1
|
Jiang B, Elkashif A, Coulter JA, Dunne NJ, McCarthy HO. Immunotherapy for HPV negative head and neck squamous cell carcinoma. Biochim Biophys Acta Rev Cancer 2024; 1879:189138. [PMID: 38889878 DOI: 10.1016/j.bbcan.2024.189138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/02/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Head and neck cancer (HNSCC) is the 8th most common cancer in the UK, with incidence increasing due to lifestyle factors such as tobacco and alcohol abuse. HNSCC is an immune-suppressive disease characterised by impaired cytokine secretion and dysregulation of immune infiltrate. As such, immunotherapy is a potential treatment option, with therapeutic cancer vaccination demonstrating the greatest potential. The success of cancer vaccination is dependent on informed antigen selection: an ideal antigen must be either tumour-specific or tumour-associated, as well as highly immunogenic. Stratification of the patient population for antigen expression and validated biomarkers are also vital. This review focuses on the latest developments in immunotherapy, specifically the development of therapeutic vaccines, and highlights successes, potential drawbacks and areas for future development. Immunotherapy approaches considered for HNSCC include monoclonal antibodies (mAb), Oncolytic viral (OV) therapies, Immune Checkpoint Inhibitors (ICIs) and cancer vaccines.
Collapse
Affiliation(s)
- Binyumeng Jiang
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Ahmed Elkashif
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Jonathan A Coulter
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Nicholas J Dunne
- School of Mechanical and Manufacturing Engineering, Dublin City University, Dublin 9, Ireland
| | - Helen O McCarthy
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
2
|
Liu D, Che X, Wang X, Ma C, Wu G. Tumor Vaccines: Unleashing the Power of the Immune System to Fight Cancer. Pharmaceuticals (Basel) 2023; 16:1384. [PMID: 37895855 PMCID: PMC10610367 DOI: 10.3390/ph16101384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
This comprehensive review delves into the rapidly evolving arena of cancer vaccines. Initially, we examine the intricate constitution of the tumor microenvironment (TME), a dynamic factor that significantly influences tumor heterogeneity. Current research trends focusing on harnessing the TME for effective tumor vaccine treatments are also discussed. We then provide a detailed overview of the current state of research concerning tumor immunity and the mechanisms of tumor vaccines, describing the complex immunological processes involved. Furthermore, we conduct an exhaustive analysis of the contemporary research landscape of tumor vaccines, with a particular focus on peptide vaccines, DNA/RNA-based vaccines, viral-vector-based vaccines, dendritic-cell-based vaccines, and whole-cell-based vaccines. We analyze and summarize these categories of tumor vaccines, highlighting their individual advantages, limitations, and the factors influencing their effectiveness. In our survey of each category, we summarize commonly used tumor vaccines, aiming to provide readers with a more comprehensive understanding of the current state of tumor vaccine research. We then delve into an innovative strategy combining cancer vaccines with other therapies. By studying the effects of combining tumor vaccines with immune checkpoint inhibitors, radiotherapy, chemotherapy, targeted therapy, and oncolytic virotherapy, we establish that this approach can enhance overall treatment efficacy and offset the limitations of single-treatment approaches, offering patients more effective treatment options. Following this, we undertake a meticulous analysis of the entire process of personalized cancer vaccines, elucidating the intricate process from design, through research and production, to clinical application, thus helping readers gain a thorough understanding of its complexities. In conclusion, our exploration of tumor vaccines in this review aims to highlight their promising potential in cancer treatment. As research in this field continues to evolve, it undeniably holds immense promise for improving cancer patient outcomes.
Collapse
Affiliation(s)
- Dequan Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China;
| | - Chuanyu Ma
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China; (D.L.); (X.C.)
| |
Collapse
|
3
|
Chiang CLL, Rovelli R, Sarivalasis A, Kandalaft LE. Integrating Cancer Vaccines in the Standard-of-Care of Ovarian Cancer: Translating Preclinical Models to Human. Cancers (Basel) 2021; 13:cancers13184553. [PMID: 34572778 PMCID: PMC8469371 DOI: 10.3390/cancers13184553] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/01/2021] [Accepted: 09/06/2021] [Indexed: 12/22/2022] Open
Abstract
Simple Summary The overall survival of ovarian cancer (OC) remains poor for most patients. Despite incorporation of novel therapeutic agents such as bevacizumab and PARP inhibitors to OC standard-of-care, efficacy is only observed in a subset of patients. Cancer vaccination has demonstrated effectiveness in OC patients and could be considered for potential incorporation into OC standard-of-care. This review provides an overview of the different types of cancer vaccination strategies and discusses the use of murine OC tumor models to evaluate combinatorial regimens comprising cancer vaccines and OC standard-of-care. Abstract As the majority of ovarian cancer (OC) patients are diagnosed with metastatic disease, less than 40% will survive past 5 years after diagnosis. OC is characterized by a succession of remissions and recurrences. The most promising time point for immunotherapeutic interventions in OC is following debulking surgery. Accumulating evidence shows that T cells are important in OC; thus, cancer vaccines capable of eliciting antitumor T cells will be effective in OC treatment. In this review, we discuss different cancer vaccines and propose strategies for their incorporation into the OC standard-of-care regimens. Using the murine ID8 ovarian tumor model, we provide evidence that a cancer vaccine can be effectively combined with OC standard-of-care to achieve greater overall efficacy. We demonstrate several important similarities between the ID8 model and OC patients, in terms of response to immunotherapies, and the ID8 model can be an important tool for evaluating combinatorial regimens and clinical trial designs in OC. Other emerging models, including patient-derived xenograft and genetically engineered mouse models, are continuing to improve and can be useful for evaluating cancer vaccination therapies in the near future. Here, we provide a comprehensive review of the completed and current clinical trials evaluating cancer vaccines in OC.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| | - Raphaël Rovelli
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
| | - Apostolos Sarivalasis
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
| | - Lana E. Kandalaft
- Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), University of Lausanne, CH-1011 Lausanne, Switzerland; (R.R.); (A.S.)
- Ludwig Institute for Cancer Research, University of Lausanne, CH-1066 Lausanne, Switzerland
- Center of Experimental Therapeutics, Department of Oncology, Centre Hospitalier Universitaire Vaudois (CHUV), CH-1011 Lausanne, Switzerland
- Correspondence: (C.L.-L.C.); (L.E.K.)
| |
Collapse
|
4
|
Stevens D, Ingels J, Van Lint S, Vandekerckhove B, Vermaelen K. Dendritic Cell-Based Immunotherapy in Lung Cancer. Front Immunol 2021; 11:620374. [PMID: 33679709 PMCID: PMC7928408 DOI: 10.3389/fimmu.2020.620374] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/29/2020] [Indexed: 12/24/2022] Open
Abstract
Lung cancer remains the leading cause of cancer-related death worldwide. The advent of immune checkpoint inhibitors has led to a paradigm shift in the treatment of metastatic non-small cell and small cell lung cancer. However, despite prolonged overall survival, only a minority of the patients derive clinical benefit from these treatments suggesting that the full anti-tumoral potential of the immune system is not being harnessed yet. One way to overcome this problem is to combine immune checkpoint blockade with different strategies aimed at inducing or restoring cellular immunity in a tumor-specific, robust, and durable way. Owing to their unique capacity to initiate and regulate T cell responses, dendritic cells have been extensively explored as tools for immunotherapy in many tumors, including lung cancer. In this review, we provide an update on the nearly twenty years of experience with dendritic cell-based immunotherapy in lung cancer. We summarize the main results from the early phase trials and give an overview of the future perspectives within this field.
Collapse
Affiliation(s)
- Dieter Stevens
- Respiratory Medicine - Thoracic Oncology Cluster, Ghent University Hospital, Ghent, Belgium.,Respiratory Medicine - Tumor Immunology Laboratory, Ghent University, Ghent, Belgium
| | - Joline Ingels
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium
| | - Sandra Van Lint
- Respiratory Medicine - Tumor Immunology Laboratory, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Bart Vandekerckhove
- Department of Diagnostic Sciences, Ghent University Hospital, Ghent, Belgium.,GMP Cell Therapy Unit, Department of Regenerative Medicine, Ghent University Hospital, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| | - Karim Vermaelen
- Respiratory Medicine - Thoracic Oncology Cluster, Ghent University Hospital, Ghent, Belgium.,Respiratory Medicine - Tumor Immunology Laboratory, Ghent University, Ghent, Belgium.,Cancer Research Institute Ghent, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Ashour D, Arampatzi P, Pavlovic V, Förstner KU, Kaisho T, Beilhack A, Erhard F, Lutz MB. IL-12 from endogenous cDC1, and not vaccine DC, is required for Th1 induction. JCI Insight 2020; 5:135143. [PMID: 32434994 PMCID: PMC7259537 DOI: 10.1172/jci.insight.135143] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 04/22/2020] [Indexed: 12/14/2022] Open
Abstract
Success of DC vaccines relies on the quality of antigen presentation, costimulation, lymph node migration, and the release of IL-12, in case of Th1 priming. Here, we provide evidence for interaction between the injected vaccine DCs with endogenous lymph node–resident DCs for Th1 induction. While migration of the injected DCs was essential for antigen delivery to the lymph node, the injected DCs contributed only partially to Th0 priming and were unable to instruct Th1 generation. Instead, we provide evidence that the lymph node–resident XCR1+ DCs are activated by the injected DCs to present the cognate antigen and release IL-12 for Th1 polarization. The timing of interactions in the draining lymph nodes appeared step-wise as (a) injected DCs with cognate T cells, (b) injected DCs with bystander DCs, and (c) bystander DCs with T cells. The transcriptome of the bystander DCs showed a downregulation of Treg- and Th2/Th9-inducing genes and self-antigen presentation, as well as upregulation of MHC class II and genes required for Th1 instruction. Together, these data show that injected mature lymph node migratory DCs direct T cell priming and bystander DC activation, but not Th1 polarization, which is mediated by endogenous IL-12p70+XCR1+ resident bystander DCs. Our results are of importance for clinical DC-based vaccinations against tumors where endogenous DCs may be functionally impaired by chemotherapy. Successful Th1 priming by DC vaccines in mice depends on IL-12 from endogenous and XCR1+ cDC1 population.
