1
|
Kiaheyrati N, Babaei A, Ranji R, Bahadoran E, Taheri S, Farokhpour Z. Cancer therapy with the viral and bacterial pathogens: The past enemies can be considered the present allies. Life Sci 2024; 349:122734. [PMID: 38788973 DOI: 10.1016/j.lfs.2024.122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
Cancer continues to be one of the leading causes of mortality worldwide despite significant advancements in cancer treatment. Many difficulties have arisen as a result of the detrimental consequences of chemotherapy and radiotherapy as a common cancer therapy, such as drug inability to penetrate deep tumor tissue, and also the drug resistance in tumor cells continues to be a major concern. These obstacles have increased the need for the development of new techniques that are more selective and effective against cancer cells. Bacterial-based therapies and the use of oncolytic viruses can suppress cancer in comparison to other cancer medications. The tumor microenvironment is susceptible to bacterial accumulation and proliferation, which can trigger immune responses against the tumor. Oncolytic viruses (OVs) have also gained considerable attention in recent years because of their potential capability to selectively target and induce apoptosis in cancer cells. This review aims to provide a comprehensive summary of the latest literature on the role of bacteria and viruses in cancer treatment, discusses the limitations and challenges, outlines various strategies, summarizes recent preclinical and clinical trials, and emphasizes the importance of optimizing current strategies for better clinical outcomes.
Collapse
Affiliation(s)
- Niloofar Kiaheyrati
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Abouzar Babaei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran; Department of Microbiology and Immunology, School of Medicine, Qazvin University of Medical Science, Qazvin, Iran.
| | - Reza Ranji
- Department of Genetics, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ensiyeh Bahadoran
- School of Medicine, Qazvin University of Medical Science, Qazvin, Iran
| | - Shiva Taheri
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Zahra Farokhpour
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
2
|
Yurttas C, Beil J, Berchtold S, Smirnow I, Kloker LD, Sipos B, Löffler MW, Königsrainer A, Mihaljevic AL, Lauer UM, Thiel K. Efficacy of Different Oncolytic Vaccinia Virus Strains for the Treatment of Murine Peritoneal Mesothelioma. Cancers (Basel) 2024; 16:368. [PMID: 38254857 PMCID: PMC10814383 DOI: 10.3390/cancers16020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024] Open
Abstract
Effective treatment options for peritoneal surface malignancies (PSMs) are scarce. Oncolytic virotherapy with recombinant vaccinia viruses might constitute a novel treatment option for PSM. We aimed to identify the most effective oncolytic vaccinia virus strain in two murine mesothelioma cell lines and the oncolytic potential in a murine model of peritoneal mesothelioma. Cell lines AB12 and AC29 were infected in vitro with vaccinia virus strains Lister (GLV-1h254), Western Reserve (GLV-0b347), and Copenhagen (GLV-4h463). The virus strain GLV-0b347 was shown most effective in vitro and was further investigated by intraperitoneal (i.p.) application to AB12 and AC29 mesothelioma-bearing mice. Feasibility, safety, and effectiveness of virotherapy were assessed by evaluating the peritoneal cancer index (PCI), virus detection in tumor tissues and ascites, virus growth curves, and comparison of overall survival. After i.p. injection of GLV-0b347, virus was detected in both tumor cells and ascites. In comparison to mock-treated mice, overall survival was significantly prolonged, ascites was less frequent and PCI values declined. However, effective treatment was only observed in animals with limited tumor burden at the time point of virus application. Nonetheless, intraperitoneal virotherapy with GLV-0b347 might constitute a novel therapeutic option for the treatment of peritoneal mesothelioma. Additional treatment modifications and combinational regimes will be investigated to further enhance treatment efficacy.
Collapse
Affiliation(s)
- Can Yurttas
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Julia Beil
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Susanne Berchtold
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Irina Smirnow
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Linus D. Kloker
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
| | - Bence Sipos
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- BAG für Pathologie und Molekularpathologie, Rosenbergstraße 12, 70176 Stuttgart, Germany
| | - Markus W. Löffler
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Cluster of Excellence iFIT (EXC2180) “Image-Guided and Functionally Instructed Tumor Therapies”, University of Tübingen, 72076 Tübingen, Germany
- Interfaculty Institute for Cell Biology, Department of Immunology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
- Department of Clinical Pharmacology, University Hospital Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - André L. Mihaljevic
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
| | - Ulrich M. Lauer
- Virotherapy Center Tübingen (VCT), Department of Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University Hospital of Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tübingen, Otfried-Müller-Str. 10, 72076 Tübingen, Germany
| | - Karolin Thiel
- Department of General, Visceral and Transplant Surgery, University Hospital of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany (A.K.)
- Department of General, Visceral, and Thoracic Surgery, Oberschwaben Hospital Group, St Elisabethen-Klinikum, Elisabethenstr. 15, 88212 Ravensburg, Germany
| |
Collapse
|
3
|
Chakraborty P, Kumar R, Karn S, Raviya DD, Mondal P. Application of Oncolytic Poxviruses: An Emerging Paradigm in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:369-381. [PMID: 38801591 DOI: 10.1007/978-3-031-57165-7_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Despite the significant advancement of new tools and technology in the field of medical biology and molecular biology, the challenges in the treatment of most cancer types remain constant with the problem of developing resistance toward drugs and no substantial enhancement in the overall survival rate of cancer patients. Immunotherapy has shown the most promising results in different clinical and preclinical trials in the treatment of various cancer due to its higher efficacy and minimum collateral damage in many cancer patients as compared to conventional chemotherapy and radiotherapy. An oncolytic virus is a new class of immunotherapy that can selectively replicate in tumor cells and destroy them by the process of cell lysis while exerting minimum or no effect on a normal cell. Besides this, it can also activate the host's innate immune system, which generates an anti-tumor immune response to eliminate the tumor cells. Several wild types and genetically modified viruses have been investigated to show oncolytic behavior. Vaccinia virus has been studied extensively and tested for its promising oncolytic nature on various model systems and clinical trials. Recently, several engineered vaccinia viruses have been developed that express the desired genes encoded for selective penetration in tumor cells and enhanced activation of the immune system for generating anti-tumor immunity. However, further investigation is required to prove their potential and enhance their therapeutic efficacy.
Collapse
Affiliation(s)
- Prasenjit Chakraborty
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India.
| | - Randhir Kumar
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Sanjay Karn
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Dharmiben D Raviya
- Department of Biosciences, School of Science, Indrashil University, Rajpur-Kadi, Mehsana, Gujarat, 382740, India
| | - Priya Mondal
- Laboratory of Cell Biology, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
| |
Collapse
|
4
|
Enow JA, Sheikh HI, Rahman MM. Tumor Tropism of DNA Viruses for Oncolytic Virotherapy. Viruses 2023; 15:2262. [PMID: 38005938 PMCID: PMC10675630 DOI: 10.3390/v15112262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/08/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Oncolytic viruses (OVs) have emerged as one of the most promising cancer immunotherapy agents that selectively target and kill cancer cells while sparing normal cells. OVs are from diverse families of viruses and can possess either a DNA or an RNA genome. These viruses also have either a natural or engineered tropism for cancer cells. Oncolytic DNA viruses have the additional advantage of a stable genome and multiple-transgene insertion capability without compromising infection or replication. Herpes simplex virus 1 (HSV-1), a member of the oncolytic DNA viruses, has been approved for the treatment of cancers. This success with HSV-1 was achievable by introducing multiple genetic modifications within the virus to enhance cancer selectivity and reduce the toxicity to healthy cells. Here, we review the natural characteristics of and genetically engineered changes in selected DNA viruses that enhance the tumor tropism of these oncolytic viruses.
Collapse
Affiliation(s)
- Junior A. Enow
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| | - Hummad I. Sheikh
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Masmudur M. Rahman
- Biodesign Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
- School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
5
|
Lovatt C, Parker AL. Oncolytic Viruses and Immune Checkpoint Inhibitors: The "Hot" New Power Couple. Cancers (Basel) 2023; 15:4178. [PMID: 37627206 PMCID: PMC10453115 DOI: 10.3390/cancers15164178] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/15/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Immune checkpoint inhibitors (ICIs) have revolutionized cancer care and shown remarkable efficacy clinically. This efficacy is, however, limited to subsets of patients with significant infiltration of lymphocytes into the tumour microenvironment. To extend their efficacy to patients who fail to respond or achieve durable responses, it is now becoming evident that complex combinations of immunomodulatory agents may be required to extend efficacy to patients with immunologically "cold" tumours. Oncolytic viruses (OVs) have the capacity to selectively replicate within and kill tumour cells, resulting in the induction of immunogenic cell death and the augmentation of anti-tumour immunity, and have emerged as a promising modality for combination therapy to overcome the limitations seen with ICIs. Pre-clinical and clinical data have demonstrated that OVs can increase immune cell infiltration into the tumour and induce anti-tumour immunity, thus changing a "cold" tumour microenvironment that is commonly associated with poor response to ICIs, to a "hot" microenvironment which can render patients more susceptible to ICIs. Here, we review the major viral vector platforms used in OV clinical trials, their success when used as a monotherapy and when combined with adjuvant ICIs, as well as pre-clinical studies looking at the effectiveness of encoding OVs to deliver ICIs locally to the tumour microenvironment through transgene expression.
Collapse
Affiliation(s)
- Charlotte Lovatt
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Alan L. Parker
- Division of Cancer and Genetics, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
- Systems Immunity University Research Institute, School of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK
| |
Collapse
|
6
|
Karnik I, Her Z, Neo SH, Liu WN, Chen Q. Emerging Preclinical Applications of Humanized Mouse Models in the Discovery and Validation of Novel Immunotherapeutics and Their Mechanisms of Action for Improved Cancer Treatment. Pharmaceutics 2023; 15:1600. [PMID: 37376049 DOI: 10.3390/pharmaceutics15061600] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Cancer therapeutics have undergone immense research over the past decade. While chemotherapies remain the mainstay treatments for many cancers, the advent of new molecular techniques has opened doors for more targeted modalities towards cancer cells. Although immune checkpoint inhibitors (ICIs) have demonstrated therapeutic efficacy in treating cancer, adverse side effects related to excessive inflammation are often reported. There is a lack of clinically relevant animal models to probe the human immune response towards ICI-based interventions. Humanized mouse models have emerged as valuable tools for pre-clinical research to evaluate the efficacy and safety of immunotherapy. This review focuses on the establishment of humanized mouse models, highlighting the challenges and recent advances in these models for targeted drug discovery and the validation of therapeutic strategies in cancer treatment. Furthermore, the potential of these models in the process of uncovering novel disease mechanisms is discussed.
Collapse
Affiliation(s)
- Isha Karnik
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
| | - Zhisheng Her
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Shu Hui Neo
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Wai Nam Liu
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Qingfeng Chen
- Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117593, Singapore
- Singapore Immunology Network, Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, Immunos, Singapore 138648, Singapore
| |
Collapse
|
7
|
Popa Ilie IR, Georgescu CE. Immunotherapy in Gastroenteropancreatic Neuroendocrine Neoplasia. Neuroendocrinology 2023; 113:262-278. [PMID: 34348340 DOI: 10.1159/000518106] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 06/25/2021] [Indexed: 11/19/2022]
Abstract
The worldwide prevalence and incidence of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs) and of NENs, in general, have been increasing recently. While valuing the considerable progress made in the treatment strategies for GEP-NEN in recent years, patients with advanced, metastasized disease still have a poor prognosis, which calls for urgent novel therapies. The immune system plays a dual role: both host-protecting and "tumor-promoting." Hence, immunotherapy is potentially a powerful weapon to help NEN patients. However, although recent successes with checkpoint inhibitors have shown that enhancing antitumor immunity can be effective, the dynamic nature of the immunosuppressive tumor microenvironment presents significant hurdles to the broader application of these therapies. Studies led to their approval in NEN of the lung and Merkel cell carcinoma, whereas results in other settings have not been so encouraging. Oncolytic viruses can selectively infect and destroy cancer cells, acting as an in situ cancer vaccine. Moreover, they can remodel the tumor microenvironment toward a T cell-inflamed phenotype. Oncolytic virotherapy has been proposed as an ablative and immunostimulatory treatment strategy for solid tumors that are resistant to checkpoint inhibitors alone. Future efforts should focus on finding the best way to include immunotherapy in the GEP-NEN treatment scenario. In this context, this study aims at providing a comprehensive generalized review of the immune checkpoint blockade and the oncolytic virotherapy use in GEP-NENs that might improve GEP-NEN treatment strategies.
