1
|
Chang S, Lv J, Wang X, Su J, Bian C, Zheng Z, Yu H, Bao J, Xin Y, Jiang X. Pathogenic mechanisms and latest therapeutic approaches for radiation-induced lung injury: A narrative review. Crit Rev Oncol Hematol 2024; 202:104461. [PMID: 39103129 DOI: 10.1016/j.critrevonc.2024.104461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024] Open
Abstract
The treatment of thoracic tumors with ionizing radiation can cause radiation-induced lung injury (RILI), which includes radiation pneumonitis and radiation-induced pulmonary fibrosis. Preventing RILI is crucial for controlling tumor growth and improving quality of life. However, the serious adverse effects of traditional RILI treatment methods remain a major obstacle, necessitating the development of novel treatment options that are both safe and effective. This review summarizes the molecular mechanisms of RILI and explores novel treatment options, including natural compounds, gene therapy, nanomaterials, and mesenchymal stem cells. These recent experimental approaches show potential as effective prevention and treatment options for RILI in clinical practice.
Collapse
Affiliation(s)
- Sitong Chang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jincai Lv
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jing Su
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Chenbin Bian
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Huiyuan Yu
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Jindian Bao
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| | - Ying Xin
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, the First Hospital of Jilin University, Changchun 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health of Jilin University, Changchun 130021, China.
| |
Collapse
|
2
|
Zhang Y, Huang J, Zhang Y, Jiang F, Li S, He S, Sun J, Chen D, Tong Y, Pang Q, Wu Y. The Mitochondrial-Derived Peptide MOTS-c Alleviates Radiation Pneumonitis via an Nrf2-Dependent Mechanism. Antioxidants (Basel) 2024; 13:613. [PMID: 38790718 PMCID: PMC11117534 DOI: 10.3390/antiox13050613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Radiation pneumonitis (RP) is a prevalent and fatal complication of thoracic radiotherapy due to the lack of effective treatment options. RP primarily arises from mitochondrial injury in lung epithelial cells. The mitochondrial-derived peptide MOTS-c has demonstrated protective effects against various diseases by mitigating mitochondrial injury. C57BL/6 mice were exposed to 20 Gy of lung irradiation (IR) and received daily intraperitoneal injections of MOTS-c for 2 weeks. MOTS-c significantly ameliorated lung tissue damage, inflammation, and oxidative stress caused by radiation. Meanwhile, MOTS-c reversed the apoptosis and mitochondrial damage of alveolar epithelial cells in RP mice. Furthermore, MOTS-c significantly inhibited oxidative stress and mitochondrial damage in MLE-12 cells and primary mouse lung epithelial cells. Mechanistically, MOTS-c increased the nuclear factor erythroid 2-related factor (Nrf2) level and promoted its nuclear translocation. Notably, Nrf2 deficiency abolished the protective function of MOTS-c in mice with RP. In conclusion, MOTS-c alleviates RP by protecting mitochondrial function through an Nrf2-dependent mechanism, indicating that MOTS-c may be a novel potential protective agent against RP.
Collapse
Affiliation(s)
- Yanli Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jianfeng Huang
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaru Zhang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Fengjuan Jiang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shengpeng Li
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Shuai He
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Jiaojiao Sun
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Dan Chen
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Ying Tong
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
| | - Qingfeng Pang
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
| | - Yaxian Wu
- Wuxi School of Medicine, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.Z.); (Y.Z.); (F.J.); (S.L.); (S.H.); (J.S.); (D.C.); (Y.T.); (Q.P.)
- Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, Wuxi 214000, China;
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| |
Collapse
|
3
|
Zhou A, Li X, Zou J, Wu L, Cheng B, Wang J. Discovery of potential quality markers of Fritillariae thunbergii bulbus in pneumonia by combining UPLC-QTOF-MS, network pharmacology, and molecular docking. Mol Divers 2024; 28:787-804. [PMID: 36843054 PMCID: PMC9968501 DOI: 10.1007/s11030-023-10620-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 01/31/2023] [Indexed: 02/27/2023]
Abstract
Fritillariae thunbergii bulbus (FTB) is a popular Chinese herbal medicine with various applications in respiratory diseases. The quality evaluation of FTB has been insufficient to date, as the active ingredients and mechanisms of action of FTB remain unclear. This study proposes a novel strategy for exploring the quality markers (Q-markers) of FTB based on UPLC-QTOF-MS analysis, network pharmacology, molecular docking, and molecular dynamics (MD) simulation. A total of 26 compounds in FTB were identified by UPLC-QTOF-MS. Ten of these compounds were screened as Q-markers based on network pharmacology for their anti-pneumonia effects, including imperialine, peimisine, peiminine, ebeiedinone, zhebeirine, puqiedine, 9-hydroxy-10,12-octadecadienoic acid, (9Z,12Z,15Z)-13-hydroxy-9,12,15-octadecatrienoic acid, 9,12,15-octadecatrienoic acid, and (2E,4Z,7Z,10Z,13Z,16Z,19Z)-2,4,7,10,13,16,19-docosaheptaenoic acid methyl ester (DAME). These Q-markers were predicted to act on multiple targets and pathways associated with pneumonia. Molecular docking results revealed that most of the Q-markers showed high affinity with at least one of the main targets of pneumonia, and the top ten complexes were confirmed with MD simulation. Network pharmacology indicated that FTB may act on the TNF signaling pathway, HIF-1 signaling pathway, JAK-STAT signaling pathway, etc. The results demonstrated that imperialine (P8), peimisine (P9), peiminine (P11), ebeiedine (P15), zhebeirine (P16), and puqiedine (P18) may be potential Q-markers of FTB, and AKT1, IL-6, VEGFA, TP53, EGFR, STAT3, PPARG, MMP9, and CASP3 may be promising therapeutic targets for pneumonia treatment that are worthy of further research.
Collapse
Affiliation(s)
- Aizhen Zhou
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Xudong Li
- Ningbo Kunpeng Biotech Co., LTD, Ningbo, Zhejiang, People's Republic of China
| | - Jie Zou
- Ningbo Haishu Traditional Chinese Medicine Hospital, Ningbo, People's Republic of China
| | - Lingling Wu
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China
| | - Bin Cheng
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| | - Juan Wang
- Department of Traditional Chinese Medicine, Zhejiang Pharmaceutical University, Ningbo, 315000, People's Republic of China.
| |
Collapse
|
4
|
Gunning JA, Gilman KE, Zúñiga TM, Simpson RJ, Limesand KH. Parotid glands have a dysregulated immune response following radiation therapy. PLoS One 2024; 19:e0297387. [PMID: 38470874 PMCID: PMC10931461 DOI: 10.1371/journal.pone.0297387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 01/04/2024] [Indexed: 03/14/2024] Open
Abstract
Head and neck cancer treatment often consists of surgical resection of the tumor followed by ionizing radiation (IR), which can damage surrounding tissues and cause adverse side effects. The underlying mechanisms of radiation-induced salivary gland dysfunction are not fully understood, and treatment options are scarce and ineffective. The wound healing process is a necessary response to tissue injury, and broadly consists of inflammatory, proliferative, and redifferentiation phases with immune cells playing key roles in all three phases. In this study, select immune cells were phenotyped and quantified, and certain cytokine and chemokine concentrations were measured in mouse parotid glands after IR. Further, we used a model where glandular function is restored to assess the immune phenotype in a regenerative response. These data suggest that irradiated parotid tissue does not progress through a typical inflammatory response observed in wounds that heal. Specifically, total immune cells (CD45+) decrease at days 2 and 5 following IR, macrophages (F4/80+CD11b+) decrease at day 2 and 5 and increase at day 30, while neutrophils (Ly6G+CD11b+) significantly increase at day 30 following IR. Additionally, radiation treatment reduces CD3- cells at all time points, significantly increases CD3+/CD4+CD8+ double positive cells, and significantly reduces CD3+/CD4-CD8- double negative cells at day 30 after IR. Previous data indicate that post-IR treatment with IGF-1 restores salivary gland function at day 30, and IGF-1 injections attenuate the increase in macrophages, neutrophils, and CD4+CD8+ T cells observed at day 30 following IR. Taken together, these data indicate that parotid salivary tissue exhibits a dysregulated immune response following radiation treatment which may contribute to chronic loss of function phenotype in head and neck cancer survivors.
Collapse
Affiliation(s)
- Jordan A. Gunning
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kristy E. Gilman
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Tiffany M. Zúñiga
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
- Department of Immunology and Microbiology, Aurora, Colorado, United States of America
| | - Richard J. Simpson
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| | - Kirsten H. Limesand
- Department of Nutritional Sciences, The University of Arizona, Tucson, Arizona, United States of America
| |
Collapse
|
5
|
Guo H, Yu R, Zhang H, Wang W. Cytokine, chemokine alterations and immune cell infiltration in Radiation-induced lung injury: Implications for prevention and management. Int Immunopharmacol 2024; 126:111263. [PMID: 38000232 DOI: 10.1016/j.intimp.2023.111263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/26/2023]
Abstract
Radiation therapy is one of the primary treatments for thoracic malignancies, with radiation-induced lung injury (RILI) emerging as its most prevalent complication. RILI encompasses early-stage radiation pneumonitis (RP) and the subsequent development of radiation pulmonary fibrosis (RPF). During radiation treatment, not only are tumor cells targeted, but normal tissue cells, including alveolar epithelial cells and vascular endothelial cells, also sustain damage. Within the lungs, ionizing radiation boosts the intracellular levels of reactive oxygen species across various cell types. This elevation precipitates the release of cytokines and chemokines, coupled with the infiltration of inflammatory cells, culminating in the onset of RP. This pulmonary inflammatory response can persist, spanning a duration from several months to years, ultimately progressing to RPF. This review aims to explore the alterations in cytokine and chemokine release and the influx of immune cells post-ionizing radiation exposure in the lungs, offering insights for the prevention and management of RILI.
