1
|
Liu X, Wang S, Lv H, Chen E, Yu J. Venous thromboembolism and ovarian cancer risk: a Mendelian randomized study. Discov Oncol 2024; 15:581. [PMID: 39438364 PMCID: PMC11496464 DOI: 10.1007/s12672-024-01446-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024] Open
Abstract
INTRODUCTION A potential link between venous thromboembolism and the risk of ovarian cancer has been identified in clinical practice. However, it is unclear whether there is a causal relationship between the two. In this study, we applied a univariate two-sample Mendelian randomization method to explain the possible link between venous thromboembolism and ovarian cancer pathogenesis at the genetic level, and pointed out that lipid metabolism and ovarian cancer pathogenesis have innovative basic experimental directions. OBJECTIVE This study explored the causal effect between a history of venous thromboembolism and the risk of ovarian cancer. METHODS Genome-Wide Association Study (GWAS) data of venous thromboembolism patients (n = 9176) of the same ethnicity were selected as study exposures, and GWAS data of ovarian cancer patients (n = 1218) of the same ethnicity were selected as study exposures. In this study, univariate two-sample Mendelian randomization analysis (UVMR) was performed separately using inverse variance weighted (IVW), MR-Egger regression, and weighted median (WM) to assess causal effects. In this study, Cochran's Q test, MR-Egger regression intercept term, MR-PRESSO, and leave-one-out method were used for sensitivity analysis to assess the stability and reliability of the results. RESULTS The GWAS data screened in this study were all European ethnicity data. In this study, we found that genetically predicted history of venous thromboembolism was associated with an upward trend in ovarian cancer incidence, and the results of Weighted median, Simple mode, Weighted mode, and MR Egger showed a similar trend (OR = 1.0006, 95% CI: 1.00007-1.0013, p < 0.05). There was no heterogeneity of results (p = 0.18) and no horizontal pleiotropy (p = 0.77). The instrumental variables selected for venous thromboembolism in this study were all strong instrumental variables (F = 669.7). The results of the sensitivity analysis remained consistent. CONCLUSION The results of this study indicate that patients with a history of venous thromboembolism are at increased risk of developing ovarian cancer and point to possible associations between lipid metabolism genes, such as CYP4V2, and the development of ovarian cancer, which provide interesting directions for further basic research.
Collapse
Affiliation(s)
- Xiaolin Liu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Shan Wang
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Hongwei Lv
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Enli Chen
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China
| | - Jing Yu
- Cancer Center, Beijing Friendship Hospital, Capital Medical University, No. 95 Yong An Road, Xi Cheng District, Beijing, 100050, China.
| |
Collapse
|
2
|
Calì B, Troiani M, Bressan S, Attanasio G, Merler S, Moscarda V, Mosole S, Ricci E, Guo C, Yuan W, Gallagher L, Lundberg A, Bernett I, Figueiredo I, Arzola RA, Abreut EB, D'Ambrosio M, Bancaro N, Brina D, Zumerle S, Pasquini E, Maddalena M, Lai P, Colucci M, Pernigoni N, Rinaldi A, Minardi D, Morlacco A, Moro FD, Sabbadin M, Galuppini F, Fassan M, Rüschoff JH, Moch H, Rescigno P, Francini E, Saieva C, Modesti M, Theurillat JP, Gillessen S, Wilgenbus P, Graf C, Ruf W, de Bono J, Alimonti A. Coagulation factor X promotes resistance to androgen-deprivation therapy in prostate cancer. Cancer Cell 2024; 42:1676-1692.e11. [PMID: 39303726 DOI: 10.1016/j.ccell.2024.08.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/13/2024] [Accepted: 08/22/2024] [Indexed: 09/22/2024]
Abstract
Although hypercoagulability is commonly associated with malignancies, whether coagulation factors directly affect tumor cell proliferation remains unclear. Herein, by performing single-cell RNA sequencing (scRNA-seq) of the prostate tumor microenvironment (TME) of mouse models of castration-resistant prostate cancer (CRPC), we report that immunosuppressive neutrophils (PMN-MDSCs) are a key extra-hepatic source of coagulation factor X (FX). FX activation within the TME enhances androgen-independent tumor growth by activating the protease-activated receptor 2 (PAR2) and the phosphorylation of ERK1/2 in tumor cells. Genetic and pharmacological inhibition of factor Xa (FXa) antagonizes the oncogenic activity of PMN-MDSCs, reduces tumor progression, and synergizes with enzalutamide therapy. Intriguingly, F10high PMN-MDSCs express the surface marker CD84 and CD84 ligation enhances F10 expression. Elevated levels of FX, CD84, and PAR2 in prostate tumors associate with worse survival in CRPC patients. This study provides evidence that FXa directly promotes cancer and highlights additional targets for PMN-MDSCs for cancer therapies.
Collapse
Affiliation(s)
- Bianca Calì
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martina Troiani
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silvia Bressan
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35122 Padova, Italy
| | - Giuseppe Attanasio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Merler
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy
| | - Viola Moscarda
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Section of Oncology, Department of Medicine, University of Verona, 37134 Verona, Italy
| | - Simone Mosole
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Elena Ricci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Christina Guo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Wei Yuan
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Lewis Gallagher
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Arian Lundberg
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ilona Bernett
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Ines Figueiredo
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Rydell Alvarez Arzola
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Ernesto Bermudez Abreut
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Department of Immunoregulation, Immunology and Immunotherapy Division, Center of Molecular Immunology, La Habana 3GGH+C9G, Cuba
| | - Mariantonietta D'Ambrosio
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Bancaro
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Daniela Brina
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Sara Zumerle
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy
| | - Emiliano Pasquini
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Martino Maddalena
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Ping Lai
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Manuel Colucci
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Nicolò Pernigoni
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Andrea Rinaldi
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Davide Minardi
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Alessandro Morlacco
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Fabrizio Dal Moro
- Urology Clinic, Department of Surgery, Oncology and Gastroenterology, University of Padova, 35128 Padova, Italy
| | - Marianna Sabbadin
- Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Francesca Galuppini
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Matteo Fassan
- Department of Medicine, Surgical Pathology Unit, University of Padova, 35121 Padova, Italy
| | - Jan Hendrik Rüschoff
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | - Holger Moch
- Department of Pathology and Molecular Pathology, University Hospital Zurich (USZ), 8091 Zurich, Switzerland
| | | | - Edoardo Francini
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Department of Experimental and Clinical Medicine, University of Florence, 50121 Florence, Italy
| | - Calogero Saieva
- Cancer Risk Factors and Lifestyle Epidemiology Unit - ISPRO, 50139 Florence, Italy
| | - Mikol Modesti
- Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Jean-Philippe Theurillat
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland
| | - Silke Gillessen
- Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, 55131 Mainz, Germany; Department of Immunology and Microbiology, Scripps Research, La Jolla, CA 92037, USA
| | - Johann de Bono
- The Institute of Cancer Research, The Royal Marsden Hospital, London SW3 6JJ, UK
| | - Andrea Alimonti
- Institute of Oncology Research (IOR), 6500 Bellinzona, Switzerland; Università della Svizzera Italiana, Faculty of Biomedical Sciences, CH6900 Lugano, Switzerland; Medical Oncology Unit, Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, CH6500 Bellinzona, Switzerland; Veneto Institute of Molecular Medicine, 35129 Padova, Italy; Department of Medicine, University of Padova, 35121 Padova, Italy; Department of Health Sciences and Technology (D-HEST) ETH Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
3
|
Rajput S, Malviya R, Srivastava S, Ahmad I, Rab SO, Uniyal P. Cardiovascular disease and thrombosis: Intersections with the immune system, inflammation, and the coagulation system. ANNALES PHARMACEUTIQUES FRANÇAISES 2024:S0003-4509(24)00112-3. [PMID: 39159826 DOI: 10.1016/j.pharma.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/06/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024]
Abstract
The coagulation and immune system, both essential physiological systems in the human body, are intricately interconnected and play a critical role in determining the overall health of patients. These systems collaborate via various shared regulatory pathways, such as the Tissue Factor (TF) Pathway. Immunological cells that express TF and generate pro-inflammatory cytokines have the ability to affect coagulation. Conversely, coagulation factors and processes have a reciprocal effect on immunological responses by stimulating immune cells and regulating their functions. These interconnected pathways play a role in both preserving well-being and contributing to a range of pathological disorders. The close relationship between blood clotting and inflammation in the development of vascular disease has become a central focus of clinical study. This research specifically examines the crucial elements of this interaction within the contexts of cardiovascular disease and acute coronary syndrome. Tissue factor, the primary trigger of the extrinsic coagulation pathway, has a crucial function by inducing a proinflammatory reaction through the activation of coagulation factors. This, in turn, initiates coagulation and subsequent cellular signalling pathways. Protease-activated receptors establish the molecular connection between coagulation and inflammation by interacting with activated clotting factors II, X, and VII. Thrombosis, a condition characterised by the formation of blood clots, is the most dreaded consequence of cardiovascular disorders and a leading cause of death globally. Consequently, it poses a significant challenge to healthcare systems. Antithrombotic treatments efficiently target platelets and the coagulation cascade, but they come with the inherent danger of causing bleeding. Furthermore, antithrombotics are unable to fully eliminate thrombotic events, highlighting a treatment deficiency caused by a third mechanism that has not yet been sufficiently addressed, namely inflammation. Understanding these connections may aid in the development of novel approaches to mitigate the harmful mutual exacerbation of inflammation and coagulation. Gaining a comprehensive understanding of the intricate interaction among these systems is crucial for the management of diseases and the creation of efficacious remedies. Through the examination of these prevalent regulatory systems, we can discover novel therapeutic approaches that specifically target these complex illnesses. This paper provides a thorough examination of the reciprocal relationship between the coagulation and immune systems, emphasising its importance in maintaining health and understanding disease processes. This review examines the interplay between inflammation and thrombosis and its role in the development of thrombotic disorders.
Collapse
Affiliation(s)
- Shivam Rajput
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, U.P., India.
| | - Saurabh Srivastava
- School of Pharmacy, KPJ Healthcare University College (KPJUC), Nilai, Malaysia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Prerna Uniyal
- School of Pharmacy, Graphic Era Hill University, Dehradun, India
| |
Collapse
|
4
|
Pantazi D, Alivertis D, Tselepis AD. Underlying Mechanisms of Thrombosis Associated with Cancer and Anticancer Therapies. Curr Treat Options Oncol 2024; 25:897-913. [PMID: 38862694 DOI: 10.1007/s11864-024-01210-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 06/13/2024]
Abstract
OPINION STATEMENT Cancer-associated thrombosis (CAT) has been identified as the second most prevalent cause of death after cancer itself. Moreover, the risk of thrombotic events in cancer patients increases due to anticancer drugs, such as tyrosine kinase inhibitors (TKIs). Venous thromboembolism (VTE) as well as arterial thromboembolic (ATE) events are present in CAT. Although VTE occurs more frequently, ATE events are very significant and in some cases are more dangerous than VTE. Guidelines for preventing thrombosis refer mainly VTE as well as the contribution of ATE events. Several factors are involved in thrombosis related to cancer, but the whole pathomechanism of thrombosis is not clear and may differ between patients. The activation of the coagulation system and the interaction of cancer cells with other cells including platelets, endothelial cells, monocytes, and neutrophils are promoted by a hypercoagulable state caused by cancer. We present an update on the pathomechanisms of CAT and the effect of anticancer drugs, mainly targeted therapies with a focus on TKIs. Considering the risk of bleeding associated with anticoagulation in each cancer patient, the anticoagulation strategy may involve the use of FXIa inhibitors, direct oral anticoagulants, and low-molecular-weight heparin. Further research would be valuable in developing strategies for reducing CAT.
