1
|
Guo Y, Xue L, Tang W, Xiong J, Chen D, Dai Y, Wu C, Wei S, Dai J, Wu M, Wang S. Ovarian microenvironment: challenges and opportunities in protecting against chemotherapy-associated ovarian damage. Hum Reprod Update 2024; 30:614-647. [PMID: 38942605 PMCID: PMC11369228 DOI: 10.1093/humupd/dmae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/27/2024] [Indexed: 06/30/2024] Open
Abstract
BACKGROUND Chemotherapy-associated ovarian damage (CAOD) is one of the most feared short- and long-term side effects of anticancer treatment in premenopausal women. Accumulating detailed data show that different chemotherapy regimens can lead to disturbance of ovarian hormone levels, reduced or lost fertility, and an increased risk of early menopause. Previous studies have often focused on the direct effects of chemotherapeutic drugs on ovarian follicles, such as direct DNA damage-mediated apoptotic death and primordial follicle burnout. Emerging evidence has revealed an imbalance in the ovarian microenvironment during chemotherapy. The ovarian microenvironment provides nutritional support and transportation of signals that stimulate the growth and development of follicles, ovulation, and corpus luteum formation. The close interaction between the ovarian microenvironment and follicles can determine ovarian function. Therefore, designing novel and precise strategies to manipulate the ovarian microenvironment may be a new strategy to protect ovarian function during chemotherapy. OBJECTIVE AND RATIONALE This review details the changes that occur in the ovarian microenvironment during chemotherapy and emphasizes the importance of developing new therapeutics that protect ovarian function by targeting the ovarian microenvironment during chemotherapy. SEARCH METHODS A comprehensive review of the literature was performed by searching PubMed up to April 2024. Search terms included 'ovarian microenvironment' (ovarian extracellular matrix, ovarian stromal cells, ovarian interstitial, ovarian blood vessels, ovarian lymphatic vessels, ovarian macrophages, ovarian lymphocytes, ovarian immune cytokines, ovarian oxidative stress, ovarian reactive oxygen species, ovarian senescence cells, ovarian senescence-associated secretory phenotypes, ovarian oogonial stem cells, ovarian stem cells), terms related to ovarian function (reproductive health, fertility, infertility, fecundity, ovarian reserve, ovarian function, menopause, decreased ovarian reserve, premature ovarian insufficiency/failure), and terms related to chemotherapy (cyclophosphamide, lfosfamide, chlormethine, chlorambucil, busulfan, melphalan, procarbazine, cisplatin, doxorubicin, carboplatin, taxane, paclitaxel, docetaxel, 5-fluorouraci, vincristine, methotrexate, dactinomycin, bleomycin, mercaptopurine). OUTCOMES The ovarian microenvironment shows great changes during chemotherapy, inducing extracellular matrix deposition and stromal fibrosis, angiogenesis disorders, immune microenvironment disturbance, oxidative stress imbalances, ovarian stem cell exhaustion, and cell senescence, thereby lowering the quantity and quality of ovarian follicles. Several methods targeting the ovarian microenvironment have been adopted to prevent and treat CAOD, such as stem cell therapy and the use of free radical scavengers, senolytherapies, immunomodulators, and proangiogenic factors. WIDER IMPLICATIONS Ovarian function is determined by its 'seeds' (follicles) and 'soil' (ovarian microenvironment). The ovarian microenvironment has been reported to play a vital role in CAOD and targeting the ovarian microenvironment may present potential therapeutic approaches for CAOD. However, the relation between the ovarian microenvironment, its regulatory networks, and CAOD needs to be further studied. A better understanding of these issues could be helpful in explaining the pathogenesis of CAOD and creating innovative strategies for counteracting the effects exerted on ovarian function. Our aim is that this narrative review of CAOD will stimulate more research in this important field. REGISTRATION NUMBER Not applicable.
Collapse
Affiliation(s)
- Yican Guo
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Liru Xue
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Weicheng Tang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jiaqiang Xiong
- Department of Obstetrics and Gynecology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Dan Chen
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Yun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Chuqing Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Simin Wei
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Jun Dai
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Meng Wu
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| | - Shixuan Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- National Clinical Research Center for Obstetrical and Gynecological Diseases, Wuhan, Hubei, China
- Key Laboratory of Cancer Invasion and Metastasis, Ministry of Education, Wuhan, Hubei, China
| |
Collapse
|
2
|
Pagonopoulou O, Papadatou V, Tologkos S, Efthimiadou A, Maria L. Chronic Administration of Recombinant Human Erythropoietin Induces Angiogenesis in Healthy Mouse Brain. Cureus 2024; 16:e68362. [PMID: 39355466 PMCID: PMC11443503 DOI: 10.7759/cureus.68362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2024] [Indexed: 10/03/2024] Open
Abstract
Introduction The hematopoietic growth factor erythropoietin (EPO) plays an important role in apoptosis and oxidative stress attenuation as well as the promotion of angiogenesis in several tissues. Systemically administered EPO has beneficial effects on rabbits subjected to subarachnoid hemorrhage or stroke. So far, the angiogenic effect of EPO has been documented after an experimentally induced stroke or subarachnoid hemorrhage. In our study, we examined the possible angiogenic effect of chronic treatment with recombinant human erythropoietin (rHuEPO) under normal conditions, in an attempt to clarify if the existence of a lesion or oxygen deprivation is necessary to initiate the angiogenic effect of EPO. Materials & methods BALB/c mice were used and were divided into three groups as follows: group A (no treatment), group B (saline only), and group C (7000 U rHuEPO per week for three weeks by intraperitoneal injection). The number of CD31- and CD34-positive endothelial cells was assessed in mouse brain preparations under control conditions and after treatment with rHuEPO. Results There was no difference between the mean numbers of CD31 and CD34 cells among the different groups. The mean number of vessels in group A and group B was almost the same (18 ± 2 vessels per optical field). However, the number of brain vessels in group C (EPO treatment) increased significantly by 44% compared to controls (26 ± 4 vessels per optical field, P < 0.05). Conclusion These data indicate that no lesion or oxygen deprivation is needed to initiate the angiogenic effect of EPO in healthy mouse brains.
Collapse
Affiliation(s)
- Olga Pagonopoulou
- Neurophysiology, Democritus University of Thrace, Alexandroupolis, GRC
| | - Vasiliki Papadatou
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| | - Stylianos Tologkos
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| | | | - Lambropoulou Maria
- Histology-Embryology, Democritus University of Thrace, Alexandroupolis, GRC
| |
Collapse
|
3
|
Li K, Gao L, Zhou S, Ma YR, Xiao X, Jiang Q, Kang ZH, Liu ML, Liu TX. Erythropoietin promotes energy metabolism to improve LPS-induced injury in HK-2 cells via SIRT1/PGC1-α pathway. Mol Cell Biochem 2023; 478:651-663. [PMID: 36001204 DOI: 10.1007/s11010-022-04540-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 08/08/2022] [Indexed: 11/25/2022]
Abstract
Acute kidney injury (AKI) is one of frequent complications of sepsis with high mortality. Mitochondria is the center of energy metabolism participating in the pathogenesis of sepsis-associated AKI, and SIRT1/PGC1-α signaling pathway plays a crucial role in the modulation of energy metabolism. Erythropoietin (EPO) exerts protective functions on chronic kidney disease. We aimed to assess the effects of EPO on cell damage and energy metabolism in a cell model of septic AKI. Renal tubular epithelial cells HK-2 were treated with LPS and human recombinant erythropoietin (rhEPO). Cell viability was detected by CCK-8 and mitochondrial membrane potential was determined using JC-1 fluorescent probe. Then the content of ATP, ADP and NADPH, as well as lactic acid, were measured for the assessment of energy metabolism. Oxidative stress was evaluated by detecting the levels of ROS, MDA, SOD and GSH. Pro-inflammatory cytokines, including TNF-α, IL-6, and IL-1β, were measured with ELISA. Moreover, qRT-PCR and western blot were performed to detect mRNA and protein expressions. shSIRT1 was used to knockdown SIRT1, while EX527 and SR-18292 were applied to inhibit SIRT1 and PGC1-α, respectively, to investigate the regulatory mechanism of rhEPO on inflammatory injury and energy metabolism. In LPS-exposed HK-2 cells, rhEPO attenuated cell damage, inflammation and abnormal energy metabolism, as indicated by the elevated cell viability, the inhibited oxidative stress, cell apoptosis and inflammation, as well as the increased mitochondrial membrane potential and energy metabolism. However, these protective effects induced by rhEPO were reversed after SIRT1 or PGC1-α inhibition. EPO activated SIRT1/PGC1-α pathway to alleviate LPS-induced abnormal energy metabolism and cell damage in HK-2 cells. Our study suggested that rhEPO played a renoprotective role through SIRT1/PGC1-α pathway, which supported its therapeutic potential in septic AKI.
Collapse
Affiliation(s)
- Kan Li
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Li Gao
- Department of Gynaecology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Sen Zhou
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Yan-Rong Ma
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xiao Xiao
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Jiang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Zhi-Hong Kang
- The First Clinical Medical School of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Ming-Long Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China
| | - Tian-Xi Liu
- Department of Nephrology, The First Hospital of Lanzhou University, No.1 Donggangxi Road, Chengguan District, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
4
|
D'Antonio L, Fieni C, Ciummo SL, Vespa S, Lotti L, Sorrentino C, Di Carlo E. Inactivation of interleukin-30 in colon cancer stem cells via CRISPR/Cas9 genome editing inhibits their oncogenicity and improves host survival. J Immunother Cancer 2023; 11:jitc-2022-006056. [PMID: 36927528 PMCID: PMC10030651 DOI: 10.1136/jitc-2022-006056] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
BACKGROUND Progression of colorectal cancer (CRC), a leading cause of cancer-related death worldwide, is driven by colorectal cancer stem cells (CR-CSCs), which are regulated by endogenous and microenvironmental signals. Interleukin (IL)-30 has proven to be crucial for CSC viability and tumor progression. Whether it is involved in CRC tumorigenesis and impacts clinical behavior is unknown. METHODS IL30 production and functions, in stem and non-stem CRC cells, were determined by western blot, immunoelectron microscopy, flow cytometry, cell viability and sphere formation assays. CRISPR/Cas9-mediated deletion of the IL30 gene, RNA-Seq and implantation of IL30 gene transfected or deleted CR-CSCs in NSG mice allowed to investigate IL30's role in CRC oncogenesis. Bioinformatics and immunopathology of CRC samples highlighted the clinical implications. RESULTS We demonstrated that both CR-CSCs and CRC cells express membrane-anchored IL30 that regulates their self-renewal, via WNT5A and RAB33A, and/or proliferation and migration, primarily by upregulating CXCR4 via STAT3, which are suppressed by IL30 gene deletion, along with WNT and RAS pathways. Deletion of IL30 gene downregulates the expression of proteases, such as MMP2 and MMP13, chemokine receptors, mostly CCR7, CCR3 and CXCR4, and growth and inflammatory mediators, including ANGPT2, CXCL10, EPO, IGF1 and EGF. These factors contribute to IL30-driven CR-CSC and CRC cell expansion, which is abrogated by their selective blockade. IL30 gene deleted CR-CSCs displayed reduced tumorigenicity and gave rise to slow-growing and low metastatic tumors in 80% of mice, which survived much longer than controls. Bioinformatics and CIBERSORTx of the 'Colorectal Adenocarcinoma TCGA Nature 2012' collection, and morphometric assessment of IL30 expression in clinical CRC samples revealed that the lack of IL30 in CRC and infiltrating leucocytes correlates with prolonged overall survival. CONCLUSIONS IL30 is a new CRC driver, since its inactivation, which disables oncogenic pathways and multiple autocrine loops, inhibits CR-CSC tumorigenicity and metastatic ability. The development of CRISPR/Cas9-mediated targeting of IL30 could improve the current therapeutic landscape of CRC.