Collapse
Affiliation(s)
- Haochun Guo
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China
| | - Ran Yu
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China
| | - Haijun Zhang
- Department of Oncology, Zhongda Hospital, Medical School of Southeast University, Nanjing 210009, China.
| | - Wanpeng Wang
- Department of Radiotherapy, Lianshui People's Hospital, Kangda College of Nanjing Medical University, Huai'an 223400, China; Jiangsu Nursing Vocational and Technical College, Huai'an 223400, China; School of Clinical Medicine, Medical College of Yangzhou University, Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou 225009, China.
| |
Collapse
|
6
|
Wang R, Ma X, Zhang X, Jiang D, Mao H, Li Z, Tian Y, Cheng B. Autophagy-mediated NKG2D internalization impairs NK cell function and exacerbates radiation pneumonitis. Front Immunol 2023; 14:1250920. [PMID: 38077388 PMCID: PMC10704197 DOI: 10.3389/fimmu.2023.1250920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Radiation pneumonitis is a critical complication that constrains the use of radiation therapy for thoracic malignancies, leading to substantial morbidity via respiratory distress and lung function impairment. The role of Natural killer (NK) cells in inflammatory diseases is well-documented; however, their involvement in radiation pneumonitis is not fully understood. Methods To explore the involvement of NK cells in radiation pneumonitis, we analyzed tissue samples for NK cell presence and function. The study utilized immunofluorescence staining, western blotting, and immunoprecipitation to investigate CXCL10 and ROS levels, autophagy activity, and NKG2D receptor dynamics in NK cells derived from patients and animal models subjected to radiation. Result In this study, we observed an augmented infiltration of NK cells in tissues affected by radiation pneumonitis, although their function was markedly diminished. In animal models, enhancing NK cell activity appeared to decelerate the disease progression. Concomitant with the disease course, there was a notable upsurge in CXCL10 and ROS levels. CXCL10 was found to facilitate NK cell migration through CXCR3 receptor activation. Furthermore, evidence of excessive autophagy in patient NK cells was linked to ROS accumulation, as indicated by immunofluorescence and Western blot analyses. The association between the NKG2D receptor and its adaptor proteins (AP2 subunits AP2A1 and AP2M1), LC3, and lysosomes was intensified after radiation exposure, as demonstrated by immunoprecipitation. This interaction led to NKG2D receptor endocytosis and subsequent lysosomal degradation. Conclusion Our findings delineate a mechanism by which radiation-induced lung injury may suppress NK cell function through an autophagy-dependent pathway. The dysregulation observed suggests potential therapeutic targets; hence, modulating autophagy and enhancing NK cell activity could represent novel strategies for mitigating radiation pneumonitis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yu Tian
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Bo Cheng
- Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
7
|
Malaviya R, Laskin JD, Businaro R, Laskin DL. Targeting Tumor Necrosis Factor Alpha to Mitigate Lung Injury Induced by Mustard Vesicants and Radiation. Disaster Med Public Health Prep 2023; 17:e553. [PMID: 37848400 PMCID: PMC10841250 DOI: 10.1017/dmp.2023.178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Pulmonary injury induced by mustard vesicants and radiation is characterized by DNA damage, oxidative stress, and inflammation. This is associated with increases in levels of inflammatory mediators, including tumor necrosis factor (TNF)α in the lung and upregulation of its receptor TNFR1. Dysregulated production of TNFα and TNFα signaling has been implicated in lung injury, oxidative and nitrosative stress, apoptosis, and necrosis, which contribute to tissue damage, chronic inflammation, airway hyperresponsiveness, and tissue remodeling. These findings suggest that targeting production of TNFα or TNFα activity may represent an efficacious approach to mitigating lung toxicity induced by both mustards and radiation. This review summarizes current knowledge on the role of TNFα in pathologies associated with exposure to mustard vesicants and radiation, with a focus on the therapeutic potential of TNFα-targeting agents in reducing acute injury and chronic disease pathogenesis.
Collapse
Affiliation(s)
- Rama Malaviya
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| | - Jeffrey D. Laskin
- Departments of Environmental and Occupational Health and Justice, School of Public Health, Rutgers University, Piscataway, NJ, USA
| | - Rita Businaro
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Latina, Italy
| | - Debra L. Laskin
- Departments of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
8
|
The Effect of Stereotactic Body Radiation Therapy for Hepatocellular Cancer on Regional Hepatic Liver Function. Int J Radiat Oncol Biol Phys 2023; 115:794-802. [PMID: 36181992 DOI: 10.1016/j.ijrobp.2022.09.077] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 07/23/2022] [Accepted: 09/21/2022] [Indexed: 02/04/2023]
Abstract
PURPOSE To investigate direct radiation dose-related and inflammation-mediated regional hepatic function losses after stereotactic body radiation therapy (SBRT) in patients with hepatocellular carcinoma (HCC) and poor liver function. METHODS AND MATERIALS Twenty-four patients with HCC enrolled on an IRB-approved adaptive SBRT trial had liver dynamic gadoxetic acid-enhanced magnetic resonance imaging and blood sample collections before and 1 month after SBRT. Gadoxetic acid uptake rate (k1) maps were quantified for regional hepatic function and coregistered to both 2-Gy equivalent dose and physical dose distributions. Regional k1 loss patterns from before to after SBRT were analyzed for effects of dose and patient using a mixed-effects model and logistic function and were associated with pretherapy liver-function albumin-bilirubin scores. Plasma levels of tumor necrosis factor α receptor 1 (TNFR1), an inflammation marker, were correlated with mean k1 losses in the lowest dose regions by Spearman rank correlation. RESULTS The whole group had a k1 loss rate of 0.4%/Gy (2-Gy equivalent dose); however, there was a significant random effect of patient in the mixed-effect model (P < .05). Patients with poor and good liver functions lost 50% of k1 values at 12.5 and 57.2 Gy and 33% and 16% of k1 values at the lowest dose regions (<5 Gy), respectively. The k1 losses at the lowest dose regions of individual patients were significantly correlated with their TNFR1 levels after SBRT (P < .02). CONCLUSIONS The findings suggest that regional hepatic function losses after SBRT in patients with HCC include both direct radiation dose-dependent and inflammation-mediated effects, which could influence how to manage these patients to preserve their liver function after SBRT.
Collapse
|
9
|
Hinton T, Karnak D, Tang M, Jiang R, Luo Y, Boonstra P, Sun Y, Nancarrow DJ, Sandford E, Ray P, Maurino C, Matuszak M, Schipper MJ, Green MD, Yanik GA, Tewari M, Naqa IE, Schonewolf CA, Haken RT, Jolly S, Lawrence TS, Ray D. Improved prediction of radiation pneumonitis by combining biological and radiobiological parameters using a data-driven Bayesian network analysis. Transl Oncol 2022; 21:101428. [PMID: 35460942 PMCID: PMC9046881 DOI: 10.1016/j.tranon.2022.101428] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 02/07/2023] Open
Abstract
Grade 2 and higher radiation pneumonitis (RP2) is a potentially fatal toxicity that limits efficacy of radiation therapy (RT). We wished to identify a combined biomarker signature of circulating miRNAs and cytokines which, along with radiobiological and clinical parameters, may better predict a targetable RP2 pathway. In a prospective clinical trial of response-adapted RT for patients (n = 39) with locally advanced non-small cell lung cancer, we analyzed patients' plasma, collected pre- and during RT, for microRNAs (miRNAs) and cytokines using array and multiplex enzyme linked immunosorbent assay (ELISA), respectively. Interactions between candidate biomarkers, radiobiological, and clinical parameters were analyzed using data-driven Bayesian network (DD-BN) analysis. We identified alterations in specific miRNAs (miR-532, -99b and -495, let-7c, -451 and -139-3p) correlating with lung toxicity. High levels of soluble tumor necrosis factor alpha receptor 1 (sTNFR1) were detected in a majority of lung cancer patients. However, among RP patients, within 2 weeks of RT initiation, we noted a trend of temporary decline in sTNFR1 (a physiological scavenger of TNFα) and ADAM17 (a shedding protease that cleaves both membrane-bound TNFα and TNFR1) levels. Cytokine signature identified activation of inflammatory pathway. Using DD-BN we combined miRNA and cytokine data along with generalized equivalent uniform dose (gEUD) to identify pathways with better accuracy of predicting RP2 as compared to either miRNA or cytokines alone. This signature suggests that activation of the TNFα-NFκB inflammatory pathway plays a key role in RP which could be specifically ameliorated by etanercept rather than current therapy of non-specific leukotoxic corticosteroids.
