1
|
Tsakoumagkos IA, Pasquer QTL, Guillod C, Rossion C, Bagka M, Torche S, Sakata‐Kato T, Chen JK, Hoogendoorn S. Evaluation of Benzo[cd]indol-2(1H)-ones as Downstream Hedgehog Pathway Inhibitors. ChemistryOpen 2025; 14:e202500119. [PMID: 40227130 PMCID: PMC12075100 DOI: 10.1002/open.202500119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Indexed: 04/15/2025] Open
Abstract
Epigenetic targeting of the Hedgehog (HH) signaling pathway has emerged as a possible strategy to combat HH pathway-driven cancers. In this study, we report on benzo[cd]indol-2(1H)-ones as downstream Hedgehog pathway inhibitors. We find that benzo[cd]indol-2(1H)-one 1 has sub-micromolar potency in a variety of Hedgehog pathway cell models, including those with constitutive activity through loss of Suppressor of Fused. Compound 1 furthermore reduces cellular and ciliary GLI levels, and, like the BET bromodomain inhibitor HPI-1, increases the cellular levels of BRD2. To directly assess the ability of compound 1 to bind to BET bromodomains in cells without the need of synthetic modifications, we develop a competition assay against degrader HPP-9, the action of which was dose-dependently outcompeted by compound 1. Indeed, compound 1 reduces the viability of GLI-driven lung cancer cells and medulloblastoma spheroids, with a potency similar to its inhibitory effect on the HH pathway. Taken together, our studies highlight the potential of the benzo[cd]indol-2(1H)-one scaffold for epigenetic targeting of the HH pathway.
Collapse
Affiliation(s)
| | - Quentin T. L. Pasquer
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | | | - Charlotte Rossion
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Meropi Bagka
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Sonya Torche
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| | - Tomoyo Sakata‐Kato
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Present address: Department of ProtozoologyInstitute of Tropical MedicineNagasaki University1-12-4 SakamotoNagasaki852-8523Japan
| | - James K. Chen
- Department of Chemical and Systems BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of Developmental BiologyStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
- Department of ChemistryStanford University269 Campus Dr., CCSR 3155StanfordCA94305USA
| | - Sascha Hoogendoorn
- Department of Organic ChemistryUniversity of Geneva30 quai Ernest-AnsermetGenevaSwitzerland
| |
Collapse
|
2
|
Ansari SS, Dillard ME, Ghonim M, Zhang Y, Stewart DP, Canac R, Moskowitz IP, Wright WC, Daly CA, Pruett-Miller SM, Steinberg J, Wang YD, Chen T, Thomas PG, Bridges JP, Ogden SK. Receptor Allostery Promotes Context-Dependent Sonic Hedgehog Signaling During Embryonic Development. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.28.635336. [PMID: 39975106 PMCID: PMC11838287 DOI: 10.1101/2025.01.28.635336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Sonic Hedgehog (SHH) signaling functions in temporal- and context-dependent manners to pattern diverse tissues during embryogenesis. The signal transducer Smoothened (SMO) is activated by sterols, oxysterols, and arachidonic acid (AA) through binding pockets in its extracellular cysteine-rich domain (CRD) and 7-transmembrane (7TM) bundle. In vitro analyses suggest SMO signaling is allosterically enhanced by combinatorial ligand binding to these pockets but in vivo evidence of SMO allostery is lacking. Herein, we map an AA binding pocket at the top of the 7TM bundle and show that its disruption attenuates SHH and sterol-stimulated SMO induction. A knockin mouse model of compromised AA binding reveals that homozygous mutant mice are cyanotic, exhibit high perinatal lethality, and show congenital heart disease. Surviving mutants demonstrate pulmonary maldevelopment and fail to thrive. Neurodevelopment is unaltered in these mice, suggesting that context-dependent allosteric regulation of SMO signaling allows for precise tuning of pathway activity during cardiopulmonary development.
Collapse
Affiliation(s)
- Shariq S. Ansari
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Miriam E. Dillard
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Mohamed Ghonim
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yan Zhang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Daniel P. Stewart
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Robin Canac
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - Ivan P. Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL 60637, USA
| | - William C. Wright
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Christina A. Daly
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Jeffrey Steinberg
- Center for In Vivo Imaging and Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Yong-Dong Wang
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Taosheng Chen
- Department of Chemical Biology and Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Paul G. Thomas
- Department of Host Microbe Interactions, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - James P. Bridges
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO, 80206, USA
- Department of Medicine, Division of Pulmonary Sciences and Critical Care, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045
| | - Stacey K. Ogden
- Department of Cell and Molecular Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| |
Collapse
|
3
|
Casey MJ, Chan PP, Li Q, Zu JF, Jette CA, Kohler M, Myers BR, Stewart RA. A simple and scalable zebrafish model of Sonic hedgehog medulloblastoma. Cell Rep 2024; 43:114559. [PMID: 39078737 PMCID: PMC11404834 DOI: 10.1016/j.celrep.2024.114559] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/10/2024] [Accepted: 07/15/2024] [Indexed: 08/07/2024] Open
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ∼30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe a zebrafish model of SHH MB using CRISPR to create mutant ptch1, the primary genetic driver of human SHH MB. In these animals, tumors rapidly arise in the cerebellum and resemble human SHH MB by histology and comparative onco-genomics. Similar to human patients, MB tumors with loss of both ptch1 and tp53 have aggressive tumor histology and significantly worse survival outcomes. The simplicity and scalability of the ptch1-crispant MB model makes it highly amenable to CRISPR-based genome-editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the gene encoding Grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA; Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- High-Throughput Genomics and Cancer Bioinformatics Shared Resource, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Ju-Fen Zu
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA; Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
4
|
Liu YB, He LM, Sun M, Luo WJ, Lin ZC, Qiu ZP, Zhang YL, Hu A, Luo J, Qiu WW, Song BL. A sterol analog inhibits hedgehog pathway by blocking cholesterylation of smoothened. Cell Chem Biol 2024; 31:1264-1276.e7. [PMID: 38442710 DOI: 10.1016/j.chembiol.2024.02.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/04/2023] [Accepted: 02/12/2024] [Indexed: 03/07/2024]
Abstract
The hedgehog (Hh) signaling pathway has long been a hotspot for anti-cancer drug development due to its important role in cell proliferation and tumorigenesis. However, most clinically available Hh pathway inhibitors target the seven-transmembrane region (7TM) of smoothened (SMO), and the acquired drug resistance is an urgent problem in SMO inhibitory therapy. Here, we identify a sterol analog Q29 and show that it can inhibit the Hh pathway through binding to the cysteine-rich domain (CRD) of SMO and blocking its cholesterylation. Q29 suppresses Hh signaling-dependent cell proliferation and arrests Hh-dependent medulloblastoma growth. Q29 exhibits an additive inhibitory effect on medulloblastoma with vismodegib, a clinically used SMO-7TM inhibitor for treating basal cell carcinoma (BCC). Importantly, Q29 overcomes resistance caused by SMO mutants against SMO-7TM inhibitors and inhibits the activity of SMO oncogenic variants. Our work demonstrates that the SMO-CRD inhibitor can be a new way to treat Hh pathway-driven cancers.
Collapse
Affiliation(s)
- Yuan-Bin Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Li-Ming He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China
| | - Ming Sun
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Jun Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zi-Cun Lin
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Zhi-Ping Qiu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Yu-Liang Zhang
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Ao Hu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Jie Luo
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China
| | - Wen-Wei Qiu
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, China.
| | - Bao-Liang Song
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan 430000, China.
| |
Collapse
|
5
|
Slika H, Shahani A, Wahi R, Miller J, Groves M, Tyler B. Overcoming Treatment Resistance in Medulloblastoma: Underlying Mechanisms and Potential Strategies. Cancers (Basel) 2024; 16:2249. [PMID: 38927954 PMCID: PMC11202166 DOI: 10.3390/cancers16122249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Medulloblastoma is the most frequently encountered malignant brain tumor in the pediatric population. The standard of care currently consists of surgical resection, craniospinal irradiation, and multi-agent chemotherapy. However, despite this combination of multiple aggressive modalities, recurrence of the disease remains a substantial concern, and treatment resistance is a rising issue. The development of this resistance results from the interplay of a myriad of anatomical properties, cellular processes, molecular pathways, and genetic and epigenetic alterations. In fact, several efforts have been directed towards this domain and characterizing the major contributors to this resistance. Herein, this review highlights the different mechanisms that drive relapse and are implicated in the occurrence of treatment resistance and discusses them in the context of the latest molecular-based classification of medulloblastoma. These mechanisms include the impermeability of the blood-brain barrier to drugs, the overactivation of specific molecular pathways, the resistant and multipotent nature of cancer stem cells, intratumoral and intertumoral heterogeneity, and metabolic plasticity. Subsequently, we build on that to explore potential strategies and targeted agents that can abrogate these mechanisms, undermine the development of treatment resistance, and augment medulloblastoma's response to therapeutic modalities.
Collapse
Affiliation(s)
- Hasan Slika
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Aanya Shahani
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| | - Riddhpreet Wahi
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Grant Government Medical College and Sir J.J Group of Hospitals, Mumbai 400008, India
| | - Jackson Miller
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
- Department of English, Rhetoric, and Humanistic Studies, Virginia Military Institute, Lexington, VA 24450, USA
| | - Mari Groves
- Division of Pediatric Neurosurgery, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
- Department of Neurosurgery, University of Maryland Medical Center, Baltimore, MD 21201, USA
| | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (H.S.); (A.S.); (R.W.); (J.M.)
| |
Collapse
|
6
|
Kresbach C, Holst L, Schoof M, Leven T, Göbel C, Neyazi S, Tischendorf J, Loose C, Wrzeszcz A, Yorgan T, Rutkowski S, Schüller U. Intraventricular SHH inhibition proves efficient in SHH medulloblastoma mouse model and prevents systemic side effects. Neuro Oncol 2024; 26:609-622. [PMID: 37767814 PMCID: PMC10995518 DOI: 10.1093/neuonc/noad191] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.
Collapse
Affiliation(s)
- Catena Kresbach
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Mildred Scheel Cancer Career Center HaTriCS4, University Medical Center Hamburg- Eppendorf, Hamburg, Germany
| | - Lea Holst
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Melanie Schoof
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Tara Leven
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Göbel
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Sina Neyazi
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Jacqueline Tischendorf
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Carolin Loose
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Antonina Wrzeszcz
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
| | - Timur Yorgan
- Department of Osteology and Biomechanics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ulrich Schüller
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Research Institute Children’s Cancer Center Hamburg, Hamburg, Germany
- Center of Diagnostics, Institute of Neuropathology, Center of Diagnostics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
7
|
Thazhackavayal Baby B, Kulkarni AM, Gayam PKR, Harikumar KB, Aranjani JM. Beyond cyclopamine: Targeting Hedgehog signaling for cancer intervention. Arch Biochem Biophys 2024; 754:109952. [PMID: 38432565 DOI: 10.1016/j.abb.2024.109952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 02/28/2024] [Accepted: 02/29/2024] [Indexed: 03/05/2024]
Abstract
Hedgehog (Hh) signaling plays a significant role in embryogenesis and several physiological processes, such as wound healing and organ homeostasis. In a pathological setting, it is associated with oncogenesis and is responsible for disease progression and poor clinical outcomes. Hedgehog signaling mediates downstream actions via Glioma Associated Oncogene Homolog (GLI) transcription factors. Inhibiting Hh signaling is an important oncological strategy in which inhibitors of the ligands SMO or GLI have been looked at. This review briefly narrates the Hh ligands, signal transduction, the target genes involved and comprehensively describes the numerous inhibitors that have been evaluated for use in various neoplastic settings.
