1
|
Huang Y, Yang X, Wang Y, Nai Y, Ji L, Zhu H, Lai R, Wang QT, Hu H, Wang L. ARID1A recruits GATA2 to regulate the senescence of trophoblast cells under high-glucose condition. Placenta 2024; 158:156-164. [PMID: 39490111 DOI: 10.1016/j.placenta.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/02/2024] [Accepted: 10/20/2024] [Indexed: 11/05/2024]
Abstract
INTRODUCTION Gestational diabetes mellitus (GDM) is a common complication during pregnancy. The hyperglycemic stimulation of gestational diabetes inhibits the invasion of the placental trophoblast cells. Some studies have indicated that the senescence of trophoblast cells weakens their invasive capacity, while the mechanism of trophoblast cells senescence in GDM remain elusive. METHODS We performed western blotting and Immunohistochemical staining to investigate AT-Rich Interaction Domain 1A (ARID1A) expression in GDM placental tissues. 5 mM and 30 mM glucose treated HTR-8/SVneo cells to simulate normal glucose (NG) stress and high glucose (HG) stress. Cell proliferation capacity was investigated by CCK8 assay and cell cycle assay. SA-β-gal was used to detect cellular senescence. Chip-seq characterized the binding site of ARID1A to CDKN1A. In conjunction with bioinformatics analysis, co-immunoprecipitation assays, Chip-qPCR and luciferase reporter assays were performed to prove ARID1A recruits GATA2 to CDKN1A. RESULTS We found that ARID1A has a higher expression levels in GDM placental tissues compared to the control. ARID1A overexpression suppressed cell proliferation, induced cell cycle arrest and promoted cell senescence. Conversely the inhibition of ARID1A significantly rescues HG induced senescence of trophoblast cells. To further characterize the mechanism by which ARID1A regulate the transcription of CDKN1A, co-immunoprecipitation assays, Chip-qPCR and luciferase reporter assay indicate that ARID1A recruits GATA2 to regulate the transcriptional activity of CDKN1A. DISCUSSION Our study uncovers a ARID1A mediated regulatory mechanism in GDM trophoblast cell senescence and suggests that targeting the placental ARID1A might provide new diagnostic and therapeutic strategies for GDM.
Collapse
Affiliation(s)
- Yanyi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Xiting Yang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yuexiao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Yaru Nai
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lulu Ji
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hengxuan Zhu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Rujie Lai
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Qiong Tao Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China
| | - Hanyang Hu
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| | - Lin Wang
- Department of Histology and Embryology, School of Basic Medical Sciences, Wuhan University, Wuhan, 430071, China.
| |
Collapse
|
2
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 regulate chromatin accessibility required for NKX2-1 mediated alveolar epithelial differentiation and function. Nat Commun 2024; 15:8112. [PMID: 39284798 PMCID: PMC11405758 DOI: 10.1038/s41467-024-52154-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 08/27/2024] [Indexed: 09/20/2024] Open
Abstract
While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Combined deletion of the histone methyl transferases Prdm3 and Prdm16 in early lung endoderm causes perinatal lethality due to respiratory failure from loss of AT2 cells and the accumulation of partially differentiated AT1 cells. Combination of single-cell RNA-seq, bulk ATAC-seq, and CUT&RUN data demonstrate that PRDM3 and PRDM16 regulate chromatin accessibility at NKX2-1 transcriptional targets critical for perinatal AT2 cell differentiation and surfactant homeostasis. Lineage specific deletion of PRDM3/16 in AT2 cells leads to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China.
- NHC Key Laboratory of Chronobiology, Sichuan University, Chengdu, Sichuan, China.
| | - Sheila M Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Daniel T Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - William J Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jeffrey A Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| |
Collapse
|
3
|
Salmon A, Lebeau A, Streel S, Dheur A, Schoenen S, Goffin F, Gonne E, Kridelka F, Kakkos A, Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat Rev 2024; 129:102790. [PMID: 38972136 DOI: 10.1016/j.ctrv.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Until recently, patients diagnosed with locally advanced and metastatic endometrial cancer faced significant challenges in their treatment due to limited options and poor prognostic outcomes. The sequencing of tumors has been a major advancement in its management. It has led to The Cancer Genome Atlas classification currently used in clinical practice and the initiation of several clinical trials for innovative treatments targeting principally signaling pathways, immune checkpoints, DNA integrity, growth factors, hormonal signaling, and metabolism. Numerous clinical trials are investigating a combinatorial approach of these targeted therapies to counter tumoral resistance, cellular compensatory mechanisms, and tumor polyclonality. This review provides a comprehensive overview of historical, current, and promising therapies in advanced and metastatic endometrial cancer. It particularly highlights clinical research on targeted and hormonal therapies, but also immunotherapy, reflecting the evolving landscape of treatment modalities for this disease.
Collapse
Affiliation(s)
- Alixe Salmon
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Alizée Lebeau
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sylvie Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Adriane Dheur
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sophie Schoenen
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Frédéric Goffin
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Elodie Gonne
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | | | | | | |
Collapse
|
4
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
5
|
Aluksanasuwan S, Somsuan K, Wanna-Udom S, Roytrakul S, Morchang A, Rongjumnong A, Sakulsak N. Proteomic insights into the regulatory function of ARID1A in colon cancer cells. Oncol Lett 2024; 28:392. [PMID: 38966585 PMCID: PMC11223007 DOI: 10.3892/ol.2024.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/10/2024] [Indexed: 07/06/2024] Open
Abstract
The AT-rich interacting domain-containing protein 1A (ARID1A) is a tumor suppressor gene that has been implicated in several cancers, including colorectal cancer (CRC). The present study used a proteomic approach to elucidate the molecular mechanisms of ARID1A in CRC carcinogenesis. Stable ARID1A-overexpressing SW48 colon cancer cells were established using lentivirus transduction and the successful overexpression of ARID1A was confirmed by western blotting. Label-free quantitative proteomic analysis using liquid chromatography-tandem mass spectrometry identified 705 differentially altered proteins in the ARID1A-overexpressing cells, with 310 proteins significantly increased and 395 significantly decreased compared with empty vector control cells. Gene Ontology enrichment analysis highlighted the involvement of the altered proteins mainly in the Wnt signaling pathway. Western blotting supported these findings, as a decreased protein expression of Wnt target genes, including c-Myc, transcription factor T cell factor-1/7 and cyclin D1, were observed in ARID1A-overexpressing cells. Among the altered proteins involved in the Wnt signaling pathway, the interaction network analysis revealed that ARID1A exhibited a direct interaction with E3 ubiquitin-protein ligase zinc and ring finger 3 (ZNRF3), a negative regulator of the Wnt signaling pathway. Further analyses using the The Cancer Genome Atlas colon adenocarcinoma public dataset revealed that ZNRF3 expression significantly impacted the overall survival of patients with CRC and was positively correlated with ARID1A expression. Finally, an increased level of ZNRF3 in ARID1A-overexpressing cells was confirmed by western blotting. In conclusion, the findings of the present study suggest that ARID1A negatively regulates the Wnt signaling pathway through ZNRF3, which may contribute to CRC carcinogenesis.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Keerakarn Somsuan
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Sasithorn Wanna-Udom
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
| | - Sittiruk Roytrakul
- Functional Proteomics Technology Laboratory, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klongluang, Pathum Thani 12120, Thailand
| | - Atthapan Morchang
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Artitaya Rongjumnong
- School of Medicine, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
- Cancer and Immunology Research Unit, Mae Fah Luang University, Muang, Chiang Rai 57100, Thailand
| | - Natthiya Sakulsak
- Department of Anatomy, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok 65000, Thailand
- Faculty of Medicine, Praboromarajchanok Institute, Ministry of Public Health, Mueang, Nonthaburi 11000, Thailand
| |
Collapse
|
6
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
7
|
Tsunematsu R, Murai A, Mizue Y, Kubo T, Mariya T, Morita R, Murata K, Kanaseki T, Tsukahara T, Hirohashi Y, Saito T, Torigoe T. Restoration of ARID1A Protein in ARID1A-deficient Clear Cell Carcinoma of the Ovary Attenuates Reactivity to Cytotoxic T Lymphocytes. Cancer Genomics Proteomics 2024; 21:414-420. [PMID: 38944423 PMCID: PMC11215429 DOI: 10.21873/cgp.20460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/31/2024] [Accepted: 04/10/2024] [Indexed: 07/01/2024] Open
Abstract
BACKGROUND/AIM Clear cell carcinoma is a prevalent histological type of ovarian cancer in East Asia, particularly in Japan, known for its resistance to chemotherapeutic agents and poor prognosis. ARID1A gene mutations, commonly found in ovarian clear cell carcinoma (OCCC), contribute to its pathogenesis. Recent data revealed that the ARID1A mutation is related to better outcomes of cancer immunotherapy. Thus, this study aimed to investigate the immunotherapy treatment susceptibility of OCCC bearing ARID1A mutations. MATERIALS AND METHODS Expression of ARID1A was analyzed using western blotting in ovarian cancer cell lines. OCCC cell lines JHOC-9 and RMG-V were engineered to overexpress NY-ESO-1, HLA-A*02:01, and ARID1A. Sensitivity to chemotherapy and T cell receptor-transduced T (TCR-T) cells specific for NY-ESO-1 was assessed in ARID1A-restored cells compared to ARID1A-deficient wild-type cells. RESULTS JHOC-9 cells and RMG-V cells showed no expression of ARID1A protein. Overexpression of ARID1A in JHOC-9 and RMG-V cells did not impact sensitivity to gemcitabine. While ARID1A overexpression decreased sensitivity to cisplatin in RMG-V cells, it had no such effect in JHOC-9 cells. ARID1A overexpression reduced the reactivity of NY-ESO-1-specific TCR-T cells, as observed by the IFNγ ESLIPOT assay. CONCLUSION Cancer immunotherapy is an effective approach to target ARID1A-deficient clear cell carcinoma of the ovary.
Collapse
Affiliation(s)
- Risa Tsunematsu
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuka Mizue
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tasuku Mariya
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Rena Morita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kenji Murata
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
9
|
Wang Z, Zhang X, Luo Y, Song Y, Xiang C, He Y, Wang K, Yu Y, Wang Z, Peng W, Ding Y, Liu S, Wu C. Therapeutic targeting of ARID1A-deficient cancer cells with RITA (Reactivating p53 and inducing tumor apoptosis). Cell Death Dis 2024; 15:375. [PMID: 38811536 PMCID: PMC11136964 DOI: 10.1038/s41419-024-06751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is frequently mutated in various cancer types and has emerged as a potential therapeutic target. In this study, we observed that ARID1A-deficient colorectal cancer (CRC) cells showed synthetic lethal effects with a p53 activator, RITA (reactivating p53 and inducing tumor apoptosis). RITA, an inhibitor of the p53-MDM2 interaction, exhibits increased sensitivity in ARID1A-deficient cells compared to ARID1A wild-type cells. Mechanistically, the observed synthetic lethality is dependent on both p53 activation and DNA damage accumulation, which are regulated by the interplay between ARID1A and RITA. ARID1A loss exhibits an opposing effect on p53 targets, leading to decreased p21 expression and increased levels of proapoptotic genes, PUMA and NOXA, which is further potentiated by RITA treatment, ultimately inducing cell apoptosis. Meanwhile, ARID1A loss aggravates RITA-induced DNA damage accumulation by downregulating Chk2 phosphorylation. Taken together, ARID1A loss significantly heightens sensitivity to RITA in CRC, revealing a novel synthetic lethal interaction between ARID1A and RITA. These findings present a promising therapeutic approach for colorectal cancer characterized by ARID1A loss-of-function mutations.