Collapse
Affiliation(s)
- Tonaye Hinton
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - David Karnak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Ming Tang
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Ralph Jiang
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yi Luo
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Philip Boonstra
- Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Yilun Sun
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Derek J Nancarrow
- Department of Surgery, Division of Hematology-Oncology, Department of Internal Medicine, Medical School, University of Michigan, Ann Arbor, MI, USA
| | - Erin Sandford
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Paramita Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Christopher Maurino
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Martha Matuszak
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Matthew J Schipper
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Michael D Green
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Gregory A Yanik
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Muneesh Tewari
- Division of Hematology and Oncology, Department of Internal Medicine, Henry Ford Cancer Institute/Henry Ford Hospital, Detroit, MI, USA
| | - Issam El Naqa
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Caitlin A Schonewolf
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Randall Ten Haken
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Shruti Jolly
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Theodore S Lawrence
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA
| | - Dipankar Ray
- Department of Radiation Oncology, Medical School, The University of Michigan Medical School, University of Michigan, Ann Arbor, MI 48109-2026, USA.
| |
Collapse
|
10
|
Identifying Active Substances and the Pharmacological Mechanism of Houttuynia cordata Thunb. in Treating Radiation-Induced Lung Injury Based on Network Pharmacology and Molecular Docking Verification. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3776340. [PMID: 35360660 PMCID: PMC8964154 DOI: 10.1155/2022/3776340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/19/2022] [Accepted: 02/24/2022] [Indexed: 11/17/2022]
Abstract
Background Houttuynia cordata Thunb. is a traditional Chinese herb widely used mainly because of the pharmacological effects related to heat clearance and detoxification. Emerging clinical evidence indicates that the efficacy of Houttuynia cordata Thunb. on RILI is upstanding. Nevertheless, its underlying therapeutic mechanism remains unclear and warrants further elucidation. Methods The major active components and corresponding targets of Houttuynia cordata Thunb. were retrieved from the traditional Chinese medicine system pharmacology database (TCMSP) and literature review. The related targets of RILI were retrieved from the GeneCards database. Common targets among the active compounds and diseases were identified through Venn diagram analysis. Cytoscape was employed to construct and visualize the network relationship among the drug, active compounds, targets, and disease. The protein interaction network (PPI) was constructed by STRING. The reliability (the binding affinity) of the core targets and active compounds was verified by molecular docking. Results A search of the TCMSP database and related literature revealed 12 active compounds of Houttuynia cordata Thunb. against RILI. The core active compounds included quercetin, kaempferol, hyperoside, and rutin. Hub nodes including TP53, VEGFA, JUN, TNF, and IL-6 were identified in the PPI network. The GO categories were classified into three functional categories: 112 biological processes, 9 molecular functions, and 32 cellular components of the active compounds of Houttuynia cordata Thunb. The KEGG pathway enrichment analysis demonstrated the enrichment of target genes in several key cancer-related signaling pathways, including the cancer pathways, TNF signaling pathway, PI3K-Akt signaling pathway, and HIF-1 signaling pathway. Molecular docking analysis validated the effective binding capacity of the main active compounds with the core targets. Conclusion The main active components of Houttuynia cordata Thunb. have a potential pharmacological effect against RILI via the cancer pathways, TNF signaling pathway, and PI3K-Akt signaling pathway.
Collapse
|
11
|
Liu X, Shao C, Fu J. Promising Biomarkers of Radiation-Induced Lung Injury: A Review. Biomedicines 2021; 9:1181. [PMID: 34572367 PMCID: PMC8470495 DOI: 10.3390/biomedicines9091181] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/05/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022] Open
Abstract
Radiation-induced lung injury (RILI) is one of the main dose-limiting side effects in patients with thoracic cancer during radiotherapy. No reliable predictors or accurate risk models are currently available in clinical practice. Severe radiation pneumonitis (RP) or pulmonary fibrosis (PF) will reduce the quality of life, even when the anti-tumor treatment is effective for patients. Thus, precise prediction and early diagnosis of lung toxicity are critical to overcome this longstanding problem. This review summarizes the primary mechanisms and preclinical animal models of RILI reported in recent decades, and analyzes the most promising biomarkers for the early detection of lung complications. In general, ideal integrated models considering individual genetic susceptibility, clinical background parameters, and biological variations are encouraged to be built up, and more prospective investigations are still required to disclose the molecular mechanisms of RILI as well as to discover valuable intervention strategies.
Collapse
Affiliation(s)
- Xinglong Liu
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Chunlin Shao
- Institute of Radiation Medicine, Shanghai Medical College, Fudan University, Shanghai 200032, China;
| | - Jiamei Fu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| |
Collapse
|
12
|
Li P, Xia X, Zhou J, Wu J. Exploring the Pharmacological Mechanism of Radix Salvia Miltiorrhizae in the Treatment of Radiation Pneumonia by Using Network Pharmacology. Front Oncol 2021; 11:684315. [PMID: 34395252 PMCID: PMC8358777 DOI: 10.3389/fonc.2021.684315] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/15/2021] [Indexed: 01/09/2023] Open
Abstract
Background Radiation pneumonia (RP) is the most common complication of radiotherapy to the thorax and seriously affects the survival rate and quality of life of patients. Radix Salviae Miltiorrhizae (RSM) is an ancient Chinese medicine, whose main pharmacological effect is to promote blood circulation and remove stasis. A growing number of studies have proved that RSM has a good effect on RP. However, the underlying mechanism is still unclear and needs to be fully elucidated. Methods The effective components and predictive targets of RSM were analyzed by Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, and the related targets of RP were predicted by GeneCards database. The common targets of the two targets mentioned above were analyzed by protein-protein interaction on the STRING website, GO and KEGG analysis on the DAVID website, visualization by CytoScape3.7.0, and screening for Hubber gene by cytoHubber plug-in. Results A search of the TCMSP database revealed that RSM contains 65 chemical constituents and 165 potential protein targets. A total of 2,162 protein targets were found to be associated with RP. The top 10 hub genes were obtained by MCC algorithm for 70 common genes, including TP53, CASP3, MAPK1, JUN, VEGFA, STAT3, PTGS2, IL6, AKT1, and FOS. By analyzing the Gene Ontology, The anti-radiation pneumonia effect of RSM is that it performs molecular functions (protein homodimerization activity) in the nucleus through three biological processes (positive regulation of transcription from RNA polymerase II promoter,Extrinsic apoptotic signaling pathway in absence of ligand and lipopolysaccharide-mediated signaling pathway). Through KEGG analysis, the mechanism of RSM treatment of radiation pneumonia may be through PI3K-Akt, HIF-1, TNF signaling pathways. Conclusions Through network pharmacology analysis, we found the possible target genes of RSM on RP and revealed the most likely signaling pathway, providing theoretical basis for further elucidating the potential mechanism of RSM on RP.
Collapse
Affiliation(s)
- Peng Li
- Department of Radiation Oncology, Huai'an Tumor Hospital & Huai'an Hospital of Huai'an City, Huai'an, China
| | - Xiaochun Xia
- Department of Radiation Oncology, Nantong Tumor Hospital, Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Jundong Zhou
- Department of Radiation Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China.,Suzhou Cancer Center Core Laboratory, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China
| | - Jinchang Wu
- Department of Radiation Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Suzhou, China.,Department of Radiation Oncology, The Second Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
13
|
Teng Y, Xu F, Zhang X, Mu J, Sayed M, Hu X, Lei C, Sriwastva M, Kumar A, Sundaram K, Zhang L, Park JW, Chen SY, Zhang S, Yan J, Merchant ML, Zhang X, McClain CJ, Wolfe JK, Adcock RS, Chung D, Palmer KE, Zhang HG. Plant-derived exosomal microRNAs inhibit lung inflammation induced by exosomes SARS-CoV-2 Nsp12. Mol Ther 2021; 29:2424-2440. [PMID: 33984520 PMCID: PMC8110335 DOI: 10.1016/j.ymthe.2021.05.005] [Citation(s) in RCA: 117] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/28/2021] [Accepted: 05/05/2021] [Indexed: 12/19/2022] Open
Abstract
Lung inflammation is a hallmark of coronavirus disease 2019 (COVID-19). In this study, we show that mice develop inflamed lung tissue after being administered exosomes released from the lung epithelial cells exposed to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Nsp12 and Nsp13 (exosomesNsp12Nsp13). Mechanistically, we show that exosomesNsp12Nsp13 are taken up by lung macrophages, leading to activation of nuclear factor κB (NF-κB) and the subsequent induction of an array of inflammatory cytokines. Induction of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-1β from exosomesNsp12Nsp13-activated lung macrophages contributes to inducing apoptosis in lung epithelial cells. Induction of exosomesNsp12Nsp13-mediated lung inflammation was abolished with ginger exosome-like nanoparticle (GELN) microRNA (miRNA aly-miR396a-5p. The role of GELNs in inhibition of the SARS-CoV-2-induced cytopathic effect (CPE) was further demonstrated via GELN aly-miR396a-5p- and rlcv-miR-rL1-28-3p-mediated inhibition of expression of Nsp12 and spike genes, respectively. Taken together, our results reveal exosomesNsp12Nsp13 as potentially important contributors to the development of lung inflammation, and GELNs are a potential therapeutic agent to treat COVID-19.