Collapse
Affiliation(s)
- Beena Thazhackavayal Baby
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Aniruddha Murahar Kulkarni
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Prasanna Kumar Reddy Gayam
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India
| | - Kuzhuvelil B Harikumar
- Cancer Research Program, Rajiv Gandhi Centre for Biotechnology (RGCB), Thiruvananthapuram, 695014, Kerala State, India
| | - Jesil Mathew Aranjani
- Department of Pharmaceutical Biotechnology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka, 576104, India.
| |
Collapse
|
8
|
Ghosh C, Hu J. Importance of targeting various cell signaling pathways in solid cancers. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 385:101-155. [PMID: 38663958 DOI: 10.1016/bs.ircmb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Most adult human cancers are solid tumors prevailing in vital organs and lead to mortality all over the globe. Genetic and epigenetic alterations in cancer genes or genes of associated signaling pathways impart the most common characteristic of malignancy, that is, uncontrolled proliferation. Unless the mechanism of action of these cells signaling pathways (involved in cell proliferation, apoptosis, metastasis, and the maintenance of the stemness of cancer stem cells and cancer microenvironment) and their physiologic alteration are extensively studied, it is challenging to understand tumorigenesis as well as develop new treatments and precision medicines. Targeted therapy is one of the most promising strategies for treating various cancers. However, cancer is an evolving disease, and most patients develop resistance to these drugs by acquired mutations or mediation of microenvironmental factors or due to tumor heterogeneity. Researchers are striving to develop novel therapeutic options like combinatorial approaches targeting multiple responsible pathways effectively. Thus, in-depth knowledge of cell signaling and its components remains a critical topic of cancer research. This chapter summarized various extensively studied pathways in solid cancer and how they are targeted for therapeutic strategies.
Collapse
Affiliation(s)
- Chandrayee Ghosh
- Department of Surgery, Stanford University, Stanford, CA, Unites States.
| | - Jiangnan Hu
- Department of Surgery, Stanford University, Stanford, CA, Unites States
| |
Collapse
|
9
|
Casey MJ, Chan PP, Li Q, Jette CA, Kohler M, Myers BR, Stewart RA. A Simple and Scalable Zebrafish Model of Sonic Hedgehog Medulloblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.577834. [PMID: 38370799 PMCID: PMC10871209 DOI: 10.1101/2024.02.03.577834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Medulloblastoma (MB) is the most common malignant brain tumor in children and is stratified into three major subgroups. The Sonic hedgehog (SHH) subgroup represents ~30% of all MB cases and has significant survival disparity depending upon TP53 status. Here, we describe the first zebrafish model of SHH MB using CRISPR to mutate ptch1, the primary genetic driver in human SHH MB. These tumors rapidly arise adjacent to the valvula cerebelli and resemble human SHH MB by histology and comparative genomics. In addition, ptch1-deficient MB tumors with loss of tp53 have aggressive tumor histology and significantly worse survival outcomes, comparable to human patients. The simplicity and scalability of the ptch1 MB model makes it highly amenable to CRISPR-based genome editing screens to identify genes required for SHH MB tumor formation in vivo, and here we identify the grk3 kinase as one such target.
Collapse
Affiliation(s)
- Mattie J. Casey
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Priya P. Chan
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT 84108, USA
- Primary Children’s Hospital, Salt Lake City, UT 84113, USA
| | - Qing Li
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Cicely A. Jette
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Missia Kohler
- Department of Anatomic Pathology, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
| | - Benjamin R. Myers
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT 84112, USA
- Department of Bioengineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Rodney A. Stewart
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
- Lead contact
| |
Collapse
|
10
|
Ritzefeld M, Zhang L, Xiao Z, Andrei SA, Boyd O, Masumoto N, Rodgers UR, Artelsmair M, Sefer L, Hayes A, Gavriil ES, Raynaud FI, Burke R, Blagg J, Rzepa HS, Siebold C, Magee AI, Lanyon-Hogg T, Tate EW. Design, Synthesis, and Evaluation of Inhibitors of Hedgehog Acyltransferase. J Med Chem 2024; 67:1061-1078. [PMID: 38198226 PMCID: PMC10823475 DOI: 10.1021/acs.jmedchem.3c01363] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/08/2023] [Accepted: 12/12/2023] [Indexed: 01/12/2024]
Abstract
Hedgehog signaling is involved in embryonic development and cancer growth. Functional activity of secreted Hedgehog signaling proteins is dependent on N-terminal palmitoylation, making the palmitoyl transferase Hedgehog acyltransferase (HHAT), a potential drug target and a series of 4,5,6,7-tetrahydrothieno[3,2-c]pyridines have been identified as HHAT inhibitors. Based on structural data, we designed and synthesized 37 new analogues which we profiled alongside 13 previously reported analogues in enzymatic and cellular assays. Our results show that a central amide linkage, a secondary amine, and (R)-configuration at the 4-position of the core are three key factors for inhibitory potency. Several potent analogues with low- or sub-μM IC50 against purified HHAT also inhibit Sonic Hedgehog (SHH) palmitoylation in cells and suppress the SHH signaling pathway. This work identifies IMP-1575 as the most potent cell-active chemical probe for HHAT function, alongside an inactive control enantiomer, providing tool compounds for validation of HHAT as a target in cellular assays.
Collapse
Affiliation(s)
- Markus Ritzefeld
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Leran Zhang
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Zhangping Xiao
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | | | - Olivia Boyd
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Naoko Masumoto
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Ursula R. Rodgers
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | - Markus Artelsmair
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Lea Sefer
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Angela Hayes
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | | | - Florence I. Raynaud
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Rosemary Burke
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Julian Blagg
- Division
of Cancer Therapeutics, Centre for Cancer Drug Discovery, Institute of Cancer Research, London SM2 5NG, U.K.
| | - Henry S. Rzepa
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| | - Christian Siebold
- Division
of Structural Biology, University of Oxford, Oxford OX3 7BN, U.K.
| | - Anthony I. Magee
- National
Heart and Lung Institute, Imperial College
London, London SW7 2AZ, U.K.
| | | | - Edward W. Tate
- Department
of Chemistry, Imperial College London, London W12 0BZ, U.K.
| |
Collapse
|
11
|
Zhang Z, Lin X, Wei L, Wu Y, Xu L, Wu L, Wei X, Zhao S, Zhu X, Xu F. A framework for Frizzled-G protein coupling and implications to the PCP signaling pathways. Cell Discov 2024; 10:3. [PMID: 38182578 PMCID: PMC10770037 DOI: 10.1038/s41421-023-00627-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/19/2023] [Indexed: 01/07/2024] Open
Abstract
The ten Frizzled receptors (FZDs) are essential in Wnt signaling and play important roles in embryonic development and tumorigenesis. Among these, FZD6 is closely associated with lens development. Understanding FZD activation mechanism is key to unlock these emerging targets. Here we present the cryo-EM structures of FZD6 and FZD3 which are known to relay non-canonical planar cell polarity (PCP) signaling pathways as well as FZD1 in their G protein-coupled states and in the apo inactive states, respectively. Comparison of the three inactive/active pairs unveiled a shared activation framework among all ten FZDs. Mutagenesis along with imaging and functional analysis on the human lens epithelial tissues suggested potential crosstalk between the G-protein coupling of FZD6 and the PCP signaling pathways. Together, this study provides an integrated understanding of FZD structure and function, and lays the foundation for developing therapeutic modulators to activate or inhibit FZD signaling for a range of disorders including cancers and cataracts.
Collapse
Affiliation(s)
- Zhibin Zhang
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xi Lin
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Ling Wei
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lu Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Xiaohu Wei
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangjia Zhu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
12
|
Kumari S, Mitra A, Bulusu G. Putative Role of Cholesterol in Shaping the Structural and Functional Dynamics of Smoothened (SMO). J Phys Chem B 2023; 127:9476-9495. [PMID: 37878627 DOI: 10.1021/acs.jpcb.3c02255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
The smoothened (SMO) receptor belongs to the superfamily of class F G protein-coupled receptors (GPCRs) and is a potential drug target in several types of cancer. It has two ligand binding sites, respectively, in the cysteine-rich domain (CRD) and the transmembrane domain (TMD). It has been shown that cholesterol is important for its activation and function. However, the molecular-level understanding of SMO dynamics in the presence of cholesterol has not been explored in sufficient detail. In this work, we have carried out atomistic molecular dynamics simulations totaling 3.6 μs to analyze the effect of cholesterol binding to TMD and/or CRD on the structure and dynamics of the SMO receptor. Our results show that the presence of cholesterol in the CRD and TMD, respectively, alters the conformational dynamics of SMO differently. We reported that the reorganization of the D-R-E network at the extracellular end of the TMD is important for the high activity of SMO. In general, the transmembrane helices 5, 6, and 7 and helix 8 are most affected, which, in turn, leads to changes in the CRD and intracellular cytoplasmic domain (ICD) dynamics patterns depending on the presence or absence of cholesterol in the CRD and/or the TMD. We have also reported that the interaction of membrane lipids with SMO is different in different SMO states. These results agree with the experimental structural observations and data of cholesterol-bound and unbound structures of SMO and add to our molecular understanding of the SMO-cholesterol interaction.
Collapse
Affiliation(s)
- Shweta Kumari
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Abhijit Mitra
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
| | - Gopalakrishnan Bulusu
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology, Hyderabad 500032, India
- IHub-Data, International Institute of Information Technology, Hyderabad 500032, India
- Dr. Reddy's Institute of Life Sciences, University of Hyderabad Campus, Hyderabad 500046, India
| |
Collapse
|
13
|
Hu L, Gao M, Jiang H, Zhuang L, Jiang Y, Xie S, Zhang H, Wang Q, Chen Q. Triptolide inhibits epithelial ovarian tumor growth by blocking the hedgehog/Gli pathway. Aging (Albany NY) 2023; 15:11131-11151. [PMID: 37851362 PMCID: PMC10637820 DOI: 10.18632/aging.205110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 09/18/2023] [Indexed: 10/19/2023]
Abstract
Epithelial ovarian cancer (EOC), the most predominant subtype of ovarian cancer (OC), involves poor prognosis and exhibits high aggression. Triptolide (TPL), like other Chinese herbs, has historically played a significant role in modern medicine. The screening system based on Gli-dependent luciferase reporter activity assessed the effects of over 800 natural medicinal materials on hedgehog (Hh) signaling pathway activity and discovered that TPL had an excellent inhibitory effect on Hh signaling pathway activity. However, the significance and mechanism of TPL involvement in regulating the Hh pathway have not been well explored. Thus, this work aimed to understand better how TPL affects the Hh pathway activity, which, in turn, influences the biological behavior of EOC. Our findings observed that Smo agonist SAG-induced EOC cell proliferation, migration, and invasion were drastically reversed by TPL in a concentration-dependent pattern. Further evidence suggested that TPL promotes the degradation of Gli1 and Gli2 to inhibit the activity of the Hh signaling pathway by relying on Gli1 and Gli2 ubiquitination. Our in vivo studies also confirmed that TPL could significantly inhibit the tumor growth of EOC. Taken together, our results revealed that one of the antitumor mechanisms of TPL was the targeted inhibition of the Hh/Gli pathway.
