1
|
Zaninelli S, Panna S, Tettamanti S, Melita G, Doni A, D’Autilia F, Valgardsdottir R, Gotti E, Rambaldi A, Golay J, Introna M. Functional Activity of Cytokine-Induced Killer Cells Enhanced by CAR-CD19 Modification or by Soluble Bispecific Antibody Blinatumomab. Antibodies (Basel) 2024; 13:71. [PMID: 39311376 PMCID: PMC11417890 DOI: 10.3390/antib13030071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/26/2024] Open
Abstract
Strategies to increase the anti-tumor efficacy of cytokine-induced killer cells (CIKs) include genetic modification with chimeric antigen receptors (CARs) or the addition of soluble T-cell engaging bispecific antibodies (BsAbs). Here, CIKs were modified using a transposon system integrating two distinct anti-CD19 CARs (CAR-MNZ and CAR-BG2) or combined with soluble CD3xCD19 BsAb blinatumomab (CIK + Blina). CAR-MNZ bearing the CD28-OX40-CD3ζ signaling modules, and CAR-BG2, designed on the Tisagenlecleucel CAR sequence (Kymriah®), carrying the 4-1BB and CD3ζ signaling elements, were employed. After transfection and CIK expansion, cells expressed CAR-CD19 to a similar extent (35.9% CAR-MNZ and 17.7% CAR-BG2). In vitro evaluations demonstrated robust proliferation and cytotoxicity (~50% cytotoxicity) of CARCIK-MNZ, CARCIK-BG2, and CIK + Blina against CD19+ target cells, suggesting similar efficacy. All effectors formed an increased number of synapses, activated NFAT and NFkB, and secreted IL-2 and IFN-ɣ upon encountering targets. CIK + Blina displayed strongest NFAT and IFN-ɣ induction, whereas CARCIK-BG2 demonstrated superior synapse formation. All the effectors have shown therapeutic activity in vivo against the CD19+ Daudi tumor model, with CARCIK cells showing a more durable response compared to CIK + Blina, likely due to the short half-life of Blina in this model.
Collapse
Affiliation(s)
- Silvia Zaninelli
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Silvia Panna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Sarah Tettamanti
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Giusi Melita
- M. Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| | - Andrea Doni
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Francesca D’Autilia
- Unit of Multiscale and Nanostructural Imaging, IRCCS Humanitas Research Hospital, 20089 Milano, Italy
| | - Rut Valgardsdottir
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Elisa Gotti
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, ASST Papa Giovanni XXIII Hospital, 24127 Bergamo, Italy
- Department of Oncology and Hematology, Università degli Studi di Milano, 20122 Milan, Italy
| | - Josée Golay
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| | - Martino Introna
- Center of Cellular Therapy “G. Lanzani”, Division of Hematology, ASST Papa Giovanni XXIII, 24122 Bergamo, Italy; (S.Z.)
| |
Collapse
|
2
|
Cao K, Wang X, Wang H, Xu C, Ma A, Zhang Y, Zheng M, Xu Y, Tang L. Phenotypic and functional exhaustion of circulating CD3 + CD56 + NKT-like cells in colorectal cancer patients. FASEB J 2024; 38:e23525. [PMID: 38430373 DOI: 10.1096/fj.202301743r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/11/2023] [Accepted: 02/16/2024] [Indexed: 03/03/2024]
Abstract
CD3+ CD56+ NKT-like cells are crucial to antitumor immune surveillance and defense. However, research on circulating NKT-like cells in colorectal cancer (CRC) patients is limited. This investigation selected 113 patients diagnosed with primary CRC for preoperative peripheral blood collection. The blood from 106 healthy donors at the physical examination center was acquired as a healthy control (HC). The distribution of lymphocyte subsets, immunophenotype, and functional characteristics of NKT-like cells was comprehensively evaluated. Compared to HC, primary CRC patients had considerably fewer peripheral NKT-like cells in frequency and absolute quantity, and the fraction of NKT-like cells was further reduced in patients with vascular invasion compared to those without. The NKT-like cells in CRC patients had a reduced fraction of the activating receptor CD16, up-regulated expression of inhibitory receptors LAG-3 and NKG2A, impaired production of TNF-α and IFN-γ, as well as degranulation capacity. Moreover, the increased frequency of NKG2A+ NKT-like cells and the decreased expression of activation-related molecules were significantly correlated with tumor progression. In detail, NKG2A+ NKT-like cells indicated increased PD-1 and Tim-3 and reduced TNF-α than NKG2A- subgroup. Blocking NKG2A in vitro restored cytokine secretion capacity in NKT-like cells from CRC patients. Altogether, this research revealed that circulating NKT-like cells in CRC patients exhibited suppressive phenotype and functional impairment, which was more pronounced in NKG2A+ NKT-like cells. These findings suggest that NKG2A blockade may restore anti-tumor effector function in NKT-like cells, which provides a potential target for immunotherapy in CRC patients.
Collapse
Affiliation(s)
- Kangli Cao
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Xiaowei Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hui Wang
- Centre of Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Cairui Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Along Ma
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuntao Zhang
- The First Clinical Medical School of Anhui Medical University, Hefei, Anhui, China
| | - Meijuan Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ling Tang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
3
|
Rezaee A, Ahmadpour S, Jafari A, Aghili S, Zadeh SST, Rajabi A, Raisi A, Hamblin MR, Mahjoubin-Tehran M, Derakhshan M. MicroRNAs, long non-coding RNAs, and circular RNAs and gynecological cancers: focus on metastasis. Front Oncol 2023; 13:1215194. [PMID: 37854681 PMCID: PMC10580988 DOI: 10.3389/fonc.2023.1215194] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Gynecologic cancer is a significant cause of death in women worldwide, with cervical cancer, ovarian cancer, and endometrial cancer being among the most well-known types. The initiation and progression of gynecologic cancers involve a variety of biological functions, including angiogenesis and metastasis-given that death mostly occurs from metastatic tumors that have invaded the surrounding tissues. Therefore, understanding the molecular pathways underlying gynecologic cancer metastasis is critical for enhancing patient survival and outcomes. Recent research has revealed the contribution of numerous non-coding RNAs (ncRNAs) to metastasis and invasion of gynecologic cancer by affecting specific cellular pathways. This review focuses on three types of gynecologic cancer (ovarian, endometrial, and cervical) and three kinds of ncRNAs (long non-coding RNAs, microRNAs, and circular RNAs). We summarize the detailed role of non-coding RNAs in the different pathways and molecular interactions involved in the invasion and metastasis of these cancers.
Collapse
Affiliation(s)
- Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Ahmadpour
- Biotechnology Department, Faculty of Chemistry, University of Kashan, Kashan, Iran
| | - Ameneh Jafari
- Proteomics Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sarehnaz Aghili
- Department of Gynecology and Obstetrics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Ali Rajabi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Arash Raisi
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Student Research Committee, Kashan University of Medical Sciences, Kashan, Iran
| | - Michael R. Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein, South Africa
| | - Maryam Mahjoubin-Tehran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Marzieh Derakhshan
- Shahid Beheshti Fertility Clinic, Department of Gynecology and Obsteterics, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
4
|
Eralp Y, Ates U. Clinical Applications of Combined Immunotherapy Approaches in Gastrointestinal Cancer: A Case-Based Review. Vaccines (Basel) 2023; 11:1545. [PMID: 37896948 PMCID: PMC10610904 DOI: 10.3390/vaccines11101545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Malignant neoplasms arising from the gastrointestinal (GI) tract are among the most common types of cancer with high mortality rates. Despite advances in treatment in a small subgroup harboring targetable mutations, the outcome remains poor, accounting for one in three cancer-related deaths observed globally. As a promising therapeutic option in various tumor types, immunotherapy with immune checkpoint inhibitors has also been evaluated in GI cancer, albeit with limited efficacy except for a small subgroup expressing microsatellite instability. In the quest for more effective treatment options, energetic efforts have been placed to evaluate the role of several immunotherapy approaches comprising of cancer vaccines, adoptive cell therapies and immune checkpoint inhibitors. In this review, we report our experience with a personalized dendritic cell cancer vaccine and cytokine-induced killer cell therapy in three patients with GI cancers and summarize current clinical data on combined immunotherapy strategies.
Collapse
Affiliation(s)
- Yesim Eralp
- Maslak Acıbadem Hospital, Acıbadem University, Istanbul 34398, Turkey
| | - Utku Ates
- Biotech4life Tissue and Cell R&D Center, Stembio Cell and Tissue Technologies, Inc., Istanbul 34398, Turkey
| |
Collapse
|
5
|
Williams L, Li L, Yazaki PJ, Wong P, Miller A, Hong T, Poku EK, Bhattacharya S, Shively JE, Kujawski M. Generation of IL-2-Fc-antibody conjugates by click chemistry. Biotechnol J 2023; 18:e2300115. [PMID: 37300381 DOI: 10.1002/biot.202300115] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/10/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023]
Abstract
BACKGROUND Immunocytokines (ICKs) are antibody directed cytokines produced by genetic fusion of an antibody to a cytokine. METHODS We now show that antibodies conjugated by click chemistry to interleukin-2 (IL-2)-Fc form fully active conjugates, and in one example, equivalent activity to a genetically produced ICK. RESULTS An IL-2-Fc fusion protein was optimized for click chemistry at hinge cysteines using protein stabilizing IL-2 mutations at Lys35 and Cys125 and Fc hinge mutations at Cys142 and Cys148. The IL-2-Fc fusion protein with K35E and C125S mutations with 3 intact hinge cysteines, designated as IL-2-Fc Par, was selected based on its minimal tendency to aggregate. IL-2-Fc-antibody clicked conjugates retained high IL-2 activity and bound target antigens comparable to parent antibodies. An IL-2-Fc-anti-CEA click conjugate showed comparable anti-tumor activity to an anti-CEA-IL-2 ICK in immunocompetent CEA transgenic mice bearing CEA positive orthotopic breast tumors. Significant increases in IFNγ+ /CD8+ and decreases in FoxP3+ /CD4+ T-cells were found for the clicked conjugate and ICK therapies, suggesting a common mechanism of tumor reduction. CONCLUSION The production of antibody targeted IL-2 therapy via a click chemistry approach is feasible with comparable activity to genetically produced ICKs with the added advantage of multiplexing with other monoclonal antibodies.
Collapse
Affiliation(s)
- Lindsay Williams
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Lin Li
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Paul J Yazaki
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Patty Wong
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Aaron Miller
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Teresa Hong
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Erasmus K Poku
- Radiopharmacy, City of Hope, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - John E Shively
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Maciej Kujawski
- Department of Immunology and Theranostics, Riggs Diabetes, Metabolism, and Research Institute, Beckman Research Institute of City of Hope, Duarte, California, USA
| |
Collapse
|
6
|
Cappuzzello E, Vigolo E, D’Accardio G, Astori G, Rosato A, Sommaggio R. How can Cytokine-induced killer cells overcome CAR-T cell limits. Front Immunol 2023; 14:1229540. [PMID: 37675107 PMCID: PMC10477668 DOI: 10.3389/fimmu.2023.1229540] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 09/08/2023] Open
Abstract
The successful treatment of patients affected by B-cell malignancies with Chimeric Antigen Receptor (CAR)-T cells represented a breakthrough in the field of adoptive cell therapy (ACT). However, CAR-T therapy is not an option for every patient, and several needs remain unmet. In particular, the production of CAR-T cells is expensive, labor-intensive and logistically challenging; additionally, the toxicities deriving from CAR-T cells infusion, such as cytokine release syndrome (CRS) and immune effector cell-associated neurotoxicity syndrome (ICANS), have been documented extensively. Alternative cellular therapy products such as Cytokine-induced killer (CIK) cells have the potential to overcome some of these obstacles. CIK cells are a heterogeneous population of polyclonal CD3+CD56+ T cells with phenotypic and functional properties of NK cells. CIK cell cytotoxicity is exerted in a major histocompatibility complex (MHC)-unrestricted manner through the engagement of natural killer group 2 member D (NKG2D) molecules, against a wide range of hematological and solid tumors without the need for prior antigen exposure or priming. The foremost potential of CIK cells lies in the very limited ability to induce graft-versus-host disease (GvHD) reactions in the allogeneic setting. CIK cells are produced with a simple and extremely efficient expansion protocol, which leads to a massive expansion of effector cells and requires a lower financial commitment compared to CAR-T cells. Indeed, CAR-T manufacturing involves the engineering with expensive GMP-grade viral vectors in centralized manufacturing facilities, whereas CIK cell production is successfully performed in local academic GMP facilities, and CIK cell treatment is now licensed in many countries. Moreover, the toxicities observed for CAR-T cells are not present in CIK cell-treated patients, thus further reducing the costs associated with hospitalization and post-infusion monitoring of patients, and ultimately encouraging the delivery of cell therapies in the outpatient setting. This review aims to give an overview of the limitations of CAR-T cell therapy and outline how the use of CIK cells could overcome such drawbacks thanks to their unique features. We highlight the undeniable advantages of using CIK cells as a therapeutic product, underlying the opportunity for further research on the topic.
