1
|
Sibomana O. Genetic Diversity Landscape in African Population: A Review of Implications for Personalized and Precision Medicine. Pharmgenomics Pers Med 2024; 17:487-496. [PMID: 39555236 PMCID: PMC11566596 DOI: 10.2147/pgpm.s485452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 11/04/2024] [Indexed: 11/19/2024] Open
Abstract
Introduction Africa, a continent considered to be the cradle of human beings has the largest genetic diversity among its population than other continents. This review discusses the implications of this high African genetic diversity to the development of personalized and precision medicine. Methodology A comprehensive search across PubMed, Google Scholar, Science Direct, DOAJ, AJOL, and the Cochrane Library electronic databases and manual Google searches was conducted using key terms "genetics", "genetic diversity", "Africa", "precision medicine", and "personalized medicine". Updated original and review studies focusing on the implications of African high genetic diversity on personalized and precision medicine were included. Included studies were thematically synthesized to elucidate their positive or negative implications for personalized healthcare, aiming to foster informed clinical practice and scientific inquiry. Results African populations' high genetic diversity presents opportunities for personalized and precision medicine including improving pharmacogenomics, understanding gene interactions, discovering new variants, mapping disease genes, creating updated genomic reference panels, and validating biomarkers. However, challenges include underrepresentation in studies, scarcity of reference genomes, inaccuracy of genetic testing and interpretation, and ancestry misclassification. Addressing these requires the establishment of genomic research centers, increasing funding, creating biobanks and repositories, education, infrastructure, and international cooperation to enhance healthcare equity and outcomes through personalized and precision medicine. Conclusion High African genetic diversity presents both positive and negative implications for personalized and precision medicine. Deep further research is recommended to harness the challenges and use the opportunities to develop customized treatments.
Collapse
Affiliation(s)
- Olivier Sibomana
- Department of General Medicine and Surgery, College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| |
Collapse
|
2
|
Mavingire N, Moore JC, Johnson JR, Dwead AM, Cropp CD, Mechref Y, Kobeissy F, Rais-Bahrami S, Woods-Burnham L. Revisiting HER2 in Prostate Cancer from an Inclusive Perspective: From Biomarkers to Omics. Cancers (Basel) 2024; 16:3262. [PMID: 39409883 PMCID: PMC11476348 DOI: 10.3390/cancers16193262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/18/2024] [Accepted: 09/19/2024] [Indexed: 10/20/2024] Open
Abstract
Human epidermal growth factor receptor 2 (HER2) is a major driver of disease progression, treatment resistance, and worse survival for patients with various types of cancers, including prostate cancer. However, key bench studies and clinical trials have failed to evaluate the role of HER2 in prostate cancer using racially diverse experimental designs and protocols. This lack of diversity represents what has been the status quo of cancer research in the United States for decades. In the case of prostate cancer, homogenic study designs are problematic as Black men are much more likely to be diagnosed and die from aggressive and incurable forms of the disease. Therefore, the strategic inclusion of biospecimens collected from Black patients as well as the recruitment and enrollment of Black men into prostate cancer clinical trials is necessary to comprehensively evaluate genetic and molecular factors that contribute to variable outcomes in this high-risk population. Additionally, a higher prevalence of HER2 expression in Black men was recently reported in a small cohort of prostate cancer patients and may contribute to worsened prognosis. In this review, we carefully consider the role of HER2 in prostate cancer while, for the first time, taking into account the influences of race and genetic ancestry.
Collapse
Affiliation(s)
- Nicole Mavingire
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.); (J.C.M.)
| | - Janelle C. Moore
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.); (J.C.M.)
| | - Jabril R. Johnson
- Department of Microbiology, Biochemistry, & Immunology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Abdulrahman M. Dwead
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.); (J.C.M.)
| | - Cheryl D. Cropp
- Department of Pharmacology & Toxicology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Firas Kobeissy
- Department of Neurobiology, Morehouse School of Medicine, Atlanta, GA 30310, USA;
| | - Soroush Rais-Bahrami
- Department of Urology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA;
- Department of Radiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL 35294, USA
| | - Leanne Woods-Burnham
- Department of Surgery, Morehouse School of Medicine, Atlanta, GA 30310, USA; (N.M.); (J.C.M.)
| |
Collapse
|
3
|
Kami Reddy KR, Piyarathna DWB, Park JH, Putluri V, Amara CS, Kamal AHM, Xu J, Kraushaar D, Huang S, Jung SY, Eberlin LS, Johnson JR, Kittles RA, Ballester LY, Parsawar K, Siddiqui MM, Gao J, Langer Gramer A, Bollag RJ, Terris MK, Lotan Y, Creighton CJ, Lerner SP, Sreekumar A, Kaipparettu BA, Putluri N. Mitochondrial reprogramming by activating OXPHOS via glutamine metabolism in African American patients with bladder cancer. JCI Insight 2024; 9:e172336. [PMID: 39253977 PMCID: PMC11385078 DOI: 10.1172/jci.insight.172336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/18/2024] [Indexed: 09/11/2024] Open
Abstract
Bladder cancer (BLCA) mortality is higher in African American (AA) patients compared with European American (EA) patients, but the molecular mechanism underlying race-specific differences are unknown. To address this gap, we conducted comprehensive RNA-Seq, proteomics, and metabolomics analysis of BLCA tumors from AA and EA. Our findings reveal a distinct metabolic phenotype in AA BLCA characterized by elevated mitochondrial oxidative phosphorylation (OXPHOS), particularly through the activation of complex I. The results provide insight into the complex I activation-driven higher OXPHOS activity resulting in glutamine-mediated metabolic rewiring and increased disease progression, which was also confirmed by [U]13C-glutamine tracing. Mechanistic studies further demonstrate that knockdown of NDUFB8, one of the components of complex I in AA BLCA cells, resulted in reduced basal respiration, ATP production, GLS1 expression, and proliferation. Moreover, preclinical studies demonstrate the therapeutic potential of targeting complex I, as evidenced by decreased tumor growth in NDUFB8-depleted AA BLCA tumors. Additionally, genetic and pharmacological inhibition of GLS1 attenuated mitochondrial respiration rates and tumor growth potential in AA BLCA. Taken together, these findings provide insight into BLCA disparity for targeting GLS1-Complex I for future therapy.
Collapse
Affiliation(s)
| | | | | | - Vasanta Putluri
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | | | - Abu Hena Mostafa Kamal
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| | - Jun Xu
- Department of Molecular and Cellular Biology
- Advanced Technology Cores
| | | | - Shixia Huang
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
- Huffington Department of Education, Innovation and Technology
| | - Sung Yun Jung
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, and
| | - Livia S Eberlin
- Department of Surgery, Baylor College of Medicine, Houston, Texas, USA
| | - Jabril R Johnson
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Rick A Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, Georgia, USA
| | - Leomar Y Ballester
- Division of Pathology and Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Krishna Parsawar
- Analytical and Biological Mass Spectrometry Core, University of Arizona, Tucson, Arizona, USA
| | - M Minhaj Siddiqui
- Division of Urology, Department of Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Jianjun Gao
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Roni J Bollag
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Martha K Terris
- Department of Urology, Medical College of Georgia, Augusta, Georgia, USA
| | - Yair Lotan
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chad J Creighton
- Dan L Duncan Comprehensive Cancer Center
- Department of Medicine and
| | - Seth P Lerner
- Dan L Duncan Comprehensive Cancer Center
- Scott Department of Urology, Baylor College of Medicine, Houston, Texas, USA
| | - Arun Sreekumar
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
| | | | - Nagireddy Putluri
- Department of Molecular and Cellular Biology
- Dan L Duncan Comprehensive Cancer Center
- Advanced Technology Cores
| |
Collapse
|
4
|
Kasai F, Fukushima M, Miyagi Y, Nakamura Y. Genetic diversity among the present Japanese population: evidence from genotyping of human cell lines established in Japan. Hum Cell 2024; 37:944-950. [PMID: 38639832 PMCID: PMC11194210 DOI: 10.1007/s13577-024-01055-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 03/12/2024] [Indexed: 04/20/2024]
Abstract
Japan is often assumed to have a highly homogeneous ethnic population, because it is an island country. This is evident in human cell lines collected from cell banks; however, these genotypes have not been thoroughly characterized. To examine the population genotypes of human cell lines established in Japan, we conducted SNP genotyping on 57 noncancerous cell lines and 43 lung cancer cell lines. Analysis of biogeographic ancestry revealed that 58 cell lines had non-admixed Japanese genotypes, 21 cell lines had an admixture of Japanese and East Asian genotypes, and the remaining 21 cell lines had East Asian genotypes. The proportion of non-admixed Japanese genotypes was similar between lung cancer and noncancerous cell lines, suggesting that patients in Japan may not exclusively have Japanese genotypes. This could influence the incidence of inherited diseases and should be taken into account in personalized medicine tailored to genetic background. The genetic makeup of the present-day Japanese population cannot be fully explained by the ancestral Jomon and Yayoi lineages. Instead, it is necessary to consider a certain level of genetic admixture between Japanese and neighboring Asian populations. Our study revealed genetic variation among human cell lines derived from Japanese individuals, reflecting the diversity present within the Japanese population.
