1
|
Yao Z, Zeng Y, Liu C, Jin H, Wang H, Zhang Y, Ding C, Chen G, Wu D. Focusing on CD8 + T-cell phenotypes: improving solid tumor therapy. J Exp Clin Cancer Res 2024; 43:266. [PMID: 39342365 PMCID: PMC11437975 DOI: 10.1186/s13046-024-03195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/17/2024] [Indexed: 10/01/2024] Open
Abstract
Vigorous CD8+ T cells play a crucial role in recognizing tumor cells and combating solid tumors. How T cells efficiently recognize and target tumor antigens, and how they maintain the activity in the "rejection" of solid tumor microenvironment, are major concerns. Recent advances in understanding of the immunological trajectory and lifespan of CD8+ T cells have provided guidance for the design of more optimal anti-tumor immunotherapy regimens. Here, we review the newly discovered methods to enhance the function of CD8+ T cells against solid tumors, focusing on optimizing T cell receptor (TCR) expression, improving antigen recognition by engineered T cells, enhancing signal transduction of the TCR-CD3 complex, inducing the homing of polyclonal functional T cells to tumors, reversing T cell exhaustion under chronic antigen stimulation, and reprogramming the energy and metabolic pathways of T cells. We also discuss how to participate in the epigenetic changes of CD8+ T cells to regulate two key indicators of anti-tumor responses, namely effectiveness and persistence.
Collapse
Affiliation(s)
- Zhouchi Yao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yayun Zeng
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Cheng Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Huimin Jin
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hong Wang
- Department of Scientific Research, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121001, China
| | - Yue Zhang
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Chengming Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Guodong Chen
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Daichao Wu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Laboratory of Structural Immunology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
- Department of Histology and Embryology, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
2
|
Klebanoff CA, Chandran SS, Baker BM, Quezada SA, Ribas A. T cell receptor therapeutics: immunological targeting of the intracellular cancer proteome. Nat Rev Drug Discov 2023; 22:996-1017. [PMID: 37891435 PMCID: PMC10947610 DOI: 10.1038/s41573-023-00809-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2023] [Indexed: 10/29/2023]
Abstract
The T cell receptor (TCR) complex is a naturally occurring antigen sensor that detects, amplifies and coordinates cellular immune responses to epitopes derived from cell surface and intracellular proteins. Thus, TCRs enable the targeting of proteins selectively expressed by cancer cells, including neoantigens, cancer germline antigens and viral oncoproteins. As such, TCRs have provided the basis for an emerging class of oncology therapeutics. Herein, we review the current cancer treatment landscape using TCRs and TCR-like molecules. This includes adoptive cell transfer of T cells expressing endogenous or engineered TCRs, TCR bispecific engagers and antibodies specific for human leukocyte antigen (HLA)-bound peptides (TCR mimics). We discuss the unique complexities associated with the clinical development of these therapeutics, such as HLA restriction, TCR retrieval, potency assessment and the potential for cross-reactivity. In addition, we highlight emerging clinical data that establish the antitumour potential of TCR-based therapies, including tumour-infiltrating lymphocytes, for the treatment of diverse human malignancies. Finally, we explore the future of TCR therapeutics, including emerging genome editing methods to safely enhance potency and strategies to streamline patient identification.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA.
| | - Smita S Chandran
- Memorial Sloan Kettering Cancer Center (MSKCC), Human Oncology and Pathogenesis Program, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
- Weill Cornell Medical College, Cornell University, New York, NY, USA
| | - Brian M Baker
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, ID, USA
- The Harper Cancer Research Institute, University of Notre Dame, Notre Dame, ID, USA
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Achilles Therapeutics, London, UK
| | - Antoni Ribas
- Jonsson Comprehensive Cancer Center at the University of California, Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
3
|
Couturaud B, Doix B, Carretero-Iglesia L, Allard M, Pradervand S, Hebeisen M, Rufer N. Overall avidity declines in TCR repertoires during latent CMV but not EBV infection. Front Immunol 2023; 14:1293090. [PMID: 38053994 PMCID: PMC10694213 DOI: 10.3389/fimmu.2023.1293090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
Introduction The avidity of the T-cell receptor (TCR) for antigenic peptides presented by the MHC (pMHC) on cells is an essential parameter for efficient T cell-mediated immunity. Yet, whether the TCR-ligand avidity can drive the clonal evolution of virus antigen-specific CD8 T cells, and how this process is determined in latent Cytomegalovirus (CMV)- against Epstein-Barr virus (EBV)-mediated infection remains largely unknown. Methods To address these issues, we quantified monomeric TCR-pMHC dissociation rates on CMV- and EBV-specific individual TCRαβ clonotypes and polyclonal CD8 T cell populations in healthy donors over a follow-up time of 15-18 years. The parameters involved during the long-term persistence of virus-specific T cell clonotypes were further evaluated by gene expression profiling, phenotype and functional analyses. Results Within CMV/pp65-specific T cell repertoires, a progressive contraction of clonotypes with high TCR-pMHC avidity and low CD8 binding dependency was observed, leading to an overall avidity decline during long-term antigen exposure. We identified a unique transcriptional signature preferentially expressed by high-avidity CMV/pp65-specific T cell clonotypes, including the inhibitory receptor LILRB1. Interestingly, T cell clonotypes of high-avidity showed higher LILRB1 expression than the low-avidity ones and LILRB1 blockade moderately increased T cell proliferation. Similar findings were made for CD8 T cell repertoires specific for the CMV/IE-1 epitope. There was a gradual in vivo loss of high-avidity T cells with time for both CMV specificities, corresponding to virus-specific CD8 T cells expressing enhanced LILRB1 levels. In sharp contrast, the EBV/BMFL1-specific T cell clonal composition and distribution, once established, displayed an exceptional stability, unrelated to TCR-pMHC binding avidity or LILRB1 expression. Conclusions These findings reveal an overall long-term avidity decline of CMV- but not EBV-specific T cell clonal repertoires, highlighting the differing role played by TCR-ligand avidity over the course of these two latent herpesvirus infections. Our data further suggest that the inhibitor receptor LILRB1 potentially restricts the clonal expansion of high-avidity CMV-specific T cell clonotypes during latent infection. We propose that the mechanisms regulating the long-term outcome of CMV- and EBV-specific memory CD8 T cell clonotypes in humans are distinct.
Collapse
Affiliation(s)
- Barbara Couturaud
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Bastien Doix
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Sylvain Pradervand
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Lausanne Genomic Technologies Facility (LGTF), University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
4
|
Schmidt J, Chiffelle J, Perez MAS, Magnin M, Bobisse S, Arnaud M, Genolet R, Cesbron J, Barras D, Navarro Rodrigo B, Benedetti F, Michel A, Queiroz L, Baumgaertner P, Guillaume P, Hebeisen M, Michielin O, Nguyen-Ngoc T, Huber F, Irving M, Tissot-Renaud S, Stevenson BJ, Rusakiewicz S, Dangaj Laniti D, Bassani-Sternberg M, Rufer N, Gfeller D, Kandalaft LE, Speiser DE, Zoete V, Coukos G, Harari A. Neoantigen-specific CD8 T cells with high structural avidity preferentially reside in and eliminate tumors. Nat Commun 2023; 14:3188. [PMID: 37280206 DOI: 10.1038/s41467-023-38946-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 05/23/2023] [Indexed: 06/08/2023] Open
Abstract
The success of cancer immunotherapy depends in part on the strength of antigen recognition by T cells. Here, we characterize the T cell receptor (TCR) functional (antigen sensitivity) and structural (monomeric pMHC-TCR off-rates) avidities of 371 CD8 T cell clones specific for neoantigens, tumor-associated antigens (TAAs) or viral antigens isolated from tumors or blood of patients and healthy donors. T cells from tumors exhibit stronger functional and structural avidity than their blood counterparts. Relative to TAA, neoantigen-specific T cells are of higher structural avidity and, consistently, are preferentially detected in tumors. Effective tumor infiltration in mice models is associated with high structural avidity and CXCR3 expression. Based on TCR biophysicochemical properties, we derive and apply an in silico model predicting TCR structural avidity and validate the enrichment in high avidity T cells in patients' tumors. These observations indicate a direct relationship between neoantigen recognition, T cell functionality and tumor infiltration. These results delineate a rational approach to identify potent T cells for personalized cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Johanna Chiffelle
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marta A S Perez
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Morgane Magnin
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Sara Bobisse
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Marion Arnaud
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Raphael Genolet
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Julien Cesbron
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - David Barras
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Blanca Navarro Rodrigo
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Fabrizio Benedetti
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandra Michel
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Lise Queiroz
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Petra Baumgaertner
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Michael Hebeisen
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Olivier Michielin
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Tu Nguyen-Ngoc
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Florian Huber
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Melita Irving
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Stéphanie Tissot-Renaud
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Brian J Stevenson
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sylvie Rusakiewicz
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Denarda Dangaj Laniti
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Nathalie Rufer
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - David Gfeller
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - Daniel E Speiser
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
| | - Vincent Zoete
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
- Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Agora Cancer Research Center, Lausanne, Switzerland.