Collapse
Affiliation(s)
- Elisa Cappuzzello
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Emilia Vigolo
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
| | - Giulia D’Accardio
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Giuseppe Astori
- Advanced Cellular Therapy Laboratory, Department of Hematology, San Bortolo Hospital of Vicenza, Vicenza, Italy
| | - Antonio Rosato
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Roberta Sommaggio
- Immunology and Molecular Oncology Unit, Veneto Institute of Oncology IOV - IRCCS, Padova, Italy
- Department of Surgery, Oncology and Gastroenterology, University of Padova, Padova, Italy
| |
Collapse
|
7
|
Faber ML, Oldham RAA, Thakur A, Rademacher MJ, Kubicka E, Dlugi TA, Gifford SA, McKillop WM, Schloemer NJ, Lum LG, Medin JA. Novel anti-CD30/CD3 bispecific antibodies activate human T cells and mediate potent anti-tumor activity. Front Immunol 2023; 14:1225610. [PMID: 37646042 PMCID: PMC10461807 DOI: 10.3389/fimmu.2023.1225610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 07/12/2023] [Indexed: 09/01/2023] Open
Abstract
CD30 is expressed on Hodgkin lymphomas (HL), many non-Hodgkin lymphomas (NHLs), and non-lymphoid malignancies in children and adults. Tumor expression, combined with restricted expression in healthy tissues, identifies CD30 as a promising immunotherapy target. An anti-CD30 antibody-drug conjugate (ADC) has been approved by the FDA for HL. While anti-CD30 ADCs and chimeric antigen receptors (CARs) have shown promise, their shortcomings and toxicities suggest that alternative treatments are needed. We developed novel anti-CD30 x anti-CD3 bispecific antibodies (biAbs) to coat activated patient T cells (ATCs) ex vivo prior to autologous re-infusions. Our goal is to harness the dual specificity of the biAb, the power of cellular therapy, and the safety of non-genetically modified autologous T cell infusions. We present a comprehensive characterization of the CD30 binding and tumor cell killing properties of these biAbs. Five unique murine monoclonal antibodies (mAbs) were generated against the extracellular domain of human CD30. Resultant anti-CD30 mAbs were purified and screened for binding specificity, affinity, and epitope recognition. Two lead mAb candidates with unique sequences and CD30 binding clusters that differ from the ADC in clinical use were identified. These mAbs were chemically conjugated with OKT3 (an anti-CD3 mAb). ATCs were armed and evaluated in vitro for binding, cytokine production, and cytotoxicity against tumor lines and then in vivo for tumor cell killing. Our lead mAb was subcloned to make a Master Cell Bank (MCB) and screened for binding against a library of human cell surface proteins. Only huCD30 was bound. These studies support a clinical trial in development employing ex vivo-loading of autologous T cells with this novel biAb.
Collapse
Affiliation(s)
- Mary L. Faber
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Robyn A. A. Oldham
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Archana Thakur
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Mary Jo Rademacher
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Ewa Kubicka
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Theresa A. Dlugi
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Steven A. Gifford
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - William M. McKillop
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Nathan J. Schloemer
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
| | - Lawrence G. Lum
- Department of Medicine, Division of Hematology/Oncology, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Jeffrey A. Medin
- Department of Pediatrics, Medical College of Wisconsin (MCW), Milwaukee, WI, United States
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Department of Biochemistry, MCW, Milwaukee, WI, United States
| |
Collapse
|
8
|
Activated T cell therapy targeting glioblastoma cancer stem cells. Sci Rep 2023; 13:196. [PMID: 36604465 PMCID: PMC9814949 DOI: 10.1038/s41598-022-27184-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/27/2022] [Indexed: 01/06/2023] Open
Abstract
Naïve T cells become effector T cells following stimulation by antigen-loaded dendritic cells (DCs) and sequential cytokine activation. We aimed to develop procedures to efficiently activate T cells with tumor-associated antigens (TAAs) to glioblastoma (GBM) stem cells. To remove antigen presentation outside of the immunosuppressive tumor milieu, three different glioma stem cell (GSC) specific antigen sources to load DCs were compared in their ability to stimulate lymphocytes. An activated T cell (ATC) protocol including cytokine activation and expansion in culture to target GSCs was generated and optimized for a planned phase I clinical trial. We compared three different antigen-loading methods on DCs to effectively activate T cells, which were GBM patient-derived GSC-lysate, acid-eluate of GSCs and synthetic peptides derived from proteins expressed in GSCs. DCs derived from HLA-A2 positive blood sample were loaded with TAAs. Autologous T cells were activated by co-culturing with loaded DCs. Efficiency and cytotoxicity of ATCs were evaluated by targeting TAA-pulsed DCs or T2 cells, GSCs, or autologous PHA-blasts. Characteristics of ATCs were evaluated by Flow Cytometry and ELISpot assay, which showed increased number of ATCs secreting IFN-γ targeting GSCs as compared with non-activated T cells and unloaded target cells. Neither GSC-lysate nor acid-eluate loading showed enhancement in response of ATCs but the synthetic peptide pool showed significantly increased IFN-γ secretion and increased cytotoxicity towards target cells. These results demonstrate that ATCs activated using a TAA synthetic peptide pool efficiently enhance cytotoxicity specifically to target cells including GSC.
Collapse
|
9
|
Patient-Derived In Vitro Models of Ovarian Cancer: Powerful Tools to Explore the Biology of the Disease and Develop Personalized Treatments. Cancers (Basel) 2023; 15:cancers15020368. [PMID: 36672318 PMCID: PMC9856518 DOI: 10.3390/cancers15020368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/02/2023] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
Epithelial ovarian cancer (OC) is the most lethal gynecological malignancy worldwide due to a late diagnosis caused by the lack of specific symptoms and rapid dissemination into the peritoneal cavity. The standard of care for OC treatment is surgical cytoreduction followed by platinum-based chemotherapy. While a response to this frontline treatment is common, most patients undergo relapse within 2 years and frequently develop a chemoresistant disease that has become unresponsive to standard treatments. Moreover, also due to the lack of actionable mutations, very few alternative therapeutic strategies have been designed as yet for the treatment of recurrent OC. This dismal clinical perspective raises the need for pre-clinical models that faithfully recapitulate the original disease and therefore offer suitable tools to design novel therapeutic approaches. In this regard, patient-derived models are endowed with high translational relevance, as they can better capture specific aspects of OC such as (i) the high inter- and intra-tumor heterogeneity, (ii) the role of cancer stem cells (a small subset of tumor cells endowed with tumor-initiating ability, which can sustain tumor spreading, recurrence and chemoresistance), and (iii) the involvement of the tumor microenvironment, which interacts with tumor cells and modulates their behavior. This review describes the different in vitro patient-derived models that have been developed in recent years in the field of OC research, focusing on their ability to recapitulate specific features of this disease. We also discuss the possibilities of leveraging such models as personalized platforms to design new therapeutic approaches and guide clinical decisions.
Collapse
|
10
|
Harris R, Mammadli M, Hiner S, Suo L, Yang Q, Sen JM, Karimi M. TCF-1 regulates NKG2D expression on CD8 T cells during anti-tumor responses. Cancer Immunol Immunother 2022; 72:1581-1601. [PMID: 36562825 DOI: 10.1007/s00262-022-03323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
Cancer immunotherapy relies on improving T cell effector functions against malignancies, but despite the identification of several key transcription factors (TFs), the biological functions of these TFs are not entirely understood. We developed and utilized a novel, clinically relevant murine model to dissect the functional properties of crucial T cell transcription factors during anti-tumor responses. Our data showed that the loss of TCF-1 in CD8 T cells also leads to loss of key stimulatory molecules such as CD28. Our data showed that TCF-1 suppresses surface NKG2D expression on naïve and activated CD8 T cells via key transcriptional factors Eomes and T-bet. Using both in vitro and in vivo models, we uncovered how TCF-1 regulates critical molecules responsible for peripheral CD8 T cell effector functions. Finally, our unique genetic and molecular approaches suggested that TCF-1 also differentially regulates essential kinases. These kinases, including LCK, LAT, ITK, PLC-γ1, P65, ERKI/II, and JAK/STATs, are required for peripheral CD8 T cell persistent function during alloimmunity. Overall, our molecular and bioinformatics data demonstrate the mechanism by which TCF-1 modulated several critical aspects of T cell function during CD8 T cell response to cancer. Summary Figure: TCF-1 is required for persistent function of CD8 T cells but dispensable for anti-tumor response. Here, we have utilized a novel mouse model that lacks TCF-1 specifically on CD8 T cells for an allogeneic transplant model. We uncovered a molecular mechanism of how TCF-1 regulates key signaling pathways at both transcriptomic and protein levels. These key molecules included LCK, LAT, ITK, PLC-γ1, p65, ERK I/II, and JAK/STAT signaling. Next, we showed that the lack of TCF-1 impacted phenotype, proinflammatory cytokine production, chemokine expression, and T cell activation. We provided clinical evidence for how these changes impact GVHD target organs (skin, small intestine, and liver). Finally, we provided evidence that TCF-1 regulates NKG2D expression on mouse naïve and activated CD8 T cells. We have shown that CD8 T cells from TCF-1 cKO mice mediate cytolytic functions via NKG2D.
Collapse
Affiliation(s)
- Rebecca Harris
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Mahinbanu Mammadli
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Shannon Hiner
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA
| | - Liye Suo
- Department of Pathology, SUNY Upstate Medical University, Syracuse, NY, 13210, USA
| | - Qi Yang
- Department of Pediatrics, Rutgers Robert Wood Johnson Medical School Rutgers Child Health Institute of New Jersey, New Brunswick, NJ, 08901, USA
| | - Jyoti Misra Sen
- National Institute On Aging-National Institutes of Health, BRC Building, 251 Bayview Boulevard, Suite 100, Baltimore, MD, 21224, USA.,Center On Aging and Immune Remodeling and Immunology Program, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, MD, 21224, USA
| | - Mobin Karimi
- Department of Microbiology and Immunology, SUNY Upstate Medical University, 766 Irving Ave Weiskotten Hall Suite 2281, Syracuse, NY, 13210, USA.
| |
Collapse
|
11
|
Taylor RJ, Geeson MB, Journeaux T, Bernardes GJL. Chemical and Enzymatic Methods for Post-Translational Protein-Protein Conjugation. J Am Chem Soc 2022; 144:14404-14419. [PMID: 35912579 PMCID: PMC9389620 DOI: 10.1021/jacs.2c00129] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 11/28/2022]
Abstract
Fusion proteins play an essential role in the biosciences but suffer from several key limitations, including the requirement for N-to-C terminal ligation, incompatibility of constituent domains, incorrect folding, and loss of biological activity. This perspective focuses on chemical and enzymatic approaches for the post-translational generation of well-defined protein-protein conjugates, which overcome some of the limitations faced by traditional fusion techniques. Methods discussed range from chemical modification of nucleophilic canonical amino acid residues to incorporation of unnatural amino acid residues and a range of enzymatic methods, including sortase-mediated ligation. Through summarizing the progress in this rapidly growing field, the key successes and challenges associated with using chemical and enzymatic approaches are highlighted and areas requiring further development are discussed.