Collapse
Affiliation(s)
- Ioana Rada Popa Ilie
- Department of Endocrinology, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Carmen Emanuela Georgescu
- Department of Endocrinology, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Bo L, Tianming L, Fengliang F, Wenping L, Jinzuo H, Dongbo X, Biao M, Haijun S. Global trends of Vaccinia oncolytic virus therapy over the past two decades: Bibliometric and visual analysis. Front Immunol 2023; 14:1063548. [PMID: 36817418 PMCID: PMC9932265 DOI: 10.3389/fimmu.2023.1063548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 01/25/2023] [Indexed: 02/05/2023] Open
Abstract
Background In recent years, the vaccinia oncolytic virus has entered the clinical trial stage of examination and shown good progress. It has many advantages, such as good safety, high oncolytic efficiency, and the regulation ability of the tumor microenvironment, and is expected to be successfully used in the clinical treatment of tumors in the future. However, no bibliometric analysis has so far been performed that generalizes horizontally across this field. Therefore, this study aims to assess the research status and trends in this field from a global perspective to help guide future research priorities. Methods In this study, the literature related to vaccinia oncolytic virus published in English on Web of Science from 2002 to 2022 was retrieved, and the bibliometric indicators were analyzed using the Histcite. Pro 2.0 tool, while VOSviewer was used to visualize the research trends and hotspots in this field. Results In total, 408 related studies were included. In the past 20 years, the number of related publications in this field has increased year by year, and breakthroughs were made in this field in 2008 and 2013. The research has grown rapidly since 2008, and will likely continue to expand in the years to come. The United States plays a leading role in this area. "MOLECULAR THERAPY-ONCOLYTICS", "MOLECULAR THERAPY" and "JOURNAL OF TRANSLATIONAL MEDICINE" are core journals that publish high-quality literature on the latest advances in the field. Some authors with numerous high-quality publications include Bell JC and Szalay AA. At present, the research hotspot in this field focus on the clinical application of vaccinia oncolytic virus. Conclusion Overall, the number of vaccinia oncolytic virus-related studies is growing rapidly, in relation to which the United States is the most influential country. The clinical application of vaccinia oncolytic virus will affect the crucial development of future research.
Collapse
Affiliation(s)
- Liu Bo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liu Tianming
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Fan Fengliang
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Liang Wenping
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Han Jinzuo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Xue Dongbo
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Ma Biao
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Sun Haijun
- Department of General Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
9
|
Luo W, Wang Y, Zhang T. Win or loss? Combination therapy does improve the oncolytic virus therapy to pancreatic cancer. Cancer Cell Int 2022; 22:160. [PMID: 35443724 PMCID: PMC9022249 DOI: 10.1186/s12935-022-02583-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 04/11/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer (PC) is a growing global burden, remaining one of the most lethal cancers of the gastrointestinal tract. Moreover, PC is resistant to various treatments such as chemotherapy, radiotherapy, and immunotherapy. New therapies are urgently needed to improve the prognosis of PC. Oncolytic virus (OV) therapy is a promising new treatment option. OV is a genetically modified virus that selectively replicates in tumor cells. It can kill tumor cells without harming normal cells. The activation of tumor-specific T-cells is a unique feature of OV-mediated therapy. However, OV-mediated mono-therapeutic efficacy remains controversial, especially for metastatic or advanced patients who require systemically deliverable therapies. Hence, combination therapies will be critical to improve the therapeutic efficacy of OV-mediated therapy and prevent tumor recurrence. This review aims to investigate novel combinatorial treatments with OV therapy and explore the inner mechanism of those combined therapies, hopefully providing a new direction for a better prognosis of PC.
Collapse
Affiliation(s)
- Wenhao Luo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China
| | - Yawen Wang
- Department of Endocrinology, State Key Laboratory of Complex Severe and Rare Diseases, Key Laboratory of Endocrinology of National Health Commission of the People's Republic of China, The Translational Medicine Center of Peking Union Medical College Hospital (PUMCH), PUMCH, Chinese Academy of Medical Sciences and Peking Union Medical College (CAMS & PUMC), Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing, 100730, China. .,Clinical Immunology Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
10
|
Naumenko VA, Stepanenko AA, Lipatova AV, Vishnevskiy DA, Chekhonin VP. Infection of non-cancer cells: A barrier or support for oncolytic virotherapy? MOLECULAR THERAPY - ONCOLYTICS 2022; 24:663-682. [PMID: 35284629 PMCID: PMC8898763 DOI: 10.1016/j.omto.2022.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oncolytic viruses are designed to specifically target cancer cells, sparing normal cells. Although numerous studies demonstrate the ability of oncolytic viruses to infect a wide range of non-tumor cells, the significance of this phenomenon for cancer virotherapy is poorly understood. To fill the gap, we summarize the data on infection of non-cancer targets by oncolytic viruses with a special focus on tumor microenvironment and secondary lymphoid tissues. The review aims to address two major questions: how do attenuated viruses manage to infect normal cells, and whether it is of importance for oncolytic virotherapy.
Collapse
Affiliation(s)
- Victor A. Naumenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Corresponding author Victor A. Naumenko, PhD, V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia.
| | - Aleksei A. Stepanenko
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Anastasiia V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Daniil A. Vishnevskiy
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
| | - Vladimir P. Chekhonin
- V. Serbsky National Medical Research Center for Psychiatry and Narcology, Moscow 119034, Russia
- Department of Medical Nanobiotechnology, N.I Pirogov Russian National Research Medical University, Moscow 117997, Russia
| |
Collapse
|
11
|
Carter ME, Hartkopf AD, Wagner A, Volmer LL, Brucker SY, Berchtold S, Lauer UM, Koch A. A Three-Dimensional Organoid Model of Primary Breast Cancer to Investigate the Effects of Oncolytic Virotherapy. Front Mol Biosci 2022; 9:826302. [PMID: 35223990 PMCID: PMC8874275 DOI: 10.3389/fmolb.2022.826302] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Although several oncolytic viruses have already been tested in early-stage clinical studies of breast cancer, there is still an urgent need to develop patient-derived experimental systems that mimic the response of breast cancer to oncolytic agents in preparation of testing different oncolytic viruses in clinical trials. We addressed this need by developing a protocol to study the effects of oncolytic viruses in stable organoid cell cultures derived from breast cancer tissue.Methods: We used an established three-dimensional organoid model derived from tissue of 10 patients with primary breast cancer. We developed an experimental protocol for infecting organoid cultures with oncolytic viruses and compared the oncolytic effects of a measles vaccine virus (MeV) and a vaccinia virus (GLV) genetically engineered to express either green fluorescent protein (MeV-GFP) and red fluorescent protein (GLV-0b347), respectively, or a suicide gene encoding a fusion of cytosine deaminase with uracil phosphoribosyltransferase (MeV-SCD and GLV-1h94, respectively), thereby enabling enzymatic conversion of the prodrug 5-fluorocytosine (5-FC) into cytotoxic compounds 5-fluorouracil (5-FU) and 5-fluorouridine monophosphate (5-FUMP).Results: The method demonstrated that all oncolytic viruses significantly inhibited cell viability in organoid cultures derived from breast cancer tissue. The oncolytic effects of the oncolytic viruses expressing suicide genes (MeV-SCD and GLV-1h94) were further enhanced by virus-triggered conversion of the prodrug 5-FC to toxic 5-FU and toxic 5-FUMP.Conclusions: We were able to develop a protocol to assess the effects of two different types of oncolytic viruses in stable organoid cell cultures derived from breast cancer tissue. The greatest oncolytic effects were observed when the oncolytic viruses were engineered to express a suicide gene (MeV-SCD and GLV-1h94) in the presence of the prodrug 5-FC. The model therefore provides a promising in vitro method to help further testing and engineering of new generations of virotherapeutic vectors for in vivo use.
Collapse
Affiliation(s)
- Mary E. Carter
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Andreas D. Hartkopf
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Anna Wagner
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Léa L. Volmer
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Sara Y. Brucker
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - Ulrich M. Lauer
- Department of Internal Medicine VIII, Medical Oncology and Pneumology, University of Tuebingen, Tuebingen, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Partner Site Tuebingen, Tuebingen, Germany
| | - André Koch
- Department of Obstetrics and Gynaecology, University of Tuebingen, Tuebingen, Germany
- *Correspondence: André Koch,
| |
Collapse
|
12
|
Truong CS, Yoo SY. Oncolytic Vaccinia Virus in Lung Cancer Vaccines. Vaccines (Basel) 2022; 10:240. [PMID: 35214699 PMCID: PMC8875327 DOI: 10.3390/vaccines10020240] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/28/2022] [Accepted: 01/31/2022] [Indexed: 11/26/2022] Open
Abstract
Therapeutic cancer vaccines represent a promising therapeutic modality via the induction of long-term immune response and reduction in adverse effects by specifically targeting tumor-associated antigens. Oncolytic virus, especially vaccinia virus (VV) is a promising cancer treatment option for effective cancer immunotherapy and thus can also be utilized in cancer vaccines. Non-small cell lung cancer (NSCLC) is likely to respond to immunotherapy, such as immune checkpoint inhibitors or cancer vaccines, since it has a high tumor mutational burden. In this review, we will summarize recent applications of VV in lung cancer treatment and discuss the potential and direction of VV-based therapeutic vaccines.
Collapse
Affiliation(s)
| | - So Young Yoo
- BIO-IT Foundry Technology Institute, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
13
|
Srinivasan Rajsri K, Rao M. Poxvirus-driven human diseases and emerging therapeutics. Ther Adv Infect Dis 2022; 9:20499361221136751. [PMID: 36406813 PMCID: PMC9666863 DOI: 10.1177/20499361221136751] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 10/17/2022] [Indexed: 08/29/2023] Open
Abstract
Poxviridae have been successful pathogens throughout recorded history, infecting humans among a variety of other hosts. Although eradication of the notorious smallpox has been a globally successful healthcare phenomenon, the recent emergence of Monkeypox virus, also belonging to the Orthopoxvirus genus and causing human disease, albeit milder than smallpox, is a cause of significant public health concern. The ongoing outbreak of monkeypox, demonstrating human-human transmission, in previously nonendemic countries, calls for critical need into further research in the areas of viral biology, ecology, and epidemiology to better understand, prevent and treat human infections. In the wake of these recent events, it becomes important to revisit poxviral infections, their pathogenesis and ability to cause infection across multiple nonhuman hosts and leap to a human host. The poxviruses that cause human diseases include Monkeypox virus, Molluscum contagiosum virus, and Orf virus. In this review, we summarize the current understanding of various poxviruses causing human diseases, provide insights into their replication and pathogenicity, disease progression and symptoms, preventive and treatment options, and their importance in shaping modern medicine through application in gene therapy, oncolytic viral therapies for human cancers, or as poxvirus vectors for vaccines.