Collapse
Affiliation(s)
- Luigi D'Antonio
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Cristiano Fieni
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Stefania Livia Ciummo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Simone Vespa
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Lavinia Lotti
- Department of Experimental Medicine, University of Rome La Sapienza, Rome, Italy
| | - Carlo Sorrentino
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| | - Emma Di Carlo
- Dipartimento di Medicina e Scienze dell'Invecchiamento, Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
- Center for Advanced Studies and Technology (CAST), Università degli Studi "G. d'Annunzio" di Chieti-Pescara, Chieti, Italy
| |
Collapse
|
5
|
Knorr DY, Rodriguez Polo I, Pies HS, Schwedhelm-Domeyer N, Pauls S, Behr R, Heinrich R. The cytokine receptor CRLF3 is a human neuroprotective EV-3 (Epo) receptor. Front Mol Neurosci 2023; 16:1154509. [PMID: 37168680 PMCID: PMC10165946 DOI: 10.3389/fnmol.2023.1154509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/15/2023] [Indexed: 05/13/2023] Open
Abstract
The evolutionary conserved orphan cytokine receptor-like factor 3 (CRLF3) has been implicated in human disease, vertebrate hematopoiesis and insect neuroprotection. While its specific functions are elusive, experimental evidence points toward a general role in cell homeostasis. Erythropoietin (Epo) is a major regulator of vertebrate hematopoiesis and a general cytoprotective cytokine. Erythropoietic functions mediated by classical Epo receptor are understood in great detail whereas Epo-mediated cytoprotective mechanisms are more complex due to involvement of additional Epo receptors and a non-erythropoietic splice variant with selectivity for certain receptors. In the present study, we show that the human CRLF3 mediates neuroprotection upon activation with the natural Epo splice variant EV-3. We generated CRLF3 knock-out iPSC lines and differentiated them toward the neuronal lineage. While apoptotic death of rotenone-challenged wild type iPSC-derived neurons was prevented by EV-3, EV-3-mediated neuroprotection was absent in CRLF3 knock-out neurons. Rotenone-induced apoptosis and EV-3-mediated neuroprotection were associated with differential expression of pro-and anti-apoptotic genes. Our data characterize human CRLF3 as a receptor involved in Epo-mediated neuroprotection and identify CRLF3 as the first known receptor for EV-3.
Collapse
Affiliation(s)
- Debbra Y. Knorr
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August University Göttingen, Göttingen, Germany
- *Correspondence: Debbra Y. Knorr,
| | - Ignacio Rodriguez Polo
- Department of Developmental Biology, Göttingen Center for Molecular Biosciences, Georg-August University Göttingen, Göttingen, Germany
- Research Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
- Developmental Models Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Hanna S. Pies
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August University Göttingen, Göttingen, Germany
| | - Nicola Schwedhelm-Domeyer
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August University Göttingen, Göttingen, Germany
| | - Stephanie Pauls
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August University Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- Research Platform Degenerative Diseases, German Primate Center, Leibniz Institute for Primate Research, Göttingen, Germany
- German Center for Cardiovascular Research (DZHK), Partner Site Göttingen, Göttingen, Germany
| | - Ralf Heinrich
- Department of Cellular Neurobiology, Johann-Friedrich-Blumenbach Institute for Zoology and Anthropology, Georg-August University Göttingen, Göttingen, Germany
- Ralf Heinrich,
| |
Collapse
|
6
|
Locatelli F, Minutolo R, De Nicola L, Del Vecchio L. Evolving Strategies in the Treatment of Anaemia in Chronic Kidney Disease: The HIF-Prolyl Hydroxylase Inhibitors. Drugs 2022; 82:1565-1589. [PMID: 36350500 PMCID: PMC9645314 DOI: 10.1007/s40265-022-01783-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2022] [Indexed: 11/11/2022]
Abstract
Chronic kidney disease (CKD) affects approximately 10% of the worldwide population; anaemia is a frequent complication. Inadequate erythropoietin production and absolute or functional iron deficiency are the major causes. Accordingly, the current treatment is based on iron and erythropoiesis stimulating agents (ESAs). Available therapy has dramatically improved the management of anaemia and the quality of life. However, safety concerns were raised over ESA use, especially when aiming to reach near-to-normal haemoglobin levels with high doses. Moreover, many patients show hypo-responsiveness to ESA. Hypoxia-inducible factor (HIF) prolyl hydroxylase domain (PHD) inhibitors (HIF-PHIs) were developed for the oral treatment of anaemia in CKD to overcome these concerns. They simulate the body's exposure to moderate hypoxia, stimulating the production of endogenous erythropoietin. Some molecules are already approved for clinical use in some countries. Data from clinical trials showed non-inferiority in anaemia correction compared to ESA or superiority for placebo. Hypoxia-inducible factor-prolyl hydroxylase domain inhibitors may also have additional advantages in inflamed patients, improving iron utilisation and mobilisation and decreasing LDL-cholesterol. Overall, non-inferiority was also shown in major cardiovascular events, except for one molecule in the non-dialysis population. This was an unexpected finding, considering the lower erythropoietin levels reached using these drugs due to their peculiar mechanism of action. More data and longer follow-ups are necessary to better clarifying safety issues and further investigate the variety of pathways activated by HIF, which could have either positive or negative effects and could differentiate HIF-PHIs from ESAs.
Collapse
Affiliation(s)
- Francesco Locatelli
- Past Director of the Department of Nephrology and Dialysis, Alessandro Manzoni Hospital, via Fratelli Cairoli 60, 23900, Lecco, Italy.
| | - Roberto Minutolo
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University L. Vanvitelli, Naples, Italy
| | - Luca De Nicola
- Nephrology and Dialysis Unit, Department of Advanced Medical and Surgical Sciences, University L. Vanvitelli, Naples, Italy
| | - Lucia Del Vecchio
- Department of Nephrology and Dialysis, Sant' Anna Hospital, ASST Lariana, Como, Italy
| |
Collapse
|
7
|
Wang B, Liu L, Wu J, Mao X, Fang Z, Chen Y, Li W. Construction and Verification of a Combined Hypoxia and Immune Index for Clear Cell Renal Cell Carcinoma. Front Genet 2022; 13:711142. [PMID: 35222525 PMCID: PMC8863964 DOI: 10.3389/fgene.2022.711142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 01/21/2022] [Indexed: 11/13/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most aggressive malignancies in humans. Hypoxia-related genes are now recognized as a reflection of poor prognosis in cancer patients with cancer. Meanwhile, immune-related genes play an important role in the occurrence and progression of ccRCC. Nevertheless, reliable prognostic indicators based on hypoxia and immune status have not been well established in ccRCC. The aims of this study were to develop a new gene signature model using bioinformatics and open databases and to validate its prognostic value in ccRCC. The data used for the model structure can be accessed from The Cancer Genome Atlas database. Univariate, least absolute shrinkage and selection operator (LASSO), and multivariate Cox regression analyses were used to identify the hypoxia- and immune-related genes associated with prognostic risk, which were used to develop a characteristic model of prognostic risk. Kaplan-Meier and receiver-operating characteristic curve analyses were performed as well as independent prognostic factor analyses and correlation analyses of clinical characteristics in both the training and validation cohorts. In addition, differences in tumor immune cell infiltrates were compared between the high and low risk groups. Overall, 30 hypoxia- and immune-related genes were identified, and five hypoxia- and immune-related genes (EPO, PLAUR, TEK, TGFA, TGFB1) were ultimately selected. Survival analysis showed that the high-risk score on the hypoxia- and immune-related gene signature was significantly associated with adverse survival outcomes. Furthermore, clinical ccRCC samples from our medical center were used to validate the differential expression of the five genes in tumor tissue compared to normal tissue through quantitative real-time polymerase chain reaction (qRT-PCR). However, more clinical trials are needed to confirm these results, and future experimental studies must verify the potential mechanism behind the predictive value of the hypoxia- and immune-related gene signature.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lixiao Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jinting Wu
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaolu Mao
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Zhen Fang
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yingyu Chen
- Department of Neurosurgery, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Wenfeng Li
- Department of Medical Oncology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Wenfeng Li,
| |
Collapse
|
8
|
Hu SQ, Liu DL, Li CR, Xu YH, Hu K, Cui LD, Guo J. Wuzi-Yanzong prescription alleviates spermatogenesis disorder induced by heat stress dependent on Akt, NF-κB signaling pathway. Sci Rep 2021; 11:18824. [PMID: 34552120 PMCID: PMC8458393 DOI: 10.1038/s41598-021-98036-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/25/2021] [Indexed: 02/08/2023] Open
Abstract
Akt and nuclear factor kappa B (NF-κB) signaling pathways are involved in germ cell apoptosis and inflammation after testicular heat stress (THS). We observed that after THS induced by the exposure of rat testes to 43 °C for 20 min, their weight decreased, the fraction of apoptotic testicular germ cells significantly increased, and the proliferation of germ cells was inhibited. In addition, THS lowered serum testosterone (T) level, whereas the levels of follicle stimulating hormone and luteinizing hormone were not significantly changed. The ultrastructure of the seminiferous tubules became abnormal after THS, the structure of the blood-testis barrier (BTB) became loose, and the Sertoli cells showed a trend of differentiation. The level of phosphorylated Akt was reduced, whereas the amount of phosphorylated NF-κB p65 was augmented by THS. Wuzi-Yanzong (WZYZ), a classic Chinese medicine prescription for the treatment of male reproductive dysfunctions, alleviated the changes induced by THS. In order to determine the mechanism of action of WZYZ, we investigated how this preparation modulated the levels of T, androgen receptor (AR), erythropoietin (EPO), EPO receptor, and Tyro-3, Axl, and Mer (TAM) family of tyrosine kinase receptors. We found that WZYZ activated the Akt pathway, inhibited the Toll-like receptor/MyD88/NF-κB pathway, and repaired the structure of BTB by regulating the levels of T, AR, TAM receptors, and EPO. In conclusion, these results suggest that WZYZ activates the Akt pathway and inhibits the NF-κB pathway by acting on the upstream regulators, thereby improving spermatogenesis deficit induced by THS.
