1
|
Raitoharju E, Marttila S. Commentary on "Epigenome-wide analysis across the development span of pediatric acute lymphoblastic leukemia: backtracking to birth". Mol Cancer 2025; 24:8. [PMID: 39799337 PMCID: PMC11724579 DOI: 10.1186/s12943-024-02220-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 12/27/2024] [Indexed: 01/15/2025] Open
Abstract
VTRNA2-1 is a polymorphically imprinted locus. The proportion of individuals with a maternally imprinted VTRNA2-1 locus is consistently approximately 75% in populations of European origin, with the remaining circa 25% having a non-methylated VTRNA2-1 locus. Recently, VTRNA2-1 hypermethylation at birth was suggested to be a precursor of paediatric acute lymphoblastic leukaemia with biomarker potential. The results presented by Ghantous et al. [1] allow for an alternative interpretation to what the authors discussed, and we argue that the observed methylation difference at birth is due to an uneven distribution of imprinted and non-methylated individuals among the cases and controls, with all individuals presenting normative physiological VTRNA2-1 methylation levels. In addition, the notable interindividual variation arising from the polymorphic imprinting in VTRNA2-1 methylation levels calls into question the validity of VTRNA2-1 methylation as a biomarker.
Collapse
Grants
- 9AC077, 9X047, 9S054, 9AB059, T63074 State funding for university-level health research, Tampere University Hospital, the Wellbeing Services County of Pirkanmaa and Fimlab Oy
- 9AC077, 9X047, 9S054, 9AB059, T63074 State funding for university-level health research, Tampere University Hospital, the Wellbeing Services County of Pirkanmaa and Fimlab Oy
- 20227543, 20207299, 20197212 Yrjö Jahnssonin Säätiö
- 20227543, 20207299, 20197212 Yrjö Jahnssonin Säätiö
- 330809, 338395, 322098, 356405 Research Council of Finland
- Pirkanmaa Regional Fund of the Finnish Cultural Foundation
- Laboratoriolääketieteen edistämissäätiö sr.
- Signe och Ane Gyllenbergs stiftelse
- Finnish Foundation for Cardiovascular Research
Collapse
Affiliation(s)
- Emma Raitoharju
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Fimlab Laboratories, Tampere, Finland.
| | - Saara Marttila
- Molecular Epidemiology (MOLE), Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
- Tampere University Hospital, Wellbeing Services County of Pirkanmaa, Tampere, Finland.
| |
Collapse
|
2
|
Mosquera Orgueira A, Krali O, Pérez Míguez C, Peleteiro Raíndo A, Díaz Arias JÁ, González Pérez MS, Pérez Encinas MM, Fernández Sanmartín M, Sinnet D, Heyman M, Lönnerholm G, Norén-Nyström U, Schmiegelow K, Nordlund J. Refining risk prediction in pediatric acute lymphoblastic leukemia through DNA methylation profiling. Clin Epigenetics 2024; 16:49. [PMID: 38549146 PMCID: PMC10976833 DOI: 10.1186/s13148-024-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/16/2024] [Indexed: 04/02/2024] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most prevalent cancer in children, and despite considerable progress in treatment outcomes, relapses still pose significant risks of mortality and long-term complications. To address this challenge, we employed a supervised machine learning technique, specifically random survival forests, to predict the risk of relapse and mortality using array-based DNA methylation data from a cohort of 763 pediatric ALL patients treated in Nordic countries. The relapse risk predictor (RRP) was constructed based on 16 CpG sites, demonstrating c-indexes of 0.667 and 0.677 in the training and test sets, respectively. The mortality risk predictor (MRP), comprising 53 CpG sites, exhibited c-indexes of 0.751 and 0.754 in the training and test sets, respectively. To validate the prognostic value of the predictors, we further analyzed two independent cohorts of Canadian (n = 42) and Nordic (n = 384) ALL patients. The external validation confirmed our findings, with the RRP achieving a c-index of 0.667 in the Canadian cohort, and the RRP and MRP achieving c-indexes of 0.529 and 0.621, respectively, in an independent Nordic cohort. The precision of the RRP and MRP models improved when incorporating traditional risk group data, underscoring the potential for synergistic integration of clinical prognostic factors. The MRP model also enabled the definition of a risk group with high rates of relapse and mortality. Our results demonstrate the potential of DNA methylation as a prognostic factor and a tool to refine risk stratification in pediatric ALL. This may lead to personalized treatment strategies based on epigenetic profiling.
Collapse
Affiliation(s)
- Adrián Mosquera Orgueira
- Department of Hematology, University Hospital of Santiago de Compostela, Compostela, Spain.
- Health Research Institute of Santiago de Compostela, Compostela, Spain.
| | - Olga Krali
- Department of Medical Sciences, Molecular Precision Medicine, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | - Andrés Peleteiro Raíndo
- Department of Hematology, University Hospital of Santiago de Compostela, Compostela, Spain
- Health Research Institute of Santiago de Compostela, Compostela, Spain
| | - José Ángel Díaz Arias
- Department of Hematology, University Hospital of Santiago de Compostela, Compostela, Spain
- Health Research Institute of Santiago de Compostela, Compostela, Spain
| | - Marta Sonia González Pérez
- Department of Hematology, University Hospital of Santiago de Compostela, Compostela, Spain
- Health Research Institute of Santiago de Compostela, Compostela, Spain
| | - Manuel Mateo Pérez Encinas
- Department of Hematology, University Hospital of Santiago de Compostela, Compostela, Spain
- Health Research Institute of Santiago de Compostela, Compostela, Spain
| | - Manuel Fernández Sanmartín
- Health Research Institute of Santiago de Compostela, Compostela, Spain
- Department of Pediatric Medicine, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - Daniel Sinnet
- Research Center, CHU Sainte-Justine, Montréal, Canada
- Department of Pediatrics, Université de Montréal, Montreal, Canada
| | - Mats Heyman
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Uppsala University, Uppsala, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Ulrika Norén-Nyström
- Department of Clinical Sciences, Pediatrics, Umeå University, Umeå, Sweden
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Kjeld Schmiegelow
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- For the Nordic Society of Pediatric Hematology and Oncology (NOPHO), Stockholm, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Precision Medicine, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
3
|
An N, Yang X. Prediction of disease-free survival of N1/2 non-small cell lung cancer after adjuvant chemotherapy by the biomarker RPMB. Heliyon 2023; 9:e18266. [PMID: 37501955 PMCID: PMC10368914 DOI: 10.1016/j.heliyon.2023.e18266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/29/2023] Open
Abstract
No molecular biomarkers have been proven applicable in clinical practice to identify patients who can benefit from adjuvant chemotherapy in non-small cell lung cancer (NSCLC). In this study, we established a biomarker, RPMB, short for promotor methylation burden of DNA repair genes (DRGs), to identify the subgroup of patients who might benefit from adjuvant chemotherapy in NSCLC. Methylation profiles of 828 NSCLC primary tumors and their clinical information were downloaded from The Cancer Genome Atlas (TCGA) database. The RPMB for each patient after radical resection was calculated and its correlation with the prognosis of NSCLC was extensively investigated. DRGs of NSCLC were much more hypomethylated than the other genes (all p<0.001). RPMB was defined as the ratio of methylated DRGs to the total number of all the DRGs. Patients with higher RPMB values tended to be nonsmokers, had adenocarcinoma, were female and had peripheral tumors. Subgroup analysis of forest plot among different clinical factors showed that high RPMB was significantly correlated to better disease-free survival (DFS) in pathologic N-positive patients after adjuvant chemotherapy (HR = 0.404, n = 62, p = 0.034). Notably, more superior DFS was exhibited in high RPMB NSCLCs with N1 nodal stage compared with those with low RPMB values (HR = 0.348, n = 47, p = 0.043). High RPMB might be used as a potential predictor to identify suitable N-positive NSCLC patients who can benefit from adjuvant chemotherapy after radical surgery.
Collapse
Affiliation(s)
- Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| | - Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong, 266003, China
| |
Collapse
|
4
|
MicroRNAs and the Diagnosis of Childhood Acute Lymphoblastic Leukemia: Systematic Review, Meta-Analysis and Re-Analysis with Novel Small RNA-Seq Tools. Cancers (Basel) 2022; 14:cancers14163976. [PMID: 36010971 PMCID: PMC9406077 DOI: 10.3390/cancers14163976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/14/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary MicroRNAs (miRNAs) have been under the spotlight for the last three decades. These non-coding RNAs seem to be dynamic regulators of mRNA stability and translation, in addition to interfering with transcription. Circulating miRNAs play a critical role in cell-to-cell interplay; therefore, they can serve as disease biomarkers. Meta-analysis of published data revealed that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against acute lymphoblastic leukemia (ALL) in children. Reanalysis of small RNA-seq data with novel tools identified significantly overexpressed members of the miR-128, miR-181, miR-130 and miR-17 families and significantly lower expression of miR-30, miR-24-2 and miR143~145 clusters, miR-574 and miR-618 in pediatric T-ALL cases compared with controls. Inconsistencies in methodology and study designs in most published material preclude reproducibility, and further cohort studies need to be conducted in order to empower novel tools, such as ALLSorts and RNAseqCNV. Abstract MicroRNAs (miRNAs) have been implicated in childhood acute lymphoblastic leukemia (ALL) pathogenesis. We performed a systematic review and meta-analysis of miRNA single-nucleotide polymorphisms (SNPs) in childhood ALL compared with healthy children, which revealed (i) that the CC genotype of rs4938723 in pri-miR-34b/c and the TT genotype of rs543412 in miR-100 confer protection against ALL occurrence in children; (ii) no significant association between rs2910164 genotypes in miR-146a and childhood ALL; and (iii) SNPs in DROSHA, miR-449b, miR-938, miR-3117 and miR-3689d-2 genes seem to be associated with susceptibility to B-ALL in childhood. A review of published literature on differential expression of miRNAs in children with ALL compared with controls revealed a significant upregulation of the miR-128 family, miR-130b, miR-155, miR-181 family, miR-210, miR-222, miR-363 and miR-708, along with significant downregulation of miR-143 and miR-148a, seem to have a definite role in childhood ALL development. MicroRNA signatures among childhood ALL subtypes, along with differential miRNA expression patterns between B-ALL and T-ALL cases, were scrutinized. With respect to T-ALL pediatric cases, we reanalyzed RNA-seq datasets with a robust and sensitive pipeline and confirmed the significant differential expression of hsa-miR-16-5p, hsa-miR-19b-3p, hsa-miR-92a-2-5p, hsa-miR-128-3p (ranked first), hsa-miR-130b-3p and -5p, hsa-miR-181a-5p, -2-3p and -3p, hsa-miR-181b-5p and -3p, hsa-miR-145-5p and hsa-miR-574-3p, as described in the literature, along with novel identified miRNAs.