Collapse
Affiliation(s)
- Ross J. Taylor
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Michael B. Geeson
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Toby Journeaux
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
| | - Gonçalo J. L. Bernardes
- Department
of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW Cambridge, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
12
|
Kujawski M, Li L, Li H, Yazaki PJ, Swiderski P, Shively JE. T-cell surface generation of dual bivalent, bispecific T-cell engaging, RNA duplex cross-linked antibodies (dbBiTERs) for re-directed tumor cell lysis. Biotechnol J 2022; 17:e2100389. [PMID: 34773368 PMCID: PMC9177045 DOI: 10.1002/biot.202100389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/06/2021] [Accepted: 11/09/2021] [Indexed: 02/03/2023]
Abstract
BACKGROUND Genetic engineered Bispecific T-cell engagers (BiTEs) generate potent cytotoxic effects. METHODS Alternately, click chemistry engineered, dual specific bivalent Bispecific T-cell engaging antibodies (dbBiTEs) on T-cell surfaces can be generated from parent monoclonal antibodies. RESULTS We show the formation of dbBiTEs on the surface of T-cells along with the introduction of complementary 2'-OMe RNA 32-mer oligonucleotides allowing duplex formation between antibodies, designated as dbBiTERs. dbBiTERs generated in solution from anti-CEA and anti-CD3 OKT3 antibodies retained specific binding to CEA positive versus CEA negative cancer cells and to CD3 positive T-cells comparable to dbBiTEs. When T-cells were precoated with dbBiTEs or dbBiTERs and mixed with CEA positive versus CEA negative cancer cells, similar dose dependent and specific cytotoxicity were observed in redirected cell lysis assays. On-cell generated dbBiTERs exerted potent cytotoxic responses against CEA positive targets and were localized at the cell surface by immuno-gold EM. In addition, we demonstrate that target and T-cells, each coated separately with complementary 2'OMe-RNA-linked antibodies can be cross-linked by RNA duplex formation in vitro to generate redirected cell lysis. CONCLUSION The facile generation of dbBiTERs with specific cytolytic activity from intact antibodies and their generation on-cell offers a new avenue for antigen specific T-cell therapy.
Collapse
Affiliation(s)
- Maciej Kujawski
- Department of Immunology and Theranostics, City of Hope, Duarte, California, USA
| | - Lin Li
- Department of Immunology and Theranostics, City of Hope, Duarte, California, USA
| | - Harry Li
- Department of Immunology and Theranostics, City of Hope, Duarte, California, USA
| | - Paul J. Yazaki
- Department of Immunology and Theranostics, City of Hope, Duarte, California, USA
| | - Piotr Swiderski
- Shared Resources-DNA/RNA/Peptide, City of Hope, Duarte, California, USA
| | - John E. Shively
- Department of Immunology and Theranostics, City of Hope, Duarte, California, USA
| |
Collapse
|
13
|
Human CD3 +CD56 +NKT-like cells express a range of complement receptors and C3 activation has negative effects on these cell activity and effector function. Hum Immunol 2021; 82:625-633. [PMID: 34134908 DOI: 10.1016/j.humimm.2021.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/22/2022]
Abstract
CD3+CD56+NKT-like cells are a rare population of lymphocytes that serve important roles in various types of immune-related diseases, and particularly in cancer. The complement system regulates inflammatory and immune responses by interacting with complement receptors expressed on a range of immune cells. However, whether CD3+CD56+NKT-like cells are regulated by the complement system has still not been definitively determined. In the present study, the expression of complement receptors and regulators in gated CD3+CD56+NKT-like cells isolated from human peripheral blood was assessed using PCR and flow cytometry. The results showed that human CD3+CD56+NKT-like cells expressed a range of complement receptors and regulators, such as CR3, C3aR, C5aR, C5L2, CD46 and CD55. Furthermore, the presence of complement component 3 (C3), a key component in complement activation in culture supernatant, mitigated the activity, IFN-γ production and killing function of CD3+CD56+NKT-like cells. The present study provides evidences supporting the relationship between complement activation and functional modulation of CD3+CD56+NKT-like cells, expanding our knowledge of the complement regulatory network, and also highlighting a potential target for treatment of numerous immune-related diseases, particularly NKT cell-based tumor adoptive immunotherapy.
Collapse
|
14
|
Donini C, Rotolo R, Proment A, Aglietta M, Sangiolo D, Leuci V. Cellular Immunotherapy Targeting Cancer Stem Cells: Preclinical Evidence and Clinical Perspective. Cells 2021; 10:cells10030543. [PMID: 33806296 PMCID: PMC8001974 DOI: 10.3390/cells10030543] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/24/2021] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
The term “cancer stem cells” (CSCs) commonly refers to a subset of tumor cells endowed with stemness features, potentially involved in chemo-resistance and disease relapses. CSCs may present peculiar immunogenic features influencing their homeostasis within the tumor microenvironment. The susceptibility of CSCs to recognition and targeting by the immune system is a relevant issue and matter of investigation, especially considering the multiple emerging immunotherapy strategies. Adoptive cellular immunotherapies, especially those strategies encompassing the genetic redirection with chimeric antigen receptors (CAR), hold relevant promise in several tumor settings and might in theory provide opportunities for selective elimination of CSC subsets. Initial dedicated preclinical studies are supporting the potential targeting of CSCs by cellular immunotherapies, indirect evidence from clinical studies may be derived and new studies are ongoing. Here we review the main issues related to the putative immunogenicity of CSCs, focusing on and highlighting the existing evidence and opportunities for cellular immunotherapy approaches with T and non-T antitumor lymphocytes.
Collapse
Affiliation(s)
- Chiara Donini
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Ramona Rotolo
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Alessia Proment
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
| | - Massimo Aglietta
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| | - Dario Sangiolo
- Department of Oncology, University of Turin, 10124 Turin, Italy; (C.D.); (A.P.); (M.A.)
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
- Correspondence: ; Tel.: +39-011-993-3503; Fax: +39-011-993-3522
| | - Valeria Leuci
- Candiolo Cancer Institute, FPO–IRCCS, Str. Prov. 142, km 3,95, 10060 Candiolo (TO), Italy; (R.R.); (V.L.)
| |
Collapse
|
15
|
Functional Imaging Using Bioluminescent Reporter Genes in Living Subjects. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
16
|
Liu Q, Zhang D, Qian H, Chu Y, Yang Y, Shao J, Xu Q, Liu B. Superior Antitumor Efficacy of IFN-α2b-Incorporated Photo-Cross-Linked Hydrogels Combined with T Cell Transfer and Low-Dose Irradiation Against Gastric Cancer. Int J Nanomedicine 2020; 15:3669-3680. [PMID: 32547021 PMCID: PMC7261665 DOI: 10.2147/ijn.s249174] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 05/07/2020] [Indexed: 12/18/2022] Open
Abstract
Introduction The exhaustion and poor homing of activated lymphocytes are critical obstacles in adoptive cell immunotherapy for solid tumors. In order to effectively deliver immune cells into tumors, we encapsulated interferon-α2b (IFN-α2b) into macroporous hydrogels as an enhancement factor and utilized low-dose irradiation (LDI) as a tumoral attractor of T cells. Methods Hydroxypropyl cellulose hydrogels were prepared by irradiation techniques, and the cross-sectional microstructure was characterized by scanning electron microscopy. The synergistic antitumor mechanism of combination of IFN-α2b and CIK cells was evaluated by detecting the expression of activation marker CD69 on CIK cell surface and IFN-γ production by CIK cells. The in vivo antitumor activity of IFN-α2b-incorporated hydroxypropyl cellulose hydrogels combined with CIK and radiation was evaluated in an MKN-45 xenografted nude mice model. Results The bioactivity of IFN-α2b was well maintained in ultraviolet-reactive, rapidly cross-linkable hydroxypropyl cellulose hydrogels. In vitro studies demonstrated IFN-α2b-activated T cells, as evidenced by upregulating early activation marker CD69 and secretion inflammatory cytokine IFN-γ. In vivo real-time image showed our hydrogels kept a higher amount of drug delivery at the tumor site for a long time compared with free drug injection. Low-dose irradiation promoted T cell accumulation and infiltration in subcutaneous tumors. Combination of IFN-α2b-loaded hydrogels (Gel-IFN) with T cells and LDI exhibited higher efficacy to eradicate human gastric cancer xenograted tumors with less proliferating cells and more necrotic regions compared with IFN-α2b or T cells alone. Discussion HPC hydrogels kept the activity of IFN-α2b and stably release of IFN-α2b to stimulate T cells for a long time. At the same time, low-dose radiation recruits T cells into tumors. This innovative integration mode of IFN-α2b-loaded hydrogels and radiotherapy offers a potent strategy to improve the therapeutic outcome of T cell therapy.
Collapse
Affiliation(s)
- Qin Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Dinghu Zhang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China.,Department of Radiology, Zhejiang Cancer Hospital, Hangzhou, People's Republic of China
| | - Hanqing Qian
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yanhong Chu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Yan Yang
- Department of Oncology, Jiangning Hospital, Nanjing, People's Republic of China
| | - Jie Shao
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Qiuping Xu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| | - Baorui Liu
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University, Clinical Cancer Institute of Nanjing University, Nanjing, People's Republic of China
| |
Collapse
|
17
|
Lum LG, Thakur A, Elhakiem A, Alameer L, Dinning E, Huang M. Anti-CS1 × Anti-CD3 Bispecific Antibody (BiAb)-Armed Anti-CD3 Activated T Cells (CS1-BATs) Kill CS1 + Myeloma Cells and Release Type-1 Cytokines. Front Oncol 2020; 10:544. [PMID: 32432032 PMCID: PMC7214537 DOI: 10.3389/fonc.2020.00544] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 03/26/2020] [Indexed: 11/13/2022] Open
Abstract
Background: Multiple myeloma (MM) remains incurable despite significant advances in chemotherapy, targeted therapies, and immunotherapy. Bispecific antibody (BiAb)-armed activated T cells (BATs) have been developed for targeting and treatment of solid and hematologic malignancies. BATs are serial killers of tumor cells, secrete Th1 cytokines, and induce adaptive cellular and humoral immune responses in patients (pts). This study provides preclinical data using bispecific anti-CS1 (elotuzumab) × anti-CD3 (OKT3) antibody (CS1Bi)-armed activated T cells (CS1- BATs) that provide a strong rationale for applying CS1-BATs to pts with MM. Methods: CS1-BATs and unarmed activated T cells (ATC) were incubated with MM cell targets at various effector to target ratios (E:T) in a quantitative flow cytometry-based assay to determine the degree of cell loss relative to target cells incubated without ATC. ATC from up to 8 normal donors were armed with various concentrations of CS1 BiAb and tested against 5 myeloma cells lines for CS1-BATs-mediated killing and release of Th1 cytokines, chemokines and granzyme B. Results: CS1-BATs from normal donors killed each of 5 MM cell lines proportional to E:T ratios ranging between 1:1 and 10:1 and arming concentrations of 12.5 to 50 ng/million ATC, which was accompanied by release of Th1 cytokines, chemokines and granzyme B. CS1-BATs prepared from MM pts' peripheral blood mononuclear cells (PBMC) showed increasing cytotoxicity and T cell expansion over time against ARH77 MM cells. The optimal arming dose of CS1Bi is 50 ng/106 ATC. Conclusions: These data demonstrate the therapeutic potential of CS1-BATs-mediated cytotoxicity and Th1 cytokines release at low E:T and support advancing their clinical development in pts with MM.