Collapse
Affiliation(s)
- Yun Teng
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| | - Fangyi Xu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiangcheng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA; Department of ICU, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Huaian, Jiangsu 223300, China
| | - Jingyao Mu
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mohammed Sayed
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA
| | - Xin Hu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Chao Lei
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Mukesh Sriwastva
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Anil Kumar
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Kumaran Sundaram
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Lifeng Zhang
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Juw Won Park
- Department of Computer Engineering and Computer Science, University of Louisville, Louisville, KY 40202, USA; KBRIN Bioinformatics Core, University of Louisville, Louisville, KY 40202, USA
| | - Shao-Yu Chen
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Shuangqin Zhang
- Peeples Cancer Institute at Hamilton Medical Center, Dalton, GA 30720, USA
| | - Jun Yan
- James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA
| | - Michael L Merchant
- Kidney Disease Program and Clinical Proteomics Center, University of Louisville, Louisville, KY 40202, USA
| | - Xiang Zhang
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Craig J McClain
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Jennifer K Wolfe
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Robert S Adcock
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Donghoon Chung
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Kenneth E Palmer
- Center for Predictive Medicine for Emerging Infectious Diseases, School of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Huang-Ge Zhang
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40206, USA; Department of Microbiology & Immunology, University of Louisville, Louisville, KY 40202, USA; James Graham Brown Cancer Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
14
|
Abstract
Radiation-induced lung injury encompasses radiation-induced pneumonitis, inflammation of the lung which may manifest as a dose-limiting acute or subacute toxicity, and radiation-induced lung fibrosis, a late effect of lung exposure to radiation. This review aims to highlight developments in molecular radiation biology of radiation-induced lung injury and their implications in clinical practice.
Collapse
Affiliation(s)
- Soumyajit Roy
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Kilian E Salerno
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD.
| |
Collapse
|
15
|
Pulmonary toxicants and fibrosis: innate and adaptive immune mechanisms. Toxicol Appl Pharmacol 2020; 409:115272. [PMID: 33031836 PMCID: PMC9960630 DOI: 10.1016/j.taap.2020.115272] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 02/04/2023]
Abstract
Pulmonary fibrosis is characterized by destruction and remodeling of the lung due to an accumulation of collagen and other extracellular matrix components in the tissue. This results in progressive irreversible decreases in lung capacity, impaired gas exchange and eventually, hypoxemia. A number of inhaled and systemic toxicants including bleomycin, silica, asbestos, nanoparticles, mustard vesicants, nitrofurantoin, amiodarone, and ionizing radiation have been identified. In this article, we review the role of innate and adaptive immune cells and mediators they release in the pathogenesis of fibrotic pathologies induced by pulmonary toxicants. A better understanding of the pathogenic mechanisms underlying fibrogenesis may lead to the development of new therapeutic approaches for patients with these debilitating and largely irreversible chronic diseases.
Collapse
|
16
|
Elzayat MAM, Bayoumi AMA, Abdel-Bakky MS, Mansour AM, Kamel M, Abo-Saif A, Allam S, Salama A, Salama SA. Ameliorative effect of 2-methoxyestradiol on radiation-induced lung injury. Life Sci 2020; 255:117743. [PMID: 32371064 DOI: 10.1016/j.lfs.2020.117743] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/19/2020] [Accepted: 04/28/2020] [Indexed: 10/24/2022]
Abstract
AIMS Radiation-induced lung injury (RILI) is a serious complication of radiation therapy. Development of an effective drug that selectively protects normal lung tissues and sensitizes tumor cells to radiotherapy is an unmet need. 2-Methoxyestradiol (2ME2) possesses polypharmacological properties, which qualifies it as an effective radioprotector. Our aim is to explore the potential protective effects of 2ME2 against early and late stages of RILI and the underlying mechanisms. MAIN METHODS BALB/c mice were either treated with 2ME2 (50 mg/kg/day i.p., for 4 weeks); or received a single dose of 10 Gy ionizing radiation (IR) delivered to the lungs; or 10 Gy IR and 2ME2. Animal survival and pulmonary functions were evaluated. Immune-phenotyping of alveolar macrophages (AM) in the broncho-alveolar lavage fluids (BALF) was determined by flow cytometry. ELISA was used to evaluate the expression levels of TNF-α, TGF-β; and IL-10 in BALF. Lung tissues were used for histopathological examination or immunofluorescence staining for CD68 (pan-macrophage marker), Arginase-1 (Arg1, M2-specific marker), inducible nitric oxide synthase (iNOS, M1-specific marker) and HIF-1α. VEGF and γH2AX expression in lung tissues were detected by western blot. KEY FINDINGS The results demonstrated that 2ME2 improved the survival, lung functions and histopathological parameters of irradiated mice. Additionally, it attenuated the radiation-induced AM polarization and reduced the pneumonitis and fibrosis markers in lung tissues. Significant reduction of TNF-α and TGF-β with concomitant increase in IL-10 concentrations were observed. Moreover, the expression of HIF-1α, VEGF and γH2AX declined. SIGNIFICANCE 2ME2 is a promising radioprotectant with fewer anticipated side effects.
Collapse
Affiliation(s)
| | - Asmaa M A Bayoumi
- Department of Biochemistry, Faculty of Pharmacy, Minia University, El-minia, Egypt.
| | - Mohamed Sadek Abdel-Bakky
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt; Department of Pharmacology and Toxicology, College of Pharmacy, Qassim University, Buraydah 51452, Saudi Arabia.
| | - Ahmed M Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
| | - Marwa Kamel
- Department of Tumor Biology, National Cancer Institute, Cairo University, Cairo, Egypt.
| | - Ali Abo-Saif
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Nahda University, Beni-Suef, Egypt; Department of Pharmacology, Faculty of Medicine (Boys), Al-Azhar University, Cairo, Egypt.
| | - Shady Allam
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Kafrelsheikh University, Kafr El Sheikh, Egypt..
| | - Abeer Salama
- Department of Pharmacology, National Research Centre, Doki, Giza, Egypt.
| | - Salama A Salama
- Department of Pharmacology and Toxicology, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo, Egypt.
| |
Collapse
|
17
|
Śliwińska-Mossoń M, Wadowska K, Trembecki Ł, Bil-Lula I. Markers Useful in Monitoring Radiation-Induced Lung Injury in Lung Cancer Patients: A Review. J Pers Med 2020; 10:jpm10030072. [PMID: 32722546 PMCID: PMC7565537 DOI: 10.3390/jpm10030072] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/06/2020] [Accepted: 07/22/2020] [Indexed: 12/14/2022] Open
Abstract
In 2018, lung cancer was the most common cancer and the most common cause of cancer death, accounting for a 1.76 million deaths. Radiotherapy (RT) is a widely used and effective non-surgical cancer treatment that induces remission in, and even cures, patients with lung cancer. However, RT faces some restrictions linked to the radioresistance and treatment toxicity, manifesting in radiation-induced lung injury (RILI). About 30–40% of lung cancer patients will develop RILI, which next to the local recurrence and distant metastasis is a substantial challenge to the successful management of lung cancer treatment. These data indicate an urgent need of looking for novel, precise biomarkers of individual response and risk of side effects in the course of RT. The aim of this review was to summarize both preclinical and clinical approaches in RILI monitoring that could be brought into clinical practice. Next to transforming growth factor-β1 (TGFβ1) that was reported as one of the most important growth factors expressed in the tissues after ionizing radiation (IR), there is a group of novel, potential biomarkers—microRNAs—that may be used as predictive biomarkers in therapy response and disease prognosis.
Collapse
Affiliation(s)
- Mariola Śliwińska-Mossoń
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| | - Katarzyna Wadowska
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
- Correspondence:
| | - Łukasz Trembecki
- Department of Radiation Oncology, Lower Silesian Oncology Center, pl. Hirszfelda 12, 53-413 Wroclaw, Poland;
- Department of Oncology, Faculty of Medicine, Wroclaw Medical University, pl. Hirszfelda 12, 53-413 Wroclaw, Poland
| | - Iwona Bil-Lula
- Department of Medical Laboratory Diagnostics, Division of Clinical Chemistry and Laboratory Haematology, Wroclaw Medical University, ul. Borowska 211A, 50-556 Wroclaw, Poland; (M.Ś.-M.); (I.B.-L.)
| |
Collapse
|
18
|
Anturlikar SD, Azeemuddin MM, Varma S, Mallappa O, Niranjan D, Krishnaiah AB, Hegde SM, Rafiq M, Paramesh R. Turmeric based oral rinse "HTOR-091516" ameliorates experimental oral mucositis. Ayu 2020; 40:127-133. [PMID: 32398914 PMCID: PMC7210821 DOI: 10.4103/ayu.ayu_282_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 03/25/2019] [Accepted: 12/24/2019] [Indexed: 11/25/2022] Open
Abstract
Background: Prevalence and incidence of oral mucositis (OM) are rigorously increasing and there is no effective treatment. The herbal formulation “HTOR-091516” containing Curcuma longa, Triphala and honey were evaluated for the treatment of OM. Aim: The aim of this study was to evaluate the safety and efficacy of HTOR-091516, employing cellular model, human gingival fibroblasts-1 (HGF-1), and 5-fluorouracil (5-FU)-induced mucositis model in rats. Materials and Methods: The cell viability was assessed using 3-(4, 5-dimethylthiazolyl-2)-2, 5-diphenyltetrazolium bromide (MTT) assay and the inhibitory effect of HTOR-091516 on tumor necrosis factor-alpha (TNF-α) was evaluated using TNF-α bioassay in lipopolysaccharides-induced HGF-1. 5-FU and glacial acetic acid were used to induce OM in rats. Animals were divided into two groups, group 1 served as mucositis control and group 2 was treated with HTOR-091516 at the dose of 200 μl and TNF-α was estimated in plasma samples. Results: The in vitro safety of HTOR-091516 was evaluated in reconstructed human oral epidermis and was found to be nontoxic and exhibited concentration-dependent TNF-α inhibition in HGF-1. The treatment with HTOR-091516 reduced mucositis scores and mortality rate and also decreased the plasma TNF-α level. Conclusion: The present data indicate that HTOR-091516 is effective in the treatment of OM.
