1
|
Weth AF, Dangerfield EM, Timmer MSM, Stocker BL. Recent Advances in the Development of Mincle-Targeting Vaccine Adjuvants. Vaccines (Basel) 2024; 12:1320. [PMID: 39771982 PMCID: PMC11680293 DOI: 10.3390/vaccines12121320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/15/2024] [Accepted: 11/16/2024] [Indexed: 01/11/2025] Open
Abstract
The Macrophage-inducible C-type lectin (Mincle) is a pattern-recognition receptor (PRR), which has shown much promise as a molecular target for the development of TH1/TH17-skewing vaccine adjuvants. In 2009, the first non-proteinaceous Mincle ligands, trehalose dimycolate (TDM) and trehalose dibehenate (TDB), were identified. This prompted a search for other Mincle agonists and the exploration of Mincle agonists as vaccine adjuvants for both preventative and therapeutic (anti-cancer) vaccines. In this review, we discuss those classes of Mincle agonists that have been explored for their adjuvant potential. These Mincle agonists have been used as stand-alone adjuvants or in combination with other pathogen-associated molecular patterns (PAMPs) or immunomodulatory agents. We will also highlight recently identified Mincle ligands with hitherto unknown adjuvanticity. Conjugate vaccines that contain covalently linked adjuvants and/or adjuvant-antigen combinations are also presented, as well as the different formulations (e.g., oil-in-water emulsions, liposomes, and particulate delivery systems) that have been used for the codelivery of antigens and adjuvants. Insofar the reader is presented with a thorough review of the potential of Mincle-mediated vaccine adjuvants, including historical context, present-day research and clinical trials, and outstanding research questions, such as the role of ligand presentation and Mincle clustering, which, if better understood, will aid in the development of the much-needed TH1/TH17-skewing vaccine adjuvants.
Collapse
Affiliation(s)
| | | | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences, Victoria University of Wellington, P.O. Box 600, Wellington 6140, New Zealand
| |
Collapse
|
2
|
Tam H, Xu Y, An J, Schöneberg T, Schulz A, Muppidi JR, Cyster JG. Phosphatidylserine phospholipase A1 enables GPR34-dependent immune cell accumulation in the peritoneal cavity. J Exp Med 2024; 221:e20240992. [PMID: 39412501 PMCID: PMC11488134 DOI: 10.1084/jem.20240992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 08/12/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The peritoneal cavity (PerC) is an important site for immune responses to infection and cancer metastasis. Yet few ligand-receptor axes are known to preferentially govern immune cell accumulation in this compartment. GPR34 is a lysophosphatidylserine (lysoPS)-responsive receptor that frequently harbors gain-of-function mutations in mucosa-associated B cell lymphoma. Here, we set out to test the impact of a GPR34 knock-in (KI) allele in the B-lineage. We report that GPR34 KI promotes the PerC accumulation of plasma cells (PC) and memory B cells (MemB). These KI cells migrate robustly to lysoPS ex vivo, and the KI allele synergizes with a Bcl2 transgene to promote MemB but not PC accumulation. Gene expression and labeling studies reveal that GPR34 KI enhances PerC MemB proliferation. Both KI PC and MemB are specifically enriched at the omentum, a visceral adipose tissue containing fibroblasts that express the lysoPS-generating PLA1A enzyme. Adoptive transfer and chimera experiments revealed that KI PC and MemB maintenance in the PerC is dependent on stromal PLA1A. These findings provide in vivo evidence that PLA1A produces lysoPS that can regulate GPR34-mediated immune cell accumulation at the omentum.
Collapse
Affiliation(s)
- Hanson Tam
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA, USA
| | - Ying Xu
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Jinping An
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| | - Torsten Schöneberg
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Angela Schulz
- Rudolf Schönheimer Institute of Biochemistry, Molecular Biochemistry, Medical Faculty, University of Leipzig, Leipzig, Germany
| | - Jagan R. Muppidi
- Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jason G. Cyster
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
3
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
4
|
Le Coz C, Trofa M, Butler DL, Yoon S, Tian T, Reid W, Cruz Cabrera E, Knox AVC, Khanna C, Sullivan KE, Heimall J, Takach P, Fadugba OO, Lawrence M, Jyonouchi S, Hakonarson H, Wells AD, Handler S, Zur KB, Pillai V, Gildersleeve JC, Romberg N. The common variable immunodeficiency IgM repertoire narrowly recognizes erythrocyte and platelet glycans. J Allergy Clin Immunol 2024; 154:778-791.e9. [PMID: 38692308 PMCID: PMC11380600 DOI: 10.1016/j.jaci.2024.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
BACKGROUND Autoimmune cytopenias (AICs) regularly occur in profoundly IgG-deficient patients with common variable immunodeficiency (CVID). The isotypes, antigenic targets, and origin(s) of their disease-causing autoantibodies are unclear. OBJECTIVE We sought to determine reactivity, clonality, and provenance of AIC-associated IgM autoantibodies in patients with CVID. METHODS We used glycan arrays, patient erythrocytes, and platelets to determine targets of CVID IgM autoantibodies. Glycan-binding profiles were used to identify autoreactive clones across B-cell subsets, specifically circulating marginal zone (MZ) B cells, for sorting and IGH sequencing. The locations, transcriptomes, and responses of tonsillar MZ B cells to different TH- cell subsets were determined by confocal microscopy, RNA-sequencing, and cocultures, respectively. RESULTS Autoreactive IgM coated erythrocytes and platelets from many CVID patients with AICs (CVID+AIC). On glycan arrays, CVID+AIC plasma IgM narrowly recognized erythrocytic i antigens and platelet i-related antigens and failed to bind hundreds of pathogen- and tumor-associated carbohydrates. Polyclonal i antigen-recognizing B-cell receptors were highly enriched among CVID+AIC circulating MZ B cells. Within tonsillar tissues, MZ B cells secreted copious IgM when activated by the combination of IL-10 and IL-21 or when cultured with IL-10/IL-21-secreting FOXP3-CD25hi T follicular helper (Tfh) cells. In lymph nodes from immunocompetent controls, MZ B cells, plentiful FOXP3+ regulatory T cells, and rare FOXP3-CD25+ cells that represented likely CD25hi Tfh cells all localized outside of germinal centers. In CVID+AIC lymph nodes, cellular positions were similar but CD25hi Tfh cells greatly outnumbered regulatory cells. CONCLUSIONS Our findings indicate that glycan-reactive IgM autoantibodies produced outside of germinal centers may contribute to the autoimmune pathogenesis of CVID.
