1
|
Zheng J, Xu F, Li G, Lin M, Hao H. The value of chromosome instability detected by low-pass whole-genome sequencing in preoperative prediction of sentinel lymph node metastasis in breast cancer. Front Oncol 2024; 14:1434526. [PMID: 39429474 PMCID: PMC11486760 DOI: 10.3389/fonc.2024.1434526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 09/05/2024] [Indexed: 10/22/2024] Open
Abstract
Background Breast cancer is a malignancy characterized by chromosomal instability (CIN). This study aimed to examine the potential diagnostic value of chromosomal instability, detected by low-pass whole-genome sequencing (LPWGS), in the preoperative evaluation of sentinel lymph node metastasis (SLNM) in breast cancer. Methods A retrospective investigation of clinical records from 29 patients with breast cancer revealed two distinct groups based on sentinel lymph node biopsy (SLNB) results: the SLN metastasis group (24 cases) and the SLN non-metastasis group (five cases). CIN and CIN scores were evaluated using LPWGS. An analysis of univariate data and binary logistic regression was employed to identify factors influencing SLNM, and a curve with receiver operating characteristics (ROC) was constructed to assess the diagnostic utility of CIN in predicting SLNM. Results A significant association between the SLNM and CIN high groups was observed in breast cancer (P=0.011). The CIN score in the metastasis group (17,665.055 ± 8,630.691) was higher than that in the non-metastasis group (9,247.973 ± 3,692.873), demonstrating a significant difference (P=0.044). Univariate binary logistic regression analysis indicated that CIN was a significant predictor for SLNM (odds ratio: 4.036, 95% CI: 1.015-16.047, P=0.048). The AUC of CIN for preoperative diagnosis of SLNM was 0.808 (95%CI: 0.635-0.982, P=0.033), with a sensitivity value of 67.0% and specificity of 100.0% at a threshold of 13,563. Conclusion Detecting CIN through LPWGS demonstrates diagnostic potential in predicting SLNM in patients with breast cancer before surgery. This approach offers a novel method for assessing axillary lymph node status in clinical practice.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Fen Xu
- Department of General Medicine, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Guangying Li
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Moubin Lin
- Department of General Surgery, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hua Hao
- Department of Pathology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
2
|
Wang SW, Zheng QY, Hong WF, Tang BF, Hsu SJ, Zhang Y, Zheng XB, Zeng ZC, Gao C, Ke AW, Du SS. Mechanism of immune activation mediated by genomic instability and its implication in radiotherapy combined with immune checkpoint inhibitors. Radiother Oncol 2024; 199:110424. [PMID: 38997092 DOI: 10.1016/j.radonc.2024.110424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/27/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Various genetic and epigenetic changes associated with genomic instability (GI), including DNA damage repair defects, chromosomal instability, and mitochondrial GI, contribute to development and progression of cancer. These alterations not only result in DNA leakage into the cytoplasm, either directly or through micronuclei, but also trigger downstream inflammatory signals, such as the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Apart from directly inducing DNA damage to eliminate cancer cells, radiotherapy (RT) exerts its antitumor effects through intracellular DNA damage sensing mechanisms, leading to the activation of downstream inflammatory signaling pathways. This not only enables local tumor control but also reshapes the immune microenvironment, triggering systemic immune responses. The combination of RT and immunotherapy has emerged as a promising approach to increase the probability of abscopal effects, where distant tumors respond to treatment due to the systemic immunomodulatory effects. This review emphasizes the importance of GI in cancer biology and elucidates the mechanisms by which RT induces GI remodeling of the immune microenvironment. By elucidating the mechanisms of GI and RT-induced immune responses, we aim to emphasize the crucial importance of this approach in modern oncology. Understanding the impact of GI on tumor biological behavior and therapeutic response, as well as the possibility of activating systemic anti-tumor immunity through RT, will pave the way for the development of new treatment strategies and improve prognosis for patients.
Collapse
Affiliation(s)
- Si-Wei Wang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China; Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China
| | - Qiu-Yi Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Wei-Feng Hong
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Bu-Fu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Shu-Jung Hsu
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Yang Zhang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Xiao-Bin Zheng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Chao Gao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Ai-Wu Ke
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Zhongshan Hospital, Liver Cancer Institute, Fudan University, Shanghai 200030, China.
| | - Shi-Suo Du
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai 200030, China.
| |
Collapse
|
3
|
Di Cosimo S, Silvestri M, De Marco C, Calzoni A, De Santis MC, Carnevale MG, Reduzzi C, Cristofanilli M, Cappelletti V. Low-pass whole genome sequencing of circulating tumor cells to evaluate chromosomal instability in triple-negative breast cancer. Sci Rep 2024; 14:20479. [PMID: 39227622 PMCID: PMC11372142 DOI: 10.1038/s41598-024-71378-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/27/2024] [Indexed: 09/05/2024] Open
Abstract
Chromosomal Instability (CIN) is a common and evolving feature in breast cancer. Large-scale Transitions (LSTs), defined as chromosomal breakages leading to gains or losses of at least 10 Mb, have recently emerged as a metric of CIN due to their standardized definition across platforms. Herein, we report the feasibility of using low-pass Whole Genome Sequencing to assess LSTs, copy number alterations (CNAs) and their relationship in individual circulating tumor cells (CTCs) of triple-negative breast cancer (TNBC) patients. Initial assessment of LSTs in breast cancer cell lines consistently showed wide-ranging values (median 22, range 4-33, mean 21), indicating heterogeneous CIN. Subsequent analysis of CTCs revealed LST values (median 3, range 0-18, mean 5), particularly low during treatment, suggesting temporal changes in CIN levels. CNAs averaged 30 (range 5-49), with loss being predominant. As expected, CTCs with higher LSTs values exhibited increased CNAs. A CNA-based classifier of individual patient-derived CTCs, developed using machine learning, identified genes associated with both DNA proliferation and repair, such as RB1, MYC, and EXO1, as significant predictors of CIN. The model demonstrated a high predictive accuracy with an Area Under the Curve (AUC) of 0.89. Overall, these findings suggest that sequencing CTCs holds the potential to facilitate CIN evaluation and provide insights into its dynamic nature over time, with potential implications for monitoring TNBC progression through iterative assessments.
Collapse
Affiliation(s)
- Serena Di Cosimo
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian 1, 20100, Milan, Italy
| | - Marco Silvestri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian 1, 20100, Milan, Italy.
- Isinnova S.R.L, Brescia, Italy.
| | - Cinzia De Marco
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian 1, 20100, Milan, Italy
| | - Alessia Calzoni
- Isinnova S.R.L, Brescia, Italy
- Department of Information Engineering, University of Brescia, Brescia, Italy
| | - Maria Carmen De Santis
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
- Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Maria Grazia Carnevale
- Department of Radiation Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
- Breast Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Milan, Italy
| | - Carolina Reduzzi
- Division of Hematology-Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Vera Cappelletti
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale Dei Tumori Di Milano, Via Venezian 1, 20100, Milan, Italy
| |
Collapse
|
4
|
Hosea R, Duan W, Meliala ITS, Li W, Wei M, Hillary S, Zhao H, Miyagishi M, Wu S, Kasim V. YY2/BUB3 Axis promotes SAC Hyperactivation and Inhibits Colorectal Cancer Progression via Regulating Chromosomal Instability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308690. [PMID: 38682484 PMCID: PMC11234461 DOI: 10.1002/advs.202308690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/08/2024] [Indexed: 05/01/2024]
Abstract
Spindle assembly checkpoint (SAC) is a crucial safeguard mechanism of mitosis fidelity that ensures equal division of duplicated chromosomes to the two progeny cells. Impaired SAC can lead to chromosomal instability (CIN), a well-recognized hallmark of cancer that facilitates tumor progression; paradoxically, high CIN levels are associated with better therapeutic response and prognosis. However, the mechanism by which CIN determines tumor cell survival and therapeutic response remains poorly understood. Here, using a cross-omics approach, YY2 is identified as a mitotic regulator that promotes SAC activity by activating the transcription of budding uninhibited by benzimidazole 3 (BUB3), a component of SAC. While both conditions induce CIN, a defect in YY2/SAC activity enhances mitosis and tumor growth. Meanwhile, hyperactivation of SAC mediated by YY2/BUB3 triggers a delay in mitosis and suppresses growth. Furthermore, it is revealed that YY2/BUB3-mediated excessive CIN causes higher cell death rates and drug sensitivity, whereas residual tumor cells that survived DNA damage-based therapy have moderate CIN and increased drug resistance. These results provide insights into the role of SAC activity and CIN levels in influencing tumor cell survival and drug response, as well as suggest a novel anti-tumor therapeutic strategy that combines SAC activity modulators and DNA-damage agents.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Wei Duan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Ian Timothy Sembiring Meliala
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Wenfang Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Mankun Wei
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
| | - Hezhao Zhao
- Department of Gastrointestinal Surgery, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Makoto Miyagishi
- Life Science Innovation, School of Integrative and Global MajorsUniversity of TsukubaTsukubaIbaraki305‐0006Japan
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of BioengineeringChongqing UniversityChongqing400045P. R. China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of BioengineeringChongqing UniversityChongqing400044P. R. China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer HospitalChongqing UniversityChongqing400030P. R. China
| |
Collapse
|
5
|
Lanng KRB, Lauridsen EL, Jakobsen MR. The balance of STING signaling orchestrates immunity in cancer. Nat Immunol 2024; 25:1144-1157. [PMID: 38918609 DOI: 10.1038/s41590-024-01872-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/14/2024] [Indexed: 06/27/2024]
Abstract
Over the past decade, it has become clear that the stimulator of interferon genes (STING) pathway is critical for a variety of immune responses. This endoplasmic reticulum-anchored adaptor protein has regulatory functions in host immunity across a spectrum of conditions, including infectious diseases, autoimmunity, neurobiology and cancer. In this Review, we outline the central importance of STING in immunological processes driven by expression of type I and III interferons, as well as inflammatory cytokines, and we look at therapeutic options for targeting STING. We also examine evidence that challenges the prevailing notion that STING activation is predominantly beneficial in combating cancer. Further exploration is imperative to discern whether STING activation in the tumor microenvironment confers true benefits or has detrimental effects. Research in this field is at a crossroads, as a clearer understanding of the nuanced functions of STING activation in cancer is required for the development of next-generation therapies.
Collapse
|
6
|
Carceles-Cordon M, Orme JJ, Domingo-Domenech J, Rodriguez-Bravo V. The yin and yang of chromosomal instability in prostate cancer. Nat Rev Urol 2024; 21:357-372. [PMID: 38307951 PMCID: PMC11156566 DOI: 10.1038/s41585-023-00845-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/13/2023] [Indexed: 02/04/2024]
Abstract
Metastatic prostate cancer remains an incurable lethal disease. Studies indicate that prostate cancer accumulates genomic changes during disease progression and displays the highest levels of chromosomal instability (CIN) across all types of metastatic tumours. CIN, which refers to ongoing chromosomal DNA gain or loss during mitosis, and derived aneuploidy, are known to be associated with increased tumour heterogeneity, metastasis and therapy resistance in many tumour types. Paradoxically, high CIN levels are also proposed to be detrimental to tumour cell survival, suggesting that cancer cells must develop adaptive mechanisms to ensure their survival. In the context of prostate cancer, studies indicate that CIN has a key role in disease progression and might also offer a therapeutic vulnerability that can be pharmacologically targeted. Thus, a comprehensive evaluation of the causes and consequences of CIN in prostate cancer, its contribution to aggressive advanced disease and a better understanding of the acquired CIN tolerance mechanisms can translate into new tumour classifications, biomarker development and therapeutic strategies.