Collapse
Affiliation(s)
- Fumio Kasai
- Cell Engineering Division, BioResource Research Center, RIKEN Cell Bank, Tsukuba, Japan.
| | - Makoto Fukushima
- Cell Engineering Division, BioResource Research Center, RIKEN Cell Bank, Tsukuba, Japan
| | - Yohei Miyagi
- Molecular Pathology and Genetics Division, Kanagawa Cancer Center Research Institute, Yokohama, Japan
| | - Yukio Nakamura
- Cell Engineering Division, BioResource Research Center, RIKEN Cell Bank, Tsukuba, Japan
| |
Collapse
|
5
|
Johnson JR, Mavingire N, Woods-Burnham L, Walker M, Lewis D, Hooker SE, Galloway D, Rivers B, Kittles RA. The complex interplay of modifiable risk factors affecting prostate cancer disparities in African American men. Nat Rev Urol 2024; 21:422-432. [PMID: 38307952 DOI: 10.1038/s41585-023-00849-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2023] [Indexed: 02/04/2024]
Abstract
Prostate cancer is the second most commonly diagnosed non-skin malignancy and the second leading cause of cancer death among men in the USA. However, the mortality rate of African American men aged 40-60 years is almost 2.5-fold greater than that of European American men. Despite screening and diagnostic and therapeutic advances, disparities in prostate cancer incidence and outcomes remain prevalent. The reasons that lead to this disparity in outcomes are complex and multifactorial. Established non-modifiable risk factors such as age and genetic predisposition contribute to this disparity; however, evidence suggests that modifiable risk factors (including social determinants of health, diet, steroid hormones, environment and lack of diversity in enrolment in clinical trials) are prominent contributing factors to the racial disparities observed. Disparities involved in the diagnosis, treatment and survival of African American men with prostate cancer have also been correlated with low socioeconomic status, education and lack of access to health care. The effects and complex interactions of prostate cancer modifiable risk factors are important considerations for mitigating the incidence and outcomes of this disease in African American men.
Collapse
Affiliation(s)
- Jabril R Johnson
- Department of Microbiology, Biochemistry & Immunology, Morehouse School of Medicine, Atlanta, GA, USA.
| | - Nicole Mavingire
- Department of Physiology, Morehouse School of Medicine, Atlanta, GA, USA
| | | | - Mya Walker
- Department of Diabetes and Cancer Metabolism, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Deyana Lewis
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Stanley E Hooker
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Dorothy Galloway
- Department of Population Sciences, Division of Health Equities, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Brian Rivers
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| | - Rick A Kittles
- Department of Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA, USA
| |
Collapse
|
6
|
Misek SA, Fultineer A, Kalfon J, Noorbakhsh J, Boyle I, Roy P, Dempster J, Petronio L, Huang K, Saadat A, Green T, Brown A, Doench JG, Root DE, McFarland JM, Beroukhim R, Boehm JS. Germline variation contributes to false negatives in CRISPR-based experiments with varying burden across ancestries. Nat Commun 2024; 15:4892. [PMID: 38849329 PMCID: PMC11161638 DOI: 10.1038/s41467-024-48957-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/20/2024] [Indexed: 06/09/2024] Open
Abstract
Reducing disparities is vital for equitable access to precision treatments in cancer. Socioenvironmental factors are a major driver of disparities, but differences in genetic variation likely also contribute. The impact of genetic ancestry on prioritization of cancer targets in drug discovery pipelines has not been systematically explored due to the absence of pre-clinical data at the appropriate scale. Here, we analyze data from 611 genome-scale CRISPR/Cas9 viability experiments in human cell line models to identify ancestry-associated genetic dependencies essential for cell survival. Surprisingly, we find that most putative associations between ancestry and dependency arise from artifacts related to germline variants. Our analysis suggests that for 1.2-2.5% of guides, germline variants in sgRNA targeting sequences reduce cutting by the CRISPR/Cas9 nuclease, disproportionately affecting cell models derived from individuals of recent African descent. We propose three approaches to mitigate this experimental bias, enabling the scientific community to address these disparities.
Collapse
Affiliation(s)
- Sean A Misek
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Aaron Fultineer
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Jeremie Kalfon
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Isabella Boyle
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Priyanka Roy
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Joshua Dempster
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Lia Petronio
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Katherine Huang
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Alham Saadat
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Thomas Green
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Adam Brown
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - John G Doench
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | | | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Departments of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA.
| | - Jesse S Boehm
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
- Koch Institute, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA.
| |
Collapse
|
7
|
Yeyeodu S, Hanafi D, Webb K, Laurie NA, Kimbro KS. Population-enriched innate immune variants may identify candidate gene targets at the intersection of cancer and cardio-metabolic disease. Front Endocrinol (Lausanne) 2024; 14:1286979. [PMID: 38577257 PMCID: PMC10991756 DOI: 10.3389/fendo.2023.1286979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/07/2023] [Indexed: 04/06/2024] Open
Abstract
Both cancer and cardio-metabolic disease disparities exist among specific populations in the US. For example, African Americans experience the highest rates of breast and prostate cancer mortality and the highest incidence of obesity. Native and Hispanic Americans experience the highest rates of liver cancer mortality. At the same time, Pacific Islanders have the highest death rate attributed to type 2 diabetes (T2D), and Asian Americans experience the highest incidence of non-alcoholic fatty liver disease (NAFLD) and cancers induced by infectious agents. Notably, the pathologic progression of both cancer and cardio-metabolic diseases involves innate immunity and mechanisms of inflammation. Innate immunity in individuals is established through genetic inheritance and external stimuli to respond to environmental threats and stresses such as pathogen exposure. Further, individual genomes contain characteristic genetic markers associated with one or more geographic ancestries (ethnic groups), including protective innate immune genetic programming optimized for survival in their corresponding ancestral environment(s). This perspective explores evidence related to our working hypothesis that genetic variations in innate immune genes, particularly those that are commonly found but unevenly distributed between populations, are associated with disparities between populations in both cancer and cardio-metabolic diseases. Identifying conventional and unconventional innate immune genes that fit this profile may provide critical insights into the underlying mechanisms that connect these two families of complex diseases and offer novel targets for precision-based treatment of cancer and/or cardio-metabolic disease.
Collapse
Affiliation(s)
- Susan Yeyeodu
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
- Charles River Discovery Services, Morrisville, NC, United States
| | - Donia Hanafi
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - Kenisha Webb
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| | - Nikia A. Laurie
- Julius L Chambers Biomedical/Biotechnology Institute (JLC-BBRI), North Carolina Central University, Durham, NC, United States
| | - K. Sean Kimbro
- Department of Microbiology, Biochemistry, and Immunology, Morehouse School of Medicine, Atlanta, GA, United States
| |
Collapse
|
8
|
George SHL, Medina-Rivera A, Idaghdour Y, Lappalainen T, Gallego Romero I. Increasing diversity of functional genetics studies to advance biological discovery and human health. Am J Hum Genet 2023; 110:1996-2002. [PMID: 37995684 PMCID: PMC10716434 DOI: 10.1016/j.ajhg.2023.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 10/25/2023] [Accepted: 10/25/2023] [Indexed: 11/25/2023] Open
Abstract
In this perspective we discuss the current lack of genetic and environmental diversity in functional genomics datasets. There is a well-described Eurocentric bias in genetic and functional genomic research that has a clear impact on the benefit this research can bring to underrepresented populations. Current research focused on genetic variant-to-function experiments aims to identify molecular QTLs, but the lack of data from genetically diverse individuals has limited analyses to mostly populations of European ancestry. Although some efforts have been established to increase diversity in functional genomic studies, much remains to be done to consistently generate data for underrepresented populations from now on. We discuss the major barriers for this continuity and suggest actionable insights, aiming to empower research and researchers from underserved populations.
Collapse
Affiliation(s)
- Sophia H L George
- Department of Obstetrics, Gynecology and Reproductive Sciences, Miller School of Medicine, University of Miami, Miami, FL, USA; Sylvester Comprehensive Cancer Center, Miami, FL, USA.
| | - Alejandra Medina-Rivera
- Laboratorio Internacional de Investigación Sobre El Genoma Humano, Universidad Nacional Autónoma de México, Juriquilla, Querétaro, México
| | - Youssef Idaghdour
- Program in Biology, Division of Science and Mathematics, New York University Abu Dhabi, Abu Dhabi, UAE; Public Health Research Center, New York University Abu Dhabi, Abu Dhabi, UAE; Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, UAE
| | - Tuuli Lappalainen
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, Stockholm, Sweden; New York Genome Center, New York, NY, USA.
| | - Irene Gallego Romero
- Melbourne Integrative Genomics and School of BioSciences, University of Melbourne, Parkville, VIC, Australia; Center for Genomics, Evolution and Medicine, Institute of Genomics, University of Tartu, Tartu, Estonia
| |
Collapse
|
9
|
Gray JS, Wani SA, Hussain S, Huang P, Nayak D, Long MD, Yates C, Clinton SK, Bennet CE, Coss CC, Campbell MJ. The MYC axis in advanced prostate cancer is impacted through concurrent targeting of ERβ and AR using a novel ERβ-selective ligand alongside Enzalutamide. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.15.567282. [PMID: 38014010 PMCID: PMC10680693 DOI: 10.1101/2023.11.15.567282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
We have dissected the role of Estrogen receptor beta (ERβ) in prostate cancer (PCa) with a novel ERβ ligand, OSU-ERb-12. Drug screens revealed additive interactions between OSU-ERB-12 and either epigenetic inhibitors or the androgen receptor antagonist, Enzalutamide (Enza). Clonogenic and cell biolody studies supported the potent additive effects of OSU-ERB-12 (100nM) and Enza (1μM). The cooperative behavior was in PCa cell lines treated with either OSU-ERB-12 plus Enza or combinations involving 17β-estradiol (E2). OSU-ERb-12 plus Enza uniquely impacted the transcriptiome, accessible chromatin, and the AR, MYC and H3K27ac cistromes. This included skewed transcriptional responses including suppression of the androgen and MYC transcriptomes, and repressed MYC protein. OSU-ERb-12 plus Enza uniquely impacted chromatin accessibility at approximately 3000 nucleosome-free sites, enriched at enhancers, enriched for basic Helix-Loop-Helix motifs. CUT&RUN experiments revealed combination treatment targeting of MYC, AR, and H3K27ac again shaping enhancer accessibility. Specifically, it repressed MYC interactions at enhancer regions enriched for bHLH motifs, and overlapped with publicly-available bHLH cistromes. Finally, cistrome-transcriptome analyses identified ~200 genes that distinguished advanced PCa tumors in the SU2C cohort with high androgen and low neuroendocrine scores.