Collapse
Affiliation(s)
| | | | | | - Konrad U Förstner
- Core Unit Systems Medicine, University of Würzburg, Würzburg, Germany.,ZB MED, Information Centre for Life Sciences, Cologne, Germany.,TH Köln, University of Applied Sciences, Institute of Information Science, Cologne, Germany
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Wakayama, Japan
| | - Andreas Beilhack
- Department of Internal Medicine II, University Hospital Würzburg, Würzburg, Germany
| | | | | |
Collapse
|
6
|
Gessani S, Belardelli F. Immune Dysfunctions and Immunotherapy in Colorectal Cancer: The Role of Dendritic Cells. Cancers (Basel) 2019; 11:E1491. [PMID: 31623355 PMCID: PMC6827143 DOI: 10.3390/cancers11101491] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Revised: 09/26/2019] [Accepted: 09/27/2019] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer (CRC), a multi-step malignancy showing increasing incidence in today's societies, represents an important worldwide health issue. Exogenous factors, such as lifestyle, diet, nutrition, environment and microbiota, contribute to CRC pathogenesis, also influencing non neoplastic cells, including immune cells. Several immune dysfunctions were described in CRC patients at different disease stages. Many studies underline the role of microbiota, obesity-related inflammation, diet and host reactive cells, including dendritic cells (DC), in CRC pathogenesis. Here, we focused on DC, the main cells linking innate and adaptive anti-cancer immunity. Variations in the number and phenotype of circulating and tumor-infiltrating DC have been found in CRC patients and correlated with disease stages and progression. A critical review of DC-based clinical studies and of recent advances in cancer immunotherapy leads to consider new strategies for combining DC vaccination strategies with check-point inhibitors, thus opening perspectives for a more effective management of this neoplastic disease.
Collapse
Affiliation(s)
- Sandra Gessani
- Center for Gender-Specific Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | | |
Collapse
|
7
|
Hochnadel I, Kossatz-Boehlert U, Jedicke N, Lenzen H, Manns MP, Yevsa T. Cancer vaccines and immunotherapeutic approaches in hepatobiliary and pancreatic cancers. Hum Vaccin Immunother 2017; 13:2931-2952. [PMID: 29112462 PMCID: PMC5718787 DOI: 10.1080/21645515.2017.1359362] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hepatobiliary and pancreatic cancers along with other gastrointestinal malignancies remain the leading cause of cancer-related deaths worldwide. Strategies developed in the recent years on immunotherapy and cancer vaccines in the setting of primary liver cancer as well as in pancreatic cancer are the scope of this review. Significance of orthotopic and autochthonous animal models which mimic and/or closely reflect human malignancies allowing for a prompt and trustworthy analysis of new therapeutics is underlined. Combinational approaches that on one hand, specifically target a defined cancer-driving pathway, and on the other hand, restore the functions of immune cells, which effector functions are often suppressed by a tumor milieu, are shown to have the strongest perspectives and future directions. Among combinational immunotherapeutic approaches a personalized- and individual cancer case-based therapy is of special importance.
Collapse
Affiliation(s)
- Inga Hochnadel
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Uta Kossatz-Boehlert
- b Institute for Neuroanatomy, Eberhard-Karls University Tuebingen , Tuebingen , Germany
| | - Nils Jedicke
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Henrike Lenzen
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Michael P Manns
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| | - Tetyana Yevsa
- a Department of Gastroenterology , Hepatology and Endocrinology, Hannover Medical School , Hannover , Germany
| |
Collapse
|
8
|
Signorini L, Delbue S, Ferrante P, Bregni M. Review on the immunotherapy strategies against metastatic colorectal carcinoma. Immunotherapy 2017; 8:1245-61. [PMID: 27605072 DOI: 10.2217/imt-2016-0045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancies throughout the world and the leading cause of cancer-related mortality in Western countries. Recent progress in CRC treatment options, such as surgery, chemotherapy, radiotherapy and target therapy, has improved the prognosis, but advanced disease with recurrence or distant metastasis is usually incurable and has an unfavorable prognosis. The introduction of immunotherapy-associated strategies, both active and passive, to the treatment of CRC aims to overcome the limits of classical treatments. We review the state of the art for CRC with respect to different immunotherapeutic approaches, such as the use of cancer vaccines and/or adoptive cellular therapy, their most current advances and limitations and perspectives for further improvements.
Collapse
Affiliation(s)
- Lucia Signorini
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Serena Delbue
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Pasquale Ferrante
- Department of Biomedical, Surgical & Dental Sciences, Via Pascal, 36, University of Milano, 20123 Milano, Italy
| | - Marco Bregni
- Ospedale di Circolo di Busto Arsizio, Via A. Da Brescia, 1, 21052 Busto Arsizio VA, Italy
| |
Collapse
|
9
|
Hradilova N, Sadilkova L, Palata O, Mysikova D, Mrazkova H, Lischke R, Spisek R, Adkins I. Generation of dendritic cell-based vaccine using high hydrostatic pressure for non-small cell lung cancer immunotherapy. PLoS One 2017; 12:e0171539. [PMID: 28187172 PMCID: PMC5302789 DOI: 10.1371/journal.pone.0171539] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 01/22/2017] [Indexed: 11/19/2022] Open
Abstract
High hydrostatic pressure (HHP) induces immunogenic death of tumor cells which confer protective anti-tumor immunity in vivo. Moreover, DC pulsed with HHP-treated tumor cells induced therapeutic effect in mouse cancer model. In this study, we tested the immunogenicity, stability and T cell stimulatory activity of human monocyte-derived dendritic cell (DC)-based HHP lung cancer vaccine generated in GMP compliant serum free medium using HHP 250 MPa. DC pulsed with HHP-killed lung cancer cells and poly(I:C) enhanced DC maturation, chemotactic migration and production of pro-inflammatory cytokines after 24h. Moreover, DC-based HHP lung cancer vaccine showed functional plasticity after transfer into serum-containing media and stimulation with LPS or CD40L after additional 24h. LPS and CD40L stimulation further differentially enhanced the expression of costimulatory molecules and production of IL-12p70. DC-based HHP lung cancer vaccine decreased the number of CD4+CD25+Foxp3+ T regulatory cells and stimulated IFN-γ-producing tumor antigen-specific CD4+ and CD8+ T cells from non-small cell lung cancer (NSCLC) patients. Tumor antigen specific CD8+ and CD4+ T cell responses were detected in NSCLC patient's against a selected tumor antigens expressed by lung cancer cell lines used for the vaccine generation. We also showed for the first time that protein antigen from HHP-killed lung cancer cells is processed and presented by DC to CD8+ T cells. Our results represent important preclinical data for ongoing NSCLC Phase I/II clinical trial using DC-based active cellular immunotherapy (DCVAC/LuCa) in combination with chemotherapy and immune enhancers.
Collapse
Affiliation(s)
- Nada Hradilova
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | | | - Ondrej Palata
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Dagmar Mysikova
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Hana Mrazkova
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Robert Lischke
- Thoracic and Lung Transplantation Division, 3rd Department of Surgery, 1st Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Radek Spisek
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Irena Adkins
- SOTIO, Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
- * E-mail:
| |
Collapse
|
10
|
Kalina JL, Neilson DS, Comber AP, Rauw JM, Alexander AS, Vergidis J, Lum JJ. Immune Modulation by Androgen Deprivation and Radiation Therapy: Implications for Prostate Cancer Immunotherapy. Cancers (Basel) 2017; 9:cancers9020013. [PMID: 28134800 PMCID: PMC5332936 DOI: 10.3390/cancers9020013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 01/20/2017] [Indexed: 12/17/2022] Open
Abstract
Prostate cancer patients often receive androgen deprivation therapy (ADT) in combination with radiation therapy (RT). Recent evidence suggests that both ADT and RT have immune modulatory properties. First, ADT can cause infiltration of lymphocytes into the prostate, although it remains unclear whether the influx of lymphocytes is beneficial, particularly with the advent of new classes of androgen blockers. Second, in rare cases, radiation can elicit immune responses that mediate regression of metastatic lesions lying outside the field of radiation, a phenomenon known as the abscopal response. In light of these findings, there is emerging interest in exploiting any potential synergy between ADT, RT, and immunotherapy. Here, we provide a comprehensive review of the rationale behind combining immunotherapy with ADT and RT for the treatment of prostate cancer, including an examination of the current clinical trials that employ this combination. The reported outcomes of several trials demonstrate the promise of this combination strategy; however, further scrutiny is needed to elucidate how these standard therapies interact with immune modulators. In addition, we discuss the importance of synchronizing immune modulation relative to ADT and RT, and provide insight into elements that may impact the ability to achieve maximum synergy between these treatments.