Collapse
Affiliation(s)
| | - Jacob J Orme
- Department of Oncology, Mayo Clinic, Rochester, MN, USA
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
7
|
Watson EV, Lee JJK, Gulhan DC, Melloni GEM, Venev SV, Magesh RY, Frederick A, Chiba K, Wooten EC, Naxerova K, Dekker J, Park PJ, Elledge SJ. Chromosome evolution screens recapitulate tissue-specific tumor aneuploidy patterns. Nat Genet 2024; 56:900-912. [PMID: 38388848 PMCID: PMC11096114 DOI: 10.1038/s41588-024-01665-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 01/16/2024] [Indexed: 02/24/2024]
Abstract
Whole chromosome and arm-level copy number alterations occur at high frequencies in tumors, but their selective advantages, if any, are poorly understood. Here, utilizing unbiased whole chromosome genetic screens combined with in vitro evolution to generate arm- and subarm-level events, we iteratively selected the fittest karyotypes from aneuploidized human renal and mammary epithelial cells. Proliferation-based karyotype selection in these epithelial lines modeled tissue-specific tumor aneuploidy patterns in patient cohorts in the absence of driver mutations. Hi-C-based translocation mapping revealed that arm-level events usually emerged in multiples of two via centromeric translocations and occurred more frequently in tetraploids than diploids, contributing to the increased diversity in evolving tetraploid populations. Isogenic clonal lineages enabled elucidation of pro-tumorigenic mechanisms associated with common copy number alterations, revealing Notch signaling potentiation as a driver of 1q gain in breast cancer. We propose that intrinsic, tissue-specific proliferative effects underlie tumor copy number patterns in cancer.
Collapse
Affiliation(s)
- Emma V Watson
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Jake June-Koo Lee
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Doga C Gulhan
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Giorgio E M Melloni
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Sergey V Venev
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Rayna Y Magesh
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Abdulrazak Frederick
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Kunitoshi Chiba
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Eric C Wooten
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
| | - Kamila Naxerova
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Job Dekker
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Peter J Park
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Stephen J Elledge
- Department of Genetics, Harvard Medical School and Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
8
|
Lubachowski M, VanGenderen C, Valentine S, Belak Z, Davies GF, Arnason TG, Harkness TAA. Activation of the Anaphase Promoting Complex Restores Impaired Mitotic Progression and Chemosensitivity in Multiple Drug-Resistant Human Breast Cancer. Cancers (Basel) 2024; 16:1755. [PMID: 38730707 PMCID: PMC11083742 DOI: 10.3390/cancers16091755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The development of multiple-drug-resistant (MDR) cancer all too often signals the need for toxic alternative therapy or palliative care. Our recent in vivo and in vitro studies using canine MDR lymphoma cancer cells demonstrate that the Anaphase Promoting Complex (APC) is impaired in MDR cells compared to normal canine control and drug-sensitive cancer cells. Here, we sought to establish whether this phenomena is a generalizable mechanism independent of species, malignancy type, or chemotherapy regime. To test the association of blunted APC activity with MDR cancer behavior, we used matched parental and MDR MCF7 human breast cancer cells, and a patient-derived xenograft (PDX) model of human triple-negative breast cancer. We show that APC activating mechanisms, such as APC subunit 1 (APC1) phosphorylation and CDC27/CDC20 protein associations, are reduced in MCF7 MDR cells when compared to chemo-sensitive matched cell lines. Consistent with impaired APC function in MDR cells, APC substrate proteins failed to be effectively degraded. Similar to our previous observations in canine MDR lymphoma cells, chemical activation of the APC using Mad2 Inhibitor-1 (M2I-1) in MCF7 MDR cells enhanced APC substrate degradation and resensitized MDR cells in vitro to the cytotoxic effects of the alkylating chemotherapeutic agent, doxorubicin (DOX). Using cell cycle arrest/release experiments, we show that mitosis is delayed in MDR cells with elevated substrate levels. When pretreated with M2I-1, MDR cells progress through mitosis at a faster rate that coincides with reduced levels of APC substrates. In our PDX model, mice growing a clinically MDR human triple-negative breast cancer tumor show significantly reduced tumor growth when treated with M2I-1, with evidence of increased DNA damage and apoptosis. Thus, our results strongly support the hypothesis that APC impairment is a driver of aggressive tumor development and that targeting the APC for activation has the potential for meaningful clinical benefits in treating recurrent cases of MDR malignancy.
Collapse
Affiliation(s)
- Mathew Lubachowski
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
| | - Cordell VanGenderen
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Sarah Valentine
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
| | - Zach Belak
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Gerald Floyd Davies
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
| | - Terra Gayle Arnason
- Department of Anatomy, Physiology and Pharmacology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (C.V.); (S.V.); (T.G.A.)
- Division of Endocrinology, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- Department of Medicine, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Troy Anthony Alan Harkness
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada; (M.L.); (Z.B.); (G.F.D.)
- Division of Geriatrics, Department of Medicine, University of Alberta, Edmonton, AB T6G 2S2, Canada
- 320 Heritage Medical Research Centre, University of Alberta, 11207-87 Ave NW, Edmonton, AB T6G 2S2, Canada
| |
Collapse
|
9
|
Taylor SJ, Hollis RL, Gourley C, Herrington CS, Langdon SP, Arends MJ. RFWD3 modulates response to platinum chemotherapy and promotes cancer associated phenotypes in high grade serous ovarian cancer. Front Oncol 2024; 14:1389472. [PMID: 38711848 PMCID: PMC11071161 DOI: 10.3389/fonc.2024.1389472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 04/10/2024] [Indexed: 05/08/2024] Open
Abstract
Background DNA damage repair is frequently dysregulated in high grade serous ovarian cancer (HGSOC), which can lead to changes in chemosensitivity and other phenotypic differences in tumours. RFWD3, a key component of multiple DNA repair and maintenance pathways, was investigated to characterise its impact in HGSOC. Methods RFWD3 expression and association with clinical features was assessed using in silico analysis in the TCGA HGSOC dataset, and in a further cohort of HGSOC tumours stained for RFWD3 using immunohistochemistry. RFWD3 expression was modulated in cell lines using siRNA and CRISPR/cas9 gene editing, and cells were characterised using cytotoxicity and proliferation assays, flow cytometry, and live cell microscopy. Results Expression of RFWD3 RNA and protein varied in HGSOCs. In cell lines, reduction of RFWD3 expression led to increased sensitivity to interstrand crosslinking (ICL) inducing agents mitomycin C and carboplatin. RFWD3 also demonstrated further functionality outside its role in DNA damage repair, with RFWD3 deficient cells displaying cell cycle dysregulation, reduced cellular proliferation and reduced migration. In tumours, low RFWD3 expression was associated with increased tumour mutational burden, and complete response to platinum chemotherapy. Conclusion RFWD3 expression varies in HGSOCs, which can lead to functional effects at both the cellular and tumour levels.
Collapse
Affiliation(s)
- Sarah J. Taylor
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Robert L. Hollis
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Charlie Gourley
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - C. Simon Herrington
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Nicola Murray Centre for Ovarian Cancer Research, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Simon P. Langdon
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Mark J. Arends
- Edinburgh Pathology, Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
10
|
Camargo-Herrera V, Castellanos G, Rangel N, Jiménez-Tobón GA, Martínez-Agüero M, Rondón-Lagos M. Patterns of Chromosomal Instability and Clonal Heterogeneity in Luminal B Breast Cancer: A Pilot Study. Int J Mol Sci 2024; 25:4478. [PMID: 38674062 PMCID: PMC11049937 DOI: 10.3390/ijms25084478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 02/09/2024] [Accepted: 02/12/2024] [Indexed: 04/28/2024] Open
Abstract
Chromosomal instability (CIN), defined by variations in the number or structure of chromosomes from cell to cell, is recognized as a distinctive characteristic of cancer associated with the ability of tumors to adapt to challenging environments. CIN has been recognized as a source of genetic variation that leads to clonal heterogeneity (CH). Recent findings suggest a potential association between CIN and CH with the prognosis of BC patients, particularly in tumors expressing the epidermal growth factor receptor 2 (HER2+). In fact, information on the role of CIN in other BC subtypes, including luminal B BC, is limited. Additionally, it remains unknown whether CIN in luminal B BC tumors, above a specific threshold, could have a detrimental effect on the growth of human tumors or whether low or intermediate CIN levels could be linked to a more favorable BC patient prognosis when contrasted with elevated levels. Clarifying these relationships could have a substantial impact on risk stratification and the development of future therapeutic strategies aimed at targeting CIN in BC. This study aimed to assess CIN and CH in tumor tissue samples from ten patients with luminal B BC and compare them with established clinicopathological parameters. The results of this study reveal that luminal B BC patients exhibit intermediate CIN and stable aneuploidy, both of which correlate with lymphovascular invasion. Our results also provide valuable preliminary data that could contribute to the understanding of the implications of CIN and CH in risk stratification and the development of future therapeutic strategies in BC.
Collapse
Affiliation(s)
- Valentina Camargo-Herrera
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Giovanny Castellanos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| | - Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia;
| | - Guillermo Antonio Jiménez-Tobón
- Laboratorio de Patología, Hospital Universitario Mayor-Méderi, Bogotá 110311, Colombia;
- Grupo BIOmedUR, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Bogotá 110231, Colombia
| | - María Martínez-Agüero
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá 110231, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja 150003, Colombia; (V.C.-H.).; (G.C.)
| |
Collapse
|
11
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of chromosomal instability measures across mechanistic models. Proc Natl Acad Sci U S A 2024; 121:e2309621121. [PMID: 38588415 PMCID: PMC11032477 DOI: 10.1073/pnas.2309621121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 01/25/2024] [Indexed: 04/10/2024] Open
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, six-centromere FISH, bulk transcriptomics, and single-cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples significantly correlated (R = 0.72; P < 0.001) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also significantly correlate (R = 0.76; P < 0.001) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, scDNAseq detects CIN with high sensitivity, and significantly correlates with imaging methods (R = 0.82; P < 0.001). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate the comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division. This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
| | - Kim Oxendine
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Les Henderson
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Vanessa L. Horner
- Cytogenetic and Molecular Genetic Services Laboratory, Wisconsin State Laboratory of Hygiene, University of Wisconsin–Madison, Madison, WI53706
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, WI53705
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, WI53705
- McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, WI53705
- Division of Hematology Oncology and Palliative Care, Department of Medicine University of Wisconsin–Madison, Madison, WI53705
| |
Collapse
|
12
|
Vogt M, Classen S, Krause AK, Peter NJ, Petersen C, Rothkamm K, Borgmann K, Meyer F. USP7 Deregulation Impairs S Phase Specific DNA Repair after Irradiation in Breast Cancer Cells. Biomedicines 2024; 12:762. [PMID: 38672118 PMCID: PMC11047985 DOI: 10.3390/biomedicines12040762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
The ubiquitin specific protease 7 (USP7) is a deubiquitinating enzyme with numerous substrates. Aberrant expression of USP7 is associated with tumor progression. This study aims to investigate how a deregulated USP7 expression affects chromosomal instability and prognosis of breast cancer patients in silico and radiosensitivity and DNA repair in breast cancer cells in vitro. The investigations in silico were performed using overall survival and USP7 mRNA expression data of breast cancer patients. The results showed that a high USP7 expression was associated with increased chromosomal instability and decreased overall survival. The in vitro experiments were performed in a luminal and a triple-negative breast cancer cell line. Proliferation, DNA repair, DNA replication stress, and survival after USP7 overexpression or inhibition and irradiation were analyzed. Both, USP7 inhibition and overexpression resulted in decreased cellular survival, distinct radiosensitization and an increased number of residual DNA double-strand breaks in the S phase following irradiation. RAD51 recruitment and base incorporation were decreased after USP7 inhibition plus irradiation and more single-stranded DNA was detected. The results show that deregulation of USP7 activity disrupts DNA repair in the S phase by increasing DNA replication stress and presents USP7 as a promising target to overcome the radioresistance of breast tumors.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Felix Meyer
- Department of Radiotherapy & Radiation Oncology, Hubertus Wald Tumor Center—University Cancer Center Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany; (M.V.); (S.C.); (A.K.K.); (N.-J.P.); (C.P.); (K.R.); (K.B.)