Collapse
|
5
|
Diedrich JD, Dong Q, Ferguson DC, Bergeron BP, Autry RJ, Qian M, Yang W, Smith C, Papizan JB, Connelly JP, Hagiwara K, Crews KR, Pruett-Miller SM, Pui CH, Yang JJ, Relling MV, Evans WE, Savic D. Profiling chromatin accessibility in pediatric acute lymphoblastic leukemia identifies subtype-specific chromatin landscapes and gene regulatory networks. Leukemia 2021; 35:3078-3091. [PMID: 33714976 PMCID: PMC8435544 DOI: 10.1038/s41375-021-01209-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 02/03/2021] [Accepted: 02/24/2021] [Indexed: 12/25/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is a hematopoietic malignancy comprised of molecular subtypes largely characterized by aneuploidy or recurring chromosomal rearrangements. Despite extensive information on the ALL transcriptome and methylome, there is limited understanding of the ALL chromatin landscape. We therefore mapped accessible chromatin in 24 primary ALL cell biospecimens comprising three common molecular subtypes (DUX4/ERG, ETV6-RUNX1 and hyperdiploid) from patients treated at St. Jude Children's Research Hospital. Our findings highlight extensive chromatin reprogramming in ALL, including the identification ALL subtype-specific chromatin landscapes that are additionally modulated by genetic variation. Chromatin accessibility differences between ALL and normal B-cells implicate the activation of B-cell repressed chromatin domains and detail the disruption of normal B-cell development in ALL. Among ALL subtypes, we uncovered roles for basic helix-loop-helix, homeodomain and activator protein 1 transcription factors in promoting subtype-specific chromatin accessibility and distinct gene regulatory networks. In addition to chromatin subtype-specificity, we further identified over 3500 DNA sequence variants that alter the ALL chromatin landscape and contribute to inter-individual variability in chromatin accessibility. Collectively, our data suggest that subtype-specific chromatin landscapes and gene regulatory networks impact ALL biology and contribute to transcriptomic differences among ALL subtypes.
Collapse
Affiliation(s)
- Jonathan D Diedrich
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Qian Dong
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel C Ferguson
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Brennan P Bergeron
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Autry
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Maoxiang Qian
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Wenjian Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Colton Smith
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - James B Papizan
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jon P Connelly
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kohei Hagiwara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kristine R Crews
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shondra M Pruett-Miller
- Department of Cell and Molecular biology and Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ching-Hon Pui
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jun J Yang
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Oncology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mary V Relling
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - William E Evans
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Daniel Savic
- Hematological Malignancies Program and Center for Precision Medicine in Leukemia, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA.
- Integrated Biomedical Sciences Program, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
6
|
Galán-Martínez J, Stamatakis K, Sánchez-Gómez I, Vázquez-Cuesta S, Gironés N, Fresno M. Isoform-specific effects of transcription factor TCFL5 on the pluripotency-related genes SOX2 and KLF4 in colorectal cancer development. Mol Oncol 2021; 16:1876-1890. [PMID: 34623757 PMCID: PMC9067154 DOI: 10.1002/1878-0261.13085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/21/2021] [Accepted: 07/17/2021] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) is a very common life‐threatening malignancy. Transcription factor‐like 5 (TCFL5) has been suggested to be involved in CRC. Here, we describe the expression of four alternative transcripts of TCFL5 and their relevance in CRC. Complete deletion of all isoforms drastically decreased pro‐tumoural properties such as spheroids formation and in vivo tumour growth, although increased migration in CRC cell lines. Overexpression of the two main isoforms, TCFL5_E8 and CHA, had opposite effects: TCFL5_E8 reduced proliferation and spheroids formation, while CHA increased them. TCFL5_E8 reduced in vivo tumour formation, while CHA had no effect. In addition, TCFL5_E8 and CHA have different roles in the regulation of the pluripotency‐related genes SOX2 and KLF4. Both isoforms bind directly to their promoters; however, TCFL5_E8 induced SOX2 and reduced KLF4 mRNA levels, whereas CHA did the opposite. Together, our results show that TCFL5 plays an important role in the development of CRC, being however isoform‐specific. This work also points to the need to analyse separately TCFL5 isoforms in cancer, due to their different and opposite functions.
Collapse
Affiliation(s)
- Javier Galán-Martínez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Konstantinos Stamatakis
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain
| | - Inés Sánchez-Gómez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | | | - Núria Gironés
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| | - Manuel Fresno
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Spain.,Consejo Superior de Investigaciones Científicas, Universidad Autónoma de Madrid, Spain.,Instituto Sanitario de Investigación Princesa, Madrid, Spain
| |
Collapse
|
7
|
Mehtonen J, Teppo S, Lahnalampi M, Kokko A, Kaukonen R, Oksa L, Bouvy-Liivrand M, Malyukova A, Mäkinen A, Laukkanen S, Mäkinen PI, Rounioja S, Ruusuvuori P, Sangfelt O, Lund R, Lönnberg T, Lohi O, Heinäniemi M. Single cell characterization of B-lymphoid differentiation and leukemic cell states during chemotherapy in ETV6-RUNX1-positive pediatric leukemia identifies drug-targetable transcription factor activities. Genome Med 2020; 12:99. [PMID: 33218352 PMCID: PMC7679990 DOI: 10.1186/s13073-020-00799-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 11/03/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tight regulatory loops orchestrate commitment to B cell fate within bone marrow. Genetic lesions in this gene regulatory network underlie the emergence of the most common childhood cancer, acute lymphoblastic leukemia (ALL). The initial genetic hits, including the common translocation that fuses ETV6 and RUNX1 genes, lead to arrested cell differentiation. Here, we aimed to characterize transcription factor activities along the B-lineage differentiation trajectory as a reference to characterize the aberrant cell states present in leukemic bone marrow, and to identify those transcription factors that maintain cancer-specific cell states for more precise therapeutic intervention. METHODS We compared normal B-lineage differentiation and in vivo leukemic cell states using single cell RNA-sequencing (scRNA-seq) and several complementary genomics profiles. Based on statistical tools for scRNA-seq, we benchmarked a workflow to resolve transcription factor activities and gene expression distribution changes in healthy bone marrow lymphoid cell states. We compared these to ALL bone marrow at diagnosis and in vivo during chemotherapy, focusing on leukemias carrying the ETV6-RUNX1 fusion. RESULTS We show that lymphoid cell transcription factor activities uncovered from bone marrow scRNA-seq have high correspondence with independent ATAC- and ChIP-seq data. Using this comprehensive reference for regulatory factors coordinating B-lineage differentiation, our analysis of ETV6-RUNX1-positive ALL cases revealed elevated activity of multiple ETS-transcription factors in leukemic cells states, including the leukemia genome-wide association study hit ELK3. The accompanying gene expression changes associated with natural killer cell inactivation and depletion in the leukemic immune microenvironment. Moreover, our results suggest that the abundance of G1 cell cycle state at diagnosis and lack of differentiation-associated regulatory network changes during induction chemotherapy represent features of chemoresistance. To target the leukemic regulatory program and thereby overcome treatment resistance, we show that inhibition of ETS-transcription factors reduced cell viability and resolved pathways contributing to this using scRNA-seq. CONCLUSIONS Our data provide a detailed picture of the transcription factor activities characterizing both normal B-lineage differentiation and those acquired in leukemic bone marrow and provide a rational basis for new treatment strategies targeting the immune microenvironment and the active regulatory network in leukemia.
Collapse
Affiliation(s)
- Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Susanna Teppo
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Mari Lahnalampi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Aleksi Kokko
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Riina Kaukonen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Laura Oksa
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Maria Bouvy-Liivrand
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | - Alena Malyukova
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Artturi Mäkinen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Saara Laukkanen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Petri I Mäkinen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland
| | | | - Pekka Ruusuvuori
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
| | - Olle Sangfelt
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77, Stockholm, Sweden
| | - Riikka Lund
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tapio Lönnberg
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Olli Lohi
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, FI-33014, Tampere, Finland
- Tays Cancer Centre, Tampere University Hospital, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Yliopistonranta 1, FI-70211, Kuopio, Finland.
| |
Collapse
|
8
|
An N, Yu Z, He XJ, Zhao YY, Yu L, Zhang YC, Lu HJ, Yang X. Promoter Methylation of DNA Repair Genes Predicts Disease-free Survival of Gastric Adenocarcinoma after Adjuvant Radiotherapy. Mol Ther Oncolytics 2020; 18:109-117. [PMID: 32671186 PMCID: PMC7334297 DOI: 10.1016/j.omto.2020.06.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 06/03/2020] [Indexed: 12/27/2022] Open
Abstract
The relentless debate on postoperative adjuvant radiotherapy in gastric adenocarcinoma (GA) has been lasting for decades. In this study, a new biomarker, named promoter methylation burden of DNA repair genes (RPMB), was established to identify the subgroup of patients who might benefit from adjuvant radiotherapy. Methylation profiles of 397 GA tumor samples were downloaded from The Cancer Genome Atlas (TCGA). RPMB for a patient was defined as the ratio of methylated DNA repair genes to the number of all DNA repair genes. Subgroup analyses in term of overall survival (OS) and disease-free survival (DFS) indicated that most of the subgroups favored the high-RMPB group. Kaplan-Meier analysis showed that overall the patients with high RPMB after R0 resection had a significantly better clinical outcome regarding DFS (hazard ratio [HR] = 0.013, p = 0.042). Additionally, high-RPMB patients, who underwent adjuvant radiotherapy with both ≥T2 tumor and positive lymph nodes, showed superior DFS in comparison with the low-RPMB group (HR = 5.35 × 10−10, n = 26, p = 0.010). RPMB might be considered as a promising biomarker for decision-making with regard to postoperative adjuvant radiotherapy for GA patients.