Collapse
Affiliation(s)
| | | | - Sandeep Varma
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Onkaramurthy Mallappa
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Dilip Niranjan
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Ashok Basti Krishnaiah
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Shruthi Manjunath Hegde
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Mohamed Rafiq
- Discovery Sciences Group, R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Rangesh Paramesh
- R and D Center, The Himalaya Drug Company, Bengaluru, Karnataka, India
| |
Collapse
|
19
|
Lippitz BE, Harris RA. A translational concept of immuno-radiobiology. Radiother Oncol 2019; 140:116-124. [PMID: 31271996 DOI: 10.1016/j.radonc.2019.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/30/2019] [Accepted: 06/02/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Traditional concepts of radiobiology model the direct radiation-induced cellular cytotoxicity but are not focused on late and sustained effects of radiation. Recent experimental data show the close involvement of immunological processes. METHODS Based on systematic PubMed searches, experimental data on immunological radiation effects are summarized and analyzed in a non-quantitative descriptive manner to provide a translational perspective on the immuno-modulatory impact of radiation in cancer. RESULTS Novel experimental findings document that sustained radiation effects are ultimately mediated through systemic factors such as cytotoxic CD8+ T cells and involve a local immuno-stimulation. Increased tumor infiltration of CD8+ T cell is a prerequisite for long-term radiation effects. CD8+ T cell depletion induces radio-resistance in experimental tumors. The proposed sequence of events involves radiation-damaged cells that release HMGB1, which activates macrophages via TLR4 to a local immuno-stimulation via TNF, which contributes to maturation of DCs. The mature DCs migrate to lymph nodes where they trigger effective CD8+ T cell responses. Radiation effects are boosted, when the physiological self-terminating negative feedback of immune reactions is antagonised via blocking of TGF-β or via checkpoint inhibition with involvement of CD8+ T cells as common denominator. CONCLUSION The concept of immuno-radiobiology emphasizes the necessity for a functional integrity of APCs and T cells for the long-term effects of radiotherapy. Local irradiation at higher doses induces tumor infiltration of CD8+ T cells, which can be boosted by immunotherapy. More systematic research is warranted to better understand the immunological effects of escalating radiation doses.
Collapse
Affiliation(s)
- Bodo E Lippitz
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden; Interdisciplinary Centre for Radiosurgery (ICERA), Hamburg, Germany.
| | - Robert A Harris
- Dept. of Clinical Neuroscience, Karolinska Institute, Centre for Molecular Medicine L8:04, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
20
|
Involvement of p38-βTrCP-Tristetraprolin-TNFα axis in radiation pneumonitis. Oncotarget 2018; 8:47767-47779. [PMID: 28548957 PMCID: PMC5564603 DOI: 10.18632/oncotarget.17770] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/14/2017] [Indexed: 11/25/2022] Open
Abstract
Early release of tumor necrosis factor-alpha (TNF-α) during radiotherapy of thoracic cancers plays an important role in radiation pneumonitis, whose inhibition may provide lung radioprotection. We previously reported radiation inactivates Tristetraprolin (TTP), a negative regulator of TNF-α synthesis, which correlated with increased TNF-α release. However, the molecular events involved in radiation-induced TTP inactivation remain unclear. To determine if eliminating Ttp in mice resulted in a phenotypic response to radiation, Ttp-null mice lungs were exposed to a single dose of 15 Gy, and TNF-α release and lung inflammation were analyzed at different time points post-irradiation. Ttp−/− mice with elevated (9.5±0.6 fold) basal TNF-α showed further increase (12.2±0.9 fold, p<0.02) in TNF-α release and acute lung inflammation within a week post-irradiation. Further studies using mouse lung macrophage (MH-S), human lung fibroblast (MRC-5), and exogenous human TTP overexpressing U2OS and HEK293 cells upon irradiation (a single dose of 4 Gy) promoted p38-mediated TTP phosphorylation at the serine 186 position, which primed it to be recognized by an ubiquitin ligase (E3), beta transducing repeat containing protein (β-TrCP), to promote polyubiquitination-mediated proteasomal degradation. Consequently, a serine 186 to alanine (SA) mutant of TTP was resistant to radiation-induced degradation. Similarly, either a p38 kinase inhibitor (SB203580), or siRNA-mediated β-TrCP knockdown, or overexpression of dominant negative Cullin1 mutants protected TTP from radiation-induced degradation. Consequently, SB203580 pretreatment blocked radiation-induced TNF-α release and radioprotected macrophages. Together, these data establish the involvement of the p38-βTrCP-TTP-TNFα signaling axis in radiation-induced lung inflammation and identified p38 inhibition as a possible lung radioprotection strategy.
Collapse
|
21
|
Herkel J, Schrader J, Erez N, Lohse AW, Cohen IR. Activation of the Akt-CREB signalling axis by a proline-rich heptapeptide confers resistance to stress-induced cell death and inflammation. Immunology 2017; 151:474-480. [PMID: 28419468 DOI: 10.1111/imm.12745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 03/31/2017] [Accepted: 04/08/2017] [Indexed: 12/15/2022] Open
Abstract
Cell stress of various kinds can lead to the induction of cell death and a damaging inflammatory response. Hence, a goal of therapeutic cell-stress management is to develop agents that might effectively regulate undesirable cell death and inflammation. To that end, we developed a synthetic peptide of seven amino acids based on structural mimicry to a functional domain of p53, a key factor in the responses of cells to stressful stimuli. This heptapeptide, which we term Stressin-1, was found to inhibit both cell death and the secretion of inflammatory mediators by various cell types in response to different stressful agents in vitro. The combined anti-inflammatory and anti-apoptotic activities of Stressin-1 were associated with a cellular signalling cascade that induced activation of Akt kinase and activation of the cAMP response element-binding protein (CREB) transcription factor. These immediate signalling events led to the inhibition of the signal transducer and activator of transcription and nuclear factor-κB pathways 24 hr later. Unexpectedly, we found no evidence for a direct involvement of p53 in the effects produced by Stressin-1. Intraperitoneal administration of 100 μg of Stressin-1 to lethally irradiated mice significantly protected them from death. These findings show that activating the Akt-CREB axis with Stressin-1 can counteract some of the undesirable effects of various cell stresses. Stressin-1 may have clinical usefulness.
Collapse
Affiliation(s)
- Johannes Herkel
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Jörg Schrader
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Neta Erez
- Department of Pathology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ansgar W Lohse
- Department of Medicine, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Irun R Cohen
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
22
|
Current Status of Targeted Radioprotection and Radiation Injury Mitigation and Treatment Agents: A Critical Review of the Literature. Int J Radiat Oncol Biol Phys 2017; 98:662-682. [PMID: 28581409 DOI: 10.1016/j.ijrobp.2017.02.211] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 02/23/2017] [Indexed: 01/17/2023]
Abstract
As more cancer patients survive their disease, concerns about radiation therapy-induced side effects have increased. The concept of radioprotection and radiation injury mitigation and treatment offers the possibility to enhance the therapeutic ratio of radiation therapy by limiting radiation therapy-induced normal tissue injury without compromising its antitumor effect. Advances in the understanding of the underlying mechanisms of radiation toxicity have stimulated radiation oncologists to target these pathways across different organ systems. These generalized radiation injury mechanisms include production of free radicals such as superoxides, activation of inflammatory pathways, and vascular endothelial dysfunction leading to tissue hypoxia. There is a significant body of literature evaluating the effectiveness of various treatments in preventing, mitigating, or treating radiation-induced normal tissue injury. Whereas some reviews have focused on a specific disease site or agent, this critical review focuses on a mechanistic classification of activity and assesses multiple agents across different disease sites. The classification of agents used herein further offers a useful framework to organize the multitude of treatments that have been studied. Many commonly available treatments have demonstrated benefit in prevention, mitigation, and/or treatment of radiation toxicity and warrant further investigation. These drug-based approaches to radioprotection and radiation injury mitigation and treatment represent an important method of making radiation therapy safer.