Collapse
Affiliation(s)
- Kritika Srinivasan Rajsri
- Division of Biomaterials, Department of
Molecular Pathobiology, New York University College of Dentistry, New York,
NY, USA
- Department of Pathology, Vilcek Institute, New
York University School of Medicine, New York, NY, USA
| | - Mana Rao
- Essen Medical Associates, Bronx, NY 10461, USA.
ArchCare, New York, NY, USA
| |
Collapse
|
14
|
Abstract
The translation of laboratory science into effective clinical cancer therapy is gaining momentum more rapidly than any other time in history. Understanding cancer cell-surface receptors, cancer cell growth, and cancer metabolic pathways has led to many promising molecular-targeted therapies and cancer gene therapies. These same targets may also be exploited for optical imaging of cancer. Theoretically, any antibody or small molecule targeting cancer can be labeled with bioluminescent or fluorescent agents. In the laboratory setting, fluorescence imaging (FI) and bioluminescence imaging (BLI) have long been used in preclinical research for quantification of tumor bulk, assessment of targeting of tumors by experimental agents, and discrimination between primary and secondary effects of cancer treatments. Many of these laboratory techniques are now moving to clinical trials. Imageable engineered fluorescent probes that are highly specific for cancer are being advanced. This will allow for the identification of tumors for staging, tracking novel therapeutic agents, assisting in adequate surgical resection, and allowing image-guided biopsies. The critical components of FI include (1) a fluorescent protein that is biologically safe, stable, and distinctly visible with a high target to background ratio and (2) highly sensitive optical detectors. This review will summarize the most promising optical imaging agents and detection devices for cancer clinical research and clinical care.
Collapse
|
15
|
Oncolytic viruses: A novel treatment strategy for breast cancer. Genes Dis 2021; 10:430-446. [DOI: 10.1016/j.gendis.2021.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/27/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
|
16
|
Goradel NH, Alizadeh A, Hosseinzadeh S, Taghipour M, Ghesmati Z, Arashkia A, Negahdari B. Oncolytic virotherapy as promising immunotherapy against cancer: mechanisms of resistance to oncolytic viruses. Future Oncol 2021; 18:245-259. [PMID: 34821517 DOI: 10.2217/fon-2021-0802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oncolytic virotherapy has currently emerged as a powerful therapeutic approach in cancer treatment. Although the history of using viruses goes back to the early 20th century, the approval of talimogene laherparepvec (T-VEC) in 2015 increased interest in oncolytic viruses (OVs). OVs are multifaceted biotherapeutic agents because they replicate in and kill tumor cells and augment immune responses by releasing immunostimulatory molecules from lysed cells. Despite promising results, some limitations hinder the efficacy of oncolytic virotherapy. The delivery challenges and the upregulation of checkpoints following oncolytic virotherapy also mediate resistance to OVs by diminishing immune responses. Furthermore, the localization of receptors of viruses in the tight junctions, interferon responses, and the aberrant expression of genes involved in the cell cycle of the virus, including their infection and replication, reduce the efficacy of OVs. In this review, we present different mechanisms of resistance to OVs and strategies to overcome them.
Collapse
Affiliation(s)
- Nasser Hashemi Goradel
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Alizadeh
- Department of Biochemistry & Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Shahnaz Hosseinzadeh
- Department of Microbiology & Immunology, Faculty of Medicine, Ardabil University of Medical Sciences, Iran
| | - Mitra Taghipour
- Department of Biotechnology, Faculty of Agriculture & Natural Resources, Imam Khomeini International University, Qazvin, Iran
| | - Zeinab Ghesmati
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Arash Arashkia
- Department of Molecular Virology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
17
|
Manyam M, Stephens AJ, Kennard JA, LeBlanc J, Ahmad S, Kendrick JE, Holloway RW. A phase 1b study of intraperitoneal oncolytic viral immunotherapy in platinum-resistant or refractory ovarian cancer. Gynecol Oncol 2021; 163:481-489. [PMID: 34686353 DOI: 10.1016/j.ygyno.2021.10.069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Our objective was to assess safety and adverse events associated with intraperitoneal Olvi-Vec virotherapy in patients with platinum-resistant or refractory ovarian cancer (PRROC). Secondary objectives included objective response rate (ORR) per RECIST 1.1 and progression-free survival (PFS). METHODS Olvi-Vec is a modified vaccinia virus that causes oncolysis and immune activation. An open-label phase 1b trial using a 3 + 3 dose escalation was conducted. Intraperitoneal Olvi-Vec was given as monotherapy in two consecutive daily doses. Translational analyses included anti-virus antibody levels, viral shedding, circulating tumor cells (CTCs) and T cells. RESULTS Twelve patients (median age: 69 years, range: 45-77) with median 5 prior therapies (range: 2-10) and 2 prior platinum lines (range: 1-5) were enrolled. There were three dose level cohorts: 3 × 109 (n = 6), 1 × 1010 (n = 5), and 2.5 × 1010 (n = 1) plaque forming units (PFU)/day on two consecutive days. Treatment-related adverse events (TRAEs) included G1/G2 nausea (n = 6), fever (n = 6), abdominal distention (n = 5), and abdominal pain (n = 4). There were no Grade 4 TRAEs, no dose relationship to TRAEs, and no deaths attributed to Olvi-Vec. The ORR was 9% (1/11). Stable disease (SD) was 64% (7/11), and SD ≥15 weeks was 46% (5/11). Median PFS was 15.7 weeks (95%CI: 5.7-34.5), including extended PFS in four patients (23.2, 34.5, 59.4+ and 70.8 weeks). Three patients had extended overall survival (deceased 33.6 months, and alive with disease at 54 and 59 months). CTCs diminished in 6/8 (75%) baseline-positive patients. Immune activation was demonstrated from virus-enhanced tumor infiltration of CD8+ T-cells and activation of tumor-specific T-cells in peripheral blood. CONCLUSIONS Oncolytic viral therapy with intraperitoneal Olvi-Vec showed promising safety, clinical activities, and immune activation in patients with PRROC, warranting further clinical investigation.
Collapse
Affiliation(s)
- Madhavi Manyam
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA
| | - Amanda J Stephens
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA
| | - Jessica A Kennard
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA
| | - Jane LeBlanc
- Office of Clinical Research, AdventHealth Cancer Institute, Orlando, FL 32804, USA
| | - Sarfraz Ahmad
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA.
| | - James E Kendrick
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA
| | - Robert W Holloway
- Gynecologic Oncology Program, AdventHealth Cancer Institute, Orlando, FL 32804, USA.
| |
Collapse
|
18
|
Santos Apolonio J, Lima de Souza Gonçalves V, Cordeiro Santos ML, Silva Luz M, Silva Souza JV, Rocha Pinheiro SL, de Souza WR, Sande Loureiro M, de Melo FF. Oncolytic virus therapy in cancer: A current review. World J Virol 2021; 10:229-255. [PMID: 34631474 PMCID: PMC8474975 DOI: 10.5501/wjv.v10.i5.229] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 05/19/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
In view of the advancement in the understanding about the most diverse types of cancer and consequently a relentless search for a cure and increased survival rates of cancer patients, finding a therapy that is able to combat the mechanism of aggression of this disease is extremely important. Thus, oncolytic viruses (OVs) have demonstrated great benefits in the treatment of cancer because it mediates antitumor effects in several ways. Viruses can be used to infect cancer cells, especially over normal cells, to present tumor-associated antigens, to activate "danger signals" that generate a less immune-tolerant tumor microenvironment, and to serve transduction vehicles for expression of inflammatory and immunomodulatory cytokines. The success of therapies using OVs was initially demonstrated by the use of the genetically modified herpes virus, talimogene laherparepvec, for the treatment of melanoma. At this time, several OVs are being studied as a potential treatment for cancer in clinical trials. However, it is necessary to be aware of the safety and possible adverse effects of this therapy; after all, an effective treatment for cancer should promote regression, attack the tumor, and in the meantime induce minimal systemic repercussions. In this manuscript, we will present a current review of the mechanism of action of OVs, main clinical uses, updates, and future perspectives on this treatment.
Collapse
Affiliation(s)
- Jonathan Santos Apolonio
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | | | - Maria Luísa Cordeiro Santos
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Marcel Silva Luz
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - João Victor Silva Souza
- Universidade Estadual do Sudoeste da Bahia, Campus Vitória da Conquista, Vitória da Conquista 45083-900, Bahia, Brazil
| | - Samuel Luca Rocha Pinheiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Wedja Rafaela de Souza
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Matheus Sande Loureiro
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| | - Fabrício Freire de Melo
- Universidade Federal da Bahia, Instituto Multidisciplinar em Saúde, Vitória da Conquista 45029-094, Bahia, Brazil
| |
Collapse
|
19
|
Cheng G, Dong H, Yang C, Liu Y, Wu Y, Zhu L, Tong X, Wang S. A review on the advances and challenges of immunotherapy for head and neck cancer. Cancer Cell Int 2021; 21:406. [PMID: 34332576 PMCID: PMC8325213 DOI: 10.1186/s12935-021-02024-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
Head and neck cancer (HNC), which includes lip and oral cavity, larynx, nasopharynx, oropharynx, and hypopharynx malignancies, is one of the most common cancers worldwide. Due to the interaction of tumor cells with immune cells in the tumor microenvironment, immunotherapy of HNCs, along with traditional treatments such as chemotherapy, radiotherapy, and surgery, has attracted much attention. Four main immunotherapy strategies in HNCs have been developed, including oncolytic viruses, monoclonal antibodies, chimeric antigen receptor T cells (CAR-T cells), and therapeutic vaccines. Oncorine (H101), an approved oncolytic adenovirus in China, is the pioneer of immunotherapy for the treatment of HNCs. Pembrolizumab and nivolumab are mAbs against PD-L1 that have been approved for recurrent and metastatic HNC patients. To date, several clinical trials using immunotherapy agents and their combination are under investigation. In this review, we summarize current the interaction of tumor cells with immune cells in the tumor microenvironment of HNCs, the main strategies that have been applied for immunotherapy of HNCs, obstacles that hinder the success of immunotherapies in patients with HNCs, as well as solutions for overcoming the challenges to enhance the response of HNCs to immunotherapies.
Collapse
Affiliation(s)
- Gang Cheng
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Hui Dong
- Department of Stomatology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China.,Department of Stomatology, Bengbu Medical College, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Yang
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yang Liu
- Department of Ultrasonography, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Yi Wu
- Phase I Clinical Research Center, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Lifen Zhu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China.,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Shibing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Hangzhou, 310014, Zhejiang, People's Republic of China. .,Molecular Diagnosis Laboratory, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
20
|
Mozaffari Nejad AS, Noor T, Munim ZH, Alikhani MY, Ghaemi A. A bibliometric review of oncolytic virus research as a novel approach for cancer therapy. Virol J 2021; 18:98. [PMID: 33980264 PMCID: PMC8113799 DOI: 10.1186/s12985-021-01571-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Accepted: 05/03/2021] [Indexed: 02/06/2023] Open
Abstract
Background In recent years, oncolytic viruses (OVs) have drawn attention as a novel therapy to various types of cancers, both in clinical and preclinical cancer studies all around the world. Consequently, researchers have been actively working on enhancing cancer therapy since the early twentieth century. This study presents a systematic review of the literature on OVs, discusses underlying research clusters and, presents future directions of OVs research. Methods A total of 1626 published articles related to OVs as cancer therapy were obtained from the Web of Science (WoS) database published between January 2000 and March 2020. Various aspects of OVs research, including the countries/territories, institutions, journals, authors, citations, research areas, and content analysis to find trending and emerging topics, were analysed using the bibliometrix package in the R-software. Results In terms of the number of publications, the USA based researchers were the most productive (n = 611) followed by Chinese (n = 197), and Canadian (n = 153) researchers. The Molecular Therapy journal ranked first both in terms of the number of publications (n = 133) and local citations (n = 1384). The most prominent institution was Mayo Clinic from the USA (n = 117) followed by the University of Ottawa from Canada (n = 72), and the University of Helsinki from Finland (n = 63). The most impactful author was Bell J.C with the highest number of articles (n = 67) and total local citations (n = 885). The most impactful article was published in the Cell journal. In addition, the latest OVs research mainly builds on four research clusters. Conclusion The domain of OVs research has increased at a rapid rate from 2000 to 2020. Based on the synthesis of reviewed studies, adenovirus, herpes simplex virus, reovirus, and Newcastle disease virus have shown potent anti-cancer activity. Developed countries such as the USA, Canada, the UK, and Finland were the most productive, hence, contributed most to this field. Further collaboration will help improve the clinical research translation of this therapy and bring benefits to cancer patients worldwide.