Collapse
Affiliation(s)
- Despoina Pantazi
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece.
| | - Dimitrios Alivertis
- Department of Biological Applications and Technology, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| | - Alexandros D Tselepis
- Laboratory of Biochemistry, Department of Chemistry/Atherothrombosis Research Centre, University of Ioannina, 451 10, Ioannina, Epirus, Greece
| |
Collapse
|
5
|
Tinholt M, Tekpli X, Torland LA, Tahiri A, Geisler J, Kristensen V, Sandset PM, Iversen N. The breast cancer coagulome in the tumor microenvironment and its role in prognosis and treatment response to chemotherapy. J Thromb Haemost 2024; 22:1319-1335. [PMID: 38237862 DOI: 10.1016/j.jtha.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/08/2023] [Accepted: 01/02/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND The procoagulant phenotype in cancer is linked to thrombosis, cancer progression, and immune response. A novel treatment that reduces the risk of both thrombosis and cancer progression without excess bleeding risk remains to be identified. OBJECTIVES Here, we aimed to broadly investigate the breast tumor coagulome and its relation to prognosis, treatment response to chemotherapy, and the tumor microenvironment. METHODS Key coagulation-related genes (n = 35) were studied in a Norwegian cohort with tumor (n = 134) and normal (n = 189) tissue and in the Cancer Genome Atlas (n = 1052) data set. We performed gene set variation analysis in the Norwegian cohort, and in the Cancer Genome Atlas cohort, associations with the tumor microenvironment and prognosis were evaluated. Analyses were performed with cBioPortal, Estimation of Stromal and Immune cells in Malignant Tumors Using Expression Data, Tumor Immune Estimation Resource, the integrated repository portal for tumor-immune system interactions, Tumor Immune Single-cell Hub 2, and the receiver operating characteristic plotter. Six independent breast cancer cohorts were used to study the tumor coagulome and treatment response to chemotherapy. RESULTS Twenty-two differentially expressed coagulation-related genes were identified in breast tumors. Several coagulome factors were correlated with tumor microenvironment characteristics and were expressed by nonmalignant cells in the tumor microenvironment. PLAT and F8 were independent predictors of better overall survival and progression-free survival, respectively. F12 and PLAU were predictors of worse progression-free survival. The PROCR-THBD-PLAT signature showed a promising predictive value (area under the curve, 0.75; 95% CI, 0.69-0.81; P = 3.6 × 10-17) for combination chemotherapy with fluorouracil, epirubicin, and cyclophosphamide. CONCLUSION The breast tumor coagulome showed potential in prediction of prognosis and chemotherapy response. Cells within the tumor microenvironment are sources of coagulome factors and may serve as therapeutic targets of coagulation factors.
Collapse
Affiliation(s)
- Mari Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Department of Haematology, Oslo University Hospital, Oslo, Norway.
| | - Xavier Tekpli
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Lilly Anne Torland
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andliena Tahiri
- Department of Research and Innovation, Vestre Viken Hospital Trust, Drammen, Norway; Department of Clinical Molecular Biology (EpiGen), Medical Division, Akershus University Hospital, Lørenskog, Norway
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, Lørenskog, Norway; Institute of Clinical Medicine, University of Oslo, Campus Akershus University Hospital, Lørenskog, Norway
| | - Vessela Kristensen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Per Morten Sandset
- Department of Haematology, Oslo University Hospital, Oslo, Norway; Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Research Institute of Internal Medicine, Oslo University Hospital, Norway
| | - Nina Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
6
|
Zelaya H, Grunz K, Nguyen TS, Habibi A, Witzler C, Reyda S, Gonzalez-Menendez I, Quintanilla-Martinez L, Bosmann M, Weiler H, Ruf W. Nucleic acid sensing promotes inflammatory monocyte migration through biased coagulation factor VIIa signaling. Blood 2024; 143:845-857. [PMID: 38096370 PMCID: PMC10940062 DOI: 10.1182/blood.2023021149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/30/2023] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Protease activated receptors (PARs) are cleaved by coagulation proteases and thereby connect hemostasis with innate immune responses. Signaling of the tissue factor (TF) complex with factor VIIa (FVIIa) via PAR2 stimulates extracellular signal-regulated kinase (ERK) activation and cancer cell migration, but functions of cell autonomous TF-FVIIa signaling in immune cells are unknown. Here, we show that myeloid cell expression of FVII but not of FX is crucial for inflammatory cell recruitment to the alveolar space after challenge with the double-stranded viral RNA mimic polyinosinic:polycytidylic acid [Poly(I:C)]. In line with these data, genetically modified mice completely resistant to PAR2 cleavage but not FXa-resistant PAR2-mutant mice are protected from lung inflammation. Poly(I:C)-stimulated migration of monocytes/macrophages is dependent on ERK activation and mitochondrial antiviral signaling (MAVS) but independent of toll-like receptor 3 (TLR3). Monocyte/macrophage-synthesized FVIIa cleaving PAR2 is required for integrin αMβ2-dependent migration on fibrinogen but not for integrin β1-dependent migration on fibronectin. To further dissect the downstream signaling pathway, we generated PAR2S365/T368A-mutant mice deficient in β-arrestin recruitment and ERK scaffolding. This mutation reduces cytosolic, but not nuclear ERK phosphorylation by Poly(I:C) stimulation, and prevents macrophage migration on fibrinogen but not fibronectin after stimulation with Poly(I:C) or CpG-B, a single-stranded DNA TLR9 agonist. In addition, PAR2S365/T368A-mutant mice display markedly reduced immune cell recruitment to the alveolar space after Poly(I:C) challenge. These results identify TF-FVIIa-PAR2-β-arrestin-biased signaling as a driver for lung infiltration in response to viral nucleic acids and suggest potential therapeutic interventions specifically targeting TF-VIIa signaling in thrombo-inflammation.
Collapse
Affiliation(s)
- Hortensia Zelaya
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- National Scientific and Technical Research Council (CONICET), Tucuman, Argentina
| | - Kristin Grunz
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - T. Son Nguyen
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Anxhela Habibi
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Cardiovascular Research Institute Maastricht, Maastricht, The Netherlands
| | - Claudius Witzler
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Irene Gonzalez-Menendez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Leticia Quintanilla-Martinez
- Institute of Pathology and Neuropathology, Comprehensive Cancer Center, Eberhard Karls University, Tübingen, Germany
| | - Markus Bosmann
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Pulmonary Center, Department of Medicine and Department of Pathology & Laboratory Medicine, Boston University, Boston, MA
| | | | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
| |
Collapse
|
7
|
Kroone C, Tieken C, Kocatürk B, Paauwe M, Blok EJ, Ünlü B, van den Berg YW, Stanganello E, Kapteijn MY, Swier N, Zhang X, Duits DEM, Lin Y, Oostenbrink LVE, van den Akker RFP, Mosnier LO, Hawinkels LJ, van Vlijmen BJM, Ruf W, Kuppen PJ, Cannegieter SC, Buijs JT, Versteeg HH. Tumor-expressed factor VII is associated with survival and regulates tumor progression in breast cancer. Blood Adv 2023; 7:2388-2400. [PMID: 36920782 PMCID: PMC10238845 DOI: 10.1182/bloodadvances.2022008455] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer enhances the risk of venous thromboembolism, but a hypercoagulant microenvironment also promotes cancer progression. Although anticoagulants have been suggested as a potential anticancer treatment, clinical studies on the effect of such modalities on cancer progression have not yet been successful for unknown reasons. In normal physiology, complex formation between the subendothelial-expressed tissue factor (TF) and the blood-borne liver-derived factor VII (FVII) results in induction of the extrinsic coagulation cascade and intracellular signaling via protease-activated receptors (PARs). In cancer, TF is overexpressed and linked to poor prognosis. Here, we report that increased levels of FVII are also observed in breast cancer specimens and are associated with tumor progression and metastasis to the liver. In breast cancer cell lines, tumor-expressed FVII drives changes reminiscent of epithelial-to-mesenchymal transition (EMT), tumor cell invasion, and expression of the prometastatic genes, SNAI2 and SOX9. In vivo, tumor-expressed FVII enhanced tumor growth and liver metastasis. Surprisingly, liver-derived FVII appeared to inhibit metastasis. Finally, tumor-expressed FVII-induced prometastatic gene expression independent of TF but required a functional endothelial protein C receptor, whereas recombinant activated FVII acting via the canonical TF:PAR2 pathway inhibited prometastatic gene expression. Here, we propose that tumor-expressed FVII and liver-derived FVII have opposing effects on EMT and metastasis.
Collapse
Affiliation(s)
- Chantal Kroone
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Chris Tieken
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Begüm Kocatürk
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Madelon Paauwe
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Erik J. Blok
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Betül Ünlü
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yascha W. van den Berg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Eliana Stanganello
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Maaike Y. Kapteijn
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Nathalie Swier
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Xi Zhang
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Danique E. M. Duits
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Yazhi Lin
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Lisa V. E. Oostenbrink
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Rob F. P. van den Akker
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | | | - Lukas J. Hawinkels
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - Bart J. M. van Vlijmen
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Wolfram Ruf
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Peter J. Kuppen
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Suzanne C. Cannegieter
- Department of Clinical Epidemiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Jeroen T. Buijs
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Henri H. Versteeg
- Department of Internal Medicine, Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
8
|
Koizume S, Kanayama T, Kimura Y, Hirano H, Takahashi T, Ota Y, Miyazaki K, Yoshihara M, Nakamura Y, Yokose T, Kato H, Takenaka K, Sato S, Tadokoro H, Miyagi E, Miyagi Y. Cancer cell-derived CD69 induced under lipid and oxygen starvation promotes ovarian cancer progression through fibronectin. Cancer Sci 2023. [PMID: 36854451 DOI: 10.1111/cas.15774] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Cancer tissues generally have molecular oxygen and serum component deficiencies because of poor vascularization. Recently, we revealed that ICAM1 is strongly activated through lipophagy in ovarian clear cell carcinoma (CCC) cells in response to starvation of long-chain fatty acids and oxygen and confers resistance to apoptosis caused by these harsh conditions. CD69 is a glycoprotein that is synthesized in immune cells and is associated with their activation through cellular signaling pathways. However, the expression and function of CD69 in nonhematological cells is unclear. Here, we report that CD69 is induced in CCC cells as in ICAM1. Mass spectrometry analysis of phosphorylated peptides followed by pathway analysis revealed that CD69 augments CCC cell binding to fibronectin (FN) in association with the phosphorylation of multiple cellular signaling molecules including the focal adhesion pathway. Furthermore, CD69 synthesized in CCC cells could facilitate cell survival because the CD69-FN axis can induce epithelial-mesenchymal transition. Experiments with surgically removed tumor samples revealed that CD69 is predominantly expressed in CCC tumor cells compared with other histological subtypes of epithelial ovarian cancer. Overall, our data suggest that cancer cell-derived CD69 can contribute to CCC progression through FN.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Tomohiko Kanayama
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yayoi Kimura
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Hisashi Hirano
- Advancer Medical Research Center, Yokohama City University, Yokohama, Japan
| | - Tomoko Takahashi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yukihide Ota
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Kaoru Miyazaki
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Mitsuyo Yoshihara
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yoshiyasu Nakamura
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Tomoyuki Yokose
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hisamori Kato
- Department of Gynecology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Katsuya Takenaka
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Shinya Sato
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| | - Hiroko Tadokoro
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Etsuko Miyagi
- Department of Obstetrics, Gynecology and Molecular Reproductive Science, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
- Department of Pathology, Kanagawa Cancer Center Hospital, Yokohama, Japan
| |
Collapse
|
9
|
Impact of hereditary thrombophilia on cancer-associated thrombosis, tumour susceptibility and progression: A review of existing evidence. Biochim Biophys Acta Rev Cancer 2022; 1877:188778. [PMID: 35963552 DOI: 10.1016/j.bbcan.2022.188778] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022]
Abstract
Venous thromboembolism (VTE) is a cardiovascular disorder frequently diagnosed among cancer patients. Aside from being common, VTE severely deteriorates the prognosis of these patients as they face a higher risk of morbidity and mortality, which makes clinical tools able to identify the patients more prompt to thrombogenesis very attractive. Over the years, several genetic polymorphisms have been linked with VTE susceptibility in the general population. However, their clinical usefulness as predictive biomarkers for cancer-related VTE is yet unclear. Furthermore, as a two-way association between cancer and VTE is well-recognized, with haemostatic components fuelling tumour progression, haemostatic gene polymorphisms constitute potential cancer predictive and/or prognostic biomarkers as well. Thus, in this article, we review the existing evidence on the role of these polymorphisms on cancer-related VTE and their impact on cancer onset and progression. Despite the promising findings, the existing studies had inconsistent results most likely due to their limited statistical power and population heterogeneity. Future studies are therefore required to clarify the role of these polymorphisms in setting of malignancy.