| |
Collapse
|
13
|
Hosea R, Hillary S, Naqvi S, Wu S, Kasim V. The two sides of chromosomal instability: drivers and brakes in cancer. Signal Transduct Target Ther 2024; 9:75. [PMID: 38553459 PMCID: PMC10980778 DOI: 10.1038/s41392-024-01767-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 01/18/2024] [Accepted: 02/06/2024] [Indexed: 04/02/2024] Open
Abstract
Chromosomal instability (CIN) is a hallmark of cancer and is associated with tumor cell malignancy. CIN triggers a chain reaction in cells leading to chromosomal abnormalities, including deviations from the normal chromosome number or structural changes in chromosomes. CIN arises from errors in DNA replication and chromosome segregation during cell division, leading to the formation of cells with abnormal number and/or structure of chromosomes. Errors in DNA replication result from abnormal replication licensing as well as replication stress, such as double-strand breaks and stalled replication forks; meanwhile, errors in chromosome segregation stem from defects in chromosome segregation machinery, including centrosome amplification, erroneous microtubule-kinetochore attachments, spindle assembly checkpoint, or defective sister chromatids cohesion. In normal cells, CIN is deleterious and is associated with DNA damage, proteotoxic stress, metabolic alteration, cell cycle arrest, and senescence. Paradoxically, despite these negative consequences, CIN is one of the hallmarks of cancer found in over 90% of solid tumors and in blood cancers. Furthermore, CIN could endow tumors with enhanced adaptation capabilities due to increased intratumor heterogeneity, thereby facilitating adaptive resistance to therapies; however, excessive CIN could induce tumor cells death, leading to the "just-right" model for CIN in tumors. Elucidating the complex nature of CIN is crucial for understanding the dynamics of tumorigenesis and for developing effective anti-tumor treatments. This review provides an overview of causes and consequences of CIN, as well as the paradox of CIN, a phenomenon that continues to perplex researchers. Finally, this review explores the potential of CIN-based anti-tumor therapy.
Collapse
Affiliation(s)
- Rendy Hosea
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sharon Hillary
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Sumera Naqvi
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shourong Wu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| | - Vivi Kasim
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400045, China.
- The 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing, 400044, China.
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing University, Chongqing, 400030, China.
| |
Collapse
|
14
|
Rangel N, Sánchez IL, Valbuena DS, Rondón-Lagos M. ZNF217 Gene Copy Number as a Marker of Response to Standard Therapy Drugs According to ERα Status in Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2024; 16:127-139. [PMID: 38505863 PMCID: PMC10950081 DOI: 10.2147/bctt.s445753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/24/2024] [Indexed: 03/21/2024]
Abstract
Purpose The therapeutic decision for the management of breast cancer (BC) patients is based on the evaluation of prognostic factors alongside clinical and pathological parameters. Despite the use of standard biomarkers, response and resistance to therapy represent a challenge for clinicians. Among the new potential biomarkers for BC the ZNF217 gene have gained importance in recent years. However, while associations between ZNF217 gene copy number and clinicopathological characteristics have been established, its correlation with treatment response remains unclear. Patients and Methods This study aimed to evaluate the ZNF217 gene copy number and establish its associations with treatment response in estrogen receptor positive (ERα+) and ERα negative (ERα-) BC cell lines. In addition, a validation of the relationship between ZNF217 gene copy number and its prognostic value was performed using datasets of BC patients retrieved from the cBioPortal public database. Results Our data show that in ERα+ cells, ZNF217 gene copy number increase (amplification), while cell proliferation decreases in response to standard drug treatments. In contrast, both ZNF217 gene copy number (gain) and cell proliferation increases in response to standard drug treatments in ERα- cells. The results obtained align with findings from the cBioPortal database analysis, demonstrating that ERα+/HER2- low proliferation patients, exhibiting ZNF217 gene amplification or gain, have a significantly higher survival probability after treatment, compared to ERα-/HER2- and HER2+ patients. Conclusion Our results suggest that in ERα+ BC cells, ZNF217 gene amplification could be indicative of a favorable response, while in ERα- BC cells, ZNF217 gene gain could be postulated as a potential predictor of treatment resistance. A broader understanding of the role of ZNF217 gene in treatment response, together with prospective studies in BC patients, could contribute to confirming our data, as well as optimizing existing treatments and exploring novel approaches to improve overall cancer treatment outcomes.
Collapse
Affiliation(s)
- Nelson Rangel
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, 110231, Colombia
| | - Iris Lorena Sánchez
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica Y Tecnológica de Colombia, Tunja, 150003, Colombia
| |
Collapse
|
15
|
Bhatia S, Khanna KK, Duijf PHG. Targeting chromosomal instability and aneuploidy in cancer. Trends Pharmacol Sci 2024; 45:210-224. [PMID: 38355324 DOI: 10.1016/j.tips.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Cancer development and therapy resistance are driven by chromosomal instability (CIN), which causes chromosome gains and losses (i.e., aneuploidy) and structural chromosomal alterations. Technical limitations and knowledge gaps have delayed therapeutic targeting of CIN and aneuploidy in cancers. However, our toolbox for creating and studying aneuploidy in cell models has greatly expanded recently. Moreover, accumulating evidence suggests that seven conventional antimitotic chemotherapeutic drugs achieve clinical response by inducing CIN instead of mitotic arrest, although additional anticancer activities may also contribute in vivo. In this review, we discuss these recent developments. We also highlight new discoveries, which together show that 25 chromosome arm aneuploidies (CAAs) may be targetable by 36 drugs across 14 types of cancer. Collectively, these advances offer many new opportunities to improve cancer treatment.
Collapse
Affiliation(s)
- Sugandha Bhatia
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia.
| | - Kum Kum Khanna
- QIMR Berghofer Medical Research Institute, 300 Herston Road, Herston, QLD 4006, Australia; Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia
| | - Pascal H G Duijf
- Queensland University of Technology (QUT), School of Biomedical Sciences, Centre for Genomics and Personalised Health and Centre for Biomedical Technologies at the Translational Research Institute, Woolloongabba, QLD 4102, Australia; Centre for Cancer Biology, Clinical and Health Sciences, University of South Australia and SA Pathology, Adelaide, SA 5001, Australia; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
16
|
Lynch A, Bradford S, Burkard ME. The reckoning of chromosomal instability: past, present, future. Chromosome Res 2024; 32:2. [PMID: 38367036 DOI: 10.1007/s10577-024-09746-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/11/2024] [Accepted: 01/27/2024] [Indexed: 02/19/2024]
Abstract
Quantitative measures of CIN are crucial to our understanding of its role in cancer. Technological advances have changed the way CIN is quantified, offering increased accuracy and insight. Here, we review measures of CIN through its rise as a field, discuss considerations for its measurement, and look forward to future quantification of CIN.
Collapse
Affiliation(s)
- Andrew Lynch
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Shermineh Bradford
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Mark E Burkard
- UW Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
- McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, WI, USA.
- Division of Hematology/Oncology, Department of Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
17
|
Dai Y, Yu Y, Nie J, Gu K, Pei H. X-ray-downregulated nucleophosmin induces abnormal polarization by anchoring to G-actin. LIFE SCIENCES IN SPACE RESEARCH 2024; 40:81-88. [PMID: 38245352 DOI: 10.1016/j.lssr.2023.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 01/22/2024]
Abstract
Ionizing radiation poses significant risks to astronauts during deep space exploration. This study investigates the impact of radiation on nucleophosmin (NPM), a protein involved in DNA repair, cell cycle regulation, and proliferation. Using X-rays, a common space radiation, we found that radiation suppresses NPM expression. Knockdown of NPM increases DNA damage after irradiation, disrupts cell cycle distribution and enhances cellular radiosensitivity. Additionally, NPM interacts with globular actin (G-actin), affecting its translocation and centrosome binding during mitosis. These findings provide insights into the role of NPM in cellular processes in responding to radiation. This article enhances our comprehension of radiation-induced genomic instability and provides a foundational platform for prospective investigations within the realm of space radiation and its implications for cancer therapy.
Collapse
Affiliation(s)
- Yingchu Dai
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China.
| | - Yongduo Yu
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China
| | - Jing Nie
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China
| | - Ke Gu
- Department of Radiotherapy and Oncology, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Hailong Pei
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Suzhou Medical College of Soochow University, Suzhou, 215123, China; Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Suzhou, 215123, China.
| |
Collapse
|
18
|
Baker TM, Waise S, Tarabichi M, Van Loo P. Aneuploidy and complex genomic rearrangements in cancer evolution. NATURE CANCER 2024; 5:228-239. [PMID: 38286829 PMCID: PMC7616040 DOI: 10.1038/s43018-023-00711-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/14/2023] [Indexed: 01/31/2024]
Abstract
Mutational processes that alter large genomic regions occur frequently in developing tumors. They range from simple copy number gains and losses to the shattering and reassembly of entire chromosomes. These catastrophic events, such as chromothripsis, chromoplexy and the formation of extrachromosomal DNA, affect the expression of many genes and therefore have a substantial effect on the fitness of the cells in which they arise. In this review, we cover large genomic alterations, the mechanisms that cause them and their effect on tumor development and evolution.
Collapse
Affiliation(s)
- Toby M Baker
- The Francis Crick Institute, London, UK
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sara Waise
- The Francis Crick Institute, London, UK
- Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Maxime Tarabichi
- The Francis Crick Institute, London, UK
- Institute for Interdisciplinary Research (IRIBHM), Université Libre de Bruxelles, Brussels, Belgium
| | - Peter Van Loo
- The Francis Crick Institute, London, UK.
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
19
|
Zhang X, Kschischo M. Profiling Numerical and Structural Chromosomal Instability in Different Cancer Types. Methods Mol Biol 2024; 2825:345-360. [PMID: 38913320 DOI: 10.1007/978-1-0716-3946-7_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Many cancers display whole chromosome instability (W-CIN) and structural chromosomal instability (S-CIN), referring to increased rates of acquiring numerically and structurally abnormal chromosome changes. This protocol provides detailed steps to analyze the W-CIN and S-CIN across cancer types, intending to leverage large-scale bulk sequencing and SNP array data complemented with the computational models to gain a better understanding of W-CIN and S-CIN.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany
- Department of Informatics, Technical University of Munich, Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, Remagen, Germany.
- Institute for Computer Science, University of Koblenz, Koblenz, Germany.