- Center for Cell Therapy, Department of Oncology, Lausanne University Hospital, Lausanne, Switzerland.
| |
Collapse
|
5
|
Chour W, Choi J, Xie J, Chaffee ME, Schmitt TM, Finton K, DeLucia DC, Xu AM, Su Y, Chen DG, Zhang R, Yuan D, Hong S, Ng AHC, Butler JZ, Edmark RA, Jones LC, Murray KM, Peng S, Li G, Strong RK, Lee JK, Goldman JD, Greenberg PD, Heath JR. Large libraries of single-chain trimer peptide-MHCs enable antigen-specific CD8+ T cell discovery and analysis. Commun Biol 2023; 6:528. [PMID: 37193826 PMCID: PMC10186326 DOI: 10.1038/s42003-023-04899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The discovery and characterization of antigen-specific CD8+ T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapt single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We use this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then construct SCT libraries to capture SARS-CoV-2 specific CD8+ T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes is validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.
Collapse
Affiliation(s)
- William Chour
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jongchan Choi
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Jingyi Xie
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Mary E Chaffee
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Thomas M Schmitt
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Kathryn Finton
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Diana C DeLucia
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Alexander M Xu
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yapeng Su
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Daniel G Chen
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Microbiology and Department of Informatics, University of Washington, Seattle, WA, 98195, USA
| | - Rongyu Zhang
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Dan Yuan
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA
| | - Sunga Hong
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | - Alphonsus H C Ng
- Institute for Systems Biology, Seattle, WA, 98109, USA
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Jonah Z Butler
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Rick A Edmark
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Kim M Murray
- Institute for Systems Biology, Seattle, WA, 98109, USA
| | | | - Guideng Li
- Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100005, China
- Suzhou Institute of Systems Medicine, Suzhou, 215123, China
- Key Laboratory of Synthetic Biology Regulatory Element, Chinese Academy of Medical Sciences, Beijing, China
| | - Roland K Strong
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - John K Lee
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Jason D Goldman
- Swedish Center for Research and Innovation, Swedish Medical Center, Seattle, WA, 98104, USA
- Division of Infectious Disease, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Philip D Greenberg
- Program in Immunology, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA, 98195, USA
- Department of Immunology, University of Washington, Seattle, WA, 98195, USA
| | - James R Heath
- Institute for Systems Biology, Seattle, WA, 98109, USA.
- Department of Bioengineering, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
6
|
Heath J, Chour W, Choi J, Xie J, Chaffee M, Schmitt T, Finton K, Delucia D, Xu A, Su Y, Chen D, Zhang R, Yuan D, Hong S, Ng A, Butler J, Edmark R, Jones L, Murray K, Peng S, Li G, Strong R, Lee J, Goldman J, Greenberg P. Large libraries of single-chain trimer peptide-MHCs enable rapid antigen-specific CD8+ T cell discovery and analysis. RESEARCH SQUARE 2022:rs.3.rs-1090664. [PMID: 36415462 PMCID: PMC9681053 DOI: 10.21203/rs.3.rs-1090664/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
CD8 + cytotoxic T cell responses against viral infection represent a major element of the adaptive immune response. We describe the development of a peptide antigen - major histompatibility complex (pMHC) library representing the full SARS-CoV-2 viral proteome, and comprised of 634 pMHC multimers representing the A*02.01, A*24.02, and B*07.02 HLA alleles, as well as specific antigens associated with the cytomegalovirus (CMV). These libraries were used to capture non-expanded CD8 + T cells from blood samples collected from 64 infected individuals, and then analyzed using single cell RNA-seq. The discovery and characterization of antigen-specific CD8 + T cell clonotypes typically involves the labor-intensive synthesis and construction of peptide-MHC tetramers. We adapted single-chain trimer (SCT) technologies into a high throughput platform for pMHC library generation, showing that hundreds can be rapidly prepared across multiple Class I HLA alleles. We used this platform to explore the impact of peptide and SCT template mutations on protein expression yield, thermal stability, and functionality. SCT libraries were an efficient tool for identifying T cells recognizing commonly reported viral epitopes. We then constructed SCT libraries designed to capture SARS-CoV-2 specific CD8 + T cells from COVID-19 participants and healthy donors. The immunogenicity of these epitopes was validated by functional assays of T cells with cloned TCRs captured using SCT libraries. These technologies should enable the rapid analyses of peptide-based T cell responses across several contexts, including autoimmunity, cancer, or infectious disease.
Collapse
|
7
|
Baumgaertner P, Schmidt J, Costa-Nunes CM, Bordry N, Guillaume P, Luescher I, Speiser DE, Rufer N, Hebeisen M. CD8 T cell function and cross-reactivity explored by stepwise increased peptide-HLA versus TCR affinity. Front Immunol 2022; 13:973986. [PMID: 36032094 PMCID: PMC9399405 DOI: 10.3389/fimmu.2022.973986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 07/22/2022] [Indexed: 12/05/2022] Open
Abstract
Recruitment and activation of CD8 T cells occur through specific triggering of T cell receptor (TCR) by peptide-bound human leucocyte antigen (HLA) ligands. Within the generated trimeric TCR-peptide:HLA complex, the molecular binding affinities between peptide and HLA, and between TCR and peptide:HLA both impact T cell functional outcomes. However, how their individual and combined effects modulate immunogenicity and overall T cell responsiveness has not been investigated systematically. Here, we established two panels of human tumor peptide variants differing in their affinity to HLA. For precise characterization, we developed the “blue peptide assay”, an upgraded cell-based approach to measure the peptide:HLA affinity. These peptide variants were then used to investigate the cross-reactivity of tumor antigen-specific CD8 T cell clonotypes derived from blood of cancer patients after vaccination with either the native or an affinity-optimized Melan-A/MART-1 epitope, or isolated from tumor infiltrated lymph nodes (TILNs). Vaccines containing the native tumor epitope generated T cells with better functionality, and superior cross-reactivity against potential low affinity escape epitopes, as compared to T cells induced by vaccines containing an HLA affinity-optimized epitope. Comparatively, Melan-A/MART-1-specific TILN cells displayed functional and cross-reactive profiles that were heterogeneous and clonotype-dependent. Finally, we took advantage of a collection of T cells expressing affinity-optimized NY-ESO-1-specific TCRs to interrogate the individual and combined impact of peptide:HLA and TCR-pHLA affinities on overall CD8 T cell responses. We found profound and distinct effects of both biophysical parameters, with additive contributions and absence of hierarchical dominance. Altogether, the biological impact of peptide:HLA and TCR-pHLA affinities on T cell responses was carefully dissected in two antigenic systems, frequently targeted in human cancer immunotherapy. Our technology and stepwise comparison open new insights into the rational design and selection of vaccine-associated tumor-specific epitopes and highlight the functional and cross-reactivity profiles that endow T cells with best tumor control capacity.
Collapse
Affiliation(s)
- Petra Baumgaertner
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
- *Correspondence: Michael Hebeisen, ; Petra Baumgaertner,
| | - Julien Schmidt
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Carla-Marisa Costa-Nunes
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Natacha Bordry
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Philippe Guillaume
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Immanuel Luescher
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Daniel E. Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
- Ludwig Institute for Cancer Research, Lausanne Branch - University of Lausanne, Epalinges, Switzerland
- *Correspondence: Michael Hebeisen, ; Petra Baumgaertner,
| |
Collapse
|
8
|
Ashby JF, Schmidt J, KC N, Kurum A, Koch C, Harari A, Tang L, Au SH. Microfluidic T Cell Selection by Cellular Avidity. Adv Healthc Mater 2022; 11:e2200169. [PMID: 35657072 PMCID: PMC11468699 DOI: 10.1002/adhm.202200169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/24/2022] [Indexed: 01/24/2023]
Abstract
No T cell receptor (TCR) T cell therapies have obtained clinical approval. The lack of strategies capable of selecting and recovering potent T cell candidates may be a contributor to this. Existing protocols for selecting TCR T cell clones for cell therapies such as peptide multimer methods have provided effective measurements on TCR affinities. However, these methods lack the ability to measure the collective strength of intercellular interactions (i.e., cellular avidity) and markers of T cell activation such as immunological synapse formation. This study describes a novel microfluidic fluid shear stress-based approach to identify and recover highly potent T cell clones based on the cellular avidity between living T cells and tumor cells. This approach is capable of probing approximately up to 10 000 T cell-tumor cell interactions per run and can recover potent T cells with up to 100% purity from mixed populations of T cells within 30 min. Markers of cytotoxicity, activation, and avidity persist when recovered high cellular avidity T cells are subsequently exposed to fresh tumor cells. These results demonstrate how microfluidic probing of cellular avidity may fast track the therapeutic T cell selection process and move the authors closer to precision cancer immunotherapy.