Collapse
Affiliation(s)
- Jaimie S. Gray
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
- College of Medicine; The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center; The Ohio State University, Columbus, OH 43210
| | - Sajad A. Wani
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center; The Ohio State University, Columbus, OH 43210
| | - Shahid Hussain
- Board of Governors Innovation Center; Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Cedars-Sinai Cancer; Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| | - Phoebe Huang
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
| | - Debasis Nayak
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Clayton Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21287
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21287 USA
| | - Steven K. Clinton
- College of Medicine; The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center; The Ohio State University, Columbus, OH 43210
| | - Chad E. Bennet
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Christopher C. Coss
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
- Comprehensive Cancer Center; The Ohio State University, Columbus, OH 43210
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210
| | - Moray J. Campbell
- College of Pharmacy, Division of Pharmaceutics and Pharmacology; The Ohio State University, Columbus, OH 43210
- Board of Governors Innovation Center; Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Cedars-Sinai Cancer; Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, 8700 Beverly Blvd, Los Angeles, CA 90048
| |
Collapse
|
10
|
Harris AR, Panigrahi G, Liu H, Koparde VN, Bailey-Whyte M, Dorsey TH, Yates CC, Ambs S. Chromatin Accessibility Landscape of Human Triple-negative Breast Cancer Cell Lines Reveals Variation by Patient Donor Ancestry. CANCER RESEARCH COMMUNICATIONS 2023; 3:2014-2029. [PMID: 37732899 PMCID: PMC10552704 DOI: 10.1158/2767-9764.crc-23-0236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/01/2023] [Accepted: 09/12/2023] [Indexed: 09/22/2023]
Abstract
African American (AA) women have an excessive risk of developing triple-negative breast cancer (TNBC). We employed Assay for Transposase-Accessible Chromatin using sequencing to characterize differences in chromatin accessibility between nine commonly used TNBC cell lines derived from patients of European and African ancestry. Principal component and chromosome mapping analyses of accessibility peaks with the most variance revealed separation of chromatin profiles by patient group. Motif enrichment and footprinting analyses of disparate open chromatin regions revealed differences in transcription factor activity, identifying 79 with ancestry-associated binding patterns (FDR < 0.01). AA TNBC cell lines exhibited increased accessibility for 62 transcription factors associated with epithelial-to-mesenchymal transition, cancer stemness/chemotherapeutic resistance, proliferation, and aberrant p53 regulation, as well as KAISO, which has been previously linked to aggressive tumor characteristics in AA patients with cancer. Differential Assay for Transposase-Accessible Chromatin signal analysis identified 1,596 genes located within promoters of differentially open chromatin regions in AA-derived TNBC, identifying DNA methyltransferase 1 as the top upregulated gene associated with African ancestry. Pathway analyses with these genes revealed enrichment in several pathways, including hypoxia. Culturing cells under hypoxia showed ancestry-specific stress responses that led to the identification of a core set of AA-associated transcription factors, which included members of the Kruppel-like factor and Sp subfamilies, as well as KAISO, and identified ZDHHC1, a gene previously implicated in immunity and STING activation, as the top upregulated AA-specific gene under hypoxia. Together, these data reveal a differential chromatin landscape in TNBC associated with donor ancestry. The open chromatin structure of AA TNBC may contribute to a more lethal disease. SIGNIFICANCE We identify an ancestry-associated open chromatin landscape and related transcription factors that may contribute to aggressive TNBC in AA women. Furthermore, this study advocates for the inclusion of diversely sourced cell lines in experimental in vitro studies to advance health equity at all levels of scientific research.
Collapse
Affiliation(s)
- Alexandra R. Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Gatikrushna Panigrahi
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Huaitian Liu
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Vishal N. Koparde
- Center for Cancer Research Collaborative Bioinformatics Resource Frederick National Laboratory for Cancer Research, NCI, Frederick, Maryland
- Advanced Biomedical Computational Sciences, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, Maryland
| | - Maeve Bailey-Whyte
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
- School of Medicine, University of Limerick, Limerick, Ireland
| | - Tiffany H. Dorsey
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| | - Clayton C. Yates
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Stefan Ambs
- Laboratory of Human Carcinogenesis, Center for Cancer Research, NCI, NIH, Bethesda, Maryland
| |
Collapse
|
11
|
Tapia JL, McDonough JC, Cauble EL, Gonzalez CG, Teteh DK, Treviño LS. Parabens Promote Protumorigenic Effects in Luminal Breast Cancer Cell Lines With Diverse Genetic Ancestry. J Endocr Soc 2023; 7:bvad080. [PMID: 37409182 PMCID: PMC10318621 DOI: 10.1210/jendso/bvad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Indexed: 07/07/2023] Open
Abstract
Context One in 8 women will develop breast cancer in their lifetime. Yet, the burden of disease is greater in Black women. Black women have a 40% higher mortality rate than White women, and a higher incidence of breast cancer at age 40 and younger. While the underlying cause of this disparity is multifactorial, exposure to endocrine disrupting chemicals (EDCs) in hair and other personal care products has been associated with an increased risk of breast cancer. Parabens are known EDCs that are commonly used as preservatives in hair and other personal care products, and Black women are disproportionately exposed to products containing parabens. Objective Studies have shown that parabens impact breast cancer cell proliferation, death, migration/invasion, and metabolism, as well as gene expression in vitro. However, these studies were conducted using cell lines of European ancestry; to date, no studies have utilized breast cancer cell lines of West African ancestry to examine the effects of parabens on breast cancer progression. Like breast cancer cell lines with European ancestry, we hypothesize that parabens promote protumorigenic effects in breast cancer cell lines of West African ancestry. Methods Luminal breast cancer cell lines with West African ancestry (HCC1500) and European ancestry (MCF-7) were treated with biologically relevant doses of methylparaben, propylparaben, and butylparaben. Results Following treatment, estrogen receptor target gene expression and cell viability were examined. We observed altered estrogen receptor target gene expression and cell viability that was paraben and cell line specific. Conclusion This study provides greater insight into the tumorigenic role of parabens in the progression of breast cancer in Black women.
Collapse
Affiliation(s)
- Jazma L Tapia
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jillian C McDonough
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Emily L Cauble
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Cesar G Gonzalez
- Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Dede K Teteh
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Lindsey S Treviño
- Division of Health Equities, Department of Population Sciences, Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| |
Collapse
|
12
|
Sablatura LK, Bircsak KM, Shepherd P, Bathina M, Queiroz K, Farach-Carson MC, Kittles RA, Constantinou PE, Saleh A, Navone NM, Harrington DA. A 3D Perfusable Platform for In Vitro Culture of Patient Derived Xenografts. Adv Healthc Mater 2023; 12:e2201434. [PMID: 36461624 PMCID: PMC10235208 DOI: 10.1002/adhm.202201434] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 10/07/2022] [Indexed: 12/04/2022]
Abstract
Many advanced cancer models, such as patient-derived xenografts (PDXs), offer significant benefits in their preservation of the native tumor's heterogeneity and susceptibility to treatments, but face significant barriers to use in their reliance on a rodent host for propagation and screening. PDXs remain difficult to implement in vitro, particularly in configurations that enable both detailed cellular analysis and high-throughput screening (HTS). Complex multilineage co-cultures with stromal fibroblasts, endothelium, and other cellular and structural components of the tumor microenvironment (TME) further complicate ex vivo implementation. Herein, the culture of multiple prostate cancer (PCa)-derived PDX models as 3D clusters within engineered biomimetic hydrogel matrices, in a HTS-compatible multiwell microfluidic format, alongside bone marrow-derived stromal cells and a perfused endothelial channel. Polymeric hydrogel matrices are customized for each cell type, enabling cell survival in vitro and facile imaging across all conditions. PCa PDXs demonstrate unique morphologies and reliance on TME partners, retention of known phenotype, and expected sensitivity or resistance to standard PCa therapeutics. This novel integration of technologies provides a fully human model, and expands the information to be gathered from each specimen, while avoiding the time and labor involved with animal-based testing.