| |
Collapse
|
20
|
Wang H, Wang W, Wang Z, Li X. Transcriptomic correlates of cell cycle checkpoints with distinct prognosis, molecular characteristics, immunological regulation, and therapeutic response in colorectal adenocarcinoma. Front Immunol 2023; 14:1291859. [PMID: 38143740 PMCID: PMC10749195 DOI: 10.3389/fimmu.2023.1291859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/22/2023] [Indexed: 12/26/2023] Open
Abstract
Backgrounds Colorectal adenocarcinoma (COAD), accounting for the most common subtype of colorectal cancer (CRC), is a kind of malignant digestive tumor. Some cell cycle checkpoints (CCCs) have been found to contribute to CRC progression, whereas the functional roles of a lot of CCCs, especially the integrated role of checkpoint mechanism in the cell cycle, remain unclear. Materials and methods The Genomic Data Commons (GDC) The Cancer Genome Atlas (TCGA) COAD cohort was retrieved as the training dataset, and GSE24551 and GSE29623 were downloaded from Gene Expression Omnibus (GEO) as the validation datasets. A total of 209 CCC-related genes were derived from the Gene Ontology Consortium and were subsequently enrolled in the univariate, multivariate, and least absolute shrinkage and selection operator (LASSO) Cox regression analyses, finally defining a CCC signature. Cell proliferation and Transwell assay analyses were utilized to evaluate the functional roles of signature-related CCCs. The underlying CCC signature, molecular characteristics, immune-related features, and therapeutic response were finally estimated. The Genomics of Drug Sensitivity in Cancer (GDSC) database was employed for the evaluation of chemotherapeutic responses. Results The aberrant gene expression of CCCs greatly contributed to COAD development and progression. Univariate Cox regression analysis identified 27 CCC-related genes significantly affecting the overall survival (OS) of COAD patients; subsequently, LASSO analysis determined a novel CCC signature. Noticeably, CDK5RAP2, MAD1L1, NBN, RGCC, and ZNF207 were first identified to be correlated with the prognosis of COAD, and it was proven that all of them were significantly correlated with the proliferation and invasion of HCT116 and SW480 cells. In TCGA COAD cohort, CCC signature robustly stratified COAD patients into high and low CCC score groups (median OS: 57.24 months vs. unreached, p< 0.0001), simultaneously, with the good AUC values for OS prediction at 1, 2, and 3 years were 0.74, 0.78, and 0.77. Furthermore, the prognostic capacity of the CCC signature was verified in the GSE24551 and GSE29623 datasets, and the CCC signature was independent of clinical features. Moreover, a higher CCC score always indicated worse OS, regardless of clinical features, histological subtypes, or molecular subgroups. Intriguingly, functional enrichment analysis confirmed the CCC score was markedly associated with extracellular, matrix and immune (chemokine)-related signaling, cell cycle-related signaling, and metabolisms. Impressively, a higher CCC score was positively correlated with a majority of chemokines, receptors, immunostimulators, and anticancer immunity, indicating a relatively immune-promoting microenvironment. In addition, GSE173839, GSE25066, GSE41998, and GSE194040 dataset analyses of the underlying CCC signature suggested that durvalumab with olaparib and paclitaxel, taxane-anthracycline chemotherapy, neoadjuvant cyclophosphamide/doxorubicin with ixabepilone or paclitaxel, and immunotherapeutic strategies might be suitable for COAD patients with higher CCC score. Eventually, the GDSC database analysis showed that lower CCC scores were likely to be more sensitive to 5-fluorouracil, bosutinib, gemcitabine, gefitinib, methotrexate, mitomycin C, and temozolomide, while patients with higher CCC score seemed to have a higher level of sensitivity to bortezomib and elesclomol. Conclusion The novel CCC signature exhibited a good ability for prognosis prediction for COAD patients, and the CCC score was found to be highly correlated with molecular features, immune-related characteristics, and therapeutic responses, which would greatly promote clinical management and precision medicine for COAD.
Collapse
Affiliation(s)
- Heng Wang
- Department of Colorectal Surgery, Shanghai Yangpu Hospital of Traditional Chinese Medicine, Shanghai, China
| | - Wei Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Zhen Wang
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Xu Li
- Department of Colorectal Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
21
|
Taluri S, Oza VH, Soelter TM, Fisher JL, Lasseigne BN. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. Cancer Rep (Hoboken) 2023; 6:e1902. [PMID: 37680168 PMCID: PMC10728508 DOI: 10.1002/cnr2.1902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 08/16/2023] [Accepted: 08/27/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. AIMS Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). METHODS AND RESULTS Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. CONCLUSIONS We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.
Collapse
Affiliation(s)
- Sasha Taluri
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, School of MedicineUniversity of Alabama at BirminghamBirminghamAlabamaUSA
| |
Collapse
|
22
|
Olofsson P, Chipkin L, Daileda RC, Azevedo RBR. Mutational meltdown in asexual populations doomed to extinction. J Math Biol 2023; 87:88. [PMID: 37994999 DOI: 10.1007/s00285-023-02019-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 07/03/2023] [Accepted: 10/20/2023] [Indexed: 11/24/2023]
Abstract
Asexual populations are expected to accumulate deleterious mutations through a process known as Muller's ratchet. Lynch and colleagues proposed that the ratchet eventually results in a vicious cycle of mutation accumulation and population decline that drives populations to extinction. They called this phenomenon mutational meltdown. Here, we analyze mutational meltdown using a multi-type branching process model where, in the presence of mutation, populations are doomed to extinction. We analyse the change in size and composition of the population and the time of extinction under this model.
Collapse
Affiliation(s)
- Peter Olofsson
- Department of Mathematics, Trinity University, San Antonio, TX, 78212, USA
- Department of Mathematics, Physics and Chemical Engineering, Jönköping University, 551 11, Jönköping, Sweden
| | - Logan Chipkin
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA
| | - Ryan C Daileda
- Department of Mathematics, Trinity University, San Antonio, TX, 78212, USA
| | - Ricardo B R Azevedo
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
23
|
Taluri S, Oza VH, Soelter TM, Fisher JL, Lasseigne BN. Inferring chromosomal instability from copy number aberrations as a measure of chromosomal instability across human cancers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.542174. [PMID: 37292608 PMCID: PMC10245901 DOI: 10.1101/2023.05.24.542174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Background Cancer is a complex disease that is the second leading cause of death in the United States. Despite research efforts, the ability to manage cancer and select optimal therapeutic responses for each patient remains elusive. Chromosomal instability (CIN) is primarily a product of segregation errors wherein one or many chromosomes, in part or whole, vary in number. CIN is an enabling characteristic of cancer, contributes to tumor-cell heterogeneity, and plays a crucial role in the multistep tumorigenesis process, especially in tumor growth and initiation and in response to treatment. Aims Multiple studies have reported different metrics for analyzing copy number aberrations as surrogates of CIN from DNA copy number variation data. However, these metrics differ in how they are calculated with respect to the type of variation, the magnitude of change, and the inclusion of breakpoints. Here we compared metrics capturing CIN as either numerical aberrations, structural aberrations, or a combination of the two across 33 cancer data sets from The Cancer Genome Atlas (TCGA). Methods and results Using CIN inferred by methods in the CINmetrics R package, we evaluated how six copy number CIN surrogates compared across TCGA cohorts by assessing each across tumor types, as well as how they associate with tumor stage, metastasis, and nodal involvement, and with respect to patient sex. Conclusions We found that the tumor type impacts how well any two given CIN metrics correlate. While we also identified overlap between metrics regarding their association with clinical characteristics and patient sex, there was not complete agreement between metrics. We identified several cases where only one CIN metric was significantly associated with a clinical characteristic or patient sex for a given tumor type. Therefore, caution should be used when describing CIN based on a given metric or comparing it to other studies.
Collapse
Affiliation(s)
- Sasha Taluri
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Vishal H. Oza
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Tabea M. Soelter
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jennifer L. Fisher
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brittany N. Lasseigne
- Department of Cell, Developmental and Integrative Biology, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
24
|
Kikutake C, Suyama M. Pan-cancer analysis of whole-genome doubling and its association with patient prognosis. BMC Cancer 2023; 23:619. [PMID: 37400777 DOI: 10.1186/s12885-023-11132-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 06/29/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Whole-genome doubling (WGD) is a common mutation in cancer. Various studies have suggested that WGD is associated with a poor prognosis in cancer. However, the detailed association between WGD occurrence and prognosis remains unclear. In this study, we aimed to elucidate the mechanism by which WGD affects prognosis using sequencing data from the Pan-Cancer Analysis of Whole Genomes (PCAWG) and The Cancer Genome Atlas. METHODS Whole-genome sequencing data of 23 cancer types were downloaded from PCAWG project. We defined the WGD event in each sample using the WGD status annotated using PCAWG. We used MutationTimeR to predict the relative timings of mutations and loss of heterozygosity (LOH) in WGD, thus evaluating their association with WGD. We also analyzed the association between WGD-associated factors and patient prognosis. RESULTS WGD was associated with several factors, e.g., length of LOH regions. Survival analysis using WGD-associated factors revealed that longer LOH regions and LOH in chr17 were associated with poor prognosis in samples with WGD (WGD samples) and samples without WGD (nWGD samples). In addition to these two factors, nWGD samples showed that the number of mutations in tumor suppressor genes was associated with prognosis. Moreover, we explored the genes associated with prognosis in both samples separately. CONCLUSION The prognosis-related factors in WGD samples differed significantly compared with those in nWGD samples. This study emphasizes the need for different treatment strategies for WGD and nWGD samples.
Collapse
Affiliation(s)
- Chie Kikutake
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan
| | - Mikita Suyama
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, 812-8582, Japan.
| |
Collapse
|
25
|
Piemonte KM, Webb BM, Bobbitt JR, Majmudar PR, Cuellar-Vite L, Bryson BL, Latina NC, Seachrist DD, Keri RA. Disruption of CDK7 signaling leads to catastrophic chromosomal instability coupled with a loss of condensin-mediated chromatin compaction. J Biol Chem 2023; 299:104834. [PMID: 37201585 PMCID: PMC10300262 DOI: 10.1016/j.jbc.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/20/2023] Open
Abstract
Chromatin organization is highly dynamic and modulates DNA replication, transcription, and chromosome segregation. Condensin is essential for chromosome assembly during mitosis and meiosis, as well as maintenance of chromosome structure during interphase. While it is well established that sustained condensin expression is necessary to ensure chromosome stability, the mechanisms that control its expression are not yet known. Herein, we report that disruption of cyclin-dependent kinase 7 (CDK7), the core catalytic subunit of CDK-activating kinase, leads to reduced transcription of several condensin subunits, including structural maintenance of chromosomes 2 (SMC2). Live and static microscopy revealed that inhibiting CDK7 signaling prolongs mitosis and induces chromatin bridge formation, DNA double-strand breaks, and abnormal nuclear features, all of which are indicative of mitotic catastrophe and chromosome instability. Affirming the importance of condensin regulation by CDK7, genetic suppression of the expression of SMC2, a core subunit of this complex, phenocopies CDK7 inhibition. Moreover, analysis of genome-wide chromatin conformation using Hi-C revealed that sustained activity of CDK7 is necessary to maintain chromatin sublooping, a function that is ascribed to condensin. Notably, the regulation of condensin subunit gene expression is independent of superenhancers. Together, these studies reveal a new role for CDK7 in sustaining chromatin configuration by ensuring the expression of condensin genes, including SMC2.
Collapse
Affiliation(s)
- Katrina M Piemonte
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Bryan M Webb
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Jessica R Bobbitt
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Parth R Majmudar
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Leslie Cuellar-Vite
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pharmacology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Benjamin L Bryson
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Nicholas C Latina
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Darcie D Seachrist
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Ruth A Keri
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA; Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA; Department of General Medical Sciences-Oncology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA.
| |
Collapse
|
26
|
Lynch AR, Bradford S, Zhou AS, Oxendine K, Henderson L, Horner VL, Weaver BA, Burkard ME. A survey of CIN measures across mechanistic models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.15.544840. [PMID: 37398147 PMCID: PMC10312700 DOI: 10.1101/2023.06.15.544840] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Chromosomal instability (CIN) is the persistent reshuffling of cancer karyotypes via chromosome mis-segregation during cell division. In cancer, CIN exists at varying levels that have differential effects on tumor progression. However, mis-segregation rates remain challenging to assess in human cancer despite an array of available measures. We evaluated measures of CIN by comparing quantitative methods using specific, inducible phenotypic CIN models of chromosome bridges, pseudobipolar spindles, multipolar spindles, and polar chromosomes. For each, we measured CIN fixed and timelapse fluorescence microscopy, chromosome spreads, 6-centromere FISH, bulk transcriptomics, and single cell DNA sequencing (scDNAseq). As expected, microscopy of tumor cells in live and fixed samples correlated well (R=0.77; p<0.01) and sensitively detect CIN. Cytogenetics approaches include chromosome spreads and 6-centromere FISH, which also correlate well (R=0.77; p<0.01) but had limited sensitivity for lower rates of CIN. Bulk genomic DNA signatures and bulk transcriptomic scores, CIN70 and HET70, did not detect CIN. By contrast, single-cell DNA sequencing (scDNAseq) detects CIN with high sensitivity, and correlates very well with imaging methods (R=0.83; p<0.01). In summary, single-cell methods such as imaging, cytogenetics, and scDNAseq can measure CIN, with the latter being the most comprehensive method accessible to clinical samples. To facilitate comparison of CIN rates between phenotypes and methods, we propose a standardized unit of CIN: Mis-segregations per Diploid Division (MDD). This systematic analysis of common CIN measures highlights the superiority of single-cell methods and provides guidance for measuring CIN in the clinical setting.