Collapse
|
10
|
Tawil N, Rak J. Blood coagulation and cancer genes. Best Pract Res Clin Haematol 2022; 35:101349. [DOI: 10.1016/j.beha.2022.101349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/24/2022] [Indexed: 11/30/2022]
|
11
|
Sloan AR, Lee-Poturalski C, Hoffman HC, Harris PL, Elder TE, Richardson B, Kerstetter-Fogle A, Cioffi G, Schroer J, Desai A, Cameron M, Barnholtz-Sloan J, Rich J, Jankowsky E, Sen Gupta A, Sloan AE. Glioma stem cells activate platelets by plasma-independent thrombin production to promote glioblastoma tumorigenesis. Neurooncol Adv 2022; 4:vdac172. [PMID: 36452274 PMCID: PMC9700385 DOI: 10.1093/noajnl/vdac172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background The interaction between platelets and cancer cells has been underexplored in solid tumor models that do not metastasize, for example, glioblastoma (GBM) where metastasis is rare. Histologically, it is known that glioma stem cells (GSCs) are found in perivascular and pseudsopalisading regions of GBM, which are also areas of platelet localization. High platelet counts have been associated with poor clinical outcomes in many cancers. While platelets are known to promote the progression of other tumors, mechanisms by which platelets influence GBM oncogenesis are unknown. Here, we aimed to understand how the bidirectional interaction between platelets and GSCs drives GBM oncogenesis. Methods Male and female NSG mice were transplanted with GSC lines and treated with antiplatelet and anti-thrombin inhibitors. Immunofluorescence, qPCR, and Western blots were used to determine expression of coagulation mechanism in GBM tissue and subsequent GSC lines. Results We show that GSCs activate platelets by endogenous production of all the factors of the intrinsic and extrinsic coagulation cascades in a plasma-independent manner. Therefore, GSCs produce thrombin resulting in platelet activation. We further demonstrate that the endogenous coagulation cascades of these cancer stem cells are tumorigenic: they activate platelets to promote stemness and proliferation in vitro and pharmacological inhibition delays tumor growth in vivo. Conclusions Our findings uncover a specific preferential relationship between platelets and GSCs that drive GBM malignancies and identify a therapeutically targetable novel interaction.
Collapse
Affiliation(s)
- Anthony R Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Christine Lee-Poturalski
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Harry C Hoffman
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Peggy L Harris
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Theresa E Elder
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Brian Richardson
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Amber Kerstetter-Fogle
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Gino Cioffi
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
| | - Julia Schroer
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, USA
| | - Ansh Desai
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
| | - Mark Cameron
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Population and Quantitative Health Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Jill Barnholtz-Sloan
- Division of Cancer Epidemiology and Genetics, Trans-Divisional Research Program, National Cancer Institute, Bethesda, Maryland, USA
- Center for Biomedical Informatics and Information Technology, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeremy Rich
- Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Eckhard Jankowsky
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, Ohio, USA
| | - Anirban Sen Gupta
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Biomedical Engineering, Case Western Reserve University School of Engineering, Cleveland, Ohio, USA
| | - Andrew E Sloan
- Department of Neurological Surgery, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurological Surgery, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neurosciences, Piedmont Health, Atlanta Georgia, USA
| |
Collapse
|
12
|
Jiang Y, Lim J, Wu KC, Xu W, Suen JY, Fairlie DP. PAR2 induces ovarian cancer cell motility by merging three signalling pathways to transactivate EGFR. Br J Pharmacol 2020; 178:913-932. [PMID: 33226635 DOI: 10.1111/bph.15332] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 11/08/2020] [Accepted: 11/14/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND PURPOSE Specific cellular functions mediated by GPCRs are often associated with signalling through a particular G protein or β-arrestin. Here, we examine signalling through a GPCR, protease-activated receptor 2 (PAR2), in a high-grade serous ovarian cancer cell line (OV90). EXPERIMENTAL APPROACH Human ovarian cancer tissues (n = 1,200) and nine human ovarian cancer cell lines were assessed for PAR2 expression. PAR2 signalling mechanisms leading to cell migration and invasion were dissected using cellular assays, western blots, CRISPR-Cas9 gene knockouts, pharmacological inhibitors of PAR2 and downstream signalling proteins in OV90 cancer cells. KEY RESULTS PAR2 was significantly overexpressed in clinical ovarian cancer tissues and in OV90 ovarian cancer cells. PAR2 agonists, an endogenous protease (trypsin) and a synthetic peptide (2f-LIGRL-NH2 ), induced migration and invasion of OV90 ovarian cancer cells through activating a combination of Gαq/11 , Gα12/13 and β-arrestin1/2, but not Gαs or Gαi . This novel cooperative rather than parallel signalling resulted in downstream serial activation of Src kinases, then transactivation of epidermal growth factor receptor (EGFR), followed by downstream MEK-ERK1/2-FOS/MYC/STAT3-COX2 signalling. Either a PAR2 antagonist (I-191), CRISPR-Cas9 gene knockouts (PAR2 or Gα proteins or β-arrestin1/2), or inhibitors of each downstream protein attenuated human ovarian cancer cell motility. CONCLUSION AND IMPLICATIONS This study highlights a novel shared signalling cascade, requiring each of Gαq/11 , Gα12/13 and β-arrestin1/2 for PAR2-induced ovarian cancer cell migration and invasion. This mechanism controlling a cellular function is unusual in not being linked to a specific individual G protein or β-arrestin-mediated signalling pathway.
Collapse
Affiliation(s)
- Yuhong Jiang
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Junxian Lim
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Kai-Chen Wu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Weijun Xu
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Jacky Y Suen
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - David P Fairlie
- Centre for Inflammation and Disease Research and Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
13
|
Lucotti S, Muschel RJ. Platelets and Metastasis: New Implications of an Old Interplay. Front Oncol 2020; 10:1350. [PMID: 33042789 PMCID: PMC7530207 DOI: 10.3389/fonc.2020.01350] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/26/2020] [Indexed: 12/17/2022] Open
Abstract
During the process of hematogenous metastasis, tumor cells interact with platelets and their precursors megakaryocytes, providing a selection driver for the metastatic phenotype. Cancer cells have evolved a plethora of mechanisms to engage platelet activation and aggregation. Platelet coating of tumor cells in the blood stream promotes the successful completion of multiple steps of the metastatic cascade. Along the same lines, clinical evidence suggests that anti-coagulant therapy might be associated with reduced risk of metastatic disease and better prognosis in cancer patients. Here, we review experimental and clinical literature concerning the contribution of platelets and megakaryocytes to cancer metastasis and provide insights into the clinical relevance of anti-coagulant therapy in cancer treatment.
Collapse
Affiliation(s)
- Serena Lucotti
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, United States
| | - Ruth J Muschel
- Cancer Research UK and MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Profiling the circulating mRNA transcriptome in human liver disease. Oncotarget 2020; 11:2216-2232. [PMID: 32577166 PMCID: PMC7289528 DOI: 10.18632/oncotarget.27617] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/16/2020] [Indexed: 01/05/2023] Open
Abstract
The human circulation contains cell-free DNA and non-coding microRNA (miRNA). Less is known about the presence of messenger RNA (mRNA). This report profiles the human circulating mRNA transcriptome in people with liver cirrhosis (LC) and hepatocellular carcinoma (HCC) to determine whether mRNA analytes can be used as biomarkers of liver disease. Using RNAseq and RT-qPCR, we investigate circulating mRNA in plasma from HCC and LC patients and demonstrate detection of transcripts representing more than 19,000 different protein coding genes. Remarkably, the circulating mRNA expression levels were similar from person to person over the 21 individuals whose samples were analyzed by RNAseq. Liver derived circulating transcripts such as albumin (ALB), apolipoprotein (APO) A1, A2 & H, serpin A1 & E1, ferritin light chain (FTL) and fibrinogen like 1 (FGL1) were significantly upregulated in HCC patient samples. Higher levels of some of these liver-specific transcripts in the plasma of HCC patients were confirmed by RT-qPCR in another cohort of 20 individuals. Several less abundant circulating transcripts associated with cancer were detected in most HCC samples, but not in healthy subjects. Liver specificity of circulating transcripts was confirmed by investigating their expression in HCC tumor and liver cancer cell lines. Liver specific mRNA sequences in the plasma were predominantly present outside circulating extracellular vesicles. Conclusions: The circulating “mRNA” transcriptome is remarkably consistent in diversity and expression from person to person. Detection of transcripts corresponding to disease selective polypeptides suggests the possibility that circulating mRNA can work as a biomarker analyte for cancer detection.
Collapse
|
15
|
Graf C, Wilgenbus P, Pagel S, Pott J, Marini F, Reyda S, Kitano M, Macher-Göppinger S, Weiler H, Ruf W. Myeloid cell-synthesized coagulation factor X dampens antitumor immunity. Sci Immunol 2020; 4:4/39/eaaw8405. [PMID: 31541031 DOI: 10.1126/sciimmunol.aaw8405] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 07/02/2019] [Accepted: 08/06/2019] [Indexed: 12/20/2022]
Abstract
Immune evasion in the tumor microenvironment (TME) is a crucial barrier for effective cancer therapy, and plasticity of innate immune cells may contribute to failures of targeted immunotherapies. Here, we show that rivaroxaban, a direct inhibitor of activated coagulation factor X (FX), promotes antitumor immunity by enhancing infiltration of dendritic cells and cytotoxic T cells at the tumor site. Profiling FX expression in the TME identifies monocytes and macrophages as crucial sources of extravascular FX. By generating mice with immune cells lacking the ability to produce FX, we show that myeloid cell-derived FX plays a pivotal role in promoting tumor immune evasion. In mouse models of cancer, we report that the efficacy of rivaroxaban is comparable with anti-programmed cell death ligand 1 (PD-L1) therapy and that rivaroxaban synergizes with anti-PD-L1 in improving antitumor immunity. Mechanistically, we demonstrate that FXa promotes immune evasion by signaling through protease-activated receptor 2 and that rivaroxaban specifically targets this cell-autonomous signaling pathway to reprogram tumor-associated macrophages. Collectively, our results have uncovered the importance of FX produced in the TME as a regulator of immune cell activation and suggest translational potential of direct oral anticoagulants to remove persisting roadblocks for immunotherapy and provide extravascular benefits in other diseases.
