1
|
Cheng H, Li Y, Cheng J, Zhang Y, Zhang B. Study on the effect and mechanisms of piperine against cervical cancer based on network pharmacology and experimental validation. Biotechnol Genet Eng Rev 2024; 40:4875-4898. [PMID: 37235876 DOI: 10.1080/02648725.2023.2217611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/19/2023] [Indexed: 05/28/2023]
Abstract
Piperine has immunomodulatory and anti-inflammatory properties, and its potential in treating cervical cancer needs further exploration. Using data from The Cancer Genome Atlas (TCGA), we identified immune-related differentially expressed genes (IRDEGs) in cervical cancer. Predicted targets of piperine were compared with cervical cancer-associated genes from various databases. Protein-protein interaction (PPI) network analysis, enrichment of GO and KEGG pathways, and molecular docking were performed. Kaplan-Meier survival analysis was done to assess prognostic significance. In vitro and in vivo experiments were conducted to confirm findings. We obtained 403 IRDEGs, 125 piperine targets, and 7037 cervical cancer genes. PPI network analysis revealed potential targets and pathways regulated by piperine. Molecular docking showed good binding activity of piperine with specific targets. In vitro, piperine inhibited cervical cancer cell proliferation, migration, and invasion, and promoted apoptosis. In vivo, piperine suppressed tumor growth and downregulated expression of IL-1β and NLRP3 in tumor cells. Piperine also downregulated expression of IL-17A, IL-21, IL-22, and RORγt, and decreased the number of Th17 cells in tumor tissues. Piperine may inhibit cervical cancer progression through modulation of Th17 cell activation mediated by the NLRP3/IL-1β axis. Further studies are warranted to explore the potential of piperine as an immunomodulatory agent in cervical cancer treatment.
Collapse
Affiliation(s)
- Hui Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanyu Li
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jie Cheng
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Yanling Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Bei Zhang
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital Affiliated to Nanjing University of Chinese Medicine, Xuzhou, Jiangsu, China
- Department of Obstetrics and Gynecology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| |
Collapse
|
2
|
Zhang J, Zhan J, Guan Z, Lin X, Li T, Li M, Zhang C, Zhong L. The prognostic value of Th17/Treg cell in cervical cancer: a systematic review and meta-analysis. Front Oncol 2024; 14:1442103. [PMID: 39324000 PMCID: PMC11422014 DOI: 10.3389/fonc.2024.1442103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/26/2024] [Indexed: 09/27/2024] Open
Abstract
Background The prognostic significance of Treg and Th17 cells, as well as their ratio (Th17/Treg), in cervical cancer remains a topic of debate. Our study aimed to clarify their association with patient survival and clinical outcomes in cervical cancer through a comprehensive meta-analysis. Materials and methods We conducted a comprehensive search in PubMed, Embase, and Web of Science to identify eligible studies. Studies related to cervical cancer and involving Treg cells or Th17 cells were included. For prognostic analysis, we collected Hazard Ratio values of patient survival. For studies focusing on clinical characteristics, we selected mean and standard deviation values for further analysis. This study was registered at PROSPERO (ID:CRD42024546507). Results Out of the 2949 records initially retrieved, we ultimately included 21 studies in our analysis. High levels of Treg cells were found to be correlated with shorter survival in patients with cervical cancer. Subgroup analysis revealed that the prognostic effect of Treg cells on cervical cancer was not influenced by their source or definition. However, analyses of different survival measures indicated that only Overall Survival showed a correlation with Treg cell levels. Additionally, Treg cells were associated with clinical staging. High-grade Th17 cells were associated with lymphatic metastases and advanced clinical stage. The Th17/Treg ratio was found to be elevated in both cervical intraepithelial neoplasia and cervical cancer patients compared to controls. Discussion Despite limitations such as heterogeneity among selected studies and inadequate subgroup analyses, our study contributes to a deeper understanding of the significance of Treg cells in the onset and progression of cervical cancer. It also provides valuable insights for future research in immunotherapy. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42024546507.
Collapse
Affiliation(s)
- Jingwei Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Jijie Zhan
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Ziting Guan
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Xinmei Lin
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Tian Li
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Miao Li
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| | - Changlin Zhang
- Department of Gynecology, The Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen, China
| | - Li Zhong
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, Department of Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
3
|
Pohlers M, Gies S, Taenzer T, Stroeder R, Theobald L, Ludwig N, Kim Y, Bohle RM, Solomayer EF, Meese E, Hart M, Walch‐Rückheim B. Th17 cells target the metabolic miR-142-5p-succinate dehydrogenase subunit C/D (SDHC/SDHD) axis, promoting invasiveness and progression of cervical cancers. Mol Oncol 2024; 18:2157-2178. [PMID: 37899663 PMCID: PMC11467798 DOI: 10.1002/1878-0261.13546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/19/2023] [Accepted: 10/23/2023] [Indexed: 10/31/2023] Open
Abstract
During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients. We previously demonstrated that Th17 cells are associated with therapy resistance as well as cervical cancer metastases and relapse; however, the underlying Th17-driven mechanisms are not fully understood. Here, using microarrays, we found that Th17 cells induced an epithelial-to-mesenchymal transition (EMT) phenotype of cervical cancer cells and promoted migration and invasion of 2D cultures and 3D spheroids via induction of microRNA miR-142-5p. As the responsible mechanism, we identified the subunits C and D of the succinate dehydrogenase (SDH) complex as new targets of miR-142-5p and provided evidence that Th17-miR-142-5p-dependent reduced expression of SDHC and SDHD mediated enhanced migration and invasion of cancer cells using small interfering RNAs (siRNAs) for SDHC and SDHD, and miR-142-5p inhibitors. Consistently, patients exhibited high levels of succinate in their serum associated with lymph node metastases and diminished expression of SDHD in patient biopsies correlated with increased numbers of Th17 cells. Correspondingly, a combination of weak or negative SDHD expression and a ratio of Th17/CD4+ T cells > 43.90% in situ was associated with reduced recurrence-free survival. In summary, we unraveled a previously unknown molecular mechanism by which Th17 cells promote cervical cancer progression and suggest evaluation of Th17 cells as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Maike Pohlers
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Selina Gies
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Tanja Taenzer
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Russalina Stroeder
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Laura Theobald
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| | - Nicole Ludwig
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Yoo‐Jin Kim
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Rainer Maria Bohle
- Institute of PathologySaarland University Medical CenterHomburg/SaarGermany
| | - Erich Franz Solomayer
- Department of Obstetrics and GynecologySaarland University Medical CenterHomburg/SaarGermany
| | - Eckart Meese
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Martin Hart
- Institute of Human GeneticsSaarland UniversityHomburg/SaarGermany
| | - Barbara Walch‐Rückheim
- Center of Human and Molecular Biology (ZHMB), Institute of VirologySaarland UniversityHomburg/SaarGermany
| |
Collapse
|
4
|
Liu Y, Niu M, Luo Y, Pan M, Hong S. DNA damage response and inflammatory response: Two traffic lights for HPVs on the road to transformation. J Med Virol 2024; 96:e29815. [PMID: 39073137 DOI: 10.1002/jmv.29815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/17/2024] [Accepted: 07/08/2024] [Indexed: 07/30/2024]
Abstract
Human papillomaviruses (HPVs) are non-enveloped double-stranded DNA viruses. When HPV infection persists, infected tissues can develop many HPV-related diseases such as cervical cancer and head and neck squamous cell carcinoma. To establish their persistent infection, HPVs have evolved mechanisms to manipulate the host cellular processes such as DNA damage response (DDR), which includes homologous recombination, nonhomologous end joining, and microhomology-mediated end joining. Additionally, HPVs utilize host inflammatory processes to facilitate their life cycles. Here, we bridge the concepts of DDR and inflammatory response, and discuss how HPV proteins orchestrate a sophisticated manipulation of DDR and inflammation to promote their viral replication, ultimately fostering the progression of infected cells towards oncogenic transformation to malignancy.
Collapse
Affiliation(s)
- Yanfei Liu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Mengda Niu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Ying Luo
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Min Pan
- Department of Otorhinolaryngology, The First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shiyuan Hong
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| |
Collapse
|
5
|
Kulaeva ED, Muzlaeva ES, Mashkina EV. mRNA-lncRNA gene expression signature in HPV-associated neoplasia and cervical cancer. Vavilovskii Zhurnal Genet Selektsii 2024; 28:342-350. [PMID: 38946889 PMCID: PMC11211991 DOI: 10.18699/vjgb-24-39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 07/02/2024] Open
Abstract
Cervical cancer is one of the most frequent cancers in women and is associated with human papillomavirus (HPV) in 70 % of cases. Cervical cancer occurs because of progression of low-differentiated cervical intraepithelial neoplasia through grade 2 and 3 lesions. Along with the protein-coding genes, long noncoding RNAs (lncRNAs) play an important role in the development of malignant cell transformation. Although human papillomavirus is widespread, there is currently no well-characterized transcriptomic signature to predict whether this tumor will develop in the presence of HPV-associated neoplastic changes in the cervical epithelium. Changes in gene activity in tumors reflect the biological diversity of cellular phenotype and physiological functions and can be an important diagnostic marker. We performed comparative transcriptome analysis using open RNA sequencing data to assess differentially expressed genes between normal tissue, neoplastic epithelium, and cervical cancer. Raw data were preprocessed using the Galaxy platform. Batch effect correction, identification of differentially expressed genes, and gene set enrichment analysis (GSEA) were performed using R programming language packages. Subcellular localization of lncRNA was analyzed using Locate-R and iLoc-LncRNA 2.0 web services. 1,572 differentially expressed genes (DEGs) were recorded in the "cancer vs. control" comparison, and 1,260 DEGs were recorded in the "cancer vs. neoplasia" comparison. Only two genes were observed to be differentially expressed in the "neoplasia vs. control" comparison. The search for common genes among the most strongly differentially expressed genes among all comparison groups resulted in the identification of an expression signature consisting of the CCL20, CDKN2A, CTCFL, piR-55219, TRH, SLC27A6 and EPHA5 genes. The transcription level of the CCL20 and CDKN2A genes becomes increased at the stage of neoplastic epithelial changes and stays so in cervical cancer. Validation on an independent microarray dataset showed that the differential expression patterns of the CDKN2A and SLC27A6 genes were conserved in the respective gene expression comparisons between groups.
Collapse
Affiliation(s)
- E D Kulaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E S Muzlaeva
- Southern Federal University, Rostov-on-Don, Russia
| | - E V Mashkina
- Southern Federal University, Rostov-on-Don, Russia
| |
Collapse
|
6
|
Lo Cigno I, Calati F, Girone C, Catozzo M, Gariglio M. High-risk HPV oncoproteins E6 and E7 and their interplay with the innate immune response: Uncovering mechanisms of immune evasion and therapeutic prospects. J Med Virol 2024; 96:e29685. [PMID: 38783790 DOI: 10.1002/jmv.29685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/22/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Human papillomaviruses (HPVs) are double-stranded DNA (dsDNA) tumor viruses causally associated with 5% of human cancers, comprising both anogenital and upper aerodigestive tract carcinomas. Despite the availability of prophylactic vaccines, HPVs continue to pose a significant global health challenge, primarily due to inadequate vaccine access and coverage. These viruses can establish persistent infections by evading both the intrinsic defenses of infected tissues and the extrinsic defenses provided by professional innate immune cells. Crucial for their evasion strategies is their unique intraepithelial life cycle, which effectively shields them from host detection. Thus, strategies aimed at reactivating the innate immune response within infected or transformed epithelial cells, particularly through the production of type I interferons (IFNs) and lymphocyte-recruiting chemokines, are considered viable solutions to counteract the adverse effects of persistent infections by these oncogenic viruses. This review focuses on the complex interplay between the high-risk HPV oncoproteins E6 and E7 and the innate immune response in epithelial cells and HPV-associated cancers. In particular, it details the molecular mechanisms by which E6 and E7 modulate the innate immune response, highlighting significant progress in our comprehension of these processes. It also examines forward-looking strategies that exploit the innate immune system to ameliorate existing anticancer therapies, thereby providing crucial insights into future therapeutic developments.