Collapse
Affiliation(s)
| | | | - Peter Shepherd
- Department of Genitourinary Medical Oncology Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Madhavi Bathina
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | | | - Mary C Farach-Carson
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, 77054, USA
| | - Rick A Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Pamela E Constantinou
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | | | - Nora M Navone
- Department of Genitourinary Medical Oncology Research, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daniel A Harrington
- Department of BioSciences, Rice University, Houston, TX, 77005, USA
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
- Department of Diagnostic and Biomedical Sciences, The University of Texas Health Science Center, Houston, TX, 77054, USA
| |
Collapse
|
13
|
Siddappa M, Hussain S, Wani SA, White J, Tang H, Gray JS, Jafari H, Wu HC, Long MD, Elhussin I, Karanam B, Wang H, Morgan R, Hardiman G, Adelani IB, Rotimi SO, Murphy AR, Nonn L, Davis MB, Kittles RA, Hughes Halbert C, Sucheston-Campbell LE, Yates C, Campbell MJ. African American Prostate Cancer Displays Quantitatively Distinct Vitamin D Receptor Cistrome-transcriptome Relationships Regulated by BAZ1A. CANCER RESEARCH COMMUNICATIONS 2023; 3:621-639. [PMID: 37082578 PMCID: PMC10112383 DOI: 10.1158/2767-9764.crc-22-0389] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/12/2023] [Accepted: 03/07/2023] [Indexed: 04/22/2023]
Abstract
African American (AA) prostate cancer associates with vitamin D3 deficiency, but vitamin D receptor (VDR) genomic actions have not been investigated in this context. We undertook VDR proteogenomic analyses in European American (EA) and AA prostate cell lines and four clinical cohorts. Rapid immunoprecipitation mass spectrometry of endogenous protein (RIME) analyses revealed that nonmalignant AA RC43N prostate cells displayed the greatest dynamic protein content in the VDR complex. Likewise, in AA cells, Assay for Transposase-Accessible Chromatin using sequencing established greater 1α,25(OH)2D3-regulated chromatin accessibility, chromatin immunoprecipitation sequencing revealed significant enhancer-enriched VDR cistrome, and RNA sequencing identified the largest 1α,25(OH)2D3-dependent transcriptome. These VDR functions were significantly corrupted in the isogenic AA RC43T prostate cancer cells, and significantly distinct from EA cell models. We identified reduced expression of the chromatin remodeler, BAZ1A, in three AA prostate cancer cohorts as well as RC43T compared with RC43N. Restored BAZ1A expression significantly increased 1α,25(OH)2D3-regulated VDR-dependent gene expression in RC43T, but not HPr1AR or LNCaP cells. The clinical impact of VDR cistrome-transcriptome relationships were tested in three different clinical prostate cancer cohorts. Strikingly, only in AA patients with prostate cancer, the genes bound by VDR and/or associated with 1α,25(OH)2D3-dependent open chromatin (i) predicted progression from high-grade prostatic intraepithelial neoplasia to prostate cancer; (ii) responded to vitamin D3 supplementation in prostate cancer tumors; (iii) differentially responded to 25(OH)D3 serum levels. Finally, partial correlation analyses established that BAZ1A and components of the VDR complex identified by RIME significantly strengthened the correlation between VDR and target genes in AA prostate cancer only. Therefore, VDR transcriptional control is most potent in AA prostate cells and distorted through a BAZ1A-dependent control of VDR function. Significance Our study identified that genomic ancestry drives the VDR complex composition, genomic distribution, and transcriptional function, and is disrupted by BAZ1A and illustrates a novel driver for AA prostate cancer.
Collapse
Affiliation(s)
- Manjunath Siddappa
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Shahid Hussain
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Sajad A. Wani
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Hancong Tang
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Jaimie S. Gray
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hedieh Jafari
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Hsu-Chang Wu
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Mark D. Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Isra Elhussin
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Balasubramanyam Karanam
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Honghe Wang
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
| | - Rebecca Morgan
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| | - Gary Hardiman
- School of Biological Sciences, Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | | | - Solomon O. Rotimi
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
| | - Adam R. Murphy
- Department of Urology, Northwestern Medicine, Chicago, Illinois
| | - Larisa Nonn
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Melissa B. Davis
- Department of Surgery, Weill Cornell Medicine, New York City, New York
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope, Duarte, California
| | - Chanita Hughes Halbert
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, California
- Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Lara E. Sucheston-Campbell
- Division of Pharmacy Practice and Science, College of Pharmacy, The Ohio State University, Columbus, Ohio
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, Alabama
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Oncology Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Moray J. Campbell
- Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| |
Collapse
|
14
|
Ramakrishnan S, Kittles RA, Huss WJ, Wang J, Attwood K, Woloszynska A. Serum Androgen Metabolites Correlate with Clinical Variables in African and European American Men with Localized, Therapy Naïve Prostate Cancer. Metabolites 2023; 13:284. [PMID: 36837903 PMCID: PMC9962438 DOI: 10.3390/metabo13020284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/26/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Dihydrotestosterone (DHT) and testosterone (T), which mediate androgen receptor nuclear translocation and target gene transcription, are crucial androgens and essential molecular triggers required for the proliferation and survival of prostate cancer cells. Therefore, androgen metabolism is commonly targeted in the treatment of prostate cancer. Using a high-pressure liquid chromatographic assay with tandem mass spectral detection, we determined the serum levels of metabolites produced during DHT/T biosynthesis in African American (AA) and European American (EA) men with localized, therapy naïve prostate cancer. Serum progesterone and related metabolites were significantly lower in AA men than in EA men, and these differences were associated with rapid disease progression. Multivariate analysis revealed significant differences between a subset of intermediate androgen metabolites between AA and EA men and between men with <=3 + 4 and >=4 + 3 Gleason score disease. AA men have a significantly higher frequency of single nucleotide polymorphisms in CYP11B1 and CYP11B2, enzymes that regulate corticosterone-aldosterone conversion. Finally, higher levels of T and pregnenolone were associated with a lower risk of progression-free survival only in AA men. This work provides new insight into androgen metabolism and racial disparities in prostate cancer by presenting evidence of dysregulated androgen biosynthesis in therapy naïve disease that correlates with clinical variables.
Collapse
Affiliation(s)
- Swathi Ramakrishnan
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Rick A. Kittles
- Community Health and Preventive Medicine, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Wendy J. Huss
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Jianmin Wang
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Kristopher Attwood
- Department of Bioinformatics and BioStatistics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| | - Anna Woloszynska
- Department of Pharmacology and Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY 14263, USA
| |
Collapse
|
15
|
Dauda B, Molina SJ, Allen DS, Fuentes A, Ghosh N, Mauro M, Neale BM, Panofsky A, Sohail M, Zhang SR, Lewis ACF. Ancestry: How researchers use it and what they mean by it. Front Genet 2023; 14:1044555. [PMID: 36755575 PMCID: PMC9900027 DOI: 10.3389/fgene.2023.1044555] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/10/2023] [Indexed: 01/24/2023] Open
Abstract
Background: Ancestry is often viewed as a more objective and less objectionable population descriptor than race or ethnicity. Perhaps reflecting this, usage of the term "ancestry" is rapidly growing in genetics research, with ancestry groups referenced in many situations. The appropriate usage of population descriptors in genetics research is an ongoing source of debate. Sound normative guidance should rest on an empirical understanding of current usage; in the case of ancestry, questions about how researchers use the concept, and what they mean by it, remain unanswered. Methods: Systematic literature analysis of 205 articles at least tangentially related to human health from diverse disciplines that use the concept of ancestry, and semi-structured interviews with 44 lead authors of some of those articles. Results: Ancestry is relied on to structure research questions and key methodological approaches. Yet researchers struggle to define it, and/or offer diverse definitions. For some ancestry is a genetic concept, but for many-including geneticists-ancestry is only tangentially related to genetics. For some interviewees, ancestry is explicitly equated to ethnicity; for others it is explicitly distanced from it. Ancestry is operationalized using multiple data types (including genetic variation and self-reported identities), though for a large fraction of articles (26%) it is impossible to tell which data types were used. Across the literature and interviews there is no consistent understanding of how ancestry relates to genetic concepts (including genetic ancestry and population structure), nor how these genetic concepts relate to each other. Beyond this conceptual confusion, practices related to summarizing patterns of genetic variation often rest on uninterrogated conventions. Continental labels are by far the most common type of label applied to ancestry groups. We observed many instances of slippage between reference to ancestry groups and racial groups. Conclusion: Ancestry is in practice a highly ambiguous concept, and far from an objective counterpart to race or ethnicity. It is not uniquely a "biological" construct, and it does not represent a "safe haven" for researchers seeking to avoid evoking race or ethnicity in their work. Distinguishing genetic ancestry from ancestry more broadly will be a necessary part of providing conceptual clarity.