Collapse
Affiliation(s)
- Ning An
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Zhuang Yu
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Xin-Jia He
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Yuan-Yuan Zhao
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Li Yu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
| | - Yong-Chun Zhang
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
- Corresponding author: Yongchun Zhang, Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | - Hai-Jun Lu
- Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
- Corresponding author: Haijun Lu, Department of Radiation Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| | - Xue Yang
- Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China
- Corresponding author: Xue Yang, Department of Medical Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266003, China.
| |
Collapse
|
9
|
Grönroos T, Mäkinen A, Laukkanen S, Mehtonen J, Nikkilä A, Oksa L, Rounioja S, Marincevic-Zuniga Y, Nordlund J, Pohjolainen V, Paavonen T, Heinäniemi M, Lohi O. Clinicopathological features and prognostic value of SOX11 in childhood acute lymphoblastic leukemia. Sci Rep 2020; 10:2043. [PMID: 32029838 PMCID: PMC7005266 DOI: 10.1038/s41598-020-58970-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/22/2020] [Indexed: 12/11/2022] Open
Abstract
Acute lymphoblastic leukemia is marked by aberrant transcriptional features that alter cell differentiation, self-renewal, and proliferative features. We sought to identify the transcription factors exhibiting altered and subtype-specific expression patterns in B-ALL and report here that SOX11, a developmental and neuronal transcription factor, is aberrantly expressed in the ETV6-RUNX1 and TCF3-PBX1 subtypes of acute B-cell leukemias. We show that a high expression of SOX11 leads to alterations of gene expression that are typically associated with cell adhesion, migration, and differentiation. A high expression is associated with DNA hypomethylation at the SOX11 locus and a favorable outcome. The results indicate that SOX11 expression marks a group of patients with good outcomes and thereby prompts further study of its use as a biomarker.
Collapse
Affiliation(s)
- Toni Grönroos
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.
| | - Artturi Mäkinen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Saara Laukkanen
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Juha Mehtonen
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Atte Nikkilä
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Laura Oksa
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Samuli Rounioja
- Fimlab Laboratories, Department of Hematology, Tampere University Hospital, Tampere, Finland
| | - Yanara Marincevic-Zuniga
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Virva Pohjolainen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland
| | - Timo Paavonen
- Fimlab Laboratories, Department of Pathology, Tampere University Hospital, Tampere, Finland.,Department of Pathology, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Merja Heinäniemi
- Institute of Biomedicine, School of Medicine, University of Eastern Finland, Kuopio, Finland
| | - Olli Lohi
- Tampere Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland.,Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| |
Collapse
|
10
|
Hu T, Chong Y, Cai B, Liu Y, Lu S, Cowell JK. DNA methyltransferase 1-mediated CpG methylation of the miR-150-5p promoter contributes to fibroblast growth factor receptor 1-driven leukemogenesis. J Biol Chem 2019; 294:18122-18130. [PMID: 31628193 DOI: 10.1074/jbc.ra119.010144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/09/2019] [Indexed: 01/10/2023] Open
Abstract
MicroRNA-150-5p (miR-150-5p) plays a complex role in normal early hematopoietic development and is also implicated in the development of various different leukemias. We have reported previously that, in myeloid and lymphoid malignancies associated with dysregulated fibroblast growth factor receptor 1 (FGFR1) activities, miR-150-5p is down-regulated compared with healthy cells. Here, using murine cells, we found that this down-regulation is accompanied by CpG methylation of the miR-150-5p promoter region. Of note, analysis of human acute lymphoblastic leukemia (ALL) cohorts also revealed an inverse relationship between miR-150-5p expression and disease progression. We also found that the DNA methyltransferase 1 (DNMT1) enzyme is highly up-regulated in FGFR1-driven leukemias and lymphomas and that FGFR1 inhibition reduces DNMT1 expression. DNMT1 knockdown in stem cell leukemia/lymphoma (SCLL) cells increased miR-150-5p levels and reduced levels of the MYB proto-oncogene transcription factor, a key regulator of leukemogenesis. FGFR1 directly activates the MYC proto-oncogene basic helix-loop-helix transcription factor, which, as we show here, binds and activates the DNMT1 promoter. MYC knockdown decreased DNMT1 expression, which, in turn, increased miR-150-5p expression. One of the known targets of miR-150-5p is MYB, and treatment of leukemic cells with the MYB inhibitor mebendazole dose-dependently increased apoptosis and reduced cell viability. Moreover, mebendazole treatment of murine xenografts models of FGFR1-driven leukemias enhanced survival. These findings provide evidence that MYC activates MYB by up-regulating DNMT1, which silences miR-150-5p and promotes SCLL progression. We propose that inclusion of mebendazole in a combination therapy with FGFR1 inhibitors may be a valuable option to manage SCLL.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Yating Chong
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - Baohuan Cai
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yun Liu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912; Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Sumin Lu
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912
| | - John K Cowell
- Georgia Cancer Center, Augusta University, Augusta, Georgia 30912.
| |
Collapse
|
11
|
Sun C, Chang L, Liu C, Chen X, Zhu X. The study of METTL3 and METTL14 expressions in childhood ETV6/RUNX1-positive acute lymphoblastic leukemia. Mol Genet Genomic Med 2019; 7:e00933. [PMID: 31429529 PMCID: PMC6785433 DOI: 10.1002/mgg3.933] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND This study was aimed to explore the METTL3 and METTL14 expressions in children with ETV6/RUNX1(E/R)-positive acute lymphoblastic leukemia (ALL) and investigate the relation between the METTL3 and METTL14 expressions with clinical features. METHODS Thirty-seven newly diagnosed E/R-positive ALL children and six controls were included in this study. Real-time quantitative polymerase chain reaction (RT-PCR) was used to detect the mRNA expression level of METTL3 and METTL14. RESULTS Among the 37 cases, 51.35% (n = 19) were boys and 48.65% (n = 18) were girls and the median age was 4.72 (1.72-11.99) years. Among the six controls, 50% (n = 3) were boys and 50% (n = 3) were girls and the median age was 5.24 (1.53-13.17) years. The expression level of METTL3 and METTL14 in E/R-positive ALL patients were lower than in controls (p < .05). Although failed to achieve statistical significance, the expression level of METTL3 and METTL14 in relapse patients were lower than nonrelapse patients (p = .171, p = .150, respectively). CONCLUSION The reduced levels of METTL3 and METTL14 suggest a possible role in the pathogenesis and course of E/R-positive ALL. METTL3 and METTL14 may become new prognostic factors, and rationalize specific treatment intensification in possible E/R-positive relapse patients.
Collapse
Affiliation(s)
- Congcong Sun
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Lixian Chang
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Chao Liu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaoyan Chen
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| | - Xiaofan Zhu
- Center for Pediatric Blood Disease, State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, P.R. China
| |
Collapse
|
12
|
Chen X, Pan C, Xu C, Sun Y, Geng Y, Kong L, Xiao X, Zhao Z, Zhou W, Huang L, Song Y, Zhang L. Identification of survival‑associated key genes and long non‑coding RNAs in glioblastoma multiforme by weighted gene co‑expression network analysis. Int J Mol Med 2019; 43:1709-1722. [PMID: 30816427 PMCID: PMC6414176 DOI: 10.3892/ijmm.2019.4101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/14/2019] [Indexed: 11/06/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive primary malignant brain tumour. However, the causes of GBM are not clear, and the prognosis remains poor. The aim of the present study was to elucidate the key coding genes and long non‑coding RNAs (lncRNAs) associated with the survival time of GBM patients by obtaining the RNA expression profiles from the Chinese Glioma Genome Atlas database and conducting weighted gene co‑expression network analysis. Modules associated with overall survival (OS) were identified, and Gene Ontology and pathway enrichment analyses were performed. The hub genes of these modules were validated via survival analysis, while the biological functions of crucial lncRNAs were also analysed in the publicly available data. The results identified a survival‑associated module with 195 key genes. Among them, 33 key genes were demonstrated to be associated with OS, and the majority of these were involved in extracellular matrix‑associated and tyrosine kinase receptor signalling pathways. Furthermore, LOC541471 was identified as an OS‑associated lncRNA, and was reported to be involved in the oxidative phosphorylation of GBM with pleckstrin‑2. These findings may significantly enhance our understanding on the aetiology and underlying molecular events of GBM, while the identified candidate genes may serve as novel prognostic markers and potential therapeutic targets for GBM.
Collapse
Affiliation(s)
- Xin Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Cheng Xu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yu Sun
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Lu Kong
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Xiong Xiao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| | - Zitong Zhao
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Zhou
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Lijie Huang
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yongmei Song
- State Key Laboratory of Molecular Oncology, National Cancer Center, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing 100050, P.R. China
| |
Collapse
|
13
|
Caron M, St-Onge P, Drouin S, Richer C, Sontag T, Busche S, Bourque G, Pastinen T, Sinnett D. Very long intergenic non-coding RNA transcripts and expression profiles are associated to specific childhood acute lymphoblastic leukemia subtypes. PLoS One 2018; 13:e0207250. [PMID: 30440012 PMCID: PMC6237371 DOI: 10.1371/journal.pone.0207250] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 10/26/2018] [Indexed: 11/18/2022] Open
Abstract
Very long intergenic non-coding RNAs (vlincRNAs) are a novel class of long transcripts (~50 kb to 1 Mb) with cell type- or cancer-specific expression. We report the discovery and characterization of 256 vlincRNAs from a cohort of 64 primary childhood pre-B and pre-T acute lymphoblastic leukemia (cALL) samples, of which 61% are novel and specifically expressed in cALL. Validation was performed in 35 pre-B and pre-T cALL primary samples. We show that their expression is cALL immunophenotype and molecular subtype-specific and correlated with epigenetic modifications on their promoters, much like protein-coding genes. While the biological functions of these vlincRNAs are still unknown, our results suggest they could play a role in cALL etiology or progression.