Collapse
Affiliation(s)
- Zihuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Luo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijiang Song
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cheng Xiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yilin He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kejin Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingnan Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenxuan Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
10
|
Steinbuch SC, Lüß AM, Eltrop S, Götte M, Kiesel L. Endometriosis-Associated Ovarian Cancer: From Molecular Pathologies to Clinical Relevance. Int J Mol Sci 2024; 25:4306. [PMID: 38673891 PMCID: PMC11050613 DOI: 10.3390/ijms25084306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Endometriosis is a chronic condition affecting reproductive-aged women, characterized by the growth of ectopic endometrial tissue. Despite being benign, endometriosis is associated with an increased risk of certain cancers, including endometriosis-associated ovarian cancer (EAOC). Ovarian cancer is rare, but more common in women with endometriosis, particularly endometrioid and clear-cell carcinomas. Factors such as hormonal imbalance, reproductive history, environmental exposures, and genetic predisposition contribute to the malignant transformation of endometriosis. Thus, understanding potential risk factors causing malignancy is crucial. Over the past few decades, various genetic mutations, microRNAs, as well as tumor microenvironmental factors have been identified, impacting pathways like PI3K/AKT/mTOR, DNA repair mechanisms, oxidative stress, and inflammation. Thus, this review aims to summarize molecular studies involved in EAOC pathogenesis as potential therapeutic targets. However, further research is needed to better understand the molecular and environmental factors driving EAOC development, to target the susceptibility of endometriotic lesions to malignant progression, and to identify effective therapeutic strategies.
Collapse
Affiliation(s)
- Sophie Charlotte Steinbuch
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Anne-Marie Lüß
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Stephanie Eltrop
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| | - Martin Götte
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
- Cells-in-Motion Interfaculty Centre (CiMIC), University of Münster, 48149 Münster, Germany
| | - Ludwig Kiesel
- Department of Obstetrics and Gynecology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149 Münster, Germany
| |
Collapse
|
11
|
Zhang X, Wang H, Zhang Y, Wang X. Advances in epigenetic alterations of chronic lymphocytic leukemia: from pathogenesis to treatment. Clin Exp Med 2024; 24:54. [PMID: 38492089 PMCID: PMC10944427 DOI: 10.1007/s10238-023-01268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 12/01/2023] [Indexed: 03/18/2024]
Abstract
Chronic lymphocytic leukemia (CLL) is a heterogeneous disease with alterations in genetic expression and epigenetic modifications. In recent years, the new insight into epigenetics in the pathogenesis of CLL has been developed considerably, including DNA methylation, histone modification, RNA methylation, non-coding RNAs as well as chromatin remodeling. Epigenetic modification regulates various processes such as stem cell biology, cell growth, and tumorigenesis without altering gene sequence. Growing evidence indicates that the disturbance of gene expression profiles which were regulated by epigenetic modifications exerts vital roles in the development and progress in CLL, which provides novel perspectives to explore the etiology of CLL. In addition, the integration with epigenetic therapeutic targets and the in-depth understanding of epigenetic therapy contribute to develop new therapeutic strategies for CLL. Herein, the present review discusses the advances of epigenetic alterations in the pathogenesis, diagnosis, and prognostic assessment of CLL patients and also highlights existing and emerging agents targeting epigenetic regulators.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China
| | - Hua Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Ya Zhang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital, Shandong University, Jinan, 250021, Shandong, China.
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China.
- Taishan Scholars Program of Shandong Province, Jinan, 250021, Shandong, China.
- Branch of National Clinical Research Center for Hematologic Diseases, Jinan, 250021, Shandong, China.
- National Clinical Research Center for Hematologic Diseases, the First Affiliated Hospital of Soochow University, Suzhou, 251006, China.
| |
Collapse
|
12
|
Suryani L, Lee HPY, Teo WK, Chin ZK, Loh KS, Tay JK. Precision Medicine for Nasopharyngeal Cancer-A Review of Current Prognostic Strategies. Cancers (Basel) 2024; 16:918. [PMID: 38473280 DOI: 10.3390/cancers16050918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/02/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is an Epstein-Barr virus (EBV) driven malignancy arising from the nasopharyngeal epithelium. Current treatment strategies depend on the clinical stage of the disease, including the extent of the primary tumour, the extent of nodal disease, and the presence of distant metastasis. With the close association of EBV infection with NPC development, EBV biomarkers have shown promise in predicting treatment outcomes. Among the omic technologies, RNA and miRNA signatures have been widely studied, showing promising results in the research setting to predict treatment response. The transformation of radiology images into measurable features has facilitated the use of radiomics to generate predictive models for better prognostication and treatment selection. Nonetheless, much of this work remains in the research realm, and challenges remain in clinical implementation.
Collapse
Affiliation(s)
- Luvita Suryani
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Hazel P Y Lee
- Department of Otolaryngology-Head & Neck Surgery, National University Hospital, Singapore 119228, Singapore
| | - Wei Keat Teo
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Zhi Kang Chin
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Kwok Seng Loh
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| | - Joshua K Tay
- Department of Otolaryngology-Head & Neck Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore
| |
Collapse
|
13
|
Puvvula PK, Moon AM. Discovery and characterization of anti-cancer peptides from a random peptide library. PLoS One 2024; 19:e0293072. [PMID: 38349913 PMCID: PMC10863893 DOI: 10.1371/journal.pone.0293072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 10/03/2023] [Indexed: 02/15/2024] Open
Abstract
We performed a forward genetic screen to discover peptides that specifically target breast cancer cells using a Penetratin tagged, random 15mer peptide library. We identified a group of novel peptides that specifically inhibited the proliferation and survival of breast cancer cells without affecting normal primary mammary epithelial cells or fibroblasts. The intrinsic apoptotic pathway is activated by these peptides in the face of abnormal expression of numerous cell cycle regulatory genes. Associated alterations in histone marks, nuclear structure, and levels of critical RNA binding proteins vary in a peptide specific manner. This study demonstrates a novel method for the discovery of new potential therapeutic peptides.
Collapse
Affiliation(s)
- Pavan Kumar Puvvula
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
| | - Anne M. Moon
- Department of Molecular and Functional Genomics, Weis Center for Research, Geisinger Clinic, Danville, Pennsylvania, United States of America
- Department of Human Genetics, University of Utah, Salt Lake City, Utah, United States of America
- The Mindich Child Health and Development Institute, Hess Center for Science and Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
14
|
Rypens C, Van Berckelaer C, Berditchevski F, van Dam P, Van Laere S. Deciphering the molecular biology of inflammatory breast cancer through molecular characterization of patient samples and preclinical models. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2024; 384:77-112. [PMID: 38637101 DOI: 10.1016/bs.ircmb.2023.10.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Inflammatory breast cancer is an aggressive subtype of breast cancer with dismal patient prognosis and a unique clinical presentation. In the past two decades, molecular profiling technologies have been used in order to gain insight into the molecular biology of IBC and to search for possible targets for treatment. Although a gene signature that accurately discriminates between IBC and nIBC patient samples and preclinical models was identified, the overall genomic and transcriptomic differences are small and ambiguous, mainly due to the limited sample sizes of the evaluated patient series and the failure to correct for confounding effects of the molecular subtypes. Nevertheless, data collected over the past 20 years by independent research groups increasingly support the existence of several IBC-specific biological characteristics. In this review, these features are classified as established, emerging and conceptual hallmarks based on the level of evidence reported in the literature. In addition, a synoptic model is proposed that integrates all hallmarks and that can explain how cancer cell intrinsic mechanisms (i.e. NF-κB activation, genomic instability, MYC-addiction, TGF-β resistance, adaptive stress response, chromatin remodeling, epithelial-to-mesenchymal transition) can contribute to the establishment of the dynamic immune microenvironment associated with IBC. It stands to reason that future research projects are needed to further refine (parts of) this model and to investigate its clinical translatability.
Collapse
Affiliation(s)
- Charlotte Rypens
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; CellCarta N V, Wilrijk, Belgium
| | - Christophe Van Berckelaer
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium
| | - Fedor Berditchevski
- Institute of Cancer and Genomic Sciences, The University of Birmingham, Birmingham, United Kingdom
| | - Peter van Dam
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium; Multidisciplinary Oncological Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, Edegem, Belgium
| | - Steven Van Laere
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Antwerp, Belgium.
| |
Collapse
|
15
|
Chen B, Zhao L, Yang R, Xu T. New insights about endometriosis-associated ovarian cancer: pathogenesis, risk factors, prediction and diagnosis and treatment. Front Oncol 2024; 14:1329133. [PMID: 38384812 PMCID: PMC10879431 DOI: 10.3389/fonc.2024.1329133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/23/2024] [Indexed: 02/23/2024] Open
Abstract
Previous studies have shown that the risk of malignant transformation of endometriosis in premenopausal women is approximately 1%, significantly impacting the overall well-being and quality of life of affected women. Presently, the diagnostic gold standard for endometriosis-associated ovarian cancer (EAOC) continues to be invasive laparoscopy followed by histological examination. However, the application of this technique is limited due to its high cost, highlighting the importance of identifying a non-invasive diagnostic approach. Therefore, there is a critical need to explore non-invasive diagnostic methods to improve diagnostic precision and optimize clinical outcomes for patients. This review presents a comprehensive survey of the current progress in comprehending the pathogenesis of malignant transformation in endometriosis. Furthermore, it examines the most recent research discoveries concerning the diagnosis of EAOC and emphasizes potential targets for therapeutic intervention. The ultimate objective is to improve prevention, early detection, precise diagnosis, and treatment approaches, thereby optimizing the clinical outcomes for patients.