Collapse
Affiliation(s)
- Julian F. Ashby
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer ResearchUniversity of LausanneLausanne1066Switzerland
| | - Neelima KC
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Armand Kurum
- Institute of Materials Science and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Caroline Koch
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, Ludwig Institute for Cancer ResearchUniversity of LausanneLausanne1066Switzerland
| | - Li Tang
- Institute of Materials Science and EngineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
- Institute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanne1015Switzerland
| | - Sam H. Au
- Department of BioengineeringImperial College LondonLondonSW7 2AZUK
- Cancer Research UK Convergence Science CentreLondonSW7 2AZUK
| |
Collapse
|
9
|
Lückemeier P, Molter KL, Jarosch S, Huppertz P, Purcarea A, Effenberger MJP, Nauerth M, D'Ippolito E, Schober K, Busch DH. Global k off -rates of polyclonal T cell populations merge subclonal avidities and predict functionality. Eur J Immunol 2022; 52:582-596. [PMID: 35099805 DOI: 10.1002/eji.202149597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 12/07/2021] [Accepted: 01/24/2022] [Indexed: 11/07/2022]
Abstract
The avidity of T cell receptors (TCRs) for peptide-major histocompatibility complexes (pMHCs) is a governing factor in how T cells respond to antigen. TCR avidity is generally linked to T cell functionality and there is growing evidence for distinct roles of low and high avidity T cells in different phases of immune responses. While physiological immune responses and many therapeutic T cell products targeting infections or cancers consist of polyclonal T cell populations with a wide range of individual avidities, the role of T cell avidity is usually investigated only in monoclonal experimental settings. In this report, we induced polyclonal T cell responses with a wide range of avidities towards a model epitope by altered peptide ligands (APL), and benchmarked global avidity of physiological polyclonal populations by investigation of TCR-pMHC koff -rates. We then investigated how varying sizes and avidities of monoclonal subpopulations translate into global koff -rates. Global koff -rates integrate subclonal avidities in a predictably weighted manner and robustly correlate with the functionality of murine polyclonal T cell populations in vitro and in vivo. Surveying the full avidity spectrum is essential to accurately assess polyclonal immune responses and inform the design of polyclonal T cell therapeutics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Philipp Lückemeier
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Katherine L Molter
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Sebastian Jarosch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Patrick Huppertz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Anna Purcarea
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Manuel J P Effenberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Elvira D'Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Wasserturmstraße 3/5, D-91054, Erlangen, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| |
Collapse
|
10
|
Jammes F, Schmidt J, Coukos G, Maerkl SJ. High-Throughput Single-Cell TCR-pMHC Dissociation Rate Measurements Performed by an Autonomous Microfluidic Cellular Processing Unit. ACS Sens 2022; 7:159-165. [PMID: 35006683 DOI: 10.1021/acssensors.1c01935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We developed an integrated microfluidic cellular processing unit (mCPU) capable of autonomously isolating single cells and performing measurements and on-the-fly analysis of cell-surface dissociation rates, followed by recovery of selected cells. We performed proof-of-concept, high-throughput single-cell experiments characterizing pMHC-TCR interactions on live CD8+ T cells. The mCPU platform analyzed TCR-pMHC dissociation rates with a throughput of 50 cells per hour and hundreds of cells per run, and we demonstrate that cells can be selected, enriched, and easily recovered from the device.
Collapse
Affiliation(s)
- Fabien Jammes
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, 1066 Lausanne, & Department of Oncology University of Lausanne & University Hospital of Lausanne (CHUV), 1066 Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, 1066 Lausanne, & Department of Oncology University of Lausanne & University Hospital of Lausanne (CHUV), 1066 Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
11
|
Rockinger GA, Guillaume P, Cachot A, Saillard M, Speiser DE, Coukos G, Harari A, Romero PJ, Schmidt J, Jandus C. Optimized combinatorial pMHC class II multimer labeling for precision immune monitoring of tumor-specific CD4 T cells in patients. J Immunother Cancer 2021; 8:jitc-2019-000435. [PMID: 32448802 PMCID: PMC7253008 DOI: 10.1136/jitc-2019-000435] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/12/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND With immunotherapy gaining increasing approval for treatment of different tumor types, scientists rely on cutting edge methods for the monitoring of immune responses and biomarker development in patients. Due to the lack of tools to efficiently detect rare circulating human tumor-specific CD4 T cells, their characterization in patients still remains very limited. METHODS We have used combinatorial staining strategies with peptide major histocompatibility complex class II (pMHCII) multimer constructs of different alleles to establish an optimized staining procedure for in vitro and direct ex-vivo visualization of tumor-specific CD4 T cells, in patient samples. Furthermore, we have generated reversible multimers to achieve optimal cell staining and yet disassemble prior to in vitro cell expansion, thus preventing activation induced cell death. RESULTS We observed a vastly improved detection of tumor-specific, viral-specific and bacterial-specific cells with our optimization methods compared with the non-optimized staining procedure. By increasing the variety of fluorochromes used to label the pMHCII multimers, we were also able to increase the parallel detection of different specificities within one sample, including antigen-specific CD8 T cells. A decrease in cell viability was observed when using the full optimization method, but this was mitigated by the removal of neuraminidase and the use of reversible multimers. CONCLUSION This new optimized staining procedure represents an advance toward better detection and analysis of antigen-specific CD4 T cells. It should facilitate state-of-the art precision monitoring of tumor-specific CD4 T cells and contribute to accelerate the use and the targeting of these cells in cancer immunotherapy.
Collapse
Affiliation(s)
- Georg Alexander Rockinger
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Philippe Guillaume
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Amélie Cachot
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Margaux Saillard
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Georges Coukos
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Alexandre Harari
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Pedro J Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland .,Ludwig Institute for Cancer Research, Lausanne Branch of Immunology, Epalinges, Switzerland
| |
Collapse
|
12
|
Geng J, Raghavan M. Conformational sensing of major histocompatibility complex (MHC) class I molecules by immune receptors and intracellular assembly factors. Curr Opin Immunol 2021; 70:67-74. [PMID: 33857912 DOI: 10.1016/j.coi.2021.03.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
Major histocompatibility complex class I (MHC-I) molecules play a critical role in both innate and adaptive immune responses. The heterodimeric complex of a polymorphic MHC-I heavy chain and a conserved light chain binds to a diverse set of peptides which are presented at the cell surface. Peptide-free (empty) versions of MHC-I molecules are typically retained intracellularly due to their low stability and bound by endoplasmic reticulum chaperones and assembly factors. However, emerging evidence suggests that at least some MHC-I allotypes are relatively stable and detectable at the cell-surface as peptide-deficient conformers, under some conditions. Such MHC-I conformers interact with multiple immune receptors to mediate various immunological functions. Furthermore, conformational sensing of MHC-I molecules by intracellular assembly factors and endoplasmic reticulum chaperones influences the peptide repertoire, with profound consequences for immunity. In this review, we discuss recent advances relating to MHC-I conformational variations and their pathophysiological implications.
Collapse
Affiliation(s)
- Jie Geng
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Malini Raghavan
- Department of Microbiology and Immunology, Michigan Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Zhao Q, Jiang Y, Xiang S, Kaboli PJ, Shen J, Zhao Y, Wu X, Du F, Li M, Cho CH, Li J, Wen Q, Liu T, Yi T, Xiao Z. Engineered TCR-T Cell Immunotherapy in Anticancer Precision Medicine: Pros and Cons. Front Immunol 2021; 12:658753. [PMID: 33859650 PMCID: PMC8042275 DOI: 10.3389/fimmu.2021.658753] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
This review provides insight into the role of engineered T-cell receptors (TCRs) in immunotherapy. Novel approaches have been developed to boost anticancer immune system, including targeting new antigens, manufacturing new engineered or modified TCRs, and creating a safety switch for endo-suicide genes. In order to re-activate T cells against tumors, immune-mobilizing monoclonal TCRs against cancer (ImmTAC) have been developed as a novel class of manufactured molecules which are bispecific and recognize both cancer and T cells. The TCRs target special antigens such as NY-ESO-1, AHNAKS2580F or ERBB2H473Y to boost the efficacy of anticancer immunotherapy. The safety of genetically modified T cells is very important. Therefore, this review discusses pros and cons of different approaches, such as ImmTAC, Herpes simplex virus thymidine kinase (HSV-TK), and inducible caspase-9 in cancer immunotherapy. Clinical trials related to TCR-T cell therapy and monoclonal antibodies designed for overcoming immunosuppression, and recent advances made in understanding how TCRs are additionally examined. New approaches that can better detect antigens and drive an effective T cell response are discussed as well.
Collapse
Affiliation(s)
- Qijie Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China.,Department of Pathophysiology, College of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Yu Jiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Shixin Xiang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Parham Jabbarzadeh Kaboli
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Shen
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Yueshui Zhao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Xu Wu
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Fukuan Du
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Mingxing Li
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Chi Hin Cho
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,South Sichuan Institute of Translational Medicine, Luzhou, China
| | - Jing Li
- Department of Oncology and Hematology, Hospital (T.C.M.) Affiliated to Southwest Medical University, Luzhou, China
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Liu
- Department of Oncology Rehabilitation, Shenzhen Luohu People's Hospital, Shenzhen, China
| | - Tao Yi
- School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong
| | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.,Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
14
|
Schmidt J, Smith AR, Magnin M, Racle J, Devlin JR, Bobisse S, Cesbron J, Bonnet V, Carmona SJ, Huber F, Ciriello G, Speiser DE, Bassani-Sternberg M, Coukos G, Baker BM, Harari A, Gfeller D. Prediction of neo-epitope immunogenicity reveals TCR recognition determinants and provides insight into immunoediting. CELL REPORTS MEDICINE 2021; 2:100194. [PMID: 33665637 PMCID: PMC7897774 DOI: 10.1016/j.xcrm.2021.100194] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 12/11/2020] [Accepted: 01/11/2021] [Indexed: 02/07/2023]
Abstract
CD8+ T cell recognition of peptide epitopes plays a central role in immune responses against pathogens and tumors. However, the rules that govern which peptides are truly recognized by existing T cell receptors (TCRs) remain poorly understood, precluding accurate predictions of neo-epitopes for cancer immunotherapy. Here, we capitalize on recent (neo-)epitope data to train a predictor of immunogenic epitopes (PRIME), which captures molecular properties of both antigen presentation and TCR recognition. PRIME not only improves prioritization of neo-epitopes but also correlates with T cell potency and unravels biophysical determinants of TCR recognition that we experimentally validate. Analysis of cancer genomics data reveals that recurrent mutations tend to be less frequent in patients where they are predicted to be immunogenic, providing further evidence for immunoediting in human cancer. PRIME will facilitate identification of pathogen epitopes in infectious diseases and neo-epitopes in cancer immunotherapy.