Collapse
Affiliation(s)
- Carole Le Coz
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Infinity, Toulouse Institute for Infectious and Inflammatory Diseases, University of Toulouse, CNRS, Inserm, Toulouse, France
| | - Melissa Trofa
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Dorothy L Butler
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Samuel Yoon
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Tian Tian
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Whitney Reid
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Emylette Cruz Cabrera
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Ainsley V C Knox
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Caroline Khanna
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Kathleen E Sullivan
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Jennifer Heimall
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa
| | - Patricia Takach
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, Pa
| | - Olajumoke O Fadugba
- Division of Pulmonary, Allergy and Critical Care, Department of Medicine, Perelman School of Medicine, Philadelphia, Pa
| | - Monica Lawrence
- Division of Asthma, Allergy and Immunology, Department of Medicine, University of Virginia, Charlottesville, Va
| | - Soma Jyonouchi
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Andrew D Wells
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa; Center for Spatial and Functional Genomics, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pathology and Laboratory Medicine, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Steven Handler
- Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Karen B Zur
- Pediatric Otolaryngology, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Otolaryngology-Head and Neck Surgery, University of Pennsylvania School of Medicine, Philadelphia, Pa
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, Pa; Division of Hematopathology, Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Jeffrey C Gildersleeve
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Md
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, Perelman School of Medicine, Philadelphia, Pa; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa.
| |
Collapse
|
5
|
Mattos MS, Vandendriessche S, Waisman A, Marques PE. The immunology of B-1 cells: from development to aging. Immun Ageing 2024; 21:54. [PMID: 39095816 PMCID: PMC11295433 DOI: 10.1186/s12979-024-00455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/17/2024] [Indexed: 08/04/2024]
Abstract
B-1 cells have intricate biology, with distinct function, phenotype and developmental origin from conventional B cells. They generate a B cell receptor with conserved germline characteristics and biased V(D)J recombination, allowing this innate-like lymphocyte to spontaneously produce self-reactive natural antibodies (NAbs) and become activated by immune stimuli in a T cell-independent manner. NAbs were suggested as "rheostats" for the chronic diseases in advanced age. In fact, age-dependent loss of function of NAbs has been associated with clinically-relevant diseases in the elderly, such as atherosclerosis and neurodegenerative disorders. Here, we analyzed comprehensively the ontogeny, phenotypic characteristics, functional properties and emerging roles of B-1 cells and NAbs in health and disease. Additionally, after navigating through the complexities of B-1 cell biology from development to aging, therapeutic opportunities in the field are discussed.
Collapse
Affiliation(s)
- Matheus Silvério Mattos
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Sofie Vandendriessche
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Centre of the Johannes Gutenberg University of Mainz, Mainz, Germany
| | - Pedro Elias Marques
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, 3000, Louvain, Belgium.
| |
Collapse
|
6
|
Rodríguez-Zhurbenko N, Hernández AM. The role of B-1 cells in cancer progression and anti-tumor immunity. Front Immunol 2024; 15:1363176. [PMID: 38629061 PMCID: PMC11019000 DOI: 10.3389/fimmu.2024.1363176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
In recent years, in addition to the well-established role of T cells in controlling or promoting tumor growth, a new wave of research has demonstrated the active involvement of B cells in tumor immunity. B-cell subsets with distinct phenotypes and functions play various roles in tumor progression. Plasma cells and activated B cells have been linked to improved clinical outcomes in several types of cancer, whereas regulatory B cells have been associated with disease progression. However, we are only beginning to understand the role of a particular innate subset of B cells, referred to as B-1 cells, in cancer. Here, we summarize the characteristics of B-1 cells and review their ability to infiltrate tumors. We also describe the potential mechanisms through which B-1 cells suppress anti-tumor immune responses and promote tumor progression. Additionally, we highlight recent studies on the protective anti-tumor function of B-1 cells in both mouse models and humans. Understanding the functions of B-1 cells in tumor immunity could pave the way for designing more effective cancer immunotherapies.
Collapse
Affiliation(s)
- Nely Rodríguez-Zhurbenko
- Immunobiology Department, Immunology and Immunotherapy Division, Center of Molecular Immunology, Habana, Cuba
| | - Ana M. Hernández
- Applied Genetics Group, Department of Biochemistry, Faculty of Biology, University of Habana, Habana, Cuba
| |
Collapse
|
7
|
Maslanka J, Torres G, Londregan J, Goldman N, Silberman D, Somerville J, Riggs JE. Loss of B1 and marginal zone B cells during ovarian cancer. Cell Immunol 2024; 395-396:104788. [PMID: 38000306 PMCID: PMC10842900 DOI: 10.1016/j.cellimm.2023.104788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/31/2023] [Accepted: 11/20/2023] [Indexed: 11/26/2023]
Abstract
Recent advances in immunotherapy have not addressed the challenge presented by ovarian cancer. Although the peritoneum is an "accessible" locus for this disease there has been limited characterization of the immunobiology therein. We investigated the ID8-C57BL/6J ovarian cancer model and found marked depletion of B1 cells from the ascites of the peritoneal cavity. There was also selective loss of the B1 and marginal zone B cell subsets from the spleen. Immunity to antigens that activate these subsets validated their loss rather than relocation. A marked influx of myeloid-derived suppressor cells correlated with B cell subset depletion. These observations are discussed in the context of the housekeeping burden placed on innate B cells during ovarian cancer and to foster consideration of B cell biology in therapeutic strategies to address this challenge.
Collapse
Affiliation(s)
- Jeffrey Maslanka
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Gretel Torres
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | | | - Naomi Goldman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - Daniel Silberman
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - John Somerville
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA
| | - James E Riggs
- Department of Biology, Rider University, Lawrenceville, NJ 08648, USA.
| |
Collapse
|
8
|
Ramos MJ, Lui AJ, Hollern DP. The Evolving Landscape of B Cells in Cancer Metastasis. Cancer Res 2023; 83:3835-3845. [PMID: 37815800 PMCID: PMC10914383 DOI: 10.1158/0008-5472.can-23-0620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/28/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Metastasis is the leading cause of cancer mortality. Functional and clinical studies have documented diverse B-cell and antibody responses in cancer metastasis. The presence of B cells in tumor microenvironments and metastatic sites has been associated with diverse effects that can promote or inhibit metastasis. Specifically, B cells can contribute to the spread of cancer cells by enhancing tumor cell motility, invasion, angiogenesis, lymphangiogenesis, and extracellular matrix remodeling. Moreover, they can promote metastatic colonization by triggering pathogenic immunoglobulin responses and recruiting immune suppressive cells. Contrastingly, B cells can also exhibit antimetastatic effects. For example, they aid in enhanced antigen presentation, which helps activate immune responses against cancer cells. In addition, B cells play a crucial role in preventing the dissemination of metastatic cells from the primary tumor and secrete antibodies that can aid in tumor recognition. Here, we review the complex roles of B cells in metastasis, delineating the heterogeneity of B-cell activity and subtypes by metastatic site, antibody class, antigen (if known), and molecular phenotype. These important attributes of B cells emphasize the need for a deeper understanding and characterization of B-cell phenotypes to define their effects in metastasis.