Collapse
Affiliation(s)
- Lawrence G Lum
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Archana Thakur
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Abdalla Elhakiem
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Lena Alameer
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Emily Dinning
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| | - Manley Huang
- Division of Hematology and Oncology, Bone Marrow Transplantation and Department of Medicine, University of Virginia Cancer Center, Charlottesville, VA, United States
| |
Collapse
|
18
|
Capellero S, Erriquez J, Melano C, Mesiano G, Genta S, Pisacane A, Mittica G, Ghisoni E, Olivero M, Di Renzo MF, Aglietta M, Sangiolo D, Valabrega G. Preclinical immunotherapy with Cytokine-Induced Killer lymphocytes against epithelial ovarian cancer. Sci Rep 2020; 10:6478. [PMID: 32296104 PMCID: PMC7160190 DOI: 10.1038/s41598-020-63634-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 04/02/2020] [Indexed: 02/07/2023] Open
Abstract
Despite improvements in surgery and medical treatments, epithelial ovarian cancer (EOC) remains the most lethal gynaecological malignancy. Aim of this study is to investigate the preclinical immunotherapy activity of cytokine-induced killer lymphocytes (CIK) against epithelial ovarian cancers, focusing on platinum-resistant settings. We generated CIK ex vivo starting from human peripheral blood samples (PBMCs) collected from EOC patients. Their antitumor activity was tested in vitro and in vivo against platinum-resistant patient-derived ovarian cancer cells (pdOVCs) and a Patient Derived Xenograft (PDX), respectively. CIK were efficiently generated (48 fold median ex vivo expansion) from EOC patients; pdOVCs lines (n = 9) were successfully generated from metastatic ascites; the expression of CIK target molecules by pdOVC confirmed pre and post treatment in vitro with carboplatin. The results indicate that patient-derived CIK effectively killed autologous pdOVCs in vitro. Such intense activity was maintained against a subset of pdOVC that survived in vitro treatment with carboplatin. Moreover, CIK antitumor activity and tumor homing was confirmed in vivo within an EOC PDX model. Our preliminary data suggest that CIK are active in platinum resistant ovarian cancer models and should be therefore further investigated as a new therapeutic option in this extremely challenging setting.
Collapse
Affiliation(s)
- S Capellero
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - J Erriquez
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - C Melano
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - G Mesiano
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - S Genta
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - A Pisacane
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - G Mittica
- Unit of Oncology, ASL Verbano Cusio Ossola (VCO), Verbania, Italy
| | - E Ghisoni
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - M Olivero
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - M F Di Renzo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - M Aglietta
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - D Sangiolo
- Department of Oncology, University of Torino, Torino, Italy.,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy
| | - G Valabrega
- Department of Oncology, University of Torino, Torino, Italy. .,Candiolo Cancer Institute, FPO-IRCCS, Candiolo, TO, Italy.
| |
Collapse
|
19
|
Abstract
A bispecific antibody (bsAb) can simultaneously bind two different epitopes or antigens, allowing for multiple mechanistic functions with synergistic effects. BsAbs have attracted significant scientific attentions and efforts towards their development as drugs for cancers. There are 21 bsAbs currently undergoing clinical trials in China. Here, we review their platform technologies, expression and production, and biological activities and bioassay of these bsAbs, and summarize their structural formats and mechanisms of actions. T-cell redirection and checkpoint inhibition are two main mechanisms of the bsAbs that we discuss in detail. Furthermore, we provide our perspective on the future of bsAb development in China, including CD3-bsAbs for solid tumors and related cytokine release syndromes, expression and chemistry, manufacturing and controls, clinical development, and immunogenicity.
Collapse
Affiliation(s)
- Jing Zhang
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Jizu Yi
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| | - Pengfei Zhou
- Wuhan YZY Biopharma Co., Ltd, Biolake City C2-1, No. 666 Gaoxin Road, Wuhan, Hubei 430075, China
| |
Collapse
|
20
|
Kujawski M, Li L, Bhattacharya S, Wong P, Lee WH, Williams L, Li H, Chea J, Poku K, Bowles N, Vaidehi N, Yazaki P, Shively JE. Generation of dual specific bivalent BiTEs (dbBIspecific T-cell engaging antibodies) for cellular immunotherapy. BMC Cancer 2019; 19:882. [PMID: 31488104 PMCID: PMC6727398 DOI: 10.1186/s12885-019-6056-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
Background Bispecific T-cell engaging antibodies (BiTES), comprising dual anti-CD3 and anti-tumor antigen scFv fragments, are important therapeutic agents for the treatment of cancer. The dual scFv construct for BiTES requires proper protein folding while their small molecular size leads to rapid kidney clearance. Methods An intact (150 kDa) anti-tumor antigen antibody to CEA was joined in high yield (ca. 30%) to intact (150 kDa) anti-murine and anti-human CD3 antibodies using hinge region specific Click chemistry to form dual-specific, bivalent BiTES (dbBiTES, 300 kDa). dbBiTEs were tested in vitro by EM, flow cytometry and cell cytoxicity and in vivo by PET tumor imaging and redirected T-cell therapy. Results The interlocked hinge regions are compatible with a structural model that fits the electron micrographs of 300 kDa particles. Compared to intact anti-CEA antibody, dbBiTES exhibit high in vitro cytotoxicity, high in vivo tumor targeting as demonstrated by PET imaging, and redirected dbBiTE coated T-cells (1 microgram/10 million cells) that kill CEA+ target cells in vivo in CEA transgenic mice. Conclusion dbBiTE redirected T-cell therapy is a promising, efficient approach for targeting and killing cancer cells. Electronic supplementary material The online version of this article (10.1186/s12885-019-6056-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maciej Kujawski
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lin Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Supriyo Bhattacharya
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Patty Wong
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Wen-Hui Lee
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Lindsay Williams
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Harry Li
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Junie Chea
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Kofi Poku
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nicole Bowles
- Radiopharmacy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - Paul Yazaki
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA
| | - John E Shively
- Department of Molecular Imaging and Therapy, Beckman Research Institute City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
21
|
Zhou ZQ, Zhao JJ, Pan QZ, Chen CL, Liu Y, Tang Y, Zhu Q, Weng DS, Xia JC. PD-L1 expression is a predictive biomarker for CIK cell-based immunotherapy in postoperative patients with breast cancer. J Immunother Cancer 2019; 7:228. [PMID: 31455411 PMCID: PMC6712838 DOI: 10.1186/s40425-019-0696-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 07/30/2019] [Indexed: 12/31/2022] Open
Abstract
Background A sequential combination of radiochemotherapy/endocrinotherapy and cytokine-induced killer cell (CIK) infusion has been shown to be an effective therapy for post-mastectomy breast cancer based on statistical analysis of the patient population. However, whether an individual could obtain an improved prognosis from CIK cell-based treatment remains unknown. In the present study, we focused on immune microenvironment regulation and specifically investigated the relationship between PD-L1 expression and survival benefit from CIK immunotherapy in breast cancer. Methods A total of 310 postoperative breast cancer patients who received comprehensive treatment were enrolled in this retrospective study, including 160 patients in the control group (received chemotherapy/radiotherapy/endocrinotherapy) and 150 patients in the CIK cell treatment group (received chemotherapy/radiotherapy/ endocrinotherapy and subsequent CIK infusion). Results We found that overall survival (OS) and recurrence-free survival (RFS) were significantly better in the CIK group than that in the control group. PD-L1 expression in tumor tissue sections was showed to be an independent prognostic factor for patients in the CIK treatment group using multivariate survival analysis. Further survival analysis in the CIK group showed that patients with PD-L1 tumor expression exhibited longer OS and RFS. In addition, among all patients who were enrolled in this study, only the patients with PD-L1 expression experienced survival benefits from CIK treatment. Conclusions Our study showed the relationship between PD-L1 expression and CIK therapy and revealed that PD-L1 expression in the tumor is as an indicator of adjuvant CIK therapy for postoperative breast cancer. Electronic supplementary material The online version of this article (10.1186/s40425-019-0696-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zi-Qi Zhou
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jing-Jing Zhao
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qiu-Zhong Pan
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Chang-Long Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yuan Liu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yan Tang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Qian Zhu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China.,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - De-Sheng Weng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Jian-Chuan Xia
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Department of Biotherapy, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
22
|
Cryopreserved Human Natural Killer Cells Exhibit Potent Antitumor Efficacy against Orthotopic Pancreatic Cancer through Efficient Tumor-Homing and Cytolytic Ability (Running Title: Cryopreserved NK Cells Exhibit Antitumor Effect). Cancers (Basel) 2019; 11:cancers11070966. [PMID: 31324057 PMCID: PMC6678894 DOI: 10.3390/cancers11070966] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 07/04/2019] [Accepted: 07/05/2019] [Indexed: 12/30/2022] Open
Abstract
Pancreatic cancer is known to be highly aggressive, and desmoplasia-induced accumulation of extracellular matrix (ECM), which is a hallmark of many pancreatic cancers, severely restricts the therapeutic efficacy of both immunotherapeutics and conventional chemotherapeutics due to the ECM functioning as a major physical barrier against permeation and penetration. In the case of cell-based immunotherapeutics, there are several other bottlenecks preventing translation into clinical use due to their biological nature; for example, poor availability of cell therapeutic in a readily usable form due to difficulties in production, handling, shipping, and storage. To address these challenges, we have isolated allogeneic natural killer (NK) cells from healthy donors and expanded them in vitro to generate cryopreserved stocks. These cryopreserved NK cells were thawed to evaluate their therapeutic efficacy against desmoplastic pancreatic tumors, ultimately aiming to develop a readily accessible and mass-producible off-the-shelf cell-based immunotherapeutic. The cultured NK cells post-thawing retained highly pure populations of activated NK cells that expressed various activating receptors and a chemokine receptor. Furthermore, systemic administration of NK cells induced greater in vivo tumor growth suppression when compared with gemcitabine, which is the standard chemotherapeutic used for pancreatic cancer treatment. The potent antitumor effect of NK cells was mediated by efficient tumor-homing ability and infiltration into desmoplastic tumor tissues. Moreover, the infiltration of NK cells led to strong induction of apoptosis, elevated expression of the antitumor cytokine interferon (IFN)-γ, and inhibited expression of the immunosuppressive transforming growth factor (TGF)-β in tumor tissues. Expanded and cryopreserved NK cells are strong candidates for future cell-mediated systemic immunotherapy against pancreatic cancer.
Collapse
|
23
|
Bu S, Li B, Wang Q, Gu T, Dong Q, Miao X, Lai D. Epithelial ovarian cancer stem‑like cells are resistant to the cellular lysis of cytokine‑induced killer cells via HIF1A‑mediated downregulation of ICAM‑1. Int J Oncol 2019; 55:179-190. [PMID: 31059002 DOI: 10.3892/ijo.2019.4794] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 01/10/2019] [Indexed: 11/06/2022] Open
Abstract
Epithelial ovarian cancer (EOC) is the most lethal of all gynecologic tumors. Cancer spheroid culture is a widely used model to study cancer stem cells. Previous studies have demonstrated the effectiveness of cytokine‑induced killer (CIK) cell‑based therapies against cancer and cancer stem cells. However, it is not clear how EOC spheroid cells respond to CIK‑mediated cellular lysis, and the mechanisms involved have never been reported before. A flow cytometry‑based method was used to evaluate the anti‑cancer effects of CIK cells against adherent A2780 cells and A2780 spheroids. To demonstrate the association between hypoxia inducible factor‑1α (HIF1A) and intercellular adhesion molecule‑1 (ICAM‑1), two HIF1A short hairpin RNA (shRNA) stable transfected cell lines were established. Furthermore, the protein expression levels of hypoxia/HIF1A‑associated signaling pathways were evaluated, including transforming growth factor‑β1 (TGF‑β1)/mothers against decapentaplegic homologs (SMADs) and nuclear factor‑κB (NF‑κB) signaling pathways, comparing A2780 adherent cells and cancer spheroids. Flow cytometry revealed that A2780 spheroid cells were more resistant to CIK‑mediated cellular lysis, which was partially reversed by an anti‑ICAM‑1 antibody. HIF1A was significantly upregulated in A2780 spheroids compared with adherent cells. Using HIF1A shRNA stable transfected cell lines and cobalt chloride, it was revealed that hypoxia/HIF1A contributed to downregulation of ICAM‑1 in A2780 spheroid cells and adherent cells. Furthermore, hypoxia/HIF1A‑associated signaling pathways, TGF‑β1/SMADs and NF‑κB, were activated in A2780 spheroid cells by using western blotting. The findings indicate that EOC stem‑like cells resist the CIK‑mediated cellular lysis via HIF1A‑mediated downregulation of ICAM‑1, which may be instructive for optimizing and enhancing CIK‑based therapies.