Collapse
Affiliation(s)
- Su-Qin Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Dian-Long Liu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Chun-Rui Li
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ya-Hui Xu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Ke Hu
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Li-Dan Cui
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| | - Jian Guo
- grid.24695.3c0000 0001 1431 9176Department of Physiology, College of Traditional Chinese Medicine, Beijing University of Traditional Chinese Medicine, No. 11, East Beisanhuan Road, Chaoyang District, Beijing, China
| |
Collapse
|
9
|
Zheng Y, Karnoub AE. Endocrine regulation of cancer stem cell compartments in breast tumors. Mol Cell Endocrinol 2021; 535:111374. [PMID: 34242715 DOI: 10.1016/j.mce.2021.111374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/28/2021] [Accepted: 06/01/2021] [Indexed: 10/20/2022]
Abstract
Cancer cells within breast tumors exist within a hierarchy in which only a small and rare subset of cells is able to regenerate growths with the heterogeneity of the original tumor. These highly malignant cancer cells, which behave like stem cells for new cancers and are called "cancer stem cells" or CSCs, have also been shown to possess increased resistance to therapeutics, and represent the root cause underlying therapy failures, persistence of residual disease, and relapse. As >90% of cancer deaths are due to refractory tumors, identification of critical molecular drivers of the CSC-state would reveal vulnerabilities that can be leveraged in designing therapeutics that eradicate advanced disease and improve patient survival outcomes. An expanding and complex body of work has now described the exquisite susceptibility of CSC pools to the regulatory influences of local and systemic hormones. Indeed, breast CSCs express a plethora of hormonal receptors, which funnel hormonal influences over every aspect of breast neoplasia - be it tumor onset, growth, survival, invasion, metastasis, or therapy resistance - via directly impacting CSC behavior. This article is intended to shed light on this active area of investigation by attempting to provide a systematic and comprehensive overview of the available evidence directly linking hormones to breast CSC biology.
Collapse
Affiliation(s)
- Yurong Zheng
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Antoine E Karnoub
- Department of Pathology and Cancer Center, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA; Harvard Stem Cell Institute, Cambridge, MA, 02138, USA; Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
10
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y, Sun J. Clinical Application of Cytokines in Cancer Immunotherapy. Drug Des Devel Ther 2021; 15:2269-2287. [PMID: 34079226 PMCID: PMC8166316 DOI: 10.2147/dddt.s308578] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 04/20/2021] [Indexed: 12/12/2022] Open
Abstract
Cytokines are key components of the immune system and play pivotal roles in anticancer immune response. Cytokines as either therapeutic agents or targets hold clinical promise for cancer precise treatment. Here, we provide an overview of the various roles of cytokines in the cancer immunity cycle, with a particular focus on the clinical researches of cytokine-based drugs in cancer therapy. We review 27 cytokines in 2630 cancer clinical trials registered with ClinicalTrials.gov that had completed recruitment up to January 2021 while summarizing important cases for each cytokine. We also discuss recent progress in methods for improving the delivery efficiency, stability, biocompatibility, and availability of cytokines in therapeutic applications.
Collapse
Affiliation(s)
- Yi Qiu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Mengxi Su
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Leyi Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yiqi Tang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Yuan Pan
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| | - Jianbo Sun
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-Sen University, Guangzhou, People’s Republic of China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, People’s Republic of China
| |
Collapse
|
11
|
Später T, Worringer DM, Menger MM, Menger MD, Laschke MW. Systemic low-dose erythropoietin administration improves the vascularization of collagen-glycosaminoglycan matrices seeded with adipose tissue-derived microvascular fragments. J Tissue Eng 2021; 12:20417314211000304. [PMID: 33796250 PMCID: PMC7970228 DOI: 10.1177/20417314211000304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue-derived microvascular fragments (MVF) are used as vascularization
units in tissue engineering. In this study, we investigated whether the
vascularization capacity of MVF can be improved by systemic low-dose
erythropoietin (EPO) administration. MVF were isolated from the epididymal fat
of donor mice and seeded onto collagen-glycosaminoglycan matrices, which were
implanted into full-thickness skin defects within dorsal skinfold chambers of
recipient mice. Both donor and recipient mice were treated daily with either EPO
(500 IU/kg) or vehicle (0.9% NaCl). The implants were analyzed by
stereomicroscopy, intravital fluorescence microscopy, histology, and
immunohistochemistry. EPO-treated MVF contained a comparable number of
proliferating Ki67+ but less apoptotic cleaved caspase-3+
endothelial cells when compared to vehicle-treated controls. Moreover, EPO
treatment accelerated and improved the in vivo vascularization, blood vessel
maturation, and epithelialization of MVF-seeded matrices. These findings
indicate that systemic low-dose EPO treatment is suitable to enhance the
viability and network-forming capacity of MVF.
Collapse
Affiliation(s)
- Thomas Später
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Denise Ms Worringer
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Maximilian M Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany.,Department of Trauma and Reconstructive Surgery, Eberhard Karls University Tuebingen, BG Trauma Center Tuebingen, Tuebingen, Germany
| | - Michael D Menger
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| | - Matthias W Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, Homburg/Saar, Germany
| |
Collapse
|
12
|
Li X, Shi X, Qin X, Yu L, Zhou Y, Rao C. Interlaboratory method validation of imaged capillary isoelectric focusing methodology for analysis of recombinant human erythropoietin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:3836-3843. [PMID: 32678383 DOI: 10.1039/d0ay00823k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Recombinant human erythropoietin (rhEPO) is one of the most important biopharmaceuticals worldwide, with global sales expected to reach US$11.9 billion in 2020. The charge heterogeneity of rhEPO must be monitored throughout the entire production process. Imaged capillary isoelectric focusing (icIEF) is a promising method for monitoring rhEPO charge heterogeneity, but it must be validated according to the ICH guideline (International Council for Harmonization of Technical Requirements for Pharmaceuticals for Human Use). Here, a multi-laboratory joint method validation of the icIEF method for rhEPO analysis was performed according to the ICH Harmonized Tripartite Guideline on Analysis Procedure. This guideline includes specificity, precision, accuracy, linearity, range, LOQ and robustness, whereby precision is defined by the repeatability, intermediate precision and reproducibility.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory of the Ministry of Health for Research on Quality and Standardization of Biotech Products, National Institutes for Food and Drug Control, No. 2, Tiantan Xili, Dongcheng District, Beijing, 100050, China.
| | | | | | | | | | | |
Collapse
|
13
|
Erythropoietin and its derivatives: from tissue protection to immune regulation. Cell Death Dis 2020; 11:79. [PMID: 32015330 PMCID: PMC6997384 DOI: 10.1038/s41419-020-2276-8] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 02/07/2023]
Abstract
Erythropoietin (EPO) is an evolutionarily conserved hormone well documented for its erythropoietic role via binding the homodimeric EPO receptor (EPOR)2. In past decades, evidence has proved that EPO acts far beyond erythropoiesis. By binding the tissue-protective receptor (TPR), EPO suppresses proinflammatory cytokines, protects cells from apoptosis and promotes wound healing. Very recently, new data revealed that TPR is widely expressed on a variety of immune cells, and EPO could directly modulate their activation, differentiation and function. Notably, nonerythropoietic EPO derivatives, which mimic the structure of helix B within EPO, specifically bind TPR and show great potency in tissue protection and immune regulation. These small peptides prevent the cardiovascular side effects of EPO and are promising as clinical drugs. This review briefly introduces the receptors and tissue-protective effects of EPO and its derivatives and highlights their immunomodulatory functions and application prospects.
Collapse
|
14
|
Torregrossa F, Aguennouz M, La Torre D, Sfacteria A, Grasso G. Role of Erythropoietin in Cerebral Glioma: An Innovative Target in Neuro-Oncology. World Neurosurg 2020; 131:346-355. [PMID: 31658577 DOI: 10.1016/j.wneu.2019.06.221] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 06/28/2019] [Indexed: 02/09/2023]
Abstract
BACKGROUND Erythropoietin (EPO) is a cytokine primarily involved in the regulation of erythropoiesis. In response to hypoxia-ischemia, hypoxia-inducible factor 1 induces EPO production, which, in turn, inhibits apoptosis of erythroid progenitor cells. By the same mechanism and acting through other signaling pathways, EPO exerts neuroprotective effects. Increased resistance to hypoxia and decreased apoptosis are thought to be important mechanisms for tumor progression, including malignant glioma. Because recent studies have demonstrated that EPO and its receptor (EPOR) are expressed in several tumors and can promote tumor growth, in the present study, we investigated EPO and EPOR expression in human glioma and the effect of EPO administration in a rat model of glioma implantation. METHODS Using Western blotting and immunohistochemical analysis, we examined the expression of EPO, EPOR, platelet endothelial cell adhesion molecule, and Ki-67 in human glioma specimens and experimentally induced glioma in rats. In the experimental setting, a daily dose of recombinant human EPO (rHuEPO) or saline solution were administered for 21 days in Fischer rats subjected to 9L cell line implantation. RESULTS In both human and animal specimens, we found an increase in EPOR expression as long as the lesion presented with an increasing malignant pattern. A significant direct correlation was found between the expression of EPOR and Ki-67 and EPOR and platelet endothelial cell adhesion molecule in low- and high-grade gliomas. The rats treated with rHuEPO presented with significantly larger tumor spread compared with the saline-treated rats. CONCLUSIONS The results of our study have shown that the EPO/EPOR complex might play a significant role in the aggressive behavior of high-grade gliomas. The larger tumor spread in rHuEPO-treated rats suggests a feasible role for EPO in the aggressiveness and progression of malignant glioma.
Collapse
Affiliation(s)
- Fabio Torregrossa
- Neurosurgical Unit, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy.
| | - M'hammed Aguennouz
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Domenico La Torre
- Neurosurgical Unit, Department of Medical and Surgical Science, Magna Graecia University, Catanzaro, Italy
| | | | - Giovanni Grasso
- Neurosurgical Unit, Department of Biomedicine, Neurosciences, and Advanced Diagnostics, University of Palermo, Palermo, Italy
| |
Collapse
|
15
|
Vasculogenic Mimicry Formation Is Associated with Erythropoietin Expression but Not with Erythropoietin Receptor Expression in Cervical Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1934195. [PMID: 30915348 PMCID: PMC6409067 DOI: 10.1155/2019/1934195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/30/2018] [Accepted: 01/10/2019] [Indexed: 12/24/2022]
Abstract
Background Vasculogenic mimicry (VM), as an endothelium-independent cancer microcirculation, has been observed in many malignancies including cervical cancer. Erythropoietin (EPO) and erythropoietin receptor (EPO-R) could produce an angiogenic effect to promote cervical squamous cell carcinoma (CSCC) progression. However, the association between VM formation and EPO/EPO-R expression in CSCC is poorly explored. Methods Seventy-six paraffin-embedded CSCC samples, 25 high-grade squamous intraepithelial lesion (HSIL) samples, 20 low-grade squamous intraepithelial lesion (LSIL) samples, and 20 normal cervix samples were collected. Immunohistochemistry SP method was performed to detect EPO/EPO-R expression and CD31/periodic acid-Schiff (PAS) double staining was performed to detect VM formation. The associations of EPO/EPO-R and VM with clinicopathological parameters of CSCC were analyzed. The associations between VM formation and EPO/EPO-R expression were also analyzed. Results The positive expression rates of EPO and EPO-R were gradually increasing along the progression of normal cervix-LSIL-HSIL-CSCC sequence (P<0.05). EPO and EPO-R expression were not significantly associated with clinicopathological parameters of CSCC patients (P>0.05). VM was significantly associated with FIGO stage, lymphovascular space involvement, and lymph node metastasis (P<0.05). VM was positively associated with EPO expression (r=0.284, P<0.05) but was not associated with EPO-R expression (P>0.05). Conclusion These data suggest that increased EPO/EPO-R expression may play an important role in cervical carcinogenesis. EPO overexpression may promote VM formation in CSCC.