Collapse
Affiliation(s)
- Irene Lo Cigno
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Federica Calati
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Carlo Girone
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marta Catozzo
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| | - Marisa Gariglio
- Virology Unit, Department of Translational Medicine, Eastern Piedmont University, Novara, Italy
| |
Collapse
|
7
|
Zhang C, Xu S, Hu R, Liu X, Yue S, Li X, Dai B, Liang C, Zhan C. Unraveling CCL20's role by regulating Th17 cell chemotaxis in experimental autoimmune prostatitis. J Cell Mol Med 2024; 28:e18445. [PMID: 38801403 PMCID: PMC11129727 DOI: 10.1111/jcmm.18445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/09/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024] Open
Abstract
Chronic prostatitis and chronic pelvic pain syndrome (CP/CPPS), a prevalent urological ailment, exerts a profound influence upon the well-being of the males. Autoimmunity driven by Th17 cells has been postulated as a potential factor in CP/CPPS pathogenesis. Nonetheless, elucidating the precise mechanisms governing Th17 cell recruitment to the prostate, triggering inflammation, remained an urgent inquiry. This study illuminated that CCL20 played a pivotal role in attracting Th17 cells to the prostate, thereby contributing to prostatitis development. Furthermore, it identified prostate stromal cells and immune cells as likely sources of CCL20. Additionally, this research unveiled that IL-17A, released by Th17 cells, could stimulate macrophages to produce CCL20 through the NF-κB/MAPK/PI3K pathway. The interplay between IL-17A and CCL20 establishes a positive feedback loop, which might serve as a critical mechanism underpinning the development of chronic prostatitis, thus adding complexity to its treatment challenges.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shun Xu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Rui‐Jie Hu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xian‐Hong Liu
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Shao‐Yu Yue
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Xiao‐Ling Li
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Bang‐Shun Dai
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chao‐Zhao Liang
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| | - Chang‐Sheng Zhan
- Department of UrologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Institute of UrologyAnhui Medical UniversityHefeiChina
- Anhui Province Key Laboratory of Genitourinary DiseasesAnhui Medical UniversityHefeiChina
| |
Collapse
|
8
|
Jain M, Yadav D, Jarouliya U, Chavda V, Yadav AK, Chaurasia B, Song M. Epidemiology, Molecular Pathogenesis, Immuno-Pathogenesis, Immune Escape Mechanisms and Vaccine Evaluation for HPV-Associated Carcinogenesis. Pathogens 2023; 12:1380. [PMID: 38133265 PMCID: PMC10745624 DOI: 10.3390/pathogens12121380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/08/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Human papillomavirus (HPV) is implicated in over 90% of cervical cancer cases, with factors like regional variability, HPV genotype, the population studied, HPV vaccination status, and anatomical sample collection location influencing the prevalence and pathology of HPV-induced cancer. HPV-16 and -18 are mainly responsible for the progression of several cancers, including cervix, anus, vagina, penis, vulva, and oropharynx. The oncogenic ability of HPV is not only sufficient for the progression of malignancy, but also for other tumor-generating steps required for the production of invasive cancer, such as coinfection with other viruses, lifestyle factors such as high parity, smoking, tobacco chewing, use of contraceptives for a long time, and immune responses such as stimulation of chronic stromal inflammation and immune deviation in the tumor microenvironment. Viral evasion from immunosurveillance also supports viral persistence, and virus-like particle-based prophylactic vaccines have been licensed, which are effective against high-risk HPV types. In addition, vaccination awareness programs and preventive strategies could help reduce the rate and incidence of HPV infection. In this review, we emphasize HPV infection and its role in cancer progression, molecular and immunopathogenesis, host immune response, immune evasion by HPV, vaccination, and preventive schemes battling HPV infection and HPV-related cancers.
Collapse
Affiliation(s)
- Meenu Jain
- Department of Microbiology, Viral Research and Diagnostic Laboratory, Gajra Raja Medical College, Gwalior 474009, Madhya Pradesh, India
| | - Dhananjay Yadav
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| | - Urmila Jarouliya
- SOS in Biochemistry, Jiwaji University, Gwalior 474011 Madhya Pradesh, India;
| | - Vishal Chavda
- Department of Pathology, Stanford School of Medicine, Stanford University Medical Center, Palo Alto, CA 94305, USA;
| | - Arun Kumar Yadav
- Department of Microbiology, Guru Gobind Singh Medical College and Hospital, Baba Farid University of Health Sciences, Faridkot 151203, Punjab, India;
| | - Bipin Chaurasia
- Department of Neurosurgery, Neurosurgery Clinic, Birgunj 44300, Nepal;
| | - Minseok Song
- Department of Life Science, Yeungnam University, Gyeongsan 38541, Republic of Korea;
| |
Collapse
|
9
|
Trujillo-Cirilo L, Weiss-Steider B, Vargas-Angeles CA, Corona-Ortega MT, Rangel-Corona R. Immune microenvironment of cervical cancer and the role of IL-2 in tumor promotion. Cytokine 2023; 170:156334. [PMID: 37598478 DOI: 10.1016/j.cyto.2023.156334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 07/06/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023]
Abstract
The tumor microenvironment (TME) is a heterogeneous mixture of resident and tumor cells that maintain close communication through their secretion products. The composition of the TME is dynamic and complex among the different types of cancer, where the immune cells play a relevant role in the elimination of tumor cells, however, under certain circumstances they contribute to tumor development. In cervical cancer (CC) the human papilloma virus (HPV) shapes the microenvironment in order to mediate persistent infections that favors transformation and tumor development. Interleukin-2 (IL-2) is an important TME cytokine that induces CD8+ effector T cells and NKs to eliminate tumor cells, however, IL-2 can also suppress the immune response through Treg cells. Recent studies have shown that CC cells express the IL-2 receptor (IL-2R), that are induced to proliferate at low concentrations of exogenous IL-2 through alterations in the JAK/STAT pathway. This review provides an overview of the main immune cells that make up the TME in CC, as well as the participation of IL-2 in the tumor promotion. Finally, it is proposed that the low density of IL-2 produced by immunocompetent cells is used by tumor cells through its IL-2R as a mechanism to proliferate simultaneously depleting this molecule in order to evade immune response.
Collapse
Affiliation(s)
- Leonardo Trujillo-Cirilo
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico.
| | - Benny Weiss-Steider
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Carlos Adrian Vargas-Angeles
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Maria Teresa Corona-Ortega
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| | - Rosalva Rangel-Corona
- Laboratory of Cellular Oncology, Research Unit Cell Differentiation and Cancer, L-4 P.B. FES Zaragoza, National University of Mexico, Av., Guelatao No. 66 Col. Ejercito de Oriente, Iztapalapa, C.P. 09230 Mexico City, Mexico
| |
Collapse
|
10
|
Cao G, Yue J, Ruan Y, Han Y, Zhi Y, Lu J, Liu M, Xu X, Wang J, Gu Q, Wen X, Gao J, Zhang Q, Kang J, Wang C, Li F. Single-cell dissection of cervical cancer reveals key subsets of the tumor immune microenvironment. EMBO J 2023; 42:e110757. [PMID: 37427448 PMCID: PMC10425846 DOI: 10.15252/embj.2022110757] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/05/2023] [Accepted: 05/19/2023] [Indexed: 07/11/2023] Open
Abstract
The tumor microenvironment (TME) directly determines patients' outcomes and therapeutic efficiencies. An in-depth understanding of the TME is required to improve the prognosis of patients with cervical cancer (CC). This study conducted single-cell RNA and TCR sequencing of six-paired tumors and adjacent normal tissues to map the CC immune landscape. T and NK cells were highly enriched in the tumor area and transitioned from cytotoxic to exhaustion phenotypes. Our analyses suggest that cytotoxic large-clone T cells are critical effectors in the antitumor response. This study also revealed tumor-specific germinal center B cells associated with tertiary lymphoid structures. A high-germinal center B cell proportion in patients with CC is predictive of improved clinical outcomes and is associated with elevated hormonal immune responses. We depicted an immune-excluded stromal landscape and established a joint model of tumor and stromal cells to predict CC patients' prognosis. The study revealed tumor ecosystem subsets linked to antitumor response or prognosis in the TME and provides information for future combinational immunotherapy.
Collapse
Affiliation(s)
- Guangxu Cao
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jiali Yue
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yetian Ruan
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Ya Han
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Yong Zhi
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jianqiao Lu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Min Liu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Xinxin Xu
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Jin Wang
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Quan Gu
- CVR BioinformaticsUniversity of Glasgow Centre for Virus ResearchGlasgowUK
| | - Xuejun Wen
- Department of Chemical and Life Science Engineering, School of EngineeringVirginia Commonwealth UniversityRichmondVirginiaUSA
| | - Jinli Gao
- Department of Pathology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| | - Qingfeng Zhang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Jiuhong Kang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Collaborative Innovation Center for Brain Science, School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, Frontier Science Center for Stem Cells, School of Life Science and TechnologyTongji UniversityShanghaiChina
| | - Fang Li
- Department of Obstetrics and Gynecology, Shanghai East Hospital, School of MedicineTongji UniversityShanghaiChina
| |
Collapse
|
11
|
Tanaka T, Kitamura K, Suzuki H, Kaneko MK, Kato Y. Establishment of a Novel Anti-Human CCR6 Monoclonal Antibody C 6Mab-19 with the High Binding Affinity in Flow Cytometry. Monoclon Antib Immunodiagn Immunother 2023; 42:117-124. [PMID: 37428612 DOI: 10.1089/mab.2023.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023] Open
Abstract
CC chemokine receptor 6 (CCR6) is a member of the G-protein-coupled receptor family that is highly expressed in B lymphocytes, effector and memory T cells, regulatory T cells, and immature dendritic cells. CCR6 has been revealed to have important functions in many pathological conditions, such as cancer, intestinal bowel disease, psoriasis, and autoimmune diseases. The only CCR6 chemokine ligand, CC motif chemokine ligand 20 (CCL20), is also involved in pathogenesis by interacting with CCR6. The CCL20/CCR6 axis is drawing attention as an attractive therapeutic target for various diseases. In this study, we developed novel monoclonal antibodies (mAbs) against human CCR6 (hCCR6) using the peptide immunization method, which are applicable to flow cytometry and immunohistochemistry. The established anti-hCCR6 mAb, clone C6Mab-19 (mouse IgG1, kappa), reacted with hCCR6-overexpressed Chinese hamster ovary-K1 (CHO/hCCR6), human liver carcinoma (HepG2), and human differentiated hepatoma (HuH-7) cells in flow cytometry. The dissociation constant (KD) of C6Mab-19 was determined as 3.0 × 10-10 M for CHO/hCCR6, 6.9 × 10-10 M for HepG2, and 1.8 × 10-10 M for HuH-7. Thus, C6Mab-19 could bind to exogenously and endogenously expressed hCCR6 with extremely high affinity. Furthermore, C6Mab-19 could stain formalin-fixed paraffin-embedded lymph node tissues from a patient with non-Hodgkin lymphoma by immunohistochemistry. Therefore, C6Mab-19 is suitable for detecting hCCR6-expressing cells and tissues and could be useful for pathological analysis and diagnosis.