Collapse
Affiliation(s)
- Jennifer L Kalina
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
| | - David S Neilson
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Alexandra P Comber
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| | - Jennifer M Rauw
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Abraham S Alexander
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Joanna Vergidis
- British Columbia Cancer Agency, Victoria, BC, V8R 6V5, Canada.
- Department of Medicine, University of British Columbia, Vancouver, BC V5Z 1M9, Canada.
| | - Julian J Lum
- Trev and Joyce Deeley Research Centre, British Columbia Cancer Agency, Victoria, BC V8R 6V5, Canada.
- Department of Biochemistry & Microbiology, University of Victoria, Victoria, BC V8P 5C2, Canada.
| |
Collapse
|
11
|
Pardieck IN, Jawahier PA, Swets M, van de Velde CJH, Kuppen PJK. Novel avenues in immunotherapies for colorectal cancer. Expert Rev Gastroenterol Hepatol 2016; 10:465-80. [PMID: 26582071 DOI: 10.1586/17474124.2016.1122522] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since it is known that the immune system affects tumor growth, it has been studied if immunotherapy can be developed to combat cancer. While some successes have been claimed, the increasing knowledge on tumor-immune interactions has, however, also shown the limitations of this approach. Tumors may show selective outgrowth of cells escaped from immune control. Escape variants arise spontaneously due to the genetically instable nature of tumor cells. This is one of the most obvious limitations of cancer immunotherapy. However, new therapies are becoming available, designed to respond to tumor-immune escape.
Collapse
Affiliation(s)
- Iris N Pardieck
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Priscilla A Jawahier
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | - Marloes Swets
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| | | | - Peter J K Kuppen
- a Department of Surgery , Leiden University Medical Center , Leiden , The Netherlands
| |
Collapse
|
12
|
McCann KJ, Mander A, Cazaly A, Chudley L, Stasakova J, Thirdborough S, King A, Lloyd-Evans P, Buxton E, Edwards C, Halford S, Bateman A, O'Callaghan A, Clive S, Anthoney A, Jodrell DI, Weinschenk T, Simon P, Sahin U, Thomas GJ, Stevenson FK, Ottensmeier CH. Targeting Carcinoembryonic Antigen with DNA Vaccination: On-Target Adverse Events Link with Immunologic and Clinical Outcomes. Clin Cancer Res 2016; 22:4827-4836. [PMID: 27091407 PMCID: PMC5330406 DOI: 10.1158/1078-0432.ccr-15-2507] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/29/2016] [Indexed: 12/22/2022]
Abstract
PURPOSE We have clinically evaluated a DNA fusion vaccine to target the HLA-A*0201-binding peptide CAP-1 from carcinoembryonic antigen (CEA605-613) linked to an immunostimulatory domain (DOM) from fragment C of tetanus toxin. EXPERIMENTAL DESIGN Twenty-seven patients with CEA-expressing carcinomas were recruited: 15 patients with measurable disease (arm-I) and 12 patients without radiological evidence of disease (arm-II). Six intramuscular vaccinations of naked DNA (1 mg/dose) were administered up to week 12. Clinical and immunologic follow-up was up to week 64 or clinical/radiological disease. RESULTS DOM-specific immune responses demonstrated successful vaccine delivery. All patients without measurable disease compared with 60% with advanced disease responded immunologically, while 58% and 20% expanded anti-CAP-1 CD8+ T cells, respectively. CAP-1-specific T cells were only detectable in the blood postvaccination but could also be identified in previously resected cancer tissue. The gastrointestinal adverse event diarrhea was reported by 48% of patients and linked to more frequent decreases in CEA (P < 0.001) and improved global immunologic responses [anti-DOM responses of greater magnitude (P < 0.001), frequency (P = 0.004), and duration] compared with patients without diarrhea. In advanced disease patients, decreases in CEA were associated with better overall survival (HR = 0.14, P = 0.017). CAP-1 peptide was detectable on MHC class I of normal bowel mucosa and primary colorectal cancer tissue by mass spectrometry, offering a mechanistic explanation for diarrhea through CD8+ T-cell attack. CONCLUSIONS Our data suggest that DNA vaccination is able to overcome peripheral tolerance in normal and tumor tissue and warrants testing in combination studies, for example, by vaccinating in parallel to treatment with an anti-PD1 antibody. Clin Cancer Res; 22(19); 4827-36. ©2016 AACR.
Collapse
Affiliation(s)
- Katy J McCann
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Ann Mander
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Angelica Cazaly
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Lindsey Chudley
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Jana Stasakova
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Stephen Thirdborough
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Andrew King
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Paul Lloyd-Evans
- NHS Blood and Transplant, Clinical Biotechnology Centre, University of Bristol, Bristol, UK
| | - Emily Buxton
- Cancer Research UK Centre for Drug Development, London, UK
| | - Ceri Edwards
- Cancer Research UK Centre for Drug Development, London, UK
| | - Sarah Halford
- Cancer Research UK Centre for Drug Development, London, UK
| | - Andrew Bateman
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| | | | | | | | - Duncan I Jodrell
- CRUK Cambridge Institute, University of Cambridge, Cambridge, UK
| | | | - Petra Simon
- TRON gGmbH, Translational Oncology at the University Medical Center, Johannes Gutenberg-University, Mainz, Germany
- BioNTech Cell & Gene Therapies GmbH, Mainz, Germany
| | - Ugur Sahin
- TRON gGmbH, Translational Oncology at the University Medical Center, Johannes Gutenberg-University, Mainz, Germany
| | - Gareth J Thomas
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| | - Freda K Stevenson
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
| | - Christian H Ottensmeier
- Southampton Experimental Cancer Medicine Centre, Cancer Sciences Unit, University of Southampton, Southampton, UK
- University Hospital Southampton NHS Trust, Southampton, UK
| |
Collapse
|
13
|
Takahashi H, Shimodaira S, Ogasawara M, Ota S, Kobayashi M, Abe H, Morita Y, Nagai K, Tsujitani S, Okamoto M, Suzuki Y, Nakanishi Y, Yonemitsu Y. Lung adenocarcinoma may be a more susceptive subtype to a dendritic cell-based cancer vaccine than other subtypes of non-small cell lung cancers: a multicenter retrospective analysis. Cancer Immunol Immunother 2016; 65:1099-111. [PMID: 27448677 PMCID: PMC11029687 DOI: 10.1007/s00262-016-1872-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Accepted: 07/17/2016] [Indexed: 01/09/2023]
Abstract
OBJECTIVE The J-SICT DC Vaccine Study Group provides dendritic cell (DC) vaccines for compassionate use under unified cell production and patient treatment regimens. We previously reported beneficial effects of DC vaccines on the overall survival of 62 patients with advanced non-small cell lung cancer (NSCLC) in a single-center analysis. Here, we extended analysis to 260 patients with NSCLC who were treated at six centers. METHODS Of the 337 patients who met the inclusion criteria, we analyzed 260 patients who received ≥5 peptide-pulsed DC vaccinations once every 2 weeks. RESULTS The mean survival time (MST) from diagnosis was 33.0 months (95 % confidence interval [CI]: 27.9-39.2), and that from time of first vaccination was 13.8 months (95 % CI 11.4-16.8). An erythema reaction at the injection site that was ≥30 mm in diameter was correlated most strongly with overall survival from the first vaccine (≥30 vs. < 30 mm: MST 20.4 vs. 8.8 months, P < 0.001). We reported a similar finding in our previous analysis of patients with advanced pancreatic cancer. Interestingly, although such findings were common between patients with adenocarcinoma and those with other subtypes, the former group experienced significantly prolonged overall survival and a higher response rate for erythema (56.3 vs. 37.3 %, respectively, P = 0.014). CONCLUSIONS This is the first multicenter study that suggests a possible clinical benefit of DC vaccines for patients with advanced NSCLC, especially those with adenocarcinoma. These findings suggest a specific potential responder population for DC vaccines and warrant further investigation in well-controlled prospective randomized trials.
Collapse
Affiliation(s)
- Hidenori Takahashi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
- Seren Clinic Fukuoka, Fukuoka, 810-0001, Japan
| | - Shigetaka Shimodaira
- Cell Processing Center, Shinshu University Hospital, Matsumoto, Nagano, 390-8621, Japan
| | - Masahiro Ogasawara
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, 003-0006, Japan
| | - Shuichi Ota
- Department of Hematology, Sapporo Hokuyu Hospital, Sapporo, Hokkaido, 003-0006, Japan
| | | | | | | | - Kazuhiro Nagai
- Transfusion and Cell Therapy Unit, Nagasaki University Hospital, Nagasaki, 852-8501, Japan
| | - Shunichi Tsujitani
- Tottori University Hospital Cancer Center, Tottori, Yonago, 683-8504, Japan
| | - Masato Okamoto
- Department of Advanced Immunotherapeutics, Kitasato University School of Pharmacy, Tokyo, 108-8641, Japan
| | - Yukio Suzuki
- Division of Clinical Medicine, Research and Education Center for Clinical Pharmacy, Kitasato University School of Pharmacy, Tokyo, 108-8641, Japan
| | - Yoichi Nakanishi
- Research Institute for Diseases of the Chest, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics, Graduate School of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
14
|
Kajihara M, Takakura K, Kanai T, Ito Z, Saito K, Takami S, Shimodaira S, Okamoto M, Ohkusa T, Koido S. Dendritic cell-based cancer immunotherapy for colorectal cancer. World J Gastroenterol 2016; 22:4275-86. [PMID: 27158196 PMCID: PMC4853685 DOI: 10.3748/wjg.v22.i17.4275] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/15/2016] [Accepted: 04/07/2016] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and a leading cause of cancer-related mortality worldwide. Although systemic therapy is the standard care for patients with recurrent or metastatic CRC, the prognosis is extremely poor. The optimal sequence of therapy remains unknown. Therefore, alternative strategies, such as immunotherapy, are needed for patients with advanced CRC. This review summarizes evidence from dendritic cell-based cancer immunotherapy strategies that are currently in clinical trials. In addition, we discuss the possibility of antitumor immune responses through immunoinhibitory PD-1/PD-L1 pathway blockade in CRC patients.