Collapse
|
16
|
Effect of ESA as a modifier of radiotherapy in curative intended treatment of squamous cell carcinoma of the head and neck (HNSCC). Radiother Oncol 2019; 130:191-192. [DOI: 10.1016/j.radonc.2018.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Accepted: 08/21/2018] [Indexed: 11/20/2022]
|
17
|
Annese T, Tamma R, Ruggieri S, Ribatti D. Erythropoietin in tumor angiogenesis. Exp Cell Res 2019; 374:266-273. [DOI: 10.1016/j.yexcr.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
18
|
Stoyanoff TR, Rodríguez JP, Todaro JS, Colavita JPM, Torres AM, Aguirre MV. Erythropoietin attenuates LPS-induced microvascular damage in a murine model of septic acute kidney injury. Biomed Pharmacother 2018; 107:1046-1055. [PMID: 30257316 DOI: 10.1016/j.biopha.2018.08.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/30/2018] [Accepted: 08/15/2018] [Indexed: 01/20/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of sepsis, with a high mortality. Hallmarks of septic-AKI include inflammation, endothelial injury, and tissue hypoxia. Therefore, it would be of interest to develop therapeutic approaches for improving the microvascular damage in septic-AKI. Erythropoietin (EPO) is a well-known cytoprotective multifunctional hormone. Thus, the aim of this study was to evaluate the protective effects of EPO on microvascular injury in a murine model of endotoxemic AKI. Male Balb/c mice were divided into four groups: control, LPS (8 mg/kg, ip.), EPO (3000 IU / kg, sc.) and LPS + EPO. A time course study (0-48 h) was designed. Experiments include, among others, immunohistochemistry and Western blottings of hypoxia-inducible transcription factor (HIF-1α), erythropoietin receptor (EPO-R), vascular endothelial growth factor system (VEGF/VEGFR-2), platelet and endothelial adhesion molecule-1 (PeCAM-1), inducible nitric oxide synthase (iNOS) and phosphorylated nuclear factor kappa B p65 (NF-κB). Data showed that EPO attenuates renal microvascular damage during septic-AKI progression through a) the decrease of HIF-1 alpha, iNOS, and NF-κB and b) the enhancement of EPO-R, PeCAM-1, VEGF, and VEGFR-2 expression. In summary, EPO renoprotection involves the attenuation of septic-induced renal hypoxia and inflammation as well as ameliorates the endotoxemic microvascular injury.
Collapse
Affiliation(s)
- Tania Romina Stoyanoff
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, National Northeastern University (UNNE), IQUIBA-NEA CONICET, Corrientes, Argentina
| | - Juan Pablo Rodríguez
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, National Northeastern University (UNNE), IQUIBA-NEA CONICET, Corrientes, Argentina
| | - Juan Santiago Todaro
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, National Northeastern University (UNNE), IQUIBA-NEA CONICET, Corrientes, Argentina
| | - Juan Pablo Melana Colavita
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, National Northeastern University (UNNE), IQUIBA-NEA CONICET, Corrientes, Argentina
| | - Adriana Mónica Torres
- Pharmacology, Faculty of Biochemical and Pharmaceutical Sciences, National University of Rosario (UNR), CONICET, Rosario, Argentina
| | - María Victoria Aguirre
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, National Northeastern University (UNNE), IQUIBA-NEA CONICET, Corrientes, Argentina.
| |
Collapse
|
19
|
Dayangan Sayan C, Tulmac OB, Karaca G, Ozkan ZS, Yalcin S, Devrim T, Dindar Badem N. Could erythropoietin reduce the ovarian damage of cisplatin in female rats? Gynecol Endocrinol 2018; 34:309-313. [PMID: 29084473 DOI: 10.1080/09513590.2017.1395836] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
The aim of this study is to investigate whether erythropoietin (EPO) can reduce the ovarian damage of cisplatin or not. Thirty, female, Wistar-Albino rats were used in the study. Control group (N = 10): Intraperitoneal saline infusion, Cisplatin group (N = 10): Intraperitoneal 7 mg/kg cisplatin, Cisplatin + EPO group (N = 10): Intraperitoneal 7 mg/kg cisplatin and subcutaneous 200 IU/kg/day EPO. Serum AMH concentrations were measured by enzyme-linked immunosorbent assay kit of AMH. Follicular counts were evaluated according to mean diameter of the follicles. Ovarian damage; including follicular cell degeneration, vascular congestion, hemorrhage, and inflammation was scored histologically using a graduated scale. Posttreatment AMH levels of cisplatin group were significantly lower than control and cisplatin + EPO groups. In cisplatin group, there was a significant decrement in posttreatment AMH level compared to pretreatment AMH level. The total damage score of cisplatin group was significantly higher than scores of control and cisplatin + EPO groups. The mean primordial follicle counts of control and cisplatin + EPO groups were significantly higher than that of cisplatin group (p = .007 and p = .003). The results of this study revealed that EPO administration to cisplatin chemotherapy could ameliorate the ovarian damage. Erythropoietin administration to chemotherapeutic agents might suggest to protect ovarian failure and infertility.
Collapse
Affiliation(s)
| | | | - Gökhan Karaca
- a Faculty of Medicine , Kırıkkale University , Kırıkkale , Turkey
| | - Zehra Sema Ozkan
- a Faculty of Medicine , Kırıkkale University , Kırıkkale , Turkey
| | - Selim Yalcin
- a Faculty of Medicine , Kırıkkale University , Kırıkkale , Turkey
| | - Tuba Devrim
- a Faculty of Medicine , Kırıkkale University , Kırıkkale , Turkey
| | | |
Collapse
|
20
|
DAHANCA 10 - Effect of darbepoetin alfa and radiotherapy in the treatment of squamous cell carcinoma of the head and neck. A multicenter, open-label, randomized, phase 3 trial by the Danish head and neck cancer group. Radiother Oncol 2018. [PMID: 29523409 DOI: 10.1016/j.radonc.2018.02.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
PURPOSE To evaluate if correction of low hemoglobin (Hb) levels by means of darbepoetin alfa improves the outcomes of radiotherapy in patients with squamous cell carcinoma of the head and neck (HNSCC). PATIENTS AND METHODS Patients eligible for primary radiotherapy and who had Hb values below 14.0 g/dl were randomized to receive accelerated fractionated radiotherapy with or without darbepoetin alfa. Patients also received the hypoxic radiosensitizer nimorazole. Darbepoetin alfa was given weekly during radiotherapy or until the Hb value exceeded 15.5 g/dl. RESULTS Following a planned interim analysis which showed inferiority of the experimental treatment the trial was stopped after inclusion of 522 patients (of a planned intake of 600). Of these, 513 were eligible for analysis (254 patients treated with darbepoetin alfa and 259 patients in the control group). Overall, the patients were distributed according to the stratification parameters (gender, T and N staging, tumor site). Treatment with darbepoetin alfa increased the Hb level to the planned value in 81% of the patients. The compliance was good without excess serious adverse events. The results showed a poorer outcome with a 5-year cumulative loco-regional failure rate of 47% vs. 34%, Hazard Ratio (HR): 1.53 [1.16-2.02], for the darbepoetin alfa vs. control arm, respectively. This was also seen for the endpoints of event-free survival (HR: 1.36 [1.09-1.69]), disease-specific death (HR: 1.43 [1.08-1.90]), and overall survival (HR: 1.30 [1.02-1.64]). There was no enhanced risk of cardio-vascular events observed in the experimental arm or any significant differences in acute or late radiation related morbidity. All univariate analyses were confirmed in a multivariate setting. CONCLUSION Correction of the Hb level with darbepoetin alfa during radiotherapy of patients with HNSCC resulted in a significantly poorer tumor control and survival.
Collapse
|
21
|
Abstract
Several substances such as growth hormone (GH), erythropoietin (Epo), and anabolic steroids (AS) are improperly utilized to increase the performance of athletes. Evaluating the potential cancer risk associated with doping agents is difficult since these drugs are often used at very high doses and in combination with other licit or illicit drugs. The GH, via its mediator, the insulin-like growth factor 1 (IGF-1), is involved in the development and progression of cancer. Animal studies suggested that high levels of GH/IGF-1 increase progression of androgen-independent prostate cancer. Clinical data regarding prostate cancer are mostly based on epidemiological studies or indirect data such as IGF-1 high levels in patients with prostate cancer. Even if experimental studies showed a correlation between Epo and cancer, no clinical data are currently available on cancer development related to Epo as a doping agent. Androgens are involved in prostate carcinogenesis modulating genes that regulate cell proliferation, apoptosis and angiogenesis. Most information on AS is anecdotal (case reports on prostate, kidney and testicular cancers). Prospective epidemiologic studies failed to support the hypothesis that circulating androgens are positively associated with prostate cancer risk. Currently, clinical and epidemiological studies supporting association between doping and urological neoplasias are not available. Nowadays, exposure to doping agents starts more prematurely with a consequent longer exposition period; drugs are often used at very high doses and in combination with other licit or illicit drugs. Due to all these elements it is impossible to predict all the side effects, including cancer; more detailed studies are therefore necessary.
Collapse
|
22
|
Frille A, Leithner K, Olschewski A, Olschewski H, Wohlkönig C, Hrzenjak A. No erythropoietin-induced growth is observed in non-small cell lung cancer cells. Int J Oncol 2017; 52:518-526. [PMID: 29345289 DOI: 10.3892/ijo.2017.4225] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/21/2017] [Indexed: 11/06/2022] Open
Abstract
Lung cancer patients have the highest incidence of anemia among patients with solid tumors. The use of recombinant human erythropoietin (Epo) has consistently been shown to reduce the need for blood transfusions and to increase hemoglobin levels in lung cancer patients with chemotherapy-induced anemia. However, clinical and preclinical studies have prompted concerns that Epo and the presence of its receptor, EpoR, in tumor cells may be responsible for adverse effects and, eventually, death. The question has been raised whether Epo promotes tumor growth and inhibits the death of cancer cells. In this study, we investigated the presence and functionality of EpoR, as well as the implications of Epo upon the proliferation and survival of lung cancer cells. Since the protein expression of both Epo and EpoR is induced by hypoxia, which is frequently present in lung cancer, the cells were treated with Epo under both normoxic and hypoxic conditions (1% O2). By using quantitative (real-time) PCR, western blot analysis, and immunocytochemical staining, three non-small cell lung cancer (NSCLC) cell lines (A427, A549 and NCI-H358) were analyzed for the expression of EpoR and its specific downstream signaling pathways [Janus kinase 2 (Jak2)-signal transducer and activator of transcription 5 (STAT5), phosphatidylinositol-3-kinase (PI3K)-Akt, mitogen-activated protein (MAP) kinase]. The effects of 100 U/ml Epo on cell proliferation and cisplatin-induced apoptosis were assessed. All NSCLC cell lines expressed EpoR mRNA and protein, while these levels differed considerably between the cell lines. We found the constitutive phosphorylation of EpoR and most of its downstream signaling pathways (STAT5, Akt and ERK1/2) independently of Epo administration. While Epo markedly enhanced the proliferation and reduced apoptosis of Epo-dependent UT-7/Epo leukemia cells, it did not affect tumor cell proliferation or the cisplatin-induced apoptosis of NSCLC cells. Thus, this in vitro study suggests that there are no tumor-promoting effects of Epo in the NSCLC cell lines studied, neither under normoxic nor under hypoxic conditions.