Collapse
Affiliation(s)
- Shixia Bu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Boning Li
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Qian Wang
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Tingting Gu
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| | - Qianggang Dong
- Shanghai iCELL Biotechnology Co., Ltd., Shanghai 200333, P.R. China
| | - Xiaofei Miao
- Shanghai iCELL Biotechnology Co., Ltd., Shanghai 200333, P.R. China
| | - Dongmei Lai
- The International Peace Maternity and Child Health Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai 200030, P.R. China
| |
Collapse
|
24
|
Lee ES, Shin JM, Son S, Ko H, Um W, Song SH, Lee JA, Park JH. Recent Advances in Polymeric Nanomedicines for Cancer Immunotherapy. Adv Healthc Mater 2019; 8:e1801320. [PMID: 30666822 DOI: 10.1002/adhm.201801320] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 12/08/2018] [Indexed: 12/20/2022]
Abstract
Immunotherapy has emerged as a promising approach to treat cancer, since it facilitates eradication of cancer by enhancing innate and/or adaptive immunity without using cytotoxic drugs. Of the immunotherapeutic approaches, significant clinical potentials are shown in cancer vaccination, immune checkpoint therapy, and adoptive cell transfer. Nevertheless, conventional immunotherapies often involve immune-related adverse effects, such as liver dysfunction, hypophysitis, type I diabetes, and neuropathy. In an attempt to address these issues, polymeric nanomedicines are extensively investigated in recent years. In this review, recent advances in polymeric nanomedicines for cancer immunotherapy are highlighted and thoroughly discussed in terms of 1) antigen presentation, 2) activation of antigen-presenting cells and T cells, and 3) promotion of effector cells. Also, the future perspectives to develop ideal nanomedicines for cancer immunotherapy are provided.
Collapse
Affiliation(s)
- Eun Sook Lee
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jung Min Shin
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Soyoung Son
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Hyewon Ko
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Wooram Um
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Seok Ho Song
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Ah Lee
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| | - Jae Hyung Park
- Department of Health Sciences and Technology; SAIHST; Sungkyunkwan University; Suwon 16419 Republic of Korea
- School of Chemical Engineering; College of Engineering; Sungkyunkwan University; Suwon 16419 Republic of Korea
| |
Collapse
|
25
|
Golay J, Martinelli S, Alzani R, Cribioli S, Albanese C, Gotti E, Pasini B, Mazzanti B, Saccardi R, Rambaldi A, Introna M. Cord blood-derived cytokine-induced killer cells combined with blinatumomab as a therapeutic strategy for CD19 + tumors. Cytotherapy 2018; 20:1077-1088. [PMID: 30093325 DOI: 10.1016/j.jcyt.2018.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 04/17/2018] [Accepted: 08/06/2018] [Indexed: 01/18/2023]
Abstract
BACKGROUND Cytokine-induced killer cells (CIKs) are an advanced therapeutic medicinal product (ATMP) that has shown therapeutic activity in clinical trials but needs optimization. We developed a novel strategy using CIKs from banked cryopreserved cord blood units (CBUs) combined with bispecific antibody (BsAb) blinatumomab to treat CD19+ malignancies. METHODS CB-CIKs were expanded in vitro and fully characterized in comparison with peripheral blood (PB)-derived CIKs. RESULTS CB-CIKs, like PB-CIKs, were mostly CD3+ T cells with mean 45% CD3+CD56+ and expressing mostly TCR(T cell receptor)αβ with a TH1 phenotype. CB-CIK cultures had, however, a larger proportion of CD4+ cells, mostly CD56-, as well as a greater proportion of naïve CCR7+CD45RA+ and a lower percentage of effector memory cells, compared with PB-CIKs. CB-CIKs were very similar to PB-CIKs in their expression of a large panel of co-stimulatory and inhibitory/exhaustion markers, except for higher CD28 expression among CD8+ cells. Like PB-CIKs, CB-CIKs were highly cytotoxic in vitro against natural killer (NK) cell targets and efficiently lysed CD19+ tumor cells in the presence of blinatumomab, with 30-60% lysis of target cells at very low effector:target ratios. Finally, both CB-CIKs and PB-CIKs, combined with blinatumomab, showed significant therapeutic activity in an aggressive PDX Ph+ CD19+ acute lymphoblastic leukemia model in NOD-SCID mice, without sign of toxicity or graft-versus-host disease. The improved expansion protocol was finally validated in good manufacturing practice conditions, showing reproducible expansion of CIKs from cryopreserved cord blood units with a median of 28.8 × 106 CIK/kg. DISCUSSION We conclude that CB-CIKs, combined with bispecific T-cell-engaging antibodies, offer a novel, effective treatment strategy for leukemia.
Collapse
Affiliation(s)
- Josée Golay
- Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Fondazione per la Ricerca Ospedale Maggiore, Bergamo, Italy
| | - Simona Martinelli
- Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | | | | | | | - Elisa Gotti
- Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Bruna Pasini
- Obstetrics and Gynecology Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy
| | - Benedetta Mazzanti
- Cord Blood Bank, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Riccardo Saccardi
- Cord Blood Bank, Azienda Ospedaliera Universitaria Careggi, Florence, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplantation Unit, Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy; Department of Oncology and Hemato-oncology, University of Milan, Italy
| | - Martino Introna
- Center of Cellular Therapy "G. Lanzani", Azienda Socio Sanitaria Territoriale Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
26
|
Metastatic gynecologic malignancies: advances in treatment and management. Clin Exp Metastasis 2018; 35:521-533. [PMID: 29931499 DOI: 10.1007/s10585-018-9889-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Accepted: 04/02/2018] [Indexed: 12/27/2022]
Abstract
Gynecologic cancers comprise of mostly uterine, ovarian, and cervical malignancies and are responsible for 95,000 new cases annually in the United States. Uterine cancer is the most common and the number of new cases and mortality has been increasing. Cervical cancer has decreased due to screening, early detection, and treatment of pre-invasive cancers. However, ovarian cancer remains the most lethal because of advanced stage at diagnosis and drug resistance. The metastatic spread pattern differs amongst these cancers, with uterine and cervical cancer found mostly in the primary organ and ovarian cancer disseminating throughout the peritoneum and upper abdomen at presentation. The primary treatment of ovarian cancer typically involves surgery followed by systemic therapy for more advanced disease. Previously, systemic chemotherapy with platinums, taxanes, doxorubicin, topotecan, and gemcitabine has been the standard in either upfront or recurrent setting. With molecular and genetic breakthroughs, we now have over eight new indications and five novel biologic therapies including antiangiogenics, poly ADP ribose polymerase inhibitors, and immunotherapies approved over the last 3 years. In this review, we will examine the biology of gynecologic cancer metastasis and focus on new treatment options for these cancers with a focus on ovarian cancer.
Collapse
|
27
|
Abstract
Cytokine-induced killer (CIK) cells form under certain stimulation conditions in cultures of peripheral blood mononuclear cells (PBMCs). They are a heterogeneous immune cell population and contain a high percentage of cells with a mixed T-NK phenotype (CD3+CD56+). The ready availability of a lymphocyte source, together with the high proliferative rate and potent anti-tumor activity of CIK cells, has allowed their use as immunotherapy in a wide variety of neoplasms. Cytotoxicity mediated by CD3+CD56+ T cells depends on the major histocompatibility antigen (MHC)-independent recognition of tumor cells and the activation of signaling pathways through the natural killer group 2 member D (NKG2D) cell-surface receptor. Clinical trials have demonstrated the feasibility and efficacy of CIK cell immunotherapy even in advanced stage cancer patients or those that have not responded to first-line treatment. This review summarizes biological and technical aspects of CIK cells, as well as past and current clinical trials and future trends in this form of immunotherapy.
Collapse
|
28
|
Abstract
Harnessing the power of the human immune system to treat cancer is the essence of immunotherapy. Monoclonal antibodies engage the innate immune system to destroy targeted cells. For the last 30years, antibody-dependent cell-mediated cytotoxicity and complement-dependent cytotoxicity have been the main mechanisms of anti-tumor action of unconjugated antibody drugs. Efforts to exploit the potentials of other immune cells, in particular T cells, culminated in the recent approval of two T cell engaging bispecific antibody (T-BsAb) drugs, thereby stimulating new efforts to accelerate similar platforms through preclinical and clinical trials. In this review, we have compiled the worldwide effort in exploring T cell engaging bispecific antibodies. Our special emphasis is on the lessons learned, with the hope to derive insights in this fast evolving field with tremendous clinical potential.
Collapse
Affiliation(s)
- Z Wu
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States
| | - N V Cheung
- Department of Pediatrics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, United States.
| |
Collapse
|
29
|
Xie Y, Huang L, Chen L, Lin X, Chen L, Zheng Q. Effect of dendritic cell-cytokine-induced killer cells in patients with advanced colorectal cancer combined with first-line treatment. World J Surg Oncol 2017; 15:209. [PMID: 29179719 PMCID: PMC5704402 DOI: 10.1186/s12957-017-1278-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/15/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Surgical resection combined with adjuvant chemotherapy is considered as the gold-standard treatment for advanced colorectal cancer patients. These patients have a poor 5-year survival rate of 5% or less. Furthermore, a large dose of chemotherapy can produce adverse side effects and severe toxicity. Therefore, this retrospective study aimed to evaluate the efficacy of dendritic cell-cytokine-induced killer (DC-CIK) cell infusion as an adjuvant therapy in patients with advanced colorectal cancer combined with first-line treatment. METHODS A total of 142 patients with stage III/IV colorectal carcinoma who had been treated with first-line therapy were included in this study. Among these patients, 71 patients received first-line treatment only (non-DC-CIK group), while the other 71 patients who had similar demographic and clinical characteristics received a DC-CIK cell infusion combined with first-line treatment (DC-CIK group). These patients were followed up until August 2014. Data were analyzed by Kaplan-Meier and Cox regression. RESULTS Our results showed that the 5-year overall survival (OS) rate for the DC-CIK group versus the non-DC-CIK group was 41.3 versus 19.4% (p = 0.001) and the 5-year progression-free survival (PFS) rate for the DC-CIK group versus the non-DC-CIK group was 57.4 versus 33.6% (p = 0.022). CONCLUSIONS Our results showed that patients with advanced colorectal cancer might benefit from DC-CIK immunotherapy combined with first-line therapy by significantly prolonging 5-year OS and PFS.