Collapse
Affiliation(s)
- Claudine Graf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA.,Department of Internal Medicine III, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Petra Wilgenbus
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sven Pagel
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Jennifer Pott
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Federico Marini
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany.,Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Sabine Reyda
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Maki Kitano
- Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| | | | - Hartmut Weiler
- Blood Research Institute, Blood Center of Wisconsin, Milwaukee, WI, USA
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany. .,Department of Immunology and Microbiology, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
16
|
Identification of F5 as a Prognostic Biomarker in Patients with Gastric Cancer. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9280841. [PMID: 32190689 PMCID: PMC7064826 DOI: 10.1155/2020/9280841] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 02/06/2023]
Abstract
Association of Coagulation factor V (F5) polymorphisms with the occurrence of many types of cancers has been widely reported, but whether it is of prognostic relevance in some cancers remain to be resolved. The RNA-sequencing dataset was downloaded from The Cancer Genome Atlas (TCGA). The potential of F5 genes to predict the survival time of gastric cancer (GC) patients was investigated using univariate and multivariate survival analysis whereas “Kaplan-Meier plotter” (KM-plotter) online tools were employed to validate the outcomes. TCGA data revealed that F5 mRNA levels were significantly upregulated in gastric cancer samples. Survival analysis confirmed that high levels of F5 mRNA correlated with short overall survival (OS) in gastric cancer patients, and the area under the curve (AUC) values of 1-, 2-, and 5-year OS rate were 0.554, 0.593, and 0.603, respectively. Survival analysis by KM-plotter indicated that the high expression of F5 mRNA was significantly associated with a shorter OS compared with the low expression level in all patients with GC, and this was also the case for patients in stage III (hazard ratio (HR) = 1.78, P = 0.017). These findings suggest that the F5 gene is significantly upregulated in GC tumour tissues, and may be a potential prognostic biomarker for GC.
Collapse
|
17
|
Zhang B, Pang Z, Hu Y. Targeting hemostasis-related moieties for tumor treatment. Thromb Res 2020; 187:186-196. [PMID: 32032807 DOI: 10.1016/j.thromres.2020.01.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 12/23/2019] [Accepted: 01/14/2020] [Indexed: 12/12/2022]
Abstract
Under normal conditions, the hemostatic system, that includes the involvement of the coagulation response and platelets, is anatomically and functionally inseparable from the vasculature. However, the hemostatic response always occurs in a wide range of tumors because of the high expression of coagulation initiator tissue factor (TF) in many tumor tissues, and due to the leakage of coagulation factors and platelets from the circulation system into the tumor interstitium through abnormal tumor vessels. Therefore, in addition to TF, these coagulation factors, platelets, the central moiety thrombin, the final product fibrin, and fibronectin, which is capable of stabilizing coagulation clots, are also abundant in tumors. These hemostasis-related moieties (HRMs), including TF, thrombin, fibrin, fibronectin, and platelets, are also closely associated with tumor progression, e.g., primary tumor growth and distal metastasis. The hemostatic response only occurs under pathological conditions, such as tumors, thrombosis, and atherosclerosis other than in normal tissues. The HRMs within tumors are also highly specific, establishing functional and therapeutic targets for tumor treatment. Therefore, strategies including active targeting to these moieties, modulation of HRMs deposited in the tumor microenvironment to improve tumor drug delivery, activation of prodrug by the coagulation complex formed during coagulation response, and direct inhibition of the tumor-promoting activity of HRMs could be designed for tumor therapy. In this review, we summarize various strategies that target HRMs for tumor treatment.
Collapse
Affiliation(s)
- Bo Zhang
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China
| | - Zhiqing Pang
- School of Pharmacy, Fudan University, Key Laboratory of Smart Drug Delivery, Ministry of Education, 826 Zhangheng Road, Shanghai 201203, China.
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
18
|
Tavares V, Pinto R, Assis J, Pereira D, Medeiros R. Venous thromboembolism GWAS reported genetic makeup and the hallmarks of cancer: Linkage to ovarian tumour behaviour. Biochim Biophys Acta Rev Cancer 2020; 1873:188331. [DOI: 10.1016/j.bbcan.2019.188331] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 11/01/2019] [Accepted: 11/01/2019] [Indexed: 12/14/2022]
|
19
|
Pontarollo G, Mann A, Brandão I, Malinarich F, Schöpf M, Reinhardt C. Protease-activated receptor signaling in intestinal permeability regulation. FEBS J 2019; 287:645-658. [PMID: 31495063 DOI: 10.1111/febs.15055] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Protease-activated receptors (PARs) are a unique class of G-protein-coupled transmembrane receptors, which revolutionized the perception of proteases from degradative enzymes to context-specific signaling factors. Although PARs are traditionally known to affect several vascular responses, recent investigations have started to pinpoint the functional role of PAR signaling in the gastrointestinal (GI) tract. This organ is exposed to the highest number of proteases, either from the gut lumen or from the mucosa. Luminal proteases include the host's digestive enzymes and the proteases released by the commensal microbiota, while mucosal proteases entail extravascular clotting factors and the enzymes released from resident and infiltrating immune cells. Active proteases and, in case of a disrupted gut barrier, even entire microorganisms are capable to translocate the intestinal epithelium, particularly under inflammatory conditions. Especially PAR-1 and PAR-2, expressed throughout the GI tract, impact gut permeability regulation, a major factor affecting intestinal physiology and metabolic inflammation. In addition, PARs are critically involved in the onset of inflammatory bowel diseases, irritable bowel syndrome, and tumor progression. Due to the number of proteases involved and the multiple cell types affected, selective regulation of intestinal PARs represents an interesting therapeutic strategy. The analysis of tissue/cell-specific knockout animal models will be of crucial importance to unravel the intrinsic complexity of this signaling network. Here, we provide an overview on the implication of PARs in intestinal permeability regulation under physiologic and disease conditions.
Collapse
Affiliation(s)
- Giulia Pontarollo
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Amrit Mann
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Inês Brandão
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,Centro de Apoio Tecnológico Agro Alimentar (CATAA), Zona Industrial de Castelo Branco, Portugal
| | - Frano Malinarich
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Marie Schöpf
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany
| | - Christoph Reinhardt
- Center for Thrombosis and Hemostasis (CTH), University Medical Center Mainz, Johannes Gutenberg University of Mainz, Germany.,German Center for Cardiovascular Research (DZHK), Partner Site RheinMain, Mainz, Germany
| |
Collapse
|
20
|
Edén D, Panagiotou G, Mokhtari D, Eriksson JW, Åberg M, Siegbahn A. Adipocytes express tissue factor and FVII and are procoagulant in a TF/FVIIa-dependent manner. Ups J Med Sci 2019; 124:158-167. [PMID: 31407948 PMCID: PMC6758637 DOI: 10.1080/03009734.2019.1645248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Background: Tissue factor (TF) combined with its ligand FVII initiates blood coagulation and intracellular signaling. Obese and type 2 diabetic subjects have increased TF expression in their adipose tissue and an increased risk for thrombotic complications. Here we address the role of TF/FVII on adipocyte functions. Materials and methods: Subcutaneous fat was obtained by means of needle aspiration from healthy volunteers, and adipocytes were isolated after collagenase digestion. 3T3-L1 fibroblasts kept in culture were differentiated into adipocytes by addition of IBMX, dexamethasone, rosiglitazone, and insulin to the media. Proteins and mRNA were analyzed by western blot and RT-PCR. Coagulation activity was determined by a colorimetric FX-assay. Lipolysis was measured as free glycerol using a colorimetric method. Glucose uptake was evaluated by scintillation counting of D-[U-14C] glucose. Results: In isolated human primary adipocytes we found expression of TF and FVII. TF expression was confirmed in 3T3-L1 adipocytes, and both cell types were found to be procoagulant in a TF/FVIIa-dependent manner. FXa was generated without FVIIa added to the coagulation assay, and active site-inhibited FVIIa blocked FXa formation, supporting our finding of FVII production by human primary adipocytes. There was no evidence for a role of TF in either lipolysis or glucose uptake in our experimental settings. Conclusion: Human primary adipocytes express active TF and FVII, and the TF/FVIIa complex formed on the adipocyte surface can activate substrate FX. Whether the TF/FVIIa complex conveys signaling pathways leading to biological functions and has any biological activity in adipocytes beyond coagulation remains to be elucidated.
Collapse
Affiliation(s)
- Desirée Edén
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Grigorios Panagiotou
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Dariush Mokhtari
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Jan W. Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Mikael Åberg
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Agneta Siegbahn
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
- CONTACT Agneta Siegbahn Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| |
Collapse
|
21
|
Liu S, Zhang Y, Zhao X, Wang J, Di C, Zhao Y, Ji T, Cheng K, Wang Y, Chen L, Qi Y, Li S, Nie G. Tumor-Specific Silencing of Tissue Factor Suppresses Metastasis and Prevents Cancer-Associated Hypercoagulability. NANO LETTERS 2019; 19:4721-4730. [PMID: 31180684 DOI: 10.1021/acs.nanolett.9b01785] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Within tumors, the coagulation-inducing protein tissue factor (TF), a major initiator of blood coagulation, has been shown to play a critical role in the hematogenous metastasis of tumors, due to its effects on tumor hypercoagulability and on the mediation of interactions between platelets and tumor cells. Targeting tumor-associated TF has therefore great therapeutic potential for antimetastasis therapy and preventing thrombotic complication in cancer patients. Herein, we reported a novel peptide-based nanoparticle that targets delivery and release of small interfering RNA (siRNA) into the tumor site to silence the expression of tumor-associated TF. We showed that suppression of TF expression in tumor cells blocks platelet adhesion surrounding tumor cells in vitro. The downregulation of TF expression in intravenously administered tumor cells (i.e., simulated circulating tumor cells [CTCs]) prevented platelet adhesion around CTCs and decreased CTCs survival in the lung. In a breast cancer mouse model, siRNA-containing nanoparticles efficiently attenuated TF expression in the tumor microenvironment and remarkably reduced the amount of lung metastases in both an experimental lung metastasis model and tumor-bearing mice. What's more, this strategy reversed the hypercoagulable state of the tumor bearing mice by decreasing the generation of thrombin-antithrombin complexes (TAT) and activated platelets, both of which are downstream products of TF. Our study describes a promising approach to combat metastasis and prevent cancer-associated thrombosis, which advances TF as a therapeutic target toward clinic applications.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Female
- Gene Expression Regulation, Neoplastic/drug effects
- Gene Silencing
- Humans
- Lung Neoplasms/drug therapy
- Lung Neoplasms/genetics
- Lung Neoplasms/metabolism
- Lung Neoplasms/secondary
- Mice, Nude
- Nanoparticles/chemistry
- Nanoparticles/therapeutic use
- Neoplasm Metastasis
- Neoplasm Proteins/biosynthesis
- Neoplasm Proteins/genetics
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/genetics
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Neoplastic Cells, Circulating/metabolism
- Neoplastic Cells, Circulating/pathology
- RNA, Small Interfering/genetics
- RNA, Small Interfering/pharmacology
- Thrombophilia/genetics
- Thrombophilia/metabolism
- Thrombophilia/prevention & control
- Thromboplastin/biosynthesis
- Thromboplastin/genetics
- Thrombosis/genetics
- Thrombosis/metabolism
- Thrombosis/pathology
- Thrombosis/prevention & control
Collapse
Affiliation(s)
- Shaoli Liu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yinlong Zhang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Jing Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Chunzhi Di
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ying Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Tianjiao Ji
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Yongwei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
| | - Long Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yingqiu Qi
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
- Henan Institute of Advanced Technology , Zhengzhou University , Zhengzhou 450001 , China
| | - Suping Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guangjun Nie
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience , National Center for Nanoscience and Technology , Beijing 100190 , China
- Center of Materials Science and Optoelectronics Engineering , University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
22
|
Hisada Y, Mackman N. Tissue Factor and Cancer: Regulation, Tumor Growth, and Metastasis. Semin Thromb Hemost 2019; 45:385-395. [PMID: 31096306 DOI: 10.1055/s-0039-1687894] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
There is a strong relationship between tissue factor (TF) and cancer. Many cancer cells express high levels of both full-length TF and alternatively spliced (as) TF. TF expression in cancer is associated with poor prognosis. In this review, the authors summarize the regulation of TF expression in cancer cells and the roles of TF and asTF in tumor growth and metastasis. A variety of different signaling pathways, transcription factors and micro ribonucleic acids regulate TF gene expression in cancer cells. The TF/factor VIIa complex enhances tumor growth by activating protease-activated receptor 2 signaling and by increasing the expression of angiogenic factors, such as vascular endothelial growth factor. AsTF increases tumor growth by enhancing integrin β1 signaling. TF and asTF also contribute to metastasis via multiple thrombin-dependent and independent mechanisms that include protecting tumor cells from natural killer cells. Finally, a novel anticancer therapy is using tumor TF as a target to deliver cytotoxic drugs to the tumor. TF may be useful in diagnosis, prognosis, and treatment of cancer.