Collapse
Affiliation(s)
| | - Tehjeeb Noor
- Faculty of Medicine, University of Bergen, Horten, Norway
| | - Ziaul Haque Munim
- Faculty of Technology, Natural and Maritime Sciences, University of South-Eastern Norway, Horten, Norway
| | - Mohammad Yousef Alikhani
- Department of Microbiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Amir Ghaemi
- Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
21
|
Zhu W, Liang J, Tan J, Guo L, Cai J, Hu J, Yan G, Liu Y, Zhang J, Song D, Dan J, Wong CW, Su X, Qiu P, Lin Y. Real-Time Visualization and Quantification of Oncolytic M1 Virus In Vitro and In Vivo. Hum Gene Ther 2021; 32:158-165. [PMID: 33504253 DOI: 10.1089/hum.2020.273] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Alphavirus M1 is a promising oncolytic virus for cancer therapy. Here, we constructed a fluorescent reporter virus for real-time visualization and quantification of M1 virus both in vitro and in vivo. The reporter-encoding M1 virus maintained the characteristics of parental virus in the aspects of structure, replication capacity, the feature to induce cytopathic cell death, and the property of tumor targeting. The fluorescence is positively correlated with virus replication both in vitro and in vivo. More importantly, the reporter can be stably expressed for at least 10 generations in a serial passage assay. In summary, we successfully constructed stable and authentic reporter viruses for studying M1 virus and provided a feasible technical route for gene modification of oncolytic virus M1.
Collapse
Affiliation(s)
- Wenbo Zhu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiankai Liang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jingyi Tan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Li Guo
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jing Cai
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jun Hu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Guangmei Yan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yang Liu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiayu Zhang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Deli Song
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jia Dan
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Chun-Wa Wong
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xingwen Su
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Pengxin Qiu
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yuan Lin
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
22
|
Oncolytic virotherapy: Challenges and solutions. Curr Probl Cancer 2021; 45:100639. [DOI: 10.1016/j.currproblcancer.2020.100639] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
|
23
|
Oncolytic Adenovirus CD55-Smad4 Suppresses Cell Proliferation, Metastasis, and Tumor Stemness in Colorectal Cancer by Regulating Wnt/β-Catenin Signaling Pathway. Biomedicines 2020; 8:biomedicines8120593. [PMID: 33322272 PMCID: PMC7763845 DOI: 10.3390/biomedicines8120593] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022] Open
Abstract
During the past few decades, colorectal cancer (CRC) incidence and mortality have significantly increased, and CRC has become the leading cause of cancer-related death worldwide. Thus, exploring novel effective therapies for CRC is imperative. In this study, we investigated the effect of oncolytic adenovirus CD55-Smad4 on CRC cell growth. Cell viability assay, animal experiments, flow cytometric analysis, cell migration, and invasion assays, and Western blotting were used to detect the proliferation, apoptosis, migration, and invasion of CRC cells. The oncolytic adenovirus CD55-Smad4 was successfully constructed and effectively suppressed CRC cell proliferation in vivo and in vitro. Notably, CD55-Smad4 activated the caspase signaling pathway, inducing the apoptosis of CRC cells. Additionally, the generated oncolytic adenovirus significantly suppressed migration and invasion of CRC cells by overexpressing Smad4 and inhibiting Wnt/β-catenin/epithelial-mesenchymal transition (EMT) signaling pathway. Moreover, CRC cells treated with CD55-Smad4 formed less and smaller spheroid colonies in serum-free culture than cells in control groups, suggesting that CD55-Smad4 suppressed the stemness of CRC cells by inhibiting the Wnt/β-catenin pathway. Together, the results of this study provide valuable information for the development of a novel strategy for cancer-targeting gene-virotherapy and provide a deeper understanding of the critical significance of Smad4 in gene therapy of CRC.
Collapse
|
24
|
Zhang B, Cheng P. Improving antitumor efficacy via combinatorial regimens of oncolytic virotherapy. Mol Cancer 2020; 19:158. [PMID: 33172438 PMCID: PMC7656670 DOI: 10.1186/s12943-020-01275-6] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
As a promising therapeutic strategy, oncolytic virotherapy has shown potent anticancer efficacy in numerous pre-clinical and clinical trials. Oncolytic viruses have the capacity for conditional-replication within carcinoma cells leading to cell death via multiple mechanisms, including direct lysis of neoplasms, induction of immunogenic cell death, and elicitation of innate and adaptive immunity. In addition, these viruses can be engineered to express cytokines or chemokines to alter tumor microenvironments. Combination of oncolytic virotherapy with other antitumor therapeutic modalities, such as chemotherapy and radiation therapy as well as cancer immunotherapy can be used to target a wider range of tumors and promote therapeutic efficacy. In this review, we outline the basic biological characteristics of oncolytic viruses and the underlying mechanisms that support their use as promising antitumor drugs. We also describe the enhanced efficacy attributed to virotherapy combined with other drugs for the treatment of cancer.
Collapse
Affiliation(s)
- Bin Zhang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, PR China
| | - Ping Cheng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, 17 People's South Road, Chengdu, 610041, PR China.
| |
Collapse
|
25
|
Cambien B, Lebrigand K, Baeri A, Nottet N, Compin C, Lamit A, Ferraris O, Peyrefitte CN, Magnone V, Henriques J, Zaragosi LE, Giorgetti-Peraldi S, Bost F, Gautier-Isola M, Rezzonico R, Barbry P, Barthel R, Mari B, Vassaux G. Identification of oncolytic vaccinia restriction factors in canine high-grade mammary tumor cells using single-cell transcriptomics. PLoS Pathog 2020; 16:e1008660. [PMID: 33075093 PMCID: PMC7595618 DOI: 10.1371/journal.ppat.1008660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/29/2020] [Accepted: 09/01/2020] [Indexed: 01/13/2023] Open
Abstract
Mammary carcinoma, including triple-negative breast carcinomas (TNBC) are tumor-types for which human and canine pathologies are closely related at the molecular level. The efficacy of an oncolytic vaccinia virus (VV) was compared in low-passage primary carcinoma cells from TNBC versus non-TNBC. Non-TNBC cells were 28 fold more sensitive to VV than TNBC cells in which VV replication is impaired. Single-cell RNA-seq performed on two different TNBC cell samples, infected or not with VV, highlighted three distinct populations: naïve cells, bystander cells, defined as cells exposed to the virus but not infected and infected cells. The transcriptomes of these three populations showed striking variations in the modulation of pathways regulated by cytokines and growth factors. We hypothesized that the pool of genes expressed in the bystander populations was enriched in antiviral genes. Bioinformatic analysis suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. In addition, we demonstrated experimentally that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. This information could be used to design new generations of oncolytic poxviruses. Beyond the field of gene therapy, this study demonstrates that single-cell transcriptomics can be used to identify cellular factors influencing viral replication. The identification of cellular genes influencing viral replication/propagation has been studied using hypothesis-driven approaches and/or high-throughput RNA interference screens. In the present report, we propose a methodology based on single-cell transcriptomics. We have studied, in the context of oncolytic virotherapy, the susceptibility of different grades of primary low-passage mammary carcinoma cells of canine origin to an oncolytic vaccinia virus (VV). We highlight a fault in replication of VV in cells that originated from high-grade triple-negative breast carcinomas (TNBC). Single-cell RNA-seq performed on TNBC cell samples infected with VV suggested that the reduced activity of the virus was associated with a higher mesenchymal status of the cells. We also demonstrate that high expression of one gene, DDIT4, is detrimental to VV production. Considering that DDIT4 is associated with a poor prognosis in various cancers including TNBC, our data highlight DDIT4 as a candidate resistance marker for oncolytic poxvirus therapy. Beyond the field of cancer gene therapy, we demonstrate here that single-cell transcriptomics increases the arsenal of tools available to identify cellular factors influencing viral replication.
Collapse
Affiliation(s)
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Alberto Baeri
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Nicolas Nottet
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | - Audrey Lamit
- Université Côte d'Azur, CEA, Laboratoire TIRO, Nice France
| | - Olivier Ferraris
- Institut de recherche biomédicale des armées, Université de Lyon, Lyon, France
| | | | - Virginie Magnone
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | | | | | | | | | - Roger Rezzonico
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | | | - Bernard Mari
- Université Côte d'Azur, CNRS, IPMC, FHU-OncoAge, Valbonne, France
| | - Georges Vassaux
- Université Côte d'Azur, INSERM, CNRS, IPMC, Valbonne, France
- * E-mail:
| |
Collapse
|
26
|
Assessing and Overcoming Resistance Phenomena against a Genetically Modified Vaccinia Virus in Selected Cancer Cell Lines. Int J Mol Sci 2020; 21:ijms21207618. [PMID: 33076270 PMCID: PMC7589280 DOI: 10.3390/ijms21207618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 09/29/2020] [Accepted: 10/13/2020] [Indexed: 12/12/2022] Open
Abstract
Genetically modified vaccinia viruses (VACVs) have been shown to possess profound oncolytic capabilities. However, tumor cell resistance to VACVs may endanger broad clinical success. Using cell mass assays, viral replication studies, and fluorescence microscopy, we investigated primary resistance phenomena of cell lines of the NCI-60 tumor cell panel to GLV-1h94, a derivative of the Lister strain of VACV, which encodes the enzyme super cytosine deaminase (SCD) that converts the prodrug 5-fluorocytosine (5-FC) into the chemotherapeutic compound 5-fluorouracil (5-FU). After treatment with GLV-1h94 alone, only half of the cell lines were defined as highly susceptible to GLV-1h94-induced oncolysis. When adding 5-FC, 85% of the cell lines became highly susceptible to combinatorial treatment; none of the tested tumor cell lines exhibited a "high-grade resistance" pattern. Detailed investigation of the SCD prodrug system suggested that the cytotoxic effect of converted 5-FU is directed either against the cells or against the virus particles, depending on the balance between cell line-specific susceptibility to GLV-1h94-induced oncolysis and 5-FU sensitivity. The data provided by this work underline that cellular resistance against VACV-based virotherapy can be overcome by virus-encoded prodrug systems. Phase I/II clinical trials are recommended to further elucidate the enormous potential of this combination therapy.
Collapse
|
27
|
Hamada M, Yura Y. Efficient Delivery and Replication of Oncolytic Virus for Successful Treatment of Head and Neck Cancer. Int J Mol Sci 2020; 21:E7073. [PMID: 32992948 PMCID: PMC7582277 DOI: 10.3390/ijms21197073] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022] Open
Abstract
Head and neck cancer has been treated by a combination of surgery, radiation, and chemotherapy. In recent years, the development of immune checkpoint inhibitors (ICIs) has made immunotherapy a new treatment method. Oncolytic virus (OV) therapy selectively infects tumor cells with a low-pathogenic virus, lyses tumor cells by the cytopathic effects of the virus, and induces anti-tumor immunity to destroy tumors by the action of immune cells. In OV therapy for head and neck squamous cell carcinoma (HNSCC), viruses, such as herpes simplex virus type 1 (HSV-1), vaccinia virus, adenovirus, reovirus, measles virus, and vesicular stomatitis virus (VSV), are mainly used. As the combined use of mutant HSV-1 and ICI was successful for the treatment of melanoma, studies are underway to combine OV therapy with radiation, chemotherapy, and other types of immunotherapy. In such therapy, it is important for the virus to selectively replicate in tumor cells, and to express the viral gene and the introduced foreign gene in the tumor cells. In OV therapy for HNSCC, it may be useful to combine systemic and local treatments that improve the delivery and replication of the inoculated oncolytic virus in the tumor cells.