Collapse
Affiliation(s)
- Maxime Caron
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Pascal St-Onge
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Simon Drouin
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Chantal Richer
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Thomas Sontag
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Tomi Pastinen
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
| | - Daniel Sinnett
- CHU Sainte-Justine Research Center, Montreal, Quebec, Canada
- Department of Pediatrics, University of Montreal, Montreal, Quebec, Canada
- * E-mail:
| |
Collapse
|
14
|
Tang L, Cheng Y, Zhu C, Yang C, Liu L, Zhang Y, Wen L, Zhang X, Zhou F, Yang S. Integrative methylome and transcriptome analysis to dissect key biological pathways for psoriasis in Chinese Han population. J Dermatol Sci 2018; 91:285-291. [DOI: 10.1016/j.jdermsci.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2018] [Revised: 04/12/2018] [Accepted: 06/05/2018] [Indexed: 12/31/2022]
|
15
|
Pathogenesis of ETV6/RUNX1-positive childhood acute lymphoblastic leukemia and mechanisms underlying its relapse. Oncotarget 2018; 8:35445-35459. [PMID: 28418909 PMCID: PMC5471068 DOI: 10.18632/oncotarget.16367] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/23/2017] [Indexed: 01/06/2023] Open
Abstract
ETV6/RUNX1 (E/R) is the most common fusion gene in childhood acute lymphoblastic leukemia (ALL). Multiple lines of evidence imply a “two-hit” model for the molecular pathogenesis of E/R-positive ALL, whereby E/R rearrangement is followed by a series of secondary mutations that trigger overt leukemia. The cellular framework in which E/R arises and the maintenance of a pre-leukemic condition by E/R are fundamental to the mechanism that underlies leukemogenesis. Accordingly, a variety of studies have focused on the relationship between the clones giving rise to the primary and recurrent E/R-positive ALL. We review here the most recent insights into the pathogenic mechanisms underlying E/R-positive ALL, as well as the molecular abnormalities prevailing at relapse.
Collapse
|
16
|
Kachroo P, Szymczak S, Heinsen FA, Forster M, Bethune J, Hemmrich-Stanisak G, Baker L, Schrappe M, Stanulla M, Franke A. NGS-based methylation profiling differentiates TCF3-HLF and TCF3-PBX1 positive B-cell acute lymphoblastic leukemia. Epigenomics 2018; 10:133-147. [DOI: 10.2217/epi-2017-0080] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aim: To determine whether methylation differences between mostly fatal TCF3-HLF and curable TCF3-PBX1 pediatric acute lymphoblastic leukemia subtypes can be associated with differential gene expression and remission. Materials & methods: Five (extremely rare) TCF3-HLF versus five (very similar) TCF3-PBX1 patients were sampled before and after remission and analyzed using reduced representation bisulfite sequencing and RNA-sequencing. Results: We identified 7000 differentially methylated CpG sites between subtypes, of which 78% had lower methylation levels in TCF3-HLF. Gene expression was negatively correlated with CpG sites in 23 genes. KBTBD11 clearly differed in methylation and expression between subtypes and before and after remission in TCF3-HLF samples. Conclusion: KBTBD11 hypomethylation may be a promising potential target for further experimental validation especially for the TCF3-HLF subtype.
Collapse
Affiliation(s)
- Priyadarshini Kachroo
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Channing Laboratory, Department of Medicine, Brigham & Women's Hospital & Harvard Medical School, Boston, MA 02115, USA
| | - Silke Szymczak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
- Institute of Medical Informatics & Statistics, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Femke-Anouska Heinsen
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Michael Forster
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Jörn Bethune
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Georg Hemmrich-Stanisak
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| | - Lewis Baker
- Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
| | - Martin Schrappe
- Department of Pediatrics, University Hospital Schleswig-Holstein, Campus Kiel, Kiel 24105, Germany
| | - Martin Stanulla
- Pediatric Hematology & Oncology, Hannover Medical School, Hannover 30625, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, Christian Albrechts University of Kiel, Kiel 24105, Germany
| |
Collapse
|
17
|
Nordlund J, Syvänen AC. Epigenetics in pediatric acute lymphoblastic leukemia. Semin Cancer Biol 2017; 51:129-138. [PMID: 28887175 DOI: 10.1016/j.semcancer.2017.09.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 08/21/2017] [Accepted: 09/02/2017] [Indexed: 12/11/2022]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common malignancy in children. ALL arises from the malignant transformation of progenitor B- and T-cells in the bone marrow into leukemic cells, but the mechanisms underlying this transformation are not well understood. Recent technical advances and decreasing costs of methods for high-throughput DNA sequencing and SNP genotyping have stimulated systematic studies of the epigenetic changes in leukemic cells from pediatric ALL patients. The results emerging from these studies are increasing our understanding of the epigenetic component of leukemogenesis and have demonstrated the potential of DNA methylation as a biomarker for lineage and subtype classification, prognostication, and disease progression in ALL. In this review, we provide a concise examination of the epigenetic studies in ALL, with a focus on DNA methylation and mutations perturbing genes involved in chromatin modification, and discuss the future role of epigenetic analyses in research and clinical management of ALL.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden.
| | - Ann-Christine Syvänen
- Department of Medical Sciences and Science for Life Laboratory, Uppsala University, Sweden
| |
Collapse
|
18
|
GATA2 regulates the erythropoietin receptor in t(12;21) ALL. Oncotarget 2017; 8:66061-66074. [PMID: 29029492 PMCID: PMC5630392 DOI: 10.18632/oncotarget.19792] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 01/27/2023] Open
Abstract
The t(12;21) (p13;q22) chromosomal translocation resulting in the ETV6/RUNX1 fusion gene is the most frequent structural cytogenetic abnormality in children with acute lymphoblastic leukemia (ALL). The erythropoietin receptor (EPOR), usually associated with erythroid progenitor cells, is highly expressed in ETV6/RUNX1 positive cases compared to other B-lineage ALL subtypes. Gene expression analysis of a microarray database and direct quantitative analysis of patient samples revealed strong correlation between EPOR and GATA2 expression in ALL, and higher expression of GATA2 in t(12;21) patients. The mechanism of EPOR regulation was mainly investigated using two B-ALL cell lines: REH, which harbor and express the ETV6/RUNX1 fusion gene; and NALM-6, which do not. Expression of EPOR was increased in REH cells compared to NALM-6 cells. Moreover, of the six GATA family members only GATA2 was differentially expressed with substantially higher levels present in REH cells. GATA2 was shown to bind to the EPOR 5'-UTR in REH, but did not bind in NALM-6 cells. Overexpression of GATA2 led to an increase in EPOR expression in REH cells only, indicating that GATA2 regulates EPOR but is dependent on the cellular context. Both EPOR and GATA2 are hypomethylated and associated with increased mRNA expression in REH compared to NALM-6 cells. Decitabine treatment effectively reduced methylation of CpG sites in the GATA2 promoter leading to increased GATA2 expression in both cell lines. Although Decitabine also reduced an already low level of methylation of the EPOR in NALM-6 cells there was no increase in EPOR expression. Furthermore, EPOR and GATA2 are regulated post-transcriptionally by miR-362 and miR-650, respectively. Overall our data show that EPOR expression in t(12;21) B-ALL cells, is regulated by GATA2 and is mediated through epigenetic, transcriptional and post-transcriptional mechanisms, contingent upon the genetic subtype of the disease.
Collapse
|
19
|
Navarrete-Meneses MDP, Pérez-Vera P. Alteraciones epigenéticas en leucemia linfoblástica aguda. BOLETIN MEDICO DEL HOSPITAL INFANTIL DE MEXICO 2017; 74:243-264. [DOI: 10.1016/j.bmhimx.2017.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 02/04/2017] [Accepted: 02/08/2017] [Indexed: 12/22/2022] Open
|
20
|
|
21
|
The Role of Histone Protein Modifications and Mutations in Histone Modifiers in Pediatric B-Cell Progenitor Acute Lymphoblastic Leukemia. Cancers (Basel) 2017; 9:cancers9010002. [PMID: 28054944 PMCID: PMC5295773 DOI: 10.3390/cancers9010002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/14/2016] [Accepted: 12/23/2016] [Indexed: 12/18/2022] Open
Abstract
While cancer has been long recognized as a disease of the genome, the importance of epigenetic mechanisms in neoplasia was acknowledged more recently. The most active epigenetic marks are DNA methylation and histone protein modifications and they are involved in basic biological phenomena in every cell. Their role in tumorigenesis is stressed by recent unbiased large-scale studies providing evidence that several epigenetic modifiers are recurrently mutated or frequently dysregulated in multiple cancers. The interest in epigenetic marks is especially due to the fact that they are potentially reversible and thus druggable. In B-cell progenitor acute lymphoblastic leukemia (BCP-ALL) there is a relative paucity of reports on the role of histone protein modifications (acetylation, methylation, phosphorylation) as compared to acute myeloid leukemia, T-cell ALL, or other hematologic cancers, and in this setting chromatin modifications are relatively less well studied and reviewed than DNA methylation. In this paper, we discuss the biomarker associations and evidence for a driver role of dysregulated global and loci-specific histone marks, as well as mutations in epigenetic modifiers in BCP-ALL. Examples of chromatin modifiers recurrently mutated/disrupted in BCP-ALL and associated with disease outcomes include MLL1, CREBBP, NSD2, and SETD2. Altered histone marks and histone modifiers and readers may play a particular role in disease chemoresistance and relapse. We also suggest that epigenetic regulation of B-cell differentiation may have parallel roles in leukemogenesis.
Collapse
|
22
|
Almamun M, Levinson BT, van Swaay AC, Johnson NT, McKay SD, Arthur GL, Davis JW, Taylor KH. Integrated methylome and transcriptome analysis reveals novel regulatory elements in pediatric acute lymphoblastic leukemia. Epigenetics 2016; 10:882-90. [PMID: 26308964 PMCID: PMC4622668 DOI: 10.1080/15592294.2015.1078050] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Acute lymphoblastic leukemia (ALL) is the most common cancer diagnosed in children under the age of 15. In addition to genetic aberrations, epigenetic modifications such as DNA methylation are altered in cancer and impact gene expression. To identify epigenetic alterations in ALL, genome-wide methylation profiles were generated using the methylated CpG island recovery assay followed by next-generation sequencing. More than 25,000 differentially methylated regions (DMR) were observed in ALL patients with ∼90% present within intronic or intergenic regions. To determine the regulatory potential of the DMR, whole-transcriptome analysis was performed and integrated with methylation data. Aberrant promoter methylation was associated with the altered expression of genes involved in transcriptional regulation, apoptosis, and proliferation. Novel enhancer-like sequences were identified within intronic and intergenic DMR. Aberrant methylation in these regions was associated with the altered expression of neighboring genes involved in cell cycle processes, lymphocyte activation and apoptosis. These genes include potential epi-driver genes, such as SYNE1, PTPRS, PAWR, HDAC9, RGCC, MCOLN2, LYN, TRAF3, FLT1, and MELK, which may provide a selective advantage to leukemic cells. In addition, the differential expression of epigenetic modifier genes, pseudogenes, and non-coding RNAs was also observed accentuating the role of erroneous epigenetic gene regulation in ALL.