Collapse
Affiliation(s)
- Bege Dauda
- Center for Global Genomics and Health Equity, University of Pennsylvania, Philadelphia, PA, United States
| | - Santiago J. Molina
- Department of Sociology, Northwestern University, Evanston, IL, United States
| | - Danielle S. Allen
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Agustin Fuentes
- Department of Anthropology, Princeton University, Princeton, NJ, United States
| | - Nayanika Ghosh
- Department of the History of Science, Harvard University, Cambridge, MA, United States
| | - Madelyn Mauro
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
| | - Benjamin M. Neale
- Broad Institute of Harvard and MIT, Cambridge, MA, United States
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, United States
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, United States
| | - Aaron Panofsky
- Institute for Society & Genetics, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Public Policy, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Sociology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Mashaal Sohail
- Centro de Ciencias Genomicas (CCG), Universidad Nacional Autonoma de Mexico (UNAM), Cuernavaca, Morelos, Mexico
| | - Sarah R. Zhang
- University of California, Berkeley, Berkeley, CA, United States
| | - Anna C. F. Lewis
- Edmond & Lily Safra Center for Ethics, Harvard University, Cambridge, MA, United States
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States
| |
Collapse
|
16
|
Gallagher EJ, Greco G, Lin S, Yagnik R, Feldman SM, Port E, Friedman NB, Boolbol SK, Killelea B, Pilewskie M, Choi L, LeRoith D, Bickell NA. Insulin resistance and racial disparities in breast cancer prognosis: a multi-center cohort study. Endocr Relat Cancer 2022; 29:693-701. [PMID: 36197762 PMCID: PMC9696320 DOI: 10.1530/erc-22-0106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 09/30/2022] [Indexed: 11/07/2022]
Abstract
The survival for breast cancer (BC) is improving but remains lower in Black women than White women. A number of factors potentially drive the racial differences in BC outcomes. The aim of our study was to determine if insulin resistance (defined as homeostatic model assessment for insulin resistance (HOMA-IR)), mediated part of the relationship between race and BC prognosis (defined by the improved Nottingham prognostic index (iNPI)). We performed a cross-sectional study, recruiting self-identified Black and White women with newly diagnosed primary invasive BC from 10 US hospitals between March 2013 and February 2020. Survey, anthropometric, laboratory, and tumor pathology data were gathered, and we compared the results between Black and White women. We calculated HOMA-IR as well as iNPI scores and examined the associations between HOMA-IR and iNPI. After exclusions, the final cohort was 1206: 911 (76%) White and 295 (24%) Black women. Metabolic syndrome and insulin resistance were more common in Black than White women. Black women had less lobular BC, three times more triple-negative BC, and BCs with higher stage and iNPI scores than White women (P < 0.001 for all comparisons). Fewer Black women had BC genetic testing performed. HOMA-IR mediated part of the association between race and iNPI, particularly in BCs that carried a good prognosis and were hormone receptor (HR)-positive. Higher HOMA-IR scores were associated with progesterone receptor-negative BC in White women but not Black women. Overall, our results suggest that HOMA-IR contributes to the racial disparities in BC outcomes, particularly for women with HR-positive BCs.
Collapse
Affiliation(s)
- Emily J. Gallagher
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Giampaolo Greco
- Department of Population Health Science and Policy, Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sylvia Lin
- Department of Population Health Science and Policy, Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Radhi Yagnik
- Department of Population Health Science and Policy, Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sheldon M. Feldman
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York, NY, USA
| | - Elisa Port
- Department of Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Susan K. Boolbol
- Department of Surgery, Mount Sinai Beth Israel, New York, NY, USA
| | - Brigid Killelea
- Department of Surgery, Yale School of Medicine, New Haven, CT, USA
| | - Melissa Pilewskie
- Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lydia Choi
- Department of Surgery, Wayne State University School of Medicine, Detroit, MI, USA
| | - Derek LeRoith
- Division of Endocrinology, Diabetes and Bone Disease, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nina A. Bickell
- Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
- Tisch Cancer Institute at Mount Sinai, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Population Health Science and Policy, Center for Health Equity and Community Engaged Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Health Equity Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
17
|
Yoon SJ, Baek S, Yu SE, Jo E, Lee D, Shim JK, Choi RJ, Park J, Moon JH, Kim EH, Chang JH, Lee JB, Park JS, Sung HJ, Kang SG. Tissue Niche Miniature of Glioblastoma Patient Treated with Nano-Awakeners to Induce Suicide of Cancer Stem Cells. Adv Healthc Mater 2022; 11:e2201586. [PMID: 36047642 DOI: 10.1002/adhm.202201586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/12/2022] [Indexed: 01/28/2023]
Abstract
Patient-specific cancer therapies can evolve by vitalizing the mother tissue-like cancer niche, cellular profile, genetic signature, and drug responsiveness. This evolution has enabled the elucidation of a key mechanism along with development of the mechanism-driven therapy. After surgical treatment, glioblastoma (GBM) patients require prompt therapy within 14 days in a patient-specific manner. Hence, this study approaches direct culture of GBM patient tissue (1 mm diameter) in a microchannel network chip. Cancer vasculature-mimetic perfusion can support the preservation of the mother tissue-like characteristic signatures and microenvironment. When temozolomide and radiation are administered within 1 day, the responsiveness of the tissue in the chip reflected the clinical outcomes, thereby overcoming the time-consuming process of cell and organoid culture. When the tissue chip culture is continued, the intact GBM signature gets lost, and the outward migration of stem cells from the tissue origin increases, indicating a leaving-home effect on the family dismantle. Nanovesicle production using GBM stem cells enables self-chasing of the cells that escape the temozolomide effect owing to quiescence. The anti-PTPRZ1 peptide display and temozolomide loading to nanovesicles awakes cancer stem cells from the quiescent stage to death. This study suggests a GBM clinic-driven avatar platform and mechanism-learned nanotherapy for translation.
Collapse
Affiliation(s)
- Seon-Jin Yoon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Sewoom Baek
- Department of Brain Korea 21 FOUR Project for Medical Science, Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seung Eun Yu
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Euna Jo
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Dongkyu Lee
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jin-Kyoung Shim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Ran Joo Choi
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Junseong Park
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Precision Medicine Research Center, College of Medicine, The Catholic University of Korea, 222 Banpo-daero, Seocho-gu, Seoul, 06591, Republic of Korea
| | - Ju Hyung Moon
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Eui-Hyun Kim
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jong Hee Chang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Science, Sookmyung Women's University, 25, Cheongpa-ro 47ga-gil, Yongsan-gu, Seoul, 04314, Republic of Korea
| | - Joon-Sang Park
- Department of Computer Engineering, Hongik University, 94, Wausan-ro, Mapo-gu, Seoul, 04066, Republic of Korea
| | - Hak-Joon Sung
- Department of Brain Korea 21 FOUR Project for Medical Science, Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Engineering, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
| | - Seok-Gu Kang
- Department of Neurosurgery, Severance Hospital, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Brain Tumor Translational Research Laboratory, Avison Biomedical Research Center, Yonsei University College of Medicine, 50-1 Yonsei-ro, Seodaemun-gu, Seoul, 03722, Republic of Korea
- Department of Medical Science, Yonsei University Graduate School, Seoul, 03722, Republic of Korea
| |
Collapse
|
18
|
Arenas-Gallo C, Owiredu J, Weinstein I, Lewicki P, Basourakos SP, Vince R, Al Hussein Al Awamlh B, Schumacher FR, Spratt DE, Barbieri CE, Shoag JE. Race and prostate cancer: genomic landscape. Nat Rev Urol 2022; 19:547-561. [PMID: 35945369 DOI: 10.1038/s41585-022-00622-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/23/2022] [Indexed: 11/09/2022]
Abstract
In the past 20 years, new insights into the genomic pathogenesis of prostate cancer have been provided. Large-scale integrative genomics approaches enabled researchers to characterize the genetic and epigenetic landscape of prostate cancer and to define different molecular subclasses based on the combination of genetic alterations, gene expression patterns and methylation profiles. Several molecular drivers of prostate cancer have been identified, some of which are different in men of different races. However, the extent to which genomics can explain racial disparities in prostate cancer outcomes is unclear. Future collaborative genomic studies overcoming the underrepresentation of non-white patients and other minority populations are essential.
Collapse
Affiliation(s)
- Camilo Arenas-Gallo
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Jude Owiredu
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Ilon Weinstein
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Patrick Lewicki
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Spyridon P Basourakos
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Randy Vince
- Department of Urology, University of Michigan, Ann Arbor, MI, USA
| | - Bashir Al Hussein Al Awamlh
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA.,Department of Urology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fredrick R Schumacher
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA.,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA
| | - Daniel E Spratt
- Department of Radiation Oncology, University Hospitals Seidman Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Christopher E Barbieri
- Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA
| | - Jonathan E Shoag
- Department of Urology, University Hospitals Cleveland Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH, USA. .,Department of Urology, NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY, USA. .,Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH, USA.
| |
Collapse
|
19
|
Ewing AT, Turner AD, Sakyi KS, Elmi A, Towson M, Slade JL, Dobs AS, Ford JG, Erby LH. Amplifying Their Voices: Advice, Guidance, and Perceived Value of Cancer Biobanking Research Among an Older, Diverse Cohort. JOURNAL OF CANCER EDUCATION : THE OFFICIAL JOURNAL OF THE AMERICAN ASSOCIATION FOR CANCER EDUCATION 2022; 37:683-693. [PMID: 32975747 DOI: 10.1007/s13187-020-01869-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
The use of biobanks may accelerate scientists' chances of developing cures and treatments that are tailored to individuals' biological makeup-a function of the precision medicine movement. However, given the underrepresentation of certain populations in biobanks, the benefits of these resources may not be equitable for all groups, including older, multi-ethnic populations. The objective of this study was to better understand older, multi-ethnic populations' (1) perceptions of the value of cancer biobanking research, (2) study design preferences, and (3) guidance on ways to promote and increase participation. This study was designed using a community-based participatory research (CBPR) approach and involved eight FGDs with 67 older (65-74 years old) black and white residents from Baltimore City and Prince George's County, MD. FGDs lasted between 90 and 120 min, and participants received a $25 Target gift card for their participation. Analysis involved an inductive approach in which we went through a series of open and axial coding techniques to generate themes and subthemes. Multiple themes emerged from the FGDs for the development of future cancer-related biobanking research including (1) expectations/anticipated benefits, (2) biobanking design preferences, and (3) ways to optimize participation. Overall, most participants were willing to provide biospecimens and favored cancer-related biobank. To increase participation of older, diverse participants in biobanking protocols, researchers need to engage older, diverse persons as consultants in order to better understand the value of biobanking research to individuals from the various populations. Scientists should also incorporate suggestions from the community on garnering trust and increasing comfort with study design.