Collapse
|
15
|
Kim JS, Kim YG, Park EJ, Kim B, Lee HK, Hong JT, Kim Y, Han SB. Cell-based Immunotherapy for Colorectal Cancer with Cytokine-induced Killer Cells. Immune Netw 2016; 16:99-108. [PMID: 27162526 PMCID: PMC4853502 DOI: 10.4110/in.2016.16.2.99] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/11/2016] [Accepted: 02/16/2016] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third leading cancer worldwide. Although incidence and mortality of colorectal cancer are gradually decreasing in the US, patients with metastatic colorectal cancer have poor prognosis with an estimated 5-year survival rate of less than 10%. Over the past decade, advances in combination chemotherapy regimens for colorectal cancer have led to significant improvement in progression-free and overall survival. However, patients with metastatic disease gain little clinical benefit from conventional therapy, which is associated with grade 3~4 toxicity with negative effects on quality of life. In previous clinical studies, cell-based immunotherapy using dendritic cell vaccines and sentinel lymph node T cell therapy showed promising therapeutic results for metastatic colorectal cancer. In our preclinical and previous clinical studies, cytokine-induced killer (CIK) cells treatment for colorectal cancer showed favorable responses without toxicities. Here, we review current treatment options for colorectal cancer and summarize available clinical studies utilizing cell-based immunotherapy. Based on these studies, we recommend the use CIK cell therapy as a promising therapeutic strategy for patients with metastatic colorectal cancer.
Collapse
Affiliation(s)
- Ji Sung Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Yong Guk Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Eun Jae Park
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Boyeong Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Hong Kyung Lee
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Jin Tae Hong
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Youngsoo Kim
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| | - Sang-Bae Han
- College of Pharmacy, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
16
|
García-Arriaza J, Esteban M. Enhancing poxvirus vectors vaccine immunogenicity. Hum Vaccin Immunother 2015; 10:2235-44. [PMID: 25424927 DOI: 10.4161/hv.28974] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Attenuated recombinant poxvirus vectors expressing heterologous antigens from pathogens are currently at various stages in clinical trials with the aim to establish their efficacy. This is because these vectors have shown excellent safety profiles, significant immunogenicity against foreign expressed antigens and are able to induce protective immune responses. In view of the limited efficacy triggered by some poxvirus strains used in clinical trials (i.e, ALVAC in the RV144 phase III clinical trial for HIV), and of the restrictive replication capacity of the highly attenuated vectors like MVA and NYVAC, there is a consensus that further improvements of these vectors should be pursuit. In this review we considered several strategies that are currently being implemented, as well as new approaches, to improve the immunogenicity of the poxvirus vectors. This includes heterologous prime/boost protocols, use of co-stimulatory molecules, deletion of viral immunomodulatory genes still present in the poxvirus genome, enhancing virus promoter strength, enhancing vector replication capacity, optimizing expression of foreign heterologous sequences, and the combined use of adjuvants. An optimized poxvirus vector triggering long-lasting immunity with a high protective efficacy against a selective disease should be sought.
Collapse
Affiliation(s)
- Juan García-Arriaza
- a Department of Molecular and Cellular Biology; Centro Nacional de Biotecnología; Consejo Superior de Investigaciones Científicas (CSIC); Madrid, Spain
| | | |
Collapse
|
17
|
Bhargava A, Bunkar N, Khare NK, Mishra D, Mishra PK. Nanoengineered strategies to optimize dendritic cells for gastrointestinal tumor immunotherapy: from biology to translational medicine. Nanomedicine (Lond) 2015; 9:2187-202. [PMID: 25405796 DOI: 10.2217/nnm.14.115] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Nanomedicine may play an important role in improving the clinical efficacy of dendritic cell-based immunotherapy against GI tract malignancies. Dendritic cell-based vaccines have proven their effectiveness against different established GI tract tumors, yet their success is mainly hindered by the strong tumor-induced suppressive microenvironment. The sustained and targeted release of tumor antigens to dendritic cells using different nanoengineered approaches would be an efficient strategy to overcome established immune tolerance. Encapsulation would result in low diffusivity, restricted movement, effective crosspresentation and enhanced T-cell responses. These nanotherapy-based approaches will certainly help with the designing of clinically translatable dendritic cell-based therapeutic vaccines and facilitate the selective removal of residual disease in gastrointestinal cancer patients following standard treatments.
Collapse
Affiliation(s)
- Arpit Bhargava
- Translational Research Laboratory, School of Biological Sciences, Dr H. S. Gour Central University, Sagar, India
| | | | | | | | | |
Collapse
|
18
|
Patel SP, Osada T, Lyerly HK, Morse MA. Designing effective vaccines for colorectal cancer. Immunotherapy 2015; 6:913-26. [PMID: 25313570 DOI: 10.2217/imt.14.61] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Achieving long-term control of colorectal cancers with therapeutic vaccines that generate potent anti-tumor T cell and antibody responses has been a goal for more than two decades. To date, clinical trials of these vaccines have demonstrated induction of immune responses, but clinical benefit has been limited. Improved vector delivery systems with enhanced immunostimulatory properties, decreased immunogenicity against vector and improved antigen presentation are some of the key features of modern tumor vaccines. Furthermore, an improved understanding of the various immunosuppressive factors in the tumor microenvironment and regional lymph nodes, coupled with a burgeoning ability to impair inhibitory immune synapses, highlights a growing opportunity to induce beneficial antigen-specific responses against tumor. The combination of improved antigenic delivery systems, coupled with therapeutic immune activation, represents state-of-the-art colorectal vaccine design concepts with the goal of augmenting immune responses against tumor and improving clinical outcomes.
Collapse
Affiliation(s)
- Sandip P Patel
- UCSD Moores Cancer Center, Division of Medical Oncology, Cancer Immunotherapy Program, 3855 Health Sciences Drive #0987, La Jolla, CA 92093, USA
| | | | | | | |
Collapse
|
19
|
Zumwalt TJ, Goel A. Immunotherapy of Metastatic Colorectal Cancer: Prevailing Challenges and New Perspectives. CURRENT COLORECTAL CANCER REPORTS 2015; 11:125-140. [PMID: 26441489 PMCID: PMC4591512 DOI: 10.1007/s11888-015-0269-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients with recurring or metastatic colorectal cancer (mCRC) have strikingly low long-term survival, while conventional treatments such as chemotherapeutic intervention and radiation therapy marginally improve longevity. Although, many factors involving immunosurveillance and immunosuppression were recently validated as important for patient prognosis and care, a multitude of experimental immunotherapies designed to combat unresectable mCRC have, in few cases, successfully mobilized antitumor immune cells against malignancies, nor conclusively or consistently granted protection, complete remission, and/or stable disease from immunotherapy - of which benefit less than 10% of those receiving therapy. After decades of progress, however, new insights into the mechanisms of immunosuppression, tolerance, and mutation profiling established novel therapies that circumvent these immunological barriers. This review underlines the most exciting methods to date that manipulate immune cells to curb mCRC, including adoptive cell therapy, dendritic cell vaccines, and checkpoint inhibitor antibodies - of which hint at effective and enduring protection against disease progression and undetected micrometastases.
Collapse
Affiliation(s)
- Timothy J Zumwalt
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Ajay Goel
- Center for Gastrointestinal Research; Center for Epigenetics, Cancer Prevention and Cancer Genomics, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, Texas, USA
| |
Collapse
|
20
|
Quiroga D, Aldhamen YA, Appledorn DM, Godbehere S, Amalfitano A. Strengthened tumor antigen immune recognition by inclusion of a recombinant Eimeria antigen in therapeutic cancer vaccination. Cancer Immunol Immunother 2015; 64:479-91. [PMID: 25655760 DOI: 10.1007/s00262-015-1659-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Accepted: 01/16/2015] [Indexed: 12/17/2022]
Abstract
The need for novel, effective adjuvants that are capable of eliciting stronger cellular and humoral adaptive immune responses to antigenic targets is well understood in the vaccine development field. Unfortunately, many adjuvants investigated thus far are either too toxic for human application or too weak to induce a substantial response against difficult antigens, such as tumor-associated antigens (TAAs). In spite of this trend, clinical investigations of recombinant Eimeria antigen (rEA) have revealed this protein to be a non-toxic immunogenic agent with the ability to trigger a Th1-predominant response in both murine and human subjects. Our past studies have shown that the injection of a rEA-encoding adenovirus (rAd5-rEA) alongside an HIV antigen-encoding adenovirus greatly improves the adaptive immune response against this pathogen-derived transgene. In this report, we investigated whether rAd5-rEA could promote and/or alter cytotoxic memory responses toward carcinoembryonic antigen (CEA), a colorectal cancer-related TAA. We found that the addition of rAd5-rEA to an Ad-based CEA vaccine induced a dose-dependent increase in several anti-CEA T and B cell responses. Moreover, inclusion of rAd5-rEA increased the number of CEA-derived antigenic epitopes that elicited significant cell-mediated and IgG-mediated recognition. These enhanced anti-CEA immune responses also translated into superior CEA-targeted cell killing, as evaluated by an in vivo cytotoxic T lymphocyte assay. Overall, these results suggest that co-administration of rAd5-rEA with a tumor antigen vaccine can substantially boost and broaden the TAA-specific adaptive memory response, thereby validating the potential of rAd5-rEA to be a beneficial adjuvant during therapeutic cancer vaccination.