Collapse
Affiliation(s)
- Monika J. Ramos
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
| | - Asona J. Lui
- Salk Institute for Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
| | - Daniel P. Hollern
- Salk Institute for Biological Sciences
- The University of California San Diego School of Biological Sciences
- Radiation Medicine and Applied Sciences, The University of California School of Medicine
- NOMIS Center for Immunobiology and Microbial Pathogenesis
| |
Collapse
|
9
|
Haas KM. Noncanonical B Cells: Characteristics of Uncharacteristic B Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:1257-1265. [PMID: 37844278 PMCID: PMC10593487 DOI: 10.4049/jimmunol.2200944] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 05/12/2023] [Indexed: 10/18/2023]
Abstract
B lymphocytes were originally described as a cell type uniquely capable of secreting Abs. The importance of T cell help in Ab production was revealed soon afterward. Following these seminal findings, investigators made great strides in delineating steps in the conventional pathway that B cells follow to produce high-affinity Abs. These studies revealed generalized, or canonical, features of B cells that include their developmental origin and paths to maturation, activation, and differentiation into Ab-producing and memory cells. However, along the way, examples of nonconventional B cell populations with unique origins, age-dependent development, tissue localization, and effector functions have been revealed. In this brief review, features of B-1a, B-1b, marginal zone, regulatory, killer, NK-like, age-associated, and atypical B cells are discussed. Emerging work on these noncanonical B cells and functions, along with the study of their significance for human health and disease, represents an exciting frontier in B cell biology.
Collapse
Affiliation(s)
- Karen M Haas
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
10
|
Suchanek O, Clatworthy MR. Homeostatic role of B-1 cells in tissue immunity. Front Immunol 2023; 14:1106294. [PMID: 37744333 PMCID: PMC10515722 DOI: 10.3389/fimmu.2023.1106294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/27/2023] [Indexed: 09/26/2023] Open
Abstract
To date, studies of tissue-resident immunity have mainly focused on innate immune cells and T cells, with limited data on B cells. B-1 B cells are a unique subset of B cells with innate-like properties, enriched in murine pleural and peritoneal cavities and distinct from conventional B-2 cells in their ontogeny, phenotype and function. Here we discuss how B-1 cells represent exemplar tissue-resident immune cells, summarizing the evidence for their long-term persistence & self-renewal within tissues, differential transcriptional programming shaped by organ-specific environmental cues, as well as their tissue-homeostatic functions. Finally, we review the emerging data supporting the presence and homeostatic role of B-1 cells across non-lymphoid organs (NLOs) both in mouse and human.
Collapse
Affiliation(s)
- Ondrej Suchanek
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
| | - Menna R. Clatworthy
- Molecular Immunity Unit, Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- NIHR Cambridge Biomedical Research Centre, Cambridge University Hospitals NHS Foundation Trust, Cambridge, United Kingdom
- Wellcome Sanger Institute, Hinxton, United Kingdom
| |
Collapse
|
11
|
Chettab K, Fitzsimmons C, Novikov A, Denis M, Phelip C, Mathé D, Choffour PA, Beaumel S, Fourmaux E, Norca P, Kryza D, Evesque A, Jordheim LP, Perrial E, Matera EL, Caroff M, Kerzerho J, Dumontet C. A systemically administered detoxified TLR4 agonist displays potent antitumor activity and an acceptable tolerance profile in preclinical models. Front Immunol 2023; 14:1066402. [PMID: 37223101 PMCID: PMC10200957 DOI: 10.3389/fimmu.2023.1066402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/19/2023] [Indexed: 05/25/2023] Open
Abstract
Bacterial lipopolysaccharides (LPS) are potent innate immunostimulants targeting the Toll-like receptor 4 (TLR4), an attractive and validated target for immunostimulation in cancer therapy. Although LPS possess anti-tumor activity, toxicity issues prevent their systemic administration at effective doses in humans. We first demonstrated that LPS formulated in liposomes preserved a potent antitumor activity per se upon systemic administration in syngeneic models, and significantly enhance the antitumor activity of the anti-CD20 antibody rituximab in mice xenografted with the human RL lymphoma model. Liposomal encapsulation also allowed a 2-fold reduction in the induction of pro-inflammatory cytokines by LPS. Mice receiving an intravenous administration demonstrated a significant increase of neutrophils, monocytes and macrophages at the tumor site as well as an increase of macrophages in spleen. Further, we chemically detoxified LPS to obtain MP-LPS that was associated with a 200-fold decrease in the induction of proinflammatory cytokines. When encapsulated in a clinically approved liposomal formulation, toxicity, notably pyrogenicity (10-fold), was limited while the antitumor activity and immunoadjuvant effect were maintained. This improved tolerance profile of liposomal MP-LPS was associated with the preferential activation of the TLR4-TRIF pathway. Finally, in vitro studies demonstrated that stimulation with encapsulated MP-LPS reversed the polarization of M2 macrophages towards an M1 phenotype, and a phase 1 trial in healthy dogs validated its tolerance upon systemic administration up to very high doses (10µg/kg). Altogether, our results demonstrate the strong therapeutic potential of MPLPS formulated in liposomes as a systemically active anticancer agent, supporting its evaluation in patients with cancer.
Collapse
Affiliation(s)
- Kamel Chettab
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| | - Chantel Fitzsimmons
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Alexey Novikov
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | - Morgane Denis
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Antinéo, Lyon, France
| | | | | | | | - Sabine Beaumel
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eric Fourmaux
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Patrick Norca
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | | | | | - Lars Petter Jordheim
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Emeline Perrial
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Eva-Laure Matera
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
| | - Martine Caroff
- HEPHAISTOS-Pharma, Université Paris-Saclay, Orsay, France
| | | | - Charles Dumontet
- INSERM U1052, CNRS UMR 5286, Centre de Recherche en Cancérologie de Lyon, Université de Lyon, Lyon, France
- Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
12
|
Hiéronimus L, Huaux F. B-1 cells in immunotoxicology: Mechanisms underlying their response to chemicals and particles. FRONTIERS IN TOXICOLOGY 2023; 5:960861. [PMID: 37143777 PMCID: PMC10151831 DOI: 10.3389/ftox.2023.960861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Since their discovery nearly 40 years ago, B-1 cells have continued to challenge the boundaries between innate and adaptive immunity, as well as myeloid and lymphoid functions. This B-cell subset ensures early immunity in neonates before the development of conventional B (B-2) cells and respond to immune injuries throughout life. B-1 cells are multifaceted and serve as natural- and induced-antibody-producing cells, phagocytic cells, antigen-presenting cells, and anti-/pro-inflammatory cytokine-releasing cells. This review retraces the origin of B-1 cells and their different roles in homeostatic and infectious conditions before focusing on pollutants comprising contact-sensitivity-inducing chemicals, endocrine disruptors, aryl hydrocarbon receptor (AHR) ligands, and reactive particles.
Collapse
|
13
|
NSC243928 Treatment Induces Anti-Tumor Immune Response in Mouse Mammary Tumor Models. Cancers (Basel) 2023; 15:cancers15051468. [PMID: 36900259 PMCID: PMC10000927 DOI: 10.3390/cancers15051468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
NSC243928 induces cell death in triple-negative breast cancer cells in a LY6K-dependent manner. NSC243928 has been reported as an anti-cancer agent in the NCI small molecule library. The molecular mechanism of NSC243928 as an anti-cancer agent in the treatment of tumor growth in the syngeneic mouse model has not been established. With the success of immunotherapies, novel anti-cancer drugs that may elicit an anti-tumor immune response are of high interest in the development of novel drugs to treat solid cancer. Thus, we focused on studying whether NSC243928 may elicit an anti-tumor immune response in the in vivo mammary tumor models of 4T1 and E0771. We observed that NSC243928 induced immunogenic cell death in 4T1 and E0771 cells. Furthermore, NSC243928 mounted an anti-tumor immune response by increasing immune cells such as patrolling monocytes, NKT cells, B1 cells, and decreasing PMN MDSCs in vivo. Further studies are required to understand the exact mechanism of NSC243928 action in inducing an anti-tumor immune response in vivo, which can be used to determine a molecular signature associated with NSC243928 efficacy. NSC243928 may be a good target for future immuno-oncology drug development for breast cancer.