Collapse
Affiliation(s)
- Altovise T Ewing
- Global Health Equity and Population Science, Roche Genentech, 1 DNA Way, South San Francisco, CA, 94404, USA.
| | - Arlener D Turner
- Department of Psychiatry, Center for Sleep and Brain Health, New York University School of Medicine, New York, NY, USA
| | - Kwame S Sakyi
- Public and Environment Wellness Department, School of Health Sciences, Oakland University, Rochester, MI, USA
| | - Ahmed Elmi
- All of Us Research Program, National Institutes of Health (NIH), Rockville, MD, USA
| | - Michele Towson
- Maxwell Enterprises, 211 East Lombard Street, Baltimore, MD, #300, USA
| | - Jimmie L Slade
- Community Ministry of Prince George's County, P.O. Box 250, Upper Marlboro, MD, USA
| | - Adrian S Dobs
- Division of Endocrinology, Diabetes and Metabolism, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Lori H Erby
- Department of Health Behavior, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
20
|
Raghavan S. How inclusive are cell lines in preclinical engineered cancer models? Dis Model Mech 2022; 15:275571. [PMID: 35642685 PMCID: PMC9187871 DOI: 10.1242/dmm.049520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diverse factors contribute to significant and dire disparities in cancer risk and treatment outcomes. To address this, there was a call for inclusion of sex as a biological variable, which resulted in more instances of careful inclusion of sex in preclinical studies of cancer. Another variable in cancer treatment is genetic ancestry. Although this is considered explicitly in clinical research, it is considerably neglected in preclinical studies. Preclinical research can use several 3D in vitro model systems, such as spheroids/organoids, xenografts, or other bioengineered systems that combine biomaterials and cellular material. Ultimately, the cellular base for all of these in vitro model systems is derived from human cell lines or patient samples, to investigate mechanisms of cancer and screen novel therapeutics, all of which aim to maximize successful outcomes in clinical trials. This in itself offers an opportunity to potentiate effective treatments for many groups of people, when diverse variables like genetic ancestry are consciously included into study design. This Perspective highlights the need for conscious inclusion of genetic ancestry in preclinical cancer tissue engineering, especially when it pertains to determining therapeutic outcomes. Summary: Genetic determinants, like ancestry, impact cancer risk and therapeutic outcomes. Hence, this is an important variable to consider at the very initial stages of biomedical research at the bench.
Collapse
Affiliation(s)
- Shreya Raghavan
- Department of Biomedical Engineering, Texas A&M University, 3120 TAMU, 5016 Emerging Technologies Building, College Station, TX 77843, USA
| |
Collapse
|
21
|
Santaliz Casiano A, Lee A, Teteh D, Madak Erdogan Z, Treviño L. Endocrine-Disrupting Chemicals and Breast Cancer: Disparities in Exposure and Importance of Research Inclusivity. Endocrinology 2022; 163:6553110. [PMID: 35325096 PMCID: PMC9391683 DOI: 10.1210/endocr/bqac034] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Indexed: 01/09/2023]
Abstract
Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations. Additionally, the inequity in environmental exposures has yet to be remedied. Exposure to EDCs due to structural racism poses an unequivocal risk to marginalized communities. In this review, we summarize recent epidemiological and molecular studies on 2 lesser-studied EDCs, the per- and polyfluoroalkyl substances (PFAS) and the parabens, the health disparities that exist in EDC exposure between populations, and their association with breast carcinogenesis. We discuss the importance of understanding the relationship between EDC exposure and breast cancer development, particularly to promote efforts to mitigate exposures and improve breast cancer disparities in socially disadvantaged populations.
Collapse
Affiliation(s)
- Ashlie Santaliz Casiano
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
| | - Annah Lee
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
| | - Dede Teteh
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Department of Health Sciences, Crean College of Health and Behavioral Sciences, Chapman University, Orange, CA 92866, USA
| | - Zeynep Madak Erdogan
- Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Department of Food Science and Human Nutrition, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Cancer Center at Illinois, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Carle Illinois, College of Medicine, University of Illinois, Urbana-Champaign, Urbana, IL 61801, USA
- Correspondence: Zeynep Madak Erdogan, PhD, Food Science and Human Nutrition Department, University of Illinois, Urbana-Champaign, 1201 W. Gregory Dr., Urbana, IL 61801, USA.
| | - Lindsey Treviño
- Department of Population Sciences, Division of Health Equities, City of Hope, Duarte, CA, 91010, USA
- Correspondence: Lindsey S. Treviño, PhD, Department of Population Sciences, Division of Health Equities, Duarte - Main Campus, City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
22
|
Fritzsche MC, Buyx AM, Hangel N. Mapping ethical and social aspects of biomarker research and its application in atopic dermatitis and psoriasis - A systematic review of reason. J Eur Acad Dermatol Venereol 2022; 36:1201-1213. [PMID: 35366351 DOI: 10.1111/jdv.18128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/15/2022] [Indexed: 11/27/2022]
Abstract
Biomarker research is associated with high hopes for atopic dermatitis/psoriasis research. Although various effective treatments have been developed, many challenges remain concerning diagnostics and the development of targeted treatments, but also regarding a number of ethical and social issues. In this paper, building on a systematic literature review and review of reason, we examine the ethical and social debate on biomarker research for atopic dermatitis/psoriasis. We discuss topics such as risks and benefits of stratification of patient groups, ethical aspects of big data and advanced analytics for biomarker use in atopic dermatitis/psoriasis. Our systematic literature review of reason, based on established methodological standards, includes argument-based ethics publications and scientific literature with implicitly ethically relevant aspects. The first search of biomarker research in dermatology and adjacent fields (e.g., oncology) resulted in a large amount of literature concerning general normative aspects of biomarker research, but suggested a lack of explicit argument-based ethical literature in atopic dermatitis/psoriasis research. We therefore conducted a second systematic search, focusing specifically on atopic dermatitis/psoriasis biomarker research. The 43 relevant articles identified through both systematic searches were clustered into three topic groups: (1) ethical aspects of stratification and precision medicine, (2) digital ethics, and (3) research ethics with a focus on complexity and validation. We found that compared to other fields, such as cancer research, the ethical aspects of atopic dermatitis/psoriasis are rarely explained and addressed in detail. In particular, more work is required on scientific standards, digital ethics and responsible clinical application of biomarkers for atopic dermatitis/psoriasis, patient participation, and ethical implications of biomarker use for children or young people with atopic dermatitis/psoriasis. We close with suggestions on how to address the ethical and social dimension of atopic dermatitis/psoriasis research and practice more directly in future.
Collapse
Affiliation(s)
- M-Ch Fritzsche
- Institute for History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| | - A M Buyx
- Institute for History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| | - N Hangel
- Institute for History and Ethics in Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
23
|
Racial disparities in prostate cancer: A complex interplay between socioeconomic inequities and genomics. Cancer Lett 2022; 531:71-82. [PMID: 35122875 DOI: 10.1016/j.canlet.2022.01.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/07/2022] [Accepted: 01/24/2022] [Indexed: 12/22/2022]
Abstract
The largest US cancer health disparity exists in prostate cancer, with Black men having more than a two-fold increased risk of dying from prostate cancer compared to all other races. This disparity is a result of a complex network of factors including socioeconomic status (SES), environmental exposures, and genetics/biology. Inequity in the US healthcare system has emerged as a major driver of disparity in prostate cancer outcomes and has raised concerns that the actual incidence rates may be higher than current estimates. However, emerging studies argue that equalizing healthcare access will not fully eliminate racial health disparities and highlight the important role of biology. Significant differences have been observed in prostate cancer biology between various ancestral groups that may contribute to prostate cancer health disparities. These differences include enhanced androgen receptor signaling, increased genomic instability, metabolic dysregulation, and enhanced inflammatory and cytokine signaling. Immediate actions are needed to increase the establishment of adequate infrastructure and multi-center, interdisciplinary research to bridge the gap between social and biological determinants of prostate cancer health disparities.