Collapse
Affiliation(s)
- Dionisia Quiroga
- Department of Microbiology and Molecular Genetics, Michigan State University, 567 Wilson Road, 4194 Biomedical and Physical Sciences Building, East Lansing, MI, 48824, USA
| | | | | | | | | |
Collapse
|
21
|
Wang W, Ji W, Hu H, Ma J, Li X, Mei W, Xu Y, Hu H, Yan Y, Song Q, Li Z, Su C. Survivin promoter-regulated oncolytic adenovirus with Hsp70 gene exerts effective antitumor efficacy in gastric cancer immunotherapy. Oncotarget 2014; 5:150-60. [PMID: 24473833 PMCID: PMC3960197 DOI: 10.18632/oncotarget.1430] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Gene therapy is a promising adjuvant therapeutic strategy for cancer treatment. To overcome the limitations of current gene therapy, such as poor transfection efficiency of vectors, low levels of transgene expression and lack of tumor targeting, the Survivin promoter was used to regulate the selective replication of oncolytic adenovirus in tumor cells, and the heat shock protein 70 (Hsp70) gene was loaded as the anticancer transgene to generate an AdSurp-Hsp70 viral therapy system. The efficacy of this targeted immunotherapy was examined in gastric cancer. The experiments showed that the oncolytic adenovirus can selectively replicate in and lyse the Survivin-positive gastric cancer cells, without significant toxicity to normal cells. AdSurp-Hsp70 reduced viability of cancer cells and inhibited tumor growth of gastric cancer xenografts in immuno-deficient and immuno-reconstruction mouse models. AdSurp-Hsp70 produced dual antitumor effects due to viral replication and high Hsp70 expression. This therapeutic system used the Survivin promoter-regulated oncolytic adenovirus vector to mediate targeted expression of the Hsp70 gene and ensure safety and efficacy for subsequent gene therapy programs against a variety of cancers.
Collapse
Affiliation(s)
- Weiguo Wang
- Department of Internal Medicine, No. 117 Hospital of Chinese PLA, Hangzhou 310004, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rahma OE, Myint ZW, Estfan B. Dendritic Cell Cancer Vaccines for Treatment of Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2014. [DOI: 10.1007/s11888-014-0243-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
A randomized phase II study of immunization with dendritic cells modified with poxvectors encoding CEA and MUC1 compared with the same poxvectors plus GM-CSF for resected metastatic colorectal cancer. Ann Surg 2014; 258:879-86. [PMID: 23657083 DOI: 10.1097/sla.0b013e318292919e] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVE To determine whether 1 of 2 vaccines based on dendritic cells (DCs) and poxvectors encoding CEA (carcinoembryonic antigen) and MUC1 (PANVAC) would lengthen survival in patients with resected metastases of colorectal cancer (CRC). BACKGROUND Recurrences after complete resections of metastatic CRC remain frequent. Immune responses to CRC are associated with fewer recurrences, suggesting a role for cancer vaccines as adjuvant therapy. Both DCs and poxvectors are potent stimulators of immune responses against cancer antigens. METHODS Patients, disease-free after CRC metastasectomy and perioperative chemotherapy (n = 74), were randomized to injections of autologous DCs modified with PANVAC (DC/PANVAC) or PANVAC with per injection GM-CSF (granulocyte-macrophage colony-stimulating factor). Endpoints were recurrence-free survival overall survival, and rate of CEA-specific immune responses. Clinical outcome was compared with that of an unvaccinated, contemporary group of patients who had undergone CRC metastasectomy, received similar perioperative therapy, and would have otherwise been eligible for the study. RESULTS Recurrence-free survival at 2 years was similar (47% and 55% for DC/PANVAC and PANVAC/GM-CSF, respectively) (χ P = 0.48). At a median follow-up of 35.7 months, there were 2 of 37 deaths in the DC/PANVAC arm and 5 of 37 deaths in the PANVAC/GM-CSF arm. The rate and magnitude of T-cell responses against CEA was statistically similar between study arms. As a group, vaccinated patients had superior survival compared with the contemporary unvaccinated group. CONCLUSIONS Both DC and poxvector vaccines have similar activity. Survival was longer for vaccinated patients than for a contemporary unvaccinated group, suggesting that a randomized trial of poxvector vaccinations compared with standard follow-up after metastasectomy is warranted. (NCT00103142).
Collapse
|
24
|
Bellone S, Pecorelli S, Cannon MJ, Santin AD. Advances in dendritic cell-based therapeutic vaccines for cervical cancer. Expert Rev Anticancer Ther 2014; 7:1473-86. [DOI: 10.1586/14737140.7.10.1473] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
25
|
Mossoba ME, Medin JA. Cancer immunotherapy using virally transduced dendritic cells: animal studies and human clinical trials. Expert Rev Vaccines 2014; 5:717-32. [PMID: 17181444 DOI: 10.1586/14760584.5.5.717] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The immune system uses a process known as 'immunosurveillance' to help prevent the outgrowth of tumors. In cancer immunotherapy, a major goal is for immunity against tumor-associated antigens to be generated or strengthened in patients. To achieve this goal, several approaches have been tested, including the use of highly potent antigen-presenting cells called dendritic cells (DCs), which can activate T cells efficiently. Presentation of peptides derived from tumor antigens on the surface of DCs can stimulate strong antitumor immunity. Using recombinant viral vectors encoding tumor-associated antigens, DCs can be engineered efficiently to express sustained levels of tumor-antigen peptides. This review discusses the effectiveness of virally transduced DCs in treating tumors and generating antigen-specific T-cell responses. It covers mouse and nonhuman primate studies, preclinical in vitro human cell experiments and clinical trials.
Collapse
Affiliation(s)
- Miriam E Mossoba
- Department of Medical Biophysics, University of Toronto, 67 College Street, Room 426, Toronto, Ontario, M5G 2MI, Canada.
| | | |
Collapse
|
26
|
Viral Vector Vaccines To Treat Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0185-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
27
|
Abstract
Recent studies have underlined the close link between immune response and prognosis of patients with colorectal cancer (CRC). Immune response understanding combined with biotechnology progress of the last years has allowed development of immunotherapy strategies in CRC. Immunotherapy strategies are divided in "active" or "passive" strategies (patients immune system stimulation or not) and considering the activation of antigen specific immune response or not. These immunotherapy strategies are well tolerated and induced cellular and humoral response correlated with clinical response. Many monoclonal antibodies targeting signalisation pathways or angiogenic growth factors have demonstrated their efficacy in CRC. Multiple vaccine strategies, using different tumour associated antigens, have demonstrated a biological efficacy but with poor clinical results. Results are more promising in adjuvant setting but need to be confirmed by randomized trials. Adoptive immunotherapy with transfer of tumour associated antigen specific T cell is probably the most promising strategy. Actually, except monoclonal antibodies, immunotherapy is not used in clinical practice in CRC due to the lack of results and absence of standardisation.
Collapse
|
28
|
Status of Active Specific Immunotherapy for Stage II, Stage III, and Resected Stage IV Colon Cancer. CURRENT COLORECTAL CANCER REPORTS 2013. [DOI: 10.1007/s11888-013-0182-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
29
|
Improved cytotoxic T-lymphocyte immune responses to a tumor antigen by vaccines co-expressing the SLAM-associated adaptor EAT-2. Cancer Gene Ther 2013; 20:564-75. [PMID: 23949283 DOI: 10.1038/cgt.2013.53] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Revised: 07/09/2013] [Accepted: 07/11/2013] [Indexed: 01/21/2023]
Abstract
The signaling lymphocytic activation molecule-associated adaptor Ewing's sarcoma's-activated transcript 2 (EAT-2) is primarily expressed in dendritic cells, macrophages and natural killer cells. Including EAT-2 in a vaccination regimen enhanced innate and adaptive immune responses toward pathogen-derived antigens, even in the face of pre-existing vaccine immunity. Herein, we investigate whether co-vaccinations with two recombinant Ad5 (rAd5) vectors, one expressing the carcinoembryonic antigen (CEA) and one expressing EAT-2, can induce more potent CEA-specific cytotoxic T lymphocyte (CTL) and antitumor activity in the therapeutic CEA-expressing MC-38 tumor model. Our results suggest that inclusion of EAT-2 significantly alters the kinetics of Th1-biasing proinflammatory cytokine and chemokine responses, and enhances anti-CEA-specific CTL responses. As a result, rAd5-EAT2-augmented rAd5-CEA vaccinations are more efficient in eliminating CEA-expressing target cells as measured by an in vivo CTL assay. Administration of rAd5-EAT2 vaccines also reduced the rate of growth of MC-38 tumor growth in vivo. Also, an increase in MC-38 tumor cell apoptosis (as measured by hematoxylin and eosin staining, active caspase-3 and granzyme B levels within the tumors) was observed. These data provide evidence that more efficient, CEA-specific effector T cells are generated by rAd5 vaccines expressing CEA, when augmented by rAd5 vaccines expressing EAT-2, and this regimen may be a promising approach for cancer immunotherapy in general.