Collapse
Affiliation(s)
- Lanyan Hu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Mai Gao
- Huankui Academy of Nanchang University, Nanchang 330036, Jiangxi, P.R. China
| | - Huifu Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Lingling Zhuang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Ying Jiang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Siqi Xie
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Hong Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qian Wang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| | - Qi Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, Jiangxi, P.R. China
| |
Collapse
|
14
|
Borlase S, DeCarlo A, Coudière-Morrison L, Liang L, Porter CJ, Ramaswamy V, Werbowetski-Ogilvie TE. Cross-species analysis of SHH medulloblastoma models reveals significant inhibitory effects of trametinib on tumor progression. Cell Death Discov 2023; 9:347. [PMID: 37726268 PMCID: PMC10509237 DOI: 10.1038/s41420-023-01646-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/28/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
Sonic Hedgehog (SHH) medulloblastomas (MBs) exhibit an intermediate prognosis and extensive intertumoral heterogeneity. While SHH pathway antagonists are effective in post-pubertal patients, younger patients exhibit significant side effects, and tumors that harbor mutations in downstream SHH pathway genes will be drug resistant. Thus, novel targeted therapies are needed. Here, we performed preclinical testing of the potent MEK inhibitor (MEKi) trametinib on tumor properties across 2 human and 3 mouse SHH MB models in vitro and in 3 orthotopic MB xenograft models in vivo. Trametinib significantly reduces tumorsphere size, stem/progenitor cell proliferation, viability, and migration. RNA-sequencing on human and mouse trametinib treated cells corroborated these findings with decreased expression of cell cycle, stem cell pathways and SHH-pathway related genes concomitant with increases in genes associated with cell death and ciliopathies. Importantly, trametinib also decreases tumor growth and increases survival in vivo. Cell cycle related E2F target gene sets are significantly enriched for genes that are commonly downregulated in both trametinib treated tumorspheres and primary xenografts. However, IL6/JAK STAT3 and TNFα/NFκB signaling gene sets are specifically upregulated following trametinib treatment in vivo indicative of compensatory molecular changes following long-term MEK inhibition. Our study reveals a novel role for trametinib in effectively attenuating SHH MB tumor progression and warrants further investigation of this potent MEK1/2 inhibitor either alone or in combination with other targeted therapies for the treatment of SHH MB exhibiting elevated MAPK pathway activity.
Collapse
Affiliation(s)
- Stephanie Borlase
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Alexandria DeCarlo
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ludivine Coudière-Morrison
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Lisa Liang
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Christopher J Porter
- Ottawa Bioinformatics Core Facility, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Vijay Ramaswamy
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- The Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, ON, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, ON, Canada
- Division of Haematology/Oncology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
- Texas Children's Hospital, Houston, TX, USA.
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
15
|
Zhang Y, Beachy PA. Cellular and molecular mechanisms of Hedgehog signalling. Nat Rev Mol Cell Biol 2023; 24:668-687. [PMID: 36932157 DOI: 10.1038/s41580-023-00591-1] [Citation(s) in RCA: 91] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2023] [Indexed: 03/19/2023]
Abstract
The Hedgehog signalling pathway has crucial roles in embryonic tissue patterning, postembryonic tissue regeneration, and cancer, yet aspects of Hedgehog signal transmission and reception have until recently remained unclear. Biochemical and structural studies surprisingly reveal a central role for lipids in Hedgehog signalling. The signal - Hedgehog protein - is modified by cholesterol and palmitate during its biogenesis, thereby necessitating specialized proteins such as the transporter Dispatched and several lipid-binding carriers for cellular export and receptor engagement. Additional lipid transactions mediate response to the Hedgehog signal, including sterol activation of the transducer Smoothened. Access of sterols to Smoothened is regulated by the apparent sterol transporter and Hedgehog receptor Patched, whose activity is blocked by Hedgehog binding. Alongside these lipid-centric mechanisms and their relevance to pharmacological pathway modulation, we discuss emerging roles of Hedgehog pathway activity in stem cells or their cellular niches, with translational implications for regeneration and restoration of injured or diseased tissues.
Collapse
Affiliation(s)
- Yunxiao Zhang
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute and Neuroscience Department, The Scripps Research Institute, La Jolla, CA, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Urology, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
16
|
Bagka M, Choi H, Héritier M, Schwaemmle H, Pasquer QTL, Braun SMG, Scapozza L, Wu Y, Hoogendoorn S. Targeted protein degradation reveals BET bromodomains as the cellular target of Hedgehog pathway inhibitor-1. Nat Commun 2023; 14:3893. [PMID: 37393376 PMCID: PMC10314895 DOI: 10.1038/s41467-023-39657-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 06/22/2023] [Indexed: 07/03/2023] Open
Abstract
Target deconvolution of small molecule hits from phenotypic screens presents a major challenge. Many screens have been conducted to find inhibitors for the Hedgehog signaling pathway - a developmental pathway with many implications in health and disease - yielding many hits but only few identified cellular targets. We here present a strategy for target identification based on Proteolysis-Targeting Chimeras (PROTACs), combined with label-free quantitative proteomics. We develop a PROTAC based on Hedgehog Pathway Inhibitor-1 (HPI-1), a phenotypic screen hit with unknown cellular target. Using this Hedgehog Pathway PROTAC (HPP) we identify and validate BET bromodomains as the cellular targets of HPI-1. Furthermore, we find that HPP-9 is a long-acting Hedgehog pathway inhibitor through prolonged BET bromodomain degradation. Collectively, we provide a powerful PROTAC-based approach for target deconvolution, that answers the longstanding question of the cellular target of HPI-1 and yields a PROTAC that acts on the Hedgehog pathway.
Collapse
Affiliation(s)
- Meropi Bagka
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Hyeonyi Choi
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Margaux Héritier
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Hanna Schwaemmle
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Quentin T L Pasquer
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Simon M G Braun
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Leonardo Scapozza
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| | - Yibo Wu
- Chemical Biology Mass Spectrometry Platform (CHEMBIOMS), Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sascha Hoogendoorn
- Department of Organic Chemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
17
|
Bansal PD, Dutta S, Shukla D. Activation mechanism of the human Smoothened receptor. Biophys J 2023; 122:1400-1413. [PMID: 36883002 PMCID: PMC10111369 DOI: 10.1016/j.bpj.2023.03.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/17/2023] [Accepted: 03/02/2023] [Indexed: 03/08/2023] Open
Abstract
Smoothened (SMO) is a membrane protein of the class F subfamily of G protein-coupled receptors (GPCRs) and maintains homeostasis of cellular differentiation. SMO undergoes conformational change during activation, transmitting the signal across the membrane, making it amenable to bind to its intracellular signaling partner. Receptor activation has been studied at length for class A receptors, but the mechanism of class F receptor activation remains unknown. Agonists and antagonists bound to SMO at sites in the transmembrane domain (TMD) and the cysteine-rich domain have been characterized, giving a static view of the various conformations SMO adopts. Although the structures of the inactive and active SMO outline the residue-level transitions, a kinetic view of the overall activation process remains unexplored for class F receptors. We describe SMO's activation process in atomistic detail by performing 300 μs of molecular dynamics simulations and combining it with Markov state model theory. A molecular switch, conserved across class F and analogous to the activation-mediating D-R-Y motif in class A receptors, is observed to break during activation. We also show that this transition occurs in a stage-wise movement of the transmembrane helices: TM6 first, followed by TM5. To see how modulators affect SMO activity, we simulated agonist and antagonist-bound SMO. We observed that agonist-bound SMO has an expanded hydrophobic tunnel in SMO's core TMD, whereas antagonist-bound SMO shrinks this tunnel, further supporting the hypothesis that cholesterol travels through a tunnel inside Smoothened to activate it. In summary, this study elucidates the distinct activation mechanism of class F GPCRs and shows that SMO's activation process rearranges the core TMD to open a hydrophobic conduit for cholesterol transport.
Collapse
Affiliation(s)
- Prateek D Bansal
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Soumajit Dutta
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois; Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
18
|
Ali M, Wani SUD, Salahuddin M, S.N. M, K M, Dey T, Zargar MI, Singh J. Recent advance of herbal medicines in cancer- a molecular approach. Heliyon 2023; 9:e13684. [PMID: 36865478 PMCID: PMC9971193 DOI: 10.1016/j.heliyon.2023.e13684] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023] Open
Abstract
Bioactive compounds are crucial for an extensive range of therapeutic uses, and some exhibit anticancer activity. Scientists advocate that phytochemicals modulate autophagy and apoptosis, involved in the underlying pathobiology of cancer development and regulation. The pharmacological aiming of the autophagy-apoptosis signaling pathway using phytocompounds hence offers an auspicious method that is complementary to conventional cancer chemotherapy. The current review aims to explore the molecular level of the autophagic-apoptotic pathway to know its implication in the pathobiology of cancer and explore the essential cellular process as a druggable anticancer target and therapeutic emergence of naturally derived phytocompound-based anticancer agents. The data in the review were collected from scientific databases such as Google search, Web of Science, PubMed, Scopus, Medline, and Clinical Trials. With a broad outlook, we investigated their cutting-edge scientifically revealed and/or searched pharmacologic effects, a novel mechanism of action, and molecular signaling pathway of phytochemicals in cancer therapy. In this review, the evidence is focused on molecular pharmacology, specifically caspase, Nrf2, NF-kB, autophagic-apoptotic pathway, and several mechanisms to understand their role in cancer biology.
Collapse
Affiliation(s)
- Mohammad Ali
- Department of Pharmacy Practice, East Point College of Pharmacy, Bangalore, 560049, India
| | - Shahid Ud Din Wani
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Md Salahuddin
- Department of Pharmaceutical Chemistry, Al-Ameen College of Pharmacy, Bangalore, 560027, India
| | - Manjula S.N.
- Department of Pharmacology, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Mruthunjaya K
- Department of Pharmacognosy, JSS College of Pharmacy Mysuru, JSS Academy of Higher Education and Research, Mysuru, 570004, India
| | - Tathagata Dey
- Department of Pharmaceutical Chemistry, East Point College of Pharmacy, Bangalore, 560049, India
| | - Mohammed Iqbal Zargar
- Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Srinagar, 190006, India
| | - Jagadeesh Singh
- Department of Pharmacognosy, East Point College of Pharmacy, Bangalore, 560049, India
| |
Collapse
|
19
|
Zarzosa P, Garcia-Gilabert L, Hladun R, Guillén G, Gallo-Oller G, Pons G, Sansa-Girona J, Segura MF, Sánchez de Toledo J, Moreno L, Gallego S, Roma J. Targeting the Hedgehog Pathway in Rhabdomyosarcoma. Cancers (Basel) 2023; 15:727. [PMID: 36765685 PMCID: PMC9913695 DOI: 10.3390/cancers15030727] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 01/27/2023] Open
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours-among them sarcomas-mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.