Collapse
|
24
|
Kinesin Family Member C1 (KIFC1/HSET): A Potential Actionable Biomarker of Early Stage Breast Tumorigenesis and Progression of High-Risk Lesions. J Pers Med 2021; 11:jpm11121361. [PMID: 34945833 PMCID: PMC8708236 DOI: 10.3390/jpm11121361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 12/14/2022] Open
Abstract
The enigma of why some premalignant or pre-invasive breast lesions transform and progress while others do not remains poorly understood. Currently, no radiologic or molecular biomarkers exist in the clinic that can successfully risk-stratify high-risk lesions for malignant transformation or tumor progression as well as serve as a minimally cytotoxic actionable target for at-risk subpopulations. Breast carcinogenesis involves a series of key molecular deregulatory events that prompt normal cells to bypass tumor-suppressive senescence barriers. Kinesin family member C1 (KIFC1/HSET), which confers survival of cancer cells burdened with extra centrosomes, has been observed in premalignant and pre-invasive lesions, and its expression has been shown to correlate with increasing neoplastic progression. Additionally, KIFC1 has been associated with aggressive breast tumor molecular subtypes, such as basal-like and triple-negative breast cancers. However, the role of KIFC1 in malignant transformation and its potential as a predictive biomarker of neoplastic progression remain elusive. Herein, we review compelling evidence suggesting the involvement of KIFC1 in enabling pre-neoplastic cells to bypass senescence barriers necessary to become immortalized and malignant. We also discuss evidence inferring that KIFC1 levels may be higher in premalignant lesions with a greater inclination to transform and acquire aggressive tumor intrinsic subtypes. Collectively, this evidence provides a strong impetus for further investigation into KIFC1 as a potential risk-stratifying biomarker and minimally cytotoxic actionable target for high-risk patient subpopulations.
Collapse
|
25
|
Mitra Ghosh T, White J, Davis J, Mazumder S, Kansom T, Skarupa E, Barnett GS, Piazza GA, Bird RC, Mitra AK, Yates C, Cummings BS, Arnold RD. Identification and Characterization of Key Differentially Expressed Genes Associated With Metronomic Dosing of Topotecan in Human Prostate Cancer. Front Pharmacol 2021; 12:736951. [PMID: 34938177 PMCID: PMC8685420 DOI: 10.3389/fphar.2021.736951] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 10/25/2021] [Indexed: 12/11/2022] Open
Abstract
Repetitive, low-dose (metronomic; METRO) drug administration of some anticancer agents can overcome drug resistance and increase drug efficacy in many cancers, but the mechanisms are not understood fully. Previously, we showed that METRO dosing of topotecan (TOPO) is more effective than conventional (CONV) dosing in aggressive human prostate cancer (PCa) cell lines and in mouse tumor xenograft models. To gain mechanistic insights into METRO-TOPO activity, in this study we determined the effect of METRO- and CONV-TOPO treatment in a panel of human PCa cell lines representing castration-sensitive/resistant, androgen receptor (+/−), and those of different ethnicity on cell growth and gene expression. Differentially expressed genes (DEGs) were identified for METRO-TOPO therapy and compared to a PCa patient cohort and The Cancer Genome Atlas (TCGA) database. The top five DEGs were SERPINB5, CDKN1A, TNF, FOS, and ANGPT1. Ingenuity Pathway Analysis predicted several upstream regulators and identified top molecular networks associated with METRO dosing, including tumor suppression, anti-proliferation, angiogenesis, invasion, metastasis, and inflammation. Further, the top DEGs were associated with increase survival of PCa patients (TCGA database), as well as ethnic differences in gene expression patterns in patients and cell lines representing African Americans (AA) and European Americans (EA). Thus, we have identified candidate pharmacogenomic biomarkers and novel pathways associated with METRO-TOPO therapy that will serve as a foundation for further investigation and validation of METRO-TOPO as a novel treatment option for prostate cancers.
Collapse
Affiliation(s)
- Taraswi Mitra Ghosh
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Jason White
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
| | - Joshua Davis
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Suman Mazumder
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Pharmacogenomics and Single-Cell Omics, Auburn University, Auburn, AL, United States
| | - Teeratas Kansom
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Elena Skarupa
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Grafton S. Barnett
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - Gary A. Piazza
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
| | - R. Curtis Bird
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Amit K. Mitra
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Center for Pharmacogenomics and Single-Cell Omics, Auburn University, Auburn, AL, United States
- UAB O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Clayton Yates
- Department of Biology and Center for Cancer Research, Tuskegee University, Tuskegee, AL, United States
- UAB O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
- Department of Pathology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
| | - Brian S. Cummings
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, United States
| | - Robert D. Arnold
- Department of Drug Discovery and Development, Harrison School of Pharmacy, Auburn University, Auburn, AL, United States
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- UAB O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL, United States
- *Correspondence: Robert D. Arnold,
| |
Collapse
|
26
|
Johnson JR, Woods-Burnham L, Hooker SE, Batai K, Kittles RA. Genetic Contributions to Prostate Cancer Disparities in Men of West African Descent. Front Oncol 2021; 11:770500. [PMID: 34820334 PMCID: PMC8606679 DOI: 10.3389/fonc.2021.770500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/11/2022] Open
Abstract
Prostate cancer (PCa) is the second most frequently diagnosed malignancy and the second leading cause of death in men worldwide, after adjusting for age. According to the International Agency for Research on Cancer, continents such as North America and Europe report higher incidence of PCa; however, mortality rates are highest among men of African ancestry in the western, southern, and central regions of Africa and the Caribbean. The American Cancer Society reports, African Americans (AAs), in the United States, have a 1.7 increased incidence and 2.4 times higher mortality rate, compared to European American's (EAs). Hence, early population history in west Africa and the subsequent African Diaspora may play an important role in understanding the global disproportionate burden of PCa shared among Africans and other men of African descent. Nonetheless, disparities involved in diagnosis, treatment, and survival of PCa patients has also been correlated to socioeconomic status, education and access to healthcare. Although recent studies suggest equal PCa treatments yield equal outcomes among patients, data illuminates an unsettling reality of disparities in treatment and care in both, developed and developing countries, especially for men of African descent. Yet, even after adjusting for the effects of the aforementioned factors; racial disparities in mortality rates remain significant. This suggests that molecular and genomic factors may account for much of PCa disparities.
Collapse
Affiliation(s)
- Jabril R. Johnson
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Stanley E. Hooker
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| | - Ken Batai
- Department of Urology, University of Arizona, Tucson, AZ, United States
| | - Rick A. Kittles
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, United States
| |
Collapse
|
27
|
Abraham-Miranda J, Awasthi S, Yamoah K. Immunologic disparities in prostate cancer between American men of African and European descent. Crit Rev Oncol Hematol 2021; 164:103426. [PMID: 34273500 DOI: 10.1016/j.critrevonc.2021.103426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 12/18/2020] [Accepted: 07/12/2021] [Indexed: 11/27/2022] Open
Abstract
Health disparities between American men of African and European descent (AA and EA, respectively) can be attributed to multiple factors, including disparities in socioeconomic status, access to healthcare, lifestyle, ancestry, and molecular aberrations. Numerous clinical trials and research studies are being performed to identify new and better therapeutic approaches to detect and treat prostate cancer. Of potential concern is the fact that the majority of the patients enrolled on these trials are EA. This disproportionate enrollment of EA could have implications when disease management recommendations are proposed without regard to the existing disparities in prostate cancer between races. With increasing advancements in immunotherapies, the immunological disparities between men of diverse ethnicities will need to be fully explored to develop novel and effective therapeutic approaches for prostate cancer patients globally. To help address this need, this review fully describes inequalities in prostate cancer at the immunological level between AA and EA.
Collapse
Affiliation(s)
- Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Kosj Yamoah
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA; Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, 33612, USA.
| |
Collapse
|
28
|
Abstract
Responsible health disparities research requires a multifaceted approach to address genetic, biological, socioeconomic, and lifestyle contributors to disease. For researchers dedicated to the cause, thorough experimental standards at the bench, in the clinic, and within the community must prioritize adequate representation and cultural competency. Not everyone is up for the challenge.
Collapse
Affiliation(s)
- Leanne Woods-Burnham
- Division of Health Equities, Department of Population Sciences, City of Hope Comprehensive Cancer Center, Duarte, CA, USA.
| |
Collapse
|
29
|
Makboul R, Abdelkawi IF, Badary DM, Hussein MRA, Rhim JS, Toraih EA, Zerfaoui M, Abd Elmageed ZY. Transmembrane and Tetratricopeptide Repeat Containing 4 Is a Novel Diagnostic Marker for Prostate Cancer with High Specificity and Sensitivity. Cells 2021; 10:cells10051029. [PMID: 33925440 PMCID: PMC8146280 DOI: 10.3390/cells10051029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/23/2021] [Indexed: 11/17/2022] Open
Abstract
The histopathologic diagnosis of prostate cancer (PCa) from biopsies is a current challenge if double or triple staining is needed. Therefore, there is an urgent need for development of a new reliable biomarker to diagnose PCa patients. We aimed to explore and compare the expression of TMTC4 in PCa cells and tissue specimens and evaluate its sensitivity and specificity. The expression of TMTC4 in PCa and normal prostate epithelial cells was determined by real-time PCR and Western blot analyses. Immunohistochemical (IHC) staining of TMTC4 was performed on tissues collected from PCa and benign prostatic hyperplasia (BPH). Our results show a high expression of TMTC4 on mRNA and protein levels in PCa versus BPH1 and normal cells (p < 0.05). IHC results show strong cytoplasmic expressions in PCa cases (p < 0.001) as compared to BPH cases. The overall accuracy as measured by the AUC was 1.0 (p < 0.001). The sensitivity and specificity of the protein were 100% and 96.6%, respectively. Taken together, we report a high TMTC4 expression in PCa cells and tissues and its ability to differentiate between PCa and BPH with high sensitivity and specificity. This finding can be carried over to clinical practice after its confirmation by further studies.