Collapse
Affiliation(s)
- Tomohiro Tanaka
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Kaishi Kitamura
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hiroyuki Suzuki
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
12
|
Yu Y, Liu Y, Li Y, Yang X, Han M, Fan Q. Construction of a CCL20-centered circadian-signature based prognostic model in cervical cancer. Cancer Cell Int 2023; 23:92. [PMID: 37183243 PMCID: PMC10184429 DOI: 10.1186/s12935-023-02926-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/13/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND Rather low vaccination rates for Human papillomavirus (HPV) and pre-existing cervical cancer patients with limited therapeutic strategies ask for more precise prognostic model development. On the other side, the clinical significance of circadian clock signatures in cervical cancer lacks investigation. METHODS Subtypes classification based upon eight circadian clock core genes were implemented in TCGA-CESC through k-means clustering methods. Afterwards, KEGG, GO and GSEA analysis were conducted upon differentially expressed genes (DEGs) between high and low-risk groups, and tumor microenvironment (TME) investigation by CIBERSORT and ESTIMATE. Furthermore, a prognostic model was developed by cox and lasso regression methods, and verified in GSE44001 by time-dependent receiver-operating characteristic curve (ROC) analysis. Lastly, FISH and IHC were used for validation of CCL20 expression in patients' specimens and U14 subcutaneous tumor models were built for TME composition. RESULTS We successfully classified cervical patients into high-risk and low-risk groups based upon circadian-oscillation-signatures. Afterwards, we built a prognostic risk model composed of GJB2, CCL20 and KRT24 with excellent predictive value on patients' overall survival (OS). We then proposed metabolism unbalance, especially for glycolysis, and immune related pathways to be major enriched signatures between the high-risk and low-risk groups. Then, we proposed an 'immune-desert'-like suppressive myeloid cells infiltration pattern in high-risk group TME and verified its resistance to immunotherapies. Finally, CCL20 was proved positively correlated with real-world patients' stages and induced significant less CD8+ T cells and more M2 macrophages infiltration in mouse model. CONCLUSIONS We unraveled a prognostic risk model based upon circadian oscillation and verified its solidity. Specifically, we unveiled distinct TME immune signatures in high-risk groups.
Collapse
Affiliation(s)
- Yuchong Yu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yao Liu
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhong Li
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoming Yang
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Mi Han
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qiong Fan
- Department of Gynecologic Oncology, The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
- Shanghai Municipal Key Clinical Specialty of Gynecologic Oncology, Shanghai, China.
- Shanghai Key Laboratory of Embryo Original Diseases Affifiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Li Y, Gao X, Huang Y, Zhu X, Chen Y, Xue L, Zhu Q, Wang B, Wu M. Tumor microenvironment promotes lymphatic metastasis of cervical cancer: its mechanisms and clinical implications. Front Oncol 2023; 13:1114042. [PMID: 37234990 PMCID: PMC10206119 DOI: 10.3389/fonc.2023.1114042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Although previous studies have shed light on the etiology of cervical cancer, metastasis of advanced cervical cancer remains the main reason for the poor outcome and high cancer-related mortality rate. Cervical cancer cells closely communicate with immune cells recruited to the tumor microenvironment (TME), such as lymphocytes, tumor-associated macrophages, and myeloid-derived suppressor cells. The crosstalk between tumors and immune cells has been clearly shown to foster metastatic dissemination. Therefore, unraveling the mechanisms of tumor metastasis is crucial to develop more effective therapies. In this review, we interpret several characteristics of the TME that promote the lymphatic metastasis of cervical cancer, such as immune suppression and premetastatic niche formation. Furthermore, we summarize the complex interactions between tumor cells and immune cells within the TME, as well as potential therapeutic strategies to target the TME.
Collapse
Affiliation(s)
- Yuting Li
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaofan Gao
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yibao Huang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Xiaoran Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yingying Chen
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Qingqing Zhu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Bo Wang
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Mingfu Wu
- National Clinical Research Center for Obstetrical and Gynecological Diseases; Department of Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
14
|
Moliki JM, Nhundu TJ, Maritz L, Avenant C, Hapgood JP. Glucocorticoids and medroxyprogesterone acetate synergize with inflammatory stimuli to selectively upregulate CCL20 transcription. Mol Cell Endocrinol 2023; 563:111855. [PMID: 36646303 PMCID: PMC9892260 DOI: 10.1016/j.mce.2023.111855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/29/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.
Collapse
Affiliation(s)
- Johnson M Moliki
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Tawanda J Nhundu
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Leo Maritz
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Chanel Avenant
- Department of Molecular and Cell Biology, University of Cape Town, South Africa
| | - Janet P Hapgood
- Department of Molecular and Cell Biology, University of Cape Town, South Africa; Institute of Infectious Disease and Molecular Medicine, University of Cape Town, South Africa.
| |
Collapse
|
15
|
PMN-MDSCs modulated by CCL20 from cancer cells promoted breast cancer cell stemness through CXCL2-CXCR2 pathway. Signal Transduct Target Ther 2023; 8:97. [PMID: 36859354 PMCID: PMC9977784 DOI: 10.1038/s41392-023-01337-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 01/05/2023] [Accepted: 01/29/2023] [Indexed: 03/03/2023] Open
Abstract
Our previous studies have showed that C-C motif chemokine ligand 20 (CCL20) advanced tumor progression and enhanced the chemoresistance of cancer cells by positively regulating breast cancer stem cell (BCSC) self-renewal. However, it is unclear whether CCL20 affects breast cancer progression by remodeling the tumor microenvironment (TME). Here, we observed that polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs) were remarkably enriched in TME of CCL20-overexpressing cancer cell orthotopic allograft tumors. Mechanistically, CCL20 activated the differentiation of granulocyte-monocyte progenitors (GMPs) via its receptor C-C motif chemokine receptor 6 (CCR6) leading to the PMN-MDSC expansion. PMN-MDSCs from CCL20-overexpressing cell orthotopic allograft tumors (CCL20-modulated PMN-MDSCs) secreted amounts of C-X-C motif chemokine ligand 2 (CXCL2) and increased ALDH+ BCSCs via activating CXCR2/NOTCH1/HEY1 signaling pathway. Furthermore, C-X-C motif chemokine receptor 2 (CXCR2) antagonist SB225002 enhanced the docetaxel (DTX) effects on tumor growth by decreasing BCSCs in CCL20high-expressing tumors. These findings elucidated how CCL20 modulated the TME to promote cancer development, indicating a new therapeutic strategy by interfering with the interaction between PMN-MDSCs and BCSCs in breast cancer, especially in CCL20high-expressing breast cancer.
Collapse
|
16
|
Pham JP, Hillman RJ, Smith A. Re: 'The impact of systemic psoriasis treatments on human papillomavirus activation and propagation'-What about anal malignancies? Australas J Dermatol 2023; 64:e204-e206. [PMID: 36807899 DOI: 10.1111/ajd.14009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/24/2023] [Accepted: 02/03/2023] [Indexed: 02/22/2023]
Affiliation(s)
- James P Pham
- St. Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Richard J Hillman
- St. Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,School of Clinical Medicine, UNSW Medicine and Health, St Vincent's Hospital, Sydney, New South Wales, Australia
| | - Annika Smith
- St. Vincent's Hospital Sydney, Darlinghurst, New South Wales, Australia.,Faculty of Medicine and Health, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Avila JP, Carvalho BM, Coimbra EC. A Comprehensive View of the Cancer-Immunity Cycle (CIC) in HPV-Mediated Cervical Cancer and Prospects for Emerging Therapeutic Opportunities. Cancers (Basel) 2023; 15:1333. [PMID: 36831674 PMCID: PMC9954575 DOI: 10.3390/cancers15041333] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Cervical cancer (CC) is the fourth most common cancer in women worldwide, with more than 500,000 new cases each year and a mortality rate of around 55%. Over 80% of these deaths occur in developing countries. The most important risk factor for CC is persistent infection by a sexually transmitted virus, the human papillomavirus (HPV). Conventional treatments to eradicate this type of cancer are accompanied by high rates of resistance and a large number of side effects. Hence, it is crucial to devise novel effective therapeutic strategies. In recent years, an increasing number of studies have aimed to develop immunotherapeutic methods for treating cancer. However, these strategies have not proven to be effective enough to combat CC. This means there is a need to investigate immune molecular targets. An adaptive immune response against cancer has been described in seven key stages or steps defined as the cancer-immunity cycle (CIC). The CIC begins with the release of antigens by tumor cells and ends with their destruction by cytotoxic T-cells. In this paper, we discuss several molecular alterations found in each stage of the CIC of CC. In addition, we analyze the evidence discovered, the molecular mechanisms and their relationship with variables such as histological subtype and HPV infection, as well as their potential impact for adopting novel immunotherapeutic approaches.
Collapse
Affiliation(s)
| | | | - Eliane Campos Coimbra
- Institute of Biological Sciences, University of Pernambuco (ICB/UPE), Rua Arnóbio Marques, 310, Santo Amaro, Recife 50100-130, PE, Brazil
| |
Collapse
|
18
|
Hirz T, Mei S, Sarkar H, Kfoury Y, Wu S, Verhoeven BM, Subtelny AO, Zlatev DV, Wszolek MW, Salari K, Murray E, Chen F, Macosko EZ, Wu CL, Scadden DT, Dahl DM, Baryawno N, Saylor PJ, Kharchenko PV, Sykes DB. Dissecting the immune suppressive human prostate tumor microenvironment via integrated single-cell and spatial transcriptomic analyses. Nat Commun 2023; 14:663. [PMID: 36750562 PMCID: PMC9905093 DOI: 10.1038/s41467-023-36325-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 01/26/2023] [Indexed: 02/09/2023] Open
Abstract
The treatment of low-risk primary prostate cancer entails active surveillance only, while high-risk disease requires multimodal treatment including surgery, radiation therapy, and hormonal therapy. Recurrence and development of metastatic disease remains a clinical problem, without a clear understanding of what drives immune escape and tumor progression. Here, we comprehensively describe the tumor microenvironment of localized prostate cancer in comparison with adjacent normal samples and healthy controls. Single-cell RNA sequencing and high-resolution spatial transcriptomic analyses reveal tumor context dependent changes in gene expression. Our data indicate that an immune suppressive tumor microenvironment associates with suppressive myeloid populations and exhausted T-cells, in addition to high stromal angiogenic activity. We infer cell-to-cell relationships from high throughput ligand-receptor interaction measurements within undissociated tissue sections. Our work thus provides a highly detailed and comprehensive resource of the prostate tumor microenvironment as well as tumor-stromal cell interactions.
Collapse
Affiliation(s)
- Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| | - Shenglin Mei
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | - Hirak Sarkar
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shulin Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bronte M Verhoeven
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Alexander O Subtelny
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Dimitar V Zlatev
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Matthew W Wszolek
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Keyan Salari
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Murray
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Fei Chen
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Evan Z Macosko
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Chin-Lee Wu
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Douglas M Dahl
- Department of Urology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ninib Baryawno
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Altos Labs, San Diego, CA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
19
|
Liu C, Zhang M, Yan X, Ni Y, Gong Y, Wang C, Zhang X, Wan L, Yang H, Ge C, Li Y, Zou W, Huang R, Li X, Sun B, Liu B, Yue J, Yu J. Single-cell dissection of cellular and molecular features underlying human cervical squamous cell carcinoma initiation and progression. SCIENCE ADVANCES 2023; 9:eadd8977. [PMID: 36706185 PMCID: PMC9882988 DOI: 10.1126/sciadv.add8977] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/23/2022] [Indexed: 05/28/2023]
Abstract
Cervical squamous cell carcinoma (CESC) is a prototypical human cancer with well-characterized pathological stages of initiation and progression. However, high-resolution knowledge of the transcriptional programs underlying each stage of CESC is lacking, and important questions remain. We performed single-cell RNA sequencing of 76,911 individual cells from 13 samples of human cervical tissues at various stages of malignancy, illuminating the transcriptional tumorigenic trajectory of cervical epithelial cells and revealing key factors involved in CESC initiation and progression. In addition, we found significant correlations between the abundance of specific myeloid, lymphoid, and endothelial cell populations and the progression of CESC, which were also associated with patients' prognosis. Last, we demonstrated the tumor-promoting function of matrix cancer-associated fibroblasts via the NRG1-ERBB3 pathway in CESC. This study provides a valuable resource and deeper insights into CESC initiation and progression, which is helpful in refining CESC diagnosis and for the design of optimal treatment strategies.