Collapse
Affiliation(s)
| | | | | | - Tianmin Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
16
|
Le D, Zhang C, Liu L, Zhao M, Liang Y, Liao P, Yang F. Neuropathic pain development following nerve injury is mediated by SOX11-ARID1A-SOCS3 transcriptional regulation in the spinal cord. Mol Biol Rep 2024; 51:281. [PMID: 38324208 DOI: 10.1007/s11033-023-09183-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/19/2023] [Indexed: 02/08/2024]
Abstract
BACKGROUND Neuropathic pain, a complex condition originating from nervous system damage, remains a significant clinical challenge due to limited understanding of its underlying mechanisms. Recent research highlights the SOX11 transcription factor, known for its role in nervous system development, as a crucial player in neuropathic pain development and maintenance. This study investigates the role of the SOX11-ARID1A-SOCS3 pathway in neuropathic pain modulation within the spinal cord. METHODS AND RESULTS Using a spinal nerve ligation (SNL) model in mice, we observed a significant upregulation of Sox11 in the spinal cord dorsal horn post-injury. Intrathecal administration of Sox11 shRNA mitigated SNL-induced neuropathic pain behaviors, including mechanical allodynia and heat hyperalgesia. Further, we demonstrated that Sox11 regulates neuropathic pain via transcriptional control of ARID1A, with subsequent modulation of SOCS3 expression. Knockdown of ARID1A and SOCS3 via shRNA resulted in alleviation of Sox11-induced pain sensitization. Additionally, Sox11 overexpression led to an increase in ARID1A binding to the SOCS3 promoter, enhancing chromatin accessibility and indicating a direct regulatory relationship. These findings were further supported by in vitro luciferase reporter assays and chromatin accessibility analysis. CONCLUSIONS The SOX11-ARID1A-SOCS3 pathway plays a pivotal role in the development and maintenance of neuropathic pain. Sox11 acts as a master regulator, modulating ARID1A, which in turn influences SOCS3 expression, thereby contributing to the modulation of neuropathic pain. These findings provide a deeper understanding of the molecular mechanisms underlying neuropathic pain and highlight potential therapeutic targets for its treatment. The differential regulation of this pathway in the spinal cord and dorsal root ganglia (DRG) underscores its complexity and the need for targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dongsheng Le
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Chao Zhang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Li Liu
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Mailin Zhao
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Yingping Liang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Pingsheng Liao
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China
| | - Fan Yang
- Department of Pain Management, Second Affiliated Hospital of Nanchang University, No. 1, Minde Road, Nanchang, 330006, Jiangxi Province, People's Republic of China.
| |
Collapse
|
17
|
He H, Bell SM, Davis AK, Zhao S, Sridharan A, Na CL, Guo M, Xu Y, Snowball J, Swarr DT, Zacharias WJ, Whitsett JA. PRDM3/16 Regulate Chromatin Accessibility Required for NKX2-1 Mediated Alveolar Epithelial Differentiation and Function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.570481. [PMID: 38187557 PMCID: PMC10769259 DOI: 10.1101/2023.12.20.570481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Differential chromatin accessibility accompanies and mediates transcriptional control of diverse cell fates and their differentiation during embryogenesis. While the critical role of NKX2-1 and its transcriptional targets in lung morphogenesis and pulmonary epithelial cell differentiation is increasingly known, mechanisms by which chromatin accessibility alters the epigenetic landscape and how NKX2-1 interacts with other co-activators required for alveolar epithelial cell differentiation and function are not well understood. Here, we demonstrate that the paired domain zinc finger transcriptional regulators PRDM3 and PRDM16 regulate chromatin accessibility to mediate cell differentiation decisions during lung morphogenesis. Combined deletion of Prdm3 and Prdm16 in early lung endoderm caused perinatal lethality due to respiratory failure from loss of AT2 cell function. Prdm3/16 deletion led to the accumulation of partially differentiated AT1 cells and loss of AT2 cells. Combination of single cell RNA-seq, bulk ATAC-seq, and CUT&RUN demonstrated that PRDM3 and PRDM16 enhanced chromatin accessibility at NKX2-1 transcriptional targets in peripheral epithelial cells, all three factors binding together at a multitude of cell-type specific cis-active DNA elements. Network analysis demonstrated that PRDM3/16 regulated genes critical for perinatal AT2 cell differentiation, surfactant homeostasis, and innate host defense. Lineage specific deletion of PRDM3/16 in AT2 cells led to lineage infidelity, with PRDM3/16 null cells acquiring partial AT1 fate. Together, these data demonstrate that NKX2-1-dependent regulation of alveolar epithelial cell differentiation is mediated by epigenomic modulation via PRDM3/16.
Collapse
Affiliation(s)
- Hua He
- Key Laboratory of Birth Defects and Related Disease of Women and Children of MOE, West China Second University Hospital Sichuan University, Chengdu, Sichuan, 610041, China
- NHC Key Laboratory of Chronobiology, Sichuan University, Sichuan 610041, China
| | - Sheila M. Bell
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Ashley Kuenzi Davis
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Shuyang Zhao
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Anusha Sridharan
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Cheng-Lun Na
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Minzhe Guo
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Yan Xu
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - John Snowball
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
| | - Daniel T. Swarr
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - William J. Zacharias
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| | - Jeffrey A. Whitsett
- Perinatal Institute, Division of Neonatology and Pulmonary Biology, Cincinnati Children’s Hospital Medical Center
- Department of Pediatrics, University of Cincinnati College of Medicine
| |
Collapse
|
18
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
19
|
Mandal J, Yu ZC, Shih IM, Wang TL. ARID1A loss activates MAPK signaling via DUSP4 downregulation. J Biomed Sci 2023; 30:94. [PMID: 38071325 PMCID: PMC10709884 DOI: 10.1186/s12929-023-00985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
20
|
Wagner SK, Moon AS, Howitt BE, Renz M. SMARCA4 loss irrelevant for ARID1A mutated ovarian clear cell carcinoma: A case report. Gynecol Oncol Rep 2023; 50:101305. [PMID: 38033359 PMCID: PMC10685047 DOI: 10.1016/j.gore.2023.101305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/08/2023] [Accepted: 11/12/2023] [Indexed: 12/02/2023] Open
Abstract
Clear cell carcinomas are rare and relatively chemo-insensitive ovarian cancers with a characteristic molecular pathogenesis. Alterations in ARID1A, a component of the multiprotein chromatin remodeling complex SWI/SNF, are likely early events in the development of ovarian clear cancers arising from atypical endometriosis. Insight into additional driver events and particularly mutations in the same chromatin remodeling complex is limited. Isolated loss of SMARCA4, encoding the ATPase of the SWI/SNF complex, characterizes other aggressive gynecologic cancers including small cell carcinomas of the ovary hypercalcemic type (SCCOHT), undifferentiated endometrial carcinomas (UDEC), and uterine sarcomas (SDUS). The ovarian clear cell carcinoma of a 48-year-old showed in the initial surgical specimen a subclonal loss of SMARCA4 in addition to an ARID1A mutation, i.e., two alterations in the SWI/SNF heterochromatin remodeling complex. We anticipated that the SMARCA4 loss would worsen the disease course in analogy to SCCOHT, UDEC, and SDUS. However, the disease did not accelerate. Instead, the recurrent disease showed restored SMARCA4 expression while retaining the ARID1A mutation. Combinatorial redundancy, diversity and sequence in the SWI/SNF complex assembly as well as DNA- and tissue-specificity may explain the observed irrelevance of SMARCA4 loss in the presented ARID1A mutated ovarian clear cell carcinoma.
Collapse
Affiliation(s)
- Samantha Kay Wagner
- Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, USA
| | - Ashley S. Moon
- Gynecologic Oncology Division, Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, USA
| | - Brooke E. Howitt
- Department of Clinical Pathology, Stanford University, Stanford, CA, USA
| | - Malte Renz
- Gynecologic Oncology Division, Department of Obstetrics & Gynecology, Stanford University, Stanford, CA, USA
| |
Collapse
|
21
|
Xing B, Zhang X, Gu X, Xiang L, Wang C, Jin Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J Cancer Res Clin Oncol 2023; 149:17529-17541. [PMID: 37906351 DOI: 10.1007/s00432-023-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE As one of the most common gynecologic malignancies, endometrial cancer (EC) is driven by multiple genetic alterations that may be targeted for treatments. AT-rich interaction domain 1A (ARID1A) gene mutations were reported as early events in endometrial carcinogenesis. METHODS To explore the alterations of downstream molecular pathways caused by ARID1A mutations and the associated therapeutic implications, we edited ARID1A gene in human endometrial cancer cell line Ishikawa using the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-Associated Proteins (CRISPR/Cas9) technology. We successfully constructed a stable Ishikawa cell line with a confirmed 10 bp deletion on the ARID1A gene, which resulted in a code-shift mutation and gene knockout. RESULTS Compared with unedited wild-type cells, ARID1A knockout (KO) led to reduced apoptosis, accelerated transformation from G0/G1 to S phase, and enhanced cell proliferation. ARID1A deficiency would reduce the protein levels of p21, caspase 7, and caspase 9 in Ishikawa endometrial cancer cells compared with the wild-type cells. In addition, ARID1A KO resulted in high levels of microsatellite instability (MSI-H). Moreover, transcriptomic analyses showed that ARID1A KO can lead to activated phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Furthermore, experimental analyses demonstrated that ARID1A KO cells had reduced expression of genetic instability-associated markers mutL homologue 1 (MLH1) and progesterone receptor B (PR) and increased p-Akt expression. CONCLUSION These findings support further exploration of ARID1A as a therapeutic target for EC and provide insight into developing more effective treatments in EC, such as the combinatory use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Baoling Xing
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Xiaoying Zhang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xia Gu
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lintao Xiang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Cuiping Wang
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yueling Jin
- Management Department of Scientific Research, Shanghai Science and Technology Museum, Shanghai, 200127, China
| |
Collapse
|
22
|
Lu S, Duan R, Cong L, Song Y. The effects of ARID1A mutation in gastric cancer and its significance for treatment. Cancer Cell Int 2023; 23:296. [PMID: 38008753 PMCID: PMC10676575 DOI: 10.1186/s12935-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gastric cancer (GC) has emerged as a significant issue in public health all worldwide as a result of its high mortality rate and dismal prognosis. AT-rich interactive domain 1 A (ARID1A) is a vital component of the switch/sucrose-non-fermentable (SWI/SNF) chromatin remodeling complex, and ARID1A mutations occur in various tumors, leading to protein loss and decreased expression; it then affects the tumor biological behavior or prognosis. More significantly, ARID1A mutations will likely be biological markers for immune checkpoint blockade (ICB) treatment and selective targeted therapy. To provide theoretical support for future research on the stratification of individuals with gastric cancer with ARID1A as a biomarker to achieve precision therapy, we have focused on the clinical significance, predictive value, underlying mechanisms, and possible treatment strategies for ARID1A mutations in gastric cancer in this review.