Collapse
|
23
|
Chung EJ, Sowers A, Thetford A, McKay-Corkum G, Chung SI, Mitchell JB, Citrin DE. Mammalian Target of Rapamycin Inhibition With Rapamycin Mitigates Radiation-Induced Pulmonary Fibrosis in a Murine Model. Int J Radiat Oncol Biol Phys 2016; 96:857-866. [PMID: 27663762 DOI: 10.1016/j.ijrobp.2016.07.026] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 07/18/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE Radiation-induced pulmonary fibrosis (RIPF) is a late toxicity of therapeutic radiation. Signaling of the mammalian target of rapamycin drives several processes implicated in RIPF, including inflammatory cytokine production, fibroblast proliferation, and epithelial senescence. We sought to determine if mammalian target of rapamycin inhibition with rapamycin would mitigate RIPF. METHODS AND MATERIALS C57BL/6NCr mice received a diet formulated with rapamycin (14 mg/kg food) or a control diet 2 days before and continuing for 16 weeks after exposure to 5 daily fractions of 6 Gy of thoracic irradiation. Fibrosis was assessed with Masson trichrome staining and hydroxyproline assay. Cytokine expression was evaluated by quantitative real-time polymerase chain reaction. Senescence was assessed by staining for β-galactosidase activity. RESULTS Administration of rapamycin extended the median survival of irradiated mice compared with the control diet from 116 days to 156 days (P=.006, log-rank test). Treatment with rapamycin reduced hydroxyproline content compared with the control diet (irradiation plus vehicle, 45.9 ± 11.8 μg per lung; irradiation plus rapamycin, 21.4 ± 6.0 μg per lung; P=.001) and reduced visible fibrotic foci. Rapamycin treatment attenuated interleukin 1β and transforming growth factor β induction in irradiated lungs compared with the control diet. Type II pneumocyte senescence after irradiation was reduced with rapamycin treatment at 16 weeks (3-fold reduction at 16 weeks, P<.001). CONCLUSIONS Rapamycin protected against RIPF in a murine model. Rapamycin treatment reduced inflammatory cytokine expression, extracellular matrix production, and senescence in type II pneumocytes.
Collapse
Affiliation(s)
- Eun Joo Chung
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Anastasia Sowers
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Angela Thetford
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Grace McKay-Corkum
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Su I Chung
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - James B Mitchell
- Radiation Biology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland
| | - Deborah E Citrin
- Radiation Oncology Branch, Center for Cancer Research, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
24
|
Williams JP, Calvi L, Chakkalakal JV, Finkelstein JN, O’Banion MK, Puzas E. Addressing the Symptoms or Fixing the Problem? Developing Countermeasures against Normal Tissue Radiation Injury. Radiat Res 2016; 186:1-16. [PMID: 27332954 PMCID: PMC4991354 DOI: 10.1667/rr14473.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Jacqueline P. Williams
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Laura Calvi
- Department of Medicine, University of Rochester Medical Center, Rochester, New York
| | - Joe V. Chakkalakal
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| | - Jacob N. Finkelstein
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
- Department of Pediatrics and Neonatology, University of Rochester Medical Center, Rochester, New York
| | - M. Kerry O’Banion
- Department of Neuroscience, University of Rochester Medical Center, Rochester, New York
| | - Edward Puzas
- Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, New York
| |
Collapse
|
25
|
Li X, Xu G, Qiao T, Yuan S, Zhuang X. Effects of CpG oligodeoxynucleotide 1826 on acute radiation-induced lung injury in mice. Biol Res 2016; 49:8. [PMID: 26842986 PMCID: PMC4739121 DOI: 10.1186/s40659-016-0068-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 01/21/2016] [Indexed: 12/14/2022] Open
Abstract
Background The radiation-induced lung injury is a common complication from radiotherapy in lung cancer. CpG ODN is TLR9 activator with potential immune modulatory effects and sensitization of radiotherapy in lung cancer. This study aimed to examine the effect of CpG ODN on acute radiation-induced lung injury in mice. Methods and results The mouse model of radiation-induced lung injury was established by a single dose of 20 Gy X-rays exposure to the left lung. The results showed that the pneumonia score was lower in RT+CpG group than in RT group on 15th and 30th days. Compared with RT group, CpG ODN reduced the serum concentrations of MDA (P < 0.05) and increased the serum concentrations of SOD, GSH (P < 0.05). The serum concentration of TNF-α in RT+CpG group was lower on 15th and 30th days post-irradiation (P < 0.05). Conclusion The study demonstrated that CpG ODN has preventive effects of acute radiation-induced lung injury in mice. Lung inflammatory reaction and oxidative stress are promoted in the initiation of radiation-induced pneumonia. CpG ODN may reduce the injury of reactive oxygen species and adjust the serum TNF-α concentration in the mice after irradiation, which reduces the generation of the inflammatory cytokines.
Collapse
Affiliation(s)
- Xuan Li
- Department of Radiation Oncology, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Guoxiong Xu
- Center Laboratory, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Tiankui Qiao
- Department of Radiation Oncology, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Sujuan Yuan
- Department of Radiation Oncology, Jinshan Hospital, Fudan University, Shanghai, China.
| | - Xibing Zhuang
- Department of Radiation Oncology, Jinshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Singh V, Gupta D, Arora R. NF-kB as a key player in regulation of cellular radiation responses and identification of radiation countermeasures. Discoveries (Craiova) 2015; 3:e35. [PMID: 32309561 PMCID: PMC7159829 DOI: 10.15190/d.2015.27] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Nuclear factor (NF)-κB is a transcription factor that plays significant role in immunity, cellular survival and inhibition of apoptosis, through the induction of genetic networks. Depending on the stimulus and the cell type, the members of NF-κB related family (RelA, c-Rel, RelB, p50, and p52), forms different combinations of homo and hetero-dimers. The activated complexes (Es) translocate into the nucleus and bind to the 10bp κB site of promoter region of target genes in stimulus specific manner. In response to radiation, NF-κB is known to reduce cell death by promoting the expression of anti-apoptotic proteins and activation of cellular antioxidant defense system. Constitutive activation of NF-κB associated genes in tumour cells are known to enhance radiation resistance, whereas deletion in mice results in hypersensitivity to IR-induced GI damage. NF-κB is also known to regulate the production of a wide variety of cytokines and chemokines, which contribute in enhancing cell proliferation and tissue regeneration in various organs, such as the GI crypts stem cells, bone marrow etc., following exposure to IR. Several other cytokines are also known to exert potent pro-inflammatory effects that may contribute to the increase of tissue damage following exposure to ionizing radiation. Till date there are a series of molecules or group of compounds that have been evaluated for their radio-protective potential, and very few have reached clinical trials. The failure or less success of identified agents in humans could be due to their reduced radiation protection efficacy.
In this review we have considered activation of NF-κB as a potential marker in screening of radiation countermeasure agents (RCAs) and cellular radiation responses. Moreover, we have also focused on associated mechanisms of activation of NF-κB signaling and their specified family member activation with respect to stimuli. Furthermore, we have categorized their regulated gene expressions and their function in radiation response or modulation. In addition, we have discussed some recently developed radiation countermeasures in relation to NF-κB activation
Collapse
Affiliation(s)
- Vijay Singh
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Damodar Gupta
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| | - Rajesh Arora
- Division of Radiation Biosciences, Institute of Nuclear Medicine & Allied Sciences, Brig SK Mazumdar Marg, Timarpur, Delhi, India
| |
Collapse
|
27
|
Tung D, Cheung PH, Wilson J, Tudor G, Booth C, Saha S. Differential effects of cyclosporin and etanercept treatment on various pathologic parameters in a murine model of irradiation-induced mucositis. Curr Ther Res Clin Exp 2014; 73:150-64. [PMID: 24653517 DOI: 10.1016/j.curtheres.2012.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2012] [Indexed: 10/28/2022] Open
Abstract
BACKGROUND Radiation therapy is the most prescribed treatment for many oncologic indications. One of its common side effects is mucositis with hallmark apoptosis in the intestinal crypt and diarrhea. OBJECTIVE We investigated the potential beneficial effects of etanercept and cyclosporin treatment during radiation exposure. The effects of these drugs on intestinal apoptosis, long-term weight loss, diarrhea severity, and survival were examined. METHODS For acute observation studies, animals pretreated with phosphate buffer saline (PBS) vehicle, either etanercept, or cyclosporin were challenged with either 1 Gy or 13 Gy irradiation and sacrificed 6 hours later. The animals' small intestines were then harvested for histologic analysis. For chronic survival studies, 14.5 Gy irradiation was applied. Etanercept or cyclosporin treatments were given 15 minutes before the irradiation, followed by daily administration. RESULTS At 6 hours postirradiation the maximum apoptotic index observed in the small intestine was ∼25% for both 1 Gy and 13 Gy irradiation. Etanercept and cyclosporin pretreatment had no effect on the irradiation-induced apoptosis. During chronic observation, the rate of weight loss was similar in all test groups. At 7 days postirradiation, the weight loss in phosphate buffered saline-treated control, etanercept, and cyclosporin groups reached a maximum at 19%, 24%, and 31.8%, respectively. The weight lost in the cyclosporin group was significantly higher than in the control group. Neither treatment reduced the severity of diarrhea, but cyclosporin increased the survival rate. Sixty percent of cyclosporin-treated animals survived compared with 27% in the PBS-treated control group and 47% in the etanercept-treated group. Serum tumor necrosis factor-α levels, a biomarker for both etanercept's mechanism of action and treatment efficacy, was inhibited by etanercept throughout the study, but cyclosporin only showed an inhibitory effect at 48 hours postirradiation. CONCLUSIONS Our study demonstrates that cyclosporin increases the survival rate of irradiated animals without affecting parameters such as intestinal histology, weight loss, and diarrhea severity.