Collapse
Affiliation(s)
- Armin Frille
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Katharina Leithner
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andrea Olschewski
- Ludwig Boltzmann Institute for Lung Vascular Research, 8010 Graz, Austria
| | - Horst Olschewski
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Christoph Wohlkönig
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| | - Andelko Hrzenjak
- Division of Pulmonology, Department of Internal Medicine, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
23
|
Erythropoietin and Its Angiogenic Activity. Int J Mol Sci 2017; 18:ijms18071519. [PMID: 28703764 PMCID: PMC5536009 DOI: 10.3390/ijms18071519] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Accepted: 07/11/2017] [Indexed: 01/09/2023] Open
Abstract
Erythropoietin (EPO) is the main hematopoietic hormone acting on progenitor red blood cells via stimulation of cell growth, differentiation, and anti-apoptosis. However, its receptor (EPOR) is also expressed in various non-hematopoietic tissues, including endothelium. EPO is a pleiotropic growth factor that exhibits growth stimulation and cell/tissue protection on numerous cells and tissues. In this article we review the angiogenesis potential of EPO on endothelial cells in heart, brain, and leg ischemia, as well as its role in retinopathy protection and tumor promotion. Furthermore, the effect of EPO on bone marrow and adipose tissue is also discussed.
Collapse
|
24
|
Erythropoietin accelerates tumor growth through increase of erythropoietin receptor (EpoR) as well as by the stimulation of angiogenesis in DLD-1 and Ht-29 xenografts. Mol Cell Biochem 2016; 421:1-18. [PMID: 27543111 PMCID: PMC5021757 DOI: 10.1007/s11010-016-2779-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 07/30/2016] [Indexed: 12/17/2022]
Abstract
Anemia is a relatively common symptom coexisting with colorectal carcinoma. Besides having a positive impact on hematological parameters, erythropoietin (Epo) has the serious adverse effect of promoting the neoplastic process. The role of Epo in colon cancer has not been clearly shown. The aim of this study was to assess the effects of Epo therapy on colorectal carcinoma cells both in in vitro and in animal models. Human colon adenocarcinoma cells DLD-1 and Ht-29 were cultured in medium with Epo beta in normoxia. Cell proliferation was measured with an automated cell counter. Expression of erythropoietin receptor (EpoR) mRNA, Akt mRNA, and their proteins were assessed by RT-PCR and confocal microscopy, respectively. Nude mice were inoculated with adenocarcinoma cells and treated with a therapeutic dose of Epo. Expression of EpoR, VEGF, Flt-1 and CD31 was evaluated in xenograft tumors. We identified that Epo through EpoR activates Akt, which promotes colon cancer cell growth and proliferation. Epo, and high levels of phosphorylated EpoR, directly accelerates tumor growth through its proliferative and proangiogenic effects. This study demonstrated that Epo had enhanced carcinogenesis through increase of EpoR and Flt-1 expression, and thereby contributed to tumor development. These results suggest that both EpoR-positive and EpoR-negative cancer cells could be regulated by exogenous Epo. However, an increased response to erythropoietin was observed in the EpoR-positive cells. Thus, erythropoietin increases the risk of tumor progression in colon cancer and should not be used to treat anemia in this type of cancer.
Collapse
|
25
|
Tumor biology of non-metastatic stages of clear cell renal cell carcinoma; overexpression of stearoyl desaturase-1, EPO/EPO-R system and hypoxia-related proteins. Tumour Biol 2016; 37:13581-13593. [DOI: 10.1007/s13277-016-5279-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 07/15/2016] [Indexed: 01/24/2023] Open
|
26
|
Heitrich M, García DMDLÁ, Stoyanoff TR, Rodríguez JP, Todaro JS, Aguirre MV. Erythropoietin attenuates renal and pulmonary injury in polymicrobial induced-sepsis through EPO-R, VEGF and VEGF-R2 modulation. Biomed Pharmacother 2016; 82:606-13. [PMID: 27470403 DOI: 10.1016/j.biopha.2016.05.045] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 05/29/2016] [Indexed: 01/04/2023] Open
Abstract
Sepsis remains the most important cause of acute kidney injury (AKI) and acute lung injury (ALI) in critically ill patients. The cecal ligation and puncture (CLP) model in experimental mice reproduces most of the clinical features of sepsis. Erythropoietin (EPO) is a well-known cytoprotective multifunctional hormone, which exerts anti-inflammatory, anti-oxidant, anti-apoptotic and pro-angiogenic effects in several tissues. The aim of this study was to evaluate the underlying mechanisms of EPO protection through the expression of the EPO/EPO receptor (EPO-R) and VEGF/VEF-R2 systems in kidneys and lungs of mice undergoing CLP-induced sepsis. Male inbred Balb/c mice were divided in three experimental groups: Sham, CLP, and CLP+EPO (3000IU/kg sc). Assessment of renal functional parameters, survival, histological examination, immunohistochemistry and/or Western blottings of EPO-R, VEGF and VEGF-R2 were performed at 18h post-surgery. Mice demonstrated AKI by elevation of serum creatinine and renal histologic damage. EPO treatment attenuates renal dysfunction and ameliorates kidney histopathologic changes. Additionally, EPO administration attenuates deleterious septic damage in renal cortex through the overexpression of EPO-R in tubular interstitial cells and the overexpression of the pair VEGF/VEGF-R2. Similarly CLP- induced ALI, as evidenced by parenchymal lung histopathologic alterations, was ameliorated through pulmonary EPO-R, VEGF and VEGF-R2 over expression suggesting and improvement in endothelial survival and functionality. This study demonstrates that EPO exerts protective effects in kidneys and lungs in mice with CLP-induced sepsis through the expression of EPO-R and the regulation of the VEGF/VEGF-R2 pair.
Collapse
Affiliation(s)
- Mauro Heitrich
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina
| | - Daiana Maria de Los Ángeles García
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina
| | - Tania Romina Stoyanoff
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina
| | - Juan Pablo Rodríguez
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina
| | - Juan Santiago Todaro
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina
| | - María Victoria Aguirre
- Laboratory of Biochemical Investigations (LIBIM), School of Medicine, IQUIBA-NEA CONICET, National Northeastern University (UNNE), Argentina.
| |
Collapse
|
27
|
The tumor promoting roles of erythropoietin/erythropoietin receptor signaling pathway in gastric cancer. Tumour Biol 2016; 37:11523-33. [DOI: 10.1007/s13277-016-5053-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/01/2016] [Indexed: 12/17/2022] Open
|
28
|
Doleschel D, Rix A, Arns S, Palmowski K, Gremse F, Merkle R, Salopiata F, Klingmüller U, Jarsch M, Kiessling F, Lederle W. Erythropoietin improves the accumulation and therapeutic effects of carboplatin by enhancing tumor vascularization and perfusion. Am J Cancer Res 2015; 5:905-18. [PMID: 26000061 PMCID: PMC4440446 DOI: 10.7150/thno.11304] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 02/27/2015] [Indexed: 11/05/2022] Open
Abstract
Recombinant human erythropoietin (rhuEpo) is currently under debate for the treatment of chemotherapy-induced anemia due to clinical trials showing adverse effects in Epo-treated patients and the discovery of the erythropoietin-receptor (EpoR) in tumor and endothelial cells. Here, using Epo-Cy5.5 as theranostic near-infrared fluorescent probe we analyzed the effects of rhuEpo as co-medication to carboplatin in non-small-cell-lung-cancer (NSCLC)-xenografts with different tumor cell EpoR-expression (H838 ~8-fold higher than A549). Nude mice bearing subcutaneous A549 and H838 NSCLC-xenografts received either only carboplatin or carboplatin and co-medication of rhuEpo in two different doses. Tumor sizes and relative blood volumes (rBV) were longitudinally measured by 3D-contrast-enhanced ultrasound (3D-US). Tumoral EpoR-levels were determined by combined fluorescence molecular tomography (FMT)/ micro computed tomography (µCT) hybrid imaging. We found that rhuEpo predominantly acted on the tumor endothelium. In both xenografts, rhuEpo co-medication significantly increased vessel densities, diameters and the amount of perfused vessels. Accordingly, rhuEpo induced EpoR-phoshorylation and stimulated proliferation of endothelial cells. However, compared with solely carboplatin-treated tumors, tumor growth was significantly slower in the groups co-medicated with rhuEpo. This is explained by the Epo-mediated vascular remodeling leading to improved drug delivery as obvious by a more than 2-fold higher carboplatin accumulation and significantly enhanced tumor apoptosis. In addition, co-medication of rhuEpo reduced tumor hypoxia and diminished intratumoral EpoR-levels which continuously increased during carboplatin (Cp) -treatment. These findings suggest that co-medication of rhuEpo in well balanced doses can be used to improve the accumulation of anticancer drugs. Doses and indications may be personalized and refined using theranostic EpoR-probes.
Collapse
|
29
|
Chen Y, Zhang L, Liu WX, Liu XY. Prognostic Significance of Preoperative Anemia, Leukocytosis and Thrombocytosis in Chinese Women with Epithelial Ovarian Cancer. Asian Pac J Cancer Prev 2015; 16:933-9. [DOI: 10.7314/apjcp.2015.16.3.933] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
30
|
Lund A, Lundby C, Olsen NV. High-dose erythropoietin for tissue protection. Eur J Clin Invest 2014; 44:1230-8. [PMID: 25345962 DOI: 10.1111/eci.12357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 10/20/2014] [Indexed: 12/11/2022]
Abstract
BACKGROUND The discovery of potential anti-apoptotic and cytoprotective effects of recombinant human erythropoietin (rHuEPO) has led to clinical trials investigating the use of high-dose, short-term rHuEPO therapy for tissue protection in conditions such as stroke and myocardial infarction. Experimental studies have been favourable, but the clinical efficacy has yet to be validated. MATERIALS AND METHODS We have reviewed clinical studies regarding the use of high-dose, short-term rHuEPO therapy for tissue protection in humans with the purpose to detail the safety and efficacy of rHuEPO for this indication. A systematic literature search was performed using the PubMed/MEDLINE database for randomized, placebo-controlled clinical trials. RESULTS Twenty-six randomized controlled trials that enrolled 3176 patients were included. The majority of trials (20 trials including 2724 patients) reported no effect of rHuEPO therapy on measures of tissue protection. Five trials including 1025 patients reported safety concerns in the form of increased mortality or adverse event rates. No studies reported reduced mortality. CONCLUSIONS Evidence is sparse to support a tissue-protective benefit of rHuEPO in humans. Moreover, a number of studies indicate that short-term administration of high-dose rHuEPO is associated with an increased risk of mortality and serious adverse events. Further work is needed to elucidate the mechanisms of toxicity of rHuEPO in humans.