Collapse
Affiliation(s)
- Patricia Zarzosa
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lia Garcia-Gilabert
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Raquel Hladun
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriela Guillén
- Pediatric Surgery Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Gabriel Gallo-Oller
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Guillem Pons
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Julia Sansa-Girona
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Miguel F. Segura
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Sánchez de Toledo
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Lucas Moreno
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Soledad Gallego
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
- Pediatric Oncology and Hematology Department, Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| | - Josep Roma
- Childhood Cancer and Blood Disorders, Vall d’Hebron Research Institute (VHIR), Hospital Universitari Vall d’Hebron, Universitat Autònoma de Barcelona, 08035 Barcelona, Spain
| |
Collapse
|
20
|
Vergara IA, Aivazian K, Carlino MS, Guminski AD, Maher NG, Shannon KF, Ch'ng S, Saw RPM, Long GV, Wilmott JS, Scolyer RA. Genomic Profiling of Metastatic Basal cell Carcinoma Reveals Candidate Drivers of Disease and Therapeutic Targets. Mod Pathol 2023; 36:100099. [PMID: 36788083 DOI: 10.1016/j.modpat.2023.100099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/30/2022] [Accepted: 12/26/2022] [Indexed: 01/11/2023]
Abstract
Basal cell carcinomas (BCCs) are human beings' most common malignant tumors. Most are easily managed by surgery or topical therapies, and metastasis is rare. Although BCCs can become locally advanced, metastatic BCCs are very uncommon and may be biologically distinct. We assessed the clinicopathologic characteristics of 17 patients with metastatic BCC and pursued whole-exome sequencing of tumor and germline DNA from 8 patients. Genomic profiling revealed aberrant activation of Hedgehog signaling and alterations in GLI transcriptional regulators and Notch and Hippo signaling. Matched local recurrences of primary BCCs and metastases from 3 patients provided evidence of a clonal origin in all cases. Mutations associated with YAP inhibition were found exclusively in 2 hematogenously-spread lung metastases, and metastatic BCCs were enriched for mutations in the YAP/TAZ-binding domain of TEAD genes. Accordingly, YAP/TAZ nuclear localization was associated with metastatic types and Hippo mutations, suggesting an enhanced oncogenic role in hematogenously-spread metastases. Mutations in RET, HGF, and phosphatidylinositol 3‑kinase (PI3K)/protein kinase B (AKT) signaling were enriched compared with a cohort of low clinical-risk BCCs. Our results implicate Hippo and PI3K/AKT dysregulation in metastatic progression of BCCs, making these potential therapeutic targets in metastatic disease. The common clonal origin of matched recurrent and metastatic BCCs suggests that molecular profiling can assist in determining the nature/origin of poorly differentiated metastatic tumors of uncertain type. Genes and pathways enriched for mutations in this cohort are candidate drivers of metastasis and can be used to identify patients at high risk of metastasis who may benefit from aggressive local treatment and careful clinical follow-up.
Collapse
Affiliation(s)
- Ismael A Vergara
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karina Aivazian
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Matteo S Carlino
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Department of Medicine, Blacktown Hospital, Blacktown, New South Wales, Australia; Department of Medicine, Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, New South Wales, Australia
| | - Alexander D Guminski
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - Nigel G Maher
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia
| | - Kerwin F Shannon
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Sydney Ch'ng
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Robyn P M Saw
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | - Georgina V Long
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Royal North Shore and Mater Hospitals, Sydney, NSW, Australia
| | - James S Wilmott
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia
| | - Richard A Scolyer
- Melanoma Institute Australia, The University of Sydney, Sydney, New South Wales, Australia; Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia; Charles Perkin Centre, The University of Sydney, Sydney, NSW, Australia; Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital and NSW Health Pathology, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Novel Approach to the Hedgehog Signaling Pathway: Combined Treatment of SMO and PTCH Inhibitors. JOURNAL OF BASIC AND CLINICAL HEALTH SCIENCES 2022. [DOI: 10.30621/jbachs.1193720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Purpose: Abnormal Sonic Hedgehog signaling Pathway (Shh) activation is crucial for development of cancer stem cells, neoplastic growth and epithelial-mesenchymal transition processes in adulthood. Activation of Hedgehog signaling pathway may induces the changes in cilia found in the cell membrane, iniciates the Gli1 transcription factor that is translocated to the cell nucleus and finally, the target genes are transcribed. In this study, invastigation of the antiproliferative, anti-invasive and antimigrative effect of the combined use of robotnikinin (Ptch1 antagonist) and vismodegib (Smo inhibitor) on the hedgehog signaling pathway was aimed.
Material and Methods: After demonstarting the presence of the hedgehog signaling pathway in the glioblastoma cell line U87-MG, the effect of the combined use of the robotnikinin and the vismodegib on the hedgehog signaling pathway was investigated. In-vitro cell proliferation, migration, and invasion analysis of the combination of antagonist and inhibitor and in silico drug-likeness analysis were performed.
Results: Two different combinations of robotnikinin and vismodegib were tested. In vitro studies show that the combined use of agents in combined treatments of Smo and Ptch1is more effective than their individual usage.
Conclusion: Inhibition of the hedgehog signaling pathway with specific inhibitors and antagonists is considered an innovative strategy for cancer therapy.
Collapse
|
22
|
The role of Hedgehog and Notch signaling pathway in cancer. MOLECULAR BIOMEDICINE 2022; 3:44. [PMID: 36517618 PMCID: PMC9751255 DOI: 10.1186/s43556-022-00099-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Notch and Hedgehog signaling are involved in cancer biology and pathology, including the maintenance of tumor cell proliferation, cancer stem-like cells, and the tumor microenvironment. Given the complexity of Notch signaling in tumors, its role as both a tumor promoter and suppressor, and the crosstalk between pathways, the goal of developing clinically safe, effective, tumor-specific Notch-targeted drugs has remained intractable. Drugs developed against the Hedgehog signaling pathway have affirmed definitive therapeutic effects in basal cell carcinoma; however, in some contexts, the challenges of tumor resistance and recurrence leap to the forefront. The efficacy is very limited for other tumor types. In recent years, we have witnessed an exponential increase in the investigation and recognition of the critical roles of the Notch and Hedgehog signaling pathways in cancers, and the crosstalk between these pathways has vast space and value to explore. A series of clinical trials targeting signaling have been launched continually. In this review, we introduce current advances in the understanding of Notch and Hedgehog signaling and the crosstalk between pathways in specific tumor cell populations and microenvironments. Moreover, we also discuss the potential of targeting Notch and Hedgehog for cancer therapy, intending to promote the leap from bench to bedside.
Collapse
|
23
|
Lin L, Zhu S, Huang H, Wu LP, Huang J. Chemically modified small interfering RNA targeting Hedgehog signaling pathway for rheumatoid arthritis therapy. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:88-104. [PMID: 36618268 PMCID: PMC9813581 DOI: 10.1016/j.omtn.2022.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022]
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that leads to disability; however, existing therapies are still unsatisfactory. Activated fibroblast-like synoviocytes (FLSs) play an essential role in synovitis formation and joint destruction in RA. The Hedgehog signaling pathway is aberrantly activated and contributes to the aggressive phenotype of RA-FLSs. However, it remains uncertain whether inhibiting Smoothened (SMO), a critical component of the Hedgehog signaling pathway, is an effective treatment for RA. Here, we design a series of small interfering RNAs (siRNAs) that specifically target the SMO gene. With precise chemical modifications, siRNAs' efficacy and stability are significantly improved, and the off-target effects are minimized. The optimized chemically modified siRNA (si-S1A3-Chol) decreases RA-FLS proliferation and invasiveness without the transfection reagent. Furthermore, si-S1A3-Chol injected intra-articularly effectively alleviates joint destruction and improves motor function in collagen-induced arthritis mouse models. Consequently, our results demonstrate that chemically modified siRNA targeting the Hedgehog signaling pathway may be a potential therapy for RA.
Collapse
Affiliation(s)
- Lang Lin
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Shangling Zhu
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China
| | - Hongyu Huang
- Division of Clinical Public Health and Institute for Health Policy, Management and Evaluation, Dalla Lana School of Public Health, University of Toronto, Toronto, ON M5T 3M7, Canada
| | - Lin-Ping Wu
- Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China,Corresponding author: Lin-Ping Wu, Center for Chemical Biology and Drug Discovery, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, People’s Republic of China.
| | - Jianlin Huang
- Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China,Corresponding author: Jianlin Huang, Department of Rheumatology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, People’s Republic of China.
| |
Collapse
|
24
|
Huang K, Xie L, Wang F. A Novel Defined Pyroptosis-Related Gene Signature for the Prognosis of Acute Myeloid Leukemia. Genes (Basel) 2022; 13:2281. [PMID: 36553549 PMCID: PMC9778227 DOI: 10.3390/genes13122281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Pyroptosis is an inflammatory form of programmed necrotic cell death, but its potential prognostic value in acute myeloid leukemia (AML) remains unclear. On the basis of available AML data from TCGA and TARGET databases, a 10-gene signature model was constructed to effectively predict AML prognosis by performing LASSO Cox regression analysis, which showed that patients with a low-risk score had a significantly better prognosis than that of the high-risk group, and receiver operator characteristic (ROC) analysis achieved superior performance in the prognostic model. The model was further well-verified in an external GEO cohort. Multivariable Cox regression analysis showed that, in addition to age, the risk score was an independent poor survival factor for AML patients, and a nomogram model was constructed with high accuracy. Moreover, the high-risk group generally had higher cytolytic activity and increased levels of infiltrating immune cells, including tumor-infiltrating lymphocytes (TILs) and regulatory T cells (Tregs), which could be related to the expression of immune checkpoint genes. Additionally, low-risk AML patients may have a better response from traditional chemotherapeutic drugs. In conclusion, a pyroptosis-related gene signature can independently predict the prognosis of AML patients with sufficient predictive power, and pyroptosis plays an important role in the immune microenvironment of AML, which may be used to develop a new effective therapeutic method for AML in the future.
Collapse
Affiliation(s)
- Kecheng Huang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Linka Xie
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Fan Wang
- Department of Hematology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
25
|
Ciulla DA, Dranchak P, Pezzullo JL, Mancusi RA, Psaras AM, Rai G, Giner JL, Inglese J, Callahan BP. A cell-based bioluminescence reporter assay of human Sonic Hedgehog protein autoprocessing to identify inhibitors and activators. J Biol Chem 2022; 298:102705. [PMID: 36400200 PMCID: PMC9772569 DOI: 10.1016/j.jbc.2022.102705] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/18/2022] Open
Abstract
The Sonic Hedgehog (SHh) precursor protein undergoes biosynthetic autoprocessing to cleave off and covalently attach cholesterol to the SHh signaling ligand, a vital morphogen and oncogenic effector protein. Autoprocessing is self-catalyzed by SHhC, the SHh precursor's C-terminal enzymatic domain. A method to screen for small molecule regulators of this process may be of therapeutic value. Here, we describe the development and validation of the first cellular reporter to monitor human SHhC autoprocessing noninvasively in high-throughput compatible plates. The assay couples intracellular SHhC autoprocessing using endogenous cholesterol to the extracellular secretion of the bioluminescent nanoluciferase enzyme. We developed a WT SHhC reporter line for evaluating potential autoprocessing inhibitors by concentration response-dependent suppression of extracellular bioluminescence. Additionally, a conditional mutant SHhC (D46A) reporter line was developed for identifying potential autoprocessing activators by a concentration response-dependent gain of extracellular bioluminescence. The D46A mutation removes a conserved general base that is critical for the activation of the cholesterol substrate. Inducibility of the D46A reporter was established using a synthetic sterol, 2-α carboxy cholestanol, designed to bypass the defect through intramolecular general base catalysis. To facilitate direct nanoluciferase detection in the cell culture media of 1536-well plates, we designed a novel anionic phosphonylated coelenterazine, CLZ-2P, as the nanoluciferase substrate. This new reporter system offers a long-awaited resource for small molecule discovery for cancer and for developmental disorders where SHh ligand biosynthesis is dysregulated.