Collapse
Affiliation(s)
- Andrew R. Lynch
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Shermineh Bradford
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Amber S. Zhou
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
| | - Kim Oxendine
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Les Henderson
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Vanessa L. Horner
- Wisconsin State Laboratory of Hygiene, University of Wisconsin – Madison, Madison, WI, USA
| | - Beth A. Weaver
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Department of Cell and Regenerative Biology, University of Wisconsin – Madison, Madison, WI, USA
| | - Mark E. Burkard
- Carbone Cancer Center, University of Wisconsin – Madison, Madison, WI, USA
- McArdle Laboratory for Cancer Research, University of Wisconsin – Madison, Madison, WI, USA
- Division of Hematology Oncology and Palliative Care, Department of Medicine, University of Wisconsin – Madison, Madison, WI, USA
| |
Collapse
|
27
|
Dhital B, Rodriguez-Bravo V. Mechanisms of chromosomal instability (CIN) tolerance in aggressive tumors: surviving the genomic chaos. Chromosome Res 2023; 31:15. [PMID: 37058263 PMCID: PMC10104937 DOI: 10.1007/s10577-023-09724-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/15/2023]
Abstract
Chromosomal instability (CIN) is a pervasive feature of human cancers involved in tumor initiation and progression and which is found elevated in metastatic stages. CIN can provide survival and adaptation advantages to human cancers. However, too much of a good thing may come at a high cost for tumor cells as excessive degree of CIN-induced chromosomal aberrations can be detrimental for cancer cell survival and proliferation. Thus, aggressive tumors adapt to cope with ongoing CIN and most likely develop unique susceptibilities that can be their Achilles' heel. Determining the differences between the tumor-promoting and tumor-suppressing effects of CIN at the molecular level has become one of the most exciting and challenging aspects in cancer biology. In this review, we summarized the state of knowledge regarding the mechanisms reported to contribute to the adaptation and perpetuation of aggressive tumor cells carrying CIN. The use of genomics, molecular biology, and imaging techniques is significantly enhancing the understanding of the intricate mechanisms involved in the generation of and adaptation to CIN in experimental models and patients, which were not possible to observe decades ago. The current and future research opportunities provided by these advanced techniques will facilitate the repositioning of CIN exploitation as a feasible therapeutic opportunity and valuable biomarker for several types of human cancers.
Collapse
Affiliation(s)
- Brittiny Dhital
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
- Department of Urology, Mayo Clinic, Rochester, MN, USA
- Thomas Jefferson University Graduate School, Philadelphia, PA, USA
- Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN, USA
| | - Veronica Rodriguez-Bravo
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA.
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
28
|
Dhital B, Santasusagna S, Kirthika P, Xu M, Li P, Carceles-Cordon M, Soni RK, Li Z, Hendrickson RC, Schiewer MJ, Kelly WK, Sternberg CN, Luo J, Lujambio A, Cordon-Cardo C, Alvarez-Fernandez M, Malumbres M, Huang H, Ertel A, Domingo-Domenech J, Rodriguez-Bravo V. Harnessing transcriptionally driven chromosomal instability adaptation to target therapy-refractory lethal prostate cancer. Cell Rep Med 2023; 4:100937. [PMID: 36787737 PMCID: PMC9975292 DOI: 10.1016/j.xcrm.2023.100937] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/27/2022] [Accepted: 01/18/2023] [Indexed: 02/16/2023]
Abstract
Metastatic prostate cancer (PCa) inevitably acquires resistance to standard therapy preceding lethality. Here, we unveil a chromosomal instability (CIN) tolerance mechanism as a therapeutic vulnerability of therapy-refractory lethal PCa. Through genomic and transcriptomic analysis of patient datasets, we find that castration and chemotherapy-resistant tumors display the highest CIN and mitotic kinase levels. Functional genomics screening coupled with quantitative phosphoproteomics identify MASTL kinase as a survival vulnerability specific of chemotherapy-resistant PCa cells. Mechanistically, MASTL upregulation is driven by transcriptional rewiring mechanisms involving the non-canonical transcription factors androgen receptor splice variant 7 and E2F7 in a circuitry that restrains deleterious CIN and prevents cell death selectively in metastatic therapy-resistant PCa cells. Notably, MASTL pharmacological inhibition re-sensitizes tumors to standard therapy and improves survival of pre-clinical models. These results uncover a targetable mechanism promoting high CIN adaptation and survival of lethal PCa.
Collapse
Affiliation(s)
- Brittiny Dhital
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA; Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Sandra Santasusagna
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Perumalraja Kirthika
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Michael Xu
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Peiyao Li
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | | | - Rajesh K Soni
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Zhuoning Li
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Laboratory, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Matthew J Schiewer
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - William K Kelly
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Cora N Sternberg
- Englander Institute for Precision Medicine, Weill Cornell Department of Medicine, Meyer Cancer Center, New York-Presbyterian Hospital, New York, NY 10021, USA
| | - Jun Luo
- Urology Department, Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Amaia Lujambio
- Oncological Sciences Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Carlos Cordon-Cardo
- Pathology Department, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monica Alvarez-Fernandez
- Head & Neck Cancer Department, Institute de Investigación Sanitaria Principado de Asturias (ISPA), Institute Universitario de Oncología Principado de Asturias (IUOPA), 33011 Oviedo, Spain
| | - Marcos Malumbres
- Cell Division & Cancer Group, Spanish National Cancer Research Centre (CNIO), 28029 Madrid, Spain; Cancer Cell Cycle group, Vall d'Hebron Institute of Oncology (VHIO), 08035 Barcelona, Spain. Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Haojie Huang
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA
| | - Adam Ertel
- Thomas Jefferson University, Sidney Kimmel Cancer Center, Philadelphia, PA 19107, USA
| | - Josep Domingo-Domenech
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| | - Veronica Rodriguez-Bravo
- Biochemistry and Molecular Biology Department, Mayo Clinic, Rochester, MN 55905, USA; Urology Department, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
29
|
Liao YY, Cao WM. The progress in our understanding of CIN in breast cancer research. Front Oncol 2023; 13:1067735. [PMID: 36874134 PMCID: PMC9978327 DOI: 10.3389/fonc.2023.1067735] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 02/18/2023] Open
Abstract
Chromosomal instability (CIN) is an important marker of cancer, which is closely related to tumorigenesis, disease progression, treatment efficacy, and patient prognosis. However, due to the limitations of the currently available detection methods, its exact clinical significance remains unknown. Previous studies have demonstrated that 89% of invasive breast cancer cases possess CIN, suggesting that it has potential application in breast cancer diagnosis and treatment. In this review, we describe the two main types of CIN and discuss the associated detection methods. Subsequently, we highlight the impact of CIN in breast cancer development and progression and describe how it can influence treatment and prognosis. The goal of this review is to provide a reference on its mechanism for researchers and clinicians.
Collapse
Affiliation(s)
- Yu-Yang Liao
- Wenzhou Medical University, Wenzhou, China
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Zhejiang Cancer Hospital, Hangzhou, China
| |
Collapse
|
30
|
Intra-tumor heterogeneity, turnover rate and karyotype space shape susceptibility to missegregation-induced extinction. PLoS Comput Biol 2023; 19:e1010815. [PMID: 36689467 PMCID: PMC9917311 DOI: 10.1371/journal.pcbi.1010815] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/10/2023] [Accepted: 12/12/2022] [Indexed: 01/24/2023] Open
Abstract
The phenotypic efficacy of somatic copy number alterations (SCNAs) stems from their incidence per base pair of the genome, which is orders of magnitudes greater than that of point mutations. One mitotic event stands out in its potential to significantly change a cell's SCNA burden-a chromosome missegregation. A stochastic model of chromosome mis-segregations has been previously developed to describe the evolution of SCNAs of a single chromosome type. Building upon this work, we derive a general deterministic framework for modeling missegregations of multiple chromosome types. The framework offers flexibility to model intra-tumor heterogeneity in the SCNAs of all chromosomes, as well as in missegregation- and turnover rates. The model can be used to test how selection acts upon coexisting karyotypes over hundreds of generations. We use the model to calculate missegregation-induced population extinction (MIE) curves, that separate viable from non-viable populations as a function of their turnover- and missegregation rates. Turnover- and missegregation rates estimated from scRNA-seq data are then compared to theoretical predictions. We find convergence of theoretical and empirical results in both the location of MIE curves and the necessary conditions for MIE. When a dependency of missegregation rate on karyotype is introduced, karyotypes associated with low missegregation rates act as a stabilizing refuge, rendering MIE impossible unless turnover rates are exceedingly high. Intra-tumor heterogeneity, including heterogeneity in missegregation rates, increases as tumors progress, rendering MIE unlikely.
Collapse
|
31
|
Yang F, Zhou L, Chen J, Luo Y, Wang Y. Survival association of XRCC1 for patients with head and neck squamous cell carcinoma: A systematic review and meta-analysis. Front Genet 2023; 13:1035910. [PMID: 36685969 PMCID: PMC9849232 DOI: 10.3389/fgene.2022.1035910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/29/2022] [Indexed: 01/06/2023] Open
Abstract
Background: Epidemiologic studies have demonstrated that X-ray repair cross-complementary group 1 (XRCC1) is one of the susceptibility factors in head and neck squamous cell carcinoma (HNSCC) patients. However, its clinical prognostic impact remains controversial. Thus, a meta-analysis was performed to clarify the association between XRCC1 and the survival outcomes in HNSCC patients. Methods: Following the Preferred Reporting Items or Systematic Reviews Meta Analyses (PRISMA) 2020 guidelines, literature searches were systematically performed in PubMed, EMBASE, Web of Science, Wanfang, and Chinese National Knowledge Infrastructure (CNKI) databases with manual retrieval. Hazard ratios (HRs) and 95% confidence intervals (CIs) were collected to estimate the correlation between XRCC1 and the survival outcomes of HNSCC patients. Results: Ten studies including 1995 HNSCC patients who satisfied the inclusion and exclusion criteria were included in this meta-analysis. Pooled analysis indicated that XRCC1 Arg399Gln and XRCC1 high protein expression were significantly correlated with poor overall survival with HR of 1.31 (95% CIs: 1.03-1.66, p = 0.027) and 2.32 (95% CIs: 1.55-3.48 p = 0.000) in HNSCC patients. In addition, our results demonstrated that XRCC1 was significantly associated with poor progression-free survival (HR = 1.42, 95% CIs: 1.15-1.75, p = 0.001) in HNSCC patients. ConclusionThis meta-analysis demonstrated that XRCC1 Arg399Gln and XRCC1 high protein expression increase the risk of poor survival for HNSCC patients. XRCC1 is a potential therapeutic target for HNSCC.
Collapse
|
32
|
Gordon MR, Zhu J, Sun G, Li R. Suppression of chromosome instability by targeting a DNA helicase in budding yeast. Mol Biol Cell 2023; 34:ar3. [PMID: 36350688 PMCID: PMC9816644 DOI: 10.1091/mbc.e22-09-0395] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
Chromosome instability (CIN) is an important driver of cancer initiation, progression, drug resistance, and aging. As such, genes whose inhibition suppresses CIN are potential therapeutic targets. We report here that deletion of an accessory DNA helicase, Rrm3, suppresses high CIN caused by a wide range of genetic or pharmacological perturbations in yeast. Although this helicase mutant has altered cell cycle dynamics, suppression of CIN by rrm3∆ is independent of the DNA damage and spindle assembly checkpoints. Instead, the rrm3∆ mutant may have increased kinetochore-microtubule error correction due to an altered localization of Aurora B kinase and associated phosphatase, PP2A-Rts1.