Collapse
Affiliation(s)
- Anton Lund
- Department of Neuroscience and Pharmacology, The Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|
31
|
Debeljak N, Solár P, Sytkowski AJ. Erythropoietin and cancer: the unintended consequences of anemia correction. Front Immunol 2014; 5:563. [PMID: 25426117 PMCID: PMC4227521 DOI: 10.3389/fimmu.2014.00563] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 10/22/2014] [Indexed: 01/12/2023] Open
Abstract
Until 1990, erythropoietin (EPO) was considered to have a single biological purpose and action, the stimulation of red blood cell growth and differentiation. Slowly, scientific and medical opinion evolved, beginning with the discovery of an effect on endothelial cell growth in vitro and the identification of EPO receptors (EPORs) on neuronal cells. We now know that EPO is a pleiotropic growth factor that exhibits an anti-apoptotic action on numerous cells and tissues, including malignant ones. In this article, we present a short discussion of EPO, receptors involved in EPO signal transduction, and their action on non-hematopoietic cells. This is followed by a more detailed presentation of both pre-clinical and clinical data that demonstrate EPO’s action on cancer cells, as well as tumor angiogenesis and lymphangiogenesis. Clinical trials with reported adverse effects of chronic erythropoiesis-stimulating agents (ESAs) treatment as well as clinical studies exploring the prognostic significance of EPO and EPOR expression in cancer patients are reviewed. Finally, we address the use of EPO and other ESAs in cancer patients.
Collapse
Affiliation(s)
- Nataša Debeljak
- Faculty of Medicine, Institute of Biochemistry, University of Ljubljana , Ljubljana , Slovenia
| | - Peter Solár
- Department of Cell and Molecular Biology, Institute of Biology and Ecology, Faculty of Sciences, Pavol Jozef Šafárik University , Košice , Slovakia
| | - Arthur J Sytkowski
- Oncology Therapeutic Area, Quintiles Transnational , Arlington, MA , USA
| |
Collapse
|
32
|
Abstract
SIGNIFICANCE Most solid tumors contain regions of low oxygenation or hypoxia. Tumor hypoxia has been associated with a poor clinical outcome and plays a critical role in tumor radioresistance. RECENT ADVANCES Two main types of hypoxia exist in the tumor microenvironment: chronic and cycling hypoxia. Chronic hypoxia results from the limited diffusion distance of oxygen, and cycling hypoxia primarily results from the variation in microvessel red blood cell flux and temporary disturbances in perfusion. Chronic hypoxia may cause either tumor progression or regressive effects depending on the tumor model. However, there is a general trend toward the development of a more aggressive phenotype after cycling hypoxia. With advanced hypoxia imaging techniques, spatiotemporal characteristics of tumor hypoxia and the changes to the tumor microenvironment can be analyzed. CRITICAL ISSUES In this review, we focus on the biological and clinical consequences of chronic and cycling hypoxia on radiation treatment. We also discuss the advanced non-invasive imaging techniques that have been developed to detect and monitor tumor hypoxia in preclinical and clinical studies. FUTURE DIRECTIONS A better understanding of the mechanisms of tumor hypoxia with non-invasive imaging will provide a basis for improved radiation therapeutic practices.
Collapse
Affiliation(s)
- Chen-Ting Lee
- 1 Department of Radiation Oncology, Duke University Medical Center , Durham, North Carolina
| | | | | |
Collapse
|
33
|
Kim YC, Mungunsukh O, McCart EA, Roehrich PJ, Yee DK, Day RM. Mechanism of erythropoietin regulation by angiotensin II. Mol Pharmacol 2014; 85:898-908. [PMID: 24695083 DOI: 10.1124/mol.113.091157] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) is the primary regulator of red blood cell development. Although hypoxic regulation of EPO has been extensively studied, the mechanism(s) for basal regulation of EPO are not well understood. In vivo studies in healthy human volunteers and animal models indicated that angiotensin II (Ang II) and angiotensin converting enzyme inhibitors regulated blood EPO levels. In the current study, we found that Ang II induced EPO expression in situ in murine kidney slices and in 786-O kidney cells in culture as determined by reverse transcription polymerase chain reaction. We further investigated the signaling mechanism of Ang II regulation of EPO in 786-O cells. Pharmacological inhibitors of Ang II type 1 receptor (AT1R) and extracellular signal-regulated kinase 1/2 (ERK1/2) suppressed Ang II transcriptional activation of EPO. Inhibitors of AT2R or Src homology 2 domain-containing tyrosine phosphatase had no effect. Coimmunoprecipiation experiments demonstrated that p21Ras was constitutively bound to the AT1R; this association was increased by Ang II but was reduced by the AT1R inhibitor telmisartan. Transmembrane domain (TM) 2 of AT1R is important for G protein-dependent ERK1/2 activation, and mutant D74E in TM2 blocked Ang II activation of ERK1/2. Ang II signaling induced the nuclear translocation of the Egr-1 transcription factor, and overexpression of dominant-negative Egr-1 blocked EPO promoter activation by Ang II. These data identify a novel pathway for basal regulation of EPO via AT1R-mediated Egr-1 activation by p21Ras-mitogen-activated protein kinase/ERK kinase-ERK1/2. Our current data suggest that Ang II, in addition to regulating blood volume and pressure, may be a master regulator of erythropoiesis.
Collapse
Affiliation(s)
- Yong-Chul Kim
- Department of Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland (Y.-C.K., O.M., E.A.M., P.J.R., R.M.D.); and Department of Animal Biology, University of Pennsylvania, Philadelphia, Pennsylvania (D.K.Y.)
| | | | | | | | | | | |
Collapse
|
34
|
EPO-independent functional EPO receptor in breast cancer enhances estrogen receptor activity and promotes cell proliferation. Biochem Biophys Res Commun 2014; 445:163-9. [PMID: 24502950 DOI: 10.1016/j.bbrc.2014.01.165] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/28/2022]
Abstract
The main function of Erythropoietin (EPO) and its receptor (EPOR) is the stimulation of erythropoiesis. Recombinant human EPO (rhEPO) is therefore used to treat anemia in cancer patients. However, clinical trials have indicated that rhEPO treatment might promote tumor progression and has a negative effect on patient survival. In addition, EPOR expression has been detected in several cancer forms. Using a newly produced anti-EPOR antibody that reliably detects the full-length isoform of the EPOR we show that breast cancer tissue and cells express the EPOR protein. rhEPO stimulation of cultured EPOR expressing breast cancer cells did not result in increased proliferation, overt activation of EPOR (receptor phosphorylation) or a consistent activation of canonical EPOR signaling pathway mediators such as JAK2, STAT3, STAT5, or AKT. However, EPOR knockdown experiments suggested functional EPO receptors in estrogen receptor positive (ERα(+)) breast cancer cells, as reduced EPOR expression resulted in decreased proliferation. This effect on proliferation was not seen in ERα negative cells. EPOR knockdown decreased ERα activity further supports a mechanism by which EPOR affects proliferation via ERα-mediated mechanisms. We show that EPOR protein is expressed in breast cancer cells, where it appears to promote proliferation by an EPO-independent mechanism in ERα expressing breast cancer cells.
Collapse
|
35
|
Fibach E, Rachmilewitz EA. Does erythropoietin have a role in the treatment of β-hemoglobinopathies? Hematol Oncol Clin North Am 2014; 28:249-63. [PMID: 24589265 DOI: 10.1016/j.hoc.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review presents the indications and contraindications (pros and cons) for the potential use of erythropoietin (Epo) as a treatment in β-thalassemia and sickle cell anemia (SCA). Its high cost and route of administration (by injection) are obvious obstacles, especially in underdeveloped countries, where thalassemia is prevalent. We believe that from the data summarized in this review, the time has come to define, by studying in vitro and in vivo models, as well as by controlled clinical trials, the rationale for treating patients with various forms of thalassemia and SCA with Epo alone or in combination with other medications.
Collapse
Affiliation(s)
- Eitan Fibach
- Department of Hematology, Hadassah-Hebrew University Medical Center, Ein-Kerem, Jerusalem 91120, Israel.
| | | |
Collapse
|
36
|
Zhou B, Damrauer JS, Bailey ST, Hadzic T, Jeong Y, Clark K, Fan C, Murphy L, Lee CY, Troester MA, Miller CR, Jin J, Darr D, Perou CM, Levine RL, Diehn M, Kim WY. Erythropoietin promotes breast tumorigenesis through tumor-initiating cell self-renewal. J Clin Invest 2014; 124:553-63. [PMID: 24435044 DOI: 10.1172/jci69804] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 10/24/2013] [Indexed: 12/30/2022] Open
Abstract
Erythropoietin (EPO) is a hormone that induces red blood cell production. In its recombinant form, EPO is the one of most prescribed drugs to treat anemia, including that arising in cancer patients. In randomized trials, EPO administration to cancer patients has been associated with decreased survival. Here, we investigated the impact of EPO modulation on tumorigenesis. Using genetically engineered mouse models of breast cancer, we found that EPO promoted tumorigenesis by activating JAK/STAT signaling in breast tumor-initiating cells (TICs) and promoted TIC self renewal. We determined that EPO was induced by hypoxia in breast cancer cell lines, but not in human mammary epithelial cells. Additionally, we demonstrated that high levels of endogenous EPO gene expression correlated with shortened relapse-free survival and that pharmacologic JAK2 inhibition was synergistic with chemotherapy for tumor growth inhibition in vivo. These data define an active role for endogenous EPO in breast cancer progression and breast TIC self-renewal and reveal a potential application of EPO pathway inhibition in breast cancer therapy.