Collapse
Affiliation(s)
- Md Almamun
- a Department of Pathology and Anatomical Sciences ; University of Missouri-Columbia ; Columbia , MO USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
McGregor K, Bernatsky S, Colmegna I, Hudson M, Pastinen T, Labbe A, Greenwood CM. An evaluation of methods correcting for cell-type heterogeneity in DNA methylation studies. Genome Biol 2016; 17:84. [PMID: 27142380 PMCID: PMC4855979 DOI: 10.1186/s13059-016-0935-y] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/05/2016] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Many different methods exist to adjust for variability in cell-type mixture proportions when analyzing DNA methylation studies. Here we present the result of an extensive simulation study, built on cell-separated DNA methylation profiles from Illumina Infinium 450K methylation data, to compare the performance of eight methods including the most commonly used approaches. RESULTS We designed a rich multi-layered simulation containing a set of probes with true associations with either binary or continuous phenotypes, confounding by cell type, variability in means and standard deviations for population parameters, additional variability at the level of an individual cell-type-specific sample, and variability in the mixture proportions across samples. Performance varied quite substantially across methods and simulations. In particular, the number of false positives was sometimes unrealistically high, indicating limited ability to discriminate the true signals from those appearing significant through confounding. Methods that filtered probes had consequently poor power. QQ plots of p values across all tested probes showed that adjustments did not always improve the distribution. The same methods were used to examine associations between smoking and methylation data from a case-control study of colorectal cancer, and we also explored the effect of cell-type adjustments on associations between rheumatoid arthritis cases and controls. CONCLUSIONS We recommend surrogate variable analysis for cell-type mixture adjustment since performance was stable under all our simulated scenarios.
Collapse
Affiliation(s)
- Kevin McGregor
- />McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, 1020 Pine Ave. West, Montréal, H3A 1A2 QC Canada
- />Lady Davis Research Institute, Jewish General Hospital, 3755 Chemin de la Côte Sainte Catherine, Montréal, H3T 1E2 QC Canada
| | - Sasha Bernatsky
- />Lady Davis Research Institute, Jewish General Hospital, 3755 Chemin de la Côte Sainte Catherine, Montréal, H3T 1E2 QC Canada
| | - Ines Colmegna
- />The Research Institute of the McGill University Health Centre, Montréal, QC Canada
| | - Marie Hudson
- />Lady Davis Research Institute, Jewish General Hospital, 3755 Chemin de la Côte Sainte Catherine, Montréal, H3T 1E2 QC Canada
- />Division of Rheumatology, Jewish General Hospital, Montréal, QC Canada
- />Department of Medicine, McGill University, Montréal, QC Canada
| | - Tomi Pastinen
- />McGill University and Genome Quebec Innovation Centre, McGill University, Montréal, QC Canada
- />Department of Human Genetics, McGill University, Montréal, QC Canada
| | - Aurélie Labbe
- />McGill University, Department of Epidemiology, Biostatistics, and Occupational Health, 1020 Pine Ave. West, Montréal, H3A 1A2 QC Canada
- />Department of Psychiatry, McGill University, Montréal, QC Canada
- />The Douglas Mental Health University Institute, Verdun, QC Canada
| | - Celia M.T. Greenwood
- />Lady Davis Research Institute, Jewish General Hospital, 3755 Chemin de la Côte Sainte Catherine, Montréal, H3T 1E2 QC Canada
| |
Collapse
|
24
|
Zhou F, Wang W, Shen C, Li H, Zuo X, Zheng X, Yue M, Zhang C, Yu L, Chen M, Zhu C, Yin X, Tang M, Li Y, Chen G, Wang Z, Liu S, Zhou Y, Zhang F, Zhang W, Li C, Yang S, Sun L, Zhang X. Epigenome-Wide Association Analysis Identified Nine Skin DNA Methylation Loci for Psoriasis. J Invest Dermatol 2016; 136:779-787. [DOI: 10.1016/j.jid.2015.12.029] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 11/10/2015] [Accepted: 11/27/2015] [Indexed: 12/27/2022]
|
25
|
Busche S, Shao X, Caron M, Kwan T, Allum F, Cheung WA, Ge B, Westfall S, Simon MM, Barrett A, Bell JT, McCarthy MI, Deloukas P, Blanchette M, Bourque G, Spector TD, Lathrop M, Pastinen T, Grundberg E. Population whole-genome bisulfite sequencing across two tissues highlights the environment as the principal source of human methylome variation. Genome Biol 2015; 16:290. [PMID: 26699896 PMCID: PMC4699357 DOI: 10.1186/s13059-015-0856-1] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 12/09/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND CpG methylation variation is involved in human trait formation and disease susceptibility. Analyses within populations have been biased towards CpG-dense regions through the application of targeted arrays. We generate whole-genome bisulfite sequencing data for approximately 30 adipose and blood samples from monozygotic and dizygotic twins for the characterization of non-genetic and genetic effects at single-site resolution. RESULTS Purely invariable CpGs display a bimodal distribution with enrichment of unmethylated CpGs and depletion of fully methylated CpGs in promoter and enhancer regions. Population-variable CpGs account for approximately 15-20 % of total CpGs per tissue, are enriched in enhancer-associated regions and depleted in promoters, and single nucleotide polymorphisms at CpGs are a frequent confounder of extreme methylation variation. Differential methylation is primarily non-genetic in origin, with non-shared environment accounting for most of the variance. These non-genetic effects are mainly tissue-specific. Tobacco smoking is associated with differential methylation in blood with no evidence of this exposure impacting cell counts. Opposite to non-genetic effects, genetic effects of CpG methylation are shared across tissues and thus limit inter-tissue epigenetic drift. CpH methylation is rare, and shows similar characteristics of variation patterns as CpGs. CONCLUSIONS Our study highlights the utility of low pass whole-genome bisulfite sequencing in identifying methylome variation beyond promoter regions, and suggests that targeting the population dynamic methylome of tissues requires assessment of understudied intergenic CpGs distal to gene promoters to reveal the full extent of inter-individual variation.
Collapse
Affiliation(s)
- Stephan Busche
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Xiaojian Shao
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Maxime Caron
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Tony Kwan
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Fiona Allum
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Warren A. Cheung
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Bing Ge
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Susan Westfall
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
| | - Marie-Michelle Simon
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - The Multiple Tissue Human Expression Resource
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- />Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
- />William Harvey Research Institute, Queen Mary University of London, London, UK
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
- />School of Computer Science, McGill University, Montreal, Quebec Canada
| | - Amy Barrett
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
| | - Jordana T. Bell
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mark I. McCarthy
- />Oxford Centre for Diabetes, Endocrinology & Metabolism, University of Oxford, Churchill Hospital, Headington, Oxford, UK
- />Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- />Oxford National Institute for Health Research Biomedical Research Centre, Churchill Hospital, Headington, Oxford, UK
| | - Panos Deloukas
- />William Harvey Research Institute, Queen Mary University of London, London, UK
- />Wellcome Trust Sanger Institute, Hinxton, Cambridge, UK
| | - Mathieu Blanchette
- />School of Computer Science, McGill University, Montreal, Quebec Canada
| | - Guillaume Bourque
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Timothy D. Spector
- />Department of Twin Research and Genetic Epidemiology, King’s College London, London, UK
| | - Mark Lathrop
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Tomi Pastinen
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| | - Elin Grundberg
- />Department of Human Genetics, McGill University, 740 Dr. Penfield Avenue, H3A 0G1 Montreal, Quebec Canada
- />McGill University and Genome Quebec Innovation Centre, Montreal, Quebec Canada
| |
Collapse
|
26
|
An N, Yang X, Cheng S, Wang G, Zhang K. Developmental genes significantly afflicted by aberrant promoter methylation and somatic mutation predict overall survival of late-stage colorectal cancer. Sci Rep 2015; 5:18616. [PMID: 26691761 PMCID: PMC4686889 DOI: 10.1038/srep18616] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 11/19/2015] [Indexed: 02/07/2023] Open
Abstract
Carcinogenesis is an exceedingly complicated process, which involves multi-level dysregulations, including genomics (majorly caused by somatic mutation and copy number variation), DNA methylomics, and transcriptomics. Therefore, only looking into one molecular level of cancer is not sufficient to uncover the intricate underlying mechanisms. With the abundant resources of public available data in the Cancer Genome Atlas (TCGA) database, an integrative strategy was conducted to systematically analyze the aberrant patterns of colorectal cancer on the basis of DNA copy number, promoter methylation, somatic mutation and gene expression. In this study, paired samples in each genomic level were retrieved to identify differentially expressed genes with corresponding genetic or epigenetic dysregulations. Notably, the result of gene ontology enrichment analysis indicated that the differentially expressed genes with corresponding aberrant promoter methylation or somatic mutation were both functionally concentrated upon developmental process, suggesting the intimate association between development and carcinogenesis. Thus, by means of random walk with restart, 37 significant development-related genes were retrieved from a priori-knowledge based biological network. In five independent microarray datasets, Kaplan-Meier survival and Cox regression analyses both confirmed that the expression of these genes was significantly associated with overall survival of Stage III/IV colorectal cancer patients.
Collapse
Affiliation(s)
- Ning An
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Xue Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Guiqi Wang
- Department of Endoscopy, Cancer Hospital, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, Peking Union Medical College & Cancer Institute (Hospital), Chinese Academy of Medical Sciences, Beijing, 100021, China
| |
Collapse
|
27
|
Janczar K, Janczar S, Pastorczak A, Mycko K, Paige AJW, Zalewska-Szewczyk B, Wagrowska-Danilewicz M, Danilewicz M, Mlynarski W. Preserved global histone H4 acetylation linked to ETV6-RUNX1 fusion and PAX5 deletions is associated with favorable outcome in pediatric B-cell progenitor acute lymphoblastic leukemia. Leuk Res 2015; 39:1455-61. [PMID: 26520622 DOI: 10.1016/j.leukres.2015.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 10/14/2015] [Indexed: 10/22/2022]
Abstract
Epigenetic dysregulation is a hallmark of cancer executed by a number of complex processes the most important of which converge on DNA methylation and histone protein modifications. Epigenetic marks are potentially reversible and thus promising drug targets. In the setting of acute lymphoblastic leukemia (ALL) they have been associated with clinicopathological features including risk of relapse or molecular subgroups of the disease. Here, using immunocytochemistry of bone marrow smears from diagnosis, we studied global histone H4 acetylation, whose loss was previously linked to treatment failure in adults with ALL, in pediatric patients. We demonstrate that preserved global histone H4 acetylation is significantly associated with favorable outcome (RFS, EFS, OS) in children with B cell progenitor (BCP) ALL, recapitulating the findings from adult populations. Further, for the first time we demonstrate differential histone H4 acetylation in molecular subclasses of BCP-ALL including cases with ETV6-RUNX1 fusion gene or PAX5 deletion or deletions in genes linked to B cell development. We conclude global histone H4 acetylation is a prognostic marker and a potential therapeutic target in ALL.