Collapse
Affiliation(s)
- Julien Schmidt
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Angela R Smith
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Morgane Magnin
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Racle
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Jason R Devlin
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Sara Bobisse
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Cesbron
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | | | - Santiago J Carmona
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Florian Huber
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland.,Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland
| | - Michal Bassani-Sternberg
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland
| | - Brian M Baker
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA
| | - Alexandre Harari
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University Hospital of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - David Gfeller
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, University of Lausanne, Lausanne, Switzerland.,Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| |
Collapse
|
15
|
D’Ippolito E, Wagner KI, Busch DH. Needle in a Haystack: The Naïve Repertoire as a Source of T Cell Receptors for Adoptive Therapy with Engineered T Cells. Int J Mol Sci 2020; 21:E8324. [PMID: 33171940 PMCID: PMC7664211 DOI: 10.3390/ijms21218324] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/27/2020] [Accepted: 11/02/2020] [Indexed: 12/11/2022] Open
Abstract
T cell engineering with antigen-specific T cell receptors (TCRs) has allowed the generation of increasingly specific, reliable, and versatile T cell products with near-physiological features. However, a broad applicability of TCR-based therapies in cancer is still limited by the restricted number of TCRs, often also of suboptimal potency, available for clinical use. In addition, targeting of tumor neoantigens with TCR-engineered T cell therapy moves the field towards a highly personalized treatment, as tumor neoantigens derive from somatic mutations and are extremely patient-specific. Therefore, relevant TCRs have to be de novo identified for each patient and within a narrow time window. The naïve repertoire of healthy donors would represent a reliable source due to its huge diverse TCR repertoire, which theoretically entails T cells for any antigen specificity, including tumor neoantigens. As a challenge, antigen-specific naïve T cells are of extremely low frequency and mostly of low functionality, making the identification of highly functional TCRs finding a "needle in a haystack." In this review, we present the technological advancements achieved in high-throughput mapping of patient-specific neoantigens and corresponding cognate TCRs and how these platforms can be used to interrogate the naïve repertoire for a fast and efficient identification of rare but therapeutically valuable TCRs for personalized adoptive T cell therapy.
Collapse
MESH Headings
- Antigens, Neoplasm/genetics
- CD4-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/immunology
- Humans
- Immunotherapy, Adoptive/methods
- Immunotherapy, Adoptive/trends
- Neoplasms/genetics
- Precision Medicine/methods
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/physiology
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/immunology
Collapse
Affiliation(s)
- Elvira D’Ippolito
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Karolin I. Wagner
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), 81675 Munich, Germany; (E.D.); (K.I.W.)
- German Center for Infection Research (DZIF), Partner Site Munich, 81675 Munich, Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”, Institute for Advanced Study, Technische Universität München (TUM), 81675 Munich, Germany
| |
Collapse
|
16
|
Kolawole EM, Lamb TJ, Evavold BD. Relationship of 2D Affinity to T Cell Functional Outcomes. Int J Mol Sci 2020; 21:E7969. [PMID: 33120989 PMCID: PMC7662510 DOI: 10.3390/ijms21217969] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/14/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
T cells are critical for a functioning adaptive immune response and a strong correlation exists between T cell responses and T cell receptor (TCR): peptide-loaded MHC (pMHC) binding. Studies that utilize pMHC tetramer, multimers, and assays of three-dimensional (3D) affinity have provided advancements in our understanding of T cell responses across different diseases. However, these technologies focus on higher affinity and avidity T cells while missing the lower affinity responders. Lower affinity TCRs in expanded polyclonal populations almost always constitute a significant proportion of the response with cells mediating different effector functions associated with variation in the proportion of high and low affinity T cells. Since lower affinity T cells expand and are functional, a fully inclusive view of T cell responses is required to accurately interpret the role of affinity for adaptive T cell immunity. For example, low affinity T cells are capable of inducing autoimmune disease and T cells with an intermediate affinity have been shown to exhibit an optimal anti-tumor response. Here, we focus on how affinity of the TCR may relate to T cell phenotype and provide examples where 2D affinity influences functional outcomes.
Collapse
Affiliation(s)
| | | | - Brian D. Evavold
- Department of Pathology, University of Utah, 15 N Medical Drive, Salt Lake City, UT 84112, USA; (E.M.K.); (T.J.L.)
| |
Collapse
|
17
|
Identification of a superagonist variant of the immunodominant Yellow fever virus epitope NS4b 214-222 by combinatorial peptide library screening. Mol Immunol 2020; 125:43-50. [PMID: 32645549 DOI: 10.1016/j.molimm.2020.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/27/2020] [Accepted: 06/24/2020] [Indexed: 11/22/2022]
Abstract
The CD8 T cell response to the HLA-A2-restricted epitope LLWNGPMAV (LLW) of the non-structural protein 4b of Yellow Fever Virus (YFV) is remarkably immunodominant, highly prevalent and powerful in YFV-vaccinated humans. Here we used a combinatorial peptide library screening in the context of an A2/LLW-specific CD8 T cell clone to identify a superagonist that features a methionine to isoleucine substitution at position 7. Based on in silico modeling, the functional enhancement of this LLW-7I mutation was associated with alterations in the structural dynamics of the peptide in the major histocompatibility complex (pMHC) binding with the T cell receptor (TCR). While the TCR off-rate of LLW-7I pMHC is comparable to the wild type peptide, the rigidity of the 7I peptide seems to confer less entropy loss upon TCR binding. This LLW-7I superagonist is an example of improved functionality in human CD8 T cells associated with optimized ligand rigidity for TCR binding and not with changes in TCR:pMHC off-rate kinetics.
Collapse
|
18
|
Rath JA, Bajwa G, Carreres B, Hoyer E, Gruber I, Martínez-Paniagua MA, Yu YR, Nouraee N, Sadeghi F, Wu M, Wang T, Hebeisen M, Rufer N, Varadarajan N, Ho PC, Brenner MK, Gfeller D, Arber C. Single-cell transcriptomics identifies multiple pathways underlying antitumor function of TCR- and CD8αβ-engineered human CD4 + T cells. SCIENCE ADVANCES 2020; 6:eaaz7809. [PMID: 32923584 PMCID: PMC7455496 DOI: 10.1126/sciadv.aaz7809] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Transgenic coexpression of a class I-restricted tumor antigen-specific T cell receptor (TCR) and CD8αβ (TCR8) redirects antigen specificity of CD4+ T cells. Reinforcement of biophysical properties and early TCR signaling explain how redirected CD4+ T cells recognize target cells, but the transcriptional basis for their acquired antitumor function remains elusive. We, therefore, interrogated redirected human CD4+ and CD8+ T cells by single-cell RNA sequencing and characterized them experimentally in bulk and single-cell assays and a mouse xenograft model. TCR8 expression enhanced CD8+ T cell function and preserved less differentiated CD4+ and CD8+ T cells after tumor challenge. TCR8+CD4+ T cells were most potent by activating multiple transcriptional programs associated with enhanced antitumor function. We found sustained activation of cytotoxicity, costimulation, oxidative phosphorylation- and proliferation-related genes, and simultaneously reduced differentiation and exhaustion. Our study identifies molecular features of TCR8 expression that can guide the development of enhanced immunotherapies.
Collapse
Affiliation(s)
- Jan A. Rath
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Gagan Bajwa
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Benoit Carreres
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Elisabeth Hoyer
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Isabelle Gruber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Yi-Ru Yu
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nazila Nouraee
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
| | - Fatemeh Sadeghi
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Mengfen Wu
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tao Wang
- Biostatistics Shared Resource, Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Michael Hebeisen
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Navin Varadarajan
- Department of Chemical and Biomolecular Engineering, University of Houston, TX, USA
| | - Ping-Chih Ho
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Malcolm K. Brenner
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - David Gfeller
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| | - Caroline Arber
- Department of Oncology UNIL-CHUV, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston Methodist Hospital and Texas Children’s Hospital, Houston, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
19
|
Bianchi V, Harari A, Coukos G. Neoantigen-Specific Adoptive Cell Therapies for Cancer: Making T-Cell Products More Personal. Front Immunol 2020; 11:1215. [PMID: 32695101 PMCID: PMC7333784 DOI: 10.3389/fimmu.2020.01215] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/15/2020] [Indexed: 12/13/2022] Open
Abstract
Mutation-derived neoantigens are taking central stage as a determinant in eliciting effective antitumor immune responses following adoptive T-cell therapies. These mutations are patient-specific, and their targeting calls for highly personalized pipelines. The promising clinical outcomes of tumor-infiltrating lymphocyte (TIL) therapy have spurred interest in generating T-cell infusion products that have been selectively enriched in neoantigen (or autologous tumor) reactivity. The implementation of an isolation step, prior to T-cell in vitro expansion and reinfusion, may provide a way to improve the overall response rates achieved to date by adoptive T-cell therapies in metastatic cancer patients. Here we provide an overview of the main technologies [i.e., peptide major histocompatibility complex (pMHC) multimers, cytokine capture, and activation markers] to enrich infiltrating or circulating T-cells in predefined neoantigen specificities (or tumor reactivity). The unique technical and regulatory challenges faced by such highly specialized and patient-specific manufacturing T-cell platforms are also discussed.
Collapse
Affiliation(s)
- Valentina Bianchi
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - Alexandre Harari
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.,Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne, Switzerland
| | - George Coukos
- Department of Oncology, Lausanne University Hospital, Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
20
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 157] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
21
|
Carretero-Iglesia L, Couturaud B, Baumgaertner P, Schmidt J, Maby-El Hajjami H, Speiser DE, Hebeisen M, Rufer N. High Peptide Dose Vaccination Promotes the Early Selection of Tumor Antigen-Specific CD8 T-Cells of Enhanced Functional Competence. Front Immunol 2020; 10:3016. [PMID: 31969886 PMCID: PMC6960191 DOI: 10.3389/fimmu.2019.03016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 12/09/2019] [Indexed: 12/29/2022] Open
Abstract
CD8 T-cell response efficiency critically depends on the TCR binding strength to peptide-MHC, i.e., the TCR binding avidity. A current challenge in onco-immunology lies in the evaluation of vaccine protocols selecting for tumor-specific T-cells of highest avidity, offering maximal immune protection against tumor cells and clinical benefit. Here, we investigated the impact of peptide and CpG/adjuvant doses on the quality of vaccine-induced CD8 T-cells in relation to binding avidity and functional responses in treated melanoma patients. Using TCR-pMHC binding avidity measurements combined to phenotype and functional assays, we performed a comprehensive study on representative tumor antigen-specific CD8 T-cell clones (n = 454) from seven patients vaccinated with different doses of Melan-A/ELA peptide (0.1 mg vs. 0.5 mg) and CpG-B adjuvant (1–1.3 mg vs. 2.6 mg). Vaccination with high peptide dose favored the early and strong in vivo expansion and differentiation of Melan-A-specific CD8 T-cells. Consistently, T-cell clones generated from those patients showed increased TCR binding avidity (i.e., slow off-rates and CD8 binding independency) readily after 4 monthly vaccine injections (4v). In contrast, the use of low peptide or high CpG-B doses required 8 monthly vaccine injections (8v) for the enrichment of anti-tumor T-cells with high TCR binding avidity and low CD8 binding dependency. Importantly, the CD8 binding-independent vaccine-induced CD8 T-cells displayed enhanced functional avidity, reaching a plateau of maximal function. Thus, T-cell functional potency following peptide/CpG/IFA vaccination may not be further improved beyond a certain TCR binding avidity limit. Our results also indicate that while high peptide dose vaccination induced the early selection of Melan-A-specific CD8 T-cells of increased functional competence, continued serial vaccinations also promoted such high-avidity T-cells. Overall, the systematic assessment of T-cell binding avidity may contribute to optimize vaccine design for improving clinical efficacy.
Collapse
Affiliation(s)
- Laura Carretero-Iglesia
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Barbara Couturaud
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Petra Baumgaertner
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Hélène Maby-El Hajjami
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Michael Hebeisen
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology UNIL CHUV, Lausanne University Hospital, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
22
|
Duong MN, Erdes E, Hebeisen M, Rufer N. Chronic TCR-MHC (self)-interactions limit the functional potential of TCR affinity-increased CD8 T lymphocytes. J Immunother Cancer 2019; 7:284. [PMID: 31690351 PMCID: PMC6833194 DOI: 10.1186/s40425-019-0773-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/05/2019] [Indexed: 12/21/2022] Open
Abstract
Background Affinity-optimized T cell receptor (TCR)-engineered lymphocytes targeting tumor antigens can mediate potent antitumor responses in cancer patients, but also bear substantial risks for off-target toxicities. Most preclinical studies have focused on T cell responses to antigen-specific stimulation. In contrast, little is known on the regulation of T cell responsiveness through continuous TCR triggering and consequent tonic signaling. Here, we addressed the question whether increasing the TCR affinity can lead to chronic interactions occurring directly between TCRs and MHC-(self) molecules, which may modulate the overall functional potency of tumor-redirected CD8 T cells. For this purpose, we developed two complementary human CD8 T cell models (i.e. HLA-A2 knock-in and knock-out) engineered with incremental-affinity TCRs to the HLA-A2/NY-ESO-1 tumor antigen. Methods The impact of HLA-A2 recognition, depending on TCR affinity, was assessed at the levels of the TCR/CD3 complex, regulatory receptors, and signaling, under steady-state conditions and in kinetic studies. The quality of CD8 T cell responses was further evaluated by gene expression and multiplex cytokine profiling, as well as real-time quantitative cell killing, combined with co-culture assays. Results We found that HLA-A2 per se (in absence of cognate peptide) can trigger chronic activation followed by a tolerance-like state of tumor-redirected CD8 T cells with increased-affinity TCRs. HLA-A2pos but not HLA-A2neg T cells displayed an activation phenotype, associated with enhanced upregulation of c-CBL and multiple inhibitory receptors. T cell activation preceded TCR/CD3 downmodulation, impaired TCR signaling and functional hyporesponsiveness. This stepwise activation-to-hyporesponsive state was dependent on TCR affinity and already detectable at the upper end of the physiological affinity range (KD ≤ 1 μM). Similar findings were made when affinity-increased HLA-A2neg CD8 T cells were chronically exposed to HLA-A2pos-expressing target cells. Conclusions Our observations indicate that sustained interactions between affinity-increased TCR and self-MHC can directly adjust the functional potential of T cells, even in the absence of antigen-specific stimulation. The observed tolerance-like state depends on TCR affinity and has therefore potential implications for the design of affinity-improved TCRs for adoptive T cell therapy, as several engineered TCRs currently used in clinical trials share similar affinity properties.
Collapse
Affiliation(s)
- Minh Ngoc Duong
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Efe Erdes
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland
| | - Michael Hebeisen
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland.
| | - Nathalie Rufer
- Department of oncology UNIL CHUV, Lausanne University Hospital and University of Lausanne, CH-1066, Epalinges, Switzerland.
| |
Collapse
|
23
|
T cell engineering for adoptive T cell therapy: safety and receptor avidity. Cancer Immunol Immunother 2019; 68:1701-1712. [PMID: 31542797 DOI: 10.1007/s00262-019-02395-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Accepted: 09/10/2019] [Indexed: 12/13/2022]
Abstract
Since the first bone marrow transplantation, adoptive T cell therapy (ACT) has developed over the last 80 years to a highly efficient and specific therapy for infections and cancer. Genetic engineering of T cells with antigen-specific receptors now provides the possibility of generating highly defined and efficacious T cell products. The high sensitivity of engineered T cells towards their targets, however, also bears the risk of severe off-target toxicities. Therefore, different safety strategies for engineered T cells have been developed that enable removal of the transferred cells in case of adverse events, control of T cell activity or improvement of target selectivity. Receptor avidity is a crucial component in the balance between safety and efficacy of T cell products. In clinical trials, T cells equipped with high avidity T cell receptor (TCR)/chimeric antigen receptor (CAR) have been mostly used so far because of their faster and better response to antigen recognition. However, over-activation can trigger T cell exhaustion/death as well as side effects due to excessive cytokine production. Low avidity T cells, on the other hand, are less susceptible to over-activation and could possess better selectivity in case of tumor antigens shared with healthy tissues, but complete tumor eradication may not be guaranteed. In this review we describe how 'optimal' TCR/CAR affinity can increase the safety/efficacy balance of engineered T cells, and discuss simultaneous or sequential infusion of high and low avidity receptors as further options for efficacious but safe T cell therapy.
Collapse
|
24
|
Magnin M, Guillaume P, Coukos G, Harari A, Schmidt J. High-throughput identification of human antigen-specific CD8 + and CD4 + T cells using soluble pMHC multimers. Methods Enzymol 2019; 631:21-42. [PMID: 31948548 DOI: 10.1016/bs.mie.2019.05.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Peptide major histocompatibility complex (pMHC) multimers have been used since decades to identify, isolate and analyze antigen-specific T cells by flow (and more recently mass) cytometry. Yet well established as a standard technology, improvements are still required to face the growing needs of personalized immune monitoring. Here we review the latest developments about (i) the quality of pMHC class I and II monomers, (ii) the importance of the multimeric scaffold, (iii) the staining conditions and (iv) the high-throughput synthesis of pMHC monomers. Finally, innovative multiplexed, combinatorial strategies for parallel detection of antigen-specific T cells in a single sample are discussed.
Collapse
Affiliation(s)
- Morgane Magnin
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Philippe Guillaume
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - George Coukos
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland.
| | - Alexandre Harari
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| | - Julien Schmidt
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, Lausanne, Switzerland
| |
Collapse
|
25
|
Martinez-Usatorre A, Sempere LF, Carmona SJ, Carretero-Iglesia L, Monnot G, Speiser DE, Rufer N, Donda A, Zehn D, Jandus C, Romero P. MicroRNA-155 Expression Is Enhanced by T-cell Receptor Stimulation Strength and Correlates with Improved Tumor Control in Melanoma. Cancer Immunol Res 2019; 7:1013-1024. [PMID: 31043416 DOI: 10.1158/2326-6066.cir-18-0504] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/24/2018] [Accepted: 04/26/2019] [Indexed: 11/16/2022]
Abstract
microRNAs are short noncoding RNAs that regulate protein expression posttranscriptionally. We previously showed that miR-155 promotes effector CD8+ T-cell responses. However, little is known about the regulation of miR-155 expression. Here, we report that antigen affinity and dose determine miR-155 expression in CD8+ T cells. In B16 tumors expressing a low-affinity antigen ligand, tumor-specific infiltrating CD8+ T cells showed variable miR-155 expression, whereby high miR-155 expression was associated with more cytokine-producing cells and tumor control. Moreover, anti-PD-1 treatment led to both increased miR-155 expression and tumor control by specific CD8+ T cells. In addition, miR-155 overexpression enhanced exhausted CD8+ T-cell persistence in the LCMV cl13 chronic viral infection model. In agreement with these observations in mouse models, miR-155 expression in human effector memory CD8+ T cells positively correlated with their frequencies in tumor-infiltrated lymph nodes of melanoma patients. Low miR-155 target gene signature in tumors was associated with prolonged overall survival in melanoma patients. Altogether, these results raise the possibility that high miR-155 expression in CD8+ tumor-infiltrating T cells may be a surrogate marker of the relative potency of in situ antigen-specific CD8+ T-cell responses.
Collapse
Affiliation(s)
| | - Lorenzo F Sempere
- Department of Radiology, Precision Health Program, Michigan State University, East Lansing, Michigan
| | - Santiago J Carmona
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Gwennaëlle Monnot
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.,Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Alena Donda
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Dietmar Zehn
- School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Camilla Jandus
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland
| | - Pedro Romero
- Department of Oncology UNIL CHUV, University of Lausanne, Epalinges, Switzerland.
| |
Collapse
|
26
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019; 58:8278-8290. [PMID: 30919542 DOI: 10.1002/anie.201811293] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Indexed: 01/09/2023]
Abstract
With the advent of single-molecule methods, chemoselective and site-specific labeling of proteins evolved to become a central aspect in chemical biology as well as cell biology. Protein labeling demands high specificity, rapid as well as efficient conjugation, while maintaining low concentration and biocompatibility under physiological conditions. Generic methods that do not interfere with the function, dynamics, subcellular localization of proteins, and crosstalk with other factors are crucial to probe and image proteins in vitro and in living cells. Alternatives to enzyme-based tags or autofluorescent proteins are short peptide-based recognition tags. These tags provide high specificity, enhanced binding rates, bioorthogonality, and versatility. Here, we report on recent applications of multivalent chelator heads, recognizing oligohistidine-tagged proteins. The striking features of this system has facilitated the analysis of protein complexes by single-molecule approaches.
Collapse
Affiliation(s)
- Ralph Wieneke
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| | - Robert Tampé
- Institute of Biochemistry, Biocenter, Goethe University Frankfurt, Max-von-Laue Str. 9, 60438, Frankfurt/M., Germany
| |
Collapse
|
27
|
Wieneke R, Tampé R. Multivalent Chelators for In Vivo Protein Labeling. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201811293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ralph Wieneke
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| | - Robert Tampé
- Institute of BiochemistryBiocenterGoethe University Frankfurt Max-von-Laue Str. 9 60438 Frankfurt/M. Germany
| |
Collapse
|
28
|
Effenberger M, Stengl A, Schober K, Gerget M, Kampick M, Müller TR, Schumacher D, Helma J, Leonhardt H, Busch DH. FLEXamers: A Double Tag for Universal Generation of Versatile Peptide-MHC Multimers. THE JOURNAL OF IMMUNOLOGY 2019; 202:2164-2171. [DOI: 10.4049/jimmunol.1801435] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/25/2019] [Indexed: 11/19/2022]
|
29
|
Schober K, Buchholz VR, Busch DH. TCR repertoire evolution during maintenance of CMV-specific T-cell populations. Immunol Rev 2019; 283:113-128. [PMID: 29664573 DOI: 10.1111/imr.12654] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During infections and cancer, the composition of the T-cell receptor (TCR) repertoire of antigen-specific CD8+ T cells changes over time. TCR avidity is thought to be a major driver of this process, thereby interacting with several additional regulators of T-cell responses to form a composite immune response architecture. Infections with latent viruses, such as cytomegalovirus (CMV), can lead to large T-cell responses characterized by an oligoclonal TCR repertoire. Here, we review the current status of experimental studies and theoretical models of TCR repertoire evolution during CMV infection. We will particularly discuss the degree to which this process may be determined through structural TCR avidity. As engineered TCR-redirected T cells have moved into the spotlight for providing more effective immunotherapies, it is essential to understand how the key features of a given TCR influence T-cell expansion and maintenance in settings of infection or malignancy. Deeper insights into these mechanisms will improve our basic understanding of T-cell immunology and help to identify optimal TCRs for immunotherapy.
Collapse
Affiliation(s)
- Kilian Schober
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Veit R Buchholz
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München (TUM), Munich, Germany.,Focus Group 'Clinical Cell Processing and Purification', Institute for Advanced Study, TUM, Munich, Germany.,National Centre for Infection Research (DZIF), Munich, Germany
| |
Collapse
|
30
|
NK cells specifically TCR-dressed to kill cancer cells. EBioMedicine 2019; 40:106-117. [PMID: 30665853 PMCID: PMC6413353 DOI: 10.1016/j.ebiom.2019.01.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 01/10/2019] [Accepted: 01/11/2019] [Indexed: 12/27/2022] Open
Abstract
Background Adoptive T-cell transfer of therapeutic TCR holds great promise to specifically kill cancer cells, but relies on modifying the patient's own T cells ex vivo before injection. The manufacturing of T cells in a tailor-made setting is a long and expensive process which could be resolved by the use of universal cells. Currently, only the Natural Killer (NK) cell line NK-92 is FDA approved for universal use. In order to expand their recognition ability, they were equipped with Chimeric Antigen Receptors (CARs). However, unlike CARs, T-cell receptors (TCRs) can recognize all cellular proteins, which expand NK-92 recognition to the whole proteome. Methods We herein genetically engineered NK-92 to express the CD3 signaling complex, and showed that it rendered them able to express a functional TCR. Functional assays and in vivo efficacy were used to validate these cells. Findings This is the first demonstration that a non-T cell can exploit TCRs. This TCR-redirected cell line, termed TCR-NK-92, mimicked primary T cells phenotypically, metabolically and functionally, but retained its NK cell effector functions. Our results demonstrate a unique manner to indefinitely produce TCR-redirected lymphocytes at lower cost and with similar therapeutic efficacy as redirected T cells. Interpretation These results suggest that an NK cell line could be the basis for an off-the-shelf TCR-based cancer immunotherapy solution. Fund This work was supported by the Research Council of Norway (#254817), South-Eastern Norway Regional Health Authority (#14/00500-79), by OUS-Radiumhospitalet (Gene Therapy program) and the department of Oncology at the University of Lausanne.
Collapse
|
31
|
Soler M, Li X, John-Herpin A, Schmidt J, Coukos G, Altug H. Two-Dimensional Label-Free Affinity Analysis of Tumor-Specific CD8 T Cells with a Biomimetic Plasmonic Sensor. ACS Sens 2018; 3:2286-2295. [PMID: 30339020 DOI: 10.1021/acssensors.8b00523] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The screening and analysis of T cells functional avidity for specific tumor-associated antigens is crucial for the development of personalized immunotherapies against cancer. The affinity and kinetics of a T cell receptor (TCR) binding to the peptide-major histocompatibility complex (pMHC), expressed on tumor or antigen-presenting cells, have shown major implications in T cell activation and effector functions. We introduce an innovative methodology for the two-dimensional affinity analysis of TCR-pMHC in a label-free configuration by employing a multiparametric Surface Plasmon Resonance biosensor (MP-SPR) functionalized with artificial cell membranes. The biomimetic scaffold created with planar lipid bilayers is able to efficiently capture the specific and intact tumor-specific T cells and monitor the formation of the immunological synapse in situ. We have achieved excellent limits of detection for in-flow cell capturing, up to 2 orders of magnitude below the current state-of-the-art for plasmonic sensing. We demonstrate the accuracy and selectivity of our sensor for the analysis of CD8+ T cells bioengineered with TCR of incremental affinities specific for the HLA-A0201/NY-ESO-I157-165 pMHC complex. The study confirmed the significance of providing a biomimetic microenvironment, compared to the traditional molecular analysis, and showed fine agreement with previous results employing flow cytometry. Our methodology is reliable and versatile; thus, it can be applied to more sophisticated photonic and nanoplasmonic technologies for the screening of multiple cell types and boost the development of novel treatments for cancer.
Collapse
Affiliation(s)
- Maria Soler
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Xiaokang Li
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Aurelian John-Herpin
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Julien Schmidt
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - George Coukos
- Lausanne Branch - Ludwig Institute for Cancer Research, and Department of Oncology, University of Lausanne (UNIL), CH-1007 Lausanne, Switzerland
| | - Hatice Altug
- Institute of Bioengineering, Ecole Polytechnique Federale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
32
|
Flores-Villanueva PO, Ganachari M, Guio H, Mejia JA, Granados J. An Isolated TCR αβ Restricted by HLA-A*02:01/CT37 Peptide Redirecting CD8 + T Cells To Kill and Secrete IFN-γ in Response to Lung Adenocarcinoma Cell Lines. THE JOURNAL OF IMMUNOLOGY 2018; 200:2965-2977. [PMID: 29555781 DOI: 10.4049/jimmunol.1701054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 02/01/2018] [Indexed: 01/15/2023]
Abstract
Lung cancer is a leading cause of cancer-related death among both men and women in the United States, where non-small cell lung cancer accounts for ∼85% of lung cancer. Lung adenocarcinoma (ADC) is the major histologic subtype. The presence of actionable mutations prompts the use of therapies designed to specifically address the deleterious effects of those cancer-driving mutations; these therapies have already shown promise in cases carrying those actionable mutations (∼30%). Innovative therapeutic approaches are needed for the treatment of 70% of patients suffering from lung ADC. Adoptive transfer of CD8+ T cells specific against cancer/testis (CT) Ags, whose protein expression is restricted to the gonads (testis and ovary) and cancerous cells, is an excellent alternative. In this study, we report the isolation of HLA-A*02:01/CT37 peptide-specific α and β TCR chains from a CD8+ T cell clone obtained from a patient suffering from lung ADC. We also report the development of an innovative CD3ζ construct. With those TCR chains and the engineered (modified) CD3ζ chain, we produced a construct that when transduced into CD8+ T cells is capable of redirecting transduced CD8+ T cell cytotoxic activity and IFN-γ secretion against peptide-pulsed autologous cells and HLA-A*02:01-positive and CT37-expressing lung ADC cell lines. Our findings will launch the development of innovative adoptive transfer immunotherapies for the treatment of lung ADC, targeting the most prevalent HLA molecules and CT37 peptides restricted by these molecules.
Collapse
Affiliation(s)
- Pedro O Flores-Villanueva
- Genomic Medicine and Immunotherapy, INBIOMEDIC USA, International Consortium for the Study of Lung Cancer, The Woodlands, TX 77384;
| | - Malathesha Ganachari
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77004
| | | | - Jaime A Mejia
- Strategic Research and Development in Oncology, Houston Methodist Research Institute, Houston, TX 77030; and
| | - Julio Granados
- División de Inmunogenética, Departamento de Trasplantes, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, C.P. 14080 Mexico City, Mexico
| |
Collapse
|
33
|
Bovay A, Zoete V, Dolton G, Bulek AM, Cole DK, Rizkallah PJ, Fuller A, Beck K, Michielin O, Speiser DE, Sewell AK, Fuertes Marraco SA. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus. Eur J Immunol 2018; 48:258-272. [PMID: 28975614 PMCID: PMC5887915 DOI: 10.1002/eji.201747082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/15/2017] [Accepted: 09/25/2017] [Indexed: 12/12/2022]
Abstract
The repertoire of human αβ T-cell receptors (TCRs) is generated via somatic recombination of germline gene segments. Despite this enormous variation, certain epitopes can be immunodominant, associated with high frequencies of antigen-specific T cells and/or exhibit bias toward a TCR gene segment. Here, we studied the TCR repertoire of the HLA-A*0201-restricted epitope LLWNGPMAV (hereafter, A2/LLW) from Yellow Fever virus, which generates an immunodominant CD8+ T cell response to the highly effective YF-17D vaccine. We discover that these A2/LLW-specific CD8+ T cells are highly biased for the TCR α chain TRAV12-2. This bias is already present in A2/LLW-specific naïve T cells before vaccination with YF-17D. Using CD8+ T cell clones, we show that TRAV12-2 does not confer a functional advantage on a per cell basis. Molecular modeling indicated that the germline-encoded complementarity determining region (CDR) 1α loop of TRAV12-2 critically contributes to A2/LLW binding, in contrast to the conventional dominant dependence on somatically rearranged CDR3 loops. This germline component of antigen recognition may explain the unusually high precursor frequency, prevalence and immunodominance of T-cell responses specific for the A2/LLW epitope.
Collapse
Affiliation(s)
- Amandine Bovay
- Department of OncologyLausanne University Hospital (CHUV)EpalingesSwitzerland
| | - Vincent Zoete
- SIB Swiss Institute of BioinformaticsMolecular Modeling GroupLausanneSwitzerland
| | - Garry Dolton
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | - Anna M. Bulek
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | - David K. Cole
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | - Pierre J. Rizkallah
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | - Anna Fuller
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | - Konrad Beck
- Cardiff University School of DentistryHeath ParkCardiffUK
| | - Olivier Michielin
- SIB Swiss Institute of BioinformaticsMolecular Modeling GroupLausanneSwitzerland
| | - Daniel E. Speiser
- Department of OncologyLausanne University Hospital (CHUV)EpalingesSwitzerland
| | - Andrew K. Sewell
- Division of Infection and Immunity and Systems Immunity Research InstituteCardiff University School of MedicineHeath ParkCardiffUK
| | | |
Collapse
|
34
|
Jandus C, Usatorre AM, Viganò S, Zhang L, Romero P. The Vast Universe of T Cell Diversity: Subsets of Memory Cells and Their Differentiation. Methods Mol Biol 2018; 1514:1-17. [PMID: 27787788 DOI: 10.1007/978-1-4939-6548-9_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The T cell receptor confers specificity for antigen recognition to T cells. By the first encounter with the cognate antigen, reactive T cells initiate a program of expansion and differentiation that will define not only the ultimate quantity of specific cells that will be generated, but more importantly their quality and functional heterogeneity. Recent achievements using mouse model infection systems have helped to shed light into the complex network of factors that dictate and sustain memory T cell differentiation, ranging from antigen load, TCR signal strength, metabolic fitness, transcriptional programs, and proliferative potential. The different models of memory T cell differentiation are discussed in this chapter, and key phenotypic and functional attributes of memory T cell subsets are presented, both for mouse and human cells. Therapeutic manipulation of memory T cell generation is expected to provide novel unique ways to optimize current immunotherapies, both in infection and cancer.
Collapse
Affiliation(s)
- Camilla Jandus
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Amaia Martínez Usatorre
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Selena Viganò
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Lianjun Zhang
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland
| | - Pedro Romero
- Translational Tumor Immunology Group, Ludwig Cancer Research Center, University of Lausanne, Biopole III, CB02, Chemin des Boveresses 155, 1066, Epalinges, Switzerland.
| |
Collapse
|
35
|
Allard M, Hebeisen M, Rufer N. Assessing T Cell Receptor Affinity and Avidity Against Tumor Antigens. Oncoimmunology 2018. [DOI: 10.1007/978-3-319-62431-0_40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology 2017; 6:e1386829. [PMID: 29209573 DOI: 10.1080/2162402x.2017.1386829] [Citation(s) in RCA: 190] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/26/2017] [Indexed: 12/21/2022] Open
Abstract
The expression "immunogenic cell death" (ICD) refers to a functionally unique form of cell death that facilitates (instead of suppressing) a T cell-dependent immune response specific for dead cell-derived antigens. ICD critically relies on the activation of adaptive responses in dying cells, culminating with the exposure or secretion of immunostimulatory molecules commonly referred to as "damage-associated molecular patterns". Only a few agents can elicit bona fide ICD, including some clinically established chemotherapeutics such as doxorubicin, epirubicin, idarubicin, mitoxantrone, bleomycin, bortezomib, cyclophosphamide and oxaliplatin. In this Trial Watch, we discuss recent progress on the development of ICD-inducing chemotherapeutic regimens, focusing on studies that evaluate clinical efficacy in conjunction with immunological biomarkers.
Collapse
Affiliation(s)
- Abhishek D Garg
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Sanket More
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Nicole Rufo
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Odeta Mece
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Maria Livia Sassano
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) Lab, Department of Cellular & Molecular Medicine, KU Leuven University of Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Université Paris Descartes/Paris V, Paris, France.,Université Pierre et Marie Curie/Paris VI, Paris, France.,Equipe 11 labellisée Ligue contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.,INSERM, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.,Pôle de Biologie, Hopitâl Européen George Pompidou, Paris, France
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Paris, France.,Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
37
|
Allard M, Couturaud B, Carretero-Iglesia L, Duong MN, Schmidt J, Monnot GC, Romero P, Speiser DE, Hebeisen M, Rufer N. TCR-ligand dissociation rate is a robust and stable biomarker of CD8+ T cell potency. JCI Insight 2017; 2:92570. [PMID: 28724801 DOI: 10.1172/jci.insight.92570] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 06/15/2017] [Indexed: 12/16/2022] Open
Abstract
Despite influencing many aspects of T cell biology, the kinetics of T cell receptor (TCR) binding to peptide-major histocompatibility molecules (pMHC) remain infrequently determined in patient monitoring or for adoptive T cell therapy. Using specifically designed reversible fluorescent pMHC multimeric complexes, we performed a comprehensive study of TCR-pMHC off-rates combined with various functional assays on large libraries of self/tumor- and virus-specific CD8+ T cell clones from melanoma patients and healthy donors. We demonstrate that monomeric TCR-pMHC dissociation rates accurately predict the extent of cytotoxicity, cytokine production, polyfunctionality, cell proliferation, activating/inhibitory receptor expression, and in vivo antitumor potency of naturally occurring antigen-specific CD8+ T cells. Our data also confirm the superior binding avidities of virus-specific T cells as compared with self/tumor-specific T cell clonotypes (n > 300). Importantly, the TCR-pMHC off-rate is a more stable and robust biomarker of CD8+ T cell potency than the frequently used functional assays/metrics that depend on the T cell's activation state, and therefore show major intra- and interexperimental variability. Taken together, our data show that the monomeric TCR-pMHC off-rate is highly useful for the ex vivo high-throughput functional assessment of antigen-specific CD8+ T cell responses and a strong candidate as a biomarker of T cell therapeutic efficacy.
Collapse
Affiliation(s)
- Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Barbara Couturaud
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Laura Carretero-Iglesia
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Minh Ngoc Duong
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Julien Schmidt
- Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | | | - Pedro Romero
- Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland.,Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| | - Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV) and University of Lausanne, Epalinges, Switzerland.,Ludwig Cancer Research, University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
38
|
Heterogeneity assessment of functional T cell avidity. Sci Rep 2017; 7:44320. [PMID: 28287160 PMCID: PMC5347081 DOI: 10.1038/srep44320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/06/2017] [Indexed: 12/18/2022] Open
Abstract
The potency of cellular immune responses strongly depends on T cell avidity to antigen. Yet, functional avidity measurements are rarely performed in patients, mainly due to the technical challenges of characterizing heterogeneous T cells. The mean functional T cell avidity can be determined by the IFN-γ Elispot assay, with titrated amounts of peptide. Using this assay, we developed a method revealing the heterogeneity of functional avidity, represented by the steepness/hillslope of the peptide titration curve, documented by proof of principle experiments and mathematical modeling. Our data show that not only natural polyclonal CD8 T cell populations from cancer patients, but also monoclonal T cells differ strongly in their heterogeneity of functional avidity. Interestingly, clones and polyclonal cells displayed comparable ranges of heterogeneity. We conclude that besides the mean functional avidity, it is feasible and useful to determine its heterogeneity (hillslope) for characterizing T cell responses in basic research and patient investigation.
Collapse
|
39
|
Rapid and Continued T-Cell Differentiation into Long-term Effector and Memory Stem Cells in Vaccinated Melanoma Patients. Clin Cancer Res 2016; 23:3285-3296. [DOI: 10.1158/1078-0432.ccr-16-1708] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/30/2016] [Accepted: 11/05/2016] [Indexed: 11/16/2022]
|
40
|
Nauerth M, Stemberger C, Mohr F, Weißbrich B, Schiemann M, Germeroth L, Busch DH. Flow cytometry-based TCR-ligandKoff-rate assay for fast avidity screening of even very small antigen-specific T cell populations ex vivo. Cytometry A 2016; 89:816-25. [DOI: 10.1002/cyto.a.22933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 04/20/2016] [Accepted: 05/19/2016] [Indexed: 01/07/2023]
Affiliation(s)
- Magdalena Nauerth
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Christian Stemberger
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
- Juno Therapeutics; Munich Germany
| | - Fabian Mohr
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Bianca Weißbrich
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | - Matthias Schiemann
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
| | | | - Dirk H. Busch
- Institute for Medical Microbiology, Immunology and Hygiene, Technische Universität München; Munich Germany
- DZIF - National Centre for Infection Research; Munich Germany
- Focus Group ‘‘Clinical Cell Processing and Purification”; Institute for Advanced Study, Technische Universität München; Munich Germany
| |
Collapse
|
41
|
Baumgaertner P, Speiser D, Romero P, Rufer N, Hebeisen M. Chromium-51 (51Cr) Release Assay to Assess Human T Cells for Functional Avidity and Tumor Cell Recognition. Bio Protoc 2016. [DOI: 10.21769/bioprotoc.1906] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
42
|
Schmidt J, Hebeisen M, Guillaume P, Magnin M, Rufer N, Luescher I. Identification and isolation of high avidity tumor-specific CD8 T cells by experimentally assessing pMHC-TCR binding parameters with soluble pMHC complexes. J Immunother Cancer 2015. [PMCID: PMC4649411 DOI: 10.1186/2051-1426-3-s2-p263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
43
|
Hebeisen M, Allard M, Gannon PO, Schmidt J, Speiser DE, Rufer N. Identifying Individual T Cell Receptors of Optimal Avidity for Tumor Antigens. Front Immunol 2015; 6:582. [PMID: 26635796 PMCID: PMC4649060 DOI: 10.3389/fimmu.2015.00582] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 02/02/2023] Open
Abstract
Cytotoxic T cells recognize, via their T cell receptors (TCRs), small antigenic peptides presented by the major histocompatibility complex (pMHC) on the surface of professional antigen-presenting cells and infected or malignant cells. The efficiency of T cell triggering critically depends on TCR binding to cognate pMHC, i.e., the TCR–pMHC structural avidity. The binding and kinetic attributes of this interaction are key parameters for protective T cell-mediated immunity, with stronger TCR–pMHC interactions conferring superior T cell activation and responsiveness than weaker ones. However, high-avidity TCRs are not always available, particularly among self/tumor antigen-specific T cells, most of which are eliminated by central and peripheral deletion mechanisms. Consequently, systematic assessment of T cell avidity can greatly help distinguishing protective from non-protective T cells. Here, we review novel strategies to assess TCR–pMHC interaction kinetics, enabling the identification of the functionally most-relevant T cells. We also discuss the significance of these technologies in determining which cells within a naturally occurring polyclonal tumor-specific T cell response would offer the best clinical benefit for use in adoptive therapies, with or without T cell engineering.
Collapse
Affiliation(s)
- Michael Hebeisen
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Philippe O Gannon
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland
| | - Julien Schmidt
- Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland ; TCMetrix Sàrl , Epalinges , Switzerland
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital Center (CHUV), University of Lausanne , Epalinges , Switzerland ; Ludwig Center for Cancer Research, University of Lausanne , Epalinges , Switzerland
| |
Collapse
|
44
|
Gannon PO, Wieckowski S, Baumgaertner P, Hebeisen M, Allard M, Speiser DE, Rufer N. Quantitative TCR:pMHC Dissociation Rate Assessment by NTAmers Reveals Antimelanoma T Cell Repertoires Enriched for High Functional Competence. THE JOURNAL OF IMMUNOLOGY 2015; 195:356-66. [PMID: 26002978 DOI: 10.4049/jimmunol.1403145] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 04/28/2015] [Indexed: 12/19/2022]
Abstract
Experimental models demonstrated that therapeutic induction of CD8 T cell responses may offer protection against tumors or infectious diseases providing that T cells have sufficiently high TCR/CD8:pMHC avidity for efficient Ag recognition and consequently strong immune functions. However, comprehensive characterization of TCR/CD8:pMHC avidity in clinically relevant situations has remained elusive. In this study, using the novel NTA-His tag-containing multimer technology, we quantified the TCR:pMHC dissociation rates (koff) of tumor-specific vaccine-induced CD8 T cell clones (n = 139) derived from seven melanoma patients vaccinated with IFA, CpG, and the native/EAA or analog/ELA Melan-A(MART-1)(26-35) peptide, binding with low or high affinity to MHC, respectively. We observed substantial correlations between koff and Ca(2+) mobilization (p = 0.016) and target cell recognition (p < 0.0001), with the latter independently of the T cell differentiation state. Our strategy was successful in demonstrating that the type of peptide impacted on TCR/CD8:pMHC avidity, as tumor-reactive T cell clones derived from patients vaccinated with the low-affinity (native) peptide expressed slower koff rates than those derived from patients vaccinated with the high-affinity (analog) peptide (p < 0.0001). Furthermore, we observed that the low-affinity peptide promoted the selective differentiation of tumor-specific T cells bearing TCRs with high TCR/CD8:pMHC avidity (p < 0.0001). Altogether, TCR:pMHC interaction kinetics correlated strongly with T cell functions. Our study demonstrates the feasibility and usefulness of TCR/CD8:pMHC avidity assessment by NTA-His tag-containing multimers of naturally occurring polyclonal T cell responses, which represents a strong asset for the development of immunotherapy.
Collapse
Affiliation(s)
- Philippe O Gannon
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and
| | - Sébastien Wieckowski
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and
| | - Petra Baumgaertner
- Ludwig Center for Cancer Research, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Michaël Hebeisen
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and
| | - Mathilde Allard
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and
| | - Daniel E Speiser
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and Ludwig Center for Cancer Research, University of Lausanne, CH-1011 Lausanne, Switzerland
| | - Nathalie Rufer
- Department of Oncology, Lausanne University Hospital and University of Lausanne, CH-1011 Lausanne, Switzerland; and Ludwig Center for Cancer Research, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|