Collapse
Affiliation(s)
- Yohei Hisada
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Nigel Mackman
- Division of Hematology and Oncology, Department of Medicine, Thrombosis and Hemostasis Program, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
23
|
Abstract
Thrombosis is a major cause of morbidity and mortality in cancer patients. The pathogenesis of blood coagulation activation in oncological patients is complex and involves both clinical and biological factors. Abnormalities in one or more coagulation test are common in cancer patients, even without thrombotic manifestations, indicating an ongoing hypercoagulable condition. Moreover, venous thromboembolism (VTE) can be the first symptom of an occult malignancy in an otherwise healthy individual. The levels of laboratory markers of activation of blood coagulation parallel the development of malignancy, being the coagulant mechanisms important for both thrombogenesis and tumor progression. Besides general clinical risk factors for VTE, also disease-specific clinical factors, i.e., type and stage of the tumor, and anticancer therapies increase the thrombotic risk in these patients. Furthermore, biological factors, including the cancer cell-specific prothrombotic properties together with the host cell inflammatory response to the tumor, are relevant as well as unique players in the pathogenesis of the cancer-associated hypercoagulability. Cancer cells produce and release procoagulant and fibrinolytic proteins, inflammatory cytokines, and procoagulant microparticles. They also express adhesion molecules binding to the receptors of host vascular cells (i.e., endothelial cells, platelets, and leukocytes), thereby stimulating the prothrombotic properties of these normal cells, including the shed of cell-specific microparticles and neutrophil extracellular traps. Of interest, several genes responsible for the cellular neoplastic transformation drive the programs of hemostatic properties expressed by cancer tissues. A better understanding of such mechanisms will help the development of novel strategies to prevent and treat the Trousseau's syndrome (i.e., cancer-associated thrombosis).
Collapse
Affiliation(s)
- Anna Falanga
- Department of Transfusion Medicine and Hematology, Hospital Papa Giovanni XXIII, Bergamo, Italy.
- University of Milan Bicocca, School of Medicine and Surgery, Monza, Italy.
| | - Francesca Schieppati
- Department of Transfusion Medicine and Hematology, Hospital Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Russo
- Department of Transfusion Medicine and Hematology, Hospital Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
24
|
Zhao X, Cheng C, Gou J, Yi T, Qian Y, Du X, Zhao X. Expression of tissue factor in human cervical carcinoma tissue. Exp Ther Med 2018; 16:4075-4081. [PMID: 30402151 PMCID: PMC6200962 DOI: 10.3892/etm.2018.6723] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/26/2018] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate tissue factor (TF) expression in cervical cancer and explore its association with disease progression. A total of 258 cervical cancer tissues and their adjacent normal tissues were collected between September 2014 and September 2016. TF expression was detected in the tissue samples by immunohistochemistry and western blot analysis. Associations between the expression of TF and clinical stage, differentiation status and metastasis of cancer cells were examined. The mean immunohistochemistry score of TF expression in cervical cancer tissues was 2.86±1.76, which was significantly increased compared with the adjacent normal tissues (0.28±0.45). The expression of TF was also significantly associated with the clinical stage, lymph node metastasis and distant metastasis of cancer cells. Immunohistochemistry staining and western blot analysis demonstrated that TF expression in cervical cancer tissues significantly increased as the clinical stage increased. TF expression in tumor tissues from patients with lymph node metastasis was significantly increased compared with samples from patients without lymph node metastasis. TF expression was also significantly increased in patients with distant metastasis compared with those without. In conclusion, TF is highly expressed in cervical cancer tissues and high expression of TF may enhance the invasion and metastasis of cervical cancer cells.
Collapse
Affiliation(s)
- Xitong Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Chu Cheng
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Jinhai Gou
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Tao Yi
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Yanping Qian
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xue Du
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecology and Pediatric Diseases and Birth Defects, The Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| |
Collapse
|
25
|
Horinouchi Y, Ikeda Y, Fukushima K, Imanishi M, Hamano H, Izawa-Ishizawa Y, Zamami Y, Takechi K, Miyamoto L, Fujino H, Ishizawa K, Tsuchiya K, Tamaki T. Renoprotective effects of a factor Xa inhibitor: fusion of basic research and a database analysis. Sci Rep 2018; 8:10858. [PMID: 30022146 PMCID: PMC6052035 DOI: 10.1038/s41598-018-29008-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 07/04/2018] [Indexed: 01/25/2023] Open
Abstract
Renal tubulointerstitial injury, an inflammation-associated condition, is a major cause of chronic kidney disease (CKD). Levels of activated factor X (FXa), a blood coagulation factor, are increased in various inflammatory diseases. Therefore, we investigated the protective effects of an FXa inhibitor against renal tubulointerstitial injury using unilateral ureteral obstruction (UUO) mice (a renal tubulointerstitial fibrosis model) and the Food and Drug Administration Adverse Events Reporting System (FAERS) database. The renal expression levels of FX and the FXa receptors protease-activated receptor (PAR)-1 and PAR-2 were significantly higher in UUO mice than in sham-operated mice. UUO-induced tubulointerstitial fibrosis and extracellular matrix expression were suppressed in UUO mice treated with the FXa inhibitor edoxaban. Additionally, edoxaban attenuated UUO-induced macrophage infiltration and inflammatory molecule upregulation. In an analysis of the FAERS database, there were significantly fewer reports of tubulointerstitial nephritis for patients treated with FXa inhibitors than for patients not treated with inhibitors. These results suggest that FXa inhibitors exert protective effects against CKD by inhibiting tubulointerstitial fibrosis.
Collapse
Affiliation(s)
- Yuya Horinouchi
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Yasumasa Ikeda
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Keijo Fukushima
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Masaki Imanishi
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Hirofumi Hamano
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
| | - Yuki Izawa-Ishizawa
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Yoshito Zamami
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Kenshi Takechi
- Clinical Trial Center for Developmental Therapeutics, Tokushima University Hospital, Tokushima, Japan
| | - Licht Miyamoto
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Hiromichi Fujino
- Department of Pharmacology for Life Sciences, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Keisuke Ishizawa
- Department of Pharmacy, Tokushima University Hospital, Tokushima, Japan
- Department of Clinical Pharmacology and Therapeutics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Koichiro Tsuchiya
- Department of Medical Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| | - Toshiaki Tamaki
- Department of Pharmacology, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan
| |
Collapse
|
26
|
Zhang Y, Feng J, Fu H, Liu C, Yu Z, Sun Y, She X, Li P, Zhao C, Liu Y, Liu T, Liu Q, Liu Q, Li G, Wu M. Coagulation Factor X Regulated by CASC2c Recruited Macrophages and Induced M2 Polarization in Glioblastoma Multiforme. Front Immunol 2018; 9:1557. [PMID: 30034397 PMCID: PMC6043648 DOI: 10.3389/fimmu.2018.01557] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Accepted: 06/25/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor-associated macrophages (TAMs) constitute a major component of inflammatory cells in the glioblastoma multiforme (GBM) tumor microenvironment. TAMs have been implicated in GBM angiogenesis, invasion, local tumor recurrence, and immunosuppression. Coagulation factor X (FX) is a vitamin K-dependent plasma protein that plays a role in the regulation of blood coagulation. In this study, we first found that FX was highly expressed and positively correlated with TAM density in human GBM. FX exhibited a potent chemotactic capacity to recruit macrophages and promoted macrophages toward M2 subtype polarization, accelerating GBM growth. FX bound to extracellular signal-related kinase (ERK)1/2 and inhibited p-ERK1/2 in GBM cells. FX was secreted in the tumor microenvironment and increased the phosphorylation and activation of ERK1/2 and AKT in macrophages, which may have been responsible for the M2 subtype macrophage polarization. Moreover, although the lncRNA CASC2c has been verified to function as a miR-101 competing endogenous RNA (ceRNA) to promote miR-101 target genes in GBM cells, we first confirmed that CASC2c did not function as a miR-338-3p ceRNA to promote FX expression, and that FX was a target gene of miR-338-3p. CASC2c interacted with and reciprocally repressed miR-338-3p. Both CASC2c and miR-388-3p bound to FX and commonly inhibited its expression and secretion. CASC2c repressed M2 subtype macrophage polarization. Taken together, our findings revealed a novel mechanism highlighting CASC2c and FX as potential therapeutic targets to improve GBM patients by altering the GBM microenvironment.
Collapse
Affiliation(s)
- Yan Zhang
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Jianbo Feng
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Haijuan Fu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Changhong Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Zhibin Yu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yingnan Sun
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China
| | - Xiaoling She
- The Second Xiangya Hospital, Central South University, Changsha, China
| | - Peiyao Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Chunhua Zhao
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Yang Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Tao Liu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Qiang Liu
- The Third Xiangya Hospital, Central South University, Changsha, China
| | - Qing Liu
- The Xiangya Hospital, Central South University, Changsha, China
| | - Guiyuan Li
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Minghua Wu
- Hunan Provincial Tumor Hospital and the Affiliated Tumor Hospital of Xiangya Medical School, Central South University, Changsha, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| |
Collapse
|
27
|
Tinholt M, Garred Ø, Borgen E, Beraki E, Schlichting E, Kristensen V, Sahlberg KK, Iversen N. Subtype-specific clinical and prognostic relevance of tumor-expressed F5 and regulatory F5 variants in breast cancer: the CoCaV study. J Thromb Haemost 2018; 16:1347-1356. [PMID: 29766637 DOI: 10.1111/jth.14151] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Indexed: 02/05/2023]
Abstract
Essentials The role of coagulation factor V (encoded by F5) in cancer pathogenesis is unknown. The clinical significance of tumor-expressed F5 was evaluated in breast cancer patient cohorts. F5 was expressed in human breast tumors, and the expression was higher than in normal tissue. High F5 expression was associated with aggressive tumors, but also with survival in breast cancer. SUMMARY Background Tumor expression of certain coagulation factors has been linked to cancer progression. Single nucleotide polymorphisms (SNPs) in F5 (encoding the FV protein) have been found to be associated with breast cancer; however, the role of coagulation factor V (FV) in cancer pathogenesis remains undiscovered. Objectives We aimed to investigate the clinical significance of FV and the regulatory role of F5 gene variants in breast cancer. Patients/Methods A Scandinavian 503-sample breast cancer cohort and three public breast cancer datasets (GOBO, TCGA and KM plotter) were used to determine associations between F5 gene expression (tumor-specific), circulating FV, F5 SNPs, clinical characteristics and breast cancer survival. Immunohistochemistry (IHC) was used to detect FV antigen in tumors. Results F5 expression was 2-fold higher in breast tumors compared with normal tissue, and the presence of FV antigen in breast tumors was confirmed by IHC staining. F5 expression was increased in patients with hormone receptor negative tumors, triple negative tumors, HER2-enriched and basal-like tumors. In patients with basal tumors, high expression of F5 was associated with improved overall survival (hazard ratio, HR = 0.52, 95% confidence interval, 0.31-0.86). SNPs in F5 were associated with tumor size and luminal A tumors. The rs6427202-rs9332542 C-G haplotype, previously associated with breast cancer, displayed a cis-regulatory effect on F5 expression in tumors and plasma FV antigen levels. In silico mining supported this regulatory function. Conclusions FV was a possible marker of aggressive breast cancer, yet also a predictor of favorable outcome. Evaluation of FV expression may be clinically useful for prognosis and treatment decisions in aggressive breast cancer.