Collapse
Affiliation(s)
- Shan Lu
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ruifeng Duan
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
23
|
Li Y, Liu Y, Yang K, Jin L, Yang J, Huang S, Liu Y, Hu B, Liu R, Liu W, Liu A, Zheng Q, Zhang Y. Impact of ARID1A and TP53 mutations in pediatric refractory or relapsed mature B-Cell lymphoma treated with CAR-T cell therapy. Cancer Cell Int 2023; 23:281. [PMID: 37981695 PMCID: PMC10657579 DOI: 10.1186/s12935-023-03122-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 11/02/2023] [Indexed: 11/21/2023] Open
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cell therapy has been used to treat pediatric refractory or relapsed mature B-cell non-Hodgkin lymphoma (r/r MB-NHL) with significantly improved outcomes, but a proportion of patients display no response or experience relapse after treatment. To investigate whether tumor-intrinsic somatic genetic alterations have an impact on CAR-T cell treatment, the genetic features and treatment outcomes of 89 children with MB-NHL were analyzed. METHODS 89 pediatric patients treated at multiple clinical centers of the China Net Childhood Lymphoma (CNCL) were included in this study. Targeted next-generation sequencing for a panel of lymphoma-related genes was performed on tumor samples. Survival rates and relapse by genetic features and clinical factors were analyzed. Survival curves were calculated using a log-rank (Mantel-Cox) test. The Wilcox sum-rank test and Fisher's exact test were applied to test for group differences. RESULTS A total of 89 driver genes with somatic mutations were identified. The most frequently mutated genes were TP53 (66%), ID3 (55%), and ARID1A (31%). The incidence of ARID1A mutation and co-mutation of TP53 and ARID1A was high in patients with r/r MB-NHL (P = 0.006; P = 0.018, respectively). CAR-T cell treatment significantly improved survival in r/r MB-NHL patients (P = 0.00081), but patients with ARID1A or ARID1A and TP53 co-mutation had poor survival compared to those without such mutations. CONCLUSION These results indicate that children with MB-NHL harboring ARID1A or TP53 and ARID1A co-mutation are insensitive to initial conventional chemotherapy and subsequent CAR-T cell treatment. Examination of ARID1A and TP53 mutation status at baseline might have prognostic value, and risk-adapted or more effective therapies should be considered for patients with these high-risk genetic alterations.
Collapse
Affiliation(s)
- Yang Li
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Yang Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Keyan Yang
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China
| | - Ling Jin
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Jing Yang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Shuang Huang
- Department of Hematology/Oncology, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Ying Liu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Bo Hu
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China
| | - Rong Liu
- Department of Hematology/Oncology, Capital institute of pediatric, Beijing, China
| | - Wei Liu
- Department of Hematology/Oncology, Zhengzhou Children's Hospital, Zhengzhou, China
| | - Ansheng Liu
- Department of Hematology/Oncology, Xian Children's Hospital, Xi'An, China
| | - Qinlong Zheng
- Molecular diagnostics laboratory, Beijing GoBroad Boren Hospital, Beijing, China.
| | - Yonghong Zhang
- Department of Pediatric Lymphoma, Beijing GoBroad Boren Hospital, Beijing, China.
| |
Collapse
|
24
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
25
|
Nie Y, Xu L, Bai Z, Liu Y, Wang S, Zeng Q, Gao X, Xia X, Chang D. Prognostic utility of TME-associated genes in pancreatic cancer. Front Genet 2023; 14:1218774. [PMID: 37727377 PMCID: PMC10505756 DOI: 10.3389/fgene.2023.1218774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/15/2023] [Indexed: 09/21/2023] Open
Abstract
Background: Pancreatic cancer (PC) is a deadly disease. The tumor microenvironment (TME) participates in PC oncogenesis. This study focuses on the assessment of the prognostic and treatment utility of TME-associated genes in PC. Methods: After obtaining the differentially expressed TME-related genes, univariate and multivariate Cox analyses and least absolute shrinkage and selection operator (LASSO) were performed to identify genes related to prognosis, and a risk model was established to evaluate risk scores, based on The Cancer Genome Atlas (TCGA) data set, and it was validated by external data sets from the Gene Expression Omnibus (GEO) and Clinical Proteomic Tumor Analysis Consortium (CPTAC). Multiomics analyses were adopted to explore the potential mechanisms, discover novel treatment targets, and assess the sensitivities of immunotherapy and chemotherapy. Results: Five TME-associated genes, namely, FERMT1, CARD9, IL20RB, MET, and MMP3, were identified and a risk score formula constructed. Next, their mRNA expressions were verified in cancer and normal pancreatic cells. Multiple algorithms confirmed that the risk model displayed a reliable ability of prognosis prediction and was an independent prognostic factor, indicating that high-risk patients had poor outcomes. Immunocyte infiltration, gene set enrichment analysis (GSEA), and single-cell analysis all showed a strong relationship between immune mechanism and low-risk samples. The risk score could predict the sensitivity of immunotherapy and some chemotherapy regimens, which included oxaliplatin and irinotecan. Various latent treatment targets (LAG3, TIGIT, and ARID1A) were addressed by mutation landscape based on the risk model. Conclusion: The risk model based on TME-related genes can reflect the prognosis of PC patients and functions as a novel set of biomarkers for PC therapy.
Collapse
Affiliation(s)
- Yuanhua Nie
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Longwen Xu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Zilong Bai
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yaoyao Liu
- Geneplus-Beijing, Co., Ltd., Beijing, China
| | - Shilong Wang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Qingnuo Zeng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Xuan Gao
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- GenePlus- Shenzhen Clinical Laboratory, Shenzhen, China
| | | | - Dongmin Chang
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
26
|
O'Cearbhaill RE, Miller A, Soslow RA, Lankes HA, DeLair D, Segura S, Chavan S, Zamarin D, DeBernardo R, Moore K, Moroney J, Shahin M, Thaker PH, Wahner-Hendrickson AE, Aghajanian C. A phase 2 study of dasatinib in recurrent clear cell carcinoma of the ovary, fallopian tube, peritoneum or endometrium: NRG oncology/gynecologic oncology group study 0283. Gynecol Oncol 2023; 176:16-24. [PMID: 37418832 PMCID: PMC10529107 DOI: 10.1016/j.ygyno.2023.06.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/22/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
OBJECTIVE Gynecologic cancers are traditionally managed according to their presumed site of origin, without regard to the underlying histologic subtype. Clear cell histology is associated with chemotherapy refractoriness and poor survival. Mutations in SWI/SNF chromatin remodeling complex member ARID1A, which encodes for BAF250a protein, are common in clear cell and endometriosis-associated endometrioid carcinomas. High-throughput cell-based drug screening predicted activity of dasatinib, a tyrosine kinase inhibitor, in ARID1A-mutant clear cell carcinoma. METHODS We conducted a phase 2 clinical trial of dasatinib 140 mg once daily by mouth in patients with recurrent or persistent ovarian and endometrial clear cell carcinoma. Patients with measurable disease were enrolled and then assigned to biomarker-defined populations based on BAF250a immunohistochemistry. The translational endpoints included broad next-generation sequencing to assess concordance of protein expression and treatment outcomes. RESULTS Twenty-eight patients, 15 of whom had tumors with retained BAF250a and 13 with loss of BAF250a were evaluable for treatment response and safety. The most common grade 3 adverse events were anemia, fatigue, dyspnea, hyponatremia, pleural effusion, and vomiting. One patient had a partial response, eight (28%) had stable disease, and 15 (53.6%) had disease progression. Twenty-three patients had next-generation sequencing results; 13 had a pathogenic ARID1A alteration. PIK3CA mutations were more prevalent in ARID1A-mutant tumors, while TP53 mutations were more prevalent in ARID1A wild-type tumors. CONCLUSIONS Dasatinib was not an effective single-agent treatment for recurrent or persistent ovarian and endometrial clear cell carcinoma. Studies are urgently needed for this rare gynecologic subtype.
Collapse
Affiliation(s)
| | - Austin Miller
- Roswell Park Comprehensive Cancer Center, Buffalo, NY, United States of America.
| | - Robert A Soslow
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| | - Heather A Lankes
- NRG Oncology, Operations Center-Philadelphia East, Philadelphia, PA, United States of America; Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America.
| | - Deborah DeLair
- Northwell Health, Greenvale, New York, NY, United States of America.
| | - Sheila Segura
- Indiana University School of Medicine, Indianapolis, IN, United States of America.
| | - Shweta Chavan
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| | - Dmitriy Zamarin
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| | | | - Kathleen Moore
- University of Oklahoma, Oklahoma City, OK, United States of America.
| | - John Moroney
- University of Chicago, Chicago, IL, United States of America.
| | - Mark Shahin
- Abington Memorial Hospital, Willow Grove, PA, United States of America.
| | - Premal H Thaker
- Washington University, St. Louis, MO, United States of America.
| | | | - Carol Aghajanian
- Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| |
Collapse
|
27
|
Yu ZC, Li T, Tully E, Huang P, Chen CN, Oberdoerffer P, Gaillard S, Shih IM, Wang TL. Temozolomide Sensitizes ARID1A-Mutated Cancers to PARP Inhibitors. Cancer Res 2023; 83:2750-2762. [PMID: 37306706 PMCID: PMC10527942 DOI: 10.1158/0008-5472.can-22-3646] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/02/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
ARID1A is a subunit of SWI/SNF chromatin remodeling complexes and is mutated in many types of human cancers, especially those derived from endometrial epithelium, including ovarian and uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). Loss-of-function mutations in ARID1A alter epigenetic regulation of transcription, cell-cycle checkpoint control, and DNA damage repair. We report here that mammalian cells with ARID1A deficiency harbor accumulated DNA base lesions and increased abasic (AP) sites, products of glycosylase in the first step of base excision repair (BER). ARID1A mutations also delayed recruitment kinetics of BER long-patch repair effectors. Although ARID1A-deficient tumors were not sensitive to monotherapy with DNA-methylating temozolomide (TMZ), the combination of TMZ with PARP inhibitors (PARPi) potently elicited double-strand DNA breaks, replication stress, and replication fork instability in ARID1A-deficient cells. The TMZ and PARPi combination also significantly delayed in vivo growth of ovarian tumor xenografts carrying ARID1A mutations and induced apoptosis and replication stress in xenograft tumors. Together, these findings identified a synthetic lethal strategy to enhance the response of ARID1A-mutated cancers to PARP inhibition, which warrants further experimental exploration and clinical trial validation. SIGNIFICANCE The combination of temozolomide and PARP inhibitor exploits the specific DNA damage repair status of ARID1A-inactivated ovarian cancers to suppress tumor growth.