Collapse
Affiliation(s)
- Yunqing Xie
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Lijie Huang
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Luchuan Chen
- Department of Abdominal Surgery, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Xiaowei Lin
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Li Chen
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China
| | - Qiuhong Zheng
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Fujian Medical University Cancer Hospital, Fuzhou, 350014, China.
| |
Collapse
|
30
|
Yu S, Liu Q, Han X, Qin S, Zhao W, Li A, Wu K. Development and clinical application of anti-HER2 monoclonal and bispecific antibodies for cancer treatment. Exp Hematol Oncol 2017; 6:31. [PMID: 29209558 PMCID: PMC5704598 DOI: 10.1186/s40164-017-0091-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/20/2017] [Indexed: 12/15/2022] Open
Abstract
HER2-targeted immunotherapy consists of monoclonal antibodies (e.g. trastuzumab, pertuzumab), bispecific antibodies (e.g. MM-111, ertumaxomab) and activated T cells armed with anti-HER2 bispecific antibody (HER2Bi-aATC). Trastuzumab is a classic drug for the treatment of HER2 positive metastatic breast cancer. The combined application of pertuzumab, trastuzumab and paclitaxel has been suggested as a standard therapy for HER2 positive advanced breast cancer. The resistance to anti-HER2 antibody has resulted in disease progression. HER2-directed bispecific antibody may be a promising therapeutic approach for these patients. Ertumaxomab enhanced the interaction of immune effector cells and tumor cells. MM-111 simultaneously binds to HER2 and HER3 and blocks downstream signaling. Besides, HER2Bi-aATC is also an alternative therapeutic approach for HER2 positive cancers. In this review, we summarized the recent advancement of HER2-targeted monoclonal antibodies (trastuzumab, pertuzumab and T-DM1) and bispecific antibodies (MM-111, ertumaxomab and HER2Bi-aATC), especially focus on clinical trial results.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Shuang Qin
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Weiheng Zhao
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052 China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030 China
| |
Collapse
|
31
|
Yang D, Zhang X, Zhang X, Xu Y. The progress and current status of immunotherapy in acute myeloid leukemia. Ann Hematol 2017; 96:1965-1982. [PMID: 29080982 DOI: 10.1007/s00277-017-3148-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 10/02/2017] [Indexed: 02/08/2023]
Abstract
Recently, there has been remarkable progress in basic and preclinical studies of acute myeloid leukemia (AML). The improved outcomes of AML can largely be attributed to advances in supportive care and hematopoietic cell transplantation as opposed to conventional chemotherapy. However, as the 5-year survival rate remains low due to a high incidence of relapse, novel and effective treatments are urgently needed. Increasing attention is focusing on identifying suitable immunotherapeutic strategies for AML. Here, we describe the immunological features, mechanisms of immune escape, and recent progress in immunotherapy for AML. Problems encountered in the clinic will also be discussed. Although current outcomes may be limited, ongoing preclinical or clinical efforts are aimed at improving immunotherapy modalities and designing novel therapies, such as vaccines, monoclonal antibody therapy, chimeric antibody receptor-engineered T cells (CAR-T), TCR-engineered T cells (TCR-T), and checkpoint inhibitors, which may provide promising and effective therapies with higher specificity and efficacy for AML.
Collapse
Affiliation(s)
- Dan Yang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xiuqun Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Xuezhong Zhang
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China
| | - Yanli Xu
- Department of Hematology, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, Jiangsu, People's Republic of China.
| |
Collapse
|
32
|
Yu S, Li A, Liu Q, Yuan X, Xu H, Jiao D, Pestell RG, Han X, Wu K. Recent advances of bispecific antibodies in solid tumors. J Hematol Oncol 2017; 10:155. [PMID: 28931402 PMCID: PMC5607507 DOI: 10.1186/s13045-017-0522-z] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 09/01/2017] [Indexed: 01/04/2023] Open
Abstract
Cancer immunotherapy is the most exciting advancement in cancer therapy. Similar to immune checkpoint blockade and chimeric antigen receptor T cell (CAR-T), bispecific antibody (BsAb) is attracting more and more attention as a novel strategy of antitumor immunotherapy. BsAb not only offers an effective linkage between therapeutics (e.g., immune effector cells, radionuclides) and targets (e.g., tumor cells) but also simultaneously blocks two different oncogenic mediators. In recent decades, a variety of BsAb formats have been generated. According to the structure of Fc domain, BsAb can be classified into two types: IgG-like format and Fc-free format. Among these formats, bispecific T cell engagers (BiTEs) and triomabs are commonly investigated. BsAb has achieved an exciting breakthrough in hematological malignancies and promising outcome in solid tumor as showed in various clinical trials. In this review, we focus on the preclinical experiments and clinical studies of epithelial cell adhesion molecule (EpCAM), human epidermal growth factor receptor (HER) family, carcinoembryonic antigen (CEA), and prostate-specific membrane antigen (PSMA) related BsAbs in solid tumors, as well as discuss the challenges and corresponding approaches in clinical application.
Collapse
Affiliation(s)
- Shengnan Yu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Anping Li
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Qian Liu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Xun Yuan
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Hanxiao Xu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Richard G Pestell
- Pennsylvania Center for Cancer and Regenerative Medicine, Wynnewood, PA, 19096, USA
| | - Xinwei Han
- Department of Interventional Radiology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
33
|
Gao X, Mi Y, Guo N, Xu H, Xu L, Gou X, Jin W. Cytokine-Induced Killer Cells As Pharmacological Tools for Cancer Immunotherapy. Front Immunol 2017; 8:774. [PMID: 28729866 PMCID: PMC5498561 DOI: 10.3389/fimmu.2017.00774] [Citation(s) in RCA: 107] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 06/19/2017] [Indexed: 12/31/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are a heterogeneous population of effector CD3+CD56+ natural killer T cells, which can be easily expanded in vitro from peripheral blood mononuclear cells. CIK cells work as pharmacological tools for cancer immunotherapy as they exhibit MHC-unrestricted, safe, and effective antitumor activity. Much effort has been made to improve CIK cells cytotoxicity and treatments of CIK cells combined with other antitumor therapies are applied. This review summarizes some strategies, including the combination of CIK with additional cytokines, dendritic cells, check point inhibitors, antibodies, chemotherapeutic agents, nanomedicines, and engineering CIK cells with a chimeric antigen receptor. Furthermore, we briefly sum up the clinical trials on CIK cells and compare the effect of clinical CIK therapy with other immunotherapies. Finally, further research is needed to clarify the pharmacological mechanism of CIK and provide evidence to formulate uniform culturing criteria for CIK expansion.
Collapse
Affiliation(s)
- Xingchun Gao
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yajing Mi
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Na Guo
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Hao Xu
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Lixian Xu
- State Key Laboratory of Military Stomatology, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an, China
| | - Xingchun Gou
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China
| | - Weilin Jin
- Shaanxi Key Laboratory of Ischemic Cardiovascular Disease, Institute of Basic Medical Sciences, Xi'an Medical University, Xi'an, China.,Department of Instrument Science and Engineering, Institute of Nano Biomedicine and Engineering, Key Lab for Thin Film and Microfabrication Technology of Ministry of Education, School of Electronic Information and Electronic Engineering, Shanghai Jiao Tong University, Shanghai, China.,National Centers for Translational Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
34
|
Interleukin-15 and cisplatin co-encapsulated thermosensitive polypeptide hydrogels for combined immuno-chemotherapy. J Control Release 2017; 255:81-93. [DOI: 10.1016/j.jconrel.2017.04.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 04/09/2017] [Indexed: 01/06/2023]
|
35
|
Cappel C, Huenecke S, Suemmerer A, Erben S, Rettinger E, Pfirrmann V, Heinze A, Zimmermann O, Klingebiel T, Ullrich E, Bader P, Bremm M. Cytotoxic potential of IL-15-activated cytokine-induced killer cells against human neuroblastoma cells. Pediatr Blood Cancer 2016; 63:2230-2239. [PMID: 27433920 DOI: 10.1002/pbc.26147] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/27/2016] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neuroblastoma (NB) is the most common solid extracranial tumor in childhood. Despite advances in therapy, the prognosis is poor and optimized therapies are urgently needed. Therefore, we investigated the antitumor potential of interleukin-15 (IL-15)-activated cytokine-induced killer (CIK) cells against different NB cell lines. PROCEDURE CIK cells were generated from peripheral blood mononuclear cells by the stimulation with interferon-γ (IFN-γ), IL-2, OKT-3 and IL-15 over a period of 10-12 days. The cytotoxic activity against NB cells was analyzed by nonradioactive Europium release assay before and after blocking of different receptor-ligand interactions relevant in CIK cell-mediated cytotoxicity. RESULTS The final CIK cell products consisted in median of 83% (range: 75.9-91.9%) CD3+ CD56- T cells, 14% (range: 5.2-20.7%) CD3+ CD56+ NK-like T cells and 2% (range: 0.9-4.8%) CD3- CD56+ NK cells. CIK cells expanded significantly upon ex vivo stimulation with median rates of 22.3-fold for T cells, 58.3-fold for NK-like T cells and 2.5-fold for NK cells. Interestingly, CD25 surface expression increased from less than equal to 1% up to median 79.7%. Cytotoxic activity of CIK cells against NB cells was in median 34.7, 25.9 and 34.8% against the cell lines UKF-NB-3, UKF-NB-4 and SK-N-SH, respectively. In comparison with IL-2-stimulated NK cells, CIK cells showed a significantly higher cytotoxicity. Antibody-mediated blocking of the receptors NKG2D, TRAIL, FasL, DNAM-1, NKp30 and lymphocyte function-associated antigen-1 (LFA-1) significantly reduced lytic activity, indicating that diverse cytotoxic mechanisms might be involved in CIK cell-mediated NB killing. CONCLUSIONS Unlike the mechanism reported in other malignancies, NKG2D-mediated cytotoxicity does not constitute the major killing mechanism of CIK cells against NB.
Collapse
Affiliation(s)
- Claudia Cappel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Sabine Huenecke
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany.
| | - Anica Suemmerer
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Stephanie Erben
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Eva Rettinger
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Verena Pfirrmann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Annekathrin Heinze
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Olga Zimmermann
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Thomas Klingebiel
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Evelyn Ullrich
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Peter Bader
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| | - Melanie Bremm
- Department for Stem Cell Transplantation and Immunology, Clinic for Children and Adolescents, University Hospital Frankfurt, Goethe University, Frankfurt/Main, Germany
| |
Collapse
|
36
|
Xiong K, Wei W, Jin Y, Wang S, Zhao D, Wang S, Gao X, Qiao C, Yue H, Ma G, Xie HY. Biomimetic Immuno-Magnetosomes for High-Performance Enrichment of Circulating Tumor Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:7929-7935. [PMID: 27376951 DOI: 10.1002/adma.201601643] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Revised: 06/15/2016] [Indexed: 05/18/2023]
Abstract
A novel biomimetic immuno-magnetosome (IMS) is developed by coating a leukocyte membrane (decorated with anti-epithelial cell-adhesion molecule antibody) on a magnetic nanocluster. In addition to the good stability and magnetic controllability, the IMS also exhibits satisfactory binding avidity to circulating tumor cells but stealth property to leukocytes. As a result, rare tumor cells can be effectively enriched with undetectable leukocyte background.