Collapse
|
37
|
Shin M, Hong D, Zhang Z, Kim YM, Lee W, Joh JW, Kim SJ. Expression and functional significance of the erythropoietin receptor in hepatocellular carcinoma. HPB (Oxford) 2013; 15:965-75. [PMID: 23496059 PMCID: PMC3843615 DOI: 10.1111/hpb.12076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/20/2013] [Indexed: 12/12/2022]
Abstract
BACKGROUND Erythropoietin, through its specific receptor (EpoR), may induce responses in a variety of non-haematopoietic tissues including malignant cells. The purpose of this study was to examine the expression of EpoR in hepatocellular carcinoma (HCC) and to correlate the levels of EpoR expression with the clinicopathological properties of HCC and tumour recurrence. METHODS The study included 134 patients who underwent curative hepatectomy for hepatitis B virus (HBV)-related primary HCC. The clinical, laboratory and pathological data from these patients were retrospectively collected. The expression of EpoR mRNA and protein were evaluated by reverse transcription-polymerase chain reaction (RT-PCR) and Western blot analysis, respectively. RESULTS Expression of EpoR mRNA in the cirrhotic liver was positively correlated with tumour cell differentiation and 1-year disease-free survival (74.8% in the high expression group versus 46.9% in the low expression group; P = 0.001), as it was for EpoR mRNA expression in HCC (64.4% in the high expression group versus 52.7% in the low expression group; P = 0.044). Tumour recurrence showed stronger dependence on the expression of EpoR protein in non-malignant cirrhotic livers than in HCC. CONCLUSION In HBV-related HCC, the levels of EpoR mRNA and protein in non-tumour cirrhotic livers were positively correlated with tumour cell differentiation, which is a favourable predictor of disease-specific survival.
Collapse
Affiliation(s)
- Milljae Shin
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Doopyo Hong
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Korea
| | - Zhengyun Zhang
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Korea
| | - You Min Kim
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Korea
| | - Wookjong Lee
- Transplantation Research Center, Samsung Biomedical Research InstituteSeoul, Korea
| | - Jae-Won Joh
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| | - Sung-Joo Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoul, Korea
| |
Collapse
|
38
|
Preoperative anemia, leukocytosis and thrombocytosis identify aggressive endometrial carcinomas. Gynecol Oncol 2013; 131:410-5. [DOI: 10.1016/j.ygyno.2013.08.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/20/2013] [Accepted: 08/21/2013] [Indexed: 11/17/2022]
|
39
|
Ferracin M, Bassi C, Pedriali M, Pagotto S, D'Abundo L, Zagatti B, Corrà F, Musa G, Callegari E, Lupini L, Volpato S, Querzoli P, Negrini M. miR-125b targets erythropoietin and its receptor and their expression correlates with metastatic potential and ERBB2/HER2 expression. Mol Cancer 2013; 12:130. [PMID: 24165569 PMCID: PMC4176119 DOI: 10.1186/1476-4598-12-130] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 10/23/2013] [Indexed: 01/23/2023] Open
Abstract
Background The microRNA 125b is a double-faced gene expression regulator described both as a tumor suppressor gene (in solid tumors) and an oncogene (in hematologic malignancies). In human breast cancer, it is one of the most down-regulated miRNAs and is able to modulate ERBB2/3 expression. Here, we investigated its targets in breast cancer cell lines after miRNA-mimic transfection. We examined the interactions of the validated targets with ERBB2 oncogene and the correlation of miR-125b expression with clinical variables. Methods MiR-125b possible targets were identified after transfecting a miRNA-mimic in MCF7 cell line and analyzing gene expression modifications with Agilent microarrays and Sylamer bioinformatic tool. Erythropoietin (EPO) and its receptor (EPOR) were validated as targets of miR-125b by luciferase assay and their expression was assessed by RT-qPCR in 42 breast cancers and 13 normal samples. The molecular talk between EPOR and ERBB2 transcripts, through miR-125b, was explored transfecting MDA-MD-453 and MDA-MB-157 with ERBB2 RNA and using RT-qPCR. Results We identified a panel of genes down-regulated after miR-125b transfection and putative targets of miR-125b. Among them, we validated erythropoietin (EPO) and its receptor (EPOR) - frequently overexpressed in breast cancer - as true targets of miR-125b. Moreover, we explored possible correlations with clinical variables and we found a down-regulation of miR-125b in metastatic breast cancers and a significant positive correlation between EPOR and ERBB2/HER2 levels, that are both targets of miR-125b and function as competing endogenous RNAs (ceRNAs). Conclusions Taken together our results show a mechanism for EPO/EPOR and ERBB2 co-regulation in breast cancer and confirm the importance of miR-125b in controlling clinically-relevant cancer features.
Collapse
Affiliation(s)
- Manuela Ferracin
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Liang K, Qiu S, Lu Y, Fan Z. Autocrine/paracrine erythropoietin regulates migration and invasion potential and the stemness of human breast cancer cells. Cancer Biol Ther 2013; 15:89-98. [PMID: 24100272 DOI: 10.4161/cbt.26717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Recent studies suggest that erythropoietin (EPO) has pleiotropic effects in several cell types in addition to hematopoietic cells; however, the role of EPO-mediated cell signaling in nonhematopoietic cells, including in cancer cells, remains controversial. Here, we report our findings of autocrine/paracrine production of EPO by breast cancer cells and its functional significance. We detected a significant level of autocrine/paracrine EPO in the conditioned medium from the culture of SKBR3 breast cancer cells, particularly when the cells were cultured in hypoxia. Through knockdown of EPO and EPO receptor expression and experimental elevation of EPO receptor expression in SKBR3 breast cancer cells, we demonstrated novel roles of autocrine/paracrine EPO-mediated cell signaling in regulating migration and invasion potential and stemness-like properties of breast cancer cells.
Collapse
Affiliation(s)
- Ke Liang
- Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Songbo Qiu
- Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Yang Lu
- Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| | - Zhen Fan
- Department of Experimental Therapeutics; The University of Texas MD Anderson Cancer Center; Houston, TX USA
| |
Collapse
|
41
|
The role of erythropoietin and erythropoietin receptor in malignant laryngeal tumors. Med Hypotheses 2013; 81:1155-8. [PMID: 24134826 DOI: 10.1016/j.mehy.2013.09.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 09/06/2013] [Accepted: 09/21/2013] [Indexed: 11/23/2022]
Abstract
Erythropoietin (Epo) is a glycoprotein hormone responsible for erythropoiesis. Its effect is realized by binding erythropoietin receptor (EpoR) expressed on erythroid progenitor cells. Hypoxia is the main stimulus for the secretion of erythropoietin. Anemia is an independent negative prognostic factor for survival in patients with malignant diseases. Synthetic forms of erythropoietin are used in clinical oncology practice to increase the level of hemoglobin. As well as endogenous they can bind to EpoR. Considering the fact that most effects of synthetic Epo are negative, the role of endogenous Epo/EpoR has become an extremely important issue. The authors do not agree on most items related to the effects of exogenous Epo and EpoR in patients with head and neck carcinomas. We are investigating the expression of Epo/EpoR in the tissue of malignant laryngeal carcinoma. Our hypothesis is that less differentiated laryngeal carcinomas will have a higher level of endogenous Epo/EpoR expression. Therefore, in patients with positive Epo/EpoR we expect shorter survival and poorer locoregional disease control. We anticipate that our hypothesis may help to provide the role of endogenous Epo/EpoR in patients with malignant tumors of the larynx. If the assumptions of this study are confirmed, the patients with laryngeal carcinomas whose tumor cells express Epo/EpoR should not be considered for the treatment of anemia with recombinant erythropoietin in any case. We also point out that our research will expand the knowledge of the biology of laryngeal tumor cells and that the results could be utilized as basic knowledge in development of future therapeutic strategies.
Collapse
|
42
|
Dewi FRP, Fatchiyah F. Methylation impact analysis of erythropoietin (EPO) Gene to hypoxia inducible factor-1α (HIF-1α) activity. Bioinformation 2013; 9:782-7. [PMID: 24023421 PMCID: PMC3766311 DOI: 10.6026/97320630009782] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 12/23/2022] Open
Abstract
Erythropoietin (EPO) is a glycoprotein hormone that play a role as key regulator in the production of red blood cells. The promoter
region of EPO is methylated in normoxic (non-hypoxia) condition, but not in hypoxic condition. Methylation of the EPO enhancer
region decline the transcription activity of EPO gene. The aim of this study is to investigate how different methylation percentage
affected on the regulation and transcriptional activity of EPO gene. The DNA sequence of erythropoietin gene and protein
sequence was retrieved from the sequence database of NCBI. DNA structure was constructed using 3D-DART web server and
modeling structure of HIF1 predicted using SWISS-MODEL web server. Methylated DNA sequence of EPO gene using performed
with YASARA View software and docking of EPO gene and transcription factor HIF1 analyzed by using HADDOCK webserver.
Our result showed that binding energy in 46% methylated DNA was higher (-161,45 kcal/mol) than in unmethylated DNA (-194,16
kcal/mol) and 8% methylated DNA (-175,94 kcal/mol). So, we presume that a silencing mechanism of the Epo gene by methylation
is correlated with the binding energy, which is required for interaction. A higher methylation percentage correlates with a higher
binding energy which can cause an unstable interaction between DNA and transcription factor. In conclution, methylation of
promoter and enhancer region of Epo gene leads to silencing.
Collapse
Affiliation(s)
- Firli Rahmah Primula Dewi
- Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Malang, East Java, Indonesia
| | | |
Collapse
|
43
|
Gao S, Ma JJ, Lu C. Venous thromboembolism risk and erythropoiesis-stimulating agents for the treatment of cancer-associated anemia: a meta-analysis. Tumour Biol 2013; 35:603-13. [DOI: 10.1007/s13277-013-1084-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 08/05/2013] [Indexed: 10/26/2022] Open
|
44
|
Cao Y. Erythropoietin in cancer: a dilemma in risk therapy. Trends Endocrinol Metab 2013; 24:190-9. [PMID: 23218687 DOI: 10.1016/j.tem.2012.10.007] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 10/19/2012] [Accepted: 10/25/2012] [Indexed: 12/19/2022]
Abstract
Erythropoietin (EPO) is a frequently prescribed drug for treatment of cancer-related and chemotherapy-induced anemia in cancer patients. Paradoxically, recent preclinical and clinical studies indicate that EPO could potentially accelerate tumor growth and jeopardize survival in cancer patients. In this review I critically discuss the current knowledge and broad biological functions of EPO in association with tumor growth, invasion, and angiogenesis. The emphasis is focused on discussing the complex interplay between EPO and other tumor-derived factors in angiogenesis, tumor growth, invasion, and metastasis. Understanding the multifarious functions of EPO and its reciprocal relation with other signaling pathways is crucial for developing more effective agents for cancer therapy and for minimizing risks for cancer patients.