Collapse
Affiliation(s)
- Zheng-Cheng Yu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tianhe Li
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ellen Tully
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Peng Huang
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Chih-Ning Chen
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Philipp Oberdoerffer
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Stephanie Gaillard
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ie-Ming Shih
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tian-Li Wang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| |
Collapse
|
28
|
Shi Y, Shin DS. Dysregulation of SWI/SNF Chromatin Remodelers in NSCLC: Its Influence on Cancer Therapies including Immunotherapy. Biomolecules 2023; 13:984. [PMID: 37371564 DOI: 10.3390/biom13060984] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Molecularly targeted therapeutics and immunotherapy revolutionized the clinical care of NSCLC patients. However, not all NSCLC patients harbor molecular targets (e.g., mutated EGFR), and only a subset benefits from immunotherapy. Moreover, we are lacking reliable biomarkers for immunotherapy, although PD-L1 expression has been mainly used for guiding front-line therapeutic options. Alterations of the SWI/SNF chromatin remodeler occur commonly in patients with NSCLC. This subset of NSCLC tumors tends to be undifferentiated and presents high heterogeneity in histology, and it shows a dismal prognosis because of poor response to the current standard therapies. Catalytic subunits SMARCA4/A2 and DNA binding subunits ARID1A/ARID1B/ARID2 as well as PBRM1 were identified to be the most commonly mutated subunits of SWI/SNF complexes in NSCLC. Mechanistically, alteration of these SWI/SNF subunits contributes to the tumorigenesis of NSCLC through compromising the function of critical tumor suppressor genes, enhancing oncogenic activity as well as impaired DNA repair capacity related to genomic instability. Several vulnerabilities of NSCLCS with altered SWI/SNF subunits were detected and evaluated clinically using EZH2 inhibitors, PROTACs of mutual synthetic lethal paralogs of the SWI/SNF subunits as well as PARP inhibitors. The response of NSCLC tumors with an alteration of SWI/SNF to ICIs might be confounded by the coexistence of mutations in genes capable of influencing patients' response to ICIs. High heterogenicity in the tumor with SWI/SNF deficiency might also be responsible for the seemingly conflicting results of ICI treatment of NSCLC patients with alterations of SWI/SNF. In addition, an alteration of each different SWI/SNF subunit might have a unique impact on the response of NSCLC with deficient SWI/SNF subunits. Prospective studies are required to evaluate how the alterations of the SWI/SNF in the subset of NSCLC patients impact the response to ICI treatment. Finally, it is worthwhile to point out that combining inhibitors of other chromatin modulators with ICIs has been proven to be effective for the treatment of NSCLC with deficient SWI/SNF chromatin remodelers.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
29
|
Ono M, Miyamoto T, Asaka R, Uchikawa J, Ando H, Tanaka Y, Shinagawa M, Yokokawa Y, Asaka S, Wang TL, Shih IM, Shiozawa T. Establishment of a novel model of endometriosis-associated ovarian cancer by transplanting uterine tissue from Arid1a/Pten knockout mice. Sci Rep 2023; 13:8348. [PMID: 37221199 DOI: 10.1038/s41598-023-35292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/16/2023] [Indexed: 05/25/2023] Open
Abstract
Although endometriosis is primarily benign, it has been identified as a risk factor for endometriosis-associated ovarian cancer (EAOC). Genetic alterations in ARID1A, PTEN, and PIK3CA have been reported in EAOC; however, an appropriate EAOC animal model has yet to be established. Therefore, the present study aimed to create an EAOC mouse model by transplanting uterine pieces from donor mice, in which Arid1a and/or Pten was conditionally knocked out (KO) in Pax8-expressing endometrial cells by the administration of doxycycline (DOX), onto the ovarian surface or peritoneum of recipient mice. Two weeks after transplantation, gene KO was induced by DOX and endometriotic lesions were thereafter removed. The induction of only Arid1a KO did not cause any histological changes in the endometriotic cysts of recipients. In contrast, the induction of only Pten KO evoked a stratified architecture and nuclear atypia in the epithelial lining of all endometriotic cysts, histologically corresponding to atypical endometriosis. The induction of Arid1a; Pten double-KO evoked papillary and cribriform structures with nuclear atypia in the lining of 42 and 50% of peritoneal and ovarian endometriotic cysts, respectively, which were histologically similar to EAOC. These results indicate that this mouse model is useful for investigating the mechanisms underlying the development of EAOC and the related microenvironment.
Collapse
Affiliation(s)
- Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan.
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Junko Uchikawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Hirofumi Ando
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yasuhiro Tanaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Manaka Shinagawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Yusuke Yokokawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Shiho Asaka
- Department of Laboratory Medicine, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
- Department of Diagnostic Pathology, Shinshu University Hospital, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 306, Baltimore, MD, 21287, USA
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins Medical Institutions, 1550 Orleans Street, CRB-2 Rm 305, Baltimore, MD, 21287, USA
| | - Tanri Shiozawa
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, 390-8621, Japan
| |
Collapse
|
30
|
Rodney AR, Skidmore ZL, Grenier JK, Griffith OL, Miller AD, Chu S, Ahmed F, Bryan JN, Peralta S, Warren WC. Genomic landscape and gene expression profiles of feline oral squamous cell carcinoma. Front Vet Sci 2023; 10:1079019. [PMID: 37266381 PMCID: PMC10229771 DOI: 10.3389/fvets.2023.1079019] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/29/2023] [Indexed: 06/03/2023] Open
Abstract
Feline oral squamous cell carcinoma (FOSCC) is a cancer of the squamous cell lining in the oral cavity and represents up to 80% of all oral cancers in cats, with a poor prognosis. We have used whole exome sequencing (WES) and RNA sequencing of the tumor to discover somatic mutations and gene expression changes that may be associated with FOSCC occurrence. FOSCC offers a potential comparative model to study human head and neck squamous cell carcinoma (HNSCC) due to its similar spontaneous formation, and morphological and histological features. In this first study using WES to identify somatic mutations in feline cancer, we have identified tumor-associated gene mutations in six cats with FOSCC and found some overlap with identified recurrently mutated genes observed in HNSCC. Four samples each had mutations in TP53, a common mutation in all cancers, but each was unique. Mutations in other cellular growth control genes were also found such as KAT2B and ARID1A. Enrichment analysis of FOSCC gene expression profiles suggests a molecular similarity to human OSCC as well, including alterations in epithelial to mesenchymal transition and IL6/JAK/STAT pathways. In this preliminary study, we present exome and transcriptome results that further our understanding of FOSCC.
Collapse
Affiliation(s)
- Alana R. Rodney
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| | - Zachary L. Skidmore
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Jennifer K. Grenier
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Obi L. Griffith
- McDonnell Genome Institute, Washington University School of Medicine, St Louis, MO, United States
| | - Andrew D. Miller
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Shirley Chu
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Faraz Ahmed
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Jeffrey N. Bryan
- Department of Oncology, School of Veterinary Medicine, University of Missouri, Columbia, MO, United States
| | - Santiago Peralta
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Wesley C. Warren
- Department of Animal Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
31
|
Fleury H, MacEachern MK, Stiefel CM, Anand R, Sempeck C, Nebenfuehr B, Maurer-Alcalá K, Ball K, Proctor B, Belan O, Taylor E, Ortega R, Dodd B, Weatherly L, Dansoko D, Leung JW, Boulton SJ, Arnoult N. The APE2 nuclease is essential for DNA double-strand break repair by microhomology-mediated end joining. Mol Cell 2023; 83:1429-1445.e8. [PMID: 37044098 PMCID: PMC10164096 DOI: 10.1016/j.molcel.2023.03.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/18/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023]
Abstract
Microhomology-mediated end joining (MMEJ) is an intrinsically mutagenic pathway of DNA double-strand break (DSB) repair essential for proliferation of homologous recombination (HR)-deficient tumors. Although targeting MMEJ has emerged as a powerful strategy to eliminate HR-deficient (HRD) cancers, this is limited by an incomplete understanding of the mechanism and factors required for MMEJ repair. Here, we identify the APE2 nuclease as an MMEJ effector. We show that loss of APE2 inhibits MMEJ at deprotected telomeres and at intra-chromosomal DSBs and is epistatic with Pol Theta for MMEJ activity. Mechanistically, we demonstrate that APE2 possesses intrinsic flap-cleaving activity, that its MMEJ function in cells depends on its nuclease activity, and further identify an uncharacterized domain required for its recruitment to DSBs. We conclude that this previously unappreciated role of APE2 in MMEJ contributes to the addiction of HRD cells to APE2, which could be exploited in the treatment of cancer.
Collapse
Affiliation(s)
- Hubert Fleury
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Myles K MacEachern
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Clara M Stiefel
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Roopesh Anand
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Colin Sempeck
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Nebenfuehr
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kelper Maurer-Alcalá
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Kerri Ball
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Bruce Proctor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Ondrej Belan
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK
| | - Erin Taylor
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Raquel Ortega
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Benjamin Dodd
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Laila Weatherly
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Djelika Dansoko
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA
| | - Justin W Leung
- Department of Radiation Oncology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Simon J Boulton
- DSB Repair Metabolism Laboratory, The Francis Crick Institute, London, UK; Artios Pharma Ltd, Babraham Research Campus, Cambridge CB22 3FH, UK
| | - Nausica Arnoult
- Department of Molecular, Cellular & Developmental Biology, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
32
|
Momeni-Boroujeni A, Vanderbilt C, Yousefi E, Abu-Rustum NR, Aghajanian C, Soslow RA, Ellenson LH, Weigelt B, Murali R. Landscape of chromatin remodeling gene alterations in endometrial carcinoma. Gynecol Oncol 2023; 172:54-64. [PMID: 36958196 PMCID: PMC10192087 DOI: 10.1016/j.ygyno.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/01/2023] [Accepted: 03/15/2023] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Chromatin remodeling genes (CRGs) encode components of epigenetic regulatory mechanisms and alterations in these genes have been identified in several tumor types, including gynecologic cancers. In this study, we sought to investigate the prevalence and clinicopathological associations of CRG alterations in endometrial carcinoma (EC). METHODS We performed a retrospective analysis of 660 ECs sequenced using a clinical massively parallel sequencing assay targeting up to 468 genes, including 25 CRGs, and defined the presence of somatic CRG alterations. Clinicopathologic features were obtained for all cases. Immunohistochemical interrogation of ARID1A and PTEN proteins was performed in a subset of samples. RESULTS Of the 660 ECs sequenced, 438 (66.4%) harbored CRG alterations covered by our panel. The most commonly altered CRG was ARID1A (46%), followed by CTCF (21%), KMT2D (18%), KMT2B (17%), BCOR (16%), ARID1B (12%) and SMARCA4 (11%). We found that ARID1A genetic alterations were preferentially bi-allelic and often corresponded to altered ARID1A protein expression in ECs. We further observed that ARID1A alterations were often subclonal when compared to PTEN alterations, which were primarily clonal in ECs harboring both mutations. Finally, CRG alterations were associated with an increased likelihood of myometrial and lymphovascular invasion in endometrioid ECs. CONCLUSION CRG alterations are common in EC and are associated with clinicopathologic features and likely play a crucial role in EC.
