3934522 DOI: 10.1089/adt.2013.524] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The oncogenic transcription factor signal transducer and activator of transcription 3 (STAT3) is hyperactivated in most cancers and represents a plausible therapeutic target. In the absence of STAT3-selective small-molecule inhibitors, we sought to develop pSTAT3/1 high-content imaging (HCS) assays to screen for selective inhibitors of STAT3 pathway activation in head and neck squamous cell carcinomas (HNSCC) tumor cell lines. Based on the expression of the interleukin-6 (IL-6)Rα and gp130 subunits of the IL-6 receptor complex and STAT3, we selected the Cal33 HNSCC cell line as our model. After developing image acquisition and analysis procedures, we rigorously investigated the cytokine activation responses to optimize the dynamic ranges of both assays and demonstrated that the pan-Janus kinase inhibitor pyridone 6 nonselectively inhibited pSTAT3 and pSTAT1 activation with 50% inhibition concentrations of 7.19 ± 4.08 and 16.38 ± 8.45 nM, respectively. The optimized pSTAT3 HCS assay performed very well in a pilot screen of 1,726 compounds from the Library of Pharmacologically Active Compounds and the National Institutes of Health clinical collection sets, and we identified 51 inhibitors of IL-6-induced pSTAT3 activation. However, only three of the primary HCS actives selectively inhibited STAT3 compared with STAT1. Our follow-up studies indicated that the nonselective inhibition of cytokine induced pSTAT3 and pSTAT1 activation by G-alpha stimulatory subunit-coupled G-protein-coupled receptor agonists, and forskolin was likely due to cyclic adenosine monophosphate-mediated up-regulation of suppressors of cytokine signaling 3. Azelastine, an H1 receptor antagonist approved for the treatment of seasonal allergic rhinitis, nonallergic vasomotor rhinitis, and ocular conjunctivitis, was subsequently confirmed as a selective inhibitor of IL-6-induced pSTAT3 activation that also reduced the growth of HNSCC cell lines. These data illustrate the power of a chemical biology approach to lead generation that utilizes fully developed and optimized HCS assays as phenotypic screens to interrogate specific signaling pathways.
Collapse
Affiliation(s)
- Paul A. Johnston
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Malabika Sen
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yun Hua
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Daniel Camarco
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tong Ying Shun
- Department of Drug Discovery Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - John S. Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia
- Department of Chemistry, University of Virginia, Charlottesville, Virginia
| | - Jennifer R. Grandis
- Department of University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Otolaryngology, University of Pittsburgh, Pittsburgh, Pennsylvania
- Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Therapeutic modulators of STAT signalling for human diseases. Nat Rev Drug Discov 2013; 12:611-29. [PMID: 23903221 DOI: 10.1038/nrd4088] [Citation(s) in RCA: 333] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The signal transducer and activator of transcription (STAT) proteins have important roles in biological processes. The abnormal activation of STAT signalling pathways is also implicated in many human diseases, including cancer, autoimmune diseases, rheumatoid arthritis, asthma and diabetes. Over a decade has passed since the first inhibitor of a STAT protein was reported and efforts to discover modulators of STAT signalling as therapeutics continue. This Review discusses the outcomes of the ongoing drug discovery research endeavours against STAT proteins, provides perspectives on new directions for accelerating the discovery of drug candidates, and highlights the noteworthy candidate therapeutics that have progressed to clinical trials.
Collapse
|