Collapse
Affiliation(s)
- Molly R. Gordon
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Jin Zhu
- Mechanobiology Institute and
| | - Gordon Sun
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Department of Biomedical Engineering and
| | - Rong Li
- Department of Cell Biology, Center for Cell Dynamics, Johns Hopkins University School of Medicine, Baltimore, MD 21205
- Mechanobiology Institute and
- Department of Biological Sciences, National University of Singapore, 117411
- Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218
| |
Collapse
|
33
|
Moreno-Andrés D, Holl K, Antonin W. The second half of mitosis and its implications in cancer biology. Semin Cancer Biol 2023; 88:1-17. [PMID: 36436712 DOI: 10.1016/j.semcancer.2022.11.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/16/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022]
Abstract
The nucleus undergoes dramatic structural and functional changes during cell division. With the entry into mitosis, in human cells the nuclear envelope breaks down, chromosomes rearrange into rod-like structures which are collected and segregated by the spindle apparatus. While these processes in the first half of mitosis have been intensively studied, much less is known about the second half of mitosis, when a functional nucleus reforms in each of the emerging cells. Here we review our current understanding of mitotic exit and nuclear reformation with spotlights on the links to cancer biology.
Collapse
Affiliation(s)
- Daniel Moreno-Andrés
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany.
| | - Kristin Holl
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| | - Wolfram Antonin
- Institute of Biochemistry and Molecular Cell Biology, Medical School, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
34
|
Castellanos G, Valbuena DS, Pérez E, Villegas VE, Rondón-Lagos M. Chromosomal Instability as Enabling Feature and Central Hallmark of Breast Cancer. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:189-211. [PMID: 36923397 PMCID: PMC10010144 DOI: 10.2147/bctt.s383759] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/11/2022] [Indexed: 03/11/2023]
Abstract
Chromosomal instability (CIN) has become a topic of great interest in recent years, not only for its implications in cancer diagnosis and prognosis but also for its role as an enabling feature and central hallmark of cancer. CIN describes cell-to-cell variation in the number or structure of chromosomes in a tumor population. Although extensive research in recent decades has identified some associations between CIN with response to therapy, specific associations with other hallmarks of cancer have not been fully evidenced. Such associations place CIN as an enabling feature of the other hallmarks of cancer and highlight the importance of deepening its knowledge to improve the outcome in cancer. In addition, studies conducted to date have shown paradoxical findings about the implications of CIN for therapeutic response, with some studies showing associations between high CIN and better therapeutic response, and others showing the opposite: associations between high CIN and therapeutic resistance. This evidences the complex relationships between CIN with the prognosis and response to treatment in cancer. Considering the above, this review focuses on recent studies on the role of CIN in cancer, the cellular mechanisms leading to CIN, its relationship with other hallmarks of cancer, and the emerging therapeutic approaches that are being developed to target such instability, with a primary focus on breast cancer. Further understanding of the complexity of CIN and its association with other hallmarks of cancer could provide a better understanding of the cellular and molecular mechanisms involved in prognosis and response to treatment in cancer and potentially lead to new drug targets.
Collapse
Affiliation(s)
- Giovanny Castellanos
- Maestría en Ciencias Biológicas, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia.,School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Duván Sebastián Valbuena
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Erika Pérez
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| | - Victoria E Villegas
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Milena Rondón-Lagos
- School of Biological Sciences, Universidad Pedagógica y Tecnológica de Colombia, Tunja, Colombia
| |
Collapse
|
35
|
Tucker JB, Bonema SC, García-Varela R, Denu RA, Hu Y, McGregor SM, Burkard ME, Weaver BA. Misaligned Chromosomes are a Major Source of Chromosomal Instability in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2023; 3:54-65. [PMID: 36968230 PMCID: PMC10035514 DOI: 10.1158/2767-9764.crc-22-0302] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/17/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022]
Abstract
Chromosomal instability (CIN), the persistent reshuffling of chromosomes during mitosis, is a hallmark of human cancers that contributes to tumor heterogeneity and has been implicated in driving metastasis and altering responses to therapy. Though multiple mechanisms can produce CIN, lagging chromosomes generated from abnormal merotelic attachments are the major cause of CIN in a variety of cell lines, and are expected to predominate in cancer. Here, we quantify CIN in breast cancer using a tumor microarray, matched primary and metastatic samples, and patient-derived organoids from primary breast cancer. Surprisingly, misaligned chromosomes are more common than lagging chromosomes and represent a major source of CIN in primary and metastatic tumors. This feature of breast cancers is conserved in a majority of breast cancer cell lines. Importantly, though a portion of misaligned chromosomes align before anaphase onset, the fraction that remain represents the largest source of CIN in these cells. Metastatic breast cancers exhibit higher rates of CIN than matched primary cancers, primarily due to increases in misaligned chromosomes. Whether CIN causes immune activation or evasion is controversial. We find that misaligned chromosomes result in immune-activating micronuclei substantially less frequently than lagging and bridge chromosomes and that breast cancers with greater frequencies of lagging chromosomes and chromosome bridges recruit more stromal tumor-infiltrating lymphocytes. These data indicate misaligned chromosomes represent a major mechanism of CIN in breast cancer and provide support for differential immunostimulatory effects of specific types of CIN. Significance We surveyed the single-cell landscape of mitotic defects that generate CIN in primary and metastatic breast cancer and relevant models. Misaligned chromosomes predominate, and are less immunostimulatory than other chromosome segregation errors.
Collapse
Affiliation(s)
- John B. Tucker
- Cancer Biology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Sarah C. Bonema
- Molecular and Cellular Pharmacology Graduate Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | | | - Ryan A. Denu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Yang Hu
- Medical Scientist Training Program, University of Wisconsin–Madison, Madison, Wisconsin
| | - Stephanie M. McGregor
- Department of Pathology and Laboratory Medicine, University of Wisconsin–Madison, Madison, Wisconsin
| | - Mark E. Burkard
- Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
| | - Beth A. Weaver
- Department of Oncology/McArdle Laboratory for Cancer Research, University of Wisconsin–Madison, Madison, Wisconsin
- Carbone Cancer Center, University of Wisconsin–Madison, Madison, Wisconsin
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Madison, Wisconsin
| |
Collapse
|
36
|
The Adaptability of Chromosomal Instability in Cancer Therapy and Resistance. Int J Mol Sci 2022; 24:ijms24010245. [PMID: 36613695 PMCID: PMC9820635 DOI: 10.3390/ijms24010245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/14/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Variation in chromosome structure is a central source of DNA damage and DNA damage response, together representinga major hallmark of chromosomal instability. Cancer cells under selective pressure of therapy use DNA damage and DNA damage response to produce newfunctional assets as an evolutionary mechanism. Recent efforts to understand DNA damage/chromosomal instability and elucidate its role in initiation or progression of cancer have also disclosed its vulnerabilities represented by inappropriate DNA damage response, chromatin changes, andinflammation. Understanding these vulnerabilities can provide important clues for predicting treatment response and for the development of novel strategies that prevent the emergence of therapy resistant tumors.
Collapse
|
37
|
Qian DC, Lefferts JA, Zaki BI, Brickley EB, Jackson CR, Andrici J, Sriharan A, Lisovsky M. Development and validation of a molecular tool to predict pathologic complete response in esophageal adenocarcinoma. Dis Esophagus 2022; 35:doac035. [PMID: 35758407 PMCID: PMC10893915 DOI: 10.1093/dote/doac035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/27/2022] [Indexed: 12/11/2022]
Abstract
Pathologic complete response (pCR) to neoadjuvant chemoradiation for locally advanced esophageal adenocarcinoma (EAC) confers significantly improved survival. The ability to infer pCR may spare esophagectomy in some patients. Currently, there are no validated biomarkers of pCR. This study sought to evaluate whether a distinct signature of DNA copy number alterations (CNA) can be predictive of pCR in EAC. Pretreatment biopsies from 38 patients with locally advanced EAC (19 with pCR and 19 with pathologic partial/poor response) were assessed for CNA using OncoScan assay. A novel technique was employed where within every cytogenetic band, the quantity of bases gained by each sample was computed as the sum of gained genomic segment lengths weighted by the surplus copy number of each segment. A threefold cross-validation was used to assess association with pCR or pathologic partial/poor response. Forty patients with locally advanced EAC from The Cancer Genome Atlas (TCGA) constituted an independent validation cohort. Gains in the chromosomal loci 14q11 and 17p11 were preferentially associated with pCR. Average area under the receiver operating characteristic curve (AUC) for predicting pCR was 0.80 among the threefold cross-validation test sets. Using 0.3 megabases as the cutoff that optimizes trade-off between sensitivity (63%) and specificity (89%) in the discovery cohort, similar prediction performance for clinical and radiographic response was demonstrated in the validation cohort from TCGA (sensitivity 61%, specificity 82%). Copy number gains in the 14q11 and 17p11 loci may be useful for prediction of pCR, and, potentially, personalization of esophagectomy in EAC.
Collapse
Affiliation(s)
- David C Qian
- Department of Radiation Oncology, Winship Cancer Institute of Emory University, Atlanta, GA, USA
| | - Joel A Lefferts
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Bassem I Zaki
- Department of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Elizabeth B Brickley
- Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Christopher R Jackson
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Juliana Andrici
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Aravindhan Sriharan
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - Mikhail Lisovsky
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|
38
|
Paolini L, Hussain S, Galardy PJ. Chromosome instability in neuroblastoma: A pathway to aggressive disease. Front Oncol 2022; 12:988972. [PMID: 36338721 PMCID: PMC9633097 DOI: 10.3389/fonc.2022.988972] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 10/03/2022] [Indexed: 11/15/2023] Open
Abstract
For over 100-years, genomic instability has been investigated as a central player in the pathogenesis of human cancer. Conceptually, genomic instability includes an array of alterations from small deletions/insertions to whole chromosome alterations, referred to as chromosome instability. Chromosome instability has a paradoxical impact in cancer. In most instances, the introduction of chromosome instability has a negative impact on cellular fitness whereas in cancer it is usually associated with a worse prognosis. One exception is the case of neuroblastoma, the most common solid tumor outside of the brain in children. Neuroblastoma tumors have two distinct patterns of genome instability: whole-chromosome aneuploidy, which is associated with a better prognosis, or segmental chromosomal alterations, which is a potent negative prognostic factor. Through a computational screen, we found that low levels of the de- ubiquitinating enzyme USP24 have a highly significant negative impact on survival in neuroblastoma. At the molecular level, USP24 loss leads to destabilization of the microtubule assembly factor CRMP2 - producing mitotic errors and leading to chromosome missegregation and whole-chromosome aneuploidy. This apparent paradox may be reconciled through a model in which whole chromosome aneuploidy leads to the subsequent development of segmental chromosome alterations. Here we review the mechanisms behind chromosome instability and the evidence for the progressive development of segmental alterations from existing numerical aneuploidy in support of a multi-step model of neuroblastoma progression.
Collapse
Affiliation(s)
- Lucia Paolini
- Department of Pediatrics, University of Milano-Bicocca, San Gerardo Hospital, Monza, MI, Italy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Sajjad Hussain
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
| | - Paul J. Galardy
- Department of Pediatric and Adolescent Medicine, Mayo Clinic, Rochester, MN, United States
- Division of Pediatric Hematology-Oncology, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
39
|
Genomic Instability in Cerebrospinal Fluid Cell-Free DNA Predicts Poor Prognosis in Solid Tumor Patients with Meningeal Metastasis. Cancers (Basel) 2022; 14:cancers14205028. [PMID: 36291812 PMCID: PMC9600191 DOI: 10.3390/cancers14205028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Simple Summary We established a genomic instability score using unfiltered sequencing data from meningeal metastasis (MM) cell-free circulating tumor DNA (ctDNA) samples and found that substantial genomic instability (GI) was present in cerebrospinal fluid ctDNA rather than plasma ctDNA, implying that MM lesions have a significantly increased GI status compared to primary tumors or extracranial metastatic lesions, which may suggest tumor clonal evolution. We also found that high GI status was an independent poor prognostic factor in lung adenocarcinoma MM patients, including meningeal metastasis-free survival (MFS) and overall survival (OS). Considering that genomically unstable tumors are more sensitive to PARP inhibitors, targeting GI alone or in combination with conventional therapy may be a promising treatment strategy for solid tumor patients with MM. Abstract Genomic instability (GI), which leads to the accumulation of DNA loss, gain, and rearrangement, is a hallmark of many cancers such as lung cancer, breast cancer, and colon cancer. However, the clinical significance of GI has not been systematically studied in the meningeal metastasis (MM) of solid tumors. Here, we collected both cerebrospinal fluid (CSF) and plasma samples from 56 solid tumor MM patients and isolated cell-free ctDNA to investigate the GI status using a next-generation sequencing-based comprehensive genomic profiling of 543 cancer-related genes. According to the unfiltered heterozygous mutation data-derived GI score, we found that 37 (66.1%) cases of CSF and 3 cases (6%) of plasma had a high GI status, which was further validated by low-depth whole-genome sequencing analysis. It is demonstrated that a high GI status in CSF was associated with poor prognosis, high intracranial pressure, and low Karnofsky performance status scores. More notably, a high GI status was an independent poor prognostic factor of poor MM-free survival and overall survival in lung adenocarcinoma MM patients. Furthermore, high occurrences of the co-mutation of TP53/EGFR, TP53/RB1, TP53/ERBB2, and TP53/KMT2C were found in MM patients with a high GI status. In summary, the GI status in CSF ctDNA might be a valuable prognostic indicator in solid tumor patients with MM.