Collapse
Affiliation(s)
- Amir Momeni-Boroujeni
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Chad Vanderbilt
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Elham Yousefi
- Department of Pathology and Cell Biology, Columbia University Irvine Medical Center, New York, NY, United States of America
| | - Nadeem R Abu-Rustum
- Departments of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Carol Aghajanian
- Departments of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Robert A Soslow
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Lora H Ellenson
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Britta Weigelt
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America
| | - Rajmohan Murali
- Departments of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States of America.
| |
Collapse
|
33
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
34
|
Wang L, Tang J. SWI/SNF complexes and cancers. Gene 2023; 870:147420. [PMID: 37031881 DOI: 10.1016/j.gene.2023.147420] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/11/2023]
Abstract
Epigenetics refers to the study of genetic changes that can affect gene expression without altering the underlying DNA sequence, including DNA methylation, histone modification, chromatin remodelling, X chromosome inactivation and non-coding RNA regulation. Of these, DNA methylation, histone modification and chromatin remodelling constitute the three classical modes of epigenetic regulation. These three mechanisms alter gene transcription by adjusting chromatin accessibility, thereby affecting cell and tissue phenotypes in the absence of DNA sequence changes. In the presence of ATP hydrolases, chromatin remodelling alters the structure of chromatin and thus changes the transcription level of DNA-guided RNA. To date, four types of ATP-dependent chromatin remodelling complexes have been identified in humans, namely SWI/SNF, ISWI, INO80 and NURD/MI2/CHD. SWI/SNF mutations are prevalent in a wide variety of cancerous tissues and cancer-derived cell lines as discovered by next-generation sequencing technologies.. SWI/SNF can bind to nucleosomes and use the energy of ATP to disrupt DNA and histone interactions, sliding or ejecting histones, altering nucleosome structure, and changing transcriptional and regulatory mechanisms. Furthermore, mutations in the SWI/SNF complex have been observed in approximately 20% of all cancers. Together, these findings suggest that mutations targeting the SWI/SNF complex may have a positive impact on tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Liyuan Wang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Oncology and Hematology, Jinan 250000, Shandong Province, China
| | - Jinglong Tang
- Adicon Medical Laboratory Center, Molecular Genetic Diagnosis Center, Pathological Diagnosis Center, Jinan 250014, Shandong Province, China.
| |
Collapse
|
35
|
McCann JJ, Fleenor DE, Chen J, Lai CH, Bass TE, Kastan MB. Participation of ATM, SMG1, and DDX5 in a DNA Damage-Induced Alternative Splicing Pathway. Radiat Res 2023; 199:406-421. [PMID: 36921295 PMCID: PMC10162594 DOI: 10.1667/rade-22-00219.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/03/2023] [Indexed: 03/17/2023]
Abstract
Altered cellular responses to DNA damage can contribute to cancer development, progression, and therapeutic resistance. Mutations in key DNA damage response factors occur across many cancer types, and the DNA damage-responsive gene, TP53, is frequently mutated in a high percentage of cancers. We recently reported that an alternative splicing pathway induced by DNA damage regulates alternative splicing of TP53 RNA and further modulates cellular stress responses. Through damage-induced inhibition of the SMG1 kinase, TP53 pre-mRNA is alternatively spliced to generate TP53b mRNA and p53b protein is required for optimal induction of cellular senescence after ionizing radiation-induced DNA damage. Herein, we confirmed and extended these observations by demonstrating that the ATM protein kinase is required for repression of SMG1 kinase activity after ionizing radiation. We found that the RNA helicase and splicing factor, DDX5, interacts with SMG1, is required for alternative splicing of TP53 pre-mRNA to TP53b and TP53c mRNAs after DNA damage, and contributes to radiation-induced cellular senescence. Interestingly, the role of SMG1 in alternative splicing of p53 appears to be distinguishable from its role in regulating nonsense-mediated RNA decay. Thus, ATM, SMG1, and DDX5 participate in a DNA damage-induced alternative splicing pathway that regulates TP53 splicing and modulates radiation-induced cellular senescence.
Collapse
Affiliation(s)
- Jennifer J. McCann
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Donald E. Fleenor
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Jing Chen
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Chun-Hsiang Lai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Thomas E. Bass
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| | - Michael B. Kastan
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27710
| |
Collapse
|
36
|
Hsieh TH, Hsu CY, Wu CW, Wang SH, Yeh CH, Cheng KH, Tsai EM. Vorinostat decrease M2 macrophage polarization through ARID1A 6488delG/HDAC6/IL-10 signaling pathway in endometriosis-associated ovarian carcinoma. Biomed Pharmacother 2023; 161:114500. [PMID: 36958195 DOI: 10.1016/j.biopha.2023.114500] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/23/2023] [Accepted: 03/07/2023] [Indexed: 03/25/2023] Open
Abstract
Endometriosis is a common disease in women and may be one of the factors that induces malignant epithelial ovarian tumors. Previous studies suggested that endometriosis is related to ARID1A mutation mediating the expression of HDAC6, but the detailed pathogenic mechanism is still unclear. First, we collected endometriosis-associated ovarian carcinoma (EAOC) clinical samples and examined the expression of HDAC6. Our results found that the high HDAC6 expression group was positively correlated with EAOC histology (P = 0.015), stage (P < 0.000), and tumor size (P < 0.000) and inversely correlated with survival (P < 0.000). We also found that ARID1A6488delG/HDAC6 induced M2 polarization of macrophages through IL-10. In addition, the HDAC inhibitor (HDACi) vorinostat inhibited cell growth and blocked the effect of HDAC6. Tomographic microscopy was used to monitor the live cell morphology of these treated cells, and we found that vorinostat treatment resulted in substantial cell apoptosis by 3 h 42 min. Next, we established a transgenic mouse model of EAOC and found that vorinostat significantly reduced the size of ovarian tumors by inhibiting M2 macrophage polarization in mice. Together, these data demonstrate that the signaling pathway of E4F1/ARID1A6488delG/HDAC6/GATA3 mediates macrophage polarization and provides a novel immune cell-associated therapeutic strategy targeting IL-10 in EAOC.
Collapse
Affiliation(s)
- Tsung-Hua Hsieh
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan.
| | - Chia-Yi Hsu
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| | - Chia-Wei Wu
- Department of Medical Research, E-Da Hospital/E-Da Cancer Hospital, I-Shou University, Kaohsiung 82445, Taiwan
| | - Shih-Ho Wang
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Cheng-Hsi Yeh
- Division of General Surgery, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 83301, Taiwan
| | - Kuang-Hung Cheng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Eing-Mei Tsai
- Department of Obstetrics and Gynecology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 807378, Taiwan
| |
Collapse
|
37
|
LaRue KC, Fernandez-Zapico ME. EGFR Reloaded: Finding New Ways to Shape Pancreatic Cancer Epigenome. Cell Mol Gastroenterol Hepatol 2023; 15:1253-1254. [PMID: 36882150 PMCID: PMC10140288 DOI: 10.1016/j.jcmgh.2023.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/13/2023] [Indexed: 03/09/2023]
Affiliation(s)
- Kayla C LaRue
- Schulze Center for Novel Therapeutics, Division of Oncology Research; Mayo Clinic Graduate School of Biomedical Sciences, Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota
| | - Martin E Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota.
| |
Collapse
|
38
|
Asaka S, Liu Y, Yu ZC, Rahmanto YS, Ono M, Asaka R, Miyamoto T, Yen TT, Ayhan A, Wang TL, Shih IM. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol 2023; 36:100045. [PMID: 36853791 DOI: 10.1016/j.modpat.2022.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
Loss of progesterone receptor (PR) expression is an established risk factor for unresponsiveness to progesterone therapy in patients with endometrial atypical hyperplasia and endometrioid carcinoma. ARID1A is one of the most commonly mutated genes in endometrioid carcinomas, and the loss of its expression is associated with tumor progression. In this study, we investigated the roles of ARID1A deficiency in PR expression in human and murine endometrial epithelial neoplasia. An analysis of genome-wide chromatin immunoprecipitation sequencing in isogenic ARID1A-/- and ARID1A+/+ human endometrial epithelial cells revealed that ARID1A-/- cells showed significantly reduced chromatin immunoprecipitation sequencing signals for ARID1A, BRG1, and H3K27AC in the PgR enhancer region. We then performed immunohistochemistry to correlate the protein expression levels of ARID1A, estrogen receptor, and PR in 50 human samples of endometrial atypical hyperplasia and 75 human samples of endometrial carcinomas. The expression levels of PR but not were significantly lower in ARID1A-deficient low-grade endometrial carcinomas and atypical hyperplasia (P = .0002). When Pten and Pten/Arid1a conditional knockout murine models were used, Pten-/-;Arid1a-/- mice exhibited significantly decreased epithelial PR expression in endometrial carcinomas (P = .003) and atypical hyperplasia (P < .0001) compared with that in the same tissues from Pten-/-;Arid1a+/+ mice. Our data suggest that the loss of ARID1A expression, as occurs in ARID1A-mutated endometrioid carcinomas, decreases PgR transcription by modulating the PgR enhancer region during early tumor development.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ying Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohan Suryo Rahmanto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ting-Tai Yen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Seirei Mikatahara Hospital, Hamamatsu, Japan; Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
39
|
Wu K, Rodrigues L, Post G, Harvey G, White M, Miller A, Lambert L, Lewis B, Lopes C, Zou J. Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs. NPJ Precis Oncol 2023; 7:8. [PMID: 36658200 PMCID: PMC9852553 DOI: 10.1038/s41698-023-00346-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Spontaneous tumors in canines share significant genetic and histological similarities with human tumors, positioning them as valuable models to guide drug development. However, current translational studies have limited real world evidence as cancer outcomes are dispersed across veterinary clinics and genomic tests are rarely performed on dogs. In this study, we aim to expand the value of canine models by systematically characterizing genetic mutations in tumors and their response to targeted treatments. In total, we collect and analyze survival outcomes for 2119 tumor-bearing dogs and the prognostic effect of genomic alterations in a subset of 1108 dogs. Our analysis identifies prognostic concordance between canines and humans in several key oncogenes, including TP53 and PIK3CA. We also find that several targeted treatments designed for humans are associated with a positive prognosis when used to treat canine tumors with specific genomic alterations, underscoring the value of canine models in advancing drug discovery for personalized oncology.
Collapse
Affiliation(s)
- Kevin Wu
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| | | | | | | | | | | | | | | | | | - James Zou
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| |
Collapse
|
40
|
Vinceti A, Trastulla L, Perron U, Raiconi A, Iorio F. A heuristic algorithm solving the mutual-exclusivity-sorting problem. Bioinformatics 2023; 39:btad016. [PMID: 36669133 PMCID: PMC9857977 DOI: 10.1093/bioinformatics/btad016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/14/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023] Open
Abstract
MOTIVATION Binary (or Boolean) matrices provide a common effective data representation adopted in several domains of computational biology, especially for investigating cancer and other human diseases. For instance, they are used to summarize genetic aberrations-copy number alterations or mutations-observed in cancer patient cohorts, effectively highlighting combinatorial relations among them. One of these is the tendency for two or more genes not to be co-mutated in the same sample or patient, i.e. a mutual-exclusivity trend. Exploiting this principle has allowed identifying new cancer driver protein-interaction networks and has been proposed to design effective combinatorial anti-cancer therapies rationally. Several tools exist to identify and statistically assess mutual-exclusive cancer-driver genomic events. However, these tools need to be equipped with robust/efficient methods to sort rows and columns of a binary matrix to visually highlight possible mutual-exclusivity trends. RESULTS Here, we formalize the mutual-exclusivity-sorting problem and present MutExMatSorting: an R package implementing a computationally efficient algorithm able to sort rows and columns of a binary matrix to highlight mutual-exclusivity patterns. Particularly, our algorithm minimizes the extent of collective vertical overlap between consecutive non-zero entries across rows while maximizing the number of adjacent non-zero entries in the same row. Here, we demonstrate that existing tools for mutual-exclusivity analysis are suboptimal according to these criteria and are outperformed by MutExMatSorting. AVAILABILITY AND IMPLEMENTATION https://github.com/AleVin1995/MutExMatSorting. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Alessandro Vinceti
- Computational Biology Research Centre, Human Technopole, 20157 Milano, Italy
| | - Lucia Trastulla
- Computational Biology Research Centre, Human Technopole, 20157 Milano, Italy
| | - Umberto Perron
- Computational Biology Research Centre, Human Technopole, 20157 Milano, Italy
| | - Andrea Raiconi
- Institute for Applied Mathematics “Mauro Picone”, National Research Council (IAC-CNR), 80131 Napoli, Italy
| | - Francesco Iorio
- Computational Biology Research Centre, Human Technopole, 20157 Milano, Italy
| |
Collapse
|
41
|
Tong A, Di X, Zhao X, Liang X. Review the progression of ovarian clear cell carcinoma from the perspective of genomics and epigenomics. Front Genet 2023; 14:952379. [PMID: 36873929 PMCID: PMC9978161 DOI: 10.3389/fgene.2023.952379] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Ovarian clear cell carcinoma (OCCC) is a rare subtype of epithelial ovarian cancer with unique molecular characteristics, specific biological and clinical behavior, poor prognosis and high resistance to chemotherapy. Pushed by the development of genome-wide technologies, our knowledge about the molecular features of OCCC has been considerably advanced. Numerous studies are emerging as groundbreaking, and many of them are promising treatment strategies. In this article, we reviewed studies about the genomics and epigenetics of OCCC, including gene mutation, copy number variations, DNA methylation and histone modifications.