Collapse
Affiliation(s)
- Chao Liu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan 250117, China
| | - Min Zhang
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, Beijing 100853, China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yanli Ni
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Yandong Gong
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Cong Wang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaoling Zhang
- Department of Gynecologic Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Lingfei Wan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Hui Yang
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Chen Ge
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing 100124, China
| | - Yunqiao Li
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Wenxue Zou
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Rui Huang
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xiaohui Li
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Bing Sun
- Department of Radiation Oncology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Bing Liu
- State Key Laboratory of Experimental Hematology, Senior Department of Hematology, Fifth Medical Center of Chinese PLA General Hospital, Beijing 100071, China
| | - Jinbo Yue
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China
- Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan 250117, China
| |
Collapse
|
20
|
Lv X, Yu X. Signatures and prognostic values of related immune targets in tongue cancer. Front Surg 2023; 9:952389. [PMID: 36684241 PMCID: PMC9848309 DOI: 10.3389/fsurg.2022.952389] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 11/21/2022] [Indexed: 01/05/2023] Open
Abstract
Background Tongue cancer, as one of the most malignant oral cancers, is highly invasive and has a high risk of recurrence. At present, tongue cancer is not obvious and easy to miss the opportunity for early diagnosis when in the advanced stage. It is important to find markers that can predict the occurrence and progression of tongue cancer. Methods Bioinformatics analysis plays an important role in the acquisition of marker genes. GEO and TCGA data are very important public databases. In addition to expression data, the TCGA database also contains corresponding clinical data. In this study, we screened three GEO data sets that met the standard, which included GSE13601, GSE34105, and GSE34106. These data sets were combined using the SVA package to prepare the data for differential expression analysis, and then the limma package was used to set the standard to p < 0.05 and |log2 (FC)| ≥ 1.5. Results A total of 170 differentially expressed genes (DEGs) were identified. In addition, the DEseq package was used for differential expression analysis using the same criteria for samples in the TCGA database. It ended up with 1,589 DEGs (644 upregulated, 945 downregulated). By merging these two sets of DEGs, 5 common upregulated DEGs (CCL20, SCG5, SPP1, KRT75, and FOLR3) and 15 common downregulated DEGs were obtained. Conclusions Further functional analysis of the DEGs showed that CCL20, SCG5, and SPP1 are closely related to prognosis and may be a therapeutic target of TSCC.
Collapse
Affiliation(s)
- Xiaofei Lv
- Department of Stomatology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xi Yu
- Department of Anesthesiology, The Second Hospital of Tianjin Medical University, Tianjin, China,Correspondence: Xi Yu
| |
Collapse
|
21
|
Paroli M, Caccavale R, Fiorillo MT, Spadea L, Gumina S, Candela V, Paroli MP. The Double Game Played by Th17 Cells in Infection: Host Defense and Immunopathology. Pathogens 2022; 11:pathogens11121547. [PMID: 36558881 PMCID: PMC9781511 DOI: 10.3390/pathogens11121547] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
T-helper 17 (Th17) cells represent a subpopulation of CD4+ T lymphocytes that play an essential role in defense against pathogens. Th17 cells are distinguished from Th1 and Th2 cells by their ability to produce members of the interleukin-17 (IL-17) family, namely IL-17A and IL-17F. IL-17 in turn induces several target cells to synthesize and release cytokines, chemokines, and metalloproteinases, thereby amplifying the inflammatory cascade. Th17 cells reside predominantly in the lamina propria of the mucosa. Their main physiological function is to maintain the integrity of the mucosal barrier against the aggression of infectious agents. However, in an appropriate inflammatory microenvironment, Th17 cells can transform into immunopathogenic cells, giving rise to inflammatory and autoimmune diseases. This review aims to analyze the complex mechanisms through which the interaction between Th17 and pathogens can be on the one hand favorable to the host by protecting it from infectious agents, and on the other hand harmful, potentially generating autoimmune reactions and tissue damage.
Collapse
Affiliation(s)
- Marino Paroli
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence:
| | - Rosalba Caccavale
- Division of Clinical Immunology, Department of Clinical, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Teresa Fiorillo
- Department of Biology and Biotechnology “Charles Darwin”, Sapienza University of Rome, 00185 Rome, Italy
| | - Luca Spadea
- Post Graduate School of Public Health, University of Siena, 53100 Siena, Italy
| | - Stefano Gumina
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Vittorio Candela
- Department of Anatomy, Histology, Legal Medicine and Orthopedics, Sapienza University of Rome, 00185 Rome, Italy
| | - Maria Pia Paroli
- Eye Clinic, Department of Sense Organs, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
22
|
Israr M, DeVoti JA, Papayannakos CJ, Bonagura VR. Role of chemokines in HPV-induced cancers. Semin Cancer Biol 2022; 87:170-183. [PMID: 36402301 DOI: 10.1016/j.semcancer.2022.11.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Human papillomaviruses (HPVs) cause cancers of the uterine cervix, oropharynx, anus, and vulvovaginal tract. Low-risk HPVs, such as HPV6 and 11, can also cause benign mucosal lesions including genital warts, and in patients with recurrent respiratory papillomatosis, lesions in the larynx, and on occasion, in the lungs. However, both high and less tumorigenic HPVs share a striking commonality in manipulating both innate and adaptive immune responses in HPV- infected keratinocytes, the natural host for HPV infection. In addition, immune/inflammatory cell infiltration into the tumor microenvironment influences cancer growth and prognosis, and this process is tightly regulated by different chemokines. Chemokines are small proteins and exert their biological effects by binding with G protein-coupled chemokine receptors (GPCRs) that are found on the surfaces of select target cells. Chemokines are not only involved in the establishment of a pro-tumorigenic microenvironment and organ-directed metastases but also involved in disease progression through enhancing tumor cell growth and proliferation. Therefore, having a solid grasp on chemokines and immune checkpoint modulators can help in the treatment of these cancers. In this review, we discuss the recent advances on the expression patterns and regulation of the main chemokines found in HPV-induced cancers, and their effects on both immune and non-immune cells in these lesions. Importantly, we also present the current knowledge of therapeutic interventions on the expression of specific chemokine and their receptors that have been shown to influence the development and progression of HPV-induced cancers.
Collapse
Affiliation(s)
- Mohd Israr
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - James A DeVoti
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Christopher J Papayannakos
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States
| | - Vincent R Bonagura
- The Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, United States; The Department of Pediatrics, The Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, United States.
| |
Collapse
|
23
|
Ntuli L, Mtshali A, Mzobe G, Liebenberg LJP, Ngcapu S. Role of Immunity and Vaginal Microbiome in Clearance and Persistence of Human Papillomavirus Infection. Front Cell Infect Microbiol 2022; 12:927131. [PMID: 35873158 PMCID: PMC9301195 DOI: 10.3389/fcimb.2022.927131] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 12/02/2022] Open
Abstract
Cervical cancer disproportionately affects women of reproductive age, with 80% of cases occurring in low- and middle-income countries. Persistent infection with high-risk human papillomavirus (HPV) genotypes has been described as the most common non-systemic biological risk factor for the development of cervical cancer. The mucosal immune system plays a significant role in controlling HPV infection by acting as the first line of host defense at the mucosal surface. However, the virus can evade host immunity using various mechanisms, including inhibition of the antiviral immune response necessary for HPV clearance. Pro-inflammatory cytokines and the vaginal microbiome coordinate cell-mediated immune responses and play a pivotal role in modulating immunity. Recently, diverse vaginal microbiome (associated with bacterial vaginosis) and genital inflammation have emerged as potential drivers of high-risk HPV positivity and disease severity in women. The potential role of these risk factors on HPV recurrence and persistence remains unclear. This article reviews the role of cellular or cytokine response and vaginal microbiome dysbiosis in the clearance, persistence, and recurrence of HPV infection.
Collapse
Affiliation(s)
- Lungelo Ntuli
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Andile Mtshali
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Gugulethu Mzobe
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Lenine JP Liebenberg
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
| | - Sinaye Ngcapu
- Department of Medical Microbiology, School of Laboratory Medicine and Medical Science, University of KwaZulu-Natal, Durban, South Africa
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Sinaye Ngcapu,
| |
Collapse
|
24
|
Shiri Aghbash P, Shirvaliloo M, Khalo Abass Kasho A, Alinezhad F, Nauwynck H, Bannazadeh Baghi H. Cluster of differentiation frequency on antigen presenting-cells: The next step to cervical cancer prognosis? Int Immunopharmacol 2022; 108:108896. [DOI: 10.1016/j.intimp.2022.108896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/16/2022] [Accepted: 05/23/2022] [Indexed: 11/29/2022]
|
25
|
Li H, Wu M, Zhao X. Role of chemokine systems in cancer and inflammatory diseases. MedComm (Beijing) 2022; 3:e147. [PMID: 35702353 PMCID: PMC9175564 DOI: 10.1002/mco2.147] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
Chemokines are a large family of small secreted proteins that have fundamental roles in organ development, normal physiology, and immune responses upon binding to their corresponding receptors. The primary functions of chemokines are to coordinate and recruit immune cells to and from tissues and to participate in regulating interactions between immune cells. In addition to the generally recognized antimicrobial immunity, the chemokine/chemokine receptor axis also exerts a tumorigenic function in many different cancer models and is involved in the formation of immunosuppressive and protective tumor microenvironment (TME), making them potential prognostic markers for various hematologic and solid tumors. In fact, apart from its vital role in tumors, almost all inflammatory diseases involve chemokines and their receptors in one way or another. Modulating the expression of chemokines and/or their corresponding receptors on tumor cells or immune cells provides the basis for the exploitation of new drugs for clinical evaluation in the treatment of related diseases. Here, we summarize recent advances of chemokine systems in protumor and antitumor immune responses and discuss the prevailing understanding of how the chemokine system operates in inflammatory diseases. In this review, we also emphatically highlight the complexity of the chemokine system and explore its potential to guide the treatment of cancer and inflammatory diseases.
Collapse
Affiliation(s)
- Hongyi Li
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| | - Min Wu
- Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksNorth DakotaUSA
| | - Xia Zhao
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of EducationWest China Second HospitalSichuan UniversityChengduChina
| |
Collapse
|
26
|
Zayats R, Murooka TT, McKinnon LR. HPV and the Risk of HIV Acquisition in Women. Front Cell Infect Microbiol 2022; 12:814948. [PMID: 35223546 PMCID: PMC8867608 DOI: 10.3389/fcimb.2022.814948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/03/2022] [Indexed: 01/08/2023] Open
Abstract
The risk of HIV acquisition is low on a per-contact basis but increased by transmission co-factors such as other sexually transmitted infections (STIs). Human papillomavirus (HPV) is a prevalent STI that most individuals will acquire HPV in their lifetime. Current HPV vaccines can prevent newly acquired infections, but are largely ineffective against established HPV, complicating worldwide eradication efforts. In addition to being the causative agent of cervical cancer, accumulating evidence suggests that HPV infection and/or accompanying cervical inflammation increase the risk of HIV infection in men and women. The fact that immunological features observed during HPV infection overlap with cellular and molecular pathways known to enhance HIV susceptibility underscore the potential interplay between these two viral infections that fuel their mutual spread. Here we review current insights into how HPV infection and the generation of anti-HPV immunity contribute to higher HIV transmission rates, and the impact of HPV on mucosal inflammation, immune cell trafficking, and epithelial barrier function.
Collapse
Affiliation(s)
- Romaniya Zayats
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Thomas T. Murooka
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| | - Lyle R. McKinnon
- Department of Medical Microbiology and Infectious Diseases, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, South Africa
- *Correspondence: Thomas T. Murooka, ; Lyle R. McKinnon,
| |
Collapse
|
27
|
Ou T, Wei Y, Long Y, Pan X, Yao D. A Novel Pyroptosis-Related Prognostic Signature for Cervical Squamous Cell Carcinoma. Int J Gen Med 2022; 15:2057-2073. [PMID: 35237069 PMCID: PMC8885126 DOI: 10.2147/ijgm.s353576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/11/2022] [Indexed: 12/01/2022] Open
Abstract
Purpose Pyroptosis has vital roles in tumorigenesis and cancer development; however, its relationship with cervical squamous cell cancer (CSCC) remains unexplored. In this study, we aimed to develop a CSCC prediction signature related to pyroptosis. Patients and Methods Consensus clustering analysis was conducted to detect pyroptosis-related subclusters for CSCC. Next, differentially expressed genes (DEGs) between subclusters were identified. Univariate, least absolute shrinkage and selection operator, and stepwise multivariate Cox regression analyses were applied to establish a prognostic model and a nomogram drawn. Additionally, functional enrichment analysis, tumor mutation burden, and immune characteristics associated with this signature were investigated. Results We constructed a seven-gene signature that functions as an independent predictor of prognosis in CSCC using data from The Cancer Genome Atlas. Patients with CSCC were divided into two groups based on median risk score, and patients in the low-risk group had significantly longer survival time than those in the high-risk group. Our findings were validated using Gene Expression Omnibus cohort data. We also established a nomogram, to expand the clinical applicability of our findings. The seven gene signature was associated with various molecular pathways, tumor mutation status, and immune microenvironment. Conclusion The pyroptosis-related risk signature consisting of seven genes developed here represents a potential robust biomarker for predicting prognosis and immunotherapy response in patients with CSCC.