Collapse
|
30
|
Morse MA, Chaudhry A, Gabitzsch ES, Hobeika AC, Osada T, Clay TM, Amalfitano A, Burnett BK, Devi GR, Hsu DS, Xu Y, Balcaitis S, Dua R, Nguyen S, Balint JP, Jones FR, Lyerly HK. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients. Cancer Immunol Immunother 2013; 62:1293-301. [PMID: 23624851 DOI: 10.1007/s00262-013-1400-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/21/2013] [Indexed: 12/11/2022]
Abstract
First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.
Collapse
Affiliation(s)
- Michael A Morse
- Department of Medicine, Duke University Medical Center, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Takahashi H, Okamoto M, Shimodaira S, Tsujitani SI, Nagaya M, Ishidao T, Kishimoto J, Yonemitsu Y. Impact of dendritic cell vaccines pulsed with Wilms' tumour-1 peptide antigen on the survival of patients with advanced non-small cell lung cancers. Eur J Cancer 2012; 49:852-9. [PMID: 23245331 DOI: 10.1016/j.ejca.2012.11.005] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 11/02/2012] [Indexed: 12/16/2022]
Abstract
PURPOSE Dendritic cell (DC)-based vaccines have been expected to serve as new therapeutic approaches for advanced non-small cell lung cancers (NSCLCs); however, their clinical outcomes have not been fully elucidated. We report a single-centre clinical study analysing factors affecting the survival of patients with advanced NSCLCs who received DC vaccines pulsed with or without Wilms' tumour protein-1 (WT1) peptide. METHODS Among 62 patients with previously treated inoperable or postoperatively relapsed NSCLCs who met the inclusion criteria, DCs from 47 (76%) patients who showed HLA-A2402/0201/0206 were pulsed with one or more corresponding WT1 peptide antigens. DC vaccines were intradermally injected biweekly. RESULTS Clinical responses based on response evaluation criteria in solid tumours (RECIST) were found in 31 (50%) patients at 3 months after the first DC vaccine (complete response: 1 (1.6%), partial response: 4 (6.5%), stable disease: 26 (41.9%)). Median survival time was 27 months (82% in 1 year and 54% in 2 years) from initial diagnosis, and that was 12 months (48% in 1 year and 22% in 2 years) from the first DC vaccination. Importantly, multivariate analyses revealed that only two factors, blood haemoglobin and the use of WT1 peptides, significantly affected the overall survival of patients from both initial diagnosis and first vaccination. CONCLUSIONS This study is the first to suggest that DC vaccines pulsed with WT1 may hold a significant impact to prolong the overall survival of patients with advanced NSCLCs.
Collapse
|
32
|
Winter H, van den Engel NK, Rusan M, Schupp N, Poehlein CH, Hu HM, Hatz RA, Urba WJ, Jauch KW, Fox BA, Rüttinger D. Active-specific immunotherapy for non-small cell lung cancer. J Thorac Dis 2012; 3:105-14. [PMID: 22263073 DOI: 10.3978/j.issn.2072-1439.2010.12.06] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 12/24/2010] [Indexed: 12/28/2022]
Abstract
Non-small cell lung cancer constitutes about 85% of all newly diagnosed cases of lung cancer and continues to be the leading cause of cancer-related deaths worldwide. Standard treatment for this devastating disease, such as systemic chemotherapy, has reached a plateau in effectiveness and comes with considerable toxicities. For all stages of disease fewer than 20% of patients are alive 5 years after diagnosis; for metastatic disease the median survival is less than one year. Until now, the success of active-specific immunotherapy for all tumor types has been sporadic and unpredictable. However, the active-specific stimulation of the host's own immune system still holds great promise for achieving non-toxic and durable antitumor responses. Recently, sipuleucel-T (Provenge(®); Dendreon Corp., Seattle, WA) was the first therapeutic cancer vaccine to receive market approval, in this case for advanced prostate cancer. Other phase III clinical trials using time-dependent endpoints, e.g. in melanoma and follicular lymphoma, have recently turned out positive. More sophisticated specific vaccines have now also been developed for lung cancer, which, for long, was not considered an immune-sensitive malignancy. This may explain why advances in active-specific immunotherapy for lung cancer lag behind similar efforts in renal cell cancer, melanoma or prostate cancer. However, various vaccines are now being evaluated in controlled phase III clinical trials, raising hopes that active-specific immunotherapy may become an additional effective therapy for patients with lung cancer. This article reviews the most prominent active-specific immunotherapeutic approaches using protein/peptide, whole tumor cells, and dendritic cells as vaccines for lung cancer.
Collapse
Affiliation(s)
- Hauke Winter
- Department of Surgery-Campus Grosshadern, Thoracic Surgery Center Munich, Laboratory of Clinical and Experimental Tumor Immunology, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Lion E, Smits ELJM, Berneman ZN, Van Tendeloo VFI. NK cells: key to success of DC-based cancer vaccines? Oncologist 2012; 17:1256-70. [PMID: 22907975 DOI: 10.1634/theoncologist.2011-0122] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The cytotoxic and regulatory antitumor functions of natural killer (NK) cells have become attractive targets for immunotherapy. Manipulation of specific NK cell functions and their reciprocal interactions with dendritic cells (DCs) might hold therapeutic promise. In this review, we focus on the engagement of NK cells in DC-based cancer vaccination strategies, providing a comprehensive overview of current in vivo experimental and clinical DC vaccination studies encompassing the monitoring of NK cells. From these studies, it is clear that NK cells play a key regulatory role in the generation of DC-induced antitumor immunity, favoring the concept that targeting both innate and adaptive immune mechanisms may synergistically promote clinical outcome. However, to date, DC vaccination trials are only infrequently accompanied by NK cell monitoring. Here, we discuss different strategies to improve DC vaccine preparations via exploitation of NK cells and provide a summary of relevant NK cell parameters for immune monitoring. We underscore that the design of DC-based cancer vaccines should include the evaluation of their NK cell stimulating potency both in the preclinical phase and in clinical trials.
Collapse
Affiliation(s)
- Eva Lion
- Vaccine & Infectious Disease Institute (Vaxinfectio), Laboratory of Experimental Hematology, TIGR, University of Antwerp (UA), Antwerp University Hospital (UZA), Wilrijkstraat 10, B-2650 Antwerp, Belgium.
| | | | | | | |
Collapse
|
34
|
El-Nikhely N, Larzabal L, Seeger W, Calvo A, Savai R. Tumor–stromal interactions in lung cancer: novel candidate targets for therapeutic intervention. Expert Opin Investig Drugs 2012; 21:1107-22. [DOI: 10.1517/13543784.2012.693478] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Markov OO, Mironova NL, Maslov MA, Petukhov IA, Morozova NG, Vlassov VV, Zenkova MA. Novel cationic liposomes provide highly efficient delivery of DNA and RNA into dendritic cell progenitors and their immature offsets. J Control Release 2012; 160:200-10. [DOI: 10.1016/j.jconrel.2011.11.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 11/25/2011] [Accepted: 11/27/2011] [Indexed: 12/11/2022]
|
36
|
Abstract
To date, in lung cancer, early attempts to modulate the immune system via vaccine-based therapeutics have been unsuccessful. An improved understanding of tumor immunology has facilitated the production of more sophisticated lung cancer vaccines. It is anticipated that it will likely require multiple epitopes of a diverse set of genes restricted to multiple haplotypes to generate a truly effective vaccine that is able to overcome the various immunologic escape mechanisms that tumors employ. Other issues to overcome include optimal patient selection, which adjuvant agent to use, and how to adequately monitor for an immunologic response. This review discusses the most promising vaccination strategies for non-small cell lung cancer including the allogeneic tumor cell vaccine belagenpumatucel-L, which is a mixture of 4 allogeneic non-small cell lung cancer cell lines genetically modified to secrete an antisense oligonucleotide to transforming growth factor β2 and 3 other target protein-specific vaccines designed to induce responses against melanoma-associated antigen A3, mucin 1, and epidermal growth factor.
Collapse
|
37
|
Cools N, Petrizzo A, Smits E, Buonaguro FM, Tornesello ML, Berneman Z, Buonaguro L. Dendritic cells in the pathogenesis and treatment of human diseases: a Janus Bifrons? Immunotherapy 2012; 3:1203-22. [PMID: 21995572 DOI: 10.2217/imt.11.110] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Dendritic cells (DCs) represent the bridging cell compartment between a variety of nonself antigens (i.e., microbial, cancer and vaccine antigens) and adaptive immunity, orchestrating the quality and potency of downstream immune responses. Because of the central role of DCs in the generation and regulation of immunity, the modulation of DC function in order to shape immune responses is gaining momentum. In this respect, recent advances in understanding DC biology, as well as the required molecular signals for induction of T-cell immunity, have spurred many experimental strategies to use DCs for therapeutic immunological approaches for infections and cancer. However, when DCs lose control over such 'protective' responses - by alterations in their number, phenotype and/or function - undesired effects leading to allergy and autoimmune clinical manifestations may occur. Novel therapeutic approaches have been designed and currently evaluated in order to address DCs and silence these immunopathological processes. In this article we present recent concepts of DC biology and some medical implications in view of therapeutic opportunities.