Collapse
Affiliation(s)
- Rania Makboul
- Department of Pathology and Urology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt; (R.M.); (D.M.B.); (M.R.A.H.)
| | - Islam F. Abdelkawi
- Department of Urology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt;
| | - Dalia M. Badary
- Department of Pathology and Urology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt; (R.M.); (D.M.B.); (M.R.A.H.)
| | - Mahmoud R. A. Hussein
- Department of Pathology and Urology, Faculty of Medicine, Assiut University, Assiut 71111, Egypt; (R.M.); (D.M.B.); (M.R.A.H.)
| | - Johng S. Rhim
- Department of Surgery, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA;
| | - Eman A. Toraih
- Department of Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (E.A.T.); (M.Z.)
| | - Mourad Zerfaoui
- Department of Surgery, Tulane University School of Medicine, 1430 Tulane Avenue, New Orleans, LA 70112, USA; (E.A.T.); (M.Z.)
| | - Zakaria Y. Abd Elmageed
- Department of Pharmacology, Edward Via College of Osteopathic Medicine, University of Louisiana at Monroe, Monroe, LA 71203, USA
- Correspondence:
| |
Collapse
|
30
|
Bisogno LS, Yang J, Bennett BD, Ward JM, Mackey LC, Annab LA, Bushel PR, Singhal S, Schurman SH, Byun JS, Nápoles AM, Pérez-Stable EJ, Fargo DC, Gardner K, Archer TK. Ancestry-dependent gene expression correlates with reprogramming to pluripotency and multiple dynamic biological processes. SCIENCE ADVANCES 2020; 6:6/47/eabc3851. [PMID: 33219026 PMCID: PMC7679169 DOI: 10.1126/sciadv.abc3851] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 10/02/2020] [Indexed: 05/10/2023]
Abstract
Induced pluripotent stem cells (iPSCs) can be derived from differentiated cells, enabling the generation of personalized disease models by differentiating patient-derived iPSCs into disease-relevant cell lines. While genetic variability between different iPSC lines affects differentiation potential, how this variability in somatic cells affects pluripotent potential is less understood. We generated and compared transcriptomic data from 72 dermal fibroblast-iPSC pairs with consistent variation in reprogramming efficiency. By considering equal numbers of samples from self-reported African Americans and White Americans, we identified both ancestry-dependent and ancestry-independent transcripts associated with reprogramming efficiency, suggesting that transcriptomic heterogeneity can substantially affect reprogramming. Moreover, reprogramming efficiency-associated genes are involved in diverse dynamic biological processes, including cancer and wound healing, and are predictive of 5-year breast cancer survival in an independent cohort. Candidate genes may provide insight into mechanisms of ancestry-dependent regulation of cell fate transitions and motivate additional studies for improvement of reprogramming.
Collapse
Affiliation(s)
- Laura S Bisogno
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jun Yang
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Brian D Bennett
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - James M Ward
- Integrative Bioinformatics, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lantz C Mackey
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Lois A Annab
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Pierre R Bushel
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Sandeep Singhal
- Department of Pathology, Department of Computer Science, University of North Dakota, Grand Forks, ND, USA
| | - Shepherd H Schurman
- Clinical Research Unit, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Jung S Byun
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Anna María Nápoles
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
| | - Eliseo J Pérez-Stable
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - David C Fargo
- Office of Scientific Computing, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - Kevin Gardner
- Division of Intramural Research, Office of the Scientific Director, National Institute on Minority Health and Health Disparities, Bethesda, MD, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, Columbia University, New York, NY, USA
| | - Trevor K Archer
- Chromatin and Gene Expression Section, Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA.
| |
Collapse
|
31
|
Exosomes-Mediated Transfer of Itga2 Promotes Migration and Invasion of Prostate Cancer Cells by Inducing Epithelial-Mesenchymal Transition. Cancers (Basel) 2020; 12:cancers12082300. [PMID: 32824235 PMCID: PMC7466113 DOI: 10.3390/cancers12082300] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/11/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Although integrin alpha 2 subunit (ITGA2) mediates cancer progression and metastasis, its transfer by exosomes has not been investigated in prostate cancer (PCa). We aimed to determine the role of exosomal ITGA2 derived from castration-resistant PCa (CRPC) cells in promoting aggressive phenotypes in androgen receptor (AR)-positive cells. Exosomes were co-incubated with recipient cells and tested for different cellular assays. ITGA2 was enriched in exosomes derived from CRPC cells. Co-culture of AR-positive cells with CRPC-derived exosomes increased their proliferation, migration, and invasion by promoting epithelial-mesenchymal transition, which was reversed via ITGA2 knockdown or inhibition of exosomal uptake by methyl-β-cyclodextrin (MβCD). Ectopic expression of ITGA2 reproduced the effect of exosomal ITGA2 in PCa cells. ITGA2 transferred by exosomes exerted its effect within a shorter time compared to that triggered by its endogenous expression. The difference of ITGA2 protein expression in localized tumors and those with lymph node metastatic tissues was indistinguishable. Nevertheless, its abundance was higher in circulating exosomes collected from PCa patients when compared with normal subjects. Our findings indicate the possible role of the exosomal-ITGA2 transfer in altering the phenotype of AR-positive cells towards more aggressive phenotype. Thus, interfering with exosomal cargo transfer may inhibit the development of aggressive phenotype in PCa cells.
Collapse
|
32
|
Role of CYP3A5 in Modulating Androgen Receptor Signaling and Its Relevance to African American Men with Prostate Cancer. Cancers (Basel) 2020; 12:cancers12040989. [PMID: 32316460 PMCID: PMC7226359 DOI: 10.3390/cancers12040989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
Androgen receptor signaling is crucial for prostate cancer growth and is positively regulated in part by intratumoral CYP3A5. As African American (AA) men often carry the wild type CYP3A5 and express high levels of CYP3A5 protein, we blocked the wild type CYP3A5 in AA origin prostate cancer cells and tested its effect on androgen receptor signaling. q-PCR based profiler assay identified several AR regulated genes known to regulate AR nuclear translocation, cell cycle progression, and cell growth. CYP3A5 processes several commonly prescribed drugs and many of these are CYP3A5 inducers or inhibitors. In this study, we test the effect of these commonly prescribed CYP3A5 inducers/inhibitors on AR signaling. The results show that the CYP3A5 inducers promoted AR nuclear translocation, downstream signaling, and cell growth, whereas CYP3A5 inhibitors abrogated them. The observed changes in AR activity is specific to alterations in CYP3A5 activity as the effects are reduced in the CYP3A5 knockout background. Both the inducers tested demonstrated increased cell growth of prostate cancer cells, whereas the inhibitors showed reduced cell growth. Further, characterization and utilization of the observation that CYP3A5 inducers and inhibitors alter AR signaling may provide guidance to physicians prescribing CYP3A5 modulating drugs to treat comorbidities in elderly patients undergoing ADT, particularly AA.
Collapse
|
33
|
Breen N, Berrigan D, Jackson JS, Wong DW, Wood FB, Denny JC, Zhang X, Bourne PE. Translational Health Disparities Research in a Data-Rich World. Health Equity 2019; 3:588-600. [PMID: 31720554 PMCID: PMC6844128 DOI: 10.1089/heq.2019.0042] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background: Despite decades of research and interventions, significant health disparities persist. Seventeen years is the estimated time to translate scientific discoveries into public health action. This Narrative Review argues that the translation process could be accelerated if representative data were gathered and used in more innovative and efficient ways. Methods: The National Institute on Minority Health and Health Disparities led a multiyear visioning process to identify research opportunities designed to frame the next decade of research and actions to improve minority health and reduce health disparities. "Big data" was identified as a research opportunity and experts collaborated on a systematic vision of how to use big data both to improve the granularity of information for place-based study and to efficiently translate health disparities research into improved population health. This Narrative Review is the result of that collaboration. Results: Big data could enhance the process of translating scientific findings into reduced health disparities by contributing information at fine spatial and temporal scales suited to interventions. In addition, big data could fill pressing needs for health care system, genomic, and social determinant data to understand mechanisms. Finally, big data could lead to appropriately personalized health care for demographic groups. Rich new resources, including social media, electronic health records, sensor information from digital devices, and crowd-sourced and citizen-collected data, have the potential to complement more traditional data from health surveys, administrative data, and investigator-initiated registries or cohorts. This Narrative Review argues for a renewed focus on translational research cycles to accomplish this continual assessment. Conclusion: The promise of big data extends from etiology research to the evaluation of large-scale interventions and offers the opportunity to accelerate translation of health disparities studies. This data-rich world for health disparities research, however, will require continual assessment for efficacy, ethical rigor, and potential algorithmic or system bias.
Collapse
Affiliation(s)
- Nancy Breen
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland
| | - David Berrigan
- Division of Cancer Control and Population Sciences, National Cancer Institute, Bethesda, Maryland
| | - James S. Jackson
- Institute for Social Research, University of Michigan, Ann Arbor, Michigan
| | - David W.S. Wong
- Department of Geography and Geoinformation Science, George Mason University, Fairfax, Virginia
| | | | - Joshua C. Denny
- Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Xinzhi Zhang
- National Institute on Minority Health and Health Disparities, National Institutes of Health, Bethesda, Maryland
| | - Philip E. Bourne
- Data Science Institute and Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia
| |
Collapse
|