Collapse
|
40
|
Wu Y, Biswas D, Swanton C. Impact of cancer evolution on immune surveillance and checkpoint inhibitor response. Semin Cancer Biol 2022; 84:89-102. [PMID: 33631295 PMCID: PMC9253787 DOI: 10.1016/j.semcancer.2021.02.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 02/18/2021] [Accepted: 02/19/2021] [Indexed: 12/21/2022]
Abstract
Intratumour heterogeneity (ITH) is pervasive across all cancers studied and may provide the evolving tumour multiple routes to escape immune surveillance. Immune checkpoint inhibitors (CPIs) are rapidly becoming standard of care for many cancers. Here, we discuss recent work investigating the influence of ITH on patient response to immune checkpoint inhibitor (CPI) therapy. At its simplest, ITH may confound the diagnostic accuracy of predictive biomarkers used to stratify patients for CPI therapy. Furthermore, ITH is fuelled by mechanisms of genetic instability that can both engage immune surveillance and drive immune evasion. A greater appreciation of the interplay between ITH and the immune system may hold the key to increasing the proportion of patients experiencing durable responses from CPI therapy.
Collapse
Affiliation(s)
- Yin Wu
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King's College London, London, SE1 9RT, UK
| | - Dhruva Biswas
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK; Bill Lyons Informatics Centre, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK
| | - Charles Swanton
- Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, NW1 1AT, UK; Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, Paul O'Gorman Building, London, WC1E 6DD, UK.
| |
Collapse
|
41
|
Negoto T, Jo M, Nakayama I, Morioka M, Takeuchi K, Kawachi H, Hirota T. Profiling chromosomal-level variations in gastric malignancies. Cancer Sci 2022; 113:3864-3876. [PMID: 36002148 DOI: 10.1111/cas.15544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/07/2022] [Accepted: 08/12/2022] [Indexed: 11/28/2022] Open
Abstract
Aneuploidy arises from persistent chromosome segregation errors, or chromosomal instability. Although it has long been known as a hallmark of cancer cells, reduced cellular fitness upon induced ploidy alterations hinders the understanding of how aneuploidy relates to cancer development in the body. In this study, we employed the fluorescence in situ hybridization (FISH) analysis targeting centromeres to indicate ploidy changes, and quantitatively evaluated the ploidy statuses of gastric tumors derived from a total of 214 patients, ranging from early to advanced diseases. We found that cancer cells reveal a marked elevation of aneuploid population, increasingly in cases diagnosed in advanced stages. The expansion of aneuploid population is well associated with p53 deficiency, consistent with its essential role in genome maintenance. Comparisons among multiple locations within the tumor, or between the primary and metastatic tumors, indicated that cancer cells mostly remain their ploidy alterations throughout the primary tumors, but metastatic tumors may be consisted of cells with either increased or decreased levels of aneuploidy. We also found that a notable proportion of polyploid cells are often present already in chronic gastritis epithelia. These observations underscore that the chromosome-level variations are widespread in gastric cancers, shaping their genetic heterogeneity and malignant properties.
Collapse
Affiliation(s)
- Tetsuya Negoto
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Neurosurgery, Kurume University, School of Medicine, Kurume, 830-0011, Japan
| | - Minji Jo
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Izuma Nakayama
- Department of Gastroenterology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Motohiro Morioka
- Department of Neurosurgery, Kurume University, School of Medicine, Kurume, 830-0011, Japan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Pathology Project for Molecular Targets, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Hiroshi Kawachi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan.,Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| | - Toru Hirota
- Division of Experimental Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, 135-8550, Japan
| |
Collapse
|
42
|
Richardson TE, Walker JM, Abdullah KG, McBrayer SK, Viapiano MS, Mussa ZM, Tsankova NM, Snuderl M, Hatanpaa KJ. Chromosomal instability in adult-type diffuse gliomas. Acta Neuropathol Commun 2022; 10:115. [PMID: 35978439 PMCID: PMC9386991 DOI: 10.1186/s40478-022-01420-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/04/2022] [Indexed: 11/14/2022] Open
Abstract
Chromosomal instability (CIN) is a fundamental property of cancer and a key underlying mechanism of tumorigenesis and malignant progression, and has been documented in a wide variety of cancers, including colorectal carcinoma with mutations in genes such as APC. Recent reports have demonstrated that CIN, driven in part by mutations in genes maintaining overall genomic stability, is found in subsets of adult-type diffusely infiltrating gliomas of all histologic and molecular grades, with resulting elevated overall copy number burden, chromothripsis, and poor clinical outcome. Still, relatively few studies have examined the effect of this process, due in part to the difficulty of routinely measuring CIN clinically. Herein, we review the underlying mechanisms of CIN, the relationship between chromosomal instability and malignancy, the prognostic significance and treatment potential in various cancers, systemic disease, and more specifically, in diffusely infiltrating glioma subtypes. While still in the early stages of discovery compared to other solid tumor types in which CIN is a known driver of malignancy, the presence of CIN as an early factor in gliomas may in part explain the ability of these tumors to develop resistance to standard therapy, while also providing a potential molecular target for future therapies.
Collapse
Affiliation(s)
- Timothy E. Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Jamie M. Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Kalil G. Abdullah
- Department of Neurosurgery, University of Pittsburgh School of Medicine, 200 Lothrop St, Pittsburgh, PA 15213 USA
- Hillman Comprehensive Cancer Center, University of Pittsburgh Medical Center, 5115 Centre Ave, Pittsburgh, PA 15232 USA
| | - Samuel K. McBrayer
- Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
- Children’s Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| | - Mariano S. Viapiano
- Department of Neuroscience and Physiology, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
- Department of Neurosurgery, State University of New York, Upstate Medical University, Syracuse, NY 13210 USA
| | - Zarmeen M. Mussa
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
| | - Nadejda M. Tsankova
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15th Floor, 1468 Madison Avenue, New York, NY 10029 USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029 USA
| | - Matija Snuderl
- Department of Pathology, New York University Langone Health, New York City, NY 10016 USA
| | - Kimmo J. Hatanpaa
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX 75390 USA
| |
Collapse
|
43
|
Pinilla K, Drewett LM, Lucey R, Abraham JE. Precision Breast Cancer Medicine: Early Stage Triple Negative Breast Cancer-A Review of Molecular Characterisation, Therapeutic Targets and Future Trends. Front Oncol 2022; 12:866889. [PMID: 36003779 PMCID: PMC9393396 DOI: 10.3389/fonc.2022.866889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022] Open
Abstract
Personalised approaches to the management of all solid tumours are increasing rapidly, along with wider accessibility for clinicians. Advances in tumour characterisation and targeted therapies have placed triple-negative breast cancers (TNBC) at the forefront of this approach. TNBC is a highly heterogeneous disease with various histopathological features and is driven by distinct molecular alterations. The ability to tailor individualised and effective treatments for each patient is of particular importance in this group due to the high risk of distant recurrence and death. The mainstay of treatment across all subtypes of TNBC has historically been cytotoxic chemotherapy, which is often associated with off-target tissue toxicity and drug resistance. Neoadjuvant chemotherapy is commonly used as it allows close monitoring of early treatment response and provides valuable prognostic information. Patients who achieve a complete pathological response after neoadjuvant chemotherapy are known to have significantly improved long-term outcomes. Conversely, poor responders face a higher risk of relapse and death. The identification of those subgroups that are more likely to benefit from breakthroughs in the personalised approach is a challenge of the current era where several targeted therapies are available. This review presents an overview of contemporary practice, and promising future trends in the management of early TNBC. Platinum chemotherapy, DNA damage response (DDR) inhibitors, immune checkpoint inhibitors, inhibitors of the PI3K-AKT-mTOR, and androgen receptor (AR) pathways are some of the increasingly studied therapies which will be reviewed. We will also discuss the growing evidence for less-developed agents and predictive biomarkers that are likely to contribute to the forthcoming advances in this field. Finally, we will propose a framework for the personalised management of TNBC based upon the integration of clinico-pathological and molecular features to ensure that long-term outcomes are optimised.
Collapse
Affiliation(s)
- Karen Pinilla
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| | - Lynsey M. Drewett
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Rebecca Lucey
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Jean E. Abraham
- Precision Breast Cancer Institute, University of Cambridge, Cambridge, United Kingdom
- Department of Oncology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Cancer Research UK Cambridge Centre, Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
44
|
The impact of monosomies, trisomies and segmental aneuploidies on chromosomal stability. PLoS One 2022; 17:e0268579. [PMID: 35776704 PMCID: PMC9249180 DOI: 10.1371/journal.pone.0268579] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 05/03/2022] [Indexed: 12/01/2022] Open
Abstract
Aneuploidy and chromosomal instability are both commonly found in cancer. Chromosomal instability leads to karyotype heterogeneity in tumors and is associated with therapy resistance, metastasis and poor prognosis. It has been hypothesized that aneuploidy per se is sufficient to drive CIN, however due to limited models and heterogenous results, it has remained controversial which aspects of aneuploidy can drive CIN. In this study we systematically tested the impact of different types of aneuploidies on the induction of CIN. We generated a plethora of isogenic aneuploid clones harboring whole chromosome or segmental aneuploidies in human p53-deficient RPE-1 cells. We observed increased segregation errors in cells harboring trisomies that strongly correlated to the number of gained genes. Strikingly, we found that clones harboring only monosomies do not induce a CIN phenotype. Finally, we found that an initial chromosome breakage event and subsequent fusion can instigate breakage-fusion-bridge cycles. By investigating the impact of monosomies, trisomies and segmental aneuploidies on chromosomal instability we further deciphered the complex relationship between aneuploidy and CIN.