Collapse
Affiliation(s)
- Nathalie Cools
- Laboratory of Experimental Hematology, Vaccine & Infectious Disease Institute (Vaxinfectio), University of Antwerp, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
38
|
Lousberg EL, Diener KR, Brown MP, Hayball JD. Innate immune recognition of poxviral vaccine vectors. Expert Rev Vaccines 2012; 10:1435-49. [PMID: 21988308 DOI: 10.1586/erv.11.121] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The study of poxviruses pioneered the field of vaccinology after Jenner's remarkable discovery that 'vaccination' with the phylogenetically related cowpox virus conferred immunity to the devastating disease of smallpox. The study of poxviruses continues to enrich the field of virology because the global eradication of smallpox provides a unique example of the potency of effective immunization. Other poxviruses have since been developed as vaccine vectors for clinical and veterinary applications and include modified vaccinia virus strains such as modified vaccinia Ankara and NYVAC as well as the avipox viruses, fowlpox virus and canarypox virus. Despite the empirical development of poxvirus-based vectored vaccines, it is only now becoming apparent that we need to better understand how the innate arm of the immune system drives adaptive immunity to poxviruses, and how this information is relevant to vaccine design strategies, which are the topics addressed in this article.
Collapse
Affiliation(s)
- Erin L Lousberg
- Experimental Therapeutics Laboratory, Hanson Institute, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | | | | | | |
Collapse
|
39
|
CEA promoter-regulated oncolytic adenovirus-mediated Hsp70 expression in immune gene therapy for pancreatic cancer. Cancer Lett 2012; 319:154-163. [PMID: 22261331 DOI: 10.1016/j.canlet.2012.01.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 12/19/2011] [Accepted: 01/08/2012] [Indexed: 12/12/2022]
Abstract
Gene therapy is an important means for the comprehensive treatment of pancreatic cancer. Challenges associated with gene therapy include control of vector security and effective genetic screening. In this paper, a CEA promoter-regulated oncolytic adenovirus vector was constructed. The reporter gene assay demonstrated that the viral vector was confirmed to have tumor-specific replication features. In vitro cytology studies showed that the CEA promoter regulated the proliferation of the adenovirus vector carrying the Hsp70 gene (AdCEAp-Hsp70), which significantly increased the expression levels of Hsp70 in the CEA-positive pancreatic cancer cells, resulting in an overall reduction in the survival of cancer cells. In the human pancreatic cancer Panc-1 xenograft model in immune deficient nude mice, the CEA promoter-regulated adenovirus AdCEAp-Hsp70 significantly inhibited tumor growth. In the rat pancreatic cancer DSL-6A/C1 xenograft model in rats, the viral proliferation and high expression levels of Hsp70 promoted the interstitial infiltration of CD4+, CD8+ and gamma/delta T cells into tumors, induced host secretion of the cytokines TGF-β, INF-γ, and IL-6 and had a dual anti-tumor effects that completely inhibited the growth of pancreatic cancer. The results demonstrated that the oncolytic adenovirus under the control of CEA promoter provides additional assurances regarding the safety and efficiency of cancer gene therapy. This gene therapy model improves anti-cancer efficiency and has broad applications and developmental prospects.
Collapse
|
40
|
Abstract
Both advanced-stage lung cancer and malignant pleural mesothelioma are associated with a poor prognosis. Advances in treatment regimens for both diseases have had only a modest effect on their progressive course. Gene therapy for thoracic malignancies represents a novel therapeutic approach and has been evaluated in several clinical trials. Strategies have included induction of apoptosis, tumor suppressor gene replacement, suicide gene expression, cytokine-based therapy, various vaccination approaches, and adoptive transfer of modified immune cells. This review considers the clinical results, limitations, and future directions of gene therapy trials for thoracic malignancies.
Collapse
Affiliation(s)
- Anil Vachani
- Division of Pulmonary, Allergy & Critical Care Medicine, University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
41
|
Speetjens FM, Zeestraten ECM, Kuppen PJK, Melief CJM, van der Burg SH. Colorectal cancer vaccines in clinical trials. Expert Rev Vaccines 2011; 10:899-921. [PMID: 21692708 DOI: 10.1586/erv.11.63] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This article elucidates current strategies of active immunotherapy for colorectal cancer patients with a focus on T-cell mediated immunotherapy. Poor prognosis of especially stage III and IV colorectal cancer patients emphasizes the need for advanced therapeutic intervention. Here, we refer to clinical trials using either tumor cell-derived vaccines or tumor antigen vaccines with a special interest on safety, induced immune responses, clinical benefit and efforts to improve the clinical impact of these vaccines in the context of colorectal cancer treatment.
Collapse
Affiliation(s)
- Frank M Speetjens
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
42
|
Klebanoff CA, Acquavella N, Yu Z, Restifo NP. Therapeutic cancer vaccines: are we there yet? Immunol Rev 2011; 239:27-44. [PMID: 21198663 DOI: 10.1111/j.1600-065x.2010.00979.x] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Enthusiasm for therapeutic cancer vaccines has been rejuvenated with the recent completion of several large, randomized phase III clinical trials that in some cases have reported an improvement in progression free or overall survival. However, an honest appraisal of their efficacy reveals modest clinical benefit and a frequent requirement for patients with relatively indolent cancers and minimal or no measurable disease. Experience with adoptive cell transfer-based immunotherapies unequivocally establishes that T cells can mediate durable complete responses, even in the setting of advanced metastatic disease. Further, these findings reveal that the successful vaccines of the future must confront: (i) a corrupted tumor microenvironment containing regulatory T cells and aberrantly matured myeloid cells, (ii) a tumor-specific T-cell repertoire that is prone to immunologic exhaustion and senescence, and (iii) highly mutable tumor targets capable of antigen loss and immune evasion. Future progress may come from innovations in the development of selective preparative regimens that eliminate or neutralize suppressive cellular populations, more effective immunologic adjuvants, and further refinement of agents capable of antagonizing immune check-point blockade pathways.
Collapse
Affiliation(s)
- Christopher A Klebanoff
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-1502, USA
| | | | | | | |
Collapse
|
43
|
Abstract
Cancer immunotherapy aims to establish immune-mediated control of tumor growth by priming T-cell responses to target tumor-associated antigens. Three signals are required for T-cell activation: (i) presentation of cognate antigen in self MHC molecules; (ii) costimulation by membrane-bound receptor-ligand pairs; and (iii) soluble factors to direct polarization of the ensuing immune response. The ability of dendritic cells (DCs) to provide all three signals required for T-cell activation makes them an ideal cancer vaccine platform. Several strategies have been developed to enhance and control antigen presentation, costimulation, and cytokine production. In this review, we discuss progress toward developing DC-based cancer vaccines by genetic modification using RNA, DNA, and recombinant viruses. Furthermore, the ability of DC-based vaccines to activate natural killer (NK) and B-cells, and the impact of gene modification strategies on these populations is described. Clinical trials using gene-modified DCs have shown modest results, therefore, further considerations for DC manipulation to enhance their clinical efficacy are also discussed.
Collapse
|
44
|
Shurin MR, Gregory M, Morris JC, Malyguine AM. Genetically modified dendritic cells in cancer immunotherapy: a better tomorrow? Expert Opin Biol Ther 2011; 10:1539-53. [PMID: 20955111 DOI: 10.1517/14712598.2010.526105] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
IMPORTANCE OF THE FIELD Dendritic cells (DC) are powerful antigen-presenting cells that induce and maintain primary cytotoxic T lymphocyte (CTL) responses directed against tumor antigens. Consequently, there has been much interest in their application as antitumor vaccines. AREAS COVERED IN THIS REVIEW A large number of DC-based vaccine trials targeting a variety of cancers have been conducted; however, the rate of reported clinically significant responses remains low. Modification of DC to express tumor antigens or immunostimulatory molecules through the transfer of genes or mRNA transfection offers a logical alternative with potential advantages over peptide- or protein antigen-loaded DC. In this article, we review the current results and future prospects for genetically modified DC vaccines for the treatment of cancer. WHAT THE READER WILL GAIN Genetically-modified dendritic cell-based vaccines represent a powerful tool for cancer therapy. Numerous preclinical and clinical studies have demonstrated the potential of dendritic cell vaccines alone or in combination with other therapeutic modalities. TAKE HOME MESSAGE Genetically modified DC-based anti-cancer vaccination holds promise, perhaps being best employed in the adjuvant setting with minimal residual disease after primary therapy, or in combination with other antitumor or immune-enhancing therapies.