Collapse
Affiliation(s)
- M Tinholt
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
- Department of Haematology, Oslo University Hospital, Oslo, Norway
| | - Ø Garred
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - E Borgen
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - E Beraki
- Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - E Schlichting
- Department of Breast and Endocrine Surgery, Oslo University Hospital, Oslo, Norway
| | - V Kristensen
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
- Department of Clinical Molecular Biology (EpiGen), Akershus University Hospital, Lørenskog, Norway
| | - K K Sahlberg
- Department of Genetics, Institute for Cancer Research, Oslo University Hospital, Radiumhospitalet, Oslo, Norway
- Department of Research, Vestre Viken, Drammen, Norway
| | - N Iversen
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
28
|
Tumor microenvironment mediated by suppression of autophagic flux drives liver malignancy. Biomed J 2018; 41:163-168. [PMID: 30080656 PMCID: PMC6138774 DOI: 10.1016/j.bj.2018.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 01/10/2023] Open
Abstract
The physiological role of autophagy in the catabolic process of the body involves protein synthesis and degradation in homeostasis under normal and stressed conditions. In hepatocellular carcinoma (HCC), the role of tumor microenvironment (TME) has been concerned as the main issue in fighting against this deadly malignancy. During the last decade, the crosstalk between tumor cells and their TME in HCC extensively accumulated. However, a deeper knowledge for the actual function of autophagy in this interconnection which involved in supporting tumor development, progression and chemoresistance in HCC is needed but still largely unknown. Recent studies have shown that coagulants tissue factor (TF) and factor VII (FVII) has a pathological role in promoting tumor growth by activating protease-activated receptor 2 (PAR2). Autophagy-associated LC3A/B-II formation was selectively suppressed by FVII/PAR2 signaling which mediated by mTOR activation through Atg7 but not Atg5/Atg12 axis. The coagulant-derived autophagic suppression seemed potentiate a vicious circle of malignancy in producing more FVII and PAR2 which facilitate in vivo and in vitro tumor progression of HCC and the investigations are consistent with the clinical observations. In this review, we briefly summarize the current understanding of autophagy and discuss recent evidence for its role in HCC malignancy.
Collapse
|
29
|
Arakaki AKS, Pan WA, Trejo J. GPCRs in Cancer: Protease-Activated Receptors, Endocytic Adaptors and Signaling. Int J Mol Sci 2018; 19:ijms19071886. [PMID: 29954076 PMCID: PMC6073120 DOI: 10.3390/ijms19071886] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/20/2018] [Accepted: 06/21/2018] [Indexed: 01/06/2023] Open
Abstract
G protein-coupled receptors (GPCRs) are a large diverse family of cell surface signaling receptors implicated in various types of cancers. Several studies indicate that GPCRs control many aspects of cancer progression including tumor growth, invasion, migration, survival and metastasis. While it is known that GPCR activity can be altered in cancer through aberrant overexpression, gain-of-function activating mutations, and increased production and secretion of agonists, the precise mechanisms of how GPCRs contribute to cancer progression remains elusive. Protease-activated receptors (PARs) are a unique class of GPCRs implicated in cancer. PARs are a subfamily of GPCRs comprised of four members that are irreversibly activated by proteolytic cleavage induced by various proteases generated in the tumor microenvironment. Given the unusual proteolytic irreversible activation of PARs, expression of receptors at the cell surface is a key feature that influences signaling responses and is exquisitely controlled by endocytic adaptor proteins. Here, we discuss new survey data from the Cancer Genome Atlas and the Genotype-Tissue Expression projects analysis of expression of all PAR family member expression in human tumor samples as well as the role and function of the endocytic sorting machinery that controls PAR expression and signaling of PARs in normal cells and in cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- Biomedical Sciences Graduate Program, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, La Jolla, San Diego, CA 92093, USA.
| |
Collapse
|
30
|
Liu J, Chen D. Genetic polymorphisms in the FVII gene is associated with lower extremity deep venous thrombosis: A case‐control study. J Cell Biochem 2018; 119:6715-6722. [PMID: 29737537 DOI: 10.1002/jcb.26860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 03/13/2018] [Indexed: 11/06/2022]
Affiliation(s)
- Jian‐Wei Liu
- Department of General SurgeryThe First People's Hospital of NeijiangNeijiangP.R. China
| | - Dong‐Qiong Chen
- Department of Nuclear MedicineThe First People's Hospital of NeijiangNeijiangP.R. China
| |
Collapse
|
31
|
Rothmeier AS, Liu E, Chakrabarty S, Disse J, Mueller BM, Østergaard H, Ruf W. Identification of the integrin-binding site on coagulation factor VIIa required for proangiogenic PAR2 signaling. Blood 2018; 131:674-685. [PMID: 29246902 PMCID: PMC5805488 DOI: 10.1182/blood-2017-02-768218] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 12/12/2017] [Indexed: 12/14/2022] Open
Abstract
The tissue factor (TF) pathway serves both hemostasis and cell signaling, but how cells control these divergent functions of TF remains incompletely understood. TF is the receptor and scaffold of coagulation proteases cleaving protease-activated receptor 2 (PAR2) that plays pivotal roles in angiogenesis and tumor development. Here we demonstrate that coagulation factor VIIa (FVIIa) elicits TF cytoplasmic domain-dependent proangiogenic cell signaling independent of the alternative PAR2 activator matriptase. We identify a Lys-Gly-Glu (KGE) integrin-binding motif in the FVIIa protease domain that is required for association of the TF-FVIIa complex with the active conformer of integrin β1. A point mutation in this motif markedly reduces TF-FVIIa association with integrins, attenuates integrin translocation into early endosomes, and reduces delayed mitogen-activated protein kinase phosphorylation required for the induction of proangiogenic cytokines. Pharmacologic or genetic blockade of the small GTPase ADP-ribosylation factor 6 (arf6) that regulates integrin trafficking increases availability of TF-FVIIa with procoagulant activity on the cell surface, while inhibiting TF-FVIIa signaling that leads to proangiogenic cytokine expression and tumor cell migration. These experiments delineate the structural basis for the crosstalk of the TF-FVIIa complex with integrin trafficking and suggest a crucial role for endosomal PAR2 signaling in pathways of tissue repair and tumor biology.
Collapse
Affiliation(s)
- Andrea S Rothmeier
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Enbo Liu
- San Diego Biomedical Research Institute, San Diego, CA
| | - Sagarika Chakrabarty
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | - Jennifer Disse
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
| | | | | | - Wolfram Ruf
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA
- Center for Thrombosis and Hemostasis, Johannes Gutenberg University Medical Center, Mainz, Germany
| |
Collapse
|
32
|
Ek L, Gezelius E, Bergman B, Bendahl PO, Anderson H, Sundberg J, Wallberg M, Falkmer U, Verma S, Belting M. Randomized phase III trial of low-molecular-weight heparin enoxaparin in addition to standard treatment in small-cell lung cancer: the RASTEN trial. Ann Oncol 2018; 29:398-404. [PMID: 29106448 PMCID: PMC5834130 DOI: 10.1093/annonc/mdx716] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background Coagulation activation and venous thromboembolism (VTE) are hallmarks of malignant disease and represent a major cause of morbidity and mortality in cancer. Coagulation inhibition with low-molecular-weight heparin (LMWH) may improve survival specifically in small-cell lung cancer (SCLC) patients by preventing VTE and tumor progression; however, randomized trials with well-defined patient populations are needed to obtain conclusive data. The aim of RASTEN was to investigate the survival effect of LMWH enoxaparin in a homogenous population of SCLC patients. Patients and methods We carried out a randomized, multicenter, open-label trial to investigate the addition of enoxaparin at a supraprophylactic dose (1 mg/kg) to standard treatment in patients with newly diagnosed SCLC. The primary outcome was overall survival (OS), and secondary outcomes were progression-free survival (PFS), incidence of VTE and hemorrhagic events. Results In RASTEN, 390 patients were randomized over an 8-year period (2008-2016), of whom 186 and 191 were included in the final analysis in the LMWH and control arm, respectively. We found no evidence of a difference in OS or PFS by the addition of enoxaparin [hazard ratio (HR), 1.11; 95% confidence interval (CI) 0.89-1.38; P = 0.36 and HR, 1.18; 95% CI 0.95-1.46; P = 0.14, respectively]. Subgroup analysis of patients with limited and extensive disease did not show reduced mortality by enoxaparin. The incidence of VTE was significantly reduced in the LMWH arm (HR, 0.31; 95% CI 0.11-0.84; P = 0.02). Hemorrhagic events were more frequent in the LMWH-treated group but fatal bleedings occurred in both arms. Conclusion LMWH enoxaparin in addition to standard therapy did not improve OS in SCLC patients despite being administered at a supraprophylactic dose and despite resulting in a significant reduction in VTE incidence. Addition of LMWH cannot be generally recommended in the management of SCLC patients, and predictive biomarkers of VTE and LMWH-associated bleeding in cancer patients are warranted.
Collapse
Affiliation(s)
- L Ek
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - E Gezelius
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - B Bergman
- Department of Lung Medicine, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - P O Bendahl
- Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - H Anderson
- Section of Cancer Epidemiology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - J Sundberg
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden
| | - M Wallberg
- Department of Heart and Lung Disease, Skåne University Hospital, Lund, Sweden
| | - U Falkmer
- Department of Oncology, University Hospital, Aalborg, Denmark
| | - S Verma
- Department of Oncology, University of Calgary, Calgary, Canada
| | - M Belting
- Department of Hematology, Radiophysics and Oncology, Skåne University Hospital, Lund, Sweden; Department of Section of Oncology and Pathology, Department of Clinical Sciences, Lund, Lund University, Lund, Sweden.
| |
Collapse
|
33
|
Arakaki AKS, Pan WA, Lin H, Trejo J. The α-arrestin ARRDC3 suppresses breast carcinoma invasion by regulating G protein-coupled receptor lysosomal sorting and signaling. J Biol Chem 2018; 293:3350-3362. [PMID: 29348172 DOI: 10.1074/jbc.ra117.001516] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 01/16/2018] [Indexed: 12/17/2022] Open
Abstract
Aberrant G protein-coupled receptor (GPCR) expression and activation has been linked to tumor initiation, progression, invasion, and metastasis. However, compared with other cancer drivers, the exploitation of GPCRs as potential therapeutic targets has been largely ignored, despite the fact that GPCRs are highly druggable. Therefore, to advance the potential status of GPCRs as therapeutic targets, it is important to understand how GPCRs function together with other cancer drivers during tumor progression. We now report that the α-arrestin domain-containing protein-3 (ARRDC3) acts as a tumor suppressor in part by controlling signaling and trafficking of the GPCR, protease-activated receptor-1 (PAR1). In a series of highly invasive basal-like breast carcinomas, we found that expression of ARRDC3 is suppressed whereas PAR1 is aberrantly overexpressed because of defective lysosomal sorting that results in persistent signaling. Using a lentiviral doxycycline-inducible system, we demonstrate that re-expression of ARRDC3 in invasive breast carcinoma is sufficient to restore normal PAR1 trafficking through the ALG-interacting protein X (ALIX)-dependent lysosomal degradative pathway. We also show that ARRDC3 re-expression attenuates PAR1-stimulated persistent signaling of c-Jun N-terminal kinase (JNK) in invasive breast cancer. Remarkably, restoration of ARRDC3 expression significantly reduced activated PAR1-induced breast carcinoma invasion, which was also dependent on JNK signaling. These findings are the first to identify a critical link between the tumor suppressor ARRDC3 and regulation of GPCR trafficking and signaling in breast cancer.