Collapse
Affiliation(s)
- David Tung
- BioMed Valley Discoveries, Kansas City, Missouri
| | | | | | | | | | - Saurabh Saha
- BioMed Valley Discoveries, Kansas City, Missouri
| |
Collapse
|
28
|
Expression of interleukin-17A in lung tissues of irradiated mice and the influence of dexamethasone. ScientificWorldJournal 2014; 2014:251067. [PMID: 24744681 PMCID: PMC3973014 DOI: 10.1155/2014/251067] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2014] [Accepted: 02/10/2014] [Indexed: 11/17/2022] Open
Abstract
Purpose. To investigate the expressions of IL-17A in different phases of radiation-induced lung injury and the effect of dexamethasone. Methods. The thorax of C57BL/6 mice was irradiated with 15 Gy rays. Mice from dexamethasone-treated group were injected intraperitoneally with dexamethasone (0.42 mg/kg/day) every day for the first month after irradiation. IL-17A in lung tissues was detected by immunohistochemistry. IL-17A, TGF-β1, and IL-6 in bronchoalveolar lavage fluid were detected by ELISA. Lung inflammation and collagen deposition were observed by H&E and Masson methods. The degree of alveolitis and fibrosis was judged according to scoring. Results. IL-17A expression was appreciable at 1 week, peaked at 4 weeks, and subsequently declined at 8 weeks after irradiation. IL-17A was reduced after dexamethasone application at all the observation periods. Dexamethasone also inhibited expressions of TGF-β, IL-6, and TNF-α in bronchoalveolar lavage fluid. Moreover, dexamethasone attenuated the severity of lung injury by reducing the infiltration of inflammatory cells and collagen deposition. Terms of survival and the time of death in mice of treatment group were postponed and survival rate was improved. Conclusions. IL-17A plays an important role in the process of radiation-induced lung injury. And dexamethasone may provide a protective role in lung injury induced by radiation.
Collapse
|
29
|
Wang BZ, Wang LP, Han H, Cao FL, Li GY, Xu JL, Wang XW, Wang LX. Interleukin-17A antagonist attenuates radiation-induced lung injuries in mice. Exp Lung Res 2014; 40:77-85. [PMID: 24446677 DOI: 10.3109/01902148.2013.872210] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVE To investigate the effect of interleukin-17A (IL-17A) antibodies on radiation-induced lung injuries in mice. METHODS The thorax of 135 mice were divided into Sham (n = 30), radiation control (RC, n = 35), treatment (n = 35, IL-17A-neutralizing antibody, 4 μg/mouse, IV, 4 days per month for 4 months) and placebo group (n = 35) before a single dose irradiation (15 Gy) to the thorax. Inflammation and collagen contents in the lung tissues were examined, and the concentration of IL-17A, TGF-β1, and IL-6 in bronchoalveolar lavage fluid (BALF) were measured. In another 50 animals, 180-day survival rate following the irradiation and treatment was calculated by Kaplan-Meier method. RESULTS Sixteen weeks after the irradiation and treatment, there was significant inflammatory cell infiltration and interstitial collagen depositions in the radiation control and placebo groups, whereas these changes were relatively mild in the treatment group. The percentage of grade II and III alveolitis in the treatment group (16%, P < .05) was lower than in the RC (72%) or placebo group (64%). The mean Aschcroft fibrosis scores were 2.8 (treatment group), 5.2 (RC), and 4.8 (placebo group), respectively. The scores of treatment group was lower than that of RC (P < .001) or placebo group (P < .001). The IL-17A, TGF-β, and IL-6 concentrations in the treatment group were lower than in the RC and placebo group (P < .01) following the irradiation. The 180-day mortality rate in the treatment group was lower than in the RC group 16.7% versus 75.0%, P < .05). CONCLUSION IL-17A antibody treatment alleviates radiation-induced pneumonitis and subsequent fibrosis, and improvise postirradiation survival.
Collapse
Affiliation(s)
- Bao-Zhong Wang
- 1Department of Oncology, Qilu Hospital, Shandong University, Jinan, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Wu Y, Jia Y, Xu J, Shuai X, Wu Y. Fatal interstitial lung disease induced by rituximab-containing chemotherapy, treatment with TNF-α antagonist and cytokine profiling: a case-report and review of the literature. J Clin Pharm Ther 2013; 38:249-53. [PMID: 23506410 DOI: 10.1111/jcpt.12052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 12/17/2012] [Accepted: 01/31/2013] [Indexed: 02/05/2023]
Abstract
WHAT IS KNOWN AND OBJECTIVE Rituximab, an anti-CD20 monoclonal antibody, is widely used with good response for the treatment of B-cell lymphoma and various refractory autoimmune diseases. Although rituximab is effective, rare but serious pulmonary adverse reactions have been reported. We report on a case of rituximab-induced life-threatening interstitial lung disease in a patient with diffuse large B-cell lymphoma (DLBCL), and describe the patient's serum cytokine profile during anti-TNF-α treatment. CASE SUMMARY A 71-year-old woman diagnosed with DLBCL was treated with three cycles of rituximab-containing chemotherapy. She developed a fatal respiratory failure, which was eventually diagnosed as rituximab-induced interstitial lung disease (R-ILD). The R-ILD in this patient did not respond to intensive steroid treatment, or to enternacept, an anti-TNF therapy. During therapy, we observed that the serum level of IL-6 was much higher at the beginning of treatment than was usual for other DLBCL patients. Levels of IL-6 and TNF-α also increased during the course of the clinical exacerbation. We undertook a literature search and reviewed similar cases of R-ILD. WHAT IS NEW AND CONCLUSION Although rituximab is generally effective and safe, caution is required for high-risk patients, as in our case, and as reported in several other cases in the literature. Cytokine analysis may help in identifying patients at high risk of R-ILD. Better intensive therapeutic approaches other than steroids are required even during the early stages of the complication.
Collapse
Affiliation(s)
- Yongkang Wu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | | | | | | | | |
Collapse
|
31
|
Ray D, Shukla S, Allam US, Helman A, Ramanand SG, Tran L, Bassetti M, Krishnamurthy PM, Rumschlag M, Paulsen M, Sun L, Shanley TP, Ljungman M, Nyati MK, Zhang M, Lawrence TS. Tristetraprolin mediates radiation-induced TNF-α production in lung macrophages. PLoS One 2013; 8:e57290. [PMID: 23468959 PMCID: PMC3585360 DOI: 10.1371/journal.pone.0057290] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 01/20/2013] [Indexed: 12/26/2022] Open
Abstract
The efficacy of radiation therapy for lung cancer is limited by radiation-induced lung toxicity (RILT). Although tumor necrosis factor-alpha (TNF-α) signaling plays a critical role in RILT, the molecular regulators of radiation-induced TNF-α production remain unknown. We investigated the role of a major TNF-α regulator, Tristetraprolin (TTP), in radiation-induced TNF-α production by macrophages. For in vitro studies we irradiated (4 Gy) either a mouse lung macrophage cell line, MH-S or macrophages isolated from TTP knockout mice, and studied the effects of radiation on TTP and TNF-α levels. To study the in vivo relevance, mouse lungs were irradiated with a single dose (15 Gy) and assessed at varying times for TTP alterations. Irradiation of MH-S cells caused TTP to undergo an inhibitory phosphorylation at Ser-178 and proteasome-mediated degradation, which resulted in increased TNF-α mRNA stabilization and secretion. Similarly, MH-S cells treated with TTP siRNA or macrophages isolated from ttp (−/−) mice had higher basal levels of TNF-α, which was increased minimally after irradiation. Conversely, cells overexpressing TTP mutants defective in undergoing phosphorylation released significantly lower levels of TNF-α. Inhibition of p38, a known kinase for TTP, by either siRNA or a small molecule inhibitor abrogated radiation-induced TNF-α release by MH-S cells. Lung irradiation induced TTPSer178 phosphorylation and protein degradation and a simultaneous increase in TNF-α production in C57BL/6 mice starting 24 h post-radiation. In conclusion, irradiation of lung macrophages causes TTP inactivation via p38-mediated phosphorylation and proteasome-mediated degradation, leading to TNF-α production. These findings suggest that agents capable of blocking TTP phosphorylation or stabilizing TTP after irradiation could decrease RILT.
Collapse
Affiliation(s)
- Dipankar Ray
- Department of Radiation Oncology, University of Michigan, Ann Arbor, MI, United States of America.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gene-modified mesenchymal stem cells protect against radiation-induced lung injury. Mol Ther 2012; 21:456-65. [PMID: 23299797 DOI: 10.1038/mt.2012.183] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Radiation-induced lung injury (RILI) presents a common and major obstacle in the radiotherapy of thoracic cancers. The aim of this study was to examine whether RILI could be alleviated by mesenchymal stem cells (MSCs) expressing soluble transforming growth factor-β (TGF-β) type II receptor via an adenovirus (Ad-sTβR). Here, we systemically administered male MSCs into female mice challenged with thoracic irradiation. The data showed that either MSCs or Ad-sTβR transduced MSCs (Ad-sTβR-MSCs) specifically migrated into radiation-injured lung. Ad-sTβR-MSCs obviously alleviated lung injury, as reflected by survival and histopathology data, as well as the assays of malondialdehyde (MDA), hydroxyproline, plasma cytokines, and the expression of connective tissue growth factor (CTGF) and α-smooth muscle actin (α-SMA). Furthermore, MSCs and Ad-sTβR-MSCs could adopt the characteristics of alveolar type II (ATII) cells. However, the MSCs levels in the lungs were relatively low to account for the noted therapeutic effects, suggesting the presence of other mechanisms. In vivo, MSCs-conditioned medium (MSCs CM) significantly attenuated RILI. In vitro, MSCs CM protected ATII cells against radiation-induced apoptosis and DNA damage, and modulated the inflammatory response, indicating the beneficial effects of MSCs are largely due to its paracrine activity. Our results provide a novel insight for RILI therapy that currently lack efficient treatments.