Collapse
Affiliation(s)
- An Tong
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangjie Di
- Clinical Trial Center, NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drugs, West China Hospital of Sichuan University, Chengdu, Sichuan, China
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiao Liang
- Department of Gynecology and Obstetrics, Key Laboratory of Obstetrics and Gynecologic and Pediatric Diseases and Birth Defects of Ministry of Education, Development and Related Diseases of Women and Children Key Laboratory of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
42
|
Endometriosis Stem Cells as a Possible Main Target for Carcinogenesis of Endometriosis-Associated Ovarian Cancer (EAOC). Cancers (Basel) 2022; 15:cancers15010111. [PMID: 36612107 PMCID: PMC9817684 DOI: 10.3390/cancers15010111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022] Open
Abstract
Endometriosis is a serious recurrent disease impairing the quality of life and fertility, and being a risk for some histologic types of ovarian cancer defined as endometriosis-associated ovarian cancers (EAOC). The presence of stem cells in the endometriotic foci could account for the proliferative, migrative and angiogenic activity of the lesions. Their phenotype and sources have been described. The similarly disturbed expression of several genes, miRNAs, galectins and chaperones has been observed both in endometriotic lesions and in ovarian or endometrial cancer. The importance of stem cells for nascence and sustain of malignant tumors is commonly appreciated. Although the proposed mechanisms promoting carcinogenesis leading from endometriosis into the EAOC are not completely known, they have been discussed in several articles. However, the role of endometriosis stem cells (ESCs) has not been discussed in this context. Here, we postulate that ESCs may be a main target for the carcinogenesis of EAOC and present the possible sequence of events resulting finally in the development of EAOC.
Collapse
|
43
|
Sadek M, Sheth A, Zimmerman G, Hays E, Vélez-Cruz R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front Cell Dev Biol 2022; 10:1071786. [PMID: 36605718 PMCID: PMC9810387 DOI: 10.3389/fcell.2022.1071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodelers hydrolyze ATP to push and slide nucleosomes along the DNA thus modulating access to various genomic loci. These complexes are the most frequently mutated epigenetic regulators in human cancers. SWI/SNF complexes are well known for their function in transcription regulation, but more recent work has uncovered a role for these complexes in the repair of DNA double strand breaks (DSBs). As radiotherapy and most chemotherapeutic agents kill cancer cells by inducing double strand breaks, by identifying a role for these complexes in double strand break repair we are also identifying a DNA repair vulnerability that can be exploited therapeutically in the treatment of SWI/SNF-mutated cancers. In this review we summarize work describing the function of various SWI/SNF subunits in the repair of double strand breaks with a focus on homologous recombination repair and discuss the implication for the treatment of cancers with SWI/SNF mutations.
Collapse
Affiliation(s)
- Maria Sadek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Anand Sheth
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Grant Zimmerman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Emily Hays
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Renier Vélez-Cruz
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, United States
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
44
|
Srivatsa S, Montazeri H, Bianco G, Coto-Llerena M, Marinucci M, Ng CKY, Piscuoglio S, Beerenwinkel N. Discovery of synthetic lethal interactions from large-scale pan-cancer perturbation screens. Nat Commun 2022; 13:7748. [PMID: 36517508 PMCID: PMC9751287 DOI: 10.1038/s41467-022-35378-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 11/29/2022] [Indexed: 12/15/2022] Open
Abstract
The development of cancer therapies is limited by the availability of suitable drug targets. Potential candidate drug targets can be identified based on the concept of synthetic lethality (SL), which refers to pairs of genes for which an aberration in either gene alone is non-lethal, but co-occurrence of the aberrations is lethal to the cell. Here, we present SLIdR (Synthetic Lethal Identification in R), a statistical framework for identifying SL pairs from large-scale perturbation screens. SLIdR successfully predicts SL pairs even with small sample sizes while minimizing the number of false positive targets. We apply SLIdR to Project DRIVE data and find both established and potential pan-cancer and cancer type-specific SL pairs consistent with findings from literature and drug response screening data. We experimentally validate two predicted SL interactions (ARID1A-TEAD1 and AXIN1-URI1) in hepatocellular carcinoma, thus corroborating the ability of SLIdR to identify potential drug targets.
Collapse
Affiliation(s)
- Sumana Srivatsa
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Hesam Montazeri
- Department of Bioinformatics, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Gaia Bianco
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Mairene Coto-Llerena
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031, Basel, Switzerland
| | - Mattia Marinucci
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland
| | - Charlotte K Y Ng
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland
- Department for BioMedical Research, University of Bern, 3008, Bern, Switzerland
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, 4031, Basel, Switzerland.
- Institute of Medical Genetics and Pathology, University Hospital Basel, 4031, Basel, Switzerland.
| | - Niko Beerenwinkel
- Department of Biosystems Science and Engineering, ETH Zurich, 4058, Basel, Switzerland.
- SIB Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| |
Collapse
|
45
|
Lim HJ, Wubben JM, Garcia CP, Cruz-Gomez S, Deng J, Mak JY, Hachani A, Anderson RJ, Painter GF, Goyette J, Amarasinghe SL, Ritchie ME, Roquilly A, Fairlie DP, Gaus K, Rossjohn J, Villadangos JA, McWilliam HE. A specialized tyrosine-based endocytosis signal in MR1 controls antigen presentation to MAIT cells. J Cell Biol 2022; 221:213489. [PMID: 36129434 PMCID: PMC9499830 DOI: 10.1083/jcb.202110125] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 06/23/2022] [Accepted: 09/01/2022] [Indexed: 12/13/2022] Open
Abstract
MR1 is a highly conserved microbial immune-detection system in mammals. It captures vitamin B-related metabolite antigens from diverse microbes and presents them at the cell surface to stimulate MR1-restricted lymphocytes including mucosal-associated invariant T (MAIT) cells. MR1 presentation and MAIT cell recognition mediate homeostasis through host defense and tissue repair. The cellular mechanisms regulating MR1 cell surface expression are critical to its function and MAIT cell recognition, yet they are poorly defined. Here, we report that human MR1 is equipped with a tyrosine-based motif in its cytoplasmic domain that mediates low affinity binding with the endocytic adaptor protein 2 (AP2) complex. This interaction controls the kinetics of MR1 internalization from the cell surface and minimizes recycling. We propose MR1 uses AP2 endocytosis to define the duration of antigen presentation to MAIT cells and the detection of a microbial metabolic signature by the immune system.
Collapse
Affiliation(s)
- Hui Jing Lim
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jacinta M. Wubben
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
| | - Cristian Pinero Garcia
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Sebastian Cruz-Gomez
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Jeffrey Y.W. Mak
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Abderrahman Hachani
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
| | - Regan J. Anderson
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Gavin F. Painter
- Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Jesse Goyette
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Shanika L. Amarasinghe
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Matthew E. Ritchie
- Epigenetics and Development Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
| | - Antoine Roquilly
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Nantes Université, CHU Nantes, INSERM, Center for Research in Transplantation and Translational Immunology, UMR 1064; F-44000, Nantes, France
| | - David P. Fairlie
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, Australia
| | - Katharina Gaus
- EMBL Australia Node in Single Molecule Science, School of Medical Sciences, The University of New South Wales, Sydney, Australia
| | - Jamie Rossjohn
- Infection and Immunity Program and The Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute Monash University, Clayton, Victoria, Australia
- Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff, UK
| | - Jose A. Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Jose A. Villadangos:
| | - Hamish E.G. McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, The Peter Doherty Institute of Infection and Immunity, Melbourne, Victoria, Australia
- Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia
- Correspondence to Hamish E.G. McWilliam:
| |
Collapse
|
46
|
Stubbs FE, Flynn BP, Rivers CA, Birnie MT, Herman A, Swinstead EE, Baek S, Fang H, Temple J, Carroll JS, Hager GL, Lightman SL, Conway-Campbell BL. Identification of a novel GR-ARID1a-P53BP1 protein complex involved in DNA damage repair and cell cycle regulation. Oncogene 2022; 41:5347-5360. [PMID: 36344675 PMCID: PMC9734058 DOI: 10.1038/s41388-022-02516-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/02/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
ARID1a (BAF250), a component of human SWI/SNF chromatin remodeling complexes, is frequently mutated across numerous cancers, and its loss of function has been putatively linked to glucocorticoid resistance. Here, we interrogate the impact of siRNA knockdown of ARID1a compared to a functional interference approach in the HeLa human cervical cancer cell line. We report that ARID1a knockdown resulted in a significant global decrease in chromatin accessibility in ATAC-Seq analysis, as well as affecting a subset of genome-wide GR binding sites determined by analyzing GR ChIP-Seq data. Interestingly, the specific effects on gene expression were limited to a relatively small subset of glucocorticoid-regulated genes, notably those involved in cell cycle regulation and DNA repair. The vast majority of glucocorticoid-regulated genes were largely unaffected by ARID1a knockdown or functional interference, consistent with a more specific role for ARID1a in glucocorticoid function than previously speculated. Using liquid chromatography-mass spectrometry, we have identified a chromatin-associated protein complex comprising GR, ARID1a, and several DNA damage repair proteins including P53 binding protein 1 (P53BP1), Poly(ADP-Ribose) Polymerase 1 (PARP1), DNA damage-binding protein 1 (DDB1), DNA mismatch repair protein MSH6 and splicing factor proline and glutamine-rich protein (SFPQ), as well as the histone acetyltransferase KAT7, an epigenetic regulator of steroid-dependent transcription, DNA damage repair and cell cycle regulation. Not only was this protein complex ablated with both ARID1a knockdown and functional interference, but spontaneously arising DNA damage was also found to accumulate in a manner consistent with impaired DNA damage repair mechanisms. Recovery from dexamethasone-dependent cell cycle arrest was also significantly impaired. Taken together, our data demonstrate that although glucocorticoids can still promote cell cycle arrest in the absence of ARID1a, the purpose of this arrest to allow time for DNA damage repair is hindered.