Collapse
Affiliation(s)
- Aleena K S Arakaki
- From the Biomedical Sciences Graduate Program and.,Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Wen-An Pan
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - Huilan Lin
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| | - JoAnn Trejo
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093
| |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW The role of tissue factor (TF) in the initiation of the blood coagulation network leading to generation of a fibrin clot has been well defined over the past 50 years. Although much is known about this sequence of events and its regulation, many important questions remain unresolved. More recently, a complex role for TF in cellular processes independent of fibrin generation has emerged. This review summarizes some of the advances in this field. RECENT FINDINGS TF is the cellular receptor and cofactor for factor VII/VIIa; however, controversy still surrounds expression of TF within the vasculature, the role of circulating microvesicle pools of TF and mechanisms of 'encryption' of TF activity. However, there have been significant advances in the role of TF-initiated cell signalling. Lastly, an alternatively spliced TF transcript has been identified and some insights into its role in cancer cell metastasis/proliferation have been elucidated. SUMMARY Understanding of TF structure function has increased substantially; however, multiple controversies still surround some aspects of its regulation. TF has emerged as a pivotal player in orchestrating not only fibrin generation but wound repair. Derangement of these repair processes contributes significantly to the pathophysiology of a number of disease processes.
Collapse
|
35
|
Koizume S, Miyagi Y. Potential Coagulation Factor-Driven Pro-Inflammatory Responses in Ovarian Cancer Tissues Associated with Insufficient O₂ and Plasma Supply. Int J Mol Sci 2017; 18:ijms18040809. [PMID: 28417928 PMCID: PMC5412393 DOI: 10.3390/ijms18040809] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/05/2017] [Accepted: 04/06/2017] [Indexed: 02/07/2023] Open
Abstract
Tissue factor (TF) is a cell surface receptor for coagulation factor VII (fVII). The TF-activated fVII (fVIIa) complex is an essential initiator of the extrinsic blood coagulation process. Interactions between cancer cells and immune cells via coagulation factors and adhesion molecules can promote progression of cancer, including epithelial ovarian cancer (EOC). This process is not necessarily advantageous, as tumor tissues generally undergo hypoxia due to aberrant vasculature, followed by reduced access to plasma components such as coagulation factors. However, hypoxia can activate TF expression. Expression of fVII, intercellular adhesion molecule-1 (ICAM-1), and multiple pro-inflammatory cytokines can be synergistically induced in EOC cells in response to hypoxia along with serum deprivation. Thus, pro-inflammatory responses associated with the TF-fVIIa-ICAM-1 interaction are expected within hypoxic tissues. Tumor tissue consists of multiple components such as stromal cells, interstitial fluid, albumin, and other micro-factors such as proton and metal ions. These factors, together with metabolism reprogramming in response to hypoxia and followed by functional modification of TF, may contribute to coagulation factor-driven inflammatory responses in EOC tissues. The aim of this review was to describe potential coagulation factor-driven inflammatory responses in hypoxic EOC tissues. Arguments were extended to clinical issues targeting this characteristic tumor environment.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan.
| |
Collapse
|
36
|
Wei L, Liu Y, Wang Z, Ruan J, Wu H, Zhong Q. Histopathological changes and transcriptional alterations of three coagulation factors in zebrafish ( Danio rerio ) following short-term exposure to MC-LR. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.chnaes.2016.12.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
37
|
Chanakira A, Westmark PR, Ong IM, Sheehan JP. Tissue factor-factor VIIa complex triggers protease activated receptor 2-dependent growth factor release and migration in ovarian cancer. Gynecol Oncol 2017; 145:167-175. [PMID: 28148395 DOI: 10.1016/j.ygyno.2017.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/11/2017] [Accepted: 01/19/2017] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Enhanced tissue factor (TF) expression in epithelial ovarian cancer (EOC) is associated with aggressive disease. Our objective was to evaluate the role of the TF-factor VIIa-protease-activated receptor-2 (PAR-2) pathway in human EOC. METHODS TCGA RNAseq data from EOC databases were analyzed for PAR expression. Cell and microparticle (MP) associated TF protein expression (Western blot) and MP-associated coagulant activity were determined in human EOC (SKOV-3, OVCAR-3 and CaOV-3) and control cell lines. PAR-1 and PAR-2 protein expressions were similarly examined. The PAR dependence of VEGF-A release (ELISA) and chemotactic migration in response to FVIIa and cellular proliferation in response to thrombin was evaluated with small molecule antagonists. RESULTS Relative mRNA expression consistently demonstrated PAR-2>PAR-1≫PAR-3/4 in multiple EOC datasets. Human EOC cell line lysates confirmed expression of TF, PAR-1 and PAR-2 proteins. MPs isolated from EOC cell lines demonstrated markedly enhanced (4-10 fold) TF coagulant activity relative to control cell lines. FVIIa induced a dose-dependent increase in VEGF-A release (2.5-3 fold) from EOC cell lines that was abrogated by the PAR-2 antagonist ENMD-1068. FVIIa treatment of CaOV-3 and OVCAR-3 cells resulted in increased chemotactic migration that was abolished by ENMD-1068. Thrombin induced dose-dependent EOC cell line proliferation was completely reversed by the PAR-1 antagonist vorapaxar. Small molecule antagonists had no effect on these phenotypes without protease present. CONCLUSIONS Enhanced activity of the TF-FVIIa-PAR-2 axis may contribute to the EOC progression via PAR-2 dependent signaling that supports an angiogenic and invasive phenotype and local thrombin generation supporting PAR-1 dependent proliferation.
Collapse
Affiliation(s)
- Alice Chanakira
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Pamela R Westmark
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - Irene M Ong
- Biostatistics and Medical Informatics, UW Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53792, United States
| | - John P Sheehan
- Departments of Medicine/Hematology-Oncology and Pathology, University of Wisconsin-Madison, Madison, WI 53792, United States.
| |
Collapse
|
38
|
Ebrahimi S, Rezaei S, Seiri P, Ryzhikov M, Hashemy SI, Hassanian SM. Factor Xa Signaling Contributes to the Pathogenesis of Inflammatory Diseases. J Cell Physiol 2016; 232:1966-1970. [PMID: 27925197 DOI: 10.1002/jcp.25714] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 11/29/2016] [Indexed: 02/01/2023]
Abstract
The coagulation protease Factor Xa (FXa) triggers a variety of signaling pathways through activation of protease-activated receptors (PARs) and non-PAR receptors. FXa-mediated signaling is strongly implicated in the pathogenesis of several inflammatory diseases including fibrosis, cardiovascular diseases, and cancer. Thus, targeting of FXa can have great clinical significance in terms of the treatment of these disorders. This review summarizes the current knowledge about the mechanism of FXa signaling in cellular and animal systems under (patho) physiological conditions for a better understanding and hence a better management of FXa-induced disorders. J. Cell. Physiol. 232: 1966-1970, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Safieh Ebrahimi
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sara Rezaei
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Parvaneh Seiri
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mikhail Ryzhikov
- Department of Molecular Microbiology and Immunology, St. Louis University School of Medicine, Saint Louis, Missouri
| | - Seyed Isaac Hashemy
- Surgical Oncology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Department of Medical Biochemistry, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Metabolic Syndrome Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Microanatomy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Swier N, Versteeg HH. Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Thromb Res 2016; 150:8-18. [PMID: 27988375 DOI: 10.1016/j.thromres.2016.12.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 02/06/2023]
Abstract
Ovarian cancer is the most lethal gynecological malignancy, which is due to late presentation. Treating advanced stage ovarian cancer is difficult, and tumor recurrence and chemoresistance frequently occur. In addition, early detection remains a major challenge as there are no early warning signs and no appropriate biomarkers. To reduce mortality rates of ovarian cancer patients, novel drug targets and biomarkers are needed. We postulate that hemostatic keyplayers are of importance when combatting ovarian cancer. The majority of ovarian cancer patients have abnormal hemostatic blood serum marker levels, which indicate an activated coagulation system. This makes patients more prone to experiencing venous thromboembolism (VTE), and the occurrence of VTE in ovarian cancer patients adversely affects survival. Coagulation activation also promotes tumor progression as it influences tumor biology at several stages and the decreased survival rates associated with ovarian cancer-associated thrombosis are more likely due to cancer metastasis rather than to fatal thromboembolic events. In this review, we will discuss; (1) Population studies that address the bidirectional relationship between VTE and ovarian cancer, and the most important risk factors involved; (2) The mechanisms of coagulation factors and platelets that are critically involved in the development of VTE, and the progression of ovarian cancer; (3) Roles and future directions of coagulation factors in ovarian cancer therapy, and in diagnosis and prognosis of ovarian cancer as biomarkers.
Collapse
Affiliation(s)
- Nathalie Swier
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands
| | - Henri H Versteeg
- Department of Internal Medicine, Thrombosis and Hemostasis Division, Leiden University Medical Center, Albinusdreef 2, 2333, ZA, Leiden, The Netherlands.
| |
Collapse
|
40
|
Abstract
Although many studies have demonstrated that components of the hemostatic system may be involved in signaling leading to cancer progression, the potential mechanisms by which they contribute to cancer dissemination are not yet precisely understood. Among known coagulant factors, tissue factor (TF) and thrombin play a pivotal role in cancer invasion. They may be generated in the tumor microenvironment independently of blood coagulation and can induce cell signaling through activation of protease-activated receptors (PARs). PARs are transmembrane G-protein-coupled receptors (GPCRs) that are activated by a unique proteolytic mechanism. They play important roles in vascular physiology, neural tube closure, hemostasis, and inflammation. All of these agents (TF, thrombin, PARs—mainly PAR-1 and PAR-2) are thought to promote cancer invasion and metastasis at least in part by facilitating tumor cell migration, angiogenesis, and interactions with host vascular cells, including platelets, fibroblasts, and endothelial cells lining blood vessels. Here, we discuss the role of PARs and their activators in cancer progression, focusing on TF- and thrombin-mediated actions. Therapeutic options tailored specifically to inhibit PAR-induced signaling in cancer patients are presented as well.