Collapse
Affiliation(s)
- Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan;
| | | |
Collapse
|
28
|
Stewart JH, Blazer DG, Calderon MJG, Carter TM, Eckhoff A, Al Efishat MA, Fernando DG, Foster JM, Hayes-Jordan A, Johnston FM, Lautz TB, Levine EA, Maduekwe UN, Mangieri CW, Moaven O, Mogal H, Shen P, Votanopoulos KI. The Evolving Management of Peritoneal Surface Malignancies. Curr Probl Surg 2020; 58:100860. [PMID: 33832580 DOI: 10.1016/j.cpsurg.2020.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/04/2020] [Indexed: 02/07/2023]
Affiliation(s)
| | - Dan G Blazer
- Division of Surgical Oncology, Duke University Medical Center, Durham, NC
| | | | | | | | | | | | - Jason M Foster
- Fred and Pamela Buffet Cancer Center, University of Nebraska, Omaha, NE
| | | | - Fabian M Johnston
- Complex General Surgical Oncology Program, Johns Hopkins University, Baltimore, MD
| | - Timothy B Lautz
- Northwestern University Feinberg School of Medicine, Chicago, IL
| | | | - Ugwuji N Maduekwe
- Division of Surgical Oncology and Endocrine Surgery, University of North Carolina, Chapel Hill, NC
| | | | | | | | - Perry Shen
- Wake Forest University School of Medicine, Winston-Salem, NC
| | | |
Collapse
|
29
|
Kloker LD, Berchtold S, Smirnow I, Beil J, Krieg A, Sipos B, Lauer UM. Oncolytic vaccinia virus GLV-1h68 exhibits profound antitumoral activities in cell lines originating from neuroendocrine neoplasms. BMC Cancer 2020; 20:628. [PMID: 32631270 PMCID: PMC7339398 DOI: 10.1186/s12885-020-07121-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 06/29/2020] [Indexed: 02/07/2023] Open
Abstract
Background Oncolytic virotherapy is an upcoming treatment option for many tumor entities. But so far, a first oncolytic virus only was approved for advanced stages of malignant melanomas. Neuroendocrine tumors (NETs) constitute a heterogenous group of tumors arising from the neuroendocrine system at diverse anatomic sites. Due to often slow growth rates and (in most cases) endocrine non-functionality, NETs are often detected only in a progressed metastatic situation, where therapy options are still severely limited. So far, immunotherapies and especially immunovirotherapies are not established as novel treatment modalities for NETs. Methods In this immunovirotherapy study, pancreatic NET (BON-1, QGP-1), lung NET (H727, UMC-11), as well as neuroendocrine carcinoma (NEC) cell lines (HROC-57, NEC-DUE1) were employed. The well characterized genetically engineered vaccinia virus GLV-1 h68, which has already been investigated in various clinical trials, was chosen as virotherapeutical treatment modality. Results Profound oncolytic efficiencies were found for NET/NEC tumor cells. Besides, NET/NEC tumor cell bound expression of GLV-1 h68-encoded marker genes was observed also. Furthermore, a highly efficient production of viral progenies was detected by sequential virus quantifications. Moreover, the mTOR inhibitor everolimus, licensed for treatment of metastatic NETs, was not found to interfere with GLV-1 h68 replication, making a combinatorial treatment of both feasible. Conclusions In summary, the oncolytic vaccinia virus GLV-1 h68 was found to exhibit promising antitumoral activities, replication capacities and a potential for future combinatorial approaches in cell lines originating from neuroendocrine neoplasms. Based on these preliminary findings, virotherapeutic effects now have to be further evaluated in animal models for treatment of Neuroendocrine neoplasms (NENs).
Collapse
Affiliation(s)
- Linus D Kloker
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Susanne Berchtold
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Irina Smirnow
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Julia Beil
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany.,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany
| | - Andreas Krieg
- Department of Surgery (A), Heinrich-Heine-University and University Hospital Duesseldorf, 40225, Duesseldorf, Germany
| | - Bence Sipos
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany
| | - Ulrich M Lauer
- Department of Internal Medicine VIII, Department of Medical Oncology and Pneumology, University Hospital Tuebingen, University of Tuebingen, Otfried-Mueller-Strasse 10, 72076, Tuebingen, Baden-Wuerttemberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 72076, Tuebingen, Germany.
| |
Collapse
|
30
|
Chiu M, Armstrong EJL, Jennings V, Foo S, Crespo-Rodriguez E, Bozhanova G, Patin EC, McLaughlin M, Mansfield D, Baker G, Grove L, Pedersen M, Kyula J, Roulstone V, Wilkins A, McDonald F, Harrington K, Melcher A. Combination therapy with oncolytic viruses and immune checkpoint inhibitors. Expert Opin Biol Ther 2020; 20:635-652. [PMID: 32067509 DOI: 10.1080/14712598.2020.1729351] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/10/2020] [Indexed: 12/21/2022]
Abstract
Introduction: Immune checkpoint inhibitors (ICI) have dramatically improved the outcome for cancer patients across multiple tumor types. However the response rates to ICI monotherapy remain relatively low, in part due to some tumors cultivating an inherently 'cold' immune microenvironment. Oncolytic viruses (OV) have the capability to promote a 'hotter' immune microenvironment which can improve the efficacy of ICI.Areas covered: In this article we conducted a literature search through Pubmed/Medline to identify relevant articles in both the pre-clinical and clinical settings for combining OVs with ICIs and discuss the impact of this approach on treatment as well as changes within the tumor microenvironment. We also explore the future directions of this novel combination strategy.Expert opinion: The imminent results of the Phase 3 study combining pembrolizumab with or without T-Vec injection are eagerly awaited. OV/ICI combinations remain one of the most promising avenues to explore in the success of cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew Chiu
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Edward John Lloyd Armstrong
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Vicki Jennings
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Shane Foo
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Eva Crespo-Rodriguez
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Galabina Bozhanova
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | | | - Martin McLaughlin
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - David Mansfield
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Gabriella Baker
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Lorna Grove
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Malin Pedersen
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Joan Kyula
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Victoria Roulstone
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Anna Wilkins
- Tumour Cell Biology Laboratory, The Francis Crick Institute, London, UK
| | | | - Kevin Harrington
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| | - Alan Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
- The Royal Marsden NHS Foundation Trust, London, UK
| |
Collapse
|
31
|
Keshavarz M, Sabbaghi A, Miri SM, Rezaeyan A, Arjeini Y, Ghaemi A. Virotheranostics, a double-barreled viral gun pointed toward cancer; ready to shoot? Cancer Cell Int 2020; 20:131. [PMID: 32336951 PMCID: PMC7178751 DOI: 10.1186/s12935-020-01219-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/17/2020] [Indexed: 12/23/2022] Open
Abstract
Compared with conventional cancer treatments, the main advantage of oncolytic virotherapy is its tumor-selective replication followed by the destruction of malignant cells without damaging healthy cells. Accordingly, this kind of biological therapy can potentially be used as a promising approach in the field of cancer management. Given the failure of traditional monitoring strategies (such as immunohistochemical analysis (in providing sufficient safety and efficacy necessary for virotherapy and continual pharmacologic monitoring to track pharmacokinetics in real-time, the development of alternative strategies for ongoing monitoring of oncolytic treatment in a live animal model seems inevitable. Three-dimensional molecular imaging methods have recently been considered as an attractive approach to overcome the limitations of oncolytic therapy. These noninvasive visualization systems provide real-time follow-up of viral progression within the cancer tissue by the ability of engineered oncolytic viruses (OVs) to encode reporter transgenes based on recombinant technology. Human sodium/iodide symporter (hNIS) is considered as one of the most prevalent nuclear imaging reporter transgenes that provides precise information regarding the kinetics of gene expression, viral biodistribution, toxicity, and therapeutic outcomes using the accumulation of radiotracers at the site of transgene expression. Here, we provide an overview of pre-clinical and clinical applications of hNIS-based molecular imaging to evaluate virotherapy efficacy. Moreover, we describe different types of reporter genes and their potency in the clinical trials.
Collapse
Affiliation(s)
- Mohsen Keshavarz
- 1The Persian Gulf Tropical Medicine Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Ailar Sabbaghi
- 2Department of Influenza and Other Respiratory Viruses, Pasteur Institute of Iran, Tehran, Iran
| | | | - Abolhasan Rezaeyan
- 4Department of Medical Physics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Yaser Arjeini
- 5Virology Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ghaemi
- 6Department of Virology, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Deng L, Fan J, Ding Y, Yang X, Huang B, Hu Z. Target Therapy With Vaccinia Virus Harboring IL-24 For Human Breast Cancer. J Cancer 2020; 11:1017-1026. [PMID: 31956348 PMCID: PMC6959063 DOI: 10.7150/jca.37590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/26/2019] [Indexed: 01/04/2023] Open
Abstract
Background: Breast cancer is a heterogeneous disease with high aggression and novel targeted therapeutic strategies are required. Oncolytic vaccinia virus is an attractive candidate for cancer treatment due to its tumor cell-specific replication causing lysis of tumor cells as well as a delivery vector to overexpress therapeutic transgenes. Interleukin-24 (IL-24) is a novel tumor suppressor cytokine that selectively induces apoptosis in a wide variety of tumor types, including breast cancer. In this study, we used vaccinia virus as a delivery vector to express IL-24 gene and antitumor effects were evaluated both in vitro and in vivo. Methods: The vaccinia virus strain Guang9 armed with IL-24 gene (VG9-IL-24) was constructed via disruption of the viral thymidine kinase (TK) gene region. The cytotoxicity of VG9-IL-24 in various breast cancer cell lines was assessed by MTT and cell cycle progression and apoptosis were examined by flow cytometry. In vivo antitumor effects were further observed in MDA-MB-231 xenograft mouse model. Results: In vitro, VG9-IL-24 efficiently infected and selectively killed breast cancer cells with no strong cytotoxicity to normal cells. VG9-IL-24 induced increased number of apoptotic cells and blocked breast cancer cells in the G2/M phase of the cell cycle. Western blotting results indicated that VG9-IL-24-mediated apoptosis was related to PI3K/β-catenin signaling pathway. In vivo, VG9-IL-24 delayed tumor growth and improved survival. Conclusions: Our findings provided documentation that VG9-IL-24 was targeted in vitro and exhibited enhanced antitumor effects, and it may be an innovative therapy for breast cancer.