Collapse
Affiliation(s)
- K Janczar
- Department of Nephropathology, Medical University of Lodz, Poland
| | - S Janczar
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland.
| | - A Pastorczak
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - K Mycko
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | - A J W Paige
- Department of Life Science, University of Bedfordshire, UK
| | - B Zalewska-Szewczyk
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| | | | - M Danilewicz
- Department of Nephropathology, Medical University of Lodz, Poland
| | - W Mlynarski
- Department of Paediatrics, Oncology, Hematology and Diabetology, Medical University of Lodz, Poland
| |
Collapse
|
28
|
Hsu WH, DiRienzo AG. Parsimonious covariate selection for a multicategory ordered response. Stat Methods Med Res 2015; 26:2743-2757. [PMID: 26429878 DOI: 10.1177/0962280215608120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
We propose a flexible continuation ratio (CR) model for an ordinal categorical response with potentially ultrahigh dimensional data that characterizes the unique covariate effects at each response level. The CR model is the logit of the conditional discrete hazard function for each response level given covariates. We propose two modeling strategies, one that keeps the same covariate set for each hazard function but allows regression coefficients to arbitrarily change with response level, and one that allows both the set of covariates and their regression coefficients to arbitrarily change with response. Evaluating a covariate set is accomplished by using the nonparametric bootstrap to estimate prediction error and their robust standard errors that do not rely on proper model specification. To help with interpretation of the selected covariate set, we flexibly estimate the conditional cumulative distribution function given the covariates using the separate hazard function models. The goodness-of-fit of our flexible CR model is assessed with graphical and numerical methods based on the cumulative sum of residuals. Simulation results indicate the methods perform well in finite samples. An application to B-cell acute lymphocytic leukemia data is provided.
Collapse
Affiliation(s)
- Wan-Hsiang Hsu
- 1 Bureau of Environmental & Occupational Epidemiology, New York State Department of Health, Albany, NY, USA.,2 Department of Epidemiology & Biostatistics, University at Albany, SUNY, Rensselaer, NY, USA
| | - A Gregory DiRienzo
- 2 Department of Epidemiology & Biostatistics, University at Albany, SUNY, Rensselaer, NY, USA
| |
Collapse
|
29
|
Dyke SOM, Cheung WA, Joly Y, Ammerpohl O, Lutsik P, Rothstein MA, Caron M, Busche S, Bourque G, Rönnblom L, Flicek P, Beck S, Hirst M, Stunnenberg H, Siebert R, Walter J, Pastinen T. Epigenome data release: a participant-centered approach to privacy protection. Genome Biol 2015; 16:142. [PMID: 26185018 PMCID: PMC4504083 DOI: 10.1186/s13059-015-0723-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/09/2015] [Indexed: 11/10/2022] Open
Abstract
Large-scale epigenome mapping by the NIH Roadmap Epigenomics Project, the ENCODE Consortium and the International Human Epigenome Consortium (IHEC) produces genome-wide DNA methylation data at one base-pair resolution. We examine how such data can be made open-access while balancing appropriate interpretation and genomic privacy. We propose guidelines for data release that both reduce ambiguity in the interpretation of open-access data and limit immediate access to genetic variation data that are made available through controlled access.
Collapse
Affiliation(s)
- Stephanie O M Dyke
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada.
| | - Warren A Cheung
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Yann Joly
- Centre of Genomics and Policy, Department of Human Genetics, McGill University, Montreal, QC, H3A 0G1, Canada
| | - Ole Ammerpohl
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel & Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Pavlo Lutsik
- Saarland University, 66123, Saarbrücken, Germany
| | - Mark A Rothstein
- Institute for Bioethics, Health Policy and Law, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Maxime Caron
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Stephan Busche
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Guillaume Bourque
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada
| | - Lars Rönnblom
- Department of Medical Sciences, Science for Life Laboratory, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Paul Flicek
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SD, UK
| | - Stephan Beck
- Medical Genomics, UCL Cancer Institute, University College London, London, WC1E 6BT, UK
| | - Martin Hirst
- Centre for High-Throughput Biology, University of British Columbia and Canada's Michael Smith Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z 4S6, Canada
| | - Henk Stunnenberg
- Department of Molecular Biology, RIMLS, Faculty of Science, Radboud University, 6500 HB, Nijmegen, The Netherlands
| | - Reiner Siebert
- Institute of Human Genetics, University Hospital Schleswig-Holstein, Campus Kiel & Christian-Albrechts-University Kiel, 24105, Kiel, Germany
| | - Jörn Walter
- Saarland University, 66123, Saarbrücken, Germany
| | - Tomi Pastinen
- Department of Human Genetics, McGill University and Genome Quebec Innovation Centre, Montreal, QC, H3A 0G1, Canada.
| |
Collapse
|
30
|
Moen EL, Litwin E, Arnovitz S, Zhang X, Zhang W, Dolan ME, Godley LA. Characterization of CpG sites that escape methylation on the inactive human X-chromosome. Epigenetics 2015; 10:810-8. [PMID: 26178744 DOI: 10.1080/15592294.2015.1069461] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
In many whole genome studies of gene expression or modified cytosines, data from probes localized to the X-chromosome are removed from analyses due to gender bias. Previously, we observed population differences in cytosine modifications between Caucasian and African lymphoblastoid cell lines (LCLs) on the autosomes using whole genome arrays to measure modified cytosines. DNA methylation plays a critical role in establishment and maintenance of X-chromosome inactivation in females. Therefore, we reasoned that by investigating cytosine modification patterns specifically on the X-chromosome, we could obtain valuable information about a chromosome that is often disregarded in genome-wide analyses. We investigated population differences in cytosine modification patterns along the X-chromosome between Caucasian and African LCLs and identified novel sites that escape methylation on the inactive X-chromosome (Xi) in females. We characterized the chromatin state of these loci by incorporating the extensive histone modification ChIP-seq data generated by ENCODE. To explore the relationship between DNA and histone modifications further, we hypothesized that BRD4, a protein that binds acetylated histones, could be preventing some sites from becoming de novo methylated. To test this, we treated 4 female LCLs with JQ1, a small molecule inhibitor of BRD4, but found that JQ1 treatment induced minor changes in cytosine modification levels, and the majority of sites escaping methylation on the Xi remained unmethylated. This suggests that other epigenetic mechanisms or transcription factors are likely playing a larger role in protecting these sites from de novo methylation on the Xi.
Collapse
Affiliation(s)
- Erika L Moen
- a Committee on Cancer Biology; The University of Chicago ; Chicago , IL USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Whole-genome fingerprint of the DNA methylome during human B cell differentiation. Nat Genet 2015; 47:746-56. [PMID: 26053498 DOI: 10.1038/ng.3291] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 04/03/2015] [Indexed: 02/06/2023]
Abstract
We analyzed the DNA methylome of ten subpopulations spanning the entire B cell differentiation program by whole-genome bisulfite sequencing and high-density microarrays. We observed that non-CpG methylation disappeared upon B cell commitment, whereas CpG methylation changed extensively during B cell maturation, showing an accumulative pattern and affecting around 30% of all measured CpG sites. Early differentiation stages mainly displayed enhancer demethylation, which was associated with upregulation of key B cell transcription factors and affected multiple genes involved in B cell biology. Late differentiation stages, in contrast, showed extensive demethylation of heterochromatin and methylation gain at Polycomb-repressed areas, and genes with apparent functional impact in B cells were not affected. This signature, which has previously been linked to aging and cancer, was particularly widespread in mature cells with an extended lifespan. Comparing B cell neoplasms with their normal counterparts, we determined that they frequently acquire methylation changes in regions already undergoing dynamic methylation during normal B cell differentiation.
Collapse
|
32
|
Marzese DM, Hoon DS. Emerging technologies for studying DNA methylation for the molecular diagnosis of cancer. Expert Rev Mol Diagn 2015; 15:647-64. [PMID: 25797072 DOI: 10.1586/14737159.2015.1027194] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
DNA methylation is an epigenetic mechanism that plays a key role in regulating gene expression and other functions. Although this modification is seen in different sequence contexts, the most frequently detected DNA methylation in mammals involves cytosine-guanine dinucleotides. Pathological alterations in DNA methylation patterns are described in a variety of human diseases, including cancer. Unlike genetic changes, DNA methylation is heavily influenced by subtle modifications in the cellular microenvironment. In all cancers, aberrant DNA methylation is involved in the alteration of a large number of oncological pathways with relevant theranostic utility. Several technologies for DNA methylation mapping have been developed recently and successfully applied in cancer studies. The scope of these technologies varies from assessing a single cytosine-guanine locus to genome-wide distribution of DNA methylation. Here, we review the strengths and weaknesses of these approaches in the context of clinical utility for the molecular diagnosis of human cancers.