Collapse
|
14
|
Mandour MF, Soe PP, Castonguay AS, Van Snick J, Coutelier JP. Inhibition of IL-12 heterodimers impairs TLR9-mediated prevention of early mouse plasmacytoma cell growth. Front Med (Lausanne) 2023; 9:1057252. [PMID: 36714124 PMCID: PMC9880182 DOI: 10.3389/fmed.2022.1057252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 12/21/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Natural prevention of cancer development depends on an efficient immunosurveillance that may be modulated by environmental factors, including infections. Innate lymphoid cytotoxic cells have been shown to play a major role in this immunosurveillance. Interleukin-12 (IL-12) has been suggested to be a key factor in the activation of innate cytotoxic cells after infection, leading to the enhancement of cancer immunosurveillance. Methods The aim of this work was to analyze in mouse experimental models by which mechanisms the interaction between infectious agent molecules and the early innate responses could enhance early inhibition of cancer growth and especially to assess the role of IL-12 by using novel antibodies specific for IL-12 heterodimers. Results Ligation of toll-like receptor (TLR)9 by CpG-protected mice against plasmacytoma TEPC.1033.C2 cell early growth. This protection mediated by innate cytolytic cells was strictly dependent on IL-12 and partly on gamma-interferon. Moreover, the protective effect of CpG stimulation, and to a lesser extent of TLR3 and TLR7/8, and the role of IL-12 in this protection were confirmed in a model of early mesothelioma AB1 cell growth. Discussion These results suggest that modulation of the mouse immune microenvironment by ligation of innate receptors deeply modifies the efficiency of cancer immunosurveillance through the secretion of IL-12, which may at least partly explain the inhibitory effect of previous infections on the prevalence of some cancers.
Collapse
Affiliation(s)
- Mohamed F. Mandour
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Clinical Pathology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Pyone Pyone Soe
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Department of Pathology, University of Medicine (1) Yangon, Yangon, Myanmar
| | - Anne-Sophie Castonguay
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Département de Pharmacologie et de Physiologie, Faculté de Médecine, Université de Montréal, Montréal, QC, Canada
| | - Jacques Van Snick
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,Ludwig Institute, de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | - Jean-Paul Coutelier
- Unit of Experimental Medicine, Université catholique de Louvain, Brussels, Belgium,de Duve Institute, Université catholique de Louvain, Woluwe-Saint-Lambert, Belgium,*Correspondence: Jean-Paul Coutelier,
| |
Collapse
|
15
|
Lee SW, Oh SY, Park HJ, Kim TC, Park YH, Van Kaer L, Hong S. Phosphorothioate-linked guanine/cytosine-based stem-loop oligonucleotides induce the extracellular release of mitochondrial DNA from peritoneal B1a cells. Int J Biol Macromol 2022; 223:252-262. [PMID: 36347365 DOI: 10.1016/j.ijbiomac.2022.10.280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/07/2022] [Accepted: 10/31/2022] [Indexed: 11/07/2022]
Abstract
It has been previously demonstrated that phosphorothioate-linked GpC-based stem-loop oligonucleotides (GC-SL ODN) induce the release of mitochondrial DNA (mtDNA) from chronic lymphocytic leukemia (CLL) B cells. Although CLL B cells are believed to originate from CD5+ B cells because of their phenotypic similarities, it remains unclear whether GC-SL ODN can stimulate CD5+ B1 cells to secrete mtDNA. To explore this possibility, we compared the frequency of the mtDNA-producing population among peritoneal cells after GC-SL ODN treatment. We found that mtDNA-releasing cells are enriched for peritoneal CD19+ B cells upon GC-SL ODN challenge. Among peritoneal CD19+ B cells, the CD5+ B1a subpopulation was a primary cellular source of mtDNA secretion in GC-SL ODN-elicited immune responses. GC-SL ODN-stimulated mtDNA release by B1a cells was positively regulated by MyD88 and TRIF signaling pathways. In vivo GC-SL ODN treatment increased lipopolysaccharide-induced activation of innate immune cells such as NK cells, suggesting the immune-enhancing effects of mtDNA secretion. Furthermore, the loop size formed by GC-SL ODNs was a critical factor in inducing mtDNA release by B1a cells. Taken together, our results identified GC-SL ODN as promising biomaterials for enhancing immune responses.
Collapse
Affiliation(s)
- Sung Won Lee
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - So Young Oh
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Hyun Jung Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Tae-Cheol Kim
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Yun Hoo Park
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea
| | - Luc Van Kaer
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Seokmann Hong
- Department of Integrative Bioscience and Biotechnology, Institute of Anticancer Medicine Development, Sejong University, Seoul 05006, Republic of Korea.
| |
Collapse
|
16
|
Rodriguez-Zhurbenko N, Quach TD, Rothstein TL, Hernandez AM. Human B-1 cells are important contributors to the naturally-occurring IgM pool against the tumor-associated ganglioside Neu5GcGM3. Front Immunol 2022; 13:1061651. [PMID: 36524112 PMCID: PMC9747505 DOI: 10.3389/fimmu.2022.1061651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Only few studies have described the anti-tumor properties of natural antibodies (NAbs). In particular, natural IgM have been linked to cancer immunosurveillance due to its preferential binding to tumor-specific glycolipids and carbohydrate structures. Neu5GcGM3 ganglioside is a sialic acid-containing glycosphingolipid that has been considered an attractive target for cancer immunotherapy, since it is not naturally expressed in healthy human tissues and it is overexpressed in several tumors. Screening of immortalized mouse peritoneal-derived hybridomas showed that peritoneal B-1 cells contain anti-Neu5GcGM3 antibodies on its repertoire, establishing a link between B-1 cells, NAbs and anti-tumor immunity. Previously, we described the existence of naturally-occurring anti-Neu5GcGM3 antibodies with anti-tumor properties in healthy young humans. Interestingly, anti-Neu5GcGM3 antibodies level decreases with age and is almost absent in non-small cell lung cancer patients. Although anti-Neu5GcGM3 antibodies may be clinically relevant, the identity of the human B cells participating in this anti-tumor antibody response is unknown. In this work, we found an increased percentage of circulating human B-1 cells in healthy individuals with anti-Neu5GcGM3 IgM antibodies. Furthermore, anti-Neu5GcGM3 IgMs were generated predominantly by human B-1 cells and the antibodies secreted by these B-1 lymphocytes also recognized Neu5GcGM3-positive tumor cells. These data suggest a protective role for human B-1 cells against malignant transformation through the production of NAbs reactive to tumor-specific antigens such as Neu5GcGM3 ganglioside.
Collapse
Affiliation(s)
- Nely Rodriguez-Zhurbenko
- Immunology and Immunotherapy Division, Center of Molecular Immunology, Havana, Cuba,*Correspondence: Nely Rodriguez-Zhurbenko,
| | - Tam D. Quach
- Institute of Molecular Medicine, The Feinstein Institutes for Medical Research, Manhasset, NY, United States
| | - Thomas L. Rothstein
- Center for Immunobiology and Department of Investigative Medicine, Western Michigan University Homer Stryker M.D. School of Medicine, Michigan, MI, United States
| | - Ana M. Hernandez
- Biochemistry Department, Faculty of Biology, Havana University, Havana, Cuba
| |
Collapse
|
17
|
Yang Y, Li H, Fotopoulou C, Cunnea P, Zhao X. Toll-like receptor-targeted anti-tumor therapies: Advances and challenges. Front Immunol 2022; 13:1049340. [PMID: 36479129 PMCID: PMC9721395 DOI: 10.3389/fimmu.2022.1049340] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/31/2022] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) are pattern recognition receptors, originally discovered to stimulate innate immune reactions against microbial infection. TLRs also play essential roles in bridging the innate and adaptive immune system, playing multiple roles in inflammation, autoimmune diseases, and cancer. Thanks to the immune stimulatory potential of TLRs, TLR-targeted strategies in cancer treatment have proved to be able to regulate the tumor microenvironment towards tumoricidal phenotypes. Quantities of pre-clinical studies and clinical trials using TLR-targeted strategies in treating cancer have been initiated, with some drugs already becoming part of standard care. Here we review the structure, ligand, signaling pathways, and expression of TLRs; we then provide an overview of the pre-clinical studies and an updated clinical trial watch targeting each TLR in cancer treatment; and finally, we discuss the challenges and prospects of TLR-targeted therapy.
Collapse
Affiliation(s)
- Yang Yang
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Hongyi Li
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| | - Christina Fotopoulou
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Paula Cunnea
- Division of Cancer, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Xia Zhao
- Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
18
|
Rawat K, Soucy SM, Kolling FW, Diaz KM, King WT, Tewari A, Jakubzick CV. Natural Antibodies Alert the Adaptive Immune System of the Presence of Transformed Cells in Early Tumorigenesis. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 209:1252-1259. [PMID: 36028292 PMCID: PMC9515310 DOI: 10.4049/jimmunol.2200447] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/01/2022] [Indexed: 11/07/2022]
Abstract
Recent studies have revealed a critical role for natural Abs (NAbs) in antitumor immune responses. However, the role of NAbs in cancer immunosurveillance remains unexplored, mainly because of the lack of in vivo models that mimic the early recognition and elimination of transforming cells. In this article, we propose a role for NAbs in alerting the immune system against precancerous neoantigen-expressing cells immediately after they escape intrinsic tumor suppression mechanisms. We identify four distinct reproducible, trackable, MHC-matched neoantigen-expressing cell models that do not form tumors as the end point. This amplified readout in the critical window prior to tumor formation allows investigation of new mediators of cancer immunosurveillance. We found that neoantigen-expressing cells adoptively transferred in NAb-deficient mice persisted, whereas they were eliminated in wild-type mice, indicating that the circulating NAb repertoire alerts the immune system to the presence of transformed cells. Moreover, immunity is mounted against immunogenic and nonimmunogenic neoantigens contained in the NAb-tagged cells, regardless of whether the NAb directly recognizes the neoantigens. Beyond these neoantigen-expressing model systems, we observed a significantly greater tumor burden in chemically and virally induced tumor models in NAb-deficient mice compared with wild-type mice. Restoration of the NAb repertoire in NAb-deficient mice elicited the recognition and elimination of neoantigen-expressing cells and cancer. These data show that NAbs are required and sufficient for elimination of transformed cells early in tumorigenesis. These models can now be used to investigate how NAbs stimulate immunity via recognition receptors to eliminate precancerous cells.
Collapse
Affiliation(s)
- Kavita Rawat
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Shannon M Soucy
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Fred W Kolling
- Department of Biomedical Data Science, Dartmouth Geisel School of Medicine, Hanover, NH
| | - Kiara Manohar Diaz
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - William T King
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Anita Tewari
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| | - Claudia V Jakubzick
- Department of Microbiology and Immunology, Dartmouth Geisel School of Medicine, Hanover, NH; and
| |
Collapse
|
19
|
Haegebaert RM, Kempers M, Ceelen W, Lentacker I, Remaut K. Nanoparticle mediated targeting of toll-like receptors to treat colorectal cancer. Eur J Pharm Biopharm 2022; 172:16-30. [PMID: 35074555 DOI: 10.1016/j.ejpb.2022.01.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 12/16/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
|
20
|
Spurrier MA, Jennings-Gee JE, Daly CA, Haas KM. The PD-1 Regulatory Axis Inhibits T Cell-Independent B Cell Memory Generation and Reactivation. THE JOURNAL OF IMMUNOLOGY 2021; 207:1978-1989. [PMID: 34535576 DOI: 10.4049/jimmunol.2100336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 08/05/2021] [Indexed: 11/19/2022]
Abstract
The inability of T cell-independent type 2 (TI-2) Ags to induce recall responses is a poorly understood facet of humoral immunity, yet critically important for improving vaccines. Using normal and VHB1-8 transgenic mice, we demonstrate that B cell-intrinsic PD-1 expression negatively regulates TI-2 memory B cell (Bmem) generation and reactivation in part through interacting with PDL1 and PDL2 on non-Ag-specific cells. We also identified a significant role for PDL2 expression on Bmems in inhibiting reactivation and Ab production, thereby revealing a novel self-regulatory mechanism exists for TI-2 Bmems This regulation impacts responses to clinically relevant vaccines, because PD-1 deficiency was associated with significantly increased Ab boosting to the pneumococcal vaccine after both vaccination and infection. Notably, we found a B cell-activating adjuvant enabled even greater boosting of protective pneumococcal polysaccharide-specific IgG responses when PD-1 inhibition was relieved. This work highlights unique self-regulation by TI-2 Bmems and reveals new opportunities for significantly improving TI-2 Ag-based vaccine responses.
Collapse
Affiliation(s)
- M Ariel Spurrier
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Jamie E Jennings-Gee
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Christina A Daly
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC
| |
Collapse
|
21
|
Shibad V, Bootwala A, Mao C, Bader H, Vo H, Landesman-Bollag E, Guo C, Rubio A, Near R, Gao W, Challa S, Chukka V, Gao J, Kelly A, Landesman T, VanHelene T, Zhong X. L2pB1 Cells Contribute to Tumor Growth Inhibition. Front Immunol 2021; 12:722451. [PMID: 34630396 PMCID: PMC8495424 DOI: 10.3389/fimmu.2021.722451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/30/2021] [Indexed: 11/13/2022] Open
Abstract
Natural IgM (nIgM) antibodies play critical roles in cancer immunosurveillance. However, the role of B-1 B cells, the lymphocytes that produce nIgM, remains to be elucidated. L2pB1 cells, a subpopulation of B-1 B cells, have a unique poly-self-reactive nIgM repertoire and are capable of phagocytosis, potent antigen presentation, and immunomodulation. Using an inducible knock-in and knockout mouse model, we investigated the effect of the loss of L2pB1 cells in a B16F10 melanoma model. Our results show active tumor infiltration of L2pB1 cells in wild type mice, and conversely, depletion of L2pB1 cells results in larger tumor mass and increased angiogenesis. In vitro analysis revealed that L2pB1 cells contribute to the growth inhibition of melanoma cells in both 2D cell culture and 3D tumor spheroids. Similar effects were observed in an MC38 murine colon cancer model. Moreover, our data suggest that one of the ways that L2pB1 cells can induce tumor cell death is via lipoptosis. Lastly, we tested whether L2pB1 cell-derived monoclonal nIgM antibodies can specifically recognize tumor spheroids. Nine of the 28 nIgM-secreting L2pB1 clones demonstrated specific binding to tumor spheroids but did not bind control murine embryonic fibroblasts. Our study provides evidence that L2pB1 cells contribute to cancer immunity through their unique nIgM repertoire, tumor recognition, and lipoptosis. Taken together, because of their ability to recognize common features of tumors that are independent of genetic mutations, L2pB1 cells and their nIgM could be potential candidates for cancer treatment that can overcome tumor heterogeneity-associated drug resistance.
Collapse
Affiliation(s)
- Varuna Shibad
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Ali Bootwala
- Department of Graduate Medical Studies, Boston University School of Medicine, Boston, MA, United States
| | - Changchuin Mao
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Hanna Bader
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Hung Vo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Esther Landesman-Bollag
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Conrad Guo
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| | - Angel Rubio
- Department of Pharmacology, Boston University School of Medicine, Boston, MA, United States
| | - Richard Near
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | - Wenda Gao
- Antagen Institute for Biomedical Research, Boston, MA, United States
| | | | | | - Jeffrey Gao
- Sharon High School, Sharon, MA, United States
| | - Avery Kelly
- Brookline High School, Brookline, MA, United States
| | | | | | - Xuemei Zhong
- Hematology Oncology Section, Department of Medicine, Boston University School of Medicine and Boston Medical Center, Boston, MA, United States
| |
Collapse
|
22
|
Lee YS, Lee WS, Kim CW, Lee SJ, Yang H, Kong SJ, Ning J, Yang KM, Kang B, Kim WR, Chon HJ, Kim C. Oncolytic vaccinia virus reinvigorates peritoneal immunity and cooperates with immune checkpoint inhibitor to suppress peritoneal carcinomatosis in colon cancer. J Immunother Cancer 2021; 8:jitc-2020-000857. [PMID: 33199510 PMCID: PMC7670945 DOI: 10.1136/jitc-2020-000857] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2020] [Indexed: 12/14/2022] Open
Abstract
Background Peritoneal carcinomatosis (PC) is a common and devastating manifestation of colon cancer and refractory to conventional anticancer therapeutics. During the peritoneal dissemination of colon cancer, peritoneal immunity is nullified by various mechanisms of immune evasion. Here, we employed the armed oncolytic vaccinia virus mJX-594 (JX) to rejuvenate the peritoneal antitumor immune responses in the treatment of PC. Methods PC model of MC38 colon cancer was generated and intraperitoneally treated with JX and/or anti-programmed cell death protein 1 (PD-1) antibody. The peritoneal tumor burden, vascular leakage, and malignant ascites formation were then assessed. Tumors and peritoneal lavage cells were analyzed by flow cytometry, multiplex tissue imaging, and a NanoString assay. Results JX treatment effectively suppressed peritoneal cancer progression and malignant ascites formation. It also restored the peritoneal anticancer immunity by activating peritoneal dendritic cells (DCs) and CD8+ T cells. Moreover, JX selectively infected and killed peritoneal colon cancer cells and promoted the intratumoral infiltration of DCs and CD8+ T cells into peritoneal tumor nodules. JX reinvigorates anticancer immunity by reprogramming immune-related transcriptional signatures within the tumor microenvironment. Notably, JX cooperates with immune checkpoint inhibitors (ICIs), anti-programmed death-1, anti-programmed death-ligand 1, and anti-lymphocyte-activation gene-3 to elicit a stronger anticancer immunity that eliminates peritoneal metastases and malignant ascites of colon cancer compared with JX or ICI alone. Conclusions Intraperitoneal immunotherapy with JX restores peritoneal anticancer immunity and potentiates immune checkpoint blockade to suppress PC and malignant ascites in colon cancer.
Collapse
Affiliation(s)
- Yu Seong Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea (the Republic of)
| | - Won Suk Lee
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - Chang Woo Kim
- Kyung Hee University Gangdong Hospital, Gangdong-gu, Korea (the Republic of)
| | - Seung Joon Lee
- Department of Biomedical Science, CHA University, Seongnam, Korea (the Republic of)
| | - Hannah Yang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - So Jung Kong
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - John Ning
- SillaJen Biotherapeutics, San Francisco, California, USA
| | | | - Beodeul Kang
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - Woo Ram Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - Hong Jae Chon
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| | - Chan Kim
- Medical Oncology, CHA Bundang Medical Center, CHA University School of Medicine, Seongnam, Korea (the Republic of)
| |
Collapse
|
23
|
An Overview of Nanocarrier-Based Adjuvants for Vaccine Delivery. Pharmaceutics 2021; 13:pharmaceutics13040455. [PMID: 33801614 PMCID: PMC8066039 DOI: 10.3390/pharmaceutics13040455] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 12/12/2022] Open
Abstract
The development of vaccines is one of the most significant medical accomplishments which has helped to eradicate a large number of diseases. It has undergone an evolutionary process from live attenuated pathogen vaccine to killed whole organisms or inactivated toxins (toxoids), each of them having its own advantages and disadvantages. The crucial parameters in vaccination are the generation of memory response and protection against infection, while an important aspect is the effective delivery of antigen in an intelligent manner to evoke a robust immune response. In this regard, nanotechnology is greatly contributing to developing efficient vaccine adjuvants and delivery systems. These can protect the encapsulated antigen from the host’s in-vivo environment and releasing it in a sustained manner to induce a long-lasting immunostimulatory effect. In view of this, the present review article summarizes nanoscale-based adjuvants and delivery vehicles such as viral vectors, virus-like particles and virosomes; non-viral vectors namely nanoemulsions, lipid nanocarriers, biodegradable and non-degradable nanoparticles, calcium phosphate nanoparticles, colloidally stable nanoparticles, proteosomes; and pattern recognition receptors covering c-type lectin receptors and toll-like receptors.
Collapse
|
24
|
Abstract
Despite recent therapeutic advances in cancer treatment, metastasis remains the principal cause of cancer death. Recent work has uncovered the unique biology of metastasis-initiating cells that results in tumor growth in distant organs, evasion of immune surveillance and co-option of metastatic microenvironments. Here we review recent progress that is enabling therapeutic advances in treating both micro- and macrometastases. Such insights were gained from cancer sequencing, mechanistic studies and clinical trials, including of immunotherapy. These studies reveal both the origins and nature of metastases and identify new opportunities for developing more effective strategies to target metastatic relapse and improve patient outcomes.
Collapse
Affiliation(s)
- Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, NY, USA.
- Department of Medicine, Memorial Hospital, New York, NY, USA.
| | - Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Lipid Metabolism in Tumor-Associated B Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1316:133-147. [PMID: 33740248 DOI: 10.1007/978-981-33-6785-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Breakthroughs have been made in the cancer immunotherapy field focusing on utilizing T cells' antitumor immunity, and the lipid metabolism of tumor-associated B cells is not well studied compared to T cells. Accumulating evidence suggested that B cells also play important roles in tumor biology and antitumor immunity, especially the germinal center B cells that present in the tumor-related tertiary lymphoid structures. Due to scarce studies on lipid metabolisms of tumor-associated B cells, this chapter mainly summarized findings on B cell lipid metabolism and discussed B cell development and major transcription factors, tumor-associated B cell populations and their potential functions in antitumor immunity, fatty acid oxidation in germinal center B cells, and tumor microenvironment factors that potentially affect B cell lipid metabolism, focusing on hypoxia and nutrients competition, as well as lipid metabolites that affect B cell function, including cholesterol, geranylgeranyl pyrophosphate, oxysterols, and short-chain fatty acids.
Collapse
|
26
|
Dyevoich AM, Disher NS, Haro MA, Haas KM. A TLR4-TRIF-dependent signaling pathway is required for protective natural tumor-reactive IgM production by B1 cells. Cancer Immunol Immunother 2020; 69:2113-2124. [PMID: 32448982 PMCID: PMC7529868 DOI: 10.1007/s00262-020-02607-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous studies demonstrated a toll-like receptor 4 (TLR4) and C-type lectin receptor (CLR; Mincle/MCL) agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits peritoneal tumor growth and ascites development through a mechanism dependent upon B1a cell-produced natural IgM, complement, and phagocytes. In the current study, we investigated the requirement for TLR4 and Fc receptor common γ chain (FcRγ), required for Mincle/MCL signaling, in the MPL/TDCM-elicited response. MPL/TDCM significantly increased macrophages and Ly6Chi monocytes in the peritoneal cavity of both TLR4-/- and FcRγ-/- mice, suggesting redundancy in the signals required for monocyte/macrophage recruitment. However, B1 cell activation, antibody secreting cell differentiation, and tumor-reactive IgM production were defective in TLR4-/-, but not FcRγ-/- mice. TRIF was required for production of IgM reactive against tumor- and mucin-related antigens, but not phosphorylcholine, whereas TLR4 was required for production of both types of reactivities. Consistent with this, B1 cells lacking TLR4 or TRIF did not proliferate or differentiate into tumor-reactive IgM-producing cells in vitro and did not reconstitute MPL/TDCM-dependent protection against peritoneal carcinomatosis in CD19-/- mice. Our results indicate a TLR4/TRIF-dependent pathway is required by B1 cells for MPL/TDCM-elicited production of protective tumor-reactive natural IgM. The dependency on TRIF signaling for tumor-reactive, but not phosphorylcholine-reactive, IgM production reveals unexpected heterogeneity in TLR4-dependent regulation of natural IgM production, thereby highlighting important differences to consider when designing vaccines or therapies targeting these specificities.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Nataya S Disher
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Marcela A Haro
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, 575 N. Patterson Ave., Winston-Salem, NC, 27101, USA.
| |
Collapse
|
27
|
Reyneveld GIJ, Savelkoul HFJ, Parmentier HK. Current Understanding of Natural Antibodies and Exploring the Possibilities of Modulation Using Veterinary Models. A Review. Front Immunol 2020; 11:2139. [PMID: 33013904 PMCID: PMC7511776 DOI: 10.3389/fimmu.2020.02139] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/06/2020] [Indexed: 12/20/2022] Open
Abstract
Natural antibodies (NAb) are defined as germline encoded immunoglobulins found in individuals without (known) prior antigenic experience. NAb bind exogenous (e.g., bacterial) and self-components and have been found in every vertebrate species tested. NAb likely act as a first-line immune defense against infections. A large part of NAb, so called natural autoantibodies (NAAb) bind to and clear (self) neo-epitopes, apoptotic, and necrotic cells. Such self-binding antibodies cannot, however, be considered as pathogenic autoantibodies in the classical sense. IgM and IgG NAb and NAAb and their implications in health and disease are relatively well-described in humans and mice. NAb are present in veterinary (and wildlife) species, but their relation with diseases and disorders in veterinary species are much less known. Also, there is little known of IgA NAb. IgA is the most abundant immunoglobulin with essential pro-inflammatory and homeostatic properties urging for more research on the importance of IgA NAb. Since NAb in humans were indicated to fulfill important functions in health and disease, their role in health of veterinary species should be investigated more often. Furthermore, it is unknown whether levels of NAb-isotypes and/or idiotypes can and should be modulated. Veterinary species as models of choice fill in a niche between mice and (non-human) primates, and the study of NAb in veterinary species may provide valuable new insights that will likely improve health management. Below, examples of the involvement of NAb in several diseases in mostly humans are shown. Possibilities of intravenous immunoglobulin administration, targeted immunotherapy, immunization, diet, and genetic modulation are discussed, all of which could be well-studied using animal models. Arguments are given why veterinary immunology should obtain inspiration from human studies and why human immunology would benefit from veterinary models. Within the One Health concept, findings from veterinary (and wildlife) studies can be related to human studies and vice versa so that both fields will mutually benefit. This will lead to a better understanding of NAb: their origin, activation mechanisms, and their implications in health and disease, and will lead to novel health management strategies for both human and veterinary species.
Collapse
Affiliation(s)
- G. IJsbrand Reyneveld
- Faculty of Science, VU University, Amsterdam, Netherlands
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Huub F. J. Savelkoul
- Cell Biology and Immunology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| | - Henk K. Parmentier
- Adaptation Physiology Group, Department of Animal Sciences, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
28
|
Liu M, Silva-Sanchez A, Randall TD, Meza-Perez S. Specialized immune responses in the peritoneal cavity and omentum. J Leukoc Biol 2020; 109:717-729. [PMID: 32881077 DOI: 10.1002/jlb.5mir0720-271rr] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 07/13/2020] [Accepted: 07/24/2020] [Indexed: 12/15/2022] Open
Abstract
The peritoneal cavity is a fluid filled space that holds most of the abdominal organs, including the omentum, a visceral adipose tissue that contains milky spots or clusters of leukocytes that are organized similar to those in conventional lymphoid tissues. A unique assortment of leukocytes patrol the peritoneal cavity and migrate in and out of the milky spots, where they encounter Ags or pathogens from the peritoneal fluid and respond accordingly. The principal role of leukocytes in the peritoneal cavity is to preserve tissue homeostasis and secure tissue repair. However, when peritoneal homeostasis is disturbed by inflammation, infection, obesity, or tumor metastasis, specialized fibroblastic stromal cells and mesothelial cells in the omentum regulate the recruitment of peritoneal leukocytes and steer their activation in unique ways. In this review, the types of cells that reside in the peritoneal cavity, the role of the omentum in their maintenance and activation, and how these processes function in response to pathogens and malignancy will be discussed.
Collapse
Affiliation(s)
- Mingyong Liu
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Aaron Silva-Sanchez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Troy D Randall
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Selene Meza-Perez
- Department of Medicine, Division of Clinical Immunology and Rheumatology, The University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
29
|
Kumar D, Romero Y, Schuck KN, Smalley H, Subedi B, Fleming SD. Drivers and regulators of humoral innate immune responses to infection and cancer. Mol Immunol 2020; 121:99-110. [PMID: 32199212 PMCID: PMC7207242 DOI: 10.1016/j.molimm.2020.03.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 03/06/2020] [Accepted: 03/09/2020] [Indexed: 12/21/2022]
Abstract
The complement cascade consists of cell bound and serum proteins acting together to protect the host from pathogens, remove cancerous cells and effectively links innate and adaptive immune responses. Despite its usefulness in microbial neutralization and clearance of cancerous cells, excessive complement activation causes an immune imbalance and tissue damage in the host. Hence, a series of complement regulatory proteins present at a higher concentration in blood plasma and on cell surfaces tightly regulate the cascade. The complement cascade can be initiated by B-1 B cell production of natural antibodies. Natural antibodies arise spontaneously without any known exogenous antigenic or microbial stimulus and protect against invading pathogens, clear apoptotic cells, provide tissue homeostasis, and modulate adaptive immune functions. Natural IgM antibodies recognize microbial and cancer antigens and serve as an activator of complement mediated lysis. This review will discuss advances in complement activation and regulation in bacterial and viral infections, and cancer. We will also explore the crosstalk of natural antibodies with bacterial populations and cancer.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Antigens, Neoplasm/immunology
- Antigens, Neoplasm/metabolism
- Antigens, Viral/immunology
- Antigens, Viral/metabolism
- Apoptosis/immunology
- B-Lymphocytes/immunology
- B-Lymphocytes/metabolism
- Bacterial Infections/immunology
- Complement Activation
- Complement System Proteins/immunology
- Complement System Proteins/metabolism
- Humans
- Immunity, Humoral
- Immunity, Innate
- Immunoglobulin M/immunology
- Immunoglobulin M/metabolism
- Neoplasms/immunology
- Receptors, Complement/immunology
- Receptors, Complement/metabolism
- Tumor Escape
- Virus Diseases/immunology
Collapse
Affiliation(s)
- Deepak Kumar
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Yeni Romero
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS, USA
| | - Kaitlynn N Schuck
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Haley Smalley
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Bibek Subedi
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Sherry D Fleming
- Division of Biology, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
30
|
Dyevoich AM, Haas KM. Type I IFN, Ly6C + cells, and Phagocytes Support Suppression of Peritoneal Carcinomatosis Elicited by a TLR and CLR Agonist Combination. Mol Cancer Ther 2020; 19:1232-1242. [PMID: 32188623 DOI: 10.1158/1535-7163.mct-19-0885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Revised: 02/25/2020] [Accepted: 03/12/2020] [Indexed: 01/13/2023]
Abstract
Metastatic cancer involving spread to the peritoneal cavity is referred to as peritoneal carcinomatosis and has a very poor prognosis. Our previous study demonstrated a Toll-like receptor and C-type lectin receptor agonist pairing of monophosphoryl lipid A (MPL) and trehalose-6,6'-dicorynomycolate (TDCM) effectively inhibits tumor growth and ascites development following TA3-Ha and EL4 challenge through a mechanism dependent on B-1a cell-produced natural IgM and complement. In this study, we investigated additional players in the MPL/TDCM-elicited response. MPL/TDCM treatment rapidly increased type I IFN levels in the peritoneal cavity along with myeloid cell numbers, including macrophages and Ly6Chi monocytes. Type I IFN receptor (IFNAR1-/-) mice produced tumor-reactive IgM following MPL/TDCM treatment, but failed to recruit Ly6C+ monocytes and were not afforded protection during tumor challenges. Clodronate liposome depletion of phagocytic cells, as well as targeted depletion of Ly6C+ cells, also ablated MPL/TDCM-induced protection. Cytotoxic mediators known to be produced by these cells were required for effects. TNFα was required for effective TA3-Ha killing and nitric oxide was required for EL4 killing. Collectively, these data reveal a model whereby MPL/TDCM-elicited antitumor effects strongly depend on innate cell responses, with B-1a cell-produced tumor-reactive IgM and complement pairing with myeloid cell-produced cytotoxic mediators to effectively eradicate tumors in the peritoneal cavity.
Collapse
Affiliation(s)
- Allison M Dyevoich
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Karen M Haas
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina.
| |
Collapse
|
31
|
Tripodo C. Time for a "Plan B" in Peritoneal Metastatic Disease. Cancer Res 2019; 79:5-6. [PMID: 30602622 DOI: 10.1158/0008-5472.can-18-3553] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 11/09/2018] [Indexed: 11/16/2022]
Abstract
Peritoneal involvement in cancer is the harbinger of a particularly unfavorable prognosis. The peritoneal cavity microenvironment is skewed toward immunoregulatory conditions promoted by macrophage populations and innate-like B-1 B cells, which provide immune privilege to malignant cell foci. In this issue of Cancer Research, Haro and colleagues demonstrate that triggering innate IgM-mediated B-1a immune responses via pathogen- or danger-associated molecular pattern recognition exerts antitumor effects on peritoneal metastases by inducing classical complement cascade activation. Exploitation of innate B-1 humoral responses and noncellular immunity is a promising strategy to counter the "castling" of metastatic tumor cells in the peritoneal immunoprivileged site.See related article by Haro et al., p. 159.
Collapse
Affiliation(s)
- Claudio Tripodo
- Tumor Immunology Unit, University of Palermo School of Medicine, Palermo, Italy.
| |
Collapse
|
32
|
Abstract
Natural antibodies are an innate-like subset of serum antibodies involved in host defense, tumor surveillance, homeostasis, and autoimmunity. Defining the natural antibody repertoire is critical for identifying biomarkers, developing vaccines, controlling and preventing autoimmunity, and understanding the development and organization of the immune system. While natural antibodies to protein antigens have been studied in depth, little is known about natural antibodies to carbohydrate antigens. To address this, we profiled IgM from umbilical cord blood and matched maternal sera on a glycan microarray. Since standard methods to detect maternal contamination in cord serum did not have sufficient sensitivity for our study, we developed a highly sensitive microarray-based assay. Using this method, we found that over 50% of the cord samples had unacceptable levels of maternal contamination. For the cord samples with high purity, anti-glycan IgM antibodies were prevalent and recognized a broad range of non-human and human glycans. Using principal component analysis and hierarchical clustering, cord IgM repertoires showed a high degree of similarity with each other but were distinct from maternal IgM repertoires. Our results demonstrate that many anti-glycan antibodies in human serum are natural antibodies and provide new insights into the development of anti-glycan antibody repertoires.
Collapse
|
33
|
Abstract
B-1 cells represent an innate-like early-developing B cell population, whose existence as an independent lymphocyte subset has been questioned in the past. Recent molecular and lineage tracing studies have not only confirmed their unique origins and differentiation paths, they have also provided a rationale for their distinctive functionalities compared to conventional B cells. This review summarizes our current understanding of B-1 cell development, and the activation events that regulate B-1 cell responses to self and foreign antigens. We discuss the unresolved question to what extent BCR engagement, that is, antigen-specificity versus innate signaling contributes to B-1 cell's participation in tissue homeostasis and immune defense as providers of 'natural' and antigen-induced antibody responses, and as cytokine-producing immune regulators.
Collapse
|