Collapse
Affiliation(s)
- Ke Xiong
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongjie Jin
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shumin Wang
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Dongxu Zhao
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuang Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Xiaoyong Gao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Chenmeng Qiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hua Yue
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Hai-Yan Xie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.
| |
Collapse
|
37
|
Wei F, Rong XX, Xie RY, Jia LT, Wang HY, Qin YJ, Chen L, Shen HF, Lin XL, Yang J, Yang S, Hao WC, Chen Y, Xiao SJ, Zhou HR, Lin TY, Chen YS, Sun Y, Yao KT, Xiao D. Cytokine-induced killer cells efficiently kill stem-like cancer cells of nasopharyngeal carcinoma via the NKG2D-ligands recognition. Oncotarget 2016; 6:35023-39. [PMID: 26418951 PMCID: PMC4741506 DOI: 10.18632/oncotarget.5280] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/04/2015] [Indexed: 02/07/2023] Open
Abstract
Cancer stem cells (CSCs) are considered to be the root cause for cancer treatment failure. Thus, there remains an urgent need for more potent and safer therapies against CSCs for curing cancer. In this study, the antitumor activity of cytokine-induced killer (CIK) cells against putative CSCs of nasopharyngeal carcinoma (NPC) was fully evaluated in vitro and in vivo. To visualize putative CSCs in vitro by fluorescence imaging, and image and quantify putative CSCs in tumor xenograft-bearing mice by in vivo bioluminescence imaging, NPC cells were engineered with CSC detector vector encoding GFP and luciferase (Luc) under control of Nanog promoter. Our study reported in vitro intense tumor-killing activity of CIK cells against putative CSCs of NPC, as revealed by percentage analysis of side population cells, tumorsphere formation assay and Nanog-promoter-GFP-Luc reporter gene strategy plus time-lapse recording. Additionally, time-lapse imaging firstly illustrated that GFP-labeled or PKH26-labeled putative CSCs or tumorspheres were usually attacked simultaneously by many CIK cells and finally killed by CIK cells, suggesting the necessity of achieving sufficient effector-to-target ratios. We firstly confirmed that NKG2D blockade by anti-NKG2D antibody significantly but partially abrogated CIK cell-mediated cytolysis against putative CSCs. More importantly, intravenous infusion of CIK cells significantly delayed tumor growth in NOD/SCID mice, accompanied by a remarkable reduction in putative CSC number monitored by whole-body bioluminescence imaging. Taken together, our findings suggest that CIK cells demonstrate the intense tumor-killing activity against putative CSCs of NPC, at least in part, by NKG2D-ligands recognition. These results indicate that CIK cell-based therapeutic strategy against CSCs presents a promising and safe approach for cancer treatment.
Collapse
Affiliation(s)
- Fang Wei
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Guangzhou Digestive Disease Center, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510180, China
| | - Xiao-Xiang Rong
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
| | - Rao-Ying Xie
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Yan Wang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Juan Qin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Lin Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Hong-Fen Shen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Xiao-Lin Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Jie Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng Yang
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Wei-Chao Hao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Sheng-Jun Xiao
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Hui-Rong Zhou
- Department of Pathology, Guilin Medical College, Guilin 541001, China
| | - Tao-Yan Lin
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yu-Shuang Chen
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Kai-Tai Yao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China
| | - Dong Xiao
- Cancer Research Institute, Southern Medical University, Guangzhou 510515, China.,Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW Adoptive T-cell therapy has become one of the most exciting fields of cancer therapy in the past few years. In this article, we describe a method which combines adoptive T-cell therapy with antibody therapy by arming T cells from cord blood, normal patients, and cancer patients with bispecific antibodies capable of binding to tumor-associated antigens on one side of the bispecific antibody construct and T cells on another side of the construct. This approach redirects T cells against tumor cells in a non-MHC-restricted manner. RECENT FINDINGS Various methods for manipulating the immune system including check-point inhibitors, chimeric antigen receptor T cells, and bispecific antibodies have shown promising activity in treating both hematological malignancies and solid tumors with excellent success. In recent studies, activated T cells armed with bispecific antibodies have shown good preclinical activity, safety, and promising efficacy in the clinical trials. SUMMARY Activated T cells armed with bispecific antibodies represent a promising treatment for cancer immunotherapy.
Collapse
|
39
|
Mittica G, Capellero S, Genta S, Cagnazzo C, Aglietta M, Sangiolo D, Valabrega G. Adoptive immunotherapy against ovarian cancer. J Ovarian Res 2016; 9:30. [PMID: 27188274 PMCID: PMC4869278 DOI: 10.1186/s13048-016-0236-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 04/21/2016] [Indexed: 01/16/2023] Open
Abstract
The standard front-line therapy for epithelial ovarian cancer (EOC) is combination of debulking surgery and platinum-based chemotherapy. Nevertheless, the majority of patients experience disease recurrence. Although extensive efforts to find new therapeutic options, cancer cells invariably develop drug resistance and disease progression. New therapeutic strategies are needed to improve prognosis of patients with advanced EOC. Recently, several preclinical and clinical studies investigated feasibility and activity of adoptive immunotherapy in EOC. Our aim is to highlight prospective of adoptive immunotherapy in EOC, focusing on HLA-restricted Tumor Infiltrating Lymphocytes (TILs), and MHC-independent immune effectors such as natural killer (NK), and cytokine-induced killer (CIK). Adoptive cell therapy (ACT) has shown activity in several pre-clinical models. Available preclinical and clinical data suggest that adoptive cell therapy may provide the best benefit in settings of low tumor burden, minimal residual disease, or maintenance therapy. Further studies are needed to better define the optimal clinical setting.
Collapse
Affiliation(s)
- Gloria Mittica
- Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | | | - Sofia Genta
- Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | | | - Massimo Aglietta
- Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Dario Sangiolo
- Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy.,Department of Oncology, University of Torino, Turin, Italy
| | - Giorgio Valabrega
- Candiolo Cancer Institute-FPO- IRCCS, Candiolo, Turin, Italy. .,Department of Oncology, University of Torino, Turin, Italy. .,Division of Medical Oncology-1, Candiolo Cancer Institute- FPO- IRCCS, Strada Provinciale 142 km 3.95, Candiolo, 10060, Turin, Italy.
| |
Collapse
|
40
|
Lum LG, Thakur A, Kondadasula SV, Al-Kadhimi Z, Deol A, Tomaszewski EN, Yano H, Schalk DL, Ayash L, Zonder JA, Uberti JP, Abidi MH, Ratanatharathorn V. Targeting CD138-/CD20+ Clonogenic Myeloma Precursor Cells Decreases These Cells and Induces Transferable Antimyeloma Immunity. Biol Blood Marrow Transplant 2016; 22:869-78. [PMID: 26827660 PMCID: PMC6820521 DOI: 10.1016/j.bbmt.2015.12.030] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Accepted: 12/31/2015] [Indexed: 12/22/2022]
Abstract
This phase Ib clinical trial evaluated whether pretargeting of CD20(+) clonogenic myeloma precursor cells (CMPCs) with anti-CD3 × anti-CD20 bispecific antibody-armed T cells (BATs) before autologous stem cell transplantation (SCT) in patients with standard-risk and high-risk multiple myeloma would induce antimyeloma immunity that could be detected and boosted after SCT. All 12 patients enrolled in this study received 2 BATs infusions before SCT, and 4 patients received a booster infusion of BATs after SCT. Pretargeting CD138(-)/CD20(+) CMPCs with BATs before SCT was safe and reduced levels of CMPCs by up to 58% in the postinfusion bone marrow in patients who remained in remission. Four of 5 patients who remained in remission had a >5-fold increase in IFN-γ enzyme-linked immunospot responses. SOX2 antibody increased after BATs infusions and persisted after SCT. The median anti-SOX2 level at 3 months after SCT was 28.1 ng/mL (range, 4.6 to 256 ng/mL) in patients who relapsed and 46 ng/mL (range, 28.3 to 73.3 ng/mL) in patients who remained in remission. The immune correlates suggest that infusions of targeted T cells given before SCT were able to reduce CMPC levels and induced cellular and humoral antimyeloma immunity that could be transferred and boosted after SCT.
Collapse
Affiliation(s)
- Lawrence G Lum
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan; Department of Immunology and Microbiology, Wayne State University, Detroit, Michigan.
| | - Archana Thakur
- Department of Oncology, Wayne State University, Detroit, Michigan.
| | | | - Zaid Al-Kadhimi
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Abhinav Deol
- Department of Oncology, Wayne State University, Detroit, Michigan
| | | | - Hiroshi Yano
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Dana L Schalk
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Lois Ayash
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Jeffrey A Zonder
- Department of Oncology, Wayne State University, Detroit, Michigan
| | - Joseph P Uberti
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Muneer H Abidi
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| | - Voravit Ratanatharathorn
- Department of Oncology, Wayne State University, Detroit, Michigan; Department of Medicine, Wayne State University, Detroit, Michigan
| |
Collapse
|
41
|
Wu T, Leboeuf C, Durand S, Su B, Deschamps M, Zhang X, Ferrand C, Pessaux P, Robinet E. Suicide gene-modified killer cells as an allogeneic alternative to autologous cytokine-induced killer cell immunotherapy of hepatocellular carcinoma. Mol Med Rep 2016; 13:2645-54. [PMID: 26820174 DOI: 10.3892/mmr.2016.4811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 12/15/2015] [Indexed: 11/06/2022] Open
Abstract
Adoptive immunotherapy using autologous cytokine-induced killer (CIK) cells reduces the recurrence rate of hepatocellular carcinoma (HCC) in association with transarterial chemoembolization or radiofrequency. However, a large‑scale development of this immunotherapy remains difficult to consider in an autologous setting, considering the logistical hurdles associated with the production of this cell therapy product. A previous study has provided the in vitro and in vivo proof‑of‑concept that allogeneic suicide gene‑modified killer cells (aSGMKCs) from healthy blood donors (a cell therapy product previously demonstrated to provide anti‑leukemic effects to patients receiving allogeneic hematopoietic transplantation) may exert a potent anti‑tumor effect towards HCC. Therefore, the development of a bank of 'ready‑for‑use' aSGMKCs was proposed as an approach allowing for the development of immunotherapies that are more convenient and on a broader scale than that of autologous therapies. In the present study, aSGMKCs were compared with CIK cells generated according to three different protocols. Similar to CIK cells, the cytotoxic activity of aSGMKCs toward the Huh‑7 HCC cell line was mediated by tumor necrosis factor‑related apoptosis‑inducing ligand, tumor necrosis factor‑α and interferon‑γ. Furthermore, the frequency of natural killer (NK), NK‑like T and T cells, and their in vitro and in vivo cytotoxicity activities were similar between aSGMKCs and CIK cells. Thus, the present study demonstrated that aSGMKCs are similar to CIK cells, further suggesting the possibility for future use of aSGMKCs in the treatment of solid tumors, including HCC.
Collapse
Affiliation(s)
- Tao Wu
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Céline Leboeuf
- French National Institute of Health and Medical Research, Research Unit 1110, F-67000 Strasbourg, France
| | - Sarah Durand
- French National Institute of Health and Medical Research, Research Unit 1110, F-67000 Strasbourg, France
| | - Bin Su
- French National Institute of Health and Medical Research, Research Unit 1110, F-67000 Strasbourg, France
| | - Marina Deschamps
- French National Blood Service (Bourgogne/Franche‑Comté), Research Unit 1098, F-25000 Besançon, France
| | - Xiaowen Zhang
- Department of Hepatobiliary and Pancreatic Surgery, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650500, P.R. China
| | - Christophe Ferrand
- French National Blood Service (Bourgogne/Franche‑Comté), Research Unit 1098, F-25000 Besançon, France
| | - Patrick Pessaux
- French National Institute of Health and Medical Research, Research Unit 1110, F-67000 Strasbourg, France
| | - Eric Robinet
- French National Institute of Health and Medical Research, Research Unit 1110, F-67000 Strasbourg, France
| |
Collapse
|
42
|
Rong XX, Wei F, Lin XL, Qin YJ, Chen L, Wang HY, Shen HF, Jia LT, Xie RY, Lin TY, Hao WC, Yang J, Yang S, Cheng YS, Huang WH, Li AM, Sun Y, Luo RC, Xiao D. Recognition and killing of cancer stem-like cell population in hepatocellular carcinoma cells by cytokine-induced killer cells via NKG2d-ligands recognition. Oncoimmunology 2015; 5:e1086060. [PMID: 27141341 PMCID: PMC4839362 DOI: 10.1080/2162402x.2015.1086060] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 08/16/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
There is an urgent need for more potent and safer approaches to eradicate cancer stem cells (CSCs) for curing cancer. In this study, we investigate cancer-killing activity (CKA) of cytokine-induced killer (CIK) cells against CSCs of hepatocellular carcinoma (HCC). To visualize CSCs in vitro by fluorescence imaging, and image and quantify CSCs in tumor xenograft-bearing mice by bioluminescence imaging, HCC cells were engineered with CSC detector vector encoding GFP and luciferase controlled by Nanog promoter. We found that CIK cells have a strong CKA in vitro against putative CSCs of HCC, as shown by tumorsphere formation and time-lapse imaging. Additionally, time-lapse recording firstly revealed that putative CSCs were attacked simultaneously by many CIK cells and finally eradicated by CIK cells, indicating the necessity of achieving sufficient effector-to-target ratios. We firstly illustrated that anti-NKG2D antibody blocking partially but significantly inhibited CKA of CIK cells against putative CSCs. More importantly, intravenous infusion of CIK cells remarkably delayed tumor growth in mice with a significant decrease in putative CSC number monitored by bioluminescence imaging. Taken together, these findings demonstrate CKA of CIK cells against putative CSCs of HCC, at least in part, by NKG2D-ligands recognition.