Collapse
Affiliation(s)
- Diego M Marzese
- Department of Molecular Oncology, Saint John's Health Center, John Wayne Cancer Institute, 2200 Santa Monica Blvd, Santa Monica, CA 90404, USA
| | | |
Collapse
|
33
|
Nordlund J, Bäcklin CL, Zachariadis V, Cavelier L, Dahlberg J, Öfverholm I, Barbany G, Nordgren A, Övernäs E, Abrahamsson J, Flaegstad T, Heyman MM, Jónsson ÓG, Kanerva J, Larsson R, Palle J, Schmiegelow K, Gustafsson MG, Lönnerholm G, Forestier E, Syvänen AC. DNA methylation-based subtype prediction for pediatric acute lymphoblastic leukemia. Clin Epigenetics 2015; 7:11. [PMID: 25729447 PMCID: PMC4343276 DOI: 10.1186/s13148-014-0039-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND We present a method that utilizes DNA methylation profiling for prediction of the cytogenetic subtypes of acute lymphoblastic leukemia (ALL) cells from pediatric ALL patients. The primary aim of our study was to improve risk stratification of ALL patients into treatment groups using DNA methylation as a complement to current diagnostic methods. A secondary aim was to gain insight into the functional role of DNA methylation in ALL. RESULTS We used the methylation status of ~450,000 CpG sites in 546 well-characterized patients with T-ALL or seven recurrent B-cell precursor ALL subtypes to design and validate sensitive and accurate DNA methylation classifiers. After repeated cross-validation, a final classifier was derived that consisted of only 246 CpG sites. The mean sensitivity and specificity of the classifier across the known subtypes was 0.90 and 0.99, respectively. We then used DNA methylation classification to screen for subtype membership of 210 patients with undefined karyotype (normal or no result) or non-recurrent cytogenetic aberrations ('other' subtype). Nearly half (n = 106) of the patients lacking cytogenetic subgrouping displayed highly similar methylation profiles as the patients in the known recurrent groups. We verified the subtype of 20% of the newly classified patients by examination of diagnostic karyotypes, array-based copy number analysis, and detection of fusion genes by quantitative polymerase chain reaction (PCR) and RNA-sequencing (RNA-seq). Using RNA-seq data from ALL patients where cytogenetic subtype and DNA methylation classification did not agree, we discovered several novel fusion genes involving ETV6, RUNX1, and PAX5. CONCLUSIONS Our findings indicate that DNA methylation profiling contributes to the clarification of the heterogeneity in cytogenetically undefined ALL patient groups and could be implemented as a complementary method for diagnosis of ALL. The results of our study provide clues to the origin and development of leukemic transformation. The methylation status of the CpG sites constituting the classifiers also highlight relevant biological characteristics in otherwise unclassified ALL patients.
Collapse
Affiliation(s)
- Jessica Nordlund
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Christofer L Bäcklin
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Vasilios Zachariadis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Lucia Cavelier
- Department of Immunology, Genetics and Pathology, Uppsala University, Rudbecklaboratoriet, SE-751 85 Uppsala, Sweden
| | - Johan Dahlberg
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Ingegerd Öfverholm
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Gisela Barbany
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery, Karolinska Institutet, SE-171 76 Stockholm, Sweden
| | - Elin Övernäs
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| | - Jonas Abrahamsson
- Department of Pediatrics, Queen Silvia Children's Hospital, Rondvägen 10, SE-416 85 Gothenburg, Sweden
| | - Trond Flaegstad
- Department of Pediatrics, Tromsø University and University Hospital, Sykehusveien 38, N-9038 Tromsø, Norway
| | - Mats M Heyman
- Childhood Cancer Research Unit, Karolinska Institutet, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Q6:05, SE-171 76, Stockholm, Sweden
| | - Ólafur G Jónsson
- Pediatric Hematology-Oncology, Children's Hospital, Barnaspitali Hringsins, Landspitali University Hospital, Norðurmýri, 101, Reykjavik, Iceland
| | - Jukka Kanerva
- Division of Hematology-Oncology and Stem Cell Transplantation, Children's Hospital, Helsinki University Central Hospital and University of Helsinki, Box 281, FIN-00029 Helsinki, Finland
| | - Rolf Larsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Josefine Palle
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden.,Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Kjeld Schmiegelow
- Pediatrics and Adolescent Medicine, Rigshospitalet, and the Medical Faculty, Institute of Clinical Medicine, University of Copenhagen, Blegdamsvej 9, DK-2100 Copenhagen, Denmark
| | - Mats G Gustafsson
- Department of Medical Sciences, Cancer Pharmacology and Computational Medicine, Uppsala University, Uppsala University Hospital, Entrance 40, SE-751 85 Uppsala, Sweden
| | - Gudmar Lönnerholm
- Department of Women's and Children's Health, Pediatric Oncology, Uppsala University, Uppsala University Hospital, Entrance 95, SE-751 85 Uppsala, Sweden
| | - Erik Forestier
- Department of Medical Biosciences, University of Umeå, SE-901 85 Umeå, Sweden
| | - Ann-Christine Syvänen
- Department of Medical Sciences, Molecular Medicine and Science for Life Laboratory, Uppsala University, Box 1432, BMC, SE-751 44 Uppsala, Sweden
| |
Collapse
|
34
|
Agirre X, Castellano G, Pascual M, Heath S, Kulis M, Segura V, Bergmann A, Esteve A, Merkel A, Raineri E, Agueda L, Blanc J, Richardson D, Clarke L, Datta A, Russiñol N, Queirós AC, Beekman R, Rodríguez-Madoz JR, San José-Enériz E, Fang F, Gutiérrez NC, García-Verdugo JM, Robson MI, Schirmer EC, Guruceaga E, Martens JHA, Gut M, Calasanz MJ, Flicek P, Siebert R, Campo E, Miguel JFS, Melnick A, Stunnenberg HG, Gut IG, Prosper F, Martín-Subero JI. Whole-epigenome analysis in multiple myeloma reveals DNA hypermethylation of B cell-specific enhancers. Genome Res 2015; 25:478-87. [PMID: 25644835 PMCID: PMC4381520 DOI: 10.1101/gr.180240.114] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 01/22/2015] [Indexed: 12/20/2022]
Abstract
While analyzing the DNA methylome of multiple myeloma (MM), a plasma cell neoplasm, by whole-genome bisulfite sequencing and high-density arrays, we observed a highly heterogeneous pattern globally characterized by regional DNA hypermethylation embedded in extensive hypomethylation. In contrast to the widely reported DNA hypermethylation of promoter-associated CpG islands (CGIs) in cancer, hypermethylated sites in MM, as opposed to normal plasma cells, were located outside CpG islands and were unexpectedly associated with intronic enhancer regions defined in normal B cells and plasma cells. Both RNA-seq and in vitro reporter assays indicated that enhancer hypermethylation is globally associated with down-regulation of its host genes. ChIP-seq and DNase-seq further revealed that DNA hypermethylation in these regions is related to enhancer decommissioning. Hypermethylated enhancer regions overlapped with binding sites of B cell-specific transcription factors (TFs) and the degree of enhancer methylation inversely correlated with expression levels of these TFs in MM. Furthermore, hypermethylated regions in MM were methylated in stem cells and gradually became demethylated during normal B-cell differentiation, suggesting that MM cells either reacquire epigenetic features of undifferentiated cells or maintain an epigenetic signature of a putative myeloma stem cell progenitor. Overall, we have identified DNA hypermethylation of developmentally regulated enhancers as a new type of epigenetic modification associated with the pathogenesis of MM.
Collapse
Affiliation(s)
- Xabier Agirre
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain;
| | - Giancarlo Castellano
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Marien Pascual
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Simon Heath
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Marta Kulis
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Victor Segura
- Unidad de Bioinformática, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Anke Bergmann
- Institute of Human Genetics, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Anna Esteve
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Angelika Merkel
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Emanuele Raineri
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Lidia Agueda
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Julie Blanc
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - David Richardson
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, United Kingdom
| | - Laura Clarke
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, United Kingdom
| | - Avik Datta
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, United Kingdom
| | - Nuria Russiñol
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Ana C Queirós
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Renée Beekman
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Juan R Rodríguez-Madoz
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Edurne San José-Enériz
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Fang Fang
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | | | - José M García-Verdugo
- Department of Cellular Morphology, University of Valencia, Unidad Mixta CIPF-UVEG, CIBERNED, 46100 Valencia, Spain
| | - Michael I Robson
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Eric C Schirmer
- The Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, United Kingdom
| | - Elisabeth Guruceaga
- Unidad de Bioinformática, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain
| | - Joost H A Martens
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | - Marta Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Maria J Calasanz
- Departamento de Genética, Universidad de Navarra, 31008 Pamplona, Spain
| | - Paul Flicek
- European Bioinformatics Institute, European Molecular Biology Laboratory, Cambridge, CB10 1SD, United Kingdom
| | - Reiner Siebert
- Institute of Human Genetics, Christian-Albrechts-University, 24105 Kiel, Germany
| | - Elías Campo
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Jesús F San Miguel
- Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - Ari Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York 10065, USA
| | - Hendrik G Stunnenberg
- Department of Molecular Biology, Faculty of Science, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen, 6500 HB Nijmegen, The Netherlands
| | - Ivo G Gut
- Centro Nacional de Análisis Genómico, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Felipe Prosper
- Area de Oncología, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, 31008 Pamplona, Spain; Clínica Universidad de Navarra, Universidad de Navarra, 31008 Pamplona, Spain
| | - José I Martín-Subero
- Unidad de Hematopatología, Servicio de Anatomía Patológica, Hospital Clínic, Universitat de Barcelona, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain;
| |
Collapse
|
35
|
Gabriel AS, Lafta FM, Schwalbe EC, Nakjang S, Cockell SJ, Iliasova A, Enshaei A, Schwab C, Rand V, Clifford SC, Kinsey SE, Mitchell CD, Vora A, Harrison CJ, Moorman AV, Strathdee G. Epigenetic landscape correlates with genetic subtype but does not predict outcome in childhood acute lymphoblastic leukemia. Epigenetics 2015; 10:717-26. [PMID: 26237075 PMCID: PMC4622588 DOI: 10.1080/15592294.2015.1061174] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 05/29/2015] [Accepted: 06/05/2015] [Indexed: 11/19/2022] Open
Abstract
Although children with acute lymphoblastic leukemia (ALL) generally have a good outcome, some patients do relapse and survival following relapse is poor. Altered DNA methylation is highly prevalent in ALL and raises the possibility that DNA methylation-based biomarkers could predict patient outcome. In this study, genome-wide methylation analysis, using the Illumina Infinium HumanMethylation450 BeadChip platform, was carried out on 52 diagnostic patient samples from 4 genetic subtypes [ETV6-RUNX1, high hyperdiploidy (HeH), TCF3-PBX1 and dic(9;20)(p11-13;q11)] in a 1:1 case-control design with patients who went on to relapse (as cases) and patients achieving long-term remission (as controls). Pyrosequencing assays for selected loci were used to confirm the array-generated data. Non-negative matrix factorization consensus clustering readily clustered samples according to genetic subgroups and gene enrichment pathway analysis suggested that this is in part driven by epigenetic disruption of subtype specific signaling pathways. Multiple bioinformatics approaches (including bump hunting and individual locus analysis) were used to identify CpG sites or regions associated with outcome. However, no associations with relapse were identified. Our data revealed that ETV6-RUNX1 and dic(9;20) subtypes were mostly associated with hypermethylation; conversely, TCF3-PBX1 and HeH were associated with hypomethylation. We observed significant enrichment of the neuroactive ligand-receptor interaction pathway in TCF3-PBX1 as well as an enrichment of genes involved in immunity and infection pathways in ETV6-RUNX1 subtype. Taken together, our results suggest that altered DNA methylation may have differential impacts in distinct ALL genetic subtypes.