Collapse
Affiliation(s)
- Daniel A Ciulla
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | - Patricia Dranchak
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - John L Pezzullo
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA
| | - Rebecca A Mancusi
- Chemistry Department, Binghamton University, Binghamton, New York, USA
| | | | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA
| | - José-Luis Giner
- State University of New York, College of Environmental Science and Forestry, Syracuse, New York, USA.
| | - James Inglese
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, Maryland, USA; National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA.
| | - Brian P Callahan
- Chemistry Department, Binghamton University, Binghamton, New York, USA.
| |
Collapse
|
26
|
Feng Z, Zhu S, Li W, Yao M, Song H, Wang RB. Current approaches and strategies to identify Hedgehog signaling pathway inhibitors for cancer therapy. Eur J Med Chem 2022; 244:114867. [DOI: 10.1016/j.ejmech.2022.114867] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/19/2022] [Accepted: 10/19/2022] [Indexed: 11/30/2022]
|
27
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 119] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
28
|
ABT-737 suppresses aberrant Hedgehog pathway and overcomes resistance to smoothened antagonists by blocking Gli. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2022; 39:188. [PMID: 36071246 DOI: 10.1007/s12032-022-01794-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/08/2022] [Indexed: 10/14/2022]
Abstract
Abnormally activated Hedgehog (Hh) pathway has been linked to multiple types of cancers including medulloblastoma (MB). Current Hh-targeted drug development projects mainly focus on antagonizing the upstream oncoprotein Smoothened (Smo). However, the effectiveness of Smo inhibitors is compromised by primary and acquired resistance, which is caused by mutations of Smo or other downstream components. Here, we conducted a cellular screening of small-molecule compounds and identified ABT-737 as a selective Hh inhibitor resulting in active suppression of human Hh-dependent MB cells. Mechanistically, ABT-737 suppressed Hh signals far-downstream of Smo and Sufu at Gli transcriptional effector level. In line with this, ABT-737 potentially inhibited wild-type and drug-resistant mutant Smo. More importantly, ABT-737 also delayed the growth of drug-refractory Hh-dependent MB xenografts derived from genetically engineered mouse model in vivo. These findings identify ABT-737 as a therapeutical substance for cancers with excessive Hh signaling activity, especially for those with primary or acquired resistance to Smo inhibitors in clinic.
Collapse
|
29
|
Franceschi E, Giannini C, Furtner J, Pajtler KW, Asioli S, Guzman R, Seidel C, Gatto L, Hau P. Adult Medulloblastoma: Updates on Current Management and Future Perspectives. Cancers (Basel) 2022; 14:cancers14153708. [PMID: 35954372 PMCID: PMC9367316 DOI: 10.3390/cancers14153708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/16/2022] Open
Abstract
Medulloblastoma (MB) is a malignant embryonal tumor of the posterior fossa belonging to the family of primitive neuro-ectodermic tumors (PNET). MB generally occurs in pediatric age, but in 14–30% of cases, it affects the adults, mostly below the age of 40, with an incidence of 0.6 per million per year, representing about 0.4–1% of tumors of the nervous system in adults. Unlike pediatric MB, robust prospective trials are scarce for the post-puberal population, due to the low incidence of MB in adolescent and young adults. Thus, current MB treatments for older patients are largely extrapolated from the pediatric experience, but the transferability and applicability of these paradigms to adults remain an open question. Adult MB is distinct from MB in children from a molecular and clinical perspective. Here, we review the management of adult MB, reporting the recent published literature focusing on the effectiveness of upfront chemotherapy, the development of targeted therapies, and the potential role of a reduced dose of radiotherapy in treating this disease.
Collapse
Affiliation(s)
- Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Via Altura 3, 40139 Bologna, Italy
- Correspondence:
| | - Caterina Giannini
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN 59005, USA;
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
| | - Julia Furtner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria;
| | - Kristian W. Pajtler
- Hopp Children’s Cancer Center Heidelberg (KiTZ), 69120 Heidelberg, Germany;
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ) and German Consortium for Translational Cancer Research (DKTK), 69120 Heidelberg, Germany
- Department of Pediatric Oncology, Hematology and Immunology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), University of Bologna, 40126 Bologna, Italy;
- Pituitary Unit, IRCCS Istituto Delle Scienze Neurologiche Di Bologna, Via Altura 3, 40139 Bologna, Italy
| | - Raphael Guzman
- Department of Neurosurgery, University Hospital of Basel, 4031 Basel, Switzerland;
| | - Clemens Seidel
- Department of Radiation Oncology, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Lidia Gatto
- Department of Oncology, AUSL of Bologna, 40139 Bologna, Italy;
| | - Peter Hau
- Wilhelm Sander NeuroOncology Unit & Department of Neurology, University Hospital Regensburg, 93055 Regensburg, Germany;
| |
Collapse
|
30
|
Swiderska-Syn M, Mir-Pedrol J, Oles A, Schleuger O, Salvador AD, Greiner SM, Seward C, Yang F, Babcock BR, Shen C, Wynn DT, Sanchez-Mejias A, Gershon TR, Martin V, McCrea HJ, Lindsey KG, Krieg C, Rodriguez-Blanco J. Noncanonical activation of GLI signaling in SOX2 + cells drives medulloblastoma relapse. SCIENCE ADVANCES 2022; 8:eabj9138. [PMID: 35857834 PMCID: PMC9299538 DOI: 10.1126/sciadv.abj9138] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 06/03/2022] [Indexed: 05/04/2023]
Abstract
SRY (sex determining region Y)-box 2 (SOX2)-labeled cells play key roles in chemoresistance and tumor relapse; thus, it is critical to elucidate the mechanisms propagating them. Single-cell transcriptomic analyses of the most common malignant pediatric brain tumor, medulloblastoma (MB), revealed the existence of astrocytic Sox2+ cells expressing sonic hedgehog (SHH) signaling biomarkers. Treatment with vismodegib, an SHH inhibitor that acts on Smoothened (Smo), led to increases in astrocyte-like Sox2+ cells. Using SOX2-enriched MB cultures, we observed that SOX2+ cells required SHH signaling to propagate, and unlike in the proliferative tumor bulk, the SHH pathway was activated in these cells downstream of Smo in an MYC-dependent manner. Functionally different GLI inhibitors depleted vismodegib-resistant SOX2+ cells from MB tissues, reduced their ability to further engraft in vivo, and increased symptom-free survival. Our results emphasize the promise of therapies targeting GLI to deplete SOX2+ cells and provide stable tumor remission.
Collapse
Affiliation(s)
- Marzena Swiderska-Syn
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Júlia Mir-Pedrol
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Alexander Oles
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Olga Schleuger
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - April D. Salvador
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Sean M. Greiner
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Cara Seward
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Fan Yang
- Molecular Oncology Program, The Dewitt Daughtry Family Department of Surgery, University of Miami, Miami, FL 33136, USA
| | - Benjamin R. Babcock
- Lowance Center for Human Immunology, Department of Medicine, Emory University, Atlanta, GA 30322, USA
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Chen Shen
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Daniel T. Wynn
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20057, USA
| | - Avencia Sanchez-Mejias
- Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona 08002, Spain
| | - Timothy R. Gershon
- Department of Neurology, University of North Carolina School of Medicine, Chapel Hill, NC 27599, USA
| | - Vanesa Martin
- Department of Anatomy and Cell Biology, University of Oviedo, Oviedo, Asturias 33006, Spain
| | - Heather J. McCrea
- Department of Clinical Neurological Surgery, University of Miami, Miami, FL 33136, USA
| | - Kathryn G. Lindsey
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Carsten Krieg
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Jezabel Rodriguez-Blanco
- Darby Children’s Research Institute, Department of Pediatrics, Medical University of South Carolina, Charleston, SC 29425, USA
- Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
31
|
Combined MEK and JAK/STAT3 pathway inhibition effectively decreases SHH medulloblastoma tumor progression. Commun Biol 2022; 5:697. [PMID: 35835937 PMCID: PMC9283517 DOI: 10.1038/s42003-022-03654-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 06/30/2022] [Indexed: 12/16/2022] Open
Abstract
Medulloblastoma (MB) is the most common primary malignant pediatric brain cancer. We recently identified novel roles for the MEK/MAPK pathway in regulating human Sonic Hedgehog (SHH) MB tumorigenesis. The MEK inhibitor, selumetinib, decreased SHH MB growth while extending survival in mouse models. However, the treated mice ultimately succumbed to disease progression. Here, we perform RNA sequencing on selumetinib-treated orthotopic xenografts to identify molecular pathways that compensate for MEK inhibition specifically in vivo. Notably, the JAK/STAT3 pathway exhibits increased activation in selumetinib-treated tumors. The combination of selumetinib and the JAK/STAT3 pathway inhibitor, pacritinib, further reduces growth in two xenograft models and also enhances survival. Multiplex spatial profiling of proteins in drug-treated xenografts reveals shifted molecular dependencies and compensatory changes following combination drug treatment. Our study warrants further investigation into MEK and JAK/STAT3 inhibition as a novel combinatory therapeutic strategy for SHH MB. RNA sequencing of MEK inhibitor (selumetinib)-treated tumors reveals an upregulation of the JAK/STAT3 pathway, with combinatorial therapeutic strategies of JAK/STAT3 inhibitors and selumetinib investigated for the SHH subgroup of medulloblastoma.
Collapse
|
32
|
Yao Y, Wang Y, Yang F, Wang C, Mao M, Gai Q, He J, Qin Y, Yao X, Lan X, Zhu J, Lu H, Zeng H, Yao X, Bian X, Wang Y. Targeting AKT and CK2 represents a novel therapeutic strategy for SMO constitutive activation-driven medulloblastoma. CNS Neurosci Ther 2022; 28:1033-1044. [PMID: 35419951 PMCID: PMC9160449 DOI: 10.1111/cns.13835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/17/2022] [Accepted: 03/20/2022] [Indexed: 11/29/2022] Open
Abstract
AIMS Sonic hedgehog subtype medulloblastoma is featured with overactivation of hedgehog pathway and can be targeted by SMO-specific inhibitors. However, the resistance is frequently developed leading to treatment failure of SMO inhibitors. W535L mutation of SMO (SMOW535L ) is thought to be an oncogenic driver for Sonic hedgehog subtype MB and confer resistance to SMO inhibitors. The regulation network of SMOW535L remains to be explored in comparison with wild-type SMO (SMOWT ). METHODS In this study, we profiled transcriptomes, methylomes, and interactomes of MB cells expression SMOWT or SMOW535L in the treatment of DMSO or SMO inhibitor, respectively. RESULTS Analysis of transcriptomic data indicated that SMO inhibitor disrupted processes of endocytosis and cilium organization in MB cells with SMOWT , which are necessary for SMO activation. In MB cells with SMOW535L , however, SMO inhibitor did not affect the two processes-related genes, implying resistance of SMOW535L toward SMO inhibitor. Moreover, we noticed that SMO inhibitor significantly inhibited metabolism-related pathways. Our metabolic analysis indicated that nicotinate and nicotinamide metabolism, glycerolipid metabolism, beta-alanine metabolism, and synthesis and degradation of ketone bodies might be involved in SMOW535L function maintenance. Interactomic analysis revealed casein kinase II (CK2) as an important SMO-associated protein. Finally, we linked CK2 and AKT together and found combination of inhibitors targeting CK2 and AKT showed synergetic effects to inhibit the growth of MB cells with SMO constitutive activation mutation. CONCLUSIONS Taken together, our work described SMO-related transcriptomes, metabolomes, and interactomes under different SMO status and treatment conditions, identifying CK2 and AKT as therapeutic targets for SHH-subtype MB cells with SMO inhibitor resistance.