Collapse
Affiliation(s)
- Michael R Shurin
- Department of Pathology and Immunology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
45
|
Turnis ME, Rooney CM. Enhancement of dendritic cells as vaccines for cancer. Immunotherapy 2011; 2:847-62. [PMID: 21091116 DOI: 10.2217/imt.10.56] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Dendritic cells are the most potent antigen-presenting cells known; owing to their ability to stimulate antigen-specific cytolytic and memory T-cell responses, their use as cancer vaccines is rapidly increasing. While clinical trials provide evidence that dendritic cells vaccines are safe and elicit immunological responses in most patients, few complete tumor remissions have been reported and further technological advances are required. An effective dendritic cell vaccine must possess and maintain several characteristics: it must migrate to lymph nodes, have a mature, Th1-polarizing phenotype expressed stably after infusion and present antigen for sufficient time to produce a T-cell response capable of eliminating a tumor. While dendritic cells are readily matured ex vivo, their phenotype and fate after infusion are rarely evaluable; therefore, strategies to ensure that dendritic cells access lymphoid tissues and retain an immunostimulatory phenotype are required. In order to best exploit dendritic cells as vaccines, they may require genetic modification and combination with other strategies including adoptive T-cell transfer, inhibition of regulatory T cells or modulation of inflammatory pathways.
Collapse
|
46
|
Rao B, Han M, Wang L, Gao X, Huang J, Huang M, Liu H, Wang J. Clinical outcomes of active specific immunotherapy in advanced colorectal cancer and suspected minimal residual colorectal cancer: a meta-analysis and system review. J Transl Med 2011; 9:17. [PMID: 21272332 PMCID: PMC3041676 DOI: 10.1186/1479-5876-9-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 01/27/2011] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND To evaluate the objective clinical outcomes of active specific immunotherapy (ASI) in advanced colorectal cancer (advanced CRC) and suspected minimal residual colorectal cancer (suspected minimal residual CRC). METHODS A search was conducted on Medline and Pub Med from January 1998 to January 2010 for original studies on ASI in colorectal cancer (CRC). All articles included in this study were assessed with the application of predetermined selection criteria and were divided into two groups: ASI in advanced CRC and ASI in suspected minimal residual CRC. For ASI in suspected minimal residual CRC, a meta-analysis was executed with results regarding the overall survival (OS) and disease-free survival (DFS). Regarding ASI in advanced colorectal cancer, a system review was performed with clinical outcomes. RESULTS 1375 colorectal carcinoma patients with minimal residual disease have been enrolled in Meta-analysis. A significantly improved OS and DFS was noted for suspected minimal residual CRC patients utilizing ASI (For OS: HR = 0.76, P = 0.007; For DFS: HR = 0.76, P = 0.03). For ASI in stage II suspected minimal residual CRC, OS approached significance when compared with control (HR = 0.71, P = 0.09); however, the difference in DFS of ASI for the stage II suspected minimal residual CRC reached statistical significance (HR = 0.66, P = 0.02). For ASI in stage III suspected minimal residual CRC compared with control, The difference in both OS and DFS achieved statistical significance (For OS: HR = 0.76, P = 0.02; For DFS: HR = 0.81, P = 0.03). 656 advanced colorectal patients have been evaluated on ASI in advanced CRC. Eleven for CRs and PRs was reported, corresponding to an overall response rate of 1.68%. No serious adverse events have been observed in 2031 patients. CONCLUSIONS It is unlikely that ASI will provide a standard complementary therapeutic approach for advanced CRC in the near future. However, the clinical responses to ASI in patients with suspected minimal residual CRC have been encouraging, and it has become clear that immunotherapy works best in situations of patients with suspected minimal residual CRC.
Collapse
Affiliation(s)
- Benqiang Rao
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Minyan Han
- Medical Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655,PR China
| | - Lei Wang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Xiaoyan Gao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Jun Huang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Meijin Huang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
| | - Huanliang Liu
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| | - Jianping Wang
- Colorectal Surgery Department, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong 510655, PR China
- Institute of Gastroenterology, Sun Yat-sen University, Guangzhou, Guangdong 510655, PR China
| |
Collapse
|
47
|
Hobeika AC, Morse MA, Osada T, Peplinski S, Lyerly HK, Clay TM. Depletion of human regulatory T cells. Methods Mol Biol 2011; 707:219-231. [PMID: 21287338 DOI: 10.1007/978-1-61737-979-6_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Regulatory T cells (Treg) have become increasingly relevant in the study of human disease including cancer. Treg cells have been shown to inhibit anti-tumor immune responses, and elevated Treg levels have been associated with certain types of cancer. Similarly, depletion of Tregs by various methods can also enhance anti-tumor immune responses. We have found a prevalence of Treg in cancer patients when compared to normal volunteers. In addition, we have shown that the depletion of Treg using the IL-2 fusion protein denileukin diftitox decreased Treg function and increased antigen-specific T cell response to a cancer vaccine. These results indicate the potential for combining Treg depletion with anti-cancer vaccines to enhance tumor antigen-specific immune responses and the need to explore the dose and schedule of Treg depletion strategies in optimizing vaccine efforts.
Collapse
Affiliation(s)
- Amy C Hobeika
- Departments of Surgery, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | | | |
Collapse
|
48
|
Kim HS, Park HM, Park JS, Sohn HJ, Kim SG, Kim HJ, Oh ST, Kim TG. Dendritic cell vaccine in addition to FOLFIRI regimen improve antitumor effects through the inhibition of immunosuppressive cells in murine colorectal cancer model. Vaccine 2010; 28:7787-96. [PMID: 20883737 DOI: 10.1016/j.vaccine.2010.09.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2010] [Revised: 08/24/2010] [Accepted: 09/14/2010] [Indexed: 11/19/2022]
Abstract
Although chemotherapy is still one of the best treatments for most cancers, immunotherapies such as dendritic cell (DC) vaccines have emerged as an alternative protocol for destroying residual tumors. In this study, we investigated antitumor effects of the combined therapy using DC vaccine and irinotecan plus infusional 5-fluorouracil and leucovorin (FOLFIRI) which have been clinically used for the treatment of colorectal cancer. A maximum tolerated dose of FOLFIRI was preliminarily determined for MC38/CEA2 colorectal cancer model. Vaccination with DC expressing carcinoembryonic antigen (CEA) enhanced antitumor effect after FOLFIRI treatment. The combined therapy also increased CEA-specific Th1 and cytotoxic T-cell responses. Interestingly, although FOLFIRI treatment rather showed a rebound in the number of myeloid-derived suppressor cells (MDSC) and regulatory T-cells (Treg) after 14 days, additional DC vaccine could inhibit the rebound of these immunosuppressive cells. Furthermore, mice cured by the combined therapy showed antigen-specific T-cell responses and resistance against challenge of MC38/CEA2 compared with mice cured with FOLFIRI. These results demonstrated that DC vaccine in addition to FOLFIRI regimen could improve antitumor effects through the inhibition of immunosuppressive tumor environments in murine colorectal cancer model, and may provide knowledge useful for the design of chemo-immunotherapeutic strategies for the treatment of colorectal carcinoma in clinical trials.
Collapse
Affiliation(s)
- Hye-Sung Kim
- Department of Microbiology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul 137-701, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kelly RJ, Gulley JL, Giaccone G. Targeting the immune system in non-small-cell lung cancer: bridging the gap between promising concept and therapeutic reality. Clin Lung Cancer 2010; 11:228-37. [PMID: 20630824 PMCID: PMC3474196 DOI: 10.3816/clc.2010.n.029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Developing effective immunotherapy for lung cancer is a daunting but hugely attractive challenge. Until recently, non-small-cell lung cancer (NSCLC) was thought of as a nonimmunogenic tumor, but there is now evidence highlighting the integral role played by both inflammatory and immunologic responses in lung carcinogenesis. Despite recent encouraging preclinical and phase I/II data, there are a paucity of phase III trials showing a clear clinical benefit for vaccines in lung cancer. There are many difficulties to overcome before the development of a successful therapy. Perhaps a measurable immune response may not translate into a clinically meaningful or radiologic response. Patient selection may also be a problem for ongoing clinical studies. The majority of trials for lung cancer vaccines are focused on patients with an advanced stage of the disease; however, the ideal candidates may be patients with a lower tumor burden and stage I or II disease. Selecting the exact antigens to target is also difficult. It will likely require multiple epitopes of a diverse set of genes restricted to multiple haplotypes to generate a truly effective vaccine that is able to overcome the various immunologic escape mechanisms that tumors use. This review discusses the most promising active immunotherapy using protein/peptide vaccines, whole cell vaccines, and dendritic cell vaccines and examines current phase I and II clinical trial data on some novel nonspecific immunomodulating agents.
Collapse
Affiliation(s)
- Ronan J Kelly
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
50
|
Simmons O, Magee M, Nemunaitis J. Current vaccine updates for lung cancer. Expert Rev Vaccines 2010; 9:323-35. [PMID: 20218860 DOI: 10.1586/erv.10.12] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Current treatments for lung cancer are far from optimal. Several immunotherapeutic strategies involving vaccines incorporating different tumor-associated antigens to induce immune responses against tumors are being tested in clinical trials internationally. Although small, benefits have indeed been observed from the early studies of these vaccines, and the future is looking brighter for lung cancer patients as a handful of these immunotherapies reach Phase III trials. In addition, optimizing the induced immune response by these vaccines has become a priority, and a number of techniques are being considered, including addition of adjuvants and combining vaccines, which affect synergy based on their mechanism of action. This review is an update on the current vaccines in production, the benefits observed from their most recent studies, and the upcoming plans for improvements in these immunotherapies.
Collapse
|