Collapse
Affiliation(s)
- Alem S Gabriel
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Fadhel M Lafta
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Edward C Schwalbe
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Applied Sciences; Northumbria University; Newcastle upon Tyne, UK
| | - Sirintra Nakjang
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Bioinformatics Support Unit; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Simon J Cockell
- Bioinformatics Support Unit; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Alice Iliasova
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Applied Sciences; Northumbria University; Newcastle upon Tyne, UK
| | - Amir Enshaei
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Claire Schwab
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Vikki Rand
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Steven C Clifford
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Sally E Kinsey
- Department of Pediatric Haematology and Oncology; Leeds General Infirmary; Leeds, UK
| | - Chris D Mitchell
- Department of Pediatric Oncology; John Radcliffe Hospital; Oxford, UK
| | - Ajay Vora
- Department of Pediatric Oncology; John Radcliffe Hospital; Oxford, UK
| | - Christine J Harrison
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Anthony V Moorman
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
| | - Gordon Strathdee
- Northern Institute for Cancer Research; Faculty of Medical Sciences; Newcastle University; Newcastle upon Tyne, UK
- Department of Haematology; Great Ormond Street Hospital; London, UK
| |
Collapse
|
36
|
Luo Y, Wong CJ, Kaz AM, Dzieciatkowski S, Carter KT, Morris SM, Wang J, Willis JE, Makar KW, Ulrich CM, Lutterbaugh JD, Shrubsole MJ, Zheng W, Markowitz SD, Grady WM. Differences in DNA methylation signatures reveal multiple pathways of progression from adenoma to colorectal cancer. Gastroenterology 2014; 147:418-29.e8. [PMID: 24793120 PMCID: PMC4107146 DOI: 10.1053/j.gastro.2014.04.039] [Citation(s) in RCA: 145] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Genetic and epigenetic alterations contribute to the pathogenesis of colorectal cancer (CRC). There is considerable molecular heterogeneity among colorectal tumors, which appears to arise as polyps progress to cancer. This heterogeneity results in different pathways to tumorigenesis. Although epigenetic and genetic alterations have been detected in conventional tubular adenomas, little is known about how these affect progression to CRC. We compared methylomes of normal colon mucosa, tubular adenomas, and colorectal cancers to determine how epigenetic alterations might contribute to cancer formation. METHODS We conducted genome-wide array-based studies and comprehensive data analyses of aberrantly methylated loci in 41 normal colon tissue, 42 colon adenomas, and 64 cancers using HumanMethylation450 arrays. RESULTS We found genome-wide alterations in DNA methylation in the nontumor colon mucosa and cancers. Three classes of cancers and 2 classes of adenomas were identified based on their DNA methylation patterns. The adenomas separated into classes of high-frequency methylation and low-frequency methylation. Within the high-frequency methylation adenoma class a subset of adenomas had mutant KRAS. Additionally, the high-frequency methylation adenoma class had DNA methylation signatures similar to those of cancers with low or intermediate levels of methylation, and the low-frequency methylation adenoma class had methylation signatures similar to that of nontumor colon tissue. The CpG sites that were differentially methylated in these signatures are located in intragenic and intergenic regions. CONCLUSIONS Genome-wide alterations in DNA methylation occur during early stages of progression of tubular adenomas to cancer. These findings reveal heterogeneity in the pathogenesis of colorectal cancer, even at the adenoma step of the process.
Collapse
Affiliation(s)
- Yanxin Luo
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China; Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Chao-Jen Wong
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Andrew M Kaz
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Research and Development Service, VA Puget Sound Health Care System, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington
| | | | - Kelly T Carter
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Shelli M Morris
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Jianping Wang
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, PR China
| | - Joseph E Willis
- Department of Pathology, Case Medical Center, Case Comprehensive Cancer Center and Case Western Reserve University, Cleveland, Ohio
| | - Karen W Makar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Cornelia M Ulrich
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), University of Heidelberg, Heidelberg, Germany GDR
| | - James D Lutterbaugh
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio
| | - Martha J Shrubsole
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Sanford D Markowitz
- Department of Medicine and Ireland Cancer Center, Case Western Reserve University School of Medicine and Case Medical Center, Cleveland, Ohio
| | - William M Grady
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, Washington; Department of Medicine, University of Washington School of Medicine, Seattle, Washington.
| |
Collapse
|
37
|
Newton TP, Cummings CT, Graham DK, Bernt KM. Epigenetics and chemoresistance in childhood acute lymphoblastic leukemia. Int J Hematol Oncol 2014. [DOI: 10.2217/ijh.13.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY For children with acute lymphoblastic leukemia (ALL) who relapse, prognosis is poor and novel therapeutic strategies are needed. In the last decade, it has become apparent that ALL exhibits unique epigenetic patterns in addition to the well known cytogenetic findings. Furthermore, whole genome sequencing efforts are revealing recurrent mutations in epigenetic modifiers in ALL. Aberrant epigenetic modulation may be involved in leukemic transformation and resistance to chemotherapy. Consequently, compounds that specifically modulate the maintenance of such epigenetic programs may offer new approaches to therapy, including the modulation or prevention of chemoresistance in ALL. In this article, we review some of the most recent findings with regard to epigenetic aberrations in ALL, and discuss therapeutic strategies that are currently in development.
Collapse
Affiliation(s)
- Timothy P Newton
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Christopher T Cummings
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Douglas K Graham
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA
| | - Kathrin M Bernt
- Center for Cancer & Blood Disorders, Children’s Hospital Colorado & Department of Pediatrics, Section of Hematology, Oncology & Bone Marrow Transplantation, University of Colorado Anschutz Medical Campus, 12800 East 19th Avenue, RC1N, Mail Stop 8302, Aurora, CO 80045, USA.
| |
Collapse
|
38
|
Chatterton Z, Morenos L, Mechinaud F, Ashley DM, Craig JM, Sexton-Oates A, Halemba MS, Parkinson-Bates M, Ng J, Morrison D, Carroll WL, Saffery R, Wong NC. Epigenetic deregulation in pediatric acute lymphoblastic leukemia. Epigenetics 2014; 9:459-67. [PMID: 24394348 DOI: 10.4161/epi.27585] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Similar to most cancers, genome-wide DNA methylation profiles are commonly altered in pediatric acute lymphoblastic leukemia (ALL); however, recent observations highlight that a large portion of malignancy-associated DNA methylation alterations are not accompanied by related gene expression changes. By analyzing and integrating the methylome and transcriptome profiles of pediatric B-cell ALL cases and primary tissue controls, we report 325 genes hypermethylated and downregulated and 45 genes hypomethylated and upregulated in pediatric B-cell ALL, irrespective of subtype. Repressed cation channel subunits and cAMP signaling activators and transducers are overrepresented, potentially indicating a reduced cellular potential to receive and propagate apoptotic signals. Furthermore, we report specific DNA methylation alterations with concurrent gene expression changes within individual ALL subtypes. The ETV6-RUNX1 translocation was associated with downregulation of ASNS and upregulation of the EPO-receptor, while Hyperdiploid patients (> 50 chr) displayed upregulation of B-cell lymphoma (BCL) members and repression of PTPRG and FHIT. In combination, these data indicate genetically distinct B-cell ALL subtypes contain cooperative epimutations and genome-wide epigenetic deregulation is common across all B-cell ALL subtypes.
Collapse
Affiliation(s)
- Zac Chatterton
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Leah Morenos
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | - David M Ashley
- Andrew Love Cancer Centre; Deakin University; Victoria, VIC Australia
| | - Jeffrey M Craig
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Alexandra Sexton-Oates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Minhee S Halemba
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Mandy Parkinson-Bates
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Jane Ng
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | | | | | - Richard Saffery
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| | - Nicholas C Wong
- Murdoch Childrens Research Institute; The University of Melbourne Department of Paediatrics at the Royal Children's Hospital; Victoria, VIC Australia
| |
Collapse
|
39
|
Nordlund J, Bäcklin CL, Wahlberg P, Busche S, Berglund EC, Eloranta ML, Flaegstad T, Forestier E, Frost BM, Harila-Saari A, Heyman M, Jónsson OG, Larsson R, Palle J, Rönnblom L, Schmiegelow K, Sinnett D, Söderhäll S, Pastinen T, Gustafsson MG, Lönnerholm G, Syvänen AC. Genome-wide signatures of differential DNA methylation in pediatric acute lymphoblastic leukemia. Genome Biol 2013; 14:r105. [PMID: 24063430 PMCID: PMC4014804 DOI: 10.1186/gb-2013-14-9-r105] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 09/24/2013] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Although aberrant DNA methylation has been observed previously in acute lymphoblastic leukemia (ALL), the patterns of differential methylation have not been comprehensively determined in all subtypes of ALL on a genome-wide scale. The relationship between DNA methylation, cytogenetic background, drug resistance and relapse in ALL is poorly understood. RESULTS We surveyed the DNA methylation levels of 435,941 CpG sites in samples from 764 children at diagnosis of ALL and from 27 children at relapse. This survey uncovered four characteristic methylation signatures. First, compared with control blood cells, the methylomes of ALL cells shared 9,406 predominantly hypermethylated CpG sites, independent of cytogenetic background. Second, each cytogenetic subtype of ALL displayed a unique set of hyper- and hypomethylated CpG sites. The CpG sites that constituted these two signatures differed in their functional genomic enrichment to regions with marks of active or repressed chromatin. Third, we identified subtype-specific differential methylation in promoter and enhancer regions that were strongly correlated with gene expression. Fourth, a set of 6,612 CpG sites was predominantly hypermethylated in ALL cells at relapse, compared with matched samples at diagnosis. Analysis of relapse-free survival identified CpG sites with subtype-specific differential methylation that divided the patients into different risk groups, depending on their methylation status. CONCLUSIONS Our results suggest an important biological role for DNA methylation in the differences between ALL subtypes and in their clinical outcome after treatment.
Collapse
|