Collapse
|
41
|
Shahbazi S, Khorasani M, Mahdian R. Gene expression profile of FVII and AR in primary prostate cancer. Cancer Biomark 2016; 17:353-358. [DOI: 10.3233/cbm-160647] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Shirin Shahbazi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Maryam Khorasani
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Mahdian
- Molecular Medicine Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
42
|
Coagulation Factors in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
43
|
Matriptase activation connects tissue factor-dependent coagulation initiation to epithelial proteolysis and signaling. Blood 2016; 127:3260-9. [PMID: 27114461 DOI: 10.1182/blood-2015-11-683110] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/11/2016] [Indexed: 12/23/2022] Open
Abstract
The coagulation cascade is designed to sense tissue injury by physical separation of the membrane-anchored cofactor tissue factor (TF) from inactive precursors of coagulation proteases circulating in plasma. Once TF on epithelial and other extravascular cells is exposed to plasma, sequential activation of coagulation proteases coordinates hemostasis and contributes to host defense and tissue repair. Membrane-anchored serine proteases (MASPs) play critical roles in the development and homeostasis of epithelial barrier tissues; how MASPs are activated in mature epithelia is unknown. We here report that proteases of the extrinsic pathway of blood coagulation transactivate the MASP matriptase, thus connecting coagulation initiation to epithelial proteolysis and signaling. Exposure of TF-expressing cells to factors (F) VIIa and Xa triggered the conversion of latent pro-matriptase to an active protease, which in turn cleaved the pericellular substrates protease-activated receptor-2 (PAR2) and pro-urokinase. An activation pathway-selective PAR2 mutant resistant to direct cleavage by TF:FVIIa and FXa was activated by these proteases when cells co-expressed pro-matriptase, and matriptase transactivation was necessary for efficient cleavage and activation of wild-type PAR2 by physiological concentrations of TF:FVIIa and FXa. The coagulation initiation complex induced rapid and prolonged enhancement of the barrier function of epithelial monolayers that was dependent on matriptase transactivation and PAR2 signaling. These observations suggest that the coagulation cascade engages matriptase to help coordinate epithelial defense and repair programs after injury or infection, and that matriptase may contribute to TF-driven pathogenesis in cancer and inflammation.
Collapse
|
44
|
Abstract
Cancer-associated thrombosis remains a significant complication in the clinical management of cancer and interactions of the hemostatic system with cancer biology continue to be elucidated. Here, we review recent progress in our understanding of tissue factor (TF) regulation and procoagulant activation, TF signaling in cancer and immune cells, and the expanding roles of the coagulation system in stem cell niches and the tumor microenvironment. The extravascular functions of coagulant and anti-coagulant pathways have significant implications not only for tumor progression, but also for the selection of appropriate target specific anticoagulants in the therapy of cancer patients.
Collapse
Affiliation(s)
- Wolfram Ruf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA.
| | - Andrea S Rothmeier
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA, USA
| | - Claudine Graf
- Center for Thrombosis and Hemostasis, University Medical Center, Mainz, Germany; 3(rd) Medical Department, University Medical Center, Mainz, Germany
| |
Collapse
|
45
|
Gruber EJ, Catalfamo JL, Stokol T. Role of tissue factor expression in thrombin generation by canine tumor cells. Am J Vet Res 2016; 77:404-12. [DOI: 10.2460/ajvr.77.4.404] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
46
|
Chen KD, Huang KT, Tsai MC, Wu CH, Kuo IY, Chen LY, Hu TH, Chen CL, Lin CC. Coagulation factor VII and malignant progression of hepatocellular carcinoma. Cell Death Dis 2016; 7:e2110. [PMID: 26913602 PMCID: PMC4849147 DOI: 10.1038/cddis.2015.395] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- K-D Chen
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - K-T Huang
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - M-C Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
- Graduate Institute of Clinical Medical Sciences, Chang Gung University, College of Medicine, Kaohsiung, Taiwan
| | - C-H Wu
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - I-Y Kuo
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - L-Y Chen
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - T-H Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - C-L Chen
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | - C-C Lin
- Institute for Translational Research in Biomedicine, Liver Transplantation Program and Division of General Surgery, Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| |
Collapse
|
47
|
Diverse Mechanisms of Sp1-Dependent Transcriptional Regulation Potentially Involved in the Adaptive Response of Cancer Cells to Oxygen-Deficient Conditions. Cancers (Basel) 2015; 8:cancers8010002. [PMID: 26703734 PMCID: PMC4728449 DOI: 10.3390/cancers8010002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/24/2015] [Accepted: 12/14/2015] [Indexed: 01/01/2023] Open
Abstract
The inside of a tumor often contains a hypoxic area caused by a limited supply of molecular oxygen due to aberrant vasculature. Hypoxia-inducible factors (HIFs) are major transcription factors that are required for cancer cells to adapt to such stress conditions. HIFs, complexed with the aryl hydrocarbon receptor nuclear translocator, bind to and activate target genes as enhancers of transcription. In addition to this common mechanism, the induction of the unfolded protein response and mTOR signaling in response to endoplasmic reticulum stress is also known to be involved in the adaptation to hypoxia conditions. Sp1 is a ubiquitously-expressed transcription factor that plays a vital role in the regulation of numerous genes required for normal cell function. In addition to the well-characterized stress response mechanisms described above, increasing experimental evidence suggests that Sp1 and HIFs collaborate to drive gene expression in cancer cells in response to hypoxia, thereby regulating additional adaptive responses to cellular oxygen deficiency. However, these characteristics of Sp1 and their biological merits have not been summarized. In this review, we will discuss the diverse mechanisms of transcriptional regulation by Sp1 and their potential involvement in the adaptive response of cancer cells to hypoxic tumor microenvironments.
Collapse
|
48
|
Tsai MC, Chen KD, Wang CC, Huang KT, Wu CH, Kuo IY, Chen LY, Hu TH, Goto S, Nakano T, Dorling A, McVey JH, Chen CL, Lin CC. Factor VII promotes hepatocellular carcinoma progression through ERK-TSC signaling. Cell Death Discov 2015; 1:15051. [PMID: 27551480 PMCID: PMC4993037 DOI: 10.1038/cddiscovery.2015.51] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/17/2015] [Indexed: 12/18/2022] Open
Abstract
We previously demonstrated PAR2 starts upstreamed with tissue factor (TF) and factor VII (FVII), inhibited autophagy via mTOR signaling in HCC. However, the mechanism underlying for merging functions of PAR2 with the coagulation system in HCC progression remained unclear. The present study aimed to investigate the role of TF, FVII and PAR2 in tumor progression of HCC. The expressions of TF, FVII and PAR2 from HCC specimens were evaluated by immunohistochemical stains and western blotting. We found that the expression of FVII, but not TF and PAR2, directly related to the vascular invasion and the clinical staging. Importantly, a lower level of FVII expression was significantly associated with the longer disease-free survival. The addition of FVII but not TF induced the expression of PAR2 and phosphorylation of ERK1/2, whereas knockdown of FVII decreased PAR2 expression and ERK1/2 phosphorylation in HCC cell lines. Furthermore, levels of phosphor-TSC2 (Ser664) were increased after treatment with FVII and PAR2 agonist whereas these were significantly abolished in the presence of a potent and specific MEK/ERK inhibitor U0126. Moreover, mTOR knockdown highly reduced Hep3B migration, which could be reverted by FVII but not TF and PAR2. These results indicated that FVII/PAR2 signaling through MEK/ERK and TSC2 axis for mTOR activation has potent effects on the migration of HCC cells. In addition, FVII/PAR2 signaling elicits an mTOR-independent signaling, which promotes hepatoma cell migration in consistent with the clinical observations. Our study indicates that levels of FVII, but not TF, are associated with tumor migration and invasiveness in HCC, and provides clues that evaluation of FVII expression in HCC may be useful as a prognostic indicator in patients with HCC and may form an alternative target for further therapy.
Collapse
Affiliation(s)
- M-C Tsai
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - K-D Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Wang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - K-T Huang
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-H Wu
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - I-Y Kuo
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - L-Y Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - T-H Hu
- Division of Hepato-Gastroenterology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - S Goto
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan; Fukuoka Institution of Occupational Health, Fukuoka, Japan
| | - T Nakano
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine , Kaohsiung, Taiwan
| | - A Dorling
- Division of Transplantation Immunology and Mucosal Biology, Guy's Hospital, King's College London, MRC Centre for Transplantation , London, UK
| | - J H McVey
- Department of Biochemical Sciences, Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - C-L Chen
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| | - C-C Lin
- Center for Translational Research in Biomedical Sciences, Liver Transplantation Program and Department of Surgery, Kaohsiung Chang Gung Memorial Hospital , Kaohsiung, Taiwan
| |
Collapse
|
49
|
Koizume S, Ito S, Yoshioka Y, Kanayama T, Nakamura Y, Yoshihara M, Yamada R, Ochiya T, Ruf W, Miyagi E, Hirahara F, Miyagi Y. High-level secretion of tissue factor-rich extracellular vesicles from ovarian cancer cells mediated by filamin-A and protease-activated receptors. Thromb Haemost 2015; 115:299-310. [PMID: 26446354 DOI: 10.1160/th15-03-0213] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 09/14/2015] [Indexed: 12/19/2022]
Abstract
Thromboembolic events occur frequently in ovarian cancer patients. Tissue factor (TF) is often overexpressed in tumours, including ovarian clear-cell carcinoma (CCC), a subtype with a generally poor prognosis. TF-coagulation factor VII (fVII) complexes on the cell surface activate downstream coagulation mechanisms. Moreover, cancer cells secrete extracellular vesicles (EVs), which act as vehicles for TF. We therefore examined the characteristics of EVs produced by ovarian cancer cells of various histological subtypes. CCC cells secreted high levels of TF within EVs, while the high-TF expressing breast cancer cell line MDA-MB-231 shed fewer TF-positive EVs. We also found that CCC tumours with hypoxic tissue areas synthesised TF and fVII in vivo, rendering the blood of xenograft mice bearing these tumours hypercoagulable compared with mice bearing MDA-MB-231 tumours. Incorporation of TF into EVs and secretion of EVs from CCC cells exposed to hypoxia were both dependent on the actin-binding protein, filamin-A (filA). Furthermore, production of these EVs was dependent on different protease-activated receptors (PARs) on the cell surface. These results show that CCC cells could produce large numbers of TF-positive EVs dependent upon filA and PARs. This phenomenon may be the mechanism underlying the increased incidence of venous thromboembolism in ovarian cancer patients.
Collapse
Affiliation(s)
- Shiro Koizume
- Shiro Koizume, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan, Tel.: +81 45 391 5761, E-mail:
| | | | | | | | | | | | | | | | | | | | | | - Yohei Miyagi
- Yohei Miyagi, 2-3-2 Nakao, Asahi-ku, Yokohama 241-8515, Japan, Tel.: +81 45 391 5761, E-mail:
| |
Collapse
|
50
|
Koizume S, Miyagi Y. Tissue Factor-Factor VII Complex As a Key Regulator of Ovarian Cancer Phenotypes. BIOMARKERS IN CANCER 2015; 7:1-13. [PMID: 26396550 PMCID: PMC4562604 DOI: 10.4137/bic.s29318] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/05/2015] [Accepted: 08/07/2015] [Indexed: 02/07/2023]
Abstract
Tissue factor (TF) is an integral membrane protein widely expressed in normal human cells. Blood coagulation factor VII (fVII) is a key enzyme in the extrinsic coagulation cascade that is predominantly secreted by hepatocytes and released into the bloodstream. The TF–fVII complex is aberrantly expressed on the surface of cancer cells, including ovarian cancer cells. This procoagulant complex can initiate intracellular signaling mechanisms, resulting in malignant phenotypes. Cancer tissues are chronically exposed to hypoxia. TF and fVII can be induced in response to hypoxia in ovarian cancer cells at the gene expression level, leading to the autonomous production of the TF–fVII complex. Here, we discuss the roles of the TF–fVII complex in the induction of malignant phenotypes in ovarian cancer cells. The hypoxic nature of ovarian cancer tissues and the roles of TF expression in endometriosis are discussed. Arguments will be extended to potential strategies to treat ovarian cancers based on our current knowledge of TF–fVII function.
Collapse
Affiliation(s)
- Shiro Koizume
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center, Yokohama, Japan
| |
Collapse
|