Collapse
Affiliation(s)
- Tingyu Ou
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Department of Gynecology, The Third Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, People’s Republic of China
| | - Yousheng Wei
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Ying Long
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Xinbin Pan
- Department of Radiation Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
| | - Desheng Yao
- Department of Gynecologic Oncology, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, People’s Republic of China
- Correspondence: Desheng Yao, Email
| |
Collapse
|
28
|
Xu C, Fan L, Lin Y, Shen W, Qi Y, Zhang Y, Chen Z, Wang L, Long Y, Hou T, Si J, Chen S. Fusobacterium nucleatum promotes colorectal cancer metastasis through miR-1322/CCL20 axis and M2 polarization. Gut Microbes 2022; 13:1980347. [PMID: 34632963 PMCID: PMC8510564 DOI: 10.1080/19490976.2021.1980347] [Citation(s) in RCA: 112] [Impact Index Per Article: 56.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors and is associated with Fusobacterium nucleatum (F. nucleatum, Fn) infection. In this study, we explored the role of F. nucleatum in the CRC metastasis. Our results showed that the abundance of F. nucleatum was enriched in the feces and tumors of patients with CRC and tended to increase in stage IV compared to stage I in patients with metastatic CRC. Tumor-derived CCL20 activated by F. nucleatum not only increases CRC metastasis, but also participates in the reprograming of the tumor microenvironment. F. nucleatum promoted macrophage infiltration through CCL20 activation and simultaneously induced M2 macrophage polarization, enhancing the metastasis of CRC. In addition, we identified using database prediction and luciferase activity hat miR-1322, a candidate regulatory micro-RNA, could bind to CCL20 directly. F. nucleatum infection decreased the expression of miR-1322 by activating the NF-κB signaling pathway in CRC cells. In conclusion, F. nucleatum promotes CRC metastasis through the miR-1322/CCL20 axis and M2 polarization.
Collapse
Affiliation(s)
- Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China
| | - Weiyi Shen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,CONTACT Shujie Chen
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Ying Zhang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Zhehang Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China
| | - Yanqin Long
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Tongyao Hou Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, 3 Qingchun East Road, Hangzho, 310003, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,Jianmin Si
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China,Institute of Gastroenterology, Zhejiang University, Hangzhou, China,Cancer Center, Zhejiang University, Hangzhou, Zhejiang, China,CONTACT Shujie Chen
| |
Collapse
|
29
|
Muthusami S, Sabanayagam R, Periyasamy L, Muruganantham B, Park WY. A review on the role of epidermal growth factor signaling in the development, progression and treatment of cervical cancer. Int J Biol Macromol 2022; 194:179-187. [PMID: 34848237 DOI: 10.1016/j.ijbiomac.2021.11.117] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/17/2022]
Abstract
The sub-committee constituted by the Indian Council of Medical Research (ICMR) for the management of cervical cancer (CC) detailed in the consensus document (2016) reported CC as a significant cause of morbidity and mortality in women. The incidence of an increase in CC and associated mortality in women is a major cause of cancer. To date, human papilloma viral (HPV) infection accounts for more than 99% of CC. However, there are individuals infected with HPV do not develop CC. There is a greater correlation between HPV infection and upregulation of the epidermal growth factor receptor (EGFR) signaling cascade during the initiation, sustenance, and progression of CC. Therefore, EGFR is often targeted to treat CC using tyrosine kinase inhibitors (TKIs) and monoclonal antibodies (mAB). The current review analyzed the existing clinical/pre-clinical studies and the significance of EGFR abundance using the Kaplan-Meier (KM) survival plot analysis for disease-free survival (DFS) and overall survival (OS). We performed a series of bioinformatics analyses to screen the crucial role of the EGFR gene in CC. Further, different transcription factors that are dysregulated due to EGFR abundance and their relevance were determined using computational tools in this review. Endogenous microRNAs (miRNA) that undergo changes due to alterations in EGFR during CC were identified using computational database and consolidated the information obtained with the published in the area of miRNA and EGFR with special reference to the initiation, sustenance and progression of CC. The current review aims to consolidate contemporary approaches for targeting CC using EGFR and highlight the current role of miRNA and genes that are differently regulated during CC involving EGFR mutations. Potential resistance to the available EGFR therapies such as TKIs and mABs and the need for better therapies are also extensively reviewed for the development of newer therapeutic molecules with better efficacy.
Collapse
Affiliation(s)
- Sridhar Muthusami
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India; Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India.
| | | | - Loganayaki Periyasamy
- Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Bharathi Muruganantham
- Karpagam Cancer Research Centre, Karpagam Academy of Higher Education, Coimbatore 641021, India
| | - Woo Yoon Park
- Department of Radiation Oncology, College of Medicine, Chungbuk National University, Cheongju, South Korea
| |
Collapse
|
30
|
Guo F, Kong WN, Li DW, Zhao G, Wu HL, Anwar M, Shang XQ, Sun QN, Ma CL, Ma XM. Low Tumor Infiltrating Mast Cell Density Reveals Prognostic Benefit in Cervical Carcinoma. Technol Cancer Res Treat 2022; 21:15330338221106530. [PMID: 35730194 PMCID: PMC9228650 DOI: 10.1177/15330338221106530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objectives: Research on the role of mast cells (MCs) in cervical tumor immunity is more limited. Therefore, our study aimed to evaluate the prognostic value of MCs and their correlation with the immune microenvironment of cervical carcinoma (CC). Methods: The Cancer Genome Atlas (TCGA) data was utilized to obtain the degree of immune infiltration of MCs in CC. Meanwhile, this study retrospectively collected patient clinical characteristic data and tissue specimens to further verify the relevant conclusions. Mast cell density (MCD) was measured by the CIBERSORT algorithm in TCGA data and immunohistochemical staining of tryptase in CC tissues. Finally, differentially expressed genes (DEGs) of TCGA data were performed using "limma" packages and key gene modules were identified using the MCODE application in Cytoscape. Results: The results showed MCs were diffusely distributed in CC tissues. Moreover, we found that low tumor-infiltrating MCD was beneficial for overall survival (OS) in the TCGA cohort. Consistent conclusions were also obtained in a clinical cohort. In addition, a total of 305 DEGs were analyzed between the high tumor-infiltrating MCD and low tumor-infiltrating MCD group. Seven key modules, a total of 34 genes, were screened through the MCODE plug-in, which was mainly related to inflammatory response and immune response and closely correlated with cytokines including CSF2, CCL20, IL1A, IL1B, and CXCL8. Conclusion: In short, high tumor-infiltration MCs in CC tissue was associated with worse OS in patients. Furthermore, MCs were closely related to cytokines in the tumor microenvironment, suggesting that they collectively played a role in the immune response of the tumor. Therefore, MCD may be a potential prognostic indicator and immunotherapy target of CC.
Collapse
Affiliation(s)
- Fan Guo
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Wei-Na Kong
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - De-Wei Li
- 91593Basic Medical College of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Gang Zhao
- Department of Blood Transfusion, Affiliated Traditional Chinese Medicine Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui-Li Wu
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Miyessar Anwar
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Xiao-Qian Shang
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Qian-Nan Sun
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Cai-Ling Ma
- Department of Gynecology, The First Affiliated Hospital of Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| | - Xiu-Min Ma
- Department of Medical Laboratory Center, Tumor Hospital Affiliated to Xinjiang Medical University, State Key Laboratory of Pathogenesis, Prevention and Treatment of High Incidence Diseases in Central Asia, Urumqi, Xinjiang, China
| |
Collapse
|
31
|
Yuan Q, Zhang J, Liu Y, Chen H, Liu H, Wang J, Niu M, Hou L, Wu Z, Chen Z, Zhang J. MyD88 in myofibroblasts regulates aerobic glycolysis-driven hepatocarcinogenesis via ERK-dependent PKM2 nuclear relocalization and activation. J Pathol 2021; 256:414-426. [PMID: 34927243 DOI: 10.1002/path.5856] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 11/11/2021] [Accepted: 12/16/2021] [Indexed: 11/06/2022]
Abstract
Hepatic stellate cells (HSCs) and cancer-associated fibroblasts (CAFs) play critical roles in liver fibrosis and hepatocellular carcinoma (HCC). MyD88 controls the expression of several key modifier genes in liver tumorigenesis; however, whether and how MyD88 in myofibroblasts contributes to the development of fibrosis-associated liver cancer remain elusive. Here, we used an established hepatocarcinogenesis mouse model involving apparent liver fibrogenesis, in which MyD88 was selectively depleted in myofibroblasts. Myofibroblast MyD88-deficient (Fib-MyD88 KO) mice developed significantly fewer and smaller liver tumor nodules. MyD88 deficiency in myofibroblasts attenuated liver fibrosis and aerobic glycolysis in hepatocellular carcinoma tissues. Mechanistically, MyD88 signaling in myofibroblasts increased the secretion of CCL20, which promoted aerobic glycolysis in cancer cells. This process was dependent on the CCR6 receptor and ERK/PKM2 signaling. Furthermore, liver tumor growth was greatly relieved when the mice were treated with a CCR6 inhibitor. Our data revealed a critical role for MyD88 in myofibroblasts in the promotion of hepatocellular carcinoma by affecting aerobic glycolysis in cancer cells and might provide a potential molecular therapeutic target for HCC. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Qi Yuan
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Jie Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Yu Liu
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Haiqiang Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Haiyang Liu
- Key Laboratory of RNA Biology, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, P. R. China
| | - Jinyan Wang
- Department of Immunology, Basic School of Medicine, China Medical University, Shenyang, P. R. China
| | - Meng Niu
- Department of Interventional Radiology, The First Affiliated Hospital of China Medical University, Shenyang, P. R. China
| | - Lingling Hou
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, P. R. China
| | - Zhinan Chen
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China.,Cell Engineering Research Center and Department of Cell Biology, State Key Laboratory of Cancer, Fourth Military Medical University, Xi'an, P. R. China
| | - Jinhua Zhang
- The College of Life Science and Bioengineering, Beijing Jiaotong University, Beijing, P. R. China
| |
Collapse
|
32
|
Nan H, Zhou L, Liang W, Meng J, Lin K, Li M, Hou J, Wang L. Epigenetically associated CCL20 upregulation correlates with esophageal cancer progression and immune disorder. Pathol Res Pract 2021; 228:153683. [PMID: 34798484 DOI: 10.1016/j.prp.2021.153683] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 01/19/2023]
Abstract
Chemokines have distinct effects on tumor progression by affecting cancer immunity and tumorigenesis. However, the characteristic chemokine profiles and their roles in immune cell recruitment and cancer cell biology are not entirely understood in esophageal cancer. Here, we scrutinized chemokine's expression profiles in independent esophageal cancer cohorts and identified the elevated CCL20 as a risk factor to predict patients' prognosis regardless of histology subtypes. Enhanced CCL20 expression was also associated with the acquisition of metastatic potential. Mechanistically, the upregulation of CCL20 in tumor cells was associated with promoter hypomethylation. Furthermore, by analyzing single-cell RNA sequencing data of a mouse model mimicking human ESCC development, we observed an imbalance among CD4+ T subtypes in the tumor microenvironment, namely Ccr6+ Th17 and Treg cells infiltration alongside the elevated Ccl20 expression in abnormal epithelial cells during the tumorigenic process. Together, these results reveal that hypomethylation-induced CCL20 promotes esophageal cancer progression and immune disorder. Targeting CCL20 might be a promising therapeutic approach in esophageal cancer.