Collapse
|
45
|
Kjeldsen E. Congenital Aneuploidy in Klinefelter Syndrome with B-Cell Acute Lymphoblastic Leukemia Might Be Associated with Chromosomal Instability and Reduced Telomere Length. Cancers (Basel) 2022; 14:cancers14092316. [PMID: 35565445 PMCID: PMC9136641 DOI: 10.3390/cancers14092316] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/26/2022] [Accepted: 05/02/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary Klinefelter syndrome (KS) is a rare congenital aneuploidy characterized by inherited gain of one X chromosome (XXY). KS is associated with higher susceptibility to the development of cancer. Somatic acquired chromosomal aberrations and chromosomal instability are hallmarks of cancer and leukemia but little is known about the cellular mechanisms involved. The conducted research aimed to identify genomic mechanisms involved in chromosomal evolution mechanisms important for leukemic development. In the leukemic blasts of a patient with KS and B-cell acute lymphoblastic leukemia (B-ALL), we identified additional acquired chromosomal aberration and a significant reduction in the length of the chromosomal ends, i.e., telomeres. A literature review of KS patients with B-ALL revealed that the majority of these patients had acquired two or more additional chromosomal aberrations at B-ALL diagnosis. These data indicate that enhanced reduction in telomere length might be associated with chromosomal instability and may serve as a future target for therapy or prevention. Abstract Rare congenital aneuploid conditions such as trisomy 13, trisomy 18, trisomy 21 and Klinefelter syndrome (KS, 47,XXY) are associated with higher susceptibility to developing cancer compared with euploid genomes. Aneuploidy frequently co-exists with chromosomal instability, which can be viewed as a “vicious cycle” where aneuploidy potentiates chromosomal instability, leading to further karyotype diversity, and in turn, paving the adaptive evolution of cancer. However, the relationship between congenital aneuploidy per se and tumor initiation and/or progression is not well understood. We used G-banding analysis, array comparative genomic hybridization analysis and quantitative fluorescence in situ hybridization for telomere length analysis to characterize the leukemic blasts of a three-year-old boy with KS and B-cell acute lymphoblastic leukemia (B-ALL), to gain insight into genomic evolution mechanisms in congenital aneuploidy and leukemic development. We found chromosomal instability and a significant reduction in telomere length in leukemic blasts when compared with the non-leukemic aneuploid cells. Reviewing published cases with KS and B-ALL revealed 20 additional cases with B-ALL diagnostic cytogenetics. Including our present case, 67.7% (14/21) had acquired two or more additional chromosomal aberrations at B-ALL diagnosis. The presented data indicate that congenital aneuploidy in B-ALL might be associated with chromosomal instability, which may be fueled by enhanced telomere attrition.
Collapse
Affiliation(s)
- Eigil Kjeldsen
- Cancercytogenetics Section, Department of Hematology, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| |
Collapse
|
46
|
Bochtler T, Wohlfromm T, Hielscher T, Stichel D, Pouyiourou M, Kraft B, Neumann O, Endris V, von Deimling A, Stenzinger A, Krämer A. Prognostic Impact of Copy Number Alterations and Tumor Mutational Burden in Carcinoma of Unknown Primary. Genes Chromosomes Cancer 2022; 61:551-560. [DOI: 10.1002/gcc.23047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/08/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022] Open
Affiliation(s)
- Tilmann Bochtler
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V University of Heidelberg Heidelberg Germany
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) University of Heidelberg Heidelberg Germany
- Department of Internal Medicine V University of Heidelberg Heidelberg Germany
| | - Timothy Wohlfromm
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V University of Heidelberg Heidelberg Germany
| | - Thomas Hielscher
- Division of Biostatistics German Cancer Research Center (DKFZ) Heidelberg Germany
| | - Damian Stichel
- Institute of Neuropathology University of Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ)
| | - Maria Pouyiourou
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V University of Heidelberg Heidelberg Germany
- Department of Internal Medicine V University of Heidelberg Heidelberg Germany
| | - Bianca Kraft
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V University of Heidelberg Heidelberg Germany
| | - Olaf Neumann
- Institute of Pathology University of Heidelberg Heidelberg Germany
| | - Volker Endris
- Institute of Pathology University of Heidelberg Heidelberg Germany
| | - Andreas von Deimling
- Institute of Neuropathology University of Heidelberg Heidelberg Germany
- Clinical Cooperation Unit Neuropathology German Cancer Research Center (DKFZ)
| | | | - Alwin Krämer
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center (DKFZ) and Department of Internal Medicine V University of Heidelberg Heidelberg Germany
- Department of Internal Medicine V University of Heidelberg Heidelberg Germany
| |
Collapse
|
47
|
Guo S, Li T, Xu D, Xu J, Wang H, Li J, Bi X, Cao M, Xu Z, Xia Q, Cui Y, Li K. Prognostic Implications and Immune Infiltration Characteristics of Chromosomal Instability-Related Dysregulated CeRNA in Lung Adenocarcinoma. Front Mol Biosci 2022; 9:843640. [PMID: 35419410 PMCID: PMC8995899 DOI: 10.3389/fmolb.2022.843640] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Accepted: 02/22/2022] [Indexed: 12/14/2022] Open
Abstract
An accumulating body of research indicates that long-noncoding RNAs (lncRNAs) regulate the target genes and act as competitive endogenous RNAs (ceRNAs) playing an indispensable role in lung adenocarcinoma (LUAD). LUAD is frequently accompanied by the feature of chromosomal instability (CIN); however, CIN-related ceRNAs have not been investigated yet. We systematically analyzed and integrated CIN-related dysregulated ceRNAs characteristics in LUAD samples for the first time. In TCGA LUAD cohort, CIN in tumor samples was significantly higher than that in those of adjacent, and patients with high CIN risk tended to have worse clinical outcomes. We constructed a double-weighted CIN-related dysregulated ceRNA network, in which edge weight and node weight represented the disorder extent of ceRNA and the correlation of RNA expression level and prognosis, respectively. After module mining and analysis, a potential prognostic biomarker composed of 12 RNAs (8 mRNAs and 4 lncRNAs) named CIN-related dysregulated ceRNAs (CRDC) was obtained. The CRDC risk score had a positive relation with clinical stage and CIN, and patients with high CRDC risk scores exhibited poor prognosis. Moreover, CRDC tended to be an independent risk factor with high robustness to overcome the effect of multicollinearity among other explanatory variables for disease-specific survival (DSS) in TCGA and two GEO cohorts. The result of functional analysis indicated that CRDC was involved in multiple cancer progresses, especially immune-related pathways. The patients with lower CRDC risk had higher B cell, T cell CD4+, T cell CD8+, neutrophil, macrophage, and myeloid dendritic cell infiltration than the patients with higher CRDC risk. Meanwhile, patients with lower CRDC risk could get more benefits from immunological therapy. The results suggested that the CRDC could be a potential prognostic biomarker and an immunotherapy predictor for lung adenocarcinoma.
Collapse
Affiliation(s)
- Shengnan Guo
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Tianhao Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Dahua Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jiankai Xu
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
| | - Hong Wang
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Jian Li
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
| | - Xiaoman Bi
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Meng Cao
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Zhizhou Xu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
| | - Qianfeng Xia
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, NHC Key Laboratory of Control of Tropical Diseases, School of Tropical Medicine, The Second Affiliated Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| | - Ying Cui
- College of Bioinformatics Science and Technology, Cancer Hospital, Harbin Medical University, Harbin, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| | - Kongning Li
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, College of Biomedical Information and Engineering, Institute of Nephrology Second Affiliated Hospital and Hainan General Hospital, Hainan Medical University, Haikou, China
- *Correspondence: Qianfeng Xia, ; Ying Cui, ; Kongning Li,
| |
Collapse
|
48
|
Zhang X, Kschischo M. Distinct and Common Features of Numerical and Structural Chromosomal Instability across Different Cancer Types. Cancers (Basel) 2022; 14:1424. [PMID: 35326573 PMCID: PMC8946057 DOI: 10.3390/cancers14061424] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/23/2022] [Accepted: 02/27/2022] [Indexed: 01/27/2023] Open
Abstract
A large proportion of tumours is characterised by numerical or structural chromosomal instability (CIN), defined as an increased rate of gaining or losing whole chromosomes (W-CIN) or of accumulating structural aberrations (S-CIN). Both W-CIN and S-CIN are associated with tumourigenesis, cancer progression, treatment resistance and clinical outcome. Although W-CIN and S-CIN can co-occur, they are initiated by different molecular events. By analysing tumour genomic data from 33 cancer types, we show that the majority of tumours with high levels of W-CIN underwent whole genome doubling, whereas S-CIN levels are strongly associated with homologous recombination deficiency. Both CIN phenotypes are prognostic in several cancer types. Most drugs are less efficient in high-CIN cell lines, but we also report compounds and drugs which should be investigated as targets for W-CIN or S-CIN. By analysing associations between CIN and bio-molecular entities with pathway and gene expression levels, we complement gene signatures of CIN and report that the drug resistance gene CKS1B is strongly associated with S-CIN. Finally, we propose a potential copy number-dependent mechanism to activate the PI3K pathway in high-S-CIN tumours.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
- Department of Informatics, Technical University of Munich, 81675 Munich, Germany
| | - Maik Kschischo
- Department of Mathematics and Technology, University of Applied Sciences Koblenz, 53424 Remagen, Germany;
| |
Collapse
|
49
|
Truchard E, Bertolus C, Martinez P, Thomas E, Saintigny P, Foy JP. Identification of a Gene-Expression-Based Surrogate of Genomic Instability during Oral Carcinogenesis. Cancers (Basel) 2022; 14:834. [PMID: 35159101 PMCID: PMC8834046 DOI: 10.3390/cancers14030834] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/02/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Our goal was to identify a gene-expression-based surrogate of genomic instability (GI) associated with the transformation of oral potentially malignant disorder (OPMD) into oral squamous cell carcinoma (OSCC). METHODS GI was defined as the fraction of genome altered (FGA). Training sets included the CCLE and TCGA databases. The relevance of the enrichment score of the top correlated genes, referred to as the GIN score, was evaluated in eight independent public datasets from the GEO repository, including a cohort of patients with OPMD with available outcome. RESULTS A set of 20 genes correlated with FGA in head and neck SCC were identified. A significant correlation was found between the 20-gene based GIN score and FGA in 95 esophagus SCC (r = 0.59) and 501 lung SCC (r = 0.63), and in 33 OPMD/OSCC (r = 0.38). A significantly increased GIN score was observed at different stages of oral carcinogenesis (normal-dysplasia -OSCC) in five independent datasets. The GIN score was higher in 10 OPMD that transformed into oral cancer compared to 10 nontransforming OPMD (p = 0.0288), and was associated with oral-cancer-free survival in 86 patients with OPMD (p = 0.0081). CONCLUSIONS The GIN score is a gene-expression surrogate of GI, and is associated with oral carcinogenesis and OPMD malignant transformation.
Collapse
Affiliation(s)
- Eléonore Truchard
- Sorbonne Université, Department of Maxillo-Facial Surgery, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (E.T.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France; (P.M.); (P.S.)
- Department of Translational Medicine, Centre Léon Bérard, 69008 Lyon, France
| | - Chloé Bertolus
- Sorbonne Université, Department of Maxillo-Facial Surgery, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (E.T.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France; (P.M.); (P.S.)
- Department of Translational Medicine, Centre Léon Bérard, 69008 Lyon, France
| | - Pierre Martinez
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France; (P.M.); (P.S.)
| | - Emilie Thomas
- Synergie Lyon Cancer-Platform of Bioinformatics Gilles Thomas, 69008 Lyon, France;
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France; (P.M.); (P.S.)
- Department of Translational Medicine, Centre Léon Bérard, 69008 Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, 69008 Lyon, France
| | - Jean-Philippe Foy
- Sorbonne Université, Department of Maxillo-Facial Surgery, AP-HP, Hôpital Pitié-Salpêtrière, 75013 Paris, France; (E.T.); (C.B.)
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de recherche en cancérologie de Lyon, 69008 Lyon, France; (P.M.); (P.S.)
- Department of Translational Medicine, Centre Léon Bérard, 69008 Lyon, France
| |
Collapse
|
50
|
Abstract
Cancer is a group of diseases in which cells divide continuously and excessively. Cell division is tightly regulated by multiple evolutionarily conserved cell cycle control mechanisms, to ensure the production of two genetically identical cells. Cell cycle checkpoints operate as DNA surveillance mechanisms that prevent the accumulation and propagation of genetic errors during cell division. Checkpoints can delay cell cycle progression or, in response to irreparable DNA damage, induce cell cycle exit or cell death. Cancer-associated mutations that perturb cell cycle control allow continuous cell division chiefly by compromising the ability of cells to exit the cell cycle. Continuous rounds of division, however, create increased reliance on other cell cycle control mechanisms to prevent catastrophic levels of damage and maintain cell viability. New detailed insights into cell cycle control mechanisms and their role in cancer reveal how these dependencies can be best exploited in cancer treatment.
Collapse
Affiliation(s)
- Helen K Matthews
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
- Department of Biomedical Science, University of Sheffield, Sheffield, UK
| | - Cosetta Bertoli
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Robertus A M de Bruin
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
- UCL Cancer Institute, University College London, London, UK.
| |
Collapse
|