Collapse
Affiliation(s)
- Lili Deng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Jun Fan
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Yuedi Ding
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, China
| | - Xue Yang
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| | - Biao Huang
- School of Life Science, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Zhigang Hu
- Wuxi Children's Hospital, Wuxi People's Hospital affiliated to Nanjing Medical University, Wuxi 214023, China
| |
Collapse
|
33
|
Cecil A, Gentschev I, Adelfinger M, Dandekar T, Szalay AA. Vaccinia virus injected human tumors: oncolytic virus efficiency predicted by antigen profiling analysis fitted boolean models. Bioengineered 2019; 10:190-196. [PMID: 31142183 PMCID: PMC6550548 DOI: 10.1080/21655979.2019.1622220] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Virotherapy on the basis of oncolytic vaccinia virus (VACV) strains is a promising approach for cancer therapy. Recently, we showed that the oncolytic vaccinia virus GLV-1h68 has a therapeutic potential in treating human prostate and hepatocellular carcinomas in xenografted mice. In this study, we describe the use of dynamic boolean modeling for tumor growth prediction of vaccinia virus-injected human tumors. Antigen profiling data of vaccinia virus GLV-1h68-injected human xenografted mice were obtained, analyzed and used to calculate differences in the tumor growth signaling network by tumor type and gender. Our model combines networks for apoptosis, MAPK, p53, WNT, Hedgehog, the T-killer cell mediated cell death, Interferon and Interleukin signaling networks. The in silico findings conform very well with in vivo findings of tumor growth. Similar to a previously published analysis of vaccinia virus-injected canine tumors, we were able to confirm the suitability of our boolean modeling for prediction of human tumor growth after virus infection in the current study as well. In summary, these findings indicate that our boolean models could be a useful tool for testing of the efficacy of VACV-mediated cancer therapy already before its use in human patients.
Collapse
Affiliation(s)
- Alexander Cecil
- a Department of Biochemistry, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany.,b Department of Bioinformatics, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany
| | - Ivaylo Gentschev
- a Department of Biochemistry, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany.,c Genelux Corporation , San Diego , CA , USA
| | - Marion Adelfinger
- a Department of Biochemistry, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany
| | - Thomas Dandekar
- b Department of Bioinformatics, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany
| | - Aladar A Szalay
- a Department of Biochemistry, Theodor-Boveri-Institute , University of Würzburg, Biocenter , Würzburg , Germany.,d Department of Radiation Medicine and Applied Sciences, Rebecca & John Moores Comprehensive Cancer Center , University of California , San Diego , CA , USA
| |
Collapse
|
34
|
Virotherapy as a Potential Therapeutic Approach for the Treatment of Aggressive Thyroid Cancer. Cancers (Basel) 2019; 11:cancers11101532. [PMID: 31636245 PMCID: PMC6826611 DOI: 10.3390/cancers11101532] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/02/2019] [Accepted: 10/03/2019] [Indexed: 12/13/2022] Open
Abstract
Virotherapy is a novel cancer treatment based on oncolytic viruses (OVs), which selectively infect and lyse cancer cells, without harming normal cells or tissues. Several viruses, either naturally occurring or developed through genetic engineering, are currently under investigation in clinical studies. Emerging reports suggesting the immune-stimulatory property of OVs against tumor cells further support the clinical use of OVs for the treatment of lesions lacking effective therapies. Poorly differentiated thyroid carcinoma (PDTC) and anaplastic thyroid carcinoma (ATC), have a poor prognosis and limited treatment options. Therefore, several groups investigated the therapeutic potential of OVs in PDTC/ATC models producing experimental data sustaining the potential clinical efficacy of OVs in these cancer models. Moreover, the presence of an immunosuppressive microenvironment further supports the potential use of OVs in ATC. In this review, we present the results of the studies evaluating the efficacy of OVs alone or in combination with other treatment options. In particular, their potential therapeutic combination with multiple kinases inhibitors (MKIs) or immune checkpoint inhibitors are discussed.
Collapse
|
35
|
Smith HG, Mansfield D, Roulstone V, Kyula-Currie JN, McLaughlin M, Patel RR, Bergerhoff KF, Paget JT, Dillon MT, Khan A, Melcher A, Thway K, Harrington KJ, Hayes AJ. PD-1 Blockade Following Isolated Limb Perfusion with Vaccinia Virus Prevents Local and Distant Relapse of Soft-tissue Sarcoma. Clin Cancer Res 2019; 25:3443-3454. [PMID: 30885937 DOI: 10.1158/1078-0432.ccr-18-3767] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 01/16/2019] [Accepted: 03/08/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE The prevention and treatment of metastatic sarcoma are areas of significant unmet need. Immune checkpoint inhibitor monotherapy has shown little activity in sarcoma and there is great interest in identifying novel treatment combinations that may augment responses. In vitro and in vivo, we investigated the potential for an oncolytic vaccinia virus (GLV-1h68) delivered using isolated limb perfusion (ILP) to promote antitumor immune responses and augment response to PD-1 blockade in sarcoma.Experimental Design: In an established animal model of extremity sarcoma, we evaluated the potential of locoregional delivery of a vaccinia virus (GLV-1h68) alongside biochemotherapy (melphalan/TNFα) in ILP. Complementary in vitro assays for markers of immunogenic cell death were performed in sarcoma cell lines. RESULTS PD-1 monotherapy had minimal efficacy in vivo, mimicking the clinical scenario. Pretreatment with GLV-1h68 delivered by ILP (viral ILP) significantly improved responses. Furthermore, when performed prior to surgery and radiotherapy, viral ILP and PD-1 blockade prevented both local and distant relapse, curing a previously treatment-refractory model. Enhanced therapy was associated with marked modulation of the tumor microenvironment, with an increase in the number and penetrance of intratumoral CD8+ T cells and expansion and activation of dendritic cells. GLV-1h68 was capable of inducing markers of immunogenic cell death in human sarcoma cell lines. CONCLUSIONS Viral ILP augments the response to PD-1 blockade, transforming this locoregional therapy into a potentially effective systemic treatment for sarcoma and warrants translational evaluation.
Collapse
Affiliation(s)
- Henry G Smith
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
- The Sarcoma Unit, Department of Academic Surgery, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - David Mansfield
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Victoria Roulstone
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Joan N Kyula-Currie
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Martin McLaughlin
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Radhika R Patel
- Flow Cytometry and Light Microscopy Facility, The Institute of Cancer Research, London, United Kingdom
| | | | - James T Paget
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Magnus T Dillon
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Aadil Khan
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Alan Melcher
- Translational Immunotherapy Team, The Institute of Cancer Research, London, United Kingdom
| | - Khin Thway
- The Sarcoma Unit, Department of Academic Surgery, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| | - Kevin J Harrington
- Targeted Therapy Team, The Institute of Cancer Research, London, United Kingdom.
| | - Andrew J Hayes
- The Sarcoma Unit, Department of Academic Surgery, The Royal Marsden Hospital NHS Foundation Trust, London, United Kingdom
| |
Collapse
|
36
|
Yang R, Wang L, Sheng J, Huang Q, Pan D, Xu Y, Yan J, Wang X, Dong Z, Yang M. Combinatory effects of vaccinia virus VG9 and the STAT3 inhibitor Stattic on cancer therapy. Arch Virol 2019; 164:1805-1814. [PMID: 31087190 DOI: 10.1007/s00705-019-04257-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 03/22/2019] [Indexed: 01/08/2023]
Abstract
The recombinant vaccinia virus VG9 and the STAT3 inhibitor Stattic were combined to kill cancer cells via both oncolytic activity and inhibition of STAT3 phosphorylation in cells. The combinatory anti-tumour activity of these compounds was superior to the activity of VG9 or Stattic alone in vivo. The inhibition of tumour growth occurred via increased apoptosis and autophagy pathways. Furthermore, the combinatory anti-tumour activity was more efficient than that of VG9 or Stattic alone on xenografts, especially in nude mice.
Collapse
Affiliation(s)
- Runlin Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China.
| | - Lizhen Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Jie Sheng
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Qianhuan Huang
- The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China
| | - Donghui Pan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Yuping Xu
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Junjie Yan
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Xinyu Wang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Ziyue Dong
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China
| | - Min Yang
- Key Laboratory of Nuclear Medicine, Ministry of Health, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, No. 20, Qianrong Road, Wuxi, 214063, China. .,The First School of Clinical Medicine, Nanjing Medical University, Nanjing, 210029, China. .,School of Pharmaceutical Science, Zhengzhou University, Zhengzhou, 450000, China.
| |
Collapse
|
37
|
Guo ZS, Lu B, Guo Z, Giehl E, Feist M, Dai E, Liu W, Storkus WJ, He Y, Liu Z, Bartlett DL. Vaccinia virus-mediated cancer immunotherapy: cancer vaccines and oncolytics. J Immunother Cancer 2019; 7:6. [PMID: 30626434 PMCID: PMC6325819 DOI: 10.1186/s40425-018-0495-7] [Citation(s) in RCA: 185] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Accepted: 12/26/2018] [Indexed: 12/11/2022] Open
Abstract
Cancer vaccines and oncolytic immunotherapy are promising treatment strategies with potential to provide greater clinical benefit to patients with advanced-stage cancer. In particular, recombinant vaccinia viruses (VV) hold great promise as interventional agents. In this article, we first summarize the current understanding of virus biology and viral genes involved in host-virus interactions to further improve the utility of these agents in therapeutic applications. We then discuss recent findings from basic and clinical studies using VV as cancer vaccines and oncolytic immunotherapies. Despite encouraging results gleaned from translational studies in animal models, clinical trials implementing VV vectors alone as cancer vaccines have yielded largely disappointing results. However, the combination of VV vaccines with alternate forms of standard therapies has resulted in superior clinical efficacy. For instance, combination regimens using TG4010 (MVA-MUC1-IL2) with first-line chemotherapy in advanced-stage non-small cell lung cancer or combining PANVAC with docetaxel in the setting of metastatic breast cancer have clearly provided enhanced clinical benefits to patients. Another novel cancer vaccine approach is to stimulate anti-tumor immunity via STING activation in Batf3-dependent dendritic cells (DC) through the use of replication-attenuated VV vectors. Oncolytic VVs have now been engineered for improved safety and superior therapeutic efficacy by arming them with immune-stimulatory genes or pro-apoptotic molecules to facilitate tumor immunogenic cell death, leading to enhanced DC-mediated cross-priming of T cells recognizing tumor antigens, including neoantigens. Encouraging translational and early phase clinical results with Pexa-Vec have matured into an ongoing global phase III trial for patients with hepatocellular carcinoma. Combinatorial approaches, most notably those using immune checkpoint blockade, have produced exciting pre-clinical results and warrant the development of innovative clinical studies. Finally, we discuss major hurdles that remain in the field and offer some perspectives regarding the development of next generation VV vectors for use as cancer therapeutics.
Collapse
Affiliation(s)
- Zong Sheng Guo
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Binfeng Lu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Zongbi Guo
- Fujian Tianjian Pharmaceutical Co. Ltd., Sanming, Fujian, China
| | - Esther Giehl
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Mathilde Feist
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Enyong Dai
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Weilin Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Yukai He
- Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zuqiang Liu
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - David L Bartlett
- UPMC Hillman Cancer Center, Pittsburgh, PA, USA
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
38
|
Conrad SJ, Liu J. Poxviruses as Gene Therapy Vectors: Generating Poxviral Vectors Expressing Therapeutic Transgenes. Methods Mol Biol 2019; 1937:189-209. [PMID: 30706397 DOI: 10.1007/978-1-4939-9065-8_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Treatments with poxvirus vectors can have long-lasting immunological impact in the host, and thus they have been extensively studied to treat diseases and for vaccine development. More importantly, the oncolytic properties of poxviruses have led to their development as cancer therapeutics. Two poxviruses, vaccinia virus (VACV) and myxoma virus (MYXV), have been extensively studied as virotherapeutics with promising results. Vaccinia virus vectors have advanced to the clinic and have been tested as oncolytic therapeutics for several cancer types with successes in phase I/II clinical trials. In addition to oncolytic applications, MYXV has been explored for additional applications including immunotherapeutics, purging of cancer progenitor cells, and treatments for graft-versus-host diseases. These novel therapeutic applications have encouraged its advancement into clinical trials. To meet the demands of different treatment needs, VACV and MYXV can be genetically engineered to express therapeutic transgenes. The engineering process used in poxvirus vectors can be very different from that of other DNA virus vectors (e.g., the herpesviruses). This chapter is intended to serve as a guide to those wishing to engineer poxvirus vectors for therapeutic transgene expression and to produce viral preparations for preclinical studies.