Collapse
Affiliation(s)
- Yihai Cao
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, 171 77 Stockholm, Sweden.
| |
Collapse
|
45
|
Shiota M, Yasuda Y, Shimaoka M, Tsuritani M, Koike E, Oiki M, Matsubara J, Taketani S, Murakami H, Yamasaki H, Okumoto K, Hoshiai H. Erythropoietin is involved in hemoprotein syntheses in developing human decidua. Congenit Anom (Kyoto) 2013; 53:18-26. [PMID: 23480354 DOI: 10.1111/j.1741-4520.2012.00382.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 08/04/2012] [Indexed: 10/28/2022]
Abstract
Before establishment of feto-placental circulation, decidua can synthesize hemoproteins to maintain oxygen homeostasis in situ. Using the human decidua of induced abortions ranging from 5 to 8 weeks of gestation, we determined the expression levels of erythropoietin, erythropoietin receptor, cytoglobin, myoglobin, embryonic-, fetal- and adult hemoglobin mRNA by quantitative RT-PCR analysis and identified their proteins by Western blot and immunohistochemical analyses. Erythropoietin signaling was demonstrated in phosphatidylinositol-3-kinase/protein kinase B pathway by Western blot, and the transcriptional factors for erythroid and non-erythroid heme synthesis were examined by RT-PCR analysis. In decidua, erythropoietin and its receptor mRNAs, erythropoietin receptor protein and phosphatidylinositol-3-kinase, were expressed with a peak at 6 weeks of gestation. Moreover, the decidua during 5 to 8 weeks of gestation expressed embryonic, fetal and adult hemoglobins additionally cytoglobin and myoglobin at transcriptional and protein levels. The heme portion of these hemoproteins is considered to be synthesized by non-erythroid δ-aminolevulinate synthase. These hemoproteins were discernible especially in decidual cells concomitant with cytotrophoblast cells and macrophage in these developing decidua. Considering the different capacity for oxygen binding and dissociation among hemoglobins with the oxygen storage capacity for cytoglobin and myoglobin, these hemoproteins appear to play a role in oxygen demand in decidua in situ before development of feto-placental circulation under the control of erythropoietin signaling.
Collapse
Affiliation(s)
- Mitsuru Shiota
- Department of Obstetrics and Gynecology, Kinki University School of Medicine, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Kahraman H, Kurutaş E, Tokur M, Bozkurt S, Cıralık H, Kabakcı B, Köksal N, Balkan V. Protective effects of erythropoietin and N-acetylcysteine on methotrexate-induced lung injury in rats. Balkan Med J 2013; 30:99-104. [PMID: 25207078 DOI: 10.5152/balkanmedj.2012.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 08/03/2012] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE Methotrexate (MTX) is known to have deleterious side effects on lung tissue. We aimed to investigate the effects of erythropoietin (EPO) and N-acetyl-cysteine (NAC) on MTX-induced lung injury in rats. STUDY DESIGN Animal experiment. MATERIAL AND METHODS Twenty-six female Sprague-Dawley rats were divided into 4 groups. Sham group, 0.3 mL saline; MTX group, 5 mg/kg MTX; EPO group, 5mg/kg MTX and 2000 IU/kg EPO; NAC group, 5 mg/kg MTX and 200 mg/kg NAC were administered once daily for 4 consecutive days. Malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT) and inflammation and congestion scores in lung tissues were evaluated. RESULTS In MTX group MDA were significantly higher, CAT and SOD were significantly lower than in sham, EPO and NAC groups (p<0.005). In EPO group MDA, CAT, and SOD were higher, but not significant than those in group NAC (p>0.005). In group MTX both scores were significantly higher than in sham (p<0.005). The congestion score of group MTX was significantly higher than those of group EPO and NAC (p<0.005). CONCLUSION EPO and NAC have significant preventive effects on MTX-induced lung injury in rats. Decreased antioxidant capacity and increased MDA level may cause the oxidative damage in MTX group. Also, higher antioxidant capacity and lower MDA level may be a response to oxidative stress in EPO and NAC groups.
Collapse
Affiliation(s)
- Hasan Kahraman
- Department of Pulmonary, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Ergül Kurutaş
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Mahmut Tokur
- Department of Chest Surgery, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Selim Bozkurt
- Department of Emergency, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Harun Cıralık
- Department of Pathology, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Betül Kabakcı
- Department of Biochemistry, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Nurhan Köksal
- Department of Pulmonary, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| | - Vedat Balkan
- Department of Pediatric Surgery, Faculty of Medicine, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, Turkey
| |
Collapse
|
47
|
Zhang C, Duan X, Xu L, Ye J, Zhao J, Liu Y. Erythropoietin receptor expression and its relationship with trastuzumab response and resistance in HER2-positive breast cancer cells. Breast Cancer Res Treat 2012; 136:739-48. [PMID: 23117856 DOI: 10.1007/s10549-012-2316-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 10/25/2012] [Indexed: 11/24/2022]
Abstract
Resistance to trastuzumab is a major issue in the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Several potential resistance mechanisms have been investigated, but the results are controversial and no conclusion has been reached. Erythropoietin receptor (EPOR) may function in cell growth, and expressed in various cancer cells. Because the downstream signaling pathways for EPOR and HER2 partially overlapped, we hypothesized that EPOR may play a role in the inhibition effect of trastuzumab and resistance to trastuzumab. Here, we detected the expression of EPOR mRNA and protein in HER2-positive breast cancer cell lines and tissues. EPOR expressed in SKBR3, MDA-MB-453, and UACC-812 cell lines, but not in BT474. Of the 55 HER2-positive cancer tissues, EPOR was positive in 42 samples and highly expressed (H-score ≥ 25) in 24 by immunohistochemistry. The difference between EPOR expression and Ki67 index was significant (P = 0.033), and EPOR expression also positively correlated with higher pathological stage (Spearman correlation coefficient = 0.359; P = 0.007). Exogenous EPO antagonized trastuzumab-induced inhibition of cell proliferation in HER2/EPOR dual-positive breast cancer cells. We then exposed SKBR3 cells to trastuzumab for 4 months to obtain trastuzumab-resistant SKBR3 cell line, which demonstrated higher phosphorylated EPOR level, higher EPO expression and more extracellular secretion than non-resistant parental SKBR3 cells. Downregulation EPOR expression using short hairpin RNA resensitized trastuzumab-resistant cells to this drug, and SKBR3 cells with EPOR downregulation demonstrated attenuated trastuzumab resistance after the same resistance induction. EPOR downregulation plus trastuzumab produced a synergetic action in the inhibition of cell proliferation and invasion in SKBR3 and MDA-MB-453 cell lines. Therefore, EPOR expression may be involved in tumor progression and proliferation in HER2-positive breast cancer. EPO/EPOR contributes to the mechanism of trastuzumab resistance in SKBR3 cell lines, and EPOR downregulation can reverse the resistance to trastuzumab and increase the inhibition effect of this drug.
Collapse
Affiliation(s)
- Chi Zhang
- Peking University First Hospital Breast Disease Centre, Xishiku Street 8#, Xicheng District, Beijing, China
| | | | | | | | | | | |
Collapse
|
48
|
The erythropoietin/erythropoietin receptor signaling pathway promotes growth and invasion abilities in human renal carcinoma cells. PLoS One 2012; 7:e45122. [PMID: 23028796 PMCID: PMC3445554 DOI: 10.1371/journal.pone.0045122] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Accepted: 08/13/2012] [Indexed: 01/31/2023] Open
Abstract
Co-expression of erythropoietin (Epo) and erythropoietin receptor (EpoR) has been found in various non-hematopoietic cancers including hereditary and sporadic renal cell carcinomas (RCC), but the Epo/EpoR autocrine and paracrine mechanisms in tumor progression have not yet been identified. In this study, we used RNA interference method to down-regulate EpoR to investigate the function of Epo/EpoR pathway in human RCC cells. Epo and EpoR co-expressed in primary renal cancer cells and 6 human RCC cell lines. EpoR signaling was constitutionally phosphorylated in primary renal cancer cells, 786-0 and Caki-1 cells, and recombinant human Epo (rhEpo) stimulation had no significant effects on further phosphorylation of EpoR pathway, proliferation, and invasiveness of the cells. Down-regulation of EpoR expression in 786-0 cells by lentivirus-introduced siRNA resulted in inhibition of growth and invasiveness in vitro and in vivo, and promotion of cell apoptosis. In addition, rhEpo stimulation slightly antagonized the anti-tumor effect of Sunitinib on 786-0 cells. Sunitinib could induce more apoptotic cells in 786-0 cells with knockdown EpoR expression. Our results suggested that Epo/EpoR pathway was involved in cell growth, invasion, survival, and sensitivity to the multi-kinases inhibitor Sunitinib in RCC cells.
Collapse
|
49
|
Abstract
Erythropoietin (Epo) is an essential hormone that binds and activates the Epo receptor (EpoR) resident on the surface of erythroid progenitor cells, thereby promoting erythropoiesis. Recombinant human erythropoietin has been used successfully for over 20 years to treat anemia in millions of patients. In addition to erythropoiesis, Epo has also been reported to have other effects, such as tissue protection and promotion of tumor cell growth or survival. This became of significant concern in 2003, when some clinical trials in cancer patients reported increased tumor progression and worse survival outcomes in patients treated with erythropoiesis-stimulating agents (ESAs). One of the potential mechanisms proffered to explain the observed safety issues was that functional EpoR was expressed in tumors and/or endothelial cells, and that ESAs directly stimulated tumor growth and/or antagonized tumor ablative therapies. Since then, numerous groups have performed further research evaluating this potential mechanism with conflicting data and conclusions. Here, we review the biology of endogenous Epo and EpoR expression and function in erythropoiesis, and evaluate the evidence pertaining to the expression of EpoR on normal nonhematopoietic and tumor cells.
Collapse
|
50
|
Ito K, Yoshii H, Asano T, Horiguchi A, Sumitomo M, Hayakawa M, Asano T. Impact of increased erythropoietin receptor expression and elevated serum erythropoietin levels on clinicopathological features and prognosis in renal cell carcinoma. Exp Ther Med 2012; 3:937-944. [PMID: 22969996 DOI: 10.3892/etm.2012.513] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 02/27/2012] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) expression and EPO receptor (EpoR) expression have been demonstrated in various malignant tumors. EPO-EpoR signaling can activate several downstream signal transduction pathways that enhance tumor aggressiveness. The present study was undertaken to evaluate the impact of overexpression of EpoR and elevated serum EPO (sEPO) levels on the clinicopathological features and prognosis of patients with renal cell carcinoma (RCC). EpoR expression was evaluated immunohistochemically in 56 patients. Tumors with a staining intensity greater than that of surrounding proximal tubules were defined as tumors with high EpoR expression. The association between EpoR expression levels and various clinicopathological factors was analyzed. sEPO levels were determined in 138 patients and its correlation to clinicopathological factors was also analyzed, and EpoR expression was determined in surgical specimens removed from 47 of those 138 patients. Patients with high EpoR expression and patients with sEPO elevation had clinicopathological features less favorable than those of other patients. Tumors demonstrating high EpoR expression had a significantly higher number of Ki-67-positive cells compared to those with low EpoR expression. Tumor assemblies in microvessels demonstrated high EpoR expression. Patients whose tumors demonstrated high EpoR expression and those with sEPO elevation had a significantly lower survival rate compared to other patients, and patients with both high EpoR expression and sEPO elevation had an extremely poor prognosis. Microvascular invasion was an independent factor associated with sEPO elevation, suggesting that EPO-EpoR signaling might be important in RCC metastasis. EPO-EpoR signaling may be involved in tumor growth and progression in RCC and the combination of EpoR expression and sEPO levels may effectively predict clinical outcome.
Collapse
Affiliation(s)
- Keiichi Ito
- Department of Urology, National Defense Medical College, Tokorozawa, Saitama 359-8513, Japan
| | | | | | | | | | | | | |
Collapse
|