Collapse
Affiliation(s)
- Felicity E Stubbs
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Benjamin P Flynn
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Caroline A Rivers
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Matthew T Birnie
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Andrew Herman
- Flow Cytometry Facility, Faculty of Life Sciences, School of Cellular & Molecular Medicine, Biomedical Sciences Building, University of Bristol, Bristol, BS8 1TD, UK
| | - Erin E Swinstead
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Songjoon Baek
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jillian Temple
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Jason S Carroll
- Cancer Research UK Cambridge Institute, University of Cambridge, Robinson Way, Cambridge, CB2 0RE, UK
| | - Gordon L Hager
- Laboratory of Receptor Biology and Gene Expression, The National Cancer Institute, US National Institutes of Health, 41 Medlars Drive, Bethesda, MD, 20892, USA
| | - Stafford L Lightman
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK
| | - Becky L Conway-Campbell
- Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology, Translational Health Sciences, Faculty of Health Sciences, University of Bristol, Dorothy Hodgkin Building, Whitson Street, Bristol, BS1 3NY, UK.
| |
Collapse
|
47
|
Li C, Wang T, Gu J, Qi S, Li J, Chen L, Wu H, Shi L, Song C, Li H, Zhu L, Lu Y, Zhou Q. SMARCC2 mediates the regulation of DKK1 by the transcription factor EGR1 through chromatin remodeling to reduce the proliferative capacity of glioblastoma. Cell Death Dis 2022; 13:990. [PMID: 36418306 PMCID: PMC9684443 DOI: 10.1038/s41419-022-05439-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/25/2022] [Accepted: 11/14/2022] [Indexed: 11/25/2022]
Abstract
Switch/sucrose-nonfermenting (SWI/SNF) complexes play a key role in chromatin remodeling. Recent studies have found that SMARCC2, as the core subunit of the fundamental module of the complex, plays a key role in its early assembly. In this study, we found a unique function of SMARCC2 in inhibiting the progression of glioblastoma by targeting the DKK1 signaling axis. Low expression of SMARCC2 is found in malignant glioblastoma (GBM) compared with low-grade gliomas. SMARCC2 knockout promoted the proliferation of glioblastoma cells, while its overexpression showed the opposite effect. Mechanistically, SMARCC2 negatively regulates transcription by dynamically regulating the chromatin structure and closing the promoter region of the target gene DKK1, which can be bound by the transcription factor EGR1. DKK1 knockdown significantly reduced the proliferation of glioblastoma cell lines by inhibiting the PI3K-AKT pathway. We also studied the functions of the SWIRM and SANT domains of SMARCC2 and found that the SWIRM domain plays a more important role in the complete chromatin remodeling function of SMARCC2. In addition, in vivo studies confirmed that overexpression of SMARCC2 could significantly inhibit the size of intracranial gliomas in situ in nude mice. Overall, this study shows that SMARCC2, as a tumor suppressor, inhibits the proliferation of glioblastoma by targeting the transcription of the oncogene DKK1 through chromatin remodeling, indicating that SMARCC2 is a potentially attractive therapeutic target in glioblastoma.
Collapse
Affiliation(s)
- Chiyang Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Tong Wang
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Junwei Gu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Songtao Qi
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| | - Junjie Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Lei Chen
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Hang Wu
- grid.284723.80000 0000 8877 7471Department of Hematology, Nanfang Hospital, Southern Medical University, 510000 Guangzhou, Guangdong P.R. China
| | - Linyong Shi
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Chong Song
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Hong Li
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Liwen Zhu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China
| | - Yuntao Lu
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| | - Qiang Zhou
- grid.284723.80000 0000 8877 7471Department of Neurosurgery, Southern Medical University, Guangzhou, China ,grid.284723.80000 0000 8877 7471Nanfang Neurology Research Institution, Nanfang Hospital, Southern Medical University, Guangzhou, China ,Nanfang Glioma Center, Guangzhou, China
| |
Collapse
|
48
|
Vaicekauskaitė I, Sabaliauskaitė R, Lazutka JR, Jarmalaitė S. The Emerging Role of Chromatin Remodeling Complexes in Ovarian Cancer. Int J Mol Sci 2022; 23:ijms232213670. [PMID: 36430148 PMCID: PMC9697406 DOI: 10.3390/ijms232213670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/31/2022] [Accepted: 11/05/2022] [Indexed: 11/09/2022] Open
Abstract
Ovarian cancer (OC) is the fifth leading cause of women's death from cancers. The high mortality rate is attributed to the late presence of the disease and the lack of modern diagnostic tools, including molecular biomarkers. Moreover, OC is a highly heterogeneous disease, which contributes to early treatment failure. Thus, exploring OC molecular mechanisms could significantly enhance our understanding of the disease and provide new treatment options. Chromatin remodeling complexes (CRCs) are ATP-dependent molecular machines responsible for chromatin reorganization and involved in many DNA-related processes, including transcriptional regulation, replication, and reparation. Dysregulation of chromatin remodeling machinery may be related to cancer development and chemoresistance in OC. Some forms of OC and other gynecologic diseases have been associated with mutations in specific CRC genes. Most notably, ARID1A in endometriosis-related OC, SMARCA4, and SMARCB1 in hypercalcemic type small cell ovarian carcinoma (SCCOHT), ACTL6A, CHRAC1, RSF1 amplification in high-grade serous OC. Here we review the available literature on CRCs' involvement in OC to improve our understanding of its development and investigate CRCs as possible biomarkers and treatment targets for OC.
Collapse
Affiliation(s)
- Ieva Vaicekauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Rasa Sabaliauskaitė
- Laboratory of Genetic Diagnostic, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
| | - Juozas Rimantas Lazutka
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
| | - Sonata Jarmalaitė
- Institute of Biosciences, Vilnius University, Sauletekio Avenue 7, LT-10222 Vilnius, Lithuania
- Laboratory of Clinical Oncology, National Cancer Institute, Santariškių 1, LT-08406 Vilnius, Lithuania
- Correspondence:
| |
Collapse
|
49
|
Chang G, Li W, Bai H, Duan J, Wang Z, Du X, Yu R, Wang Y, Wang M, Zhu Y, Zhang X, Li L, Wan R, Wang J. Correlations of switch/sucrose nonfermentable complex mutations with clinical outcomes in advanced non-small cell lung cancer. Thorac Cancer 2022; 13:2951-2959. [PMID: 36126963 PMCID: PMC9626335 DOI: 10.1111/1759-7714.14635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The switch/sucrose nonfermentable complex mutations (SWI/SNF-mut) are common in non-small cell lung cancer (NSCLC). However, the association of SWI/SNF-mut with the clinical outcomes of immune checkpoint inhibitors (ICIs), particularly of epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), has not been established. METHODS We retrospectively collected data of patients at Cancer Hospital Chinese Academy of Medical Sciences. Patients with advanced NSCLC who received programmed cell death protein-1 or programmed cell death ligand 1 (PD-[L]1) inhibitors were included in cohort 1 and those with EGFR mutations (EGFR-mutant) received EGFR-TKIs monotherapy were included in cohort 2. Two reported Memorial Sloan-Kettering Cancer Center (MSKCC) cohorts received immunotherapy alone used as the validation for cohort 1. We analyzed the relationship between SWI/SNF alterations and clinical outcomes in each cohort. RESULTS In total, 1162 patients were included, of which 230 patients (19.8%) were identified as SWI/SNF-mut with the most common genetic alterations being ARID1A (33.4%) and SMARCA4 (28.3%). In cohort 1 (n = 146), patients with co-mutations of SWI/SNF and Kirsten rat sarcoma oncogene (KRAS) (SWI/SNFmutKRASmut, n = 18) had significantly prolonged progression-free survival (PFS) (8.6 m vs. 1.9 m; hazard ratio [HR], 0.31; 95% confidence intervals [CI], 0.11-0.83; p = 0.032) to PD-(L)1 inhibitors monotherapy, which was consistent with the MSKCC cohorts (not reach [NR] vs. 6.3 m; HR, 0.36, 95% CI, 0.15-0.82; p = 0.016). In cohort 2 (n = 205), ARID1A-mut (n = 16) was associated with improved PFS after EGFR-TKIs (20.6 m vs. 11.2 m; HR, 0.47, 95% CI, 0.27-0.94; p = 0.023). CONCLUSIONS In advanced NSCLC, patients with SWI/SNFmutKRASmut seem to benefit more from ICIs. Furthermore, ARID1A-mut may provide a protective effect to EGFR-TKIs in EGFR-mutant patients. However, this is a retrospective single-institution analysis that requires further validation by large prospective studies.
Collapse
Affiliation(s)
- Geyun Chang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Weihua Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hua Bai
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jianchun Duan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Zhijie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xinyang Du
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Ruofei Yu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yaxi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Minghao Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yixiang Zhu
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Xue Zhang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Li Li
- Department of Medical Records, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Rui Wan
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Jie Wang
- State Key Laboratory of Molecular Oncology, Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| |
Collapse
|
50
|
Mandal J, Mandal P, Wang TL, Shih IM. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci 2022; 29:71. [PMID: 36123603 PMCID: PMC9484255 DOI: 10.1186/s12929-022-00856-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodeling is an essential cellular process for organizing chromatin structure into either open or close configuration at specific chromatin locations by orchestrating and modifying histone complexes. This task is responsible for fundamental cell physiology including transcription, DNA replication, methylation, and damage repair. Aberrations in this activity have emerged as epigenomic mechanisms in cancer development that increase tumor clonal fitness and adaptability amidst various selection pressures. Inactivating mutations in AT-rich interaction domain 1A (ARID1A), a gene encoding a large nuclear protein member belonging to the SWI/SNF chromatin remodeling complex, result in its loss of expression. ARID1A is the most commonly mutated chromatin remodeler gene, exhibiting the highest mutation frequency in endometrium-related uterine and ovarian carcinomas. As a tumor suppressor gene, ARID1A is essential for regulating cell cycle, facilitating DNA damage repair, and controlling expression of genes that are essential for maintaining cellular differentiation and homeostasis in non-transformed cells. Thus, ARID1A deficiency due to somatic mutations propels tumor progression and dissemination. The recent success of PARP inhibitors in treating homologous recombination DNA repair-deficient tumors has engendered keen interest in developing synthetic lethality-based therapeutic strategies for ARID1A-mutated neoplasms. In this review, we summarize recent advances in understanding the biology of ARID1A in cancer development, with special emphasis on its roles in DNA damage repair. We also discuss strategies to harness synthetic lethal mechanisms for future therapeutics against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|