Collapse
|
33
|
Zaidi A, Jelveh S, Mahmood J, Hill RP. Effects of lipopolysaccharide on the response of C57BL/6J mice to whole thorax irradiation. Radiother Oncol 2012; 105:341-9. [PMID: 22985778 DOI: 10.1016/j.radonc.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Revised: 06/28/2012] [Accepted: 08/11/2012] [Indexed: 01/15/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory and fibrogenic processes play a crucial role in the radiation-induced injury in the lung. The aim of the present study was to examine whether additive LPS exposure in the lung (to simulate respiratory infection) would affect pneumonitis or fibrosis associated with lung irradiation. MATERIAL AND METHODS Wildtype C57Bl/6J (WT-C57) and TNFα, TNFR1 and TNFR2 knockout ((-/-)) mice, in C57Bl/6J background, were given whole thorax irradiation (10 Gy) with or without post-irradiation intratracheal administration of LPS (50μg/mice). Functional deficit was examined by measuring breathing rate at various times after treatment. Real-time Reverse Transcription-Polymerase Chain Reaction (RT-PCR) and immunohistochemistry were used to analyze the protein expression and m-RNA of Interleukin-1 alpha (IL-1α), Interleukin-1 beta (IL-1β), Interleukin-6 (IL-6), Tumour Necrosis Factor alpha (TNFα) and Transforming Growth Factor beta (TGFβ) in the lung at various times after treatment. Inflammatory cells were detected by Mac-3 (macrophages) and Toluidine Blue (mast cells) staining. Collagen content was estimated by hydroxyproline (total collagen) and Sircol assay (soluble collagen). Levels of oxidative damage were assessed by 8-hydroxy-2-deoxyguanosine (8-OHdG) staining. RESULTS LPS exposure significantly attenuated the breathing rate increases following irradiation of WT-C57, TNFR1(-/-) and TNFR2(-/-)mice and to a lesser extent in TNFα(-/-) mice. Collagen content was significantly reduced after LPS treatment in WT-C57, TNFR1(-/-) and TNFα(-/-) mice and there was a trend in TNFR2(-/-) mice. Similarly there were lower levels of inflammatory cells and cytokines in the LPS treated mice. CONCLUSIONS This study reveals a mitigating effect of early exposure to LPS on injury caused by irradiation on lungs of C57Bl mice. The results suggest that immediate infection post irradiation may not impact lung response negatively in radiation-accident victims, however, further studies are required in different animal models, and with specific infectious agents, to confirm and extend our findings.
Collapse
Affiliation(s)
- Asif Zaidi
- Ontario Cancer Institute, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
34
|
Oh JH, Wong HP, Wang X, Deasy JO. A bioinformatics filtering strategy for identifying radiation response biomarker candidates. PLoS One 2012; 7:e38870. [PMID: 22768051 PMCID: PMC3387230 DOI: 10.1371/journal.pone.0038870] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/15/2012] [Indexed: 02/06/2023] Open
Abstract
The number of biomarker candidates is often much larger than the number of clinical patient data points available, which motivates the use of a rational candidate variable filtering methodology. The goal of this paper is to apply such a bioinformatics filtering process to isolate a modest number (<10) of key interacting genes and their associated single nucleotide polymorphisms involved in radiation response, and to ultimately serve as a basis for using clinical datasets to identify new biomarkers. In step 1, we surveyed the literature on genetic and protein correlates to radiation response, in vivo or in vitro, across cellular, animal, and human studies. In step 2, we analyzed two publicly available microarray datasets and identified genes in which mRNA expression changed in response to radiation. Combining results from Step 1 and Step 2, we identified 20 genes that were common to all three sources. As a final step, a curated database of protein interactions was used to generate the most statistically reliable protein interaction network among any subset of the 20 genes resulting from Steps 1 and 2, resulting in identification of a small, tightly interacting network with 7 out of 20 input genes. We further ranked the genes in terms of likely importance, based on their location within the network using a graph-based scoring function. The resulting core interacting network provides an attractive set of genes likely to be important to radiation response.
Collapse
Affiliation(s)
- Jung Hun Oh
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| | - Harry P. Wong
- Department of Infectious Diseases, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaowei Wang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Joseph O. Deasy
- Department of Medical Physics, Memorial Sloan-Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
35
|
Shi HS, Gao X, Li D, Zhang QW, Wang YS, Zheng Y, Cai LL, Zhong RM, Rui A, Li ZY, Zheng H, Chen XC, Chen LJ. A systemic administration of liposomal curcumin inhibits radiation pneumonitis and sensitizes lung carcinoma to radiation. Int J Nanomedicine 2012; 7:2601-11. [PMID: 22679371 PMCID: PMC3368513 DOI: 10.2147/ijn.s31439] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Radiation pneumonitis (RP) is an important dose-limiting toxicity during thoracic radiotherapy. Previous investigations have shown that curcumin is used for the treatment of inflammatory conditions and cancer, suggesting that curcumin may prevent RP and sensitize cancer cells to irradiation. However, the clinical advancement of curcumin is limited by its poor water solubility and low bioavailability after oral administration. Here, a water-soluble liposomal curcumin system was developed to investigate its prevention and sensitizing effects by an intravenous administration manner in mice models. The results showed that liposomal curcumin inhibited nuclear factor-κB pathway and downregulated inflammatory factors including tumor necrosis factor-α, interleukin (IL)-6, IL-8, and transforming growth factor-β induced by thoracic irradiation. Furthermore, the combined treatment with liposomal curcumin and radiotherapy increased intratumoral apoptosis and microvessel responses to irradiation in vivo. The significantly enhanced inhibition of tumor growth also was observed in a murine lung carcinoma (LL/2) model. There were no obvious toxicities observed in mice. The current results indicate that liposomal curcumin can effectively mitigate RP, reduce the fibrosis of lung, and sensitize LL/2 cells to irradiation. This study also suggests that the systemic administration of liposomal curcumin is safe and deserves to be investigated for further clinical application.
Collapse
Affiliation(s)
- Hua-shan Shi
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medicine School, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Koukourakis MI. Radiation damage and radioprotectants: new concepts in the era of molecular medicine. Br J Radiol 2012; 85:313-30. [PMID: 22294702 DOI: 10.1259/bjr/16386034] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Exposure to ionising radiation results in mutagenesis and cell death, and the clinical manifestations depend on the dose and the involved body area. Reducing carcinogenesis in patients treated with radiotherapy, exposed to diagnostic radiation or who are in certain professional groups is mandatory. The prevention or treatment of early and late radiotherapy effects would improve quality of life and increase cancer curability by intensifying therapies. Experimental and clinical data have given rise to new concepts and a large pool of chemical and molecular agents that could be effective in the protection and treatment of radiation damage. To date, amifostine is the only drug recommended as an effective radioprotectant. This review identifies five distinct types of radiation damage (I, cellular depletion; II, reactive gene activation; III, tissue disorganisation; IV, stochastic effects; V, bystander effects) and classifies the radioprotective agents into five relevant categories (A, protectants against all types of radiation effects; B, death pathway modulators; C, blockers of inflammation, chemotaxis and autocrine/paracrine pathways; D, antimutagenic keepers of genomic integrity; E, agents that block bystander effects). The necessity of establishing and funding central committees that guide systematic clinical research into evaluating the novel agents revealed in the era of molecular medicine is stressed.
Collapse
Affiliation(s)
- M I Koukourakis
- Department of Radiotherapy and Oncology, Democritus University of Thrace, Alexandroupolis, Greece.
| |
Collapse
|
37
|
Tung D, Cheung PH, Tudor G, Booth C, Saha S. In vivo effects of immunomodulators in a murine model of Fluorouracil-induced mucositis. CURRENT THERAPEUTIC RESEARCH 2011; 72:262-72. [PMID: 24648594 PMCID: PMC3957154 DOI: 10.1016/j.curtheres.2011.11.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/08/2011] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fluorouracil (5-FU) is a pyrimidine analogue used as a cancer treatment. Its toxic side effects, including mucositis, are reported to occur in 40% of the treated patients. Because of the inflammatory component of mucositis, we explored the possibility of modulating this condition with an immunomodulatory agent and a tumor necrosis factor-α inhibitor. OBJECTIVE The aim of this study was to evaluate the effect of 2 immunosuppressive agents, etanercept and cyclosporine, in a murine model of 5-FU-induced mucositis. METHODS To study the short-term effects of 5-FU on mucositis, cyclosporine and etanercept were administered to mice after an injection of 5-FU. The animals (n = 8) were euthanized at 6 hours post-challenge. Hematoxylin and eosin-stained histologic sections of the small intestine were examined for signs of apoptosis. