1
|
Rafikova G, Gilyazova I, Enikeeva K, Pavlov V, Kzhyshkowska J. Prostate Cancer: Genetics, Epigenetics and the Need for Immunological Biomarkers. Int J Mol Sci 2023; 24:12797. [PMID: 37628978 PMCID: PMC10454494 DOI: 10.3390/ijms241612797] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Epidemiological data highlight prostate cancer as a significant global health issue, with high incidence and substantial impact on patients' quality of life. The prevalence of this disease is associated with various factors, including age, heredity, and race. Recent research in prostate cancer genetics has identified several genetic variants that may be associated with an increased risk of developing the disease. However, despite the significance of these findings, genetic markers for prostate cancer are not currently utilized in clinical practice as reliable indicators of the disease. In addition to genetics, epigenetic alterations also play a crucial role in prostate cancer development. Aberrant DNA methylation, changes in chromatin structure, and microRNA (miRNA) expression are major epigenetic events that influence oncogenesis. Existing markers for prostate cancer, such as prostate-specific antigen (PSA), have limitations in terms of sensitivity and specificity. The cost of testing, follow-up procedures, and treatment for false-positive results and overdiagnosis contributes to the overall healthcare expenditure. Improving the effectiveness of prostate cancer diagnosis and prognosis requires either narrowing the risk group by identifying new genetic factors or enhancing the sensitivity and specificity of existing markers. Immunological biomarkers (both circulating and intra-tumoral), including markers of immune response and immune dysfunction, represent a potentially useful area of research for enhancing the diagnosis and prognosis of prostate cancer. Our review emphasizes the need for developing novel immunological biomarkers to improve the diagnosis, prognosis, and management of prostate cancer. We highlight the most recent achievements in the identification of biomarkers provided by circulating monocytes and tumor-associated macrophages (TAMs). We highlight that monocyte-derived and TAM-derived biomarkers can enable to establish the missing links between genetic predisposition, hormonal metabolism and immune responses in prostate cancer.
Collapse
Affiliation(s)
- Guzel Rafikova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Irina Gilyazova
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054 Ufa, Russia
| | - Kadriia Enikeeva
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Valentin Pavlov
- Institute of Urology and Clinical Oncology, Bashkir State Medical University, 450077 Ufa, Russia (K.E.); (V.P.)
| | - Julia Kzhyshkowska
- Laboratory for Translational Cellular and Molecular Biomedicine, Tomsk State University, 634050 Tomsk, Russia
- Genetic Technology Laboratory, Siberian State Medical University, 634050 Tomsk, Russia
- Institute of Transfusion Medicine and Immunology, Mannheim Institute of Innate Immunosciences (MI3), Medical Faculty Mannheim, Heidelberg University, 68167 Mannheim, Germany
- German Red Cross Blood Service Baden-Württemberg—Hessen, 68167 Mannheim, Germany
| |
Collapse
|
2
|
Papachristodoulou A, Abate-Shen C. Precision intervention for prostate cancer: Re-evaluating who is at risk. Cancer Lett 2022; 538:215709. [DOI: 10.1016/j.canlet.2022.215709] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/30/2022] [Accepted: 04/25/2022] [Indexed: 02/08/2023]
|
3
|
Jiang Y, Meyers TJ, Emeka AA, Cooley LF, Cooper PR, Lancki N, Helenowski I, Kachuri L, Lin DW, Stanford JL, Newcomb LF, Kolb S, Finelli A, Fleshner NE, Komisarenko M, Eastham JA, Ehdaie B, Benfante N, Logothetis CJ, Gregg JR, Perez CA, Garza S, Kim J, Marks LS, Delfin M, Barsa D, Vesprini D, Klotz LH, Loblaw A, Mamedov A, Goldenberg SL, Higano CS, Spillane M, Wu E, Carter HB, Pavlovich CP, Mamawala M, Landis T, Carroll PR, Chan JM, Cooperberg MR, Cowan JE, Morgan TM, Siddiqui J, Martin R, Klein EA, Brittain K, Gotwald P, Barocas DA, Dallmer JR, Gordetsky JB, Steele P, Kundu SD, Stockdale J, Roobol MJ, Venderbos LD, Sanda MG, Arnold R, Patil D, Evans CP, Dall’Era MA, Vij A, Costello AJ, Chow K, Corcoran NM, Rais-Bahrami S, Phares C, Scherr DS, Flynn T, Karnes RJ, Koch M, Dhondt CR, Nelson JB, McBride D, Cookson MS, Stratton KL, Farriester S, Hemken E, Stadler WM, Pera T, Banionyte D, Bianco FJ, Lopez IH, Loeb S, Taneja SS, Byrne N, Amling CL, Martinez A, Boileau L, Gaylis FD, Petkewicz J, Kirwen N, Helfand BT, Xu J, Scholtens DM, Catalona WJ, Witte JS. Genetic Factors Associated with Prostate Cancer Conversion from Active Surveillance to Treatment. HGG ADVANCES 2022; 3:100070. [PMID: 34993496 PMCID: PMC8725988 DOI: 10.1016/j.xhgg.2021.100070] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/12/2021] [Indexed: 12/18/2022] Open
Abstract
Men diagnosed with low-risk prostate cancer (PC) are increasingly electing active surveillance (AS) as their initial management strategy. While this may reduce the side effects of treatment for prostate cancer, many men on AS eventually convert to active treatment. PC is one of the most heritable cancers, and genetic factors that predispose to aggressive tumors may help distinguish men who are more likely to discontinue AS. To investigate this, we undertook a multi-institutional genome-wide association study (GWAS) of 5,222 PC patients and 1,139 other patients from replication cohorts, all of whom initially elected AS and were followed over time for the potential outcome of conversion from AS to active treatment. In the GWAS we detected 18 variants associated with conversion, 15 of which were not previously associated with PC risk. With a transcriptome-wide association study (TWAS), we found two genes associated with conversion (MAST3, p = 6.9×10-7 and GAB2, p = 2.0×10-6). Moreover, increasing values of a previously validated 269-variant genetic risk score (GRS) for PC was positively associated with conversion (e.g., comparing the highest to the two middle deciles gave a hazard ratio [HR] = 1.13; 95% Confidence Interval [CI]= 0.94-1.36); whereas, decreasing values of a 36-variant GRS for prostate-specific antigen (PSA) levels were positively associated with conversion (e.g., comparing the lowest to the two middle deciles gave a HR = 1.25; 95% CI, 1.04-1.50). These results suggest that germline genetics may help inform and individualize the decision of AS-or the intensity of monitoring on AS-versus treatment for the initial management of patients with low-risk PC.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Travis J. Meyers
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Adaeze A. Emeka
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Lauren Folgosa Cooley
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Phillip R. Cooper
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Nicola Lancki
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Irene Helenowski
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Linda Kachuri
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Daniel W. Lin
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Janet L. Stanford
- Fred Hutchinson Cancer Research Center, Cancer Epidemiology Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA 98195, USA
| | - Lisa F. Newcomb
- Fred Hutchinson Cancer Research Center, Cancer Prevention Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Suzanne Kolb
- Fred Hutchinson Cancer Research Center, Cancer Epidemiology Program, Public Health Sciences, Seattle, WA 98109, USA
- Department of Epidemiology, University of Washington, School of Public Health, Seattle, WA 98195, USA
| | - Antonio Finelli
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Neil E. Fleshner
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Maria Komisarenko
- Division of Urology, Department of Surgery, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - James A. Eastham
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Behfar Ehdaie
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nicole Benfante
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Christopher J. Logothetis
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin R. Gregg
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cherie A. Perez
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sergio Garza
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jeri Kim
- Departments of Genitourinary Medical Oncology and Urology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Leonard S. Marks
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Merdie Delfin
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Danielle Barsa
- Department of Urology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Danny Vesprini
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Laurence H. Klotz
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Andrew Loblaw
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Alexandre Mamedov
- Odette Cancer Centre, Sunnybrook Health and Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - S. Larry Goldenberg
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Celestia S. Higano
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Maria Spillane
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Eugenia Wu
- Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - H. Ballentine Carter
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian P. Pavlovich
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mufaddal Mamawala
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tricia Landis
- Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter R. Carroll
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - June M. Chan
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Matthew R. Cooperberg
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Janet E. Cowan
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
| | - Todd M. Morgan
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Javed Siddiqui
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Rabia Martin
- Department of Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Eric A. Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Karen Brittain
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Paige Gotwald
- Glickman Urological and Kidney Institute, Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH, USA
| | - Daniel A. Barocas
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jeremiah R. Dallmer
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Urology, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jennifer B. Gordetsky
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Pam Steele
- Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Shilajit D. Kundu
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Jazmine Stockdale
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Monique J. Roobol
- Department of Urology, Erasmus Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Lionne D.F. Venderbos
- Department of Urology, Erasmus Cancer Institute, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Martin G. Sanda
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Rebecca Arnold
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Dattatraya Patil
- Department of Urology, Emory University School of Medicine, Atlanta, GA, USA
| | - Christopher P. Evans
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Marc A. Dall’Era
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Anjali Vij
- Department of Urologic Surgery, University of California, Davis Medical Center, Sacramento, CA, USA
| | - Anthony J. Costello
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Ken Chow
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Niall M. Corcoran
- Department of Urology, Royal Melbourne Hospital and University of Melbourne, Melbourne, VIC, Australia
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Courtney Phares
- Department of Urology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Douglas S. Scherr
- Department of Urology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | - Thomas Flynn
- Department of Urology, Weill Cornell Medicine, New York-Presbyterian Hospital, New York, NY, USA
| | | | - Michael Koch
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Courtney Rose Dhondt
- Department of Urology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Joel B. Nelson
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Dawn McBride
- Department of Urology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michael S. Cookson
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kelly L. Stratton
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Stephen Farriester
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Erin Hemken
- Department of Urology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Tuula Pera
- University of Chicago Comprehensive Cancer Center, Chicago, IL, USA
| | | | | | | | - Stacy Loeb
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Samir S. Taneja
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | - Nataliya Byrne
- Departments of Urology and Population Health, New York University Langone Health and Manhattan Veterans Affairs Medical Center, New York, NY, USA
| | | | - Ann Martinez
- Department of Urology, Oregon Health and Science University, Portland, OR, USA
| | - Luc Boileau
- Department of Urology, Oregon Health and Science University, Portland, OR, USA
| | - Franklin D. Gaylis
- Genesis Healthcare Partners, Department of Urology, University of California, San Diego, CA, USA
| | | | - Nicholas Kirwen
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Brian T. Helfand
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Jianfeng Xu
- Division of Urology, NorthShore University Health System, Evanston, IL, USA
| | - Denise M. Scholtens
- Division of Biostatistics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - William J. Catalona
- Department of Urology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - John S. Witte
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Departments of Epidemiology and Population Health, Biomedical Data Science, and Genetics, Stanford University, Stanford, CA, USA
| |
Collapse
|
4
|
Sipeky C, Tammela TLJ, Auvinen A, Schleutker J. Novel prostate cancer susceptibility gene SP6 predisposes patients to aggressive disease. Prostate Cancer Prostatic Dis 2021; 24:1158-1166. [PMID: 34012061 PMCID: PMC8616752 DOI: 10.1038/s41391-021-00378-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 03/17/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023]
Abstract
Prostate cancer (PrCa) is one of the most common cancers in men, but little is known about factors affecting its clinical outcomes. Genome-wide association studies have identified more than 170 germline susceptibility loci, but most of them are not associated with aggressive disease. We performed a genome-wide analysis of 185,478 SNPs in Finnish samples (2738 cases, 2400 controls) from the international Collaborative Oncological Gene-Environment Study (iCOGS) to find underlying PrCa risk variants. We identified a total of 21 common, low-penetrance susceptibility loci, including 10 novel variants independently associated with PrCa risk. Novel risk loci were located in the 8q24 (CASC8 rs16902147, OR 1.86, padj = 3.53 × 10-8 and rs58809953, OR 1.71, padj = 4.00 × 10-6; intergenic rs79012498, OR 1.81, padj = 4.26 × 10-8), 17q21 (SP6 rs2074187, OR 1.66, padj = 3.75 × 10-5), 11q13 (rs12795301, OR 1.42, padj = 2.89 × 10-5) and 8p21 (rs995432, OR 1.38, padj = 3.00 × 10-11) regions. Here, we describe SP6, a transcription factor gene, as a new, potentially high-risk gene for PrCa. The intronic variant rs2074187 in SP6 was associated not only with overall susceptibility to PrCa (OR 1.66) but also with a higher odds ratio for aggressive PrCa (OR 1.89) and lower odds for non-aggressive PrCa (OR 1.43). Furthermore, the new intergenic variant rs79012498 at 8q24 conferred risk for aggressive PrCa. Our findings highlighted the power of a population-stratified approach to identify novel, clinically actionable germline PrCa risk loci and strongly suggested SP6 as a new PrCa candidate gene that may be involved in the pathogenesis of PrCa.
Collapse
Affiliation(s)
- Csilla Sipeky
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland
- UCB Pharma, Data & Translational Sciences, Braine l'Alleud, Belgium
| | - Teuvo L J Tammela
- Department of Urology, Tampere University Hospital and Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anssi Auvinen
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Johanna Schleutker
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, Turku, Finland.
- Department of Medical Genetics, Genomics, Laboratory Division, Turku University Hospital, Turku, Finland.
| |
Collapse
|
5
|
Luo X, Guo X, Luo X, Tan Y, Zhang P, Yang K, Xie T, Shi J, Zhang Y, Xu J, Zuo L, Li CSR. Significant, replicable, and functional associations between KTN1 variants and alcohol and drug codependence. Addict Biol 2021; 26:e12888. [PMID: 32115811 PMCID: PMC7641293 DOI: 10.1111/adb.12888] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/04/2020] [Accepted: 02/13/2020] [Indexed: 01/01/2023]
Abstract
The gray matter volume (GMV) of the putamen has been reported to be regulated by kinectin 1 gene (KTN1). As a hub of the dopaminergic circuit, the putamen is widely implicated in the etiological processes of substance use disorders (SUD). Here, we aimed to identify robust and reliable associations between KTN1 SNPs and SUD across multiple samples. We examined the associations between SUD and KTN1 SNPs in four independent population-based or family-based samples (n = 10,209). The potential regulatory effects of the risk alleles on the putamen GMVs, the effects of alcohol, nicotine, marijuana and cocaine on KTN1 mRNA expression, and the relationship between KTN1 mRNA expression and SUD were explored. We found that a total of 23 SNPs were associated with SUD across at least two independent samples (1.4 × 10-4 ≤ p ≤ 0.049), including one SNP (rs12895072) across three samples (8.8 × 10-3 ≤ p ≤ 0.049). Four other SNPs were significantly or suggestively associated with SUD only in European-Australians (4.8 × 10-4 ≤ p ≤ 0.058). All of the SUD-risk alleles of these 27 SNPs increased (β > 0) the putamen GMVs and represented major alleles (f > 0.5) in Europeans. Twenty-two SNPs were potentially biologically functional. Alcohol, nicotine and cocaine significantly affected the KTN1 mRNA expression, and the KTN1 mRNA was differentially expressed between nicotine or cocaine dependent and control subjects. We concluded that there was a replicable and robust relationship among the KTN1 variants, KTN1 mRNA expression, putamen GMVs, molecular effects of substances, and SUD, suggesting that some risk KTN1 alleles might increase kinectin 1 expression in the putamen, altering putamen structures and functions, and leading to SUD.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Xiaoyun Guo
- Department of Psychiatry, Shanghai Mental Health Center, Shanghai 200030, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Xingqun Luo
- Department of Clinical Medicine, College of Integrated Traditional Chinese and Western Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, China
| | - Yunlong Tan
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ping Zhang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Kebing Yang
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Ting Xie
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Yong Zhang
- Department of Psychiatry, Tianjin Mental Health Center, Tianjin 300222, China
| | - Jianying Xu
- Department of Obstetrics and Gynecology, Zhuhai Municipal Maternal and Children’s Health Hospital, Zhuhai, Guangdong 519000, China
| | - Lingjun Zuo
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
6
|
Saunders EJ, Kote-Jarai Z, Eeles RA. Identification of Germline Genetic Variants that Increase Prostate Cancer Risk and Influence Development of Aggressive Disease. Cancers (Basel) 2021; 13:760. [PMID: 33673083 PMCID: PMC7917798 DOI: 10.3390/cancers13040760] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/15/2022] Open
Abstract
Prostate cancer (PrCa) is a heterogeneous disease, which presents in individual patients across a diverse phenotypic spectrum ranging from indolent to fatal forms. No robust biomarkers are currently available to enable routine screening for PrCa or to distinguish clinically significant forms, therefore late stage identification of advanced disease and overdiagnosis plus overtreatment of insignificant disease both remain areas of concern in healthcare provision. PrCa has a substantial heritable component, and technological advances since the completion of the Human Genome Project have facilitated improved identification of inherited genetic factors influencing susceptibility to development of the disease within families and populations. These genetic markers hold promise to enable improved understanding of the biological mechanisms underpinning PrCa development, facilitate genetically informed PrCa screening programmes and guide appropriate treatment provision. However, insight remains largely lacking regarding many aspects of their manifestation; especially in relation to genes associated with aggressive phenotypes, risk factors in non-European populations and appropriate approaches to enable accurate stratification of higher and lower risk individuals. This review discusses the methodology used in the elucidation of genetic loci, genes and individual causal variants responsible for modulating PrCa susceptibility; the current state of understanding of the allelic spectrum contributing to PrCa risk; and prospective future translational applications of these discoveries in the developing eras of genomics and personalised medicine.
Collapse
Affiliation(s)
- Edward J. Saunders
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
| | - Rosalind A. Eeles
- The Institute of Cancer Research, London SM2 5NG, UK; (Z.K.-J.); (R.A.E.)
- Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK
| |
Collapse
|
7
|
Pinto AR, Silva J, Pinto R, Medeiros R. Aggressive prostate cancer phenotype and genome-wide association studies: where are we now? Pharmacogenomics 2020; 21:487-503. [PMID: 32343194 DOI: 10.2217/pgs-2019-0123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The majority of prostate cancer (PCa) is indolent, however, a percentage of patients are initially diagnosed with metastatic disease, for which there is a worse prognosis. There is a lack of biomarkers to identify men at greater risk for developing aggressive PCa. Genome-wide association studies (GWAS) scan the genome to search associations of SNPs with specific traits, like cancer. To date, eight GWAS have resulted in the reporting of 16 SNPs associated with aggressive PCa (p < 5.00 × 10-2). Still, validation studies need to be conducted to confirm the obtained results as GWAS can generate false-positive results. Furthermore, post-GWAS studies provide a better understanding of the functional consequences.
Collapse
Affiliation(s)
- Ana R Pinto
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal.,ICBAS, Abel Salazar Institute for the Biomedical Sciences, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - Jani Silva
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Ricardo Pinto
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal
| | - Rui Medeiros
- Molecular Oncology & Viral Pathology Group, IPO-Porto Research Center, (CI-IPOP) Portuguese Oncology Institute of Porto (IPO-Porto), Rua Dr. António Bernardino de Almeida, 4200-4072 Porto, Portugal.,Research Department, Portuguese League Against Cancer (NRNorte), Estrada Interior da Circunvalação, 6657, 4200-172 Porto, Portugal.,CEBIMED, Faculty of Health Sciences, Fernando Pessoa University, Praça 9 de Abril, 349, 4249-004 Porto, Portugal
| |
Collapse
|
8
|
Heidegger I, Tsaur I, Borgmann H, Surcel C, Kretschmer A, Mathieu R, Visschere PD, Valerio M, van den Bergh RCN, Ost P, Tilki D, Gandaglia G, Ploussard G. Hereditary prostate cancer - Primetime for genetic testing? Cancer Treat Rev 2019; 81:101927. [PMID: 31783313 DOI: 10.1016/j.ctrv.2019.101927] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 11/04/2019] [Accepted: 11/05/2019] [Indexed: 12/11/2022]
Abstract
Prostate cancer (PCa) remains the most common cancer in men. The proportion of all PCa attributable to high-risk hereditary factors has been estimated to 5-15%. Recent landmark discoveries in PCa genetics led to the identification of germline mutations/alterations (eg. BRCA1, BRCA2, ATM or HOXB13), single nucleotide polymorphisms or copy number variations associated with PCa incidence and progression. However, offering germline testing to men with an assumed hereditary component is currently controversial. In the present review article, we provide an overview about the epidemiology and the genetic basis of PCa predisposition and critically discuss the significance and consequence in the clinical routine. In addition, we give an overview about genetic tests and report latest findings from ongoing clinical studies. Lastly, we discuss the impact of genetic testing in personalized therapy in advanced stages of the disease.
Collapse
Affiliation(s)
- Isabel Heidegger
- Department of Urology, Medical University Innsbruck, Innsbruck, Austria.
| | - Igor Tsaur
- Department of Urology and Pediatric Urology, Mainz University Medicine, Mainz, Germany
| | - Hendrik Borgmann
- Department of Urology and Pediatric Urology, Mainz University Medicine, Mainz, Germany
| | - Christian Surcel
- Department of Urology, Fundeni Clinical Institute, University of Medicine and Pharmacy, Carol Davila Bucharest, Bucharest, Romania
| | | | | | - Pieter De Visschere
- Department of Radiology and Nuclear Medicine, Ghent University Hospital, Ghent, Belgium
| | | | | | - Piet Ost
- Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, Ghent, Belgium
| | - Derya Tilki
- Martini Klinik Prostate Cancer Center, University Hospital Hamburg-Eppendorf, Hamburg, Germany; Department of Urology, University Hospital-Hamburg Eppendorf, Hamburg, Germany
| | - Giorgio Gandaglia
- Department of Urology, Urological Research Institute, Vita-Salute University and San Raffaele Hospital, Milan, Italy
| | - Guillaume Ploussard
- Department of Urology, La Croix du Sud Hospital, Toulouse, France; Institut Universitaire du Cancer Toulouse - Oncopole, Toulouse, France
| | | |
Collapse
|
9
|
Mamidi TKK, Wu J, Hicks C. Interactions between Germline and Somatic Mutated Genes in Aggressive Prostate Cancer. Prostate Cancer 2019; 2019:4047680. [PMID: 31007957 PMCID: PMC6441536 DOI: 10.1155/2019/4047680] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 01/29/2019] [Accepted: 02/15/2019] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa) is the most common diagnosed malignancy and the second leading cause of cancer-related deaths among men in the USA. Advances in high-throughput genotyping and next generation sequencing technologies have enabled discovery of germline genetic susceptibility variants and somatic mutations acquired during tumor formation. Emerging evidence indicates that germline variations may interact with somatic events in carcinogenesis. However, the possible oncogenic interactions and cooperation between germline and somatic variation and their role in aggressive PCa remain largely unexplored. Here we investigated the possible oncogenic interactions and cooperation between genes containing germline variation from genome-wide association studies (GWAS) and genes containing somatic mutations from tumor genomes of 305 men with aggressive tumors and 52 control samples from The Cancer Genome Atlas (TCGA). Network and pathway analysis were performed to identify molecular networks and biological pathways enriched for germline and somatic mutations. The analysis revealed 90 functionally related genes containing both germline and somatic mutations. Transcriptome analysis revealed a 61-gene signature containing both germline and somatic mutations. Network analysis revealed molecular networks of functionally related genes and biological pathways including P53, STAT3, NKX3-1, KLK3, and Androgen receptor signaling pathways enriched for germline and somatic mutations. The results show that integrative analysis is a powerful approach to uncovering the possible oncogenic interactions and cooperation between germline and somatic mutations and understanding the broader biological context in which they operate in aggressive PCa.
Collapse
Affiliation(s)
- Tarun Karthik Kumar Mamidi
- Department of Genetics, Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar St., New Orleans, LA 70112, USA
| | - Jiande Wu
- Department of Genetics, Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar St., New Orleans, LA 70112, USA
| | - Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center, School of Medicine, 533 Bolivar St., New Orleans, LA 70112, USA
| |
Collapse
|
10
|
Nowinski S, Santaolalla A, O'Leary B, Loda M, Mirchandani A, Emberton M, Van Hemelrijck M, Grigoriadis A. Systematic identification of functionally relevant risk alleles to stratify aggressive versus indolent prostate cancer. Oncotarget 2018; 9:12812-12824. [PMID: 29560112 PMCID: PMC5849176 DOI: 10.18632/oncotarget.24400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/25/2018] [Indexed: 12/20/2022] Open
Abstract
Novel approaches for classification, including molecular features, are needed to direct therapy for men with low-grade prostate cancer (PCa), especially men on active surveillance. Risk alleles identified from genome-wide association studies (GWAS) could improve prognostication. Those risk alleles that coincided with genes and somatic copy number aberrations associated with progression of PCa were selected as the most relevant for prognostication. In a systematic literature review, a total of 698 studies were collated. Fifty-three unique SNPs residing in 29 genomic regions, including 8q24, 10q11 and 19q13, were associated with PCa progression. Functional studies implicated 21 of these single nucleotide polymorphisms (SNPs) as modulating the expression of genes in the androgen receptor pathway and several other oncogenes. In particular, 8q24, encompassing MYC, harbours a high density of SNPs conferring unfavourable pathological characteristics in low-grade PCa, while a copy number gain of MYC in low-grade PCa was associated with prostate-specific antigen recurrence after radical prostatectomy. By combining GWAS data with gene expression and structural rearrangements, risk alleles were identified that could provide a new basis for developing a prognostication tool to guide therapy for men with early prostate cancer.
Collapse
Affiliation(s)
- Salpie Nowinski
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| | - Aida Santaolalla
- Translational Oncology & Urology Research, King's College London, London, UK
| | - Ben O'Leary
- Breast Cancer NOW Centre, The Institute of Cancer Research, The Royal Marsden Hospital, London, UK
| | - Massimo Loda
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ayesha Mirchandani
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, London, UK
| | | | - Anita Grigoriadis
- Cancer Bioinformatics, Innovation Hub, Guy's Cancer Centre, King's College London, London, UK
| |
Collapse
|
11
|
Pi L, Halabi S. Combined Performance of Screening and Variable Selection Methods in Ultra-High Dimensional Data in Predicting Time-To-Event Outcomes. Diagn Progn Res 2018; 2:21. [PMID: 30393771 PMCID: PMC6214199 DOI: 10.1186/s41512-018-0043-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Building prognostic models of clinical outcomes is an increasingly important research task and will remain a vital area in genomic medicine. Prognostic models of clinical outcomes are usually built and validated utilizing variable selection methods and machine learning tools. The challenges, however, in ultra-high dimensional space are not only to reduce the dimensionality of the data, but also to retain the important variables which predict the outcome. Screening approaches, such as the sure independence screening (SIS), iterative SIS (ISIS) and principled SIS (PSIS) have been developed to overcome the challenge of high dimensionality. We are interested in identifying important single-nucleotide polymorphisms (SNPs) and integrating them into a validated prognostic model of overall survival in patients with metastatic prostate cancer. While the abovementioned variable selection approaches have theoretical justification in selecting SNPs, the comparison and the performance of these combined methods in predicting time-to-event outcomes have not been previously studied in ultra-high dimensional space with hundreds of thousands of variables. METHODS We conducted a series of simulations to compare the performance of different combinations of variable selection approaches and classification trees, such as the least absolute shrinkage and selection operator (LASSO), adaptive least absolute shrinkage and selection operator (ALASSO) and random survival forest (RSF), in ultra-high dimensional setting data for the purpose of developing prognostic models for a time-to-event outcome that is subject to censoring. The variable selection methods were evaluated for discrimination (Harrell's concordance statistic), calibration and overall performance. In addition, we applied these approaches to 498,081 SNPs from 623 Caucasian patients with prostate cancer. RESULTS When n=300, ISIS-LASSO and ISIS-ALASSO chose all the informative variables which resulted in the highest Harrell's c-index (>0.80). On the other hand, with a small sample size (n=150), ALASSO performed better than any other combinations as demonstrated by the highest c-index and/or overall performance, although there was evidence of overfitting. In analyzing the prostate cancer data, ISIS-ALASSO, SIS-LASSO, and SIS-ALASSO combinations achieved the highest discrimination with c-index of 0.67. CONCLUSIONS Choosing the appropriate variable selection method for training a model is a critical step in developing a robust prognostic model. Based on the simulation studies, the effective use of ALASSO or a combination of methods, such as ISIS-LASSO and ISIS-ALASSO, allows both for the development of prognostic models with high predictive accuracy and a low risk of overfitting assuming moderate sample sizes.
Collapse
Affiliation(s)
- Lira Pi
- 0000000100241216grid.189509.cDepartment of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 USA
| | - Susan Halabi
- 0000000100241216grid.189509.cDepartment of Biostatistics and Bioinformatics, Duke University Medical Center, Durham, NC 27710 USA
| |
Collapse
|
12
|
TNFSF10/TRAIL regulates human T4 effector memory lymphocyte radiosensitivity and predicts radiation-induced acute and subacute dermatitis. Oncotarget 2017; 7:21416-27. [PMID: 26982083 PMCID: PMC5008295 DOI: 10.18632/oncotarget.7893] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/18/2016] [Indexed: 12/31/2022] Open
Abstract
Sensitivity of T4 effector-memory (T4EM) lymphocytes to radiation-induced apoptosis shows heritability compatible with a Mendelian mode of transmission. Using gene expression studies and flow cytometry, we show a higher TNF-Related Apoptosis Inducing Ligand (TRAIL/TNFSF10) mRNA level and a higher level of membrane bound TRAIL (mTRAIL) on radiosensitive compared to radioresistant T4EM lymphocytes. Functionally, we show that mTRAIL mediates a pro-apoptotic autocrine signaling after irradiation of T4EM lymphocytes linking mTRAIL expression to T4EM radiosensitivity. Using single marker and multimarker Family-Based Association Testing, we identified 3 SNPs in the TRAIL gene that are significantly associated with T4EM lymphocytes radiosensitivity. Among these 3 SNPs, two are also associated with acute and subacute dermatitis after radiotherapy in breast cancer indicating that T4EM lymphocytes radiosensitivity may be used to predict response to radiotherapy. Altogether, these results show that mTRAIL level regulates the response of T4EM lymphocytes to ionizing radiation and suggest that TRAIL/TNFSF10 genetic variants hold promise as markers of individual radiosensitivity.
Collapse
|
13
|
Romanel A, Garritano S, Stringa B, Blattner M, Dalfovo D, Chakravarty D, Soong D, Cotter KA, Petris G, Dhingra P, Gasperini P, Cereseto A, Elemento O, Sboner A, Khurana E, Inga A, Rubin MA, Demichelis F. Inherited determinants of early recurrent somatic mutations in prostate cancer. Nat Commun 2017; 8:48. [PMID: 28663546 PMCID: PMC5491529 DOI: 10.1038/s41467-017-00046-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 12/20/2022] Open
Abstract
Prostate cancer is a highly heritable molecularly and clinically heterogeneous disease. To discover germline events involved in prostate cancer predisposition, we develop a computational approach to nominate heritable facilitators of somatic genomic events in the context of the androgen receptor signaling. Here, we use a ranking score and benign prostate transcriptomes to identify a non-coding polymorphic regulatory element at 7p14.3 that associates with DNA repair and hormone-regulated transcript levels and with an early recurrent prostate cancer-specific somatic mutation in the Speckle-Type POZ protein (SPOP) gene. The locus shows allele-specific activity that is concomitantly modulated by androgen receptor and by CCAAT/enhancer-binding protein (C/EBP) beta (CEBPB). Deletion of this locus via CRISPR-Cas9 leads to deregulation of the genes predicted to interact with the 7p14.3 locus by Hi-C chromosome conformation capture data. This study suggests that a polymorphism at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone-dependent DNA damage response. Prostate cancer is a heterogeneous disease, and many cases show somatic mutations of SPOP. Here, the authors show that a non-coding polymorphic regulatory element at 7p14.3 may predispose to SPOP mutant prostate cancer subclass through a hormone dependent DNA damage response.
Collapse
Affiliation(s)
- Alessandro Romanel
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Sonia Garritano
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Blerta Stringa
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Mirjam Blattner
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Davide Dalfovo
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Dimple Chakravarty
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - David Soong
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Kellie A Cotter
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - Gianluca Petris
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Priyanka Dhingra
- Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Paola Gasperini
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Anna Cereseto
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Andrea Sboner
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA
| | - Ekta Khurana
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Alberto Inga
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Mark A Rubin
- Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA.,Sandra and Edward Meyer Cancer Center at Weill Cornell Medicine, 1300 York Avenue, New York, NY, 10065, USA
| | - Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy. .,Caryl and Israel Englander Institute for Precision Medicine, New York Presbyterian Hospital-Weill Cornell Medicine, 413 East 69th Street, New York, NY, 10021, USA.
| |
Collapse
|
14
|
Hicks C, Ramani R, Sartor O, Bhalla R, Miele L, Dlamini Z, Gumede N. An Integrative Genomics Approach for Associating Genome-Wide Association Studies Information With Localized and Metastatic Prostate Cancer Phenotypes. Biomark Insights 2017; 12:1177271917695810. [PMID: 28469398 PMCID: PMC5391982 DOI: 10.1177/1177271917695810] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/05/2017] [Indexed: 01/01/2023] Open
Abstract
High-throughput genotyping has enabled discovery of genetic variants associated with an increased risk of developing prostate cancer using genome-wide association studies (GWAS). The goal of this study was to associate GWAS information of patients with primary organ–confined and metastatic prostate cancer using gene expression data and to identify molecular networks and biological pathways enriched for genetic susceptibility variants involved in the 2 disease states. The analysis revealed gene signatures for the 2 disease states and a gene signature distinguishing the 2 patient groups. In addition, the analysis revealed molecular networks and biological pathways enriched for genetic susceptibility variants. The discovered pathways include the androgen, apoptosis, and insulinlike growth factor signaling pathways. This analysis established putative functional bridges between GWAS discoveries and the biological pathways involved in primary organ–confined and metastatic prostate cancer.
Collapse
Affiliation(s)
- Chindo Hicks
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Ritika Ramani
- Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Oliver Sartor
- Department of Medicine, Tulane University, New Orleans, LA, USA
| | - Ritu Bhalla
- Department of Pathology, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Lucio Miele
- Department of Genetics, Louisiana State University Health Sciences Center New Orleans, New Orleans, LA, USA
| | - Zodwa Dlamini
- Department of Biology, Mangosuthu University of Technology, Durban, South Africa
| | - Njabulo Gumede
- Department of Biology, Mangosuthu University of Technology, Durban, South Africa
| |
Collapse
|
15
|
FitzGerald LM, Naeem H, Makalic E, Schmidt DF, Dowty JG, Joo JE, Jung CH, Bassett JK, Dugue PA, Chung J, Lonie A, Milne RL, Wong EM, Hopper JL, English DR, Severi G, Baglietto L, Pedersen J, Giles GG, Southey MC. Genome-Wide Measures of Peripheral Blood Dna Methylation and Prostate Cancer Risk in a Prospective Nested Case-Control Study. Prostate 2017; 77:471-478. [PMID: 28116812 DOI: 10.1002/pros.23289] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 11/11/2016] [Indexed: 12/15/2022]
Abstract
BACKGROUND Global measures of peripheral blood DNA methylation have been associated with risk of some malignancies, including breast, bladder, and gastric cancer. Here, we examined genome-wide measures of peripheral blood DNA methylation in prostate cancer and its non-aggressive and aggressive disease forms. METHODS We used a matched, case-control study of 687 incident prostate cancer samples, nested within a larger prospective cohort study. DNA methylation was measured in pre-diagnostic, peripheral blood samples using the Illumina Infinium HM450K BeadChip. Genome-wide measures of DNA methylation were computed as the median M-value of all CpG sites and according to CpG site location and regulatory function. We used conditional logistic regression to test for associations between genome-wide measures of DNA methylation and risk of prostate cancer and its subtypes, and by time between blood draw and diagnosis. RESULTS We observed no associations between the genome-wide measure of DNA methylation based on all CpG sites and risk of prostate cancer or aggressive disease. Risk of non-aggressive disease was associated with higher methylation of CpG islands (OR = 0.80; 95%CI = 0.68-0.94), promoter regions (OR = 0.79; 95%CI = 0.66-0.93), and high density CpG regions (OR = 0.80; 95%CI = 0.68-0.94). Additionally, higher methylation of all CpGs (OR = 0.66; 95%CI = 0.48-0.89), CpG shores (OR = 0.62; 95%CI = 0.45-0.84), and regulatory regions (OR = 0.68; 95% CI = 0.51-0.91) was associated with a reduced risk of overall prostate cancer within 5 years of blood draw but not thereafter. CONCLUSIONS A reduced risk of overall prostate cancer within 5 years of blood draw and non-aggressive prostate cancer was associated with higher genome-wide methylation of peripheral blood DNA. While these data have no immediate clinical utility, with further work they may provide insight into the early events of prostate carcinogenesis. Prostate 77:471-478, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Liesel M FitzGerald
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Cancer, Genetics, and Immunology, Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Haroon Naeem
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Enes Makalic
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Daniel F Schmidt
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - James G Dowty
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Jihoon E Joo
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - Chol-Hee Jung
- VLSCI Life Sciences Computation Centre, University of Melbourne, Carlton, VIC, Australia
| | - Julie K Bassett
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
| | | | - Jessica Chung
- VLSCI Life Sciences Computation Centre, University of Melbourne, Carlton, VIC, Australia
| | - Andrew Lonie
- VLSCI Life Sciences Computation Centre, University of Melbourne, Carlton, VIC, Australia
| | - Roger L Milne
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Ee Ming Wong
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| | - John L Hopper
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Dallas R English
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Université Paris-Saclay, University of Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
- Gustave Roussy, F-94805, Villejuif, France
- HuGeF, Human Genetics Foundation, Torino, Italy
| | - Laura Baglietto
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Université Paris-Saclay, University of Paris-Sud, UVSQ, CESP, INSERM, Villejuif, France
| | - John Pedersen
- TissuPath, Mount Waverley, Melbourne, VIC, Australia
| | - Graham G Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, University of Melbourne, Parkville, VIC, Australia
| | - Melissa C Southey
- Genetic Epidemiology Laboratory, Department of Pathology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
16
|
Lynch HT, Kosoko‐Lasaki O, Leslie SW, Rendell M, Shaw T, Snyder C, D'Amico AV, Buxbaum S, Isaacs WB, Loeb S, Moul JW, Powell I. Screening for familial and hereditary prostate cancer. Int J Cancer 2016; 138:2579-91. [DOI: 10.1002/ijc.29949] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 10/30/2015] [Accepted: 11/03/2015] [Indexed: 12/28/2022]
Affiliation(s)
- Henry T. Lynch
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Omofolasade Kosoko‐Lasaki
- Departments of Surgery, Preventive Medicine & Public HealthCreighton University2500 California PlazaOmaha NE
| | - Stephen W. Leslie
- Department of Surgery (Urology)Creighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Marc Rendell
- Department of Internal MedicineCreighton University Medical Center601 North 30th Street, Suite 3700Omaha NE
| | - Trudy Shaw
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Carrie Snyder
- Hereditary Cancer Center and Department of Preventive MedicineCreighton University2500 California PlazaOmaha NE
| | - Anthony V. D'Amico
- Department of Radiation OncologyBrigham and Women's Hospital and Dana Farber Cancer Institute, Harvard Medical SchoolBoston MA
| | - Sarah Buxbaum
- Jackson State University School of Health Sciences350 W. Woodrow Wilson DriveJackson MS
| | - William B. Isaacs
- Departments of Urology and OncologyJohns Hopkins University School of Medicine, Marburg 115, Johns Hopkins Hospital600 N. Wolfe StBaltimore MD
| | - Stacy Loeb
- Department of Urology and Population HealthNew York University550 1st Ave VZ30 (#612)New York NY
| | - Judd W. Moul
- Duke Prostate Center, Division of Urologic Surgery, DUMC 3707‐Room 1562 Duke SouthDuke University Medical CenterDurham NC
| | - Isaac Powell
- Department of UrologyWayne State University, Karmanos Cancer Institute, University Health Center 7‐CDetroit MI
| |
Collapse
|
17
|
Chen X, McClelland M, Jia Z, Rahmatpanah FB, Sawyers A, Trent J, Duggan D, Mercola D. The identification of trans-associations between prostate cancer GWAS SNPs and RNA expression differences in tumor-adjacent stroma. Oncotarget 2015; 6:1865-73. [PMID: 25638161 PMCID: PMC4359337 DOI: 10.18632/oncotarget.2763] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 11/17/2014] [Indexed: 11/25/2022] Open
Abstract
Here we tested the hypothesis that SNPs associated with prostate cancer risk, might differentially affect RNA expression in prostate cancer stroma. The most significant 35 SNP loci were selected from Genome Wide Association (GWA) studies of ~40,000 patients. We also selected 4030 transcripts previously associated with prostate cancer diagnosis and prognosis. eQTL analysis was carried out by a modified BAYES method to analyze the associations between the risk variants and expressed transcripts jointly in a single model. We observed 47 significant associations between eight risk variants and the expression patterns of 46 genes. This is the first study to identify associations between multiple SNPs and multiple in trans gene expression differences in cancer stroma. Potentially, a combination of SNPs and associated expression differences in prostate stroma may increase the power of risk assessment for individuals, and for cancer progression.
Collapse
Affiliation(s)
- Xin Chen
- Genomics Center, Loma Linda University, Loma Linda, California, 92354, United States of America
| | - Michael McClelland
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America.,Department of Microbiology and Molecular Genetics, University of California, Irvine, California, 92697, United States of America
| | - Zhenyu Jia
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America.,Department of Statistics, The University of Akron, Akron, Ohio, 44325, United States of America.,Department of Family & Community Medicine, Northeast Ohio Medical University, Rootstown, Ohio, 44272, United States of America
| | - Farah B Rahmatpanah
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| | - Anne Sawyers
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| | - Jeffrey Trent
- Genetic Basis of Human Disease Division, The Translational Genomics Research Institute, Phoenix, Arizona, 85004, United States of America
| | - David Duggan
- Integrated Cancer Genomics Division, The Translational Genomics Research Institute, Phoenix, Arizona, 85004, United States of America
| | - Dan Mercola
- Department of Pathology and Laboratory Medicine, University of California, Irvine, California, 92697, United States of America
| |
Collapse
|
18
|
Gilbert R, Martin RM, Evans DM, Tilling K, Davey Smith G, Kemp JP, Lane JA, Hamdy FC, Neal DE, Donovan JL, Metcalfe C. Incorporating Known Genetic Variants Does Not Improve the Accuracy of PSA Testing to Identify High Risk Prostate Cancer on Biopsy. PLoS One 2015; 10:e0136735. [PMID: 26431041 PMCID: PMC4592274 DOI: 10.1371/journal.pone.0136735] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 07/24/2015] [Indexed: 11/18/2022] Open
Abstract
INTRODUCTION Prostate-specific antigen (PSA) testing is a widely accepted screening method for prostate cancer, but with low specificity at thresholds giving good sensitivity. Previous research identified four single nucleotide polymorphisms (SNPs) principally associated with circulating PSA levels rather than with prostate cancer risk (TERT rs2736098, FGFR2 rs10788160, TBX3 rs11067228, KLK3 rs17632542). Removing the genetic contribution to PSA levels may improve the ability of the remaining biologically-determined variation in PSA to discriminate between high and low risk of progression within men with identified prostate cancer. We investigate whether incorporating information on the PSA-SNPs improves the discrimination achieved by a single PSA threshold in men with raised PSA levels. MATERIALS AND METHODS Men with PSA between 3-10 ng/mL and histologically-confirmed prostate cancer were categorised as high or low risk of progression (Low risk: Gleason score≤6 and stage T1-T2a; High risk: Gleason score 7-10 or stage T2C). We used the combined genetic effect of the four PSA-SNPs to calculate a genetically corrected PSA risk score. We calculated the Area under the Curve (AUC) to determine how well genetically corrected PSA risk scores distinguished men at high risk of progression from low risk men. RESULTS The analysis includes 868 men with prostate cancer (Low risk: 684 (78.8%); High risk: 184 (21.2%)). Receiver operating characteristic (ROC) curves indicate that including the 4 PSA-SNPs does not improve the performance of measured PSA as a screening tool for high/low risk prostate cancer (measured PSA level AUC = 59.5% (95% CI: 54.7,64.2) vs additionally including information from the 4 PSA-SNPs AUC = 59.8% (95% CI: 55.2,64.5) (p-value = 0.40)). CONCLUSION We demonstrate that genetically correcting PSA for the combined genetic effect of four PSA-SNPs, did not improve discrimination between high and low risk prostate cancer in men with raised PSA levels (3-10 ng/mL). Replication and gaining more accurate estimates of the effects of the 4 PSA-SNPs and additional variants associated with PSA levels and not prostate cancer could be obtained from subsequent GWAS from larger prospective studies.
Collapse
Affiliation(s)
- Rebecca Gilbert
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Richard M. Martin
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - David M. Evans
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - Kate Tilling
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - George Davey Smith
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - John P. Kemp
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
- University of Queensland Diamantina Institute, Translational Research Institute, Brisbane, Queensland, Australia
| | - J. Athene Lane
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - David E. Neal
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Jenny L. Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Chris Metcalfe
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
19
|
Berndt SI, Wang Z, Yeager M, Alavanja MC, Albanes D, Amundadottir L, Andriole G, Beane Freeman L, Campa D, Cancel-Tassin G, Canzian F, Cornu JN, Cussenot O, Diver WR, Gapstur SM, Grönberg H, Haiman CA, Henderson B, Hutchinson A, Hunter DJ, Key TJ, Kolb S, Koutros S, Kraft P, Le Marchand L, Lindström S, Machiela MJ, Ostrander EA, Riboli E, Schumacher F, Siddiq A, Stanford JL, Stevens VL, Travis RC, Tsilidis KK, Virtamo J, Weinstein S, Wilkund F, Xu J, Lilly Zheng S, Yu K, Wheeler W, Zhang H, Sampson J, Black A, Jacobs K, Hoover RN, Tucker M, Chanock SJ. Two susceptibility loci identified for prostate cancer aggressiveness. Nat Commun 2015; 6:6889. [PMID: 25939597 PMCID: PMC4422072 DOI: 10.1038/ncomms7889] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 03/10/2015] [Indexed: 01/06/2023] Open
Abstract
Most men diagnosed with prostate cancer will experience indolent disease; hence, discovering genetic variants that distinguish aggressive from nonaggressive prostate cancer is of critical clinical importance for disease prevention and treatment. In a multistage, case-only genome-wide association study of 12,518 prostate cancer cases, we identify two loci associated with Gleason score, a pathological measure of disease aggressiveness: rs35148638 at 5q14.3 (RASA1, P=6.49 × 10(-9)) and rs78943174 at 3q26.31 (NAALADL2, P=4.18 × 10(-8)). In a stratified case-control analysis, the SNP at 5q14.3 appears specific for aggressive prostate cancer (P=8.85 × 10(-5)) with no association for nonaggressive prostate cancer compared with controls (P=0.57). The proximity of these loci to genes involved in vascular disease suggests potential biological mechanisms worthy of further investigation.
Collapse
Affiliation(s)
- Sonja I Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Zhaoming Wang
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA [2] Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Meredith Yeager
- 1] Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA [2] Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - Michael C Alavanja
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Laufey Amundadottir
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Gerald Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, Missouri 63110, USA
| | - Laura Beane Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Daniele Campa
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | | | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Jean-Nicolas Cornu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Olivier Cussenot
- CeRePP, Assistance Publique-Hôpitaux de Paris, UPMC University Paris 6, Paris, France
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Henrik Grönberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 17177, Sweden
| | - Christopher A Haiman
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | - Brian Henderson
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, Division of Cancer Epidemiology and Genetics, National Cancer Institute, Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, USA
| | - David J Hunter
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Timothy J Key
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Center, Honolulu, Hawaii 96813, USA
| | - Sara Lindström
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts 02115, USA
| | - Mitchell J Machiela
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Elaine A Ostrander
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Fred Schumacher
- Department of Preventative Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Center, Los Angeles, California 90033, USA
| | - Afshan Siddiq
- Department of Genomics of Common Disease, School of Public Health, Imperial College London, London SW7 2AZ, UK
| | - Janet L Stanford
- 1] Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA [2] Department of Epidemiology, School of Public Health, University of Washington, Seattle, Washington 98195, USA
| | - Victoria L Stevens
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia 30303, USA
| | - Ruth C Travis
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Konstantinos K Tsilidis
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina 45110, Greece
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, FI-00271 Helsinki, Finland
| | - Stephanie Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Fredrik Wilkund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm 17177, Sweden
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - S Lilly Zheng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - William Wheeler
- Information Management Services Inc., Rockville, Maryland 20852, USA
| | - Han Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Joshua Sampson
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Kevin Jacobs
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Robert N Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Margaret Tucker
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
20
|
Cheng J, Ondracek RP, Mehedint DC, Kasza KA, Xu B, Gill S, Azabdaftari G, Yao S, Morrison CD, Mohler JL, Marshall JR. Association of fatty-acid synthase polymorphisms and expression with outcomes after radical prostatectomy. Prostate Cancer Prostatic Dis 2015; 18:182-9. [PMID: 25868764 DOI: 10.1038/pcan.2015.11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 11/09/2022]
Abstract
BACKGROUND Fatty-acid synthase (FASN), selectively overexpressed in prostate cancer (PCa) cells, has been described as linked to the aggressiveness of PCa. Constitutional genetic variation of the FASN gene and the expression levels of FASN protein in cancer cells could thus be expected to predict outcome after radical prostatectomy (RP). This study evaluates the associations of malignant tissue status, neoadjuvant androgen deprivation therapy (NADT) and single-nucleotide polymorphisms (SNPs) of FASN with FASN protein expression in prostate tissue. The study then examines the associations of FASN SNPs and gene expression with three measures of post-prostatectomy outcome. METHODS Seven tagging FASN SNPs were genotyped in 659 European American men who underwent RP at Roswell Park Cancer Institute between 1993 and 2005. FASN protein expression was assessed using immunohistochemistry. The patients were followed for an average of 6.9 years (range: 0.1-20.6 years). Outcome was assessed using three end points: biochemical failure, treatment failure and development of distant metastatic PCa. Cox proportional hazards analyses were used to evaluate the associations of the tagging SNPs and FASN expression with these end points. Bivariate associations with outcomes were considered; the associations also were controlled for known aggressiveness indicators. RESULTS Overall, no SNPs were associated with any known aggressiveness indicators. FASN staining intensity was stronger in malignant than in benign tissue, and NADT was associated with decreased FASN staining in both benign and malignant tissue. The relationships of FASN SNPs and staining intensity with outcome were less clear. One SNP, rs4246444, showed a weak association with outcome. FASN staining intensity also showed a weak and seemingly contradictory relationship with outcome. CONCLUSIONS Additional study with longer follow-up and populations that include more metastatic patients is warranted.
Collapse
Affiliation(s)
- J Cheng
- 1] Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA [2] Department of Pathology, University at Buffalo, Buffalo, NY, USA
| | - R P Ondracek
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - D C Mehedint
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - K A Kasza
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - B Xu
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - S Gill
- Department of Pathology, University at Buffalo, Buffalo, NY, USA
| | - G Azabdaftari
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - S Yao
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - C D Morrison
- Department of Pathology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - J L Mohler
- Department of Urology, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - J R Marshall
- Department of Cancer Prevention and Population Science, Roswell Park Cancer Institute, Buffalo, NY, USA
| |
Collapse
|
21
|
Helfand BT, Roehl KA, Cooper PR, McGuire BB, Fitzgerald LM, Cancel-Tassin G, Cornu JN, Bauer S, Van Blarigan EL, Chen X, Duggan D, Ostrander EA, Gwo-Shu M, Zhang ZF, Chang SC, Jeong S, Fontham ETH, Smith G, Mohler JL, Berndt SI, McDonnell SK, Kittles R, Rybicki BA, Freedman M, Kantoff PW, Pomerantz M, Breyer JP, Smith JR, Rebbeck TR, Mercola D, Isaacs WB, Wiklund F, Cussenot O, Thibodeau SN, Schaid DJ, Cannon-Albright L, Cooney KA, Chanock SJ, Stanford JL, Chan JM, Witte J, Xu J, Bensen JT, Taylor JA, Catalona WJ. Associations of prostate cancer risk variants with disease aggressiveness: results of the NCI-SPORE Genetics Working Group analysis of 18,343 cases. Hum Genet 2015; 134:439-50. [PMID: 25715684 PMCID: PMC4586077 DOI: 10.1007/s00439-015-1534-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/06/2015] [Indexed: 01/18/2023]
Abstract
Genetic studies have identified single nucleotide polymorphisms (SNPs) associated with the risk of prostate cancer (PC). It remains unclear whether such genetic variants are associated with disease aggressiveness. The NCI-SPORE Genetics Working Group retrospectively collected clinicopathologic information and genotype data for 36 SNPs which at the time had been validated to be associated with PC risk from 25,674 cases with PC. Cases were grouped according to race, Gleason score (Gleason ≤ 6, 7, ≥ 8) and aggressiveness (non-aggressive, intermediate, and aggressive disease). Statistical analyses were used to compare the frequency of the SNPs between different disease cohorts. After adjusting for multiple testing, only PC-risk SNP rs2735839 (G) was significantly and inversely associated with aggressive (OR = 0.77; 95 % CI 0.69-0.87) and high-grade disease (OR = 0.77; 95 % CI 0.68-0.86) in European men. Similar associations with aggressive (OR = 0.72; 95 % CI 0.58-0.89) and high-grade disease (OR = 0.69; 95 % CI 0.54-0.87) were documented in African-American subjects. The G allele of rs2735839 was associated with disease aggressiveness even at low PSA levels (<4.0 ng/mL) in both European and African-American men. Our results provide further support that a PC-risk SNP rs2735839 near the KLK3 gene on chromosome 19q13 may be associated with aggressive and high-grade PC. Future prospectively designed, case-case GWAS are needed to identify additional SNPs associated with PC aggressiveness.
Collapse
Affiliation(s)
- Brian T Helfand
- Department of Surgery, Division of Urology, John and Carol Walter Center for Urological Health, NorthShore University Health System, Evanston, IL, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Wu D, Yu H, Sun J, Qi J, Liu Q, Li R, Zheng SL, Xu J, Kang J. Association of genetic polymorphisms in the telomerase reverse transcriptase gene with prostate cancer aggressiveness. Mol Med Rep 2015; 12:489-97. [PMID: 25738283 DOI: 10.3892/mmr.2015.3410] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 01/30/2015] [Indexed: 11/06/2022] Open
Abstract
Telomerase reverse transcriptase (TERT), encoded by the TERT gene, is an essential component of telomerase, essential for the maintenance of telomere DNA length, chromosomal stability and cellular immortality. The aim of the present study was to evaluate the association between common genetic variations across the TERT gene region and prostate cancer (PCa) aggressiveness in a Chinese population. A total of 12 TERT tagging single-nucleotide polymorphisms (SNPs) were genotyped on the Sequenom Mass-ARRAY iPLEX® platform in a case-case study with 1,210 Chinese patients with PCa. Unconditional logistic regression was used to investigate the association of genotypes with PCa aggressiveness, Gleason grade and risk of developing early-onset PCa. It was observed that the C allele of the TERT intron 2 SNP (rs2736100) was significantly associated with reduced risk of PCa aggressiveness [odds ratio (OR)=0.81; 95% confidence interval (CI): 0.66-0.99; P=0.037]. This allele was also significantly correlated with a reduced risk of developing a tumor with a high Gleason score (>7; OR=0.83; 95% CI: 0.70-0.99; P=0.039). The T allele of the intron 4 SNP (rs10069690) was found to be significantly associated with a decreased risk for an aggressive form of PCa (OR=0.76; 95% CI: 0.59-0.97; P=0.030). In addition, the A allele of rs10078761 located at the 3' end of the TERT gene exhibited a statistically significant association with the reduced risk of developing a higher grade disease (OR=0.48; 95% CI: 0.28-0.81; P=0.006). However, no association between TERT polymorphisms and age at diagnosis was observed in the present study. The present findings demonstrated for the first time, to the best of our knowledge, that genetic variations across the TERT gene are associated with PCa aggressiveness in a Chinese Han population.
Collapse
Affiliation(s)
- Dapeng Wu
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Hongjie Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jielin Sun
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston‑Salem, NC 27157, USA
| | - Jun Qi
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Qiang Liu
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Ruipeng Li
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| | - Siqun Lily Zheng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Winston‑Salem, NC 27157, USA
| | - Jianfeng Xu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200433, P.R. China
| | - Jian Kang
- Department of Urology, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200092, P.R. China
| |
Collapse
|
23
|
Weng PH, Huang YL, Page JH, Chen JH, Xu J, Koutros S, Berndt S, Chanock S, Yeager M, Witte JS, Eeles RA, Easton DF, Neal DE, Donovan J, Hamdy FC, Muir KR, Giles G, Severi G, Smith JR, Balistreri CR, Shui IM, Chen YC. Polymorphisms of an innate immune gene, toll-like receptor 4, and aggressive prostate cancer risk: a systematic review and meta-analysis. PLoS One 2014; 9:e110569. [PMID: 25360682 PMCID: PMC4215920 DOI: 10.1371/journal.pone.0110569] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 09/15/2014] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Toll-like receptor 4 (TLR4) is one of the best known TLR members expressed on the surface of several leukocytes and tissue cells and has a key function in detecting pathogen and danger-associated molecular patterns. The role of TLR4 in the pathophysiology of several age-related diseases is also well recognized, such as prostate cancer (PCa). TLR4 polymorphisms have been related to PCa risk, but the relationship between TLR4 genotypes and aggressive PCa risk has not been evaluated by any systematic reviews. METHODS We performed a systematic review and meta-analysis of candidate-gene and genome-wide association studies analyzing this relationship and included only white population. Considering appropriate criteria, only nine studies were analyzed in the meta-analysis, including 3,937 aggressive PCa and 7,382 controls. RESULTS Using random effects model, no significant association was found in the ten TLR4 SNPs reported by at least four included studies under any inheritance model (rs2737191, rs1927914, rs10759932, rs1927911, rs11536879, rs2149356, rs4986790, rs11536889, rs7873784, and rs1554973). Pooled estimates from another ten TLR4 SNPs reported by three studies also showed no significant association (rs10759930, rs10116253, rs11536869, rs5030717, rs4986791, rs11536897, rs1927906, rs913930, rs1927905, and rs7045953). Meta-regression revealed that study type was not a significant source of between-study heterogeneity. CONCLUSIONS TLR4 polymorphisms were not significantly associated with the risk of aggressive PCa.
Collapse
Affiliation(s)
- Pei-Hsuan Weng
- Department of Family Medicine, Taiwan Adventist Hospital, Taipei, Taiwan
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Yi-Ling Huang
- Jean Mayer US Department of Agriculture Human Nutrition Research Center on Aging, Tufts University, Boston, Massachusetts, United States of America
| | - John H. Page
- Channing Laboratory, Department of Epidemiology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
| | - Jen-Hau Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Geriatrics and Gerontology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jianfeng Xu
- Center for Human Genomics, Wake Forest University School of Medicine, Winston-Salem, North Carolina, United States of America
| | - Stella Koutros
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Stephen Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, Maryland, United States of America
| | - Meredith Yeager
- Core Genotyping Facility, SAIC-Frederick, Inc., NCI-Frederick, Frederick, Maryland, United States of America
- Division of Cancer Epidemiology and Genetics, NCI, NIH, DHHS, Bethesda, Maryland, United States of America
| | - John S. Witte
- Department of Epidemiology and Biostatistics and Center of Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | | | - Douglas F. Easton
- Centre for Cancer Epidemiology, Departments of Public Health and Primary Care and Oncology, University of Cambridge, Strangeways Laboratory, Cambridge, United Kingdom
| | - David E. Neal
- Surgical Oncology (Uro-Oncology: S4), Departments of Oncology and Surgery, University of Cambridge, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Jenny Donovan
- Department of Social Medicine, University of Bristol, Bristol, United Kingdom
| | - Freddie C. Hamdy
- Academic Urology Unit, University of Sheffield, Sheffield, United Kingdom
| | - Kenneth R. Muir
- University of Nottingham Medical School, Queens Medical Centre, Nottingham, United Kingdom
| | - Graham Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia
| | - Jeffrey R. Smith
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Carmela R. Balistreri
- Department of Pathobiology and Medical and Forensic Biotechnologies, University of Palermo, Palermo, Italy
| | - Irene M. Shui
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Yen-Ching Chen
- Institute of Epidemiology and Preventive Medicine, College of Public Health, National Taiwan University, Taipei, Taiwan
- Research Center for Genes, Environment and Human Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
24
|
Demichelis F, Stanford JL. Genetic predisposition to prostate cancer: Update and future perspectives. Urol Oncol 2014; 33:75-84. [PMID: 24996773 DOI: 10.1016/j.urolonc.2014.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/27/2014] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
OBJECTIVE Prostate cancer is the second most frequent cancer in men worldwide and kills over 250,000 men worldwide every year. Prostate cancer is a heterogeneous disease at the clinical and the molecular level. The Scandinavian Twin Registry Study demonstrated that in contrast to most malignancies where environment was the overriding influence, heritable factors account for more than fifty percent of prostate cancers. METHODS AND MATERIALS We review the literature on prostate cancer risk variants (rare and common) including SNPs and Copy Number Variants (CNVs) and discuss the potential implications of significant variants for prostate cancer patient care. RESULTS The search for prostate cancer susceptibility genes has included both family-based studies and case-control studies utilizing a variety of approaches from array-based to sequencing-based studies. A major challenge is to identify genetic variants associated with more aggressive, potentially lethal prostate cancer and to understand their role in the progression of the disease. CONCLUSION Future risk models useful in the clinical setting will likely incorporate several risk loci rather than single variants and may be dependent on an individual patient's ethnic background.
Collapse
Affiliation(s)
- Francesca Demichelis
- Centre for Integrative Biology, University of Trento, Trento, Italy; Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY; Institute for Precision Medicine, Weill Medical College of Cornell University and New York Presbyterian Hospital, New York, NY.
| | - Janet L Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA; Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA
| |
Collapse
|
25
|
Knipe DW, Evans DM, Kemp JP, Eeles R, Easton DF, Kote-Jarai Z, Al Olama AA, Benlloch S, Donovan JL, Hamdy FC, Neal DE, Smith GD, Lathrop M, Martin RM. Genetic variation in prostate-specific antigen-detected prostate cancer and the effect of control selection on genetic association studies. Cancer Epidemiol Biomarkers Prev 2014; 23:1356-1365. [PMID: 24753544 PMCID: PMC4082405 DOI: 10.1158/1055-9965.epi-13-0889] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Only a minority of the genetic components of prostate cancer risk have been explained. Some observed associations of SNPs with prostate cancer might arise from associations of these SNPs with circulating prostate-specific antigen (PSA) because PSA values are used to select controls. METHODS We undertook a genome-wide association study (GWAS) of screen-detected prostate cancer (ProtecT: 1,146 cases and 1,804 controls); meta-analyzed the results with those from the previously published UK Genetic Prostate Cancer Study (1,854 cases and 1,437 controls); investigated associations of SNPs with prostate cancer using either "low" (PSA < 0.5 ng/mL) or "high" (PSA ≥ 3 ng/mL, biopsy negative) PSA controls; and investigated associations of SNPs with PSA. RESULTS The ProtecT GWAS confirmed previously reported associations of prostate cancer at three loci: 10q11.23, 17q24.3, and 19q13.33. The meta-analysis confirmed associations of prostate cancer with SNPs near four previously identified loci (8q24.21,10q11.23, 17q24.3, and 19q13.33). When comparing prostate cancer cases with low PSA controls, alleles at genetic markers rs1512268, rs445114, rs10788160, rs11199874, rs17632542, rs266849, and rs2735839 were associated with an increased risk of prostate cancer, but the effect-estimates were attenuated to the null when using high PSA controls (Pheterogeneity in effect-estimates < 0.04). We found a novel inverse association of rs9311171-T with circulating PSA. CONCLUSIONS Differences in effect-estimates for prostate cancer observed when comparing low versus high PSA controls may be explained by associations of these SNPs with PSA. IMPACT These findings highlight the need for inferences from genetic studies of prostate cancer risk to carefully consider the influence of control selection criteria.
Collapse
Affiliation(s)
- Duleeka W Knipe
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - David M Evans
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC / University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - John P. Kemp
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC / University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Rosalind Eeles
- The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden National Health Service Foundation Trust, Sutton, Surrey and London, UK
| | - Douglas F Easton
- Cancer Research UK Genetic Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, Sutton, Surrey, UK
- The Royal Marsden National Health Service Foundation Trust, Sutton, Surrey and London, UK
| | - Ali Amin Al Olama
- Cancer Research UK Genetic Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, UK
| | - Sara Benlloch
- Cancer Research UK Genetic Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Strangeways Laboratory, Cambridge, UK
| | - Jenny L. Donovan
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
| | - Freddie C. Hamdy
- Nuffield Department of Surgery, University of Oxford, Oxford, United Kingdom
| | - David E Neal
- The Royal Marsden National Health Service Foundation Trust, Sutton, Surrey and London, UK
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - George Davey Smith
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC / University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| | - Mark Lathrop
- Commissariat à l‘Energie Atomique, Center National de Génotypage, Evry, France
- McGill University-Génome Québec Innovation Centre, Montreal, Canada
| | - Richard M Martin
- School of Social and Community Medicine, University of Bristol, Bristol, United Kingdom
- MRC / University of Bristol Integrative Epidemiology Unit, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
26
|
Helfand BT, Catalona WJ. The Epidemiology and Clinical Implications of Genetic Variation in Prostate Cancer. Urol Clin North Am 2014; 41:277-97. [DOI: 10.1016/j.ucl.2014.01.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
27
|
Van den Broeck T, Joniau S, Clinckemalie L, Helsen C, Prekovic S, Spans L, Tosco L, Van Poppel H, Claessens F. The role of single nucleotide polymorphisms in predicting prostate cancer risk and therapeutic decision making. BIOMED RESEARCH INTERNATIONAL 2014; 2014:627510. [PMID: 24701578 PMCID: PMC3950427 DOI: 10.1155/2014/627510] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022]
Abstract
Prostate cancer (PCa) is a major health care problem because of its high prevalence, health-related costs, and mortality. Epidemiological studies have suggested an important role of genetics in PCa development. Because of this, an increasing number of single nucleotide polymorphisms (SNPs) had been suggested to be implicated in the development and progression of PCa. While individual SNPs are only moderately associated with PCa risk, in combination, they have a stronger, dose-dependent association, currently explaining 30% of PCa familial risk. This review aims to give a brief overview of studies in which the possible role of genetic variants was investigated in clinical settings. We will highlight the major research questions in the translation of SNP identification into clinical practice.
Collapse
Affiliation(s)
- Thomas Van den Broeck
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Steven Joniau
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Liesbeth Clinckemalie
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Christine Helsen
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Stefan Prekovic
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Lien Spans
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| | - Lorenzo Tosco
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Hendrik Van Poppel
- Department of Urology, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Frank Claessens
- Laboratory of Molecular Endocrinology, Department of Cellular and Molecular Medicine, KU Leuven, Campus Gasthuisberg O&N1, P.O. Box 901, Herestraat 49, 3000 Leuven, Belgium
| |
Collapse
|
28
|
Germline genetic variants associated with prostate cancer and potential relevance to clinical practice. Recent Results Cancer Res 2014; 202:9-26. [PMID: 24531773 DOI: 10.1007/978-3-642-45195-9_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The inherited link of prostate cancer predisposition has been supported using data from early epidemiological studies, as well as from familial and twin studies. Early linkage analyses and candidate gene approaches to identify these variants yielded mixed results. Since then, multiple genetic variants associated with prostate cancer susceptibility have now been found from genome-wide association studies (GWAS). Their clinical utility, however, remains unknown. It is recognised that collaborative efforts are needed to ensure adequate sample sizes are available to definitively investigate the genetic-clinical interactions. These could have important implications for public health as well as individualised prostate cancer management strategies. With the costs of genotyping decreasing and direct-to-consumer testing already offered for these common variants, it is envisaged that a lot of attention will be focussed in this area. These results will enable more refined risk stratification which will be important for targeting screening and prevention to higher risk groups. Ascertaining their clinical role remains an important goal for the GWAS community with international consortia now established, pooling efforts and resources to move this field forward.
Collapse
|
29
|
Tindall EA, Bornman MSR, van Zyl S, Segone AM, Monare LR, Venter PA, Hayes VM. Addressing the contribution of previously described genetic and epidemiological risk factors associated with increased prostate cancer risk and aggressive disease within men from South Africa. BMC Urol 2013; 13:74. [PMID: 24373635 PMCID: PMC3882498 DOI: 10.1186/1471-2490-13-74] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 12/24/2013] [Indexed: 11/30/2022] Open
Abstract
Background Although African ancestry represents a significant risk factor for prostate cancer, few studies have investigated the significance of prostate cancer and relevance of previously defined genetic and epidemiological prostate cancer risk factors within Africa. We recently established the Southern African Prostate Cancer Study (SAPCS), a resource for epidemiological and genetic analysis of prostate cancer risk and outcomes in Black men from South Africa. Biased towards highly aggressive prostate cancer disease, this is the first reported data analysis. Methods The SAPCS is an ongoing population-based study of Black men with or without prostate cancer. Pilot analysis was performed for the first 837 participants, 522 cases and 315 controls. We investigate 46 pre-defined prostate cancer risk alleles and up to 24 epidemiological measures including demographic, lifestyle and environmental factors, for power to predict disease status and to drive on-going SAPCS recruitment, sampling procedures and research direction. Results Preliminary results suggest that no previously defined risk alleles significantly predict prostate cancer occurrence within the SAPCS. Furthermore, genetic risk profiles did not enhance the predictive power of prostate specific antigen (PSA) testing. Our study supports several lifestyle/environmental factors contributing to prostate cancer risk including a family history of cancer, diabetes, current sexual activity and erectile dysfunction, balding pattern, frequent aspirin usage and high PSA levels. Conclusions Despite a clear increased prostate cancer risk associated with an African ancestry, experimental data is lacking within Africa. This pilot study is therefore a significant contribution to the field. While genetic risk factors (largely European-defined) show no evidence for disease prediction in the SAPCS, several epidemiological factors were associated with prostate cancer status. We call for improved study power by building on the SAPCS resource, further validation of associated factors in independent African-based resources, and genome-wide approaches to define African-specific risk alleles.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Vanessa M Hayes
- J, Craig Venter Institute, Genomic Medicine Group, San Diego, CA, USA.
| |
Collapse
|
30
|
Chen R, Ren S, Sun Y. Genome-wide association studies on prostate cancer: the end or the beginning? Protein Cell 2013; 4:677-86. [PMID: 23982739 DOI: 10.1007/s13238-013-3055-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 07/31/2013] [Indexed: 10/26/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy in men. Genome-wide association studies (GWAS) has been highly successful in discovering susceptibility loci for prostate cancer. Currently, more than twenty GWAS have identified more than fifty common variants associated with susceptibility with PCa. Yet with the increase in loci, voices from the scientific society are calling for more. In this review, we summarize current findings, discuss the common problems troubling current studies and shed light upon possible breakthroughs in the future. GWAS is the beginning of something wonderful. Although we are quite near the end of the beginning, post-GWAS studies are just taking off and future studies are needed extensively. It is believed that in the future GWAS information will be helpful to build a comprehensive system intergraded with PCa prevention, diagnosis, molecular classification, personalized therapy.
Collapse
Affiliation(s)
- Rui Chen
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Shancheng Ren
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China
| | - Yinghao Sun
- Department of Urology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
31
|
The genomic landscape of prostate cancer. Int J Mol Sci 2013; 14:10822-51. [PMID: 23708091 PMCID: PMC3709705 DOI: 10.3390/ijms140610822] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 05/06/2013] [Accepted: 05/09/2013] [Indexed: 12/12/2022] Open
Abstract
By the age of 80, approximately 80% of men will manifest some cancerous cells within their prostate, indicating that prostate cancer constitutes a major health burden. While this disease is clinically insignificant in most men, it can become lethal in others. The most challenging task for clinicians is developing a patient-tailored treatment in the knowledge that this disease is highly heterogeneous and that relatively little adequate prognostic tools are available to distinguish aggressive from indolent disease. Next-generation sequencing allows a description of the cancer at an unprecedented level of detail and at different levels, going from whole genome or exome sequencing to transcriptome analysis and methylation-specific immunoprecipitation, followed by sequencing. Integration of all these data is leading to a better understanding of the initiation, progression and metastatic processes of prostate cancer. Ultimately, these insights will result in a better and more personalized treatment of patients suffering from prostate cancer. The present review summarizes current knowledge on copy number changes, gene fusions, single nucleotide mutations and polymorphisms, methylation, microRNAs and long non-coding RNAs obtained from high-throughput studies.
Collapse
|
32
|
Zeegers MP, Nekeman D, Khan HS, van Dijk BAC, Goldbohm RA, Schalken J, Shajahan S, Pearlman A, Oddoux C, van den Brandt PA, Schouten LJ, Ostrer H. Prostate cancer susceptibility genes on 8p21–23 in a Dutch population. Prostate Cancer Prostatic Dis 2013; 16:248-53. [DOI: 10.1038/pcan.2013.9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/01/2013] [Accepted: 02/21/2013] [Indexed: 01/03/2023]
|
33
|
Agalliu I, Wang Z, Wang T, Dunn A, Parikh H, Myers T, Burk RD, Amundadottir L. Characterization of SNPs associated with prostate cancer in men of Ashkenazic descent from the set of GWAS identified SNPs: impact of cancer family history and cumulative SNP risk prediction. PLoS One 2013; 8:e60083. [PMID: 23573233 PMCID: PMC3616024 DOI: 10.1371/journal.pone.0060083] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 02/24/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have identified multiple SNPs associated with prostate cancer (PrCa). Population isolates may have different sets of risk alleles for PrCa constituting unique population and individual risk profiles. METHODS To test this hypothesis, associations between 31 GWAS SNPs of PrCa were examined among 979 PrCa cases and 1,251 controls of Ashkenazic descent using logistic regression. We also investigated risks by age at diagnosis, pathological features of PrCa, and family history of cancer. Moreover, we examined associations between cumulative number of risk alleles and PrCa and assessed the utility of risk alleles in PrCa risk prediction by comparing the area under the curve (AUC) for different logistic models. RESULTS Of the 31 genotyped SNPs, 8 were associated with PrCa at p ≤ 0.002 (corrected p-value threshold) with odds ratios (ORs) ranging from 1.22 to 1.42 per risk allele. Four SNPs were associated with aggressive PrCa, while three other SNPs showed potential interactions for PrCa by family history of PrCa (rs8102476; 19q13), lung cancer (rs17021918; 4q22), and breast cancer (rs10896449; 11q13). Men in the highest vs. lowest quartile of cumulative number of risk alleles had ORs of 3.70 (95% CI 2.76-4.97); 3.76 (95% CI 2.57-5.50), and 5.20 (95% CI 2.94-9.19) for overall PrCa, aggressive cancer and younger age at diagnosis, respectively. The addition of cumulative risk alleles to the model containing age at diagnosis and family history of PrCa yielded a slightly higher AUC (0.69 vs. 0.64). CONCLUSION These data define a set of risk alleles associated with PrCa in men of Ashkenazic descent and indicate possible genetic differences for PrCa between populations of European and Ashkenazic ancestry. Use of genetic markers might provide an opportunity to identify men at highest risk for younger age of onset PrCa; however, their clinical utility in identifying men at highest risk for aggressive cancer remains limited.
Collapse
Affiliation(s)
- Ilir Agalliu
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, United States of America.
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Hofer P, Zerelles J, Baierl A, Madersbacher S, Schatzl G, Maj-Hes A, Sutterlüty-Fall H, Gsur A. MNS16A tandem repeat minisatellite of human telomerase gene and prostate cancer susceptibility. Mutagenesis 2013; 28:301-6. [PMID: 23423318 DOI: 10.1093/mutage/get003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Telomere dysfunction is an early event in the development of prostate cancer and telomerase (TERT) activity is detectable in the majority of prostate cancers. Genetic variation in TERT and its regulatory elements may influence prostate carcinogenesis. MNS16A, a functional polymorphic tandem repeat minisatellite of TERT, has been studied in several malignancies. We determined MNS16A genotypes in an Austrian case-control study for the first time in the context of prostate cancer, comprising 1165 prostate cancer cases and 674 benign prostate hyperplasia controls with PCR. In addition to the five reported variable number of tandem repeats (VNTRs), we identified VNTR-212, a rare variant, for the first time in a European population. Multiple logistic regression analysis revealed no differences in genotype distribution between cases and controls. However, in stratified analysis, MNS16A VNTR-274 (OR = 0.25, 95% CI = 0.06-0.79, P = 0.016) and genotype 274/302 (OR = 0.13, 95% CI = 0.01-0.58, P = 0.005) were associated with a significantly decreased risk of prostate cancer in the age group >70 years. Our finding of a MNS16A genotype conferring a protective effect against prostate cancer in older men suggests a potential role of this polymorphism in prostate cancer susceptibility but demands to be validated in further studies.
Collapse
Affiliation(s)
- Philipp Hofer
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center Vienna, Medical University of Vienna, A-1090 Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Amin Al Olama A, Kote-Jarai Z, Schumacher FR, Wiklund F, Berndt SI, Benlloch S, Giles GG, Severi G, Neal DE, Hamdy FC, Donovan JL, Hunter DJ, Henderson BE, Thun MJ, Gaziano M, Giovannucci EL, Siddiq A, Travis RC, Cox DG, Canzian F, Riboli E, Key TJ, Andriole G, Albanes D, Hayes RB, Schleutker J, Auvinen A, Tammela TL, Weischer M, Stanford JL, Ostrander EA, Cybulski C, Lubinski J, Thibodeau SN, Schaid DJ, Sorensen KD, Batra J, Clements JA, Chambers S, Aitken J, Gardiner RA, Maier C, Vogel W, Dörk T, Brenner H, Habuchi T, Ingles S, John EM, Dickinson JL, Cannon-Albright L, Teixeira MR, Kaneva R, Zhang HW, Lu YJ, Park JY, Cooney KA, Muir KR, Leongamornlert DA, Saunders E, Tymrakiewicz M, Mahmud N, Guy M, Govindasami K, O'Brien LT, Wilkinson RA, Hall AL, Sawyer EJ, Dadaev T, Morrison J, Dearnaley DP, Horwich A, Huddart RA, Khoo VS, Parker CC, Van As N, Woodhouse CJ, Thompson A, Dudderidge T, Ogden C, Cooper CS, Lophatonanon A, Southey MC, Hopper JL, English D, Virtamo J, Le Marchand L, Campa D, Kaaks R, Lindstrom S, Diver WR, Gapstur S, Yeager M, Cox A, Stern MC, Corral R, Aly M, Isaacs W, Adolfsson J, Xu J, Zheng SL, Wahlfors T, Taari K, Kujala P, Klarskov P, Nordestgaard BG, Røder MA, Frikke-Schmidt R, Bojesen SE, FitzGerald LM, Kolb S, Kwon EM, Karyadi DM, Orntoft TF, Borre M, Rinckleb A, Luedeke M, Herkommer K, Meyer A, Serth J, Marthick JR, Patterson B, Wokolorczyk D, Spurdle A, Lose F, McDonnell SK, Joshi AD, Shahabi A, Pinto P, Santos J, Ray A, Sellers TA, Lin HY, Stephenson RA, Teerlink C, Muller H, Rothenbacher D, Tsuchiya N, Narita S, Cao GW, Slavov C, Mitev V, Chanock S, Gronberg H, Haiman CA, Kraft P, Easton DF, Eeles RA. A meta-analysis of genome-wide association studies to identify prostate cancer susceptibility loci associated with aggressive and non-aggressive disease. Hum Mol Genet 2013; 22:408-15. [PMID: 23065704 PMCID: PMC3526158 DOI: 10.1093/hmg/dds425] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 10/04/2012] [Indexed: 01/14/2023] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple common genetic variants associated with an increased risk of prostate cancer (PrCa), but these explain less than one-third of the heritability. To identify further susceptibility alleles, we conducted a meta-analysis of four GWAS including 5953 cases of aggressive PrCa and 11 463 controls (men without PrCa). We computed association tests for approximately 2.6 million SNPs and followed up the most significant SNPs by genotyping 49 121 samples in 29 studies through the international PRACTICAL and BPC3 consortia. We not only confirmed the association of a PrCa susceptibility locus, rs11672691 on chromosome 19, but also showed an association with aggressive PrCa [odds ratio = 1.12 (95% confidence interval 1.03-1.21), P = 1.4 × 10(-8)]. This report describes a genetic variant which is associated with aggressive PrCa, which is a type of PrCa associated with a poorer prognosis.
Collapse
Affiliation(s)
- Ali Amin Al Olama
- Strangeways Laboratory, Centre for Cancer Genetic Epidemiology, Worts Causeway, Cambridge CB1 8RN, UK
| | - Zsofia Kote-Jarai
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Fredrick R. Schumacher
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Fredrik Wiklund
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Sonja I. Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Core Genotyping Facility, SAIC-Frederick, Inc., National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Sara Benlloch
- Strangeways Laboratory, Centre for Cancer Genetic Epidemiology, Worts Causeway, Cambridge CB1 8RN, UK
| | - Graham G. Giles
- Cancer Epidemiology Centre, Cancer Council Victoria, 1 Rathdowne Street, Carlton, VIC 3053, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, 723 Swanston Street, Carlton, VIC 3053, Australia
| | - Gianluca Severi
- Cancer Epidemiology Centre, Cancer Council Victoria, 1 Rathdowne Street, Carlton, VIC 3053, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, 723 Swanston Street, Carlton, VIC 3053, Australia
| | - David E. Neal
- Surgical Oncology (Uro-Oncology: S4), Addenbrooke's Hospital, University of Cambridge, Box 279, Hills Road, Cambridge, UK
- Li Ka Shing Centre, Cancer Research UK Cambridge Research Institute, Cambridge CB2 2QQ, UK
| | - Freddie C. Hamdy
- Nuffield Department of Surgery and
- Faculty of Medical Science, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Jenny L. Donovan
- School of Social and Community Medicine, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK
| | - David J. Hunter
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology and
| | - Brian E. Henderson
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Michael J. Thun
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Michael Gaziano
- Massachusetts Veterans Epidemiology and Research Information Center (MAVERIC) and Geriatric Research, Education, and Clinical Center (GRECC), Boston Veterans Affairs Healthcare System, Boston, MA 02114, USA
- Division of Aging, Department of Medicine, Brigham and Women's Hospital, Boston, MA 02215, USA
| | | | - Afshan Siddiq
- Department of Genomics of Common Disease, School of Public Health, Imperial College, London SW7 2AZ, UK
| | - Ruth C. Travis
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - David G. Cox
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
- Lyon Cancer Research Center, INSERM U1052, Lyon, France
| | | | - Elio Riboli
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, UK
| | - Timothy J. Key
- Cancer Epidemiology Unit, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Gerald Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St Louis, MO, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Richard B. Hayes
- Division of Epidemiology, Department of Environmental Medicine, NYU Langone Medical Centre, NYU Cancer Institute, New York, NY 10016, USA
| | - Johanna Schleutker
- Institute of Biomedical Technology/BioMediTech, University of Tampere and
- Department of Medical Biochemistry and Genetics, University of Turku, Turku, Finland
| | - Anssi Auvinen
- Department of Epidemiology, School of Health Sciences and
| | - Teuvo L.J. Tammela
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | | | - Janet L. Stanford
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
- Department of Epidemiology, School of Public Health, University of Washington, Seattle, WA, USA
| | - Elaine A. Ostrander
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Room 5351, Bethesda, MD, USA
| | - Cezary Cybulski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | - Jan Lubinski
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | | | | | - Jyotsna Batra
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Judith A. Clements
- Australian Prostate Cancer Research Centre-Qld, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Suzanne Chambers
- Griffith Health Institute, Griffith University, Gold Coast, QLD, Australia
- Viertel Centre for Research in Cancer Control, Cancer Council Queensland, Brisbane, QLD, Australia
- Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Joanne Aitken
- Viertel Centre for Research in Cancer Control, Cancer Council Queensland, Brisbane, QLD, Australia
| | - Robert A. Gardiner
- Centre for Clinical Research, University of Queensland, Brisbane, QLD, Australia
| | - Christiane Maier
- Department of Urology and
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Walther Vogel
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Thilo Dörk
- Hannover Medical School, Hannover, Germany
| | | | - Tomonori Habuchi
- Department of Urology,Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Sue Ingles
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Esther M. John
- Cancer Prevention Institute of California, Fremont, CA, USA
- Division of Epidemiology, Department of Health Research and Policy and Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Joanne L. Dickinson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, Australia
| | - Lisa Cannon-Albright
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
- George E. Wahlen Department of Veterans Affairs Medical Centre, Salt Lake City, UT, USA
| | - Manuel R. Teixeira
- Department of Genetics, Portuguese Oncology Institute and Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Radka Kaneva
- Molecular Medicine Centre, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2 Zdrave St, Sofia 1431, Bulgaria
| | - Hong-Wei Zhang
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Yong-Jie Lu
- Centre for Molecular Oncology and Imaging, Barts Cancer Institute, Queen Mary University of London, Charterhouse Square, London, UK
| | - Jong Y. Park
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Centre, 12902 Magnolia Drive, Tampa, FL, USA
| | - Kathleen A. Cooney
- Department of Internal Medicine and
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | | - Edward Saunders
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - Nadiya Mahmud
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Michelle Guy
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Koveela Govindasami
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Lynne T. O'Brien
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - Amanda L. Hall
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Emma J. Sawyer
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Tokhir Dadaev
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | - Jonathan Morrison
- Strangeways Laboratory, Centre for Cancer Genetic Epidemiology, Worts Causeway, Cambridge CB1 8RN, UK
| | - David P. Dearnaley
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Alan Horwich
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Robert A. Huddart
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Vincent S. Khoo
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Christopher C. Parker
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Nicholas Van As
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | | | - Alan Thompson
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Tim Dudderidge
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Chris Ogden
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| | - Colin S. Cooper
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
| | | | - Melissa C. Southey
- Genetic Epidemiology Laboratory, Department of Pathology, The University of Melbourne, Grattan street, Parkville, VIC, Australia
| | - John L. Hopper
- Cancer Epidemiology Centre, Cancer Council Victoria, 1 Rathdowne Street, Carlton, VIC, Australia
| | - Dallas English
- Cancer Epidemiology Centre, Cancer Council Victoria, 1 Rathdowne Street, Carlton, VIC, Australia
- Centre for Molecular, Environmental, Genetic and Analytic Epidemiology, The University of Melbourne, 723 Swanston Street, Carlton, VIC, Australia
| | - Jarmo Virtamo
- Department of Chronic Disease Prevention, National Institute for Health and Welfare, Helsinki, Finland
| | - Loic Le Marchand
- Epidemiology Program, University of Hawaii Cancer Centre, Department of Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Daniele Campa
- Lyon Cancer Research Center, INSERM U1052, Lyon, France
| | - Rudolf Kaaks
- Division of Cancer Epidemiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Sara Lindstrom
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology and
| | - W. Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Susan Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, GA 30303, USA
| | - Meredith Yeager
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, NIH, Bethesda, MD 20892, USA
- Core Genotyping Facility, SAIC-Frederick, Inc., National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Angela Cox
- Department of Oncology, University of Sheffield, Sheffield, UK
| | - Mariana C. Stern
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Roman Corral
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Markus Aly
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm SE-171 77, Sweden
- Division of Urology, Department of Clinical Sciences, Danderyd Hospital and
| | - William Isaacs
- School of Medicine, Johns Hopkins University, 115 Marburg Building, 600 North Wolfe Street, Baltimore, MD 21205, USA
| | - Jan Adolfsson
- Oncological Centre, CLINTEC, Karolinska Institute, Stockholm, Sweden
| | - Jianfeng Xu
- Center for Cancer Genomics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - S. Lilly Zheng
- Center for Cancer Genomics, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA
| | - Tiina Wahlfors
- Department of Urology, Tampere University Hospital and Medical School, University of Tampere, Tampere, Finland
| | - Kimmo Taari
- Department of Urology, Helsinki University Central Hospital, University of Helsinki, Helsinki, Finland
| | - Paula Kujala
- Department of Pathology, Centre for Laboratory Medicine, Tampere University Hospital, Tampere, Finland
| | - Peter Klarskov
- Department of Urology, Herlev Hospital, Copenhagen University Hospital, Herlev Ringvej 75, Herlev DK-2730, Denmark
| | | | | | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, Copenhagen DK-2100, Denmark
| | | | - Liesel M. FitzGerald
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
| | - Suzanne Kolb
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Centre, Seattle, WA, USA
| | - Erika M. Kwon
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Room 5351, Bethesda, MD, USA
| | - Danielle M. Karyadi
- National Human Genome Research Institute, National Institutes of Health, 50 South Drive, Room 5351, Bethesda, MD, USA
| | | | - Michael Borre
- Department of Urology, Aarhus University Hospital, Skejby, Denmark
| | | | - Manuel Luedeke
- Institute of Human Genetics, University Hospital Ulm, Ulm, Germany
| | - Kathleen Herkommer
- Department of Urology, Rechts der Isar Medical Centre, Technical University of Munich, Munich, Germany
| | | | | | - James R. Marthick
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, Australia
| | - Briony Patterson
- Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS, Australia
| | - Dominika Wokolorczyk
- Department of Genetics and Pathology, International Hereditary Cancer Center, Pomeranian Medical University, Szczecin, Poland
| | | | - Felicity Lose
- Molecular Cancer Epidemiology Laboratory, Queensland Institute of Medical Research, Brisbane, QLD, Australia
| | | | - Amit D. Joshi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Ahva Shahabi
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Pedro Pinto
- Department of Genetics, Portuguese Oncology Institute and Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Joana Santos
- Department of Genetics, Portuguese Oncology Institute and Biomedical Sciences Institute (ICBAS), Porto University, Porto, Portugal
| | - Ana Ray
- Department of Internal Medicine and
- Department of Urology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Thomas A. Sellers
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Centre, 12902 Magnolia Drive, Tampa, FL, USA
| | - Hui-Yi Lin
- Division of Cancer Prevention and Control, H. Lee Moffitt Cancer Centre, 12902 Magnolia Drive, Tampa, FL, USA
| | | | - Craig Teerlink
- Division of Genetic Epidemiology, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Heiko Muller
- Division of Clinical Epidemiology and Aging Research and
| | | | - Norihiko Tsuchiya
- Department of Urology,Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Shintaro Narita
- Department of Urology,Akita University Graduate School of Medicine, 1-1-1 Hondo, Akita 010-8543, Japan
| | - Guang-Wen Cao
- Department of Epidemiology, Second Military Medical University, Shanghai, China
| | - Chavdar Slavov
- Department of Urology and Alexandrovska University Hospital,Medical University of Sofia, Sofia, Bulgaria
| | - Vanio Mitev
- Molecular Medicine Centre, Department of Medical Chemistry and Biochemistry, Medical University of Sofia, 2 Zdrave St, Sofia 1431, Bulgaria
| | | | | | | | | | - Stephen Chanock
- Core Genotyping Facility, SAIC-Frederick, Inc., National Cancer Institute, NIH, Gaithersburg, MD, USA
| | - Henrik Gronberg
- Department of Medical Epidemiology and Biostatistics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Christopher A. Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California/Norris Comprehensive Cancer Centre, Los Angeles, CA, USA
| | - Peter Kraft
- Program in Molecular and Genetic Epidemiology, Department of Epidemiology and
| | - Douglas F. Easton
- Strangeways Laboratory, Centre for Cancer Genetic Epidemiology, Worts Causeway, Cambridge CB1 8RN, UK
| | - Rosalind A. Eeles
- The Institute of Cancer Research, 15 Cotswold Road, Sutton, Surrey SM2 5NG, UK
- Royal Marsden NHS Foundation Trust, Fulham and Sutton, London and Surrey, UK
| |
Collapse
|
36
|
Tindall EA, Severi G, Hoang HN, Southey MC, English DR, Hopper JL, Giles GG, Hayes VM. Interleukin-6 promoter variants, prostate cancer risk, and survival. Prostate 2012; 72:1701-7. [PMID: 22782910 DOI: 10.1002/pros.22557] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/12/2012] [Indexed: 12/20/2022]
Abstract
BACKGROUND Inflammation has been implicated in prostate cancer (PCa) pathogenesis. Promoter DNA variants responsible for differential expression of key cytokines may therefore influence susceptibility to PCa. METHODS Two interleukin-6 (IL-6) promoter variants, -174G>C and -6331T>C, were genotyped for association with PCa risk and survival using the Risk Factors for Prostate Cancer Study (RFPCS, 825 cases and 732 controls) and the Melbourne Collaborative Cohort Study (MCCS, 818 cases and 1,745 controls). Impact of genotypes on IL-6 transcriptional activity was measured using Low Density Arrays. RESULTS A significant increase in IL-6 transcriptional activity in malignant compared to benign prostate tissue supports a role for IL-6 in PCa. The -174G>C variant showed no association with PCa risk, overall survival, or IL-6 transcriptional activity. The -6331 C-allele was significantly associated with an increased risk in the RFPCS (OR = 1.29, 95% CI = 1.08-1.54), but not in the MCCS. In the MCCS however, cases presenting with a CC genotype conferred a higher risk of mortality (HR = 2.27, 95% CI = 1.34-3.85), which was maintained although reduced overall in the pooled analysis with RFPCS (HR = 1.68, 95% CI = 1.10-2.54). Furthermore, we associate the minor C-allele with a significant decrease in IL-6 transcriptional activity. CONCLUSIONS While our study refutes a role for IL-6 -174G>C, it is the first to implicate -6331T>C with PCa risk and poor survival. Our observation that -6331T>C has a significant impact on IL-6 transcriptional activity, calls for further investigations into the role of this variant as a novel PCa biomarker.
Collapse
Affiliation(s)
- Elizabeth A Tindall
- Cancer Genetics Group, Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Randwick, New South Wales, Australia
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Genetic sequence variants are associated with severity of lower urinary tract symptoms and prostate cancer susceptibility. J Urol 2012; 189:845-8. [PMID: 23159463 DOI: 10.1016/j.juro.2012.11.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE While a clear heritable component underlies lower urinary tract symptoms and benign prostatic hyperplasia, few studies have identified specific genetic factors. In contrast, recent genome-wide association studies identified single nucleotide polymorphisms that increase prostate cancer risk. Some of these single nucleotide polymorphisms may also predispose to surgical intervention for benign prostatic hyperplasia. We determined whether these single nucleotide polymorphisms are also associated with lower urinary tract symptom severity and benign prostatic hyperplasia medication use. MATERIALS AND METHODS The genotypes of 38 single nucleotide polymorphisms previously associated with prostate cancer risk were determined for 1,168 healthy white male volunteers. American Urological Association symptom index score and medication for benign prostatic hyperplasia were documented prospectively. Statistical analyses were done to compare the frequency of the single nucleotide polymorphisms with American Urological Association symptom index and benign prostatic hyperplasia medication use. RESULTS Several single nucleotide polymorphisms, including rs2736098 on chromosome 5p15, showed a significant relationship with benign prostatic hyperplasia medication. After adjusting for the other genetic variants, patient age and medication use, rs1571801 on chromosome 9q33.2 (OR 1.31, 95% CI 1.0-1.74) and rs5945572 on chromosome Xp11 (OR 1.28, 95% CI 1.04-1.59) were significantly associated with increased urinary symptoms. In contrast, rs445114 on chromosome 8q24 was marginally associated with decreased urinary symptoms (OR 0.83, 95% CI 0.66-1.01). CONCLUSIONS Of 38 single nucleotide polymorphisms that predispose to prostate cancer we identified 3 that are also associated with a well characterized lower urinary tract symptom phenotype. These single nucleotide polymorphisms may aid in the improved characterization of men with lower urinary tract symptoms/benign prostatic hyperplasia.
Collapse
|
38
|
Batai K, Shah E, Murphy AB, Newsome J, Ruden M, Ahaghotu C, Kittles RA. Fine-mapping of IL16 gene and prostate cancer risk in African Americans. Cancer Epidemiol Biomarkers Prev 2012; 21:2059-68. [PMID: 22923025 DOI: 10.1158/1055-9965.epi-12-0707] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Prostate cancer is the most common type of cancer among men in the United States, and its incidence and mortality rates are disproportionate among ethnic groups. Although genome-wide association studies of European descents have identified candidate loci associated with prostate cancer risk, including a variant in IL16, replication studies in African Americans (AA) have been inconsistent. Here we explore single-nucleotide polymorphism (SNP) variation in IL16 in AAs and test for association with prostate cancer. METHODS Association tests were conducted for 2,257 genotyped and imputed SNPs spanning IL16 in 605 AA prostate cancer cases and controls from Washington, D.C. Eleven of them were also genotyped in a replication population of 1,093 AAs from Chicago. We tested for allelic association adjusting for age, global and local West African ancestry. RESULTS Analyses of genotyped and imputed SNPs revealed that a cluster of IL16 SNPs were significantly associated with prostate cancer risk. The strongest association was found at rs7175701 (P = 9.8 × 10(-8)). In the Chicago population, another SNP (rs11556218) was associated with prostate cancer risk (P = 0.01). In the pooled analysis, we identified three independent loci within IL16 that were associated with prostate cancer risk. SNP expression quantitative trait loci analyses revealed that rs7175701 is predicted to influence the expression of IL16 and other cancer-related genes. CONCLUSION Our study provides evidence that IL16 polymorphisms play a role in prostate cancer susceptibility among AAs. IMPACT Our findings are significant given that there has been limited focus on the role of IL16 genetic polymorphisms on prostate cancer risk in AAs.
Collapse
Affiliation(s)
- Ken Batai
- Institute of Human Genetics, College of Medicine, School of Public Health, University of Illinois at Chicago, Chicago, IL 60607-4067, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Marthick JR, Dickinson JL. Emerging putative biomarkers: the role of alpha 2 and 6 integrins in susceptibility, treatment, and prognosis. Prostate Cancer 2012; 2012:298732. [PMID: 22900191 PMCID: PMC3415072 DOI: 10.1155/2012/298732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022] Open
Abstract
The genetic architecture underpinning prostate cancer is complex, polygenic and despite recent significant advances many questions remain. Advances in genetic technologies have greatly improved our ability to identify genetic variants associated with complex disease including prostate cancer. Genome-wide association studies (GWASs) and microarray gene expression studies have identified genetic associations with prostate cancer susceptibility and tumour development. The integrins feature prominently in both studies examining the underlying genetic susceptibility and mechanisms driving prostate tumour development. Integrins are cell adhesion molecules involved in extracellular and intracellular signalling and are imperative for tumour development, migration, and angiogenesis. Although several integrins have been implicated in tumour development, the roles of integrin α(2) and integrin α(6) are the focus of this paper as evidence is now emerging that these integrins are implicit in prostate cancer susceptibility, cancer stem cell biology, angiogenesis, cell migration, and metastases to bone and represent potential biomarkers and therapeutic targets. There currently exists an urgent need to develop tools that differentiate indolent from aggressive prostate cancers and predict how patients will respond to treatment. This paper outlines the evidence supporting the use of α(2) and α(6) integrins in clinical applications for tailored patient treatment.
Collapse
Affiliation(s)
- James R. Marthick
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| | - Joanne L. Dickinson
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| |
Collapse
|
40
|
Isaacs WB. Inherited susceptibility for aggressive prostate cancer. Asian J Androl 2012; 14:415-8. [PMID: 22543676 PMCID: PMC3568760 DOI: 10.1038/aja.2011.146] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Revised: 03/30/2012] [Accepted: 03/30/2012] [Indexed: 01/17/2023] Open
Abstract
Whether or not there is inherited basis for prostate cancer aggressiveness is not clear, but advances in DNA analysis should provide an answer to this question in the very near future.
Collapse
Affiliation(s)
- William B Isaacs
- Brady Urological Institute, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
41
|
Amankwah EK, Sellers TA, Park JY. Gene variants in the angiogenesis pathway and prostate cancer. Carcinogenesis 2012; 33:1259-69. [PMID: 22523086 DOI: 10.1093/carcin/bgs150] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Although the causes of prostate cancer are still unknown, numerous studies support the role of genetic factors in the development and progression of this disease. Single nucleotide polymorphisms (SNPs) in key angiogenesis genes have been studied in prostate cancer. In this review, we provide an overview of the current knowledge of the role of genetic variants in the angiogenesis pathway in prostate cancer risk and progression. Of the 17 prostate cancer genome-wide association studies (GWAS) conducted to date, only one identified disease-associated SNPs in a region of an angiogenesis pathway gene. An association was observed between aggressive disease and three intergenic SNPs (rs11199874, rs10749408 and rs10788165) in a region on chromosome 10q26 that encompasses FGFR2. The majority (27/32, 84.4%) of primary candidate gene studies reviewed had a small (n < 800, 20/32, 62.5%) to medium sample size (n = 800-2000, 7/32, 21.9%), whereas only five (15.6%) had a large sample size (n ≥ 2000). Results from the large studies revealed associations with risk and aggressive disease for SNPs in NOS2A, NOS3 and MMP-2 and risk for HIF1-α. Meta-analyses have so far been conducted on FGFR2, TGF-β, TNF-α, HIF1-α and IL10 and the results reveal an association with risk for SNPs in FGFR2 and TGF-β and aggressive disease for SNPs in IL-10. Thus, existing evidence from GWAS and large candidate gene studies indicates that SNPs from a limited number of angiogenesis pathway genes are associated with prostate cancer risk and progression.
Collapse
Affiliation(s)
- Ernest K Amankwah
- Department of Cancer Epidemiology, Division of Cancer Prevention and Control, Moffitt Cancer Center, Tampa, FL, USA
| | | | | |
Collapse
|
42
|
Goh CL, Schumacher FR, Easton D, Muir K, Henderson B, Kote-Jarai Z, Eeles RA. Genetic variants associated with predisposition to prostate cancer and potential clinical implications. J Intern Med 2012; 271:353-65. [PMID: 22308973 DOI: 10.1111/j.1365-2796.2012.02511.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Prostate cancer is the commonest cancer in the developed world. There is an inherited component to this disease as shown in familial and twin studies. However, the discovery of these variants has been difficult. The emergence of genome-wide association studies has led to the identification of over 46 susceptibility loci. Their clinical utility to predict risk, response to treatment, or treatment toxicity, remains undefined. Large consortia are needed to achieve adequate statistical power to answer these genetic-clinical and genetic-epidemiological questions. International collaborations are currently underway to link genetic with clinical/epidemiological data to develop risk prediction models, which could direct screening and treatment programs.
Collapse
Affiliation(s)
- C L Goh
- Oncogenetics Team, The Institute of Cancer Research, Sutton, Surrey, UK
| | | | | | | | | | | | | |
Collapse
|
43
|
Turner AR, Kader AK, Xu J. Utility of genome-wide association study findings: prostate cancer as a translational research paradigm. J Intern Med 2012; 271:344-52. [PMID: 22272820 PMCID: PMC3753782 DOI: 10.1111/j.1365-2796.2012.02522.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Genome-wide association studies have identified thousands of consistently replicated associations between genetic markers and complex disease risk, including cancers. Alone, these markers have limited utility in risk prediction; however, when several of these markers are used in combination, the predictive performance appears to be similar to that of many currently available clinical predictors. Despite this, there are divergent views regarding the clinical validity and utility of these genetic markers in risk prediction. There are valid concerns, thus providing a direction for new lines of research. Herein, we outline the debate and use the example of prostate cancer to highlight emerging evidence from studies that aim to address potential concerns. We also describe a translational framework that could be used to guide the development of a new generation of comprehensive research studies aimed at capitalizing on these exciting new discoveries.
Collapse
Affiliation(s)
- A R Turner
- Center for Cancer Genomics, Wake Forest University, School of Medicine, Winston-Salem, NC 27157, USA
| | | | | |
Collapse
|