Collapse
Affiliation(s)
- Yue‐Liang Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
- Fuzhou Medical College of Nanchang UniversityFuzhouChina
| | - Yan‐Xia Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Fei‐Cheng Yang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Chuan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Min Mao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Qu‐Jing Gai
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang He
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Qin
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiao‐Xue Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xi Lan
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Jiang Zhu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui‐Min Lu
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Hui Zeng
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiao‐Hong Yao
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Xiu‐Wu Bian
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| | - Yan Wang
- Institute of Pathology and Southwest Cancer CenterSouthwest HospitalArmy Medical University (Third Military Medical University)ChongqingChina
| |
Collapse
|
33
|
Mendoza M, Tran U, Zhang GC, Leister J, To K, Malepeai-Tofaeono T, Ondrus AE, Billingsley KL. Indolactam Dipeptides as Nanomolar Gli Inhibitors. ACS Med Chem Lett 2022; 13:1036-1042. [DOI: 10.1021/acsmedchemlett.1c00562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Manuel Mendoza
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - UyenPhuong Tran
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Grace C. Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Jeffrey Leister
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Kyle To
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Theodore Malepeai-Tofaeono
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
| | - Alison E. Ondrus
- Department of Chemistry, University of Illinois Chicago, Chicago, Illinois 60607, United States
| | - Kelvin L. Billingsley
- Department of Chemistry and Biochemistry, California State University Fullerton, Fullerton, California 92831, United States
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, Illinois 60660, United States
| |
Collapse
|
34
|
George J, Chen Y, Abdelfattah N, Yamamoto K, Gallup TD, Adamson SI, Rybinski B, Srivastava A, Kumar P, Lee MG, Baskin DS, Jiang W, Choi JM, Flavahan W, Chuang JH, Kim BY, Xu J, Jung SY, Yun K. Cancer stem cells, not bulk tumor cells, determine mechanisms of resistance to SMO inhibitors. CANCER RESEARCH COMMUNICATIONS 2022; 2:402-416. [PMID: 36688010 PMCID: PMC9853917 DOI: 10.1158/2767-9764.crc-22-0124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 05/05/2022] [Accepted: 05/11/2022] [Indexed: 02/01/2023]
Abstract
The emergence of treatment resistance significantly reduces the clinical utility of many effective targeted therapies. Although both genetic and epigenetic mechanisms of drug resistance have been reported, whether these mechanisms are stochastically selected in individual tumors or governed by a predictable underlying principle is unknown. Here, we report that the dependence of cancer stem cells (CSCs), not bulk tumor cells, on the targeted pathway determines the molecular mechanism of resistance in individual tumors. Using both spontaneous and transplantable mouse models of sonic hedgehog (SHH) medulloblastoma (MB) treated with an SHH/Smoothened inhibitor, sonidegib/LDE225, we show that genetic-based resistance occurs only in tumors that contain SHH-dependent CSCs (SD-CSCs). In contrast, SHH MBs containing SHH-dependent bulk tumor cells but SHH-independent CSCs (SI-CSCs) acquire resistance through epigenetic reprogramming. Mechanistically, elevated proteasome activity in SMOi-resistant SI-CSC MBs alters the tumor cell maturation trajectory through enhanced degradation of specific epigenetic regulators, including histone acetylation machinery components, resulting in global reductions in H3K9Ac, H3K14Ac, H3K56Ac, H4K5Ac, and H4K8Ac marks and gene expression changes. These results provide new insights into how selective pressure on distinct tumor cell populations contributes to different mechanisms of resistance to targeted therapies. This insight provides a new conceptual framework to understand responses and resistance to SMOis and other targeted therapies.
Collapse
Affiliation(s)
- Joshy George
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Yaohui Chen
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
| | - Nourhan Abdelfattah
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
| | - Keiko Yamamoto
- The Jackson Laboratory-Mammalian Genetics, Bar Harbor, Maine
| | - Thomas D. Gallup
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Scott I. Adamson
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Genetics and Genome Sciences, UConn Health, Farmington, Connecticut
| | - Brad Rybinski
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Anuj Srivastava
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Parveen Kumar
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
| | - Min Gyu Lee
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David S. Baskin
- Department of Neurosurgery, Houston Methodist Neurological Institute and Institute for Academic Medicine, Houston, Texas
- The Kenneth R. Peak Brain and Pituitary Tumor Treatment Center, Houston Methodist, Houston Texas
- Department of Neurosurgery, Weill Cornell Medical College, New York, New York
| | - Wen Jiang
- Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Jong Min Choi
- Advanced Technology Core, Mass Spectrometry Proteomics Core, Baylor College of Medicine, Houston, Texas
| | - William Flavahan
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Jeffrey H. Chuang
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut
- Department of Internal Medicine, University of Maryland Medical Center, Baltimore, Maryland
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiaqiong Xu
- Center for Outcomes Research, Houston Methodist Research Institute, Houston Texas
| | - Sung Yun Jung
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas
| | - Kyuson Yun
- Department of Neurology, Houston Methodist Hospital and Houston Methodist Research Institute, Houston, Texas
- Department of Neurology, Weill-Cornell Medical College, New York, New York
| |
Collapse
|
35
|
Yurchenko AA, Pop OT, Ighilahriz M, Padioleau I, Rajabi F, Sharpe HJ, Poulalhon N, Dreno B, Khammari A, Delord M, Alberti A, Soufir N, Battistella M, Mourah S, Bouquet F, Savina A, Besse A, Mendez-Lopez M, Grange F, Monestier S, Mortier L, Meyer N, Dutriaux C, Robert C, Saiag P, Herms F, Lambert J, de Sauvage FJ, Dumaz N, Flatz L, Basset-Seguin N, Nikolaev SI. Frequency and Genomic Aspects of Intrinsic Resistance to Vismodegib in Locally Advanced Basal Cell Carcinoma. Clin Cancer Res 2022; 28:1422-1432. [PMID: 35078858 PMCID: PMC9365352 DOI: 10.1158/1078-0432.ccr-21-3764] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/03/2021] [Accepted: 01/20/2022] [Indexed: 01/07/2023]
Abstract
PURPOSE Vismodegib is approved for the treatment of locally advanced basal cell carcinoma (laBCC), but some cases demonstrate intrinsic resistance (IR) to the drug. We sought to assess the frequency of IR to vismodegib in laBCC and its underlying genomic mechanisms. EXPERIMENTAL DESIGN Response to vismodegib was evaluated in a cohort of 148 laBCC patients. Comprehensive genomic and transcriptomic profiling was performed in a subset of five intrinsically resistant BCC (IR-BCC). RESULTS We identified that IR-BCC represents 6.1% of laBCC in the studied cohort. Prior treatment with chemotherapy was associated with IR. Genetic events that were previously associated with acquired resistance (AR) in BCC or medulloblastoma were observed in three out of five IR-BCC. However, IR-BCCs were distinct by highly rearranged polyploid genomes. Functional analyses identified hyperactivation of the HIPPO-YAP and WNT pathways at RNA and protein levels in IR-BCC. In vitro assay on the BCC cell line further confirmed that YAP1 overexpression increases the cell proliferation rate. CONCLUSIONS IR to vismodegib is a rare event in laBCC. IR-BCCs frequently harbor resistance mutations in the Hh pathway, but also are characterized by hyperactivation of the HIPPO-YAP and WNT pathways.
Collapse
Affiliation(s)
- Andrey A. Yurchenko
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Oltin T. Pop
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Ismael Padioleau
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | - Fatemeh Rajabi
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| | | | - Nicolas Poulalhon
- Service de dermatologie, Hôpital Lyon Sud, Hospices Civils de Lyon, Pierre Bénite, France
| | - Brigitte Dreno
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Amir Khammari
- Department of Dermato-Oncology, CHU Nantes, Nantes Université, CIC 1413, Inserm UMR 1302/EMR6001 INCIT, F-44000 Nantes, France
| | - Marc Delord
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Department of Population Health Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| | | | | | - Maxime Battistella
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service d'anatomie pathologique, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | - Samia Mourah
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Département de Génomique des Tumeurs Solides, Hôpital Saint-Louis, Claude Vellefaux, Paris, France
| | | | | | - Andrej Besse
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Max Mendez-Lopez
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Florent Grange
- Service de dermatologie, CHU Reims, Rue du general Koenig, Reims, France
- Service de Dermatologie, centre hospitalier de Valence, Valence, France
| | | | - Laurent Mortier
- Service de dermatologie, CHU Lille, Clin Dermato Hop Huriez, Rue Michel Polonovski, Lille, France
| | - Nicolas Meyer
- Service de dermatologie, Institut Univeristaire du Cancer et CHU de Toulouse, Hôpital Larrey, Toulouse, France
| | | | - Caroline Robert
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
- Department of Medical Oncology, Gustave Roussy and Paris-Saclay University, Villejuif, France
| | - Philippe Saiag
- Department of General and Oncologic Dermatology, Ambroise-Paré hospital, APHP, and EA 4340 “Biomarkers in Cancerology and Hemato-oncology,” UVSQ, Université Paris-Saclay, Boulogne-Billancourt, France
| | - Florian Herms
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Jerome Lambert
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de Biostatistique et Information Médicale, Hôpital Saint-Louis, Paris, France
| | | | | | - Lukas Flatz
- Institute of Immunobiology, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Nicole Basset-Seguin
- INSERM U976, Hôpital Saint-Louis, Paris, France
- Université de Paris, Hôpital Saint-Louis, Paris, France
- Service de dermatologie, Hôpital Saint-Louis, Paris, France
| | - Sergey I. Nikolaev
- INSERM U981, Gustave Roussy Cancer Campus, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
36
|
Onishi H, Nakamura K, Yanai K, Nagai S, Nakayama K, Oyama Y, Fujimura A, Ozono K, Yamasaki A. Cancer therapy that targets the Hedgehog signaling pathway considering the cancer microenvironment (Review). Oncol Rep 2022; 47:93. [DOI: 10.3892/or.2022.8304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/25/2022] [Indexed: 11/05/2022] Open
Affiliation(s)
- Hideya Onishi
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Katsuya Nakamura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kosuke Yanai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Shuntaro Nagai
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Kazunori Nakayama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Yasuhiro Oyama
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akiko Fujimura
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Keigo Ozono
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| | - Akio Yamasaki
- Department of Cancer Therapy and Research, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812‑8582, Japan
| |
Collapse
|
37
|
Nguyen NM, Cho J. Hedgehog Pathway Inhibitors as Targeted Cancer Therapy and Strategies to Overcome Drug Resistance. Int J Mol Sci 2022; 23:ijms23031733. [PMID: 35163655 PMCID: PMC8835893 DOI: 10.3390/ijms23031733] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/27/2023] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved pathway that plays a vital role during embryonic development. Recently, uncontrolled activation of this pathway has been demonstrated in various types of cancer. Therefore, Hh pathway inhibitors have emerged as an important class of anti-cancer agents. Unfortunately, however, their reputation has been tarnished by the emergence of resistance during therapy, necessitating clarification of mechanisms underlying the drug resistance. In this review, we briefly overview canonical and non-canonical Hh pathways and their inhibitors as targeted cancer therapy. In addition, we summarize the mechanisms of resistance to Smoothened (SMO) inhibitors, including point mutations of the drug binding pocket or downstream molecules of SMO, and non-canonical mechanisms to reinforce Hh pathway output. A distinct mechanism involving loss of primary cilia is also described to maintain GLI activity in resistant tumors. Finally, we address the main strategies to circumvent the drug resistance. These strategies include the development of novel and potent inhibitors targeting different components of the canonical Hh pathway or signaling molecules of the non-canonical pathway. Further studies are necessary to avoid emerging resistance to Hh inhibitors and establish an optimal customized regimen with improved therapeutic efficacy to treat various types of cancer, including basal cell carcinoma.
Collapse
|
38
|
Gatto L, Franceschi E, Tosoni A, Di Nunno V, Bartolini S, Brandes AA. Molecular Targeted Therapies: Time for a Paradigm Shift in Medulloblastoma Treatment? Cancers (Basel) 2022; 14:333. [PMID: 35053495 PMCID: PMC8773620 DOI: 10.3390/cancers14020333] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/11/2022] Open
Abstract
Medulloblastoma is a rare malignancy of the posterior cranial fossa. Although until now considered a single disease, according to the current WHO classification, it is a heterogeneous tumor that comprises multiple molecularly defined subgroups, with distinct gene expression profiles, pathogenetic driver alterations, clinical behaviors and age at onset. Adult medulloblastoma, in particular, is considered a rarer "orphan" entity in neuro-oncology practice because while treatments have progressively evolved for the pediatric population, no practice-changing prospective, randomized clinical trials have been performed in adults. In this scenario, the toughest challenge is to transfer the advances in cancer genomics into new molecularly targeted therapeutics, to improve the prognosis of this neoplasm and the treatment-related toxicities. Herein, we focus on the recent advances in targeted therapy of medulloblastoma based on the new and deeper knowledge of disease biology.