Collapse
Affiliation(s)
- Hongxing Nan
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lisha Zhou
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Weihua Liang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jin Meng
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Ke Lin
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Man Li
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Jun Hou
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China; Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Lianghai Wang
- Key Laboratory of Xinjiang Endemic and Ethnic Diseases/the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China; NHC Key Laboratory of Prevention and Treatment of Central Asia High Incidence Diseases, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
33
|
Kfoury Y, Baryawno N, Severe N, Mei S, Gustafsson K, Hirz T, Brouse T, Scadden EW, Igolkina AA, Kokkaliaris K, Choi BD, Barkas N, Randolph MA, Shin JH, Saylor PJ, Scadden DT, Sykes DB, Kharchenko PV. Human prostate cancer bone metastases have an actionable immunosuppressive microenvironment. Cancer Cell 2021; 39:1464-1478.e8. [PMID: 34719426 PMCID: PMC8578470 DOI: 10.1016/j.ccell.2021.09.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 07/15/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.
Collapse
Affiliation(s)
- Youmna Kfoury
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Ninib Baryawno
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Childhood Cancer Research Unit, Department of Women's Health and Children's, Karolinska Institutet, Stockholm, Sweden.
| | - Nicolas Severe
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Shenglin Mei
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Taghreed Hirz
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Thomas Brouse
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Elizabeth W Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Anna A Igolkina
- St. Petersburg Polytechnical University, St. Petersburg, Russia
| | - Konstantinos Kokkaliaris
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Bryan D Choi
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Nikolas Barkas
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Mark A Randolph
- Division of Plastic and Reconstructive Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - John H Shin
- Department of Neurosurgery, Harvard Medical School, Boston, MA, USA
| | - Philip J Saylor
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, USA
| | - David T Scadden
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Peter V Kharchenko
- Harvard Stem Cell Institute, Cambridge, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
34
|
The Role of Chemokines in Cervical Cancers. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:medicina57111141. [PMID: 34833360 PMCID: PMC8619382 DOI: 10.3390/medicina57111141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/15/2021] [Accepted: 10/17/2021] [Indexed: 12/12/2022]
Abstract
Both clinical-pathological and experimental studies have shown that chemokines play a key role in activating the immune checkpoint modulator in cervical cancer progression and are associated with prognosis in tumor cell proliferation, invasion, angiogenesis, chemoresistance, and immunosuppression. Therefore, a clear understanding of chemokines and immune checkpoint modulators is essential for the treatment of this disease. This review discusses the origins and categories of chemokines and the mechanisms that are responsible for activating immune checkpoints in cervical dysplasia and cancer, chemokines as biomarkers, and therapy development that targets immune checkpoints in cervical cancer research.
Collapse
|
35
|
Theobald L, Stroeder R, Melchior P, Iordache II, Tänzer T, Port M, Glombitza B, Marx S, Schub D, Herr C, Hart M, Ludwig N, Meese E, Kim YJ, Bohle RM, Smola S, Rübe C, Solomayer EF, Walch-Rückheim B. Chemoradiotherapy-induced increase in Th17 cell frequency in cervical cancer patients is associated with therapy resistance and early relapse. Mol Oncol 2021; 15:3559-3577. [PMID: 34469022 PMCID: PMC8637579 DOI: 10.1002/1878-0261.13095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/22/2021] [Accepted: 08/31/2021] [Indexed: 12/19/2022] Open
Abstract
Cervical cancer therapy is still a major clinical challenge, as patients substantially differ in their response to standard treatments, including chemoradiotherapy (CRT). During cervical carcinogenesis, T-helper (Th)-17 cells accumulate in the peripheral blood and tumor tissues of cancer patients and are associated with poor prognosis. In this prospective study, we find increased Th17 frequencies in the blood of patients after chemoradiotherapy and a post-therapeutic ratio of Th17/CD4+ T cells > 8% was associated with early recurrence. Furthermore, Th17 cells promote resistance of cervical cancer cells toward CRT, which was dependent on the AKT signaling pathway. Consistently, patients with high Th17 frequencies in pretherapeutic biopsies exhibit lower response to primary CRT. This work reveals a key role of Th17 cells in CRT resistance and elevated Th17 frequencies in the blood after CRT correspond with early recurrence. Our results may help to explain individual treatment responses of cervical cancer patients and suggest evaluation of Th17 cells as a novel predictive biomarker for chemoradiotherapy responses and as a potential target for immunotherapy in cervical cancer.
Collapse
Affiliation(s)
- Laura Theobald
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Russalina Stroeder
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Patrick Melchior
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Ioan Iulian Iordache
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Tanja Tänzer
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Meike Port
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Birgit Glombitza
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Stefanie Marx
- Department of Transplant and Infection Immunology, Saarland University, Homburg/Saar, Germany
| | - David Schub
- Department of Transplant and Infection Immunology, Saarland University, Homburg/Saar, Germany
| | - Christian Herr
- Department of Internal Medicine V - Pulmonology, Allergology and Critical Care Medicine, Saarland University Medical Center, Homburg/Saar, Germany
| | - Martin Hart
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Nicole Ludwig
- Institute of Human Genetics and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Eckart Meese
- Institute of Human Genetics, Saarland University, Homburg/Saar, Germany
| | - Yoo-Jin Kim
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Rainer Maria Bohle
- Institute of Pathology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Sigrun Smola
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| | - Christian Rübe
- Department of Radiation Oncology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Erich Franz Solomayer
- Department of Obstetrics and Gynecology, Saarland University Medical Center, Homburg/Saar, Germany
| | - Barbara Walch-Rückheim
- Institute of Virology and Center of Human and Molecular Biology, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
36
|
De Zutter A, Van Damme J, Struyf S. The Role of Post-Translational Modifications of Chemokines by CD26 in Cancer. Cancers (Basel) 2021; 13:cancers13174247. [PMID: 34503058 PMCID: PMC8428238 DOI: 10.3390/cancers13174247] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 02/06/2023] Open
Abstract
Chemokines are a large family of small chemotactic cytokines that fulfill a central function in cancer. Both tumor-promoting and -impeding roles have been ascribed to chemokines, which they exert in a direct or indirect manner. An important post-translational modification that regulates chemokine activity is the NH2-terminal truncation by peptidases. CD26 is a dipeptidyl peptidase (DPPIV), which typically clips a NH2-terminal dipeptide from the chemokine. With a certain degree of selectivity in terms of chemokine substrate, CD26 only recognizes chemokines with a penultimate proline or alanine. Chemokines can be protected against CD26 recognition by specific amino acid residues within the chemokine structure, by oligomerization or by binding to cellular glycosaminoglycans (GAGs). Upon truncation, the binding affinity for receptors and GAGs is altered, which influences chemokine function. The consequences of CD26-mediated clipping vary, as unchanged, enhanced, and reduced activities are reported. In tumors, CD26 most likely has the most profound effect on CXCL12 and the interferon (IFN)-inducible CXCR3 ligands, which are converted into receptor antagonists upon truncation. Depending on the tumor type, expression of CD26 is upregulated or downregulated and often results in the preferential generation of the chemokine isoform most favorable for tumor progression. Considering the tight relationship between chemokine sequence and chemokine binding specificity, molecules with the appropriate characteristics can be chemically engineered to provide innovative therapeutic strategies in a cancer setting.
Collapse
|
37
|
Shamseddine AA, Burman B, Lee NY, Zamarin D, Riaz N. Tumor Immunity and Immunotherapy for HPV-Related Cancers. Cancer Discov 2021; 11:1896-1912. [PMID: 33990345 PMCID: PMC8338882 DOI: 10.1158/2159-8290.cd-20-1760] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/27/2021] [Accepted: 03/16/2021] [Indexed: 12/17/2022]
Abstract
Human papillomavirus (HPV) infection drives tumorigenesis in the majority of cervical, oropharyngeal, anal, and vulvar cancers. Genetic and epidemiologic evidence has highlighted the role of immunosuppression in the oncogenesis of HPV-related malignancies. Here we review how HPV modulates the immune microenvironment and subsequent therapeutic implications. We describe the landscape of immunotherapies for these cancers with a focus on findings from early-phase studies exploring antigen-specific treatments, and discuss future directions. Although responses across these studies have been modest to date, a deeper understanding of HPV-related tumor biology and immunology may prove instrumental for the development of more efficacious immunotherapeutic approaches. SIGNIFICANCE: HPV modulates the microenvironment to create a protumorigenic state of immune suppression and evasion. Our understanding of these mechanisms has led to the development of immunomodulatory treatments that have shown early clinical promise in patients with HPV-related malignancies. This review summarizes our current understanding of the interactions of HPV and its microenvironment and provides insight into the progress and challenges of developing immunotherapies for HPV-related malignancies.
Collapse
Affiliation(s)
- Achraf A Shamseddine
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bharat Burman
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Nancy Y Lee
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Dmitriy Zamarin
- Department of Medicine, Division of Solid Tumor Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Weill Cornell Medical College, New York, New York
| | - Nadeem Riaz
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| |
Collapse
|
38
|
Overview of Evidence-Based Chemotherapy for Oral Cancer: Focus on Drug Resistance Related to the Epithelial-Mesenchymal Transition. Biomolecules 2021; 11:biom11060893. [PMID: 34208465 PMCID: PMC8234904 DOI: 10.3390/biom11060893] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/12/2021] [Accepted: 06/13/2021] [Indexed: 12/12/2022] Open
Abstract
The increasing incidence of resistance to chemotherapeutic agents has become a major issue in the treatment of oral cancer (OC). Epithelial-mesenchymal transition (EMT) has attracted a great deal of attention in recent years with regard to its relation to the mechanism of chemotherapy drug resistance. EMT-activating transcription factors (EMT-ATFs), such as Snail, TWIST, and ZEB, can activate several different molecular pathways, e.g., PI3K/AKT, NF-κB, and TGF-β. In contrast, the activated oncological signal pathways provide reciprocal feedback that affects the expression of EMT-ATFs, resulting in a peritumoral extracellular environment conducive to cancer cell survival and evasion of the immune system, leading to resistance to multiple chemotherapeutic agents. We present an overview of evidence-based chemotherapy for OC treatment based on the National Comprehensive Cancer Network (NCCN) Chemotherapy Order Templates. We focus on the molecular pathways involved in drug resistance related to the EMT and highlight the signal pathways and transcription factors that may be important for EMT-regulated drug resistance. Rapid progress in antitumor regimens, together with the application of powerful techniques such as high-throughput screening and microRNA technology, will facilitate the development of therapeutic strategies to augment chemotherapy.
Collapse
|
39
|
Shigeoka M, Koma YI, Kodama T, Nishio M, Akashi M, Yokozaki H. Tongue Cancer Cell-Derived CCL20 Induced by Interaction With Macrophages Promotes CD163 Expression on Macrophages. Front Oncol 2021; 11:667174. [PMID: 34178651 PMCID: PMC8219974 DOI: 10.3389/fonc.2021.667174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/10/2021] [Indexed: 01/05/2023] Open
Abstract
Background CD163-positive macrophages contribute to the aggressiveness of oral squamous cell carcinoma. We showed in a previous report that CD163-positive macrophages infiltrated not only to the cancer nest but also to its surrounding epithelium, depending on the presence of stromal invasion in tongue carcinogenesis. However, the role of intraepithelial macrophages in tongue carcinogenesis remains unclear. In this study, we assessed the biological behavior of intraepithelial macrophages on their interaction with cancer cells. Materials and Methods We established the indirect coculture system (intraepithelial neoplasia model) and direct coculture system (invasive cancer model) of human monocytic leukemia cell line THP-1-derived CD163-positive macrophages with SCC25, a tongue squamous cell carcinoma (TSCC) cell line. Conditioned media (CM) harvested from these systems were analyzed using cytokine array and enzyme-linked immunosorbent assay and extracted a specific upregulated cytokine in CM from the direct coculture system (direct CM). The correlation of both this cytokine and its receptor with various clinicopathological factors were evaluated based on immunohistochemistry using clinical samples from 59 patients with TSCC. Moreover, the effect of this cytokine in direct CM on the phenotypic alterations of THP-1 was confirmed by real-time polymerase chain reaction, western blotting, immunofluorescence, and transwell migration assay. Results It was shown that CCL20 was induced in the direct CM specifically. Interestingly, CCL20 was produced primarily in SCC25. The expression level of CCR6, which is a sole receptor of CCL20, was higher than the expression level of SCC25. Our immunohistochemical investigation showed that CCL20 and CCR6 expression was associated with lymphatic vessel invasion and the number of CD163-positive macrophages. Recombinant human CCL20 induced the CD163 expression and promoted migration of THP-1. We also confirmed that a neutralizing anti-CCL20 antibody blocked the induction of CD163 expression by direct CM in THP-1. Moreover, ERK1/2 phosphorylation was associated with the CCL20-driven induction of CD163 expression in THP-1. Conclusions Tongue cancer cell-derived CCL20 that was induced by interaction with macrophages promotes CD163 expression on macrophages.