Collapse
Affiliation(s)
- Xiao-Xiang Rong
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital, Southern Medical University, Guangzhou, China; Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fang Wei
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Xiao-Lin Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Juan Qin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Lin Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hui-Yan Wang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Hong-Fen Shen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Li-Ting Jia
- Department of Pathology, Guilin Medical College , Guilin, China
| | - Rao-Ying Xie
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Tao-Yan Lin
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wei-Chao Hao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Jie Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Sheng Yang
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Yu-Shuang Cheng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University , Guangzhou, China
| | - Wen-Hua Huang
- Department of Anatomy, Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering , School of Basic Medical Science, Southern Medical University , Guangzhou, China
| | - Ai-Min Li
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Yan Sun
- Children's Hospital Boston, Harvard Medical School , Boston, MA, USA
| | - Rong-Cheng Luo
- Department of Oncology, Traditional Chinese Medicine-Integrated Hospital , Southern Medical University , Guangzhou, China
| | - Dong Xiao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy and Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, Southern Medical University, Guangzhou, China; Institute of Comparative Medicine & Laboratory Animal Center, Southern Medical University, Guangzhou, China
| |
Collapse
|
43
|
Giraudo L, Gammaitoni L, Cangemi M, Rotolo R, Aglietta M, Sangiolo D. Cytokine-induced killer cells as immunotherapy for solid tumors: current evidence and perspectives. Immunotherapy 2015; 7:999-1010. [PMID: 26310715 DOI: 10.2217/imt.15.61] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Cytokine-induced killer (CIK) cells are ex vivo expanded T lymphocytes endowed with potent MHC-independent antitumor activity. CIK cells are emerging as promising therapeutic approach in the field of cancer adoptive immunotherapy, with biologic features favoring their transferability into clinical applications. Aim of this review is to present the biologic characteristic of CIK cells, discussing the main preclinical findings and initial clinical applications in the field of solid tumors.
Collapse
Affiliation(s)
- Lidia Giraudo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Loretta Gammaitoni
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Michela Cangemi
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Ramona Rotolo
- Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| | - Massimo Aglietta
- Department of Oncology, University of Torino, Turin, Italy.,Division & Laboratory of Medical Oncology, Candiolo Cancer Institute FPO- IRCCS, Candiolo, Turin, Italy
| | - Dario Sangiolo
- Department of Oncology, University of Torino, Turin, Italy.,Laboratory of Medical Oncology, Experimental Cell Therapy, Candiolo Cancer Institute FPO-IRCCS, Candiolo, Turin, Italy
| |
Collapse
|
44
|
Li C, Liang S, Zhang C, Liu Y, Yang M, Zhang J, Zhi X, Pan F, Cui D. Allogenic dendritic cell and tumor cell fused vaccine for targeted imaging and enhanced immunotherapeutic efficacy of gastric cancer. Biomaterials 2015; 54:177-87. [DOI: 10.1016/j.biomaterials.2015.03.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 03/13/2015] [Accepted: 03/15/2015] [Indexed: 12/26/2022]
|
45
|
Elia AR, Circosta P, Sangiolo D, Bonini C, Gammaitoni L, Mastaglio S, Genovese P, Geuna M, Avolio F, Inghirami G, Tarella C, Cignetti A. Cytokine-induced killer cells engineered with exogenous T-cell receptors directed against melanoma antigens: enhanced efficacy of effector cells endowed with a double mechanism of tumor recognition. Hum Gene Ther 2015; 26:220-31. [PMID: 25758764 DOI: 10.1089/hum.2014.112] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cytokine-induced killer (CIK) cells consist of a heterogeneous population of polyclonal T lymphocytes displaying NK phenotype and HLA-unrestricted cytotoxic activity against a broad range of tumors. We sought to determine whether transduction of CIK cells with T cell receptor (TCR) genes specific for tumor-associated antigens could generate effector cells endowed with a double mechanism of tumor recognition. HLA-A2-restricted TCR-transduced (TD) CIK directed against the melanoma antigens Mart1 and NY-ESO1 were generated by lentiviral transduction and successfully expanded over a 3-4-week period. TD-CIK cells were both CD3(+)/CD56(-) and CD3(+)/CD56(+) (31±8% and 59±9%, respectively), indicating that both major histocompatibility complex (MHC)-restricted T cells and MHC-unrestricted CIK could be targeted by lentiviral transduction. At the end of the culture, the majority of both unmodified and TD-CIK displayed an effector memory phenotype, without considerable expression of replicative senescence and exhaustion markers. Functionally, TD-CIK specifically recognized tumor cells expressing the relevant antigen as well as maintained their MHC-unrestricted tumor activity. The cytotoxic activity of TD-CIK against HLA-A2(+) melanoma cell lines was significantly higher than the untransduced counterparts at a low effector:target ratio (cytotoxic activity of TD-CIK was from 1.9- to 4.3-fold higher than untransduced counterparts). TD-CIK were highly proficient in releasing high amount of IFN-γ upon antigen-specific stimulation and were able to recognize primary melanoma targets. In conclusion, we showed that (1) the reproducibility and simplicity of CIK transduction and expansion might solve the problem of obtaining adequate numbers of potent antitumor effector cells for adoptive immunotherapy; (2) the presence of both terminal effectors as well as of less differentiated progenitors might confer them long survival in vivo; and (3) the addition of an MHC-restricted antigen recognition allows not only targeting tumor surface antigens but also a wider range of cytoplasmic or nuclear antigens, involved in tumor proliferation and survival. TD-CIK cells with a double mechanism of tumor recognition are an attractive and alternative tool for the development of efficient cell therapeutic strategies.
Collapse
Affiliation(s)
- Angela R Elia
- 1 Molecular Biotechnology Center, University of Torino , 10126 Turin, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Deyev SM, Lebedenko EN, Petrovskaya LE, Dolgikh DA, Gabibov AG, Kirpichnikov MP. Man-made antibodies and immunoconjugates with desired properties: function optimization using structural engineering. RUSSIAN CHEMICAL REVIEWS 2015. [DOI: 10.1070/rcr4459] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
47
|
Abstract
The promise of cell-based immunotherapies for the treatment of cancer offers the potential of therapeutic synergy with chemo- and radiotherapies that may overcome current limitations leading to durable responses and prevention of recurrence. There is a wide array of cell-based immunotherapies that are either poised to enter cancer clinical trials or are in clinical trials, and many are showing some success. Yet within this field, there are clear obstacles that need to be overcome, including limited access across tissue barriers, development of antigen tolerance, and the immunosuppressive microenvironment of tumors. Through an understanding of immune cell signaling and trafficking, immune cell populations can be selected for adoptive transfer, and delivery strategies can be developed that circumvent these obstacles to effectively direct populations of cells with robust anti-tumor efficacy to the target. Within the realm of immune cell therapies, cytokine-induced killer (CIK) cells have demonstrated promising trafficking patterns, effective delivery of synergistic therapeutics, and stand-alone efficacy. Here, we discuss the next generation of CIK therapies and their application for the effective treatment of a wide variety of cancers.
Collapse
Affiliation(s)
- Tobi L Schmidt
- Molecular Imaging Program at Stanford (MIPS), Department of Pediatrics, Stanford Center for Photomedicine, Stanford University School of Medicine, Clark Center, East Wing E150, 318 Campus Drive, Stanford, CA, 94305-5439, USA
| | | | | |
Collapse
|
48
|
Lu X, Zhu A, Cai X, Jia Z, Han W, Ma L, Zhou M, Qian K, Cen L, Chen B. Role of NKG2D in cytokine-induced killer cells against multiple myeloma cells. Cancer Biol Ther 2014; 13:623-9. [DOI: 10.4161/cbt.19850] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|
49
|
Zhang Q, Wang L, Luo C, Shi Z, Cheng X, Zhang Z, Yang Y, Zhang Y. Phenotypic and functional characterization of cytokine-induced killer cells derived from preterm and term infant cord blood. Oncol Rep 2014; 32:2244-52. [PMID: 25176036 DOI: 10.3892/or.2014.3457] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/24/2014] [Indexed: 11/06/2022] Open
Abstract
Cord blood has gradually become an important source for hematopoietic stem cell transplantation (HSCT) in the human, particularly in pediatric patients. Adoptive cellular immunotherapy of patients with hematologic malignancies after umbilical cord blood transplant is crucial. Cytokine‑induced killer (CIK) cells derived from cord blood are a new type of antitumor immune effector cells in tumor prevention and treatment and have increasingly attracted the attention of researchers. On the other hand, it has been suggested that preterm infant cord blood retains an early differentiation phenotype suitable for immunotherapy. Therefore, we determined the phenotypic and functional characterization of CIK cells derived from preterm infant cord blood (PCB-CIK) compared with CIK cells from term infant cord blood (TCB-CIK). Twenty cord blood samples were collected and classified into two groups based on gestational age. Cord blood mononuclear cells (CBMCs) were isolated, cultured and induced to CIK cells in vitro. We used flow cytometry to detect cell surface markers, FlowJo software to analyze the proliferation profile and intracellular staining to test the secretion of cytokines. Finally, we evaluated the antitumor activity of CIK cells against K562 in vitro. Compared with TCB-CIK, PCB-CIK cells demonstrated faster proliferation and higher expression of activated cell surface markers. The secretion of IL-10 was lower in PCB-CIK cells while the expression of perforin and CD107a had no significant difference between the two cell groups. PCB-CIK cells exhibited a high proliferation rate while the cytotoxic activity had no difference between the PCB-CIK and TCB-CIK cells. Hence preterm infant cord blood may be a potential source for immunotherapy.
Collapse
Affiliation(s)
- Qian Zhang
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Lili Wang
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Chenghan Luo
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zanyang Shi
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Xinru Cheng
- Department of Neonatology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Zhen Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Yi Yang
- Newborn Disease Key Laboratory of the Ministry of Health, The Children's Hospital Affiliated to Fudan University, Shanghai 201102, P.R. China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
50
|
Li XD, Ji M, Zheng X, Ning ZH, Wu J, Lu B, Wu CP, Jiang JT. Evaluation of tumor response to cytokine-induced killer cells therapy in malignant solid tumors. J Transl Med 2014; 12:215. [PMID: 25113800 PMCID: PMC4256683 DOI: 10.1186/s12967-014-0215-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 07/21/2014] [Indexed: 12/01/2022] Open
Abstract
CIK cells therapy has been evaluated as an adoptive cell immunotherapy for cancer patients, but there still have not been any standardized systems for evaluating the antitumor efficacy yet. The WHO and RECIST criteria have already been established for a few years but not sufficient to fully characterize the activity of immunotherapy. Based on these two criteria, the irRC was proposed for evaluating the efficacy of immunotherapy. A variety of bioassays for immune monitoring including the specific and non-specific methods, have been established. We recommend detect levels of various immunocytes, immune molecules and soluble molecules to find the correlations among them and clinicopathological characteristics to establish criteria for immunological classification. We also recommend a paradigm shift for the oncologists in the evaluation of immune therapies to ensure assessment of activity based on clinically relevant criteria and time points.
Collapse
|