Collapse
Affiliation(s)
- Lidia Gatto
- Medical Oncology Department, Azienda Unità Sanitaria Locale, 40139 Bologna, Italy; (L.G.); (V.D.N.)
| | - Enrico Franceschi
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Alicia Tosoni
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Vincenzo Di Nunno
- Medical Oncology Department, Azienda Unità Sanitaria Locale, 40139 Bologna, Italy; (L.G.); (V.D.N.)
| | - Stefania Bartolini
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| | - Alba Ariela Brandes
- IRCCS Istituto delle Scienze Neurologiche di Bologna, UOC Oncologia Medica del Sistema Nervoso, 40139 Bologna, Italy; (A.T.); (S.B.); (A.A.B.)
| |
Collapse
|
39
|
Akhshi T, Shannon R, Trimble WS. The complex web of canonical and non-canonical Hedgehog signaling. Bioessays 2022; 44:e2100183. [PMID: 35001404 DOI: 10.1002/bies.202100183] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/11/2022]
Abstract
Hedgehog (Hh) signaling is a widely studied signaling pathway because of its critical roles during development and in cell homeostasis. Vertebrate canonical and non-canonical Hh signaling are typically assumed to be distinct and occur in different cellular compartments. While research has primarily focused on the canonical form of Hh signaling and its dependency on primary cilia - microtubule-based signaling hubs - an extensive list of crucial functions mediated by non-canonical Hh signaling has emerged. Moreover, amounting evidence indicates that canonical and non-canonical modes of Hh signaling are interlinked, and that they can overlap spatially, and in many cases interact functionally. Here, we discuss some of the many cellular effects of non-canonical signaling and discuss new evidence indicating inter-relationships with canonical signaling. We discuss how Smoothened (Smo), a key component of the Hh pathway, might coordinate such diverse downstream effects. Collectively, pursuit of questions such as those proposed here will aid in elucidating the full extent of Smo function in development and advance its use as a target for cancer therapeutics.
Collapse
Affiliation(s)
- Tara Akhshi
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Rachel Shannon
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - William S Trimble
- Program in Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.,Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
40
|
Hedgehog Pathway Inhibitors against Tumor Microenvironment. Cells 2021; 10:cells10113135. [PMID: 34831357 PMCID: PMC8619966 DOI: 10.3390/cells10113135] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 11/03/2021] [Accepted: 11/08/2021] [Indexed: 12/24/2022] Open
Abstract
Targeting the hedgehog (HH) pathway to treat aggressive cancers of the brain, breast, pancreas, and prostate has been ongoing for decades. Gli gene amplifications have been long discovered within malignant glioma patients, and since then, inhibitors against HH pathway-associated molecules have successfully reached the clinical stage where several of them have been approved by the FDA. Albeit this success rate implies suitable progress, clinically used HH pathway inhibitors fail to treat patients with metastatic or recurrent disease. This is mainly due to heterogeneous tumor cells that have acquired resistance to the inhibitors along with the obstacle of effectively targeting the tumor microenvironment (TME). Severe side effects such as hyponatremia, diarrhea, fatigue, amenorrhea, nausea, hair loss, abnormal taste, and weight loss have also been reported. Furthermore, HH signaling is known to be involved in the regulation of immune cell maturation, angiogenesis, inflammation, and polarization of macrophages and myeloid-derived suppressor cells. It is critical to determine key mechanisms that can be targeted at different levels of tumor development and progression to address various clinical issues. Hence current research focus encompasses understanding how HH controls TME to develop TME altering and combinatorial targeting strategies. In this review, we aim to discuss the pros and cons of targeting HH signaling molecules, understand the mechanism involved in treatment resistance, reveal the role of the HH pathway in anti-tumor immune response, and explore the development of potential combination treatment of immune checkpoint inhibitors with HH pathway inhibitors to target HH-driven cancers.
Collapse
|
41
|
Liu Y, Zhou F, Ding K, Xue D, Zhu Z, Li C, Li F, Xu Y, Xu F, Le Z, Zhao S, Tao H. Structure-Activity Relationship Studies of Hydantoin-Cored Ligands for Smoothened Receptor. ChemistryOpen 2021; 10:1028-1032. [PMID: 34648230 PMCID: PMC8515922 DOI: 10.1002/open.202100216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 09/16/2021] [Indexed: 11/10/2022] Open
Abstract
An underside binding site was recently identified in the transmembrane domain of smoothened receptor (SMO). Herein, we report efforts in the exploration of new insights into the interactions between the ligand and SMO. The hydantoin core in the middle of the parent compound was found to be highly conservative in chirality, ring size, and substituents. On each benzene at two ends, a plethora of variations, particularly halogen substitutions, were introduced and investigated. Analysis of the structure-activity relationship revealed miscellaneous halogen effects. The ligands with double halogen substituents exhibit remarkably enhanced potency, providing promising candidates that potentially overcome the common drug resistance and useful heavy-atom labeled chemical tools for co-crystallization studies of SMO.
Collapse
Affiliation(s)
- Yang Liu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fang Zhou
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Kang Ding
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Dongxiang Xue
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhihao Zhu
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Cuixia Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Li
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Yueming Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Fei Xu
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Zhiping Le
- Department of ChemistryNanchang University999 Xuefu AvenueNanchang330031China
| | - Suwen Zhao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
- School of Life Science and TechnologyShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| | - Houchao Tao
- iHuman InstituteShanghaiTech University393 Middle Huaxia RoadShanghai201210China
| |
Collapse
|
42
|
Zhao F, Wu Y, Zhou F, Xue D, Zhao S, Lu W, Liu X, Hu T, Qiu Y, Li R, Gu T, Xu Y, Xu F, Zhong G, Jiang Z, Zhao S, Tao H. Elucidation of Distinct Modular Assemblies of Smoothened Receptor by Bitopic Ligand Measurement. J Med Chem 2021; 64:13830-13840. [PMID: 34492176 DOI: 10.1021/acs.jmedchem.1c01220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Class F G protein-coupled receptors are characterized by a large extracellular domain (ECD) in addition to the common transmembrane domain (TMD) with seven α-helixes. For smoothened receptor (SMO), structural studies revealed dissected ECD and TMD, and their integrated assemblies. However, distinct assemblies were reported under different circumstances. Using an unbiased approach based on four series of cross-conjugated bitopic ligands, we explore the relationship between the active status and receptor assembly. Different activity dependency on the linker length for these bitopic ligands corroborates the various occurrences of SMO assembly. These results reveal a rigid "near" assembly for active SMO, which is in contrast to previous results. Conversely, inactive SMO adopts a free ECD, which would be remotely captured at "far" assembly by cholesterol. Altogether, we propose a mechanism of cholesterol flow-caused SMO activation involving an erection of ECD from far to near assembly.
Collapse
Affiliation(s)
- Fei Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Yiran Wu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fang Zhou
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Dongxiang Xue
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Simeng Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Wanglong Lu
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Xiaoyan Liu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Tao Hu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yanli Qiu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Rongyan Li
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Tangjie Gu
- School of Physics Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yueming Xu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Guisheng Zhong
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhongxing Jiang
- School of Pharmaceutical Sciences, Wuhan University, 185 Donghu Road, Wuhan, Hubei 430071, China
| | - Suwen Zhao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China.,School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Houchao Tao
- iHuman Institute, ShanghaiTech University, Ren Building, 393 Middle Huaxia Road, Shanghai 201210, China
| |
Collapse
|
43
|
Yuan L, Zhang H, Liu J, Malhotra A, Dey A, Yu B, Jella KK, McSwain LF, Schniederjan MJ, MacDonald TJ. STAT3 is required for Smo-dependent signaling and mediates Smo-targeted treatment resistance and tumorigenesis in Shh medulloblastoma. Mol Oncol 2021; 16:1009-1025. [PMID: 34482626 PMCID: PMC8847987 DOI: 10.1002/1878-0261.13097] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 07/20/2021] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Sonic hedgehog (Shh)‐driven medulloblastoma (Shh MB) cells are dependent on constitutive Shh signaling, but targeted treatment of Shh MB has been ineffective due to drug resistance. The purpose of this study was to address the critical role of signal transducer and activator of transcription 3 (STAT3) in Shh signaling and drug resistance in Shh MB cells. Herein, we show that STAT3 is required for Smoothened (Smo)‐dependent Shh signaling and, in turn, is reciprocally regulated by Shh signaling, and demonstrate that STAT3 activity is critical for expression of HCK proto‐oncogene, Src family tyrosine kinase (Hck) in Shh MB. We also demonstrate that maintained STAT3 activity suppresses p21 expression and promotes colony formation of Shh MB cells, whereas dual treatment with inhibitors of both Smo and STAT3 results in marked synergistic killing and overcomes drug resistance in vitro of Smo antagonist‐resistant Shh MB cells. Finally, STAT3 inhibitor treatment significantly prevents in vivo tumor formation in genetically engineered Shh MB mice. Collectively, we show that STAT3 is necessary to maintain Shh signaling and thus is a potential therapeutic target to treat Shh MB and overcome anti‐Smo drug resistance.
Collapse
Affiliation(s)
- Liangping Yuan
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hongying Zhang
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Jingbo Liu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anshu Malhotra
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Abhinav Dey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yu
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kishore Kumar Jella
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Leon F McSwain
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew J Schniederjan
- Department of Pathology and Laboratory Medicine, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| | - Tobey J MacDonald
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA.,Aflac Cancer & Blood Disorders Center, Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
44
|
Abele M, Müller SL, Schleicher S, Hartmann U, Döring M, Queudeville M, Lang P, Handgretinger R, Ebinger M. Arsenic trioxide in pediatric cancer - a case series and review of literature. Pediatr Hematol Oncol 2021; 38:471-485. [PMID: 33635158 DOI: 10.1080/08880018.2021.1872748] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Arsenic trioxide (ATO) has become an established component of treatment protocols for acute promyelocytic leukemia (APL) with excellent efficacy and no relevant sustained toxicity. Part of its action has been attributed to the inhibition of Hedgehog signaling (Hh) which enables a possible therapeutic approach as many pediatric tumor entities have been associated with increased Hh activity. We retrospectively analyzed 31 patients with refractory and relapsed pediatric cancer who were treated with ATO at the University Children's Hospital of Tuebingen. Additionally a literature review on the clinical and preclinical use of ATO in pediatric cancer treatment was performed.ATO alone as well as combinations with other drugs have proven effective in vitro and in mouse models of various pediatric malignancies. However, only few data on the clinical use of ATO in pediatric patients besides APL exist. In our patient sample, ATO was overall well tolerated in the treatment of various pediatric cancers, even in combination with other cytostatic drugs. Due to distinct tumor entities, differently progressed disease stages and varying co-medication, no clear statement can be made regarding the efficacy of ATO treatment. However, patients with proven Hh activation in molecular tumor profiling surpassed all other patients, who received ATO in an experimental treatment setting, in terms of survival. As molecular profiling of tumors increases and enhanced Hh activity can be detected at an early stage, ATO might expand its clinical use to other pediatric malignancies beyond APL depending on further clinical studies.