Collapse
Affiliation(s)
- Manabu Shigeoka
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yu-Ichiro Koma
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takayuki Kodama
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Nishio
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Masaya Akashi
- Division of Oral and Maxillofacial Surgery, Department of Surgery Related, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hiroshi Yokozaki
- Division of Pathology, Department of Pathology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
40
|
R S J. The Immune Microenvironment in Human Papilloma Virus-Induced Cervical Lesions-Evidence for Estrogen as an Immunomodulator. Front Cell Infect Microbiol 2021; 11:649815. [PMID: 33996630 PMCID: PMC8120286 DOI: 10.3389/fcimb.2021.649815] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
Globally, human papilloma virus (HPV) infection is a common sexually transmitted disease. However, most of the HPV infections eventually resolve aided by the body’s efficient cell-mediated immune responses. In the vast majority of the small group of patients who develop overt disease too, it is the immune response that culminates in regression of lesions. It is therefore a rarity that persistent infection by high-risk genotypes of HPV compounded by other risk factors progresses through precancer (various grades of cervical intraepithelial neoplasia—CIN) to cervical cancer (CxCa). Hence, although CxCa is a rare culmination of HPV infection, the latter is nevertheless causally linked to >90% of cancer. The three ‘Es’ of cancer immunoediting viz. elimination, equilibrium, and escape come into vogue during the gradual evolution of CIN 1 to CxCa. Both cell-intrinsic and extrinsic mechanisms operate to eliminate virally infected cells: cell-extrinsic players are anti-tumor/antiviral effectors like Th1 subset of CD4+ T cells, CD8+ cytotoxic T cells, Natural Killer cells, etc. and pro-tumorigenic/immunosuppressive cells like regulatory T cells (Tregs), Myeloid-Derived Suppressor Cells (MDSCs), type 2 macrophages, etc. And accordingly, when immunosuppressive cells overpower the effectors e.g., in high-grade lesions like CIN 2 or 3, the scale is tilted towards immune escape and the disease progresses to cancer. Estradiol has long been considered as a co-factor in cervical carcinogenesis. In addition to the gonads, the Peyer’s patches in the gut synthesize estradiol. Over and above local production of the hormone in the tissues, estradiol metabolism by the gut microbiome: estrobolome versus tryptophan non-metabolizing microbiome, regulates free estradiol levels in the intestine and extraintestinal mucosal sites. Elevated tissue levels of the hormone serve more than one purpose: besides a direct growth-promoting action on cervical epithelial cells, estradiol acting genomically via Estrogen Receptor-α also boosts the function of the stromal and infiltrating immunosuppressive cells viz. Tregs, MDSCs, and carcinoma-associated fibroblasts. Hence as a corollary, therapeutic repurposing of Selective Estrogen Receptor Disruptors or aromatase inhibitors could be useful for modulating immune function in cervical precancer/cancer. The immunomodulatory role of estradiol in HPV-mediated cervical lesions is reviewed.
Collapse
Affiliation(s)
- Jayshree R S
- Department of Microbiology, Kidwai Memorial Institute of Oncology, Bangalore, India
| |
Collapse
|
41
|
De Nola R, Loizzi V, Cicinelli E, Cormio G. Dynamic crosstalk within the tumor microenvironment of uterine cervical carcinoma: baseline network, iatrogenic alterations, and translational implications. Crit Rev Oncol Hematol 2021; 162:103343. [PMID: 33930531 DOI: 10.1016/j.critrevonc.2021.103343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 12/12/2022] Open
Abstract
Uterine cervical cancer is the fourth most frequent gynecological tumor worldwide. The tumor microenvironment of cervical cancer is the result of persistent high-risk human papillomavirus infection together with stromal activation of estrogen receptor alpha and the pro-angiogenic and pro-inflammatory activity of immune cells, mainly T-helper 17 cells and tumor-associated macrophages. Therapeutic management (e.g., immunotherapy, especially in advanced cases) may be influenced by the translational implications of tumoral stroma crosstalk and an abundance of tumor-infiltrating lymphocytes within the tumor microenvironment. The prognosis of cervical cancer is inversely correlated with microvessel density, making anti-angiogenic strategies with agents such as bevacizumab crucial for improving both progression-free survival and overall survival in patients with advanced and recurrent tumors.
Collapse
Affiliation(s)
- Rosalba De Nola
- Department of Tissues and Organs Transplantation and Cellular Therapies, D.E.O.T., University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Gynecologic Oncology Unit, IRCCS, Istituto Tumori Giovanni Paolo II, 70142, Bari, Italy.
| | - Vera Loizzi
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy
| | - Ettore Cicinelli
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy
| | - Gennaro Cormio
- Department of Biomedical and Human Oncological Science, Division of Obstetrics and Gynecology, University of Bari "Aldo Moro", Piazza G. Cesare, 11-Policlinico, 70124, Bari, Italy; Gynecologic Oncology Unit, IRCCS, Istituto Tumori Giovanni Paolo II, 70142, Bari, Italy
| |
Collapse
|
42
|
Fernandes ATG, Carvalho MOO, Avvad-Portari E, Rocha NP, Russomano F, Roma EH, Bonecini-Almeida MDG. A prognostic value of CD45RA +, CD45RO +, CCL20 + and CCR6 + expressing cells as 'immunoscore' to predict cervical cancer induced by HPV. Sci Rep 2021; 11:8782. [PMID: 33888832 PMCID: PMC8062468 DOI: 10.1038/s41598-021-88248-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 04/01/2021] [Indexed: 02/06/2023] Open
Abstract
The interplay between cervical cancer (CC) and immune cells, mainly intratumoral lymphocytes, has a pivotal role in carcinogenesis. In this context, we evaluated the distribution of CD45RA+ and CD45RO+ cells as well as CCR6+ and CCL20+ cells in intraepithelial (IE) and marginal stroma (MS) areas from cervical intraepithelial neoplasia (CIN) I-III, and CC as 'immunoscore' for HPV-induced CC outcome. We observed increased CD45RA+ and CD45RO+ cells distribution in IE and MS areas in the CC group compared to CIN groups and healthy volunteers. Interestingly, there is a remarkable reduction of CCL20+ expressing cells distribution according to lesion severity. The CC group had a significant decrease in CCL20+ and CCR6+-expressing cells distribution in both IE and MS areas compared to all groups. Using the 'immunoscore' model, we observed an increased number of women presenting high CD45RA+/CD45RO+ and low CCL20+/CCR6+ 'immunoscore' in the CC group. Our results suggested a pattern in cervical inflammatory process with increasing CD45RA+/CD45RO+, and decreasing CCL20+/CCR6+ expression in accordance with CIN severity. Taken together, these markers could be evaluated as 'immunoscore' predictors to CC response. A more comprehensive analysis of longitudinal studies should be conducted to associate CD45RA+/CD45RO+ and CCL20+/CCR6+ 'immunoscore' to CC progression and validate its value as a prognosis method.
Collapse
Affiliation(s)
- Ana Teresa G Fernandes
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil.
| | - Maria Odete O Carvalho
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Elyzabeth Avvad-Portari
- Department of Pathologic Anatomy at Fernandes Figueira Woman, Child and Adolescent's Health National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Natália P Rocha
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Fabio Russomano
- Department of Gynecology at Fernandes Figueira Woman, Child and Adolescent's Health National Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Eric Henrique Roma
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Maria da Gloria Bonecini-Almeida
- Laboratory of Immunology and Immunogenetics in Infectious Diseases at Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation, Avenida Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| |
Collapse
|
43
|
Tchounwou PB, Dasari S, Noubissi FK, Ray P, Kumar S. Advances in Our Understanding of the Molecular Mechanisms of Action of Cisplatin in Cancer Therapy. J Exp Pharmacol 2021; 13:303-328. [PMID: 33776489 PMCID: PMC7987268 DOI: 10.2147/jep.s267383] [Citation(s) in RCA: 141] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin and other platinum-based chemotherapeutic drugs have been used extensively for the treatment of human cancers such as bladder, blood, breast, cervical, esophageal, head and neck, lung, ovarian, testicular cancers, and sarcoma. Cisplatin is commonly administered intravenously as a first-line chemotherapy for patients suffering from various malignancies. Upon absorption into the cancer cell, cisplatin interacts with cellular macromolecules and exerts its cytotoxic effects through a series of biochemical mechanisms by binding to Deoxyribonucleic acid (DNA) and forming intra-strand DNA adducts leading to the inhibition of DNA synthesis and cell growth. Its primary molecular mechanism of action has been associated with the induction of both intrinsic and extrinsic pathways of apoptosis resulting from the production of reactive oxygen species through lipid peroxidation, activation of various signal transduction pathways, induction of p53 signaling and cell cycle arrest, upregulation of pro-apoptotic genes/proteins, and down-regulation of proto-oncogenes and anti-apoptotic genes/proteins. Despite great clinical outcomes, many studies have reported substantial side effects associated with cisplatin monotherapy, while others have shown substantial drug resistance in some cancer patients. Hence, new formulations and several combinational therapies with other drugs have been tested for the purpose of improving the clinical utility of cisplatin. Therefore, this review provides a comprehensive understanding of its molecular mechanisms of action in cancer therapy and discusses the therapeutic approaches to overcome cisplatin resistance and side effects.
Collapse
Affiliation(s)
- Paul B Tchounwou
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Shaloam Dasari
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Felicite K Noubissi
- Cellomics and Toxicogenomics Research Laboratory, NIH-RCMI Center for Health Disparities Research, Jackson State University, Jackson, MS, USA
| | - Paresh Ray
- Department of Chemistry and Biochemistry, College of Science, Engineering and Technology, Jackson State University, Jackson, MS, USA
| | - Sanjay Kumar
- Department of Life Sciences, School of Earth, Biological, and Environmental Sciences, Central University of South Bihar, Gaya, India
| |
Collapse
|
44
|
Carrero YN, Callejas DE, Mosquera JA. In situ immunopathological events in human cervical intraepithelial neoplasia and cervical cancer: Review. Transl Oncol 2021; 14:101058. [PMID: 33677234 PMCID: PMC7937982 DOI: 10.1016/j.tranon.2021.101058] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 02/22/2021] [Indexed: 12/15/2022] Open
Abstract
Neoplasia of the cervix represents one of the most common cancers in women. Clinical and molecular research has identified immunological impairment in squamous intraepithelial cervical lesions and cervical cancer patients. The in-situ expression of several cytokines by uterine epithelial cells and by infiltrating leukocytes occurs during the cervical intraepithelial neoplasia and cervical cancer. Some of these cytokines can prevent and others can induce the progression of the neoplasm. The infiltrating leukocytes also produce cytokines and growth factors relate to angiogenesis, chemotaxis, and apoptosis capable of modulating the dysplasia progression. In this review we analyzed several interleukins with an inductive effect or blocking effect on the neoplastic progression. We also analyze the genetic polymorphism of some cytokines and their relationship with the risk of developing cervical neoplasia. In addition, we describe the leukocyte cells that infiltrate the cervical uterine tissue during the neoplasia and their effects on neoplasia progression.
Collapse
Affiliation(s)
- Yenddy N Carrero
- Facultad de Ciencias de la Salud. Carrera de Medicina, Universidad Técnica de Ambato, Ambato, Ecuador.
| | - Diana E Callejas
- Departamento de Ciencias Biológicas, Facultad de Ciencias de la Salud, Universidad Técnica de Manabí, Portoviejo, Ecuador.
| | - Jesús A Mosquera
- Instituto de Investigaciones Clínicas Dr. Américo Negrette. Facultad de Medicina, Universidad del Zulia. Maracaibo, Venezuela.
| |
Collapse
|
45
|
The Newly Synthetized Chalcone L1 Is Involved in the Cell Growth Inhibition, Induction of Apoptosis and Suppression of Epithelial-to-Mesenchymal Transition of HeLa Cells. Molecules 2021; 26:molecules26051356. [PMID: 33802621 PMCID: PMC7961543 DOI: 10.3390/molecules26051356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/24/2021] [Accepted: 02/28/2021] [Indexed: 12/24/2022] Open
Abstract
Over the past decades, natural products have emerged as promising agents with multiple biological activities. Many studies suggest the antioxidant, antiangiogenic, antiproliferative and anticancer effects of chalcones and their derivatives. Based on these findings, we decided to evaluate the effects of the newly synthetized chalcone L1 in a human cervical carcinoma cell (HeLa) model. Presented results were obtained by western blot and flow cytometric analyses, live cell imaging and antimigratory potential of L1 in HeLa cells was demonstrated by scratch assay. In the present study, we proved the role of L1 as an effective agent with antiproliferative activity supported by G2/M cell cycle arrest and apoptosis. Moreover, we proved that L1 is involved in modulating Transforming Growth Factor-β1 (TGF-β) signal transduction through Smad proteins and it also modulates other signalling pathways including Akt, JNK, p38 MAPK, and Erk1/2. The involvement of L1 in epithelial-to-mesenchymal transition was demonstrated by the regulation of N-cadherin, E-cadherin, and MMP-9 levels. Here, we also evaluated the effect of conditioned medium from BJ-5ta human foreskin fibroblasts in HeLa cell cultures with subsequent L1 treatment. Taken together, these data suggest the potential role of newly synthesized chalcone L1 as an anticancer-tumour microenvironment modulating agent.
Collapse
|
46
|
Abstract
In persistent high-risk HPV infection, viral gene expression can trigger some important early changes to immune capabilities which act to protect the lesion from immune attack and subsequently promote its growth and ability for sustained immune escape. This includes immune checkpoint-inhibitor ligand expression (e.g. PD-L1) by tumour or associated immune cells that can block any anti-tumour T-cell effectors. While there are encouraging signs of efficacy for cancer immunotherapies including with immune checkpoint inhibitors, therapeutic vaccines and adoptive cell therapies, overall response and survival rates remain relatively low. HPV oncogene vaccination has shown some useful efficacy in treatment of patients with high-grade lesions but was unable to control later stage cancers. To maximally exploit anti-tumour immune responses, the suppressive factors associated with HPV carcinogenesis must be countered. Importantly, a combination of chemotherapy, reducing immunosuppressive myeloid cells, with therapeutic HPV vaccination significantly improves impact on cancer treatment. Many clinical trials are investigating checkpoint inhibitor treatments in HPV associated cancers but response rates are limited; combination with vaccination is being tested. Further investigation of how chemo- and/or radio-therapy can influence the recovery of effective anti-tumour immunity is warranted. Understanding how to optimally deploy and sequence conventional and immunotherapies is the challenge.
Collapse
|
47
|
Shen D, Tian L, Yang F, Li J, Li X, Yao Y, Lam EWF, Gao P, Jin B, Wang R. ADO/hypotaurine: a novel metabolic pathway contributing to glioblastoma development. Cell Death Discov 2021; 7:21. [PMID: 33483477 PMCID: PMC7822925 DOI: 10.1038/s41420-020-00398-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/09/2020] [Accepted: 12/15/2020] [Indexed: 01/07/2023] Open
Abstract
Significant advance has been made towards understanding glioblastoma metabolism through global metabolomic profiling. However, hitherto little is known about the role by which altered metabolism plays in driving the aggressive glioma phenotype. We have previously identified hypotaurine as one of the top-ranked metabolites for differentiating low- and high-grade tumors, and that there is also a strong association between the levels of intratumoral hypotaurine and expression of its biosynthetic enzyme, cysteamine (2-aminoethanethiol) dioxygenase (ADO). Using transcription profiling, we further uncovered that the ADO/hypotaurine axis targets CCL20 secretion through activating the NF-κB pathway to drive the self-renewal and maintenance of glioma 'cancer stem cells' or glioma cancer stem-like cells. Conversely, abrogating the ADO/hypotaurine axis using CRISPR/Cas9-mediated gene editing limited glioblastoma cell proliferation and self-renewal in vitro and tumor growth in vivo in an orthotopical mouse model, indicating that this metabolic pathway is a potential key therapeutic target. Collectively, our results unveil a targetable metabolic pathway, which contributes to the growth and progression of aggressive high-grade gliomas, as well as a novel predictive marker for glioblastoma diagnosis and therapy.
Collapse
Affiliation(s)
- Dachuan Shen
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China
| | - Lili Tian
- Department of Oncology, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, P.R. China
| | - Fangyu Yang
- Department of Neurosurgery, General Hospital of Northern Theater Command, 110015, Shenyang, Liaoning, P.R. China
| | - Jun Li
- Department of Neurosurgery, First Affiliated Hospital of Dalian Medical University, 116011, Dalian, Liaoning, P.R. China
| | - Xiaodong Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 116044, Dalian, Liaoning, P.R. China
| | - Yiqun Yao
- Department of Thyroid and Breast Surgery, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China
| | - Eric W-F Lam
- Department of Surgery and Cancer, Imperial College London, London, W12 0NN, UK
| | - Peng Gao
- Clinical Laboratory, Dalian Sixth People's Hospital, 116031, Dalian, Liaoning, P.R. China.
| | - Bilian Jin
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University, 116044, Dalian, Liaoning, P.R. China.
| | - Ruoyu Wang
- Department of Oncology, Affiliated Zhongshan Hospital of Dalian University, 116001, Dalian, Liaoning, P.R. China.
| |
Collapse
|
48
|
Aghbash PS, Hemmat N, Nahand JS, Shamekh A, Memar MY, Babaei A, Baghi HB. The role of Th17 cells in viral infections. Int Immunopharmacol 2021; 91:107331. [PMID: 33418239 DOI: 10.1016/j.intimp.2020.107331] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 12/19/2020] [Accepted: 12/20/2020] [Indexed: 02/07/2023]
Abstract
The present review provides an overview of recent advances regarding the function of Th17 cells and their produced cytokines in the progression of viral diseases. Viral infections alone do not lead to virus-induced malignancies, as both genetic and host safety factors are also involved in the occurrence of malignancies. Acquired immune responses, through the differentiation of Th17 cells, form the novel components of the Th17 cell pathway when reacting with viral infections all the way from the beginning to its final stages. As a result, instead of inducing the right immune responses, these events lead to the suppression of the immune system. In fact, the responses from Th17 cells during persistent viral infections causes chronic inflammation through the production of IL-17 and other cytokines which provide a favorable environment for tumor growth and its development. Additionally, during the past decade, these cells have been understood to be involved in tumor progression and metastasis. However, further research is required to understand Th17 cells' immune mechanisms in the vast variety of viral diseases. This review aims to determine the roles and effects of the immune system, especially Th17 cells, in the progression of viral diseases; which can be highly beneficial for the diagnosis and treatment of these infections.
Collapse
Affiliation(s)
- Parisa Shiri Aghbash
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Drug Applied Research Centre, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Javid Sadri Nahand
- Department of Virology, Faculty of Medicine, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran; Student Research Committee, Iran University of Medical Sciences, ZIP Code 14155 Tehran, Iran
| | - Ali Shamekh
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Student Research Committee, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Mohammad Yousef Memar
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran
| | - Abouzar Babaei
- Department of Virology, Faculty of Medicine, Tarbiat Modares University, ZIP Code 14155 Tehran, Iran
| | - Hossein Bannazadeh Baghi
- Immunology Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran; Department of Virology, Faculty of Medicine, Tabriz University of Medical Sciences, ZIP Code 15731 Tabriz, Iran.
| |
Collapse
|
49
|
Is There a Place for Immune Checkpoint Inhibitors in Vulvar Neoplasms? A State of the Art Review. Int J Mol Sci 2020; 22:ijms22010190. [PMID: 33375467 PMCID: PMC7796178 DOI: 10.3390/ijms22010190] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/15/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022] Open
Abstract
Vulvar cancer (VC) is a rare neoplasm, usually arising in postmenopausal women, although human papilloma virus (HPV)-associated VC usually develop in younger women. Incidences of VCs are rising in many countries. Surgery is the cornerstone of early-stage VC management, whereas therapies for advanced VC are multimodal and not standardized, combining chemotherapy and radiotherapy to avoid exenterative surgery. Randomized controlled trials (RCTs) are scarce due to the rarity of the disease and prognosis has not improved. Hence, new therapies are needed to improve the outcomes of these patients. In recent years, improved knowledge regarding the crosstalk between neoplastic and tumor cells has allowed researchers to develop a novel therapeutic approach exploiting these molecular interactions. Both the innate and adaptive immune systems play a key role in anti-tumor immunesurveillance. Immune checkpoint inhibitors (ICIs) have demonstrated efficacy in multiple tumor types, improving survival rates and disease outcomes. In some gynecologic cancers (e.g., cervical cancer), many studies are showing promising results and a growing interest is emerging about the potential use of ICIs in VC. The aim of this manuscript is to summarize the latest developments in the field of VC immunoncology, to present the role of state-of-the-art ICIs in VC management and to discuss new potential immunotherapeutic approaches.
Collapse
|
50
|
Liu W, Wang W, Zhang N, Di W. The Role of CCL20-CCR6 Axis in Ovarian Cancer Metastasis. Onco Targets Ther 2020; 13:12739-12750. [PMID: 33335408 PMCID: PMC7738160 DOI: 10.2147/ott.s280309] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/25/2020] [Indexed: 12/13/2022] Open
Abstract
Background Chemokine networks play a key and complex role in tumor progression. CCL20 and its unique receptor CCR6 have been reported to mediate malignant biological activities in various cancers, but their role in ovarian cancer metastasis remains unclear. Purpose Our study aims to explore the effect of CCL20-CCR6 axis on ovarian cancer metastasis and its potential mechanism. Methods The transwell assay was used to detect the cell migration and invasion after CCL20 treatment. The CCK-8 assay was used to detect the cell viability after CCL20 treatment and CCR6 depletion. The mRNA and protein expression were assayed through qRT-PCR and Western blotting. The siRNAs and CRISPR-Cas9 system were adopted to suppress CCR6 expression. Intraperitoneal xenograft mouse model was constructed to test the pro-metastasis effect of CCL20-CCR6 axis in vivo. The differentially expressed genes induced by CCL20 were identified through RNA-sequencing, and immunohistochemistry staining was used to detect their protein expression in tumor tissues. Results Our results revealed that CCL20 treatment selectively promoted the migration and invasion of CCR6high ovarian cancer cells, but had no effect on CCR6low cells. Blockade of CCR6 expression effectively reversed the cell migration and invasion induced by CCL20 stimulation. Animal experiment proved that CCL20-CCR6 axis mediated ovarian cancer metastasis in vivo. The differentially expressed genes after CCL20 stimulation were associated with metastasis, and CCL20 induced an increased expression of CDH2 and VCAN and decreased CDH1 expression in cancer cells. Moreover, CCL20 stimulated the expression of N-cadherin and versican in tumor tissues and inhibited the expression of E-cadherin, while CCR6 knockout successfully blocked the expression changes. Conclusion Our findings revealed that CCL20-CCR6 axis promotes ovarian cancer metastasis both in vivo and in vitro, probably through increasing cancer cell adhesion and epithelial–mesenchymal transition. Blockade of CCL20-CCR6 axis might become a novel anti-tumor therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Wan Liu
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wenjing Wang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Ning Zhang
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| | - Wen Di
- Department of Obstetrics and Gynecology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,Shanghai Key Laboratory of Gynecologic Oncology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China.,State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, People's Republic of China
| |
Collapse
|