Collapse
Affiliation(s)
- Steven J Conrad
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA
| | - Jia Liu
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR, USA. .,The Center for Microbial Pathogenesis and Host Inflammatory Responses, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
39
|
Passaro C, Somma SD, Malfitano AM, Portella G. Oncolytic virotherapy for anaplastic and poorly differentiated thyroid cancer: a promise or a clinical reality? INTERNATIONAL JOURNAL OF ENDOCRINE ONCOLOGY 2018. [DOI: 10.2217/ije-2017-0028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Oncolytic viruses (OVs) selectively infect and lyse cancer cells. A direct lytic effect of OVs has been theorized in the initial studies; however, the antineoplastic effect of OVs is also due to the induction of an immune response against cancer cells. Anaplastic thyroid cancer is one of the most aggressive human malignancies with a short survival time of about 6–12 months from the diagnosis. The lack of effective therapies has prompted to investigate the efficacy of OVs in anaplastic thyroid carcinoma. Different OVs have been tested in preclinical studies, either as single agents or in combinatorial treatments. In this review, the results of these studies are summarized and future perspective discussed.
Collapse
Affiliation(s)
- Carmela Passaro
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sarah Di Somma
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Anna Maria Malfitano
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| | - Giuseppe Portella
- Dipartimento di Scienze Mediche Traslazionali, Università degli Studi di Napoli Federico II, Napoli, Italia
| |
Collapse
|
40
|
Sánchez D, Cesarman-Maus G, Amador-Molina A, Lizano M. Oncolytic Viruses for Canine Cancer Treatment. Cancers (Basel) 2018; 10:cancers10110404. [PMID: 30373251 PMCID: PMC6266482 DOI: 10.3390/cancers10110404] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022] Open
Abstract
Oncolytic virotherapy has been investigated for several decades and is emerging as a plausible biological therapy with several ongoing clinical trials and two viruses are now approved for cancer treatment in humans. The direct cytotoxicity and immune-stimulatory effects make oncolytic viruses an interesting strategy for cancer treatment. In this review, we summarize the results of in vitro and in vivo published studies of oncolytic viruses in different phases of evaluation in dogs, using PubMed and Google scholar as search platforms, without time restrictions (to date). Natural and genetically modified oncolytic viruses were evaluated with some encouraging results. The most studied viruses to date are the reovirus, myxoma virus, and vaccinia, tested mostly in solid tumors such as osteosarcomas, mammary gland tumors, soft tissue sarcomas, and mastocytomas. Although the results are promising, there are issues that need addressing such as ensuring tumor specificity, developing optimal dosing, circumventing preexisting antibodies from previous exposure or the development of antibodies during treatment, and assuring a reasonable safety profile, all of which are required in order to make this approach a successful therapy in dogs.
Collapse
Affiliation(s)
- Diana Sánchez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Gabriela Cesarman-Maus
- Department of Hematology, Instituto Nacional de Cancerología, Mexico City 14080, Mexico.
| | - Alfredo Amador-Molina
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| | - Marcela Lizano
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 14080, Mexico.
| |
Collapse
|
41
|
Chen W, Fan W, Ru G, Huang F, Lu X, Zhang X, Mou X, Wang S. Gemcitabine combined with an engineered oncolytic vaccinia virus exhibits a synergistic suppressive effect on the tumor growth of pancreatic cancer. Oncol Rep 2018; 41:67-76. [PMID: 30365143 PMCID: PMC6278373 DOI: 10.3892/or.2018.6817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
Pancreatic cancer (PC) is a lethal solid malignancy with resistance to traditional chemotherapy. Recently, considerable studies have demonstrated the ubiquitous antitumor properties of gene therapy mediated by the oncolytic vaccinia virus. The second mitochondrial-derived activator of caspase (Smac) has been identified as an innovative tumor suppressor that augments the chemosensitivity of cancer cells. However, the therapeutic value of oncolytic vaccinia virus (oVV)-mediated Smac gene transfer in pancreatic cancer is yet to be elucidated. In the present study, oncolytic vaccinia virus expressing Smac (second mitochondrial-derived activator of caspase) (oVV-Smac) was used to examine its beneficial value when used alone or with gemcitabine in pancreatic cancer in vitro and in vivo. The expression of Smac was evaluated by western blot analysis and quantitative polymerase chain reaction, oVV-Smac cytotoxicity by MTT assay, and apoptosis by flow cytometry and western blot analysis. Furthermore, the inhibitory effect of oVV-Smac combined with gemcitabine was also evaluated. The results indicated that oVV-Smac achieved high levels of Smac, greater cytotoxicity, and potentiated apoptosis. Moreover, co-treatment with oVV-Smac and gemcitabine resulted in a synergistic effect in vitro and in vivo. Therefore, our findings advance oVV-Smac as a potential therapeutic candidate in pancreatic cancer and indicated the synergistic effects of co-treatment with oVV-Smac and gemcitabine.
Collapse
Affiliation(s)
- Wanyuan Chen
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Weimin Fan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Guoqing Ru
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Fang Huang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaming Lu
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xin Zhang
- Department of Pathology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Xiaozhou Mou
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| | - Shibing Wang
- Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, Zhejiang 310014, P.R. China
| |
Collapse
|
42
|
Phan M, Watson MF, Alain T, Diallo JS. Oncolytic Viruses on Drugs: Achieving Higher Therapeutic Efficacy. ACS Infect Dis 2018; 4:1448-1467. [PMID: 30152676 DOI: 10.1021/acsinfecdis.8b00144] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Over the past 20 years there has been a dramatic expansion in the testing of oncolytic viruses (OVs) for the treatment of cancer. OVs are unique biotherapeutics that induce multimodal responses toward tumors, from direct cytopathic effects on cancer cells, to tumor associated blood vessel disruption, and ultimately potent stimulation of anti-tumor immune activation. These agents are highly targeted and can be efficacious as cancer treatments resulting in some patients experiencing complete tumor regression and even cures from OV monotherapy. However, most patients have limited responses with viral replication in tumors often found to be modest and transient. To augment OV replication, increase bystander killing of cancer cells, and/or stimulate stronger targeted anti-cancer immune responses, drug combination approaches have taken center stage for translation to the clinic. Here we comprehensively review drugs that have been combined with OVs to increase therapeutic efficacy, examining the proposed mechanisms of action, and we discuss trends in pharmaco-viral immunotherapeutic approaches currently being investigated.
Collapse
Affiliation(s)
- Michael Phan
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| | - Margaret F. Watson
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Tommy Alain
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
- Children’s Hospital of Eastern Ontario Research Institute, 401 Smyth Road Research Building 2, Second Floor, Room 2119, Ottawa, Ontario K1H 8L1, Canada
| | - Jean-Simon Diallo
- Center for Innovative Cancer Research, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, Ontario K1H 8L6, Canada
- Department of Biochemistry, Microbiology and Immunology, Faculty of Medicine, University of Ottawa, 451 Smyth Road, Ottawa, Ontario K1H 8M5, Canada
| |
Collapse
|
43
|
Progress in gene therapy using oncolytic vaccinia virus as vectors. J Cancer Res Clin Oncol 2018; 144:2433-2440. [DOI: 10.1007/s00432-018-2762-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
|
44
|
Ungerechts G, Engeland CE, Buchholz CJ, Eberle J, Fechner H, Geletneky K, Holm PS, Kreppel F, Kühnel F, Lang KS, Leber MF, Marchini A, Moehler M, Mühlebach MD, Rommelaere J, Springfeld C, Lauer UM, Nettelbeck DM. Virotherapy Research in Germany: From Engineering to Translation. Hum Gene Ther 2018; 28:800-819. [PMID: 28870120 DOI: 10.1089/hum.2017.138] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Virotherapy is a unique modality for the treatment of cancer with oncolytic viruses (OVs) that selectively infect and lyse tumor cells, spread within tumors, and activate anti-tumor immunity. Various viruses are being developed as OVs preclinically and clinically, several of them engineered to encode therapeutic proteins for tumor-targeted gene therapy. Scientists and clinicians in German academia have made significant contributions to OV research and development, which are highlighted in this review paper. Innovative strategies for "shielding," entry or postentry targeting, and "arming" of OVs have been established, focusing on adenovirus, measles virus, parvovirus, and vaccinia virus platforms. Thereby, new-generation virotherapeutics have been derived. Moreover, immunotherapeutic properties of OVs and combination therapies with pharmacotherapy, radiotherapy, and especially immunotherapy have been investigated and optimized. German investigators are increasingly assessing their OV innovations in investigator-initiated and sponsored clinical trials. As a prototype, parvovirus has been tested as an OV from preclinical proof-of-concept up to first-in-human clinical studies. The approval of the first OV in the Western world, T-VEC (Imlygic), has further spurred the involvement of investigators in Germany in international multicenter studies. With the encouraging developments in funding, commercialization, and regulatory procedures, more German engineering will be translated into OV clinical trials in the near future.
Collapse
Affiliation(s)
- Guy Ungerechts
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany .,3 Centre for Innovative Cancer Research, Ottawa Hospital Research Institute , Ottawa, Ontario, Canada
| | - Christine E Engeland
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christian J Buchholz
- 4 Molecular Biotechnology and Gene Therapy, Paul-Ehrlich-Institut , Langen, Germany .,5 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Heidelberg, Germany
| | - Jürgen Eberle
- 6 Charité -Universitätsmedizin Berlin, Department of Dermatology, Skin Cancer Centre Charité , Berlin, Germany
| | - Henry Fechner
- 7 Technische Universität Berlin, Institute of Biotechnology , Department of Applied Biochemistry, Berlin, Germany
| | - Karsten Geletneky
- 8 Department of Neurosurgery, Klinikum Darmstadt , Darmstadt, Germany
| | - Per Sonne Holm
- 9 Department of Urology, Klinikum rechts der Isar, Technical University Munich , Munich, Germany
| | - Florian Kreppel
- 10 Chair of Biochemistry and Molecular Medicine, Center for Biomedical Research and Education (ZBAF), Faculty of Health, University Witten/Herdecke (UW/H), Witten, Germany
| | - Florian Kühnel
- 11 Department of Gastroenterology, Hepatology, and Endocrinology, Hannover Medical School (MHH), Hannover, Germany
| | - Karl Sebastian Lang
- 12 Institute of Immunology, Medical Faculty, University of Duisburg-Essen , Essen, Germany
| | - Mathias F Leber
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany .,2 Department of Translational Oncology, National Center for Tumor Diseases and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antonio Marchini
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany .,14 Laboratory of Oncolytic Virus Immuno-Therapeutics (LOVIT), Luxembourg Institute of Health (LIH), Strassen, Luxembourg
| | - Markus Moehler
- 15 University Medical Center Mainz , I. Dept. of Internal Medicine, Mainz, Germany
| | - Michael D Mühlebach
- 16 Product Testing of Immunological Veterinary Medicinal Products, Paul-Ehrlich-Institut , Langen, Germany
| | - Jean Rommelaere
- 13 Department of Tumor Virology, Infection, Inflammation and Cancer Program, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Christoph Springfeld
- 1 Department of Medical Oncology, National Center for Tumor Diseases and Heidelberg University Hospital , Heidelberg, Germany
| | - Ulrich M Lauer
- 17 Department of Clinical Tumor Biology, Medical University Hospital , Tübingen, Germany .,18 German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), partner site Tübingen, Germany
| | | |
Collapse
|
45
|
Lauer UM, Schell M, Beil J, Berchtold S, Koppenhöfer U, Glatzle J, Königsrainer A, Möhle R, Nann D, Fend F, Pfannenberg C, Bitzer M, Malek NP. Phase I Study of Oncolytic Vaccinia Virus GL-ONC1 in Patients with Peritoneal Carcinomatosis. Clin Cancer Res 2018; 24:4388-4398. [PMID: 29773661 DOI: 10.1158/1078-0432.ccr-18-0244] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 04/05/2018] [Accepted: 05/14/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Peritoneal carcinomatosis is common in advanced tumor stages or disease recurrence arising from gastrointestinal cancers, gynecologic malignancies, or primary peritoneal carcinoma. Because current therapies are mostly ineffective, new therapeutic approaches are needed. Here, we report on a phase I study designed to assess safety, MTD, and antitumor activity of intraperitoneal administration of oncolytic vaccinia virus GL-ONC1 in advanced stage peritoneal carcinomatosis patients.Patients and Methods: GL-ONC1 was administered intraperitoneally every 4 weeks for up to four cycles at three different dose levels (107-109 pfu) following a standard 3+3 dose escalation design. GL-ONC1 was infused via an indwelling catheter that enabled repetitive analyses of peritoneal fluid biopsies. The primary study objective was safety of GL-ONC1 according to Common Terminology Criteria for Adverse Events, version 4.0 (CTCAEv4.0).Results: Patients with advanced-stage peritoneal carcinomatosis (n = 7) or advanced peritoneal mesothelioma (n = 2) received 24 doses of GL-ONC1. Adverse events were limited to grades 1-3, including transient flu-like symptoms and increased abdominal pain, resulting from treatment-induced peritonitis. No DLT was reported, and the MTD was not reached. Furthermore, no signs of viral shedding were observed. Importantly, in 8 of 9 study patients, effective intraperitoneal infections, in-patient replication of GL-ONC1, and subsequent oncolysis were demonstrated in cycle 1. All patients developed neutralizing activities against GL-ONC1.Conclusions: GL-ONC1 was well tolerated when administered into the peritoneal cavity of patients with advanced stage peritoneal carcinomatosis. Efficient tumor cell infection, in-patient virus replication, and oncolysis were limited to treatment cycle 1 (ClinicalTrials.gov number, NCT01443260). Clin Cancer Res; 24(18); 4388-98. ©2018 AACR.