Collapse
Affiliation(s)
- Michael Abele
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Sara-Lena Müller
- Clinic for Anaesthesiology, Critical Care, Emergency Medicine and Pain Management, Klinikum Ludwigsburg, Germany
| | - Sabine Schleicher
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | | | - Michaela Döring
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Manon Queudeville
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Peter Lang
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Rupert Handgretinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| | - Martin Ebinger
- Pediatric Hematology/Oncology, Department of Pediatrics, University Hospital Tuebingen, Tuebingen, Germany
| |
Collapse
|
45
|
Chow RY, Jeon US, Levee TM, Kaur G, Cedeno DP, Doan LT, Atwood SX. PI3K Promotes Basal Cell Carcinoma Growth Through Kinase-Induced p21 Degradation. Front Oncol 2021; 11:668247. [PMID: 34268113 PMCID: PMC8276170 DOI: 10.3389/fonc.2021.668247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/14/2021] [Indexed: 12/26/2022] Open
Abstract
Basal cell carcinoma (BCC) is a locally invasive epithelial cancer that is primarily driven by the Hedgehog (HH) pathway. Advanced BCCs are a critical subset of BCCs that frequently acquire resistance to Smoothened (SMO) inhibitors and identifying pathways that bypass SMO could provide alternative treatments for patients with advanced or metastatic BCC. Here, we use a combination of RNA-sequencing analysis of advanced human BCC tumor-normal pairs and immunostaining of human and mouse BCC samples to identify a PI3K pathway expression signature in BCC. Pharmacological inhibition of PI3K activity in BCC cells significantly reduces cell proliferation and HH signaling. However, treatment of Ptch1fl/fl; Gli1-CreERT2 mouse BCCs with the PI3K inhibitor BKM120 results in a reduction of tumor cell growth with no significant effect on HH signaling. Downstream PI3K components aPKC and Akt1 showed a reduction in active protein, whereas their substrate, cyclin-dependent kinase inhibitor p21, showed a concomitant increase in protein stability. Our results suggest that PI3K promotes BCC tumor growth by kinase-induced p21 degradation without altering HH signaling.
Collapse
Affiliation(s)
- Rachel Y Chow
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Ung Seop Jeon
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Taylor M Levee
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Gurleen Kaur
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Daniel P Cedeno
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States
| | - Linda T Doan
- Department of Dermatology, University of California, Irvine, Irvine, CA, United States
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, United States.,Department of Dermatology, University of California, Irvine, Irvine, CA, United States.,Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
46
|
Liang X, Wu P, Yang Q, Xie Y, He C, Yin L, Yin Z, Yue G, Zou Y, Li L, Song X, Lv C, Zhang W, Jing B. An update of new small-molecule anticancer drugs approved from 2015 to 2020. Eur J Med Chem 2021; 220:113473. [PMID: 33906047 DOI: 10.1016/j.ejmech.2021.113473] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
A high incidence of cancer has given rise to the development of more anti-tumor drugs. From 2015 to 2020, fifty-six new small-molecule anticancer drugs, divided into ten categories according to their anti-tumor target activities, have been approved. These include TKIs (30 drugs), MAPK inhibitors (3 drugs), CDK inhibitors (3 drugs), PARP inhibitors (3 drugs), PI3K inhibitors (3 drugs), SMO receptor antagonists (2 drugs), AR antagonists (2 drugs), SSTR inhibitors (2 drugs), IDH inhibitors (2 drugs) and others (6 drugs). Among them, PTK inhibitors (30/56) have led to a paradigm shift in cancer treatment with less toxicity and more potency. Each of their structures, approval statuses, applications, SAR analyses, and original research synthesis routes have been summarized, giving us a more comprehensive map for further efforts to design more specific targeted agents for reducing cancer in the future. We believe this review will help further research of potential antitumor agents in clinical usage.
Collapse
Affiliation(s)
- Xiaoxia Liang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China.
| | - Pan Wu
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Qian Yang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yunyu Xie
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Changliang He
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lizi Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Zhongqiong Yin
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Guizhou Yue
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Yuanfeng Zou
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Lixia Li
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Xu Song
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Cheng Lv
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Wei Zhang
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| | - Bo Jing
- Natural Medicine Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, PR China
| |
Collapse
|
47
|
Dang MT, Gonzalez MV, Gaonkar KS, Rathi KS, Young P, Arif S, Zhai L, Alam Z, Devalaraja S, To TKJ, Folkert IW, Raman P, Rokita JL, Martinez D, Taroni JN, Shapiro JA, Greene CS, Savonen C, Mafra F, Hakonarson H, Curran T, Haldar M. Macrophages in SHH subgroup medulloblastoma display dynamic heterogeneity that varies with treatment modality. Cell Rep 2021; 34:108917. [PMID: 33789113 PMCID: PMC10450591 DOI: 10.1016/j.celrep.2021.108917] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/13/2021] [Accepted: 03/09/2021] [Indexed: 12/21/2022] Open
Abstract
Tumor-associated macrophages (TAMs) play an important role in tumor immunity and comprise of subsets that have distinct phenotype, function, and ontology. Transcriptomic analyses of human medulloblastoma, the most common malignant pediatric brain cancer, showed that medulloblastomas (MBs) with activated sonic hedgehog signaling (SHH-MB) have significantly more TAMs than other MB subtypes. Therefore, we examined MB-associated TAMs by single-cell RNA sequencing of autochthonous murine SHH-MB at steady state and under two distinct treatment modalities: molecular-targeted inhibitor and radiation. Our analyses reveal significant TAM heterogeneity, identify markers of ontologically distinct TAM subsets, and show the impact of brain microenvironment on the differentiation of tumor-infiltrating monocytes. TAM composition undergoes dramatic changes with treatment and differs significantly between molecular-targeted and radiation therapy. We identify an immunosuppressive monocyte-derived TAM subset that emerges with radiation therapy and demonstrate its role in regulating T cell and neutrophil infiltration in MB.
Collapse
Affiliation(s)
- Mai T Dang
- Division of Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael V Gonzalez
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Krutika S Gaonkar
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Patricia Young
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sherjeel Arif
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Li Zhai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zahidul Alam
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Samir Devalaraja
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tsun Ki Jerrick To
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ian W Folkert
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Pichai Raman
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Daniel Martinez
- Pathology Core, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jaclyn N Taroni
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Joshua A Shapiro
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Casey S Greene
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA; Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Candace Savonen
- Alex's Lemonade Stand Foundation Childhood Cancer Data Lab, Philadelphia, PA, USA
| | - Fernanda Mafra
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tom Curran
- Children's Research Institute at Mercy Children's Hospital, Kansas City, KS, USA
| | - Malay Haldar
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Dash RC, Wen J, Zaino AM, Morel SR, Chau LQ, Wechsler-Reya RJ, Hadden MK. Structure-based virtual screening identifies an 8-hydroxyquinoline as a small molecule GLI1 inhibitor. Mol Ther Oncolytics 2021; 20:265-276. [PMID: 33614910 PMCID: PMC7873571 DOI: 10.1016/j.omto.2021.01.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/09/2021] [Indexed: 12/12/2022] Open
Abstract
The glioma-associated family of transcription factors (GLI) have emerged as a promising therapeutic target for a variety of human cancers. In particular, GLI1 plays a central role as a transcriptional regulator for multiple oncogenic signaling pathways, including the hedgehog (Hh) signaling pathway. We undertook a computational screening approach to identify small molecules that directly bind GLI1 for potential development as inhibitors of GLI-mediated transcription. Through these studies, we identified compound 1, which is an 8-hydroxyquinoline, as a high-affinity binder of GLI1. Compound 1 inhibits GLI1-mediated transcriptional activity in several Hh-dependent cellular models, including a primary model of murine medulloblastoma. We also performed a series of computational analyses to define more clearly the mechanism(s) through which 1 inhibits GLI1 function after binding. Our results strongly suggest that binding of 1 to GLI1 does not prevent GLI1/DNA binding nor disrupt the GLI1/DNA complex, but rather, it induces specific conformational changes in the overall complex that prevent proper GLI function. These results highlight the potential of this compound for further development as an anti-cancer agent that targets GLI1.
Collapse
Affiliation(s)
- Radha Charan Dash
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Jiachen Wen
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Angela M. Zaino
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Shana R. Morel
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| | - Lianne Q. Chau
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Robert J. Wechsler-Reya
- Tumor Initiation and Maintenance Program, NCI-Designated Cancer Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - M. Kyle Hadden
- Department of Pharmaceutical Sciences, University of Connecticut, 69 N. Eagleville Rd., Unit 3092, Storrs, CT 06269-3092, USA
| |
Collapse
|
49
|
Werbowetski-Ogilvie TE. From sorting to sequencing in the molecular era: the evolution of the cancer stem cell model in medulloblastoma. FEBS J 2021; 289:1765-1778. [PMID: 33714236 DOI: 10.1111/febs.15817] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 03/01/2021] [Accepted: 03/10/2021] [Indexed: 12/11/2022]
Abstract
The cancer stem cell (CSC) model posits that tumors contain subpopulations that display defining features of normal stem cells including self-renewal capacity and differentiation. Tumor cells exhibiting these features are now considered to be responsible for tumor propagation and drug resistance in a wide variety of cancers. Therefore, the identification of robust CSC markers and characterization of CSC-specific molecular signatures may lead to the identification of novel therapeutics that selectively abolish this clinically relevant cell population while preserving normal tissue. Brain tumor researchers have been at the forefront of the CSC field. From initial in vitro cell sorting experiments to the sophisticated bioinformatic technologies that now exquisitely resolve primary brain tumors at a single-cell level, recent glioma and medulloblastoma (MB) studies have integrated developmental state with genomic and transcriptome data to identify the spectrum of cell types that may drive tumor progression. This review will examine the last two decades of CSC studies in the field. Seminal discoveries, emerging controversies, and outstanding questions will be covered with a particular focus on MB, the most common malignant primary brain tumor in children.
Collapse
Affiliation(s)
- Tamra E Werbowetski-Ogilvie
- Department of Biochemistry and Medical Genetics and Regenerative Medicine Program, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
50
|
Fan J, Li H, Kuang L, Zhao Z, He W, Liu C, Wang Y, Cheng SY, Chen W. Identification of a potent antagonist of smoothened in hedgehog signaling. Cell Biosci 2021; 11:46. [PMID: 33653381 PMCID: PMC7923671 DOI: 10.1186/s13578-021-00558-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 02/16/2021] [Indexed: 12/31/2022] Open
Abstract
Background Hedgehog signaling is essential to the regulation of embryonic development, tissue homeostasis, and stem cell self-renewal, making it a prime target for developing cancer therapeutics. Given the close link between aberrant Hedgehog signaling and cancers, many small molecular compounds have been developed to inhibit Smoothened, a key signal transducer of this pathway, for treating cancer and several such compounds have been approved by the United States Food and Drug Administration (GDC-0449 and LDE-225). However, acquired drug resistance has emerged as an important obstacle to the effective use of these first generation Hedgehog pathway blockers. Thus, new Smoothened inhibitors that can overcome such resistance is an urgent need going forward. Results We established the Smoothened/βarrestin2-GFP high-throughput screening platform based on the mechanistic discovery of Hedgehog signaling pathway, and discovered several active small molecules targeting Smoothened including 0025A. Here we show that 0025A can block the translocation of βarrestin2-GFP to Smoothened, displace Bodipy-cyclopamine binding to wild-type Smoothened or mutant Smoothened-D473H, reduce the accumulation of Smo on primary cilia and the expression of Gli upon Hedgehog stimulation. In addition, we show that 0025A can effectively suppress hair follicle morphogenesis and hair growth in mice. Conclusions Our results demonstrate that 0025A is a potent antagonist targeting Smoothened wild-type and mutant receptors in the Hedgehog signaling pathway and may provide a new therapy for refractory cancers.
Collapse
Affiliation(s)
- Junwan Fan
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Haowen Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Lun Kuang
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Zichen Zhao
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China.,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China
| | - Chen Liu
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| | - Steven Y Cheng
- Department of Developmental Genetics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 210000, Jiangsu, China.
| | - Wei Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100070, China. .,Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing, 100070, China.
| |
Collapse
|