Collapse
Affiliation(s)
- Ulrich M Lauer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany. .,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Martina Schell
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Julia Beil
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Susanne Berchtold
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany.,German Cancer Consortium (DKTK), DKFZ partner site Tübingen, Tübingen, Germany
| | - Ursula Koppenhöfer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Jörg Glatzle
- Department of General, Visceral and Transplant Surgery, University Hospital, Tübingen, Germany
| | - Alfred Königsrainer
- Department of General, Visceral and Transplant Surgery, University Hospital, Tübingen, Germany
| | - Robert Möhle
- Department of Internal Medicine II, Medical University Hospital, Tübingen, Germany
| | - Dominik Nann
- Institute of Pathology, University Hospital, Tübingen, Germany
| | - Falko Fend
- Institute of Pathology, University Hospital, Tübingen, Germany
| | - Christina Pfannenberg
- Department of Diagnostic and Interventional Radiology, University Hospital, Tübingen, Germany
| | - Michael Bitzer
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| | - Nisar P Malek
- Department of Gastroenterology, Hepatology, Infectious Diseases, Medical University Hospital, Tübingen, Germany
| |
Collapse
|
46
|
Li G, Mei S, Cheng J, Wu T, Luo J. Haliotis discus discus Sialic Acid-Binding Lectin Reduces the Oncolytic Vaccinia Virus Induced Toxicity in a Glioblastoma Mouse Model. Mar Drugs 2018; 16:md16050141. [PMID: 29701680 PMCID: PMC5983273 DOI: 10.3390/md16050141] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 04/22/2018] [Accepted: 04/25/2018] [Indexed: 12/25/2022] Open
Abstract
Although oncolytic viruses provide attractive vehicles for cancer treatment, their adverse effects are largely ignored. In this work, rat C6 glioblastoma cells were subcutaneously xenografted into mice, and a thymidine kinase-deficient oncolytic vaccinia virus (oncoVV) induced severe toxicity in this model. However, oncoVV-HddSBL, in which a gene encoding Haliotis discus discus sialic acid-binding lectin (HddSBL) was inserted into oncoVV, significantly prolonged the survival of mice as compared to the control virus. HddSBL reduced the tumor secreted serum rat IL-2 level upregulated by oncoVV, promoted viral replication, as well as inhibited the expression of antiviral factors in C6 glioblastoma cell line. Furthermore, HddSBL downregulated the expression levels of histone H3 and H4, and upregulated histone H3R8 and H4R3 asymmetric dimethylation, confirming the effect of HddSBL on chromatin structure suggested by the transcriptome data. Our results might provide insights into the utilization of HddSBL in counteracting the adverse effects of oncolytic vaccinia virus.
Collapse
Affiliation(s)
- Gongchu Li
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Shengsheng Mei
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jianhong Cheng
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Tao Wu
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Jingjing Luo
- College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
47
|
O'Leary MP, Choi AH, Kim SI, Chaurasiya S, Lu J, Park AK, Woo Y, Warner SG, Fong Y, Chen NG. Novel oncolytic chimeric orthopoxvirus causes regression of pancreatic cancer xenografts and exhibits abscopal effect at a single low dose. J Transl Med 2018; 16:110. [PMID: 29699566 PMCID: PMC5918769 DOI: 10.1186/s12967-018-1483-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 04/17/2018] [Indexed: 02/07/2023] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) has been increasing by 0.5% per year in the United States. PDAC portends a dismal prognosis and novel therapies are needed. This study describes the generation and characterization of a novel oncolytic chimeric orthopoxvirus for the treatment of pancreatic cancer. Methods After chimerization and high-throughput screening, CF33 was chosen from 100 new chimeric orthopoxvirus isolates for its ability to kill pancreatic cancer cells. In vitro cytotoxicity was assayed in six pancreatic cancer cell lines. In vivo efficacy and toxicity were evaluated in PANC-1 and MIA PaCa-2 xenograft models. Results CF33 caused rapid killing of six pancreatic cancer cells lines in vitro, releasing damage-associated molecular patterns, and regression of PANC-1 injected and non-injected distant xenografts in vivo after a single low intratumoral dose of 103 plaque-forming units. Using luciferase imaging, CF33 was noted to preferentially replicate in tumors which corresponds to the low viral titers found in solid organs. Conclusion The low dose of CF33 required to treat pancreatic cancer in this preclinical study may ease the manufacturing and dosing challenges currently facing oncolytic viral therapy.
Collapse
Affiliation(s)
- Michael P O'Leary
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Audrey H Choi
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Sang-In Kim
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Shyambabu Chaurasiya
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Jianming Lu
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Anthony K Park
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Yanghee Woo
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Susanne G Warner
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA
| | - Yuman Fong
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA.,Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA
| | - Nanhai G Chen
- Department of Surgery, Division of Surgical Oncology, City of Hope National Medical Center, 1500 Duarte Rd., Duarte, CA, 91010, USA. .,Center for Gene Therapy, Department of Hematologic and Hematopoietic Cell Transplantation, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA. .,Gene Editing and Viral Vector Core, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, 91010, USA.
| |
Collapse
|
48
|
Pelin A, Wang J, Bell J, Le Boeuf F. The importance of imaging strategies for pre-clinical and clinical in vivo distribution of oncolytic viruses. Oncolytic Virother 2018; 7:25-35. [PMID: 29637059 PMCID: PMC5880516 DOI: 10.2147/ov.s137159] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Oncolytic viruses (OVs) are an emergent and unique therapy for cancer patients. Similar to chemo- and radiation therapy, OV can lyse (kill) cancer cell directly. In general, the advantages of OVs over other treatments are primarily: a higher safety profile (as shown by less adverse effects), ability to replicate, transgene(s) delivery, and stimulation of a host’s immune system against cancer. The latter has prompted successful use of OVs with other immunotherapeutic strategies in a synergistic manner. In spite of extended testing in pre-clinical and clinical setting, using biologically derived therapeutics like virus always raises potential concerns about safety (replication at non-intended locations) and bio-availability of the product. Recent advent in in vivo imaging techniques dramatically improves the convenience of use, quality of pictures, and amount of information acquired. Easy assessing of safety/localization of the biotherapeutics like OVs became a new potential weapon in the physician’s arsenal to improve treatment outcome. Given that OVs are typically replicating, in vivo imaging can also track virus replication and persistence as well as precisely mapping tumor tissues presence. This review discusses the importance of imaging in vivo in evaluating OV efficacy, as well as currently available tools and techniques.
Collapse
Affiliation(s)
- Adrian Pelin
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| | - Jiahu Wang
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada.,Genvira Biosciences, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - John Bell
- Department of Biochemistry, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| | - Fabrice Le Boeuf
- Ottawa Hospital Research Institute, Center for Cancer Therapeutics, Ottawa, ON, Canada
| |
Collapse
|
49
|
Shchelkunov SN, Razumov IA, Kolosova IV, Romashchenko AV, Zavjalov EL. Virotherapy of the Malignant U87 Human Glioblastoma in the Orthotopic Xenotransplantation Mouse SCID Model. DOKL BIOCHEM BIOPHYS 2018; 478:30-33. [PMID: 29536305 DOI: 10.1134/s1607672918010088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 11/23/2022]
Abstract
The possibility of glioblastoma virotherapy at intravenous injection of the LIVP-GFP recombinant virus was studied in experimental model of orthotopic xenotransplantation of human glioblastoma cell line U87 to SCID laboratory mice. The LIVP-GFP recombinant virus deficient for thymidine kinase exhibited a significantly greater oncolytic capacity than the original LIVP virus, and an intravenous injection of LIVP-GFP at the early stages of tumorigenesis in mouse brain in most cases resulted in the lysis of the tumor.
Collapse
Affiliation(s)
- S N Shchelkunov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia. .,Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia. .,Novosibirsk State University, Novosibirsk, 630090, Russia.
| | - I A Razumov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - I V Kolosova
- Vector State Research Center of Virology and Biotechnology, Koltsovo, Novosibirsk oblast, 633159, Russia
| | - A V Romashchenko
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - E L Zavjalov
- Institute of Cytology and Genetics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
50
|
Oncolytic vaccinia virus combined with radiotherapy induces apoptotic cell death in sarcoma cells by down-regulating the inhibitors of apoptosis. Oncotarget 2018; 7:81208-81222. [PMID: 27783991 PMCID: PMC5348387 DOI: 10.18632/oncotarget.12820] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 10/11/2016] [Indexed: 12/13/2022] Open
Abstract
Advanced extremity melanoma and sarcoma present a significant therapeutic challenge, requiring multimodality therapy to treat or even palliate disease. These aggressive tumours are relatively chemo-resistant, therefore new treatment approaches are urgently required. We have previously reported on the efficacy of oncolytic virotherapy (OV) delivered by isolated limb perfusion. In this report, we have improved therapeutic outcomes by combining OV with radiotherapy. In vitro, the combination of oncolytic vaccinia virus (GLV-1h68) and radiotherapy demonstrated synergistic cytotoxicity. This effect was not due to increased viral replication, but mediated through induction of intrinsic apoptosis. GLV-1h68 therapy downregulated the anti-apoptotic BCL-2 proteins (MCL-1 and BCL-XL) and the downstream inhibitors of apoptosis, resulting in cleavage of effector caspases 3 and 7. In an in vivo ILP model, the combination of OV and radiotherapy significantly delayed tumour growth and prolonged survival compared to single agent therapy. These data suggest that the virally-mediated down-regulation of anti-apoptotic proteins may increase the sensitivity of tumour cells to the cytotoxic effects of ionizing radiation. Oncolytic virotherapy represents an exciting candidate for clinical development when delivered by ILP. Its ability to overcome anti-apoptotic signals within tumour cells points the way to further development in combination with conventional anti-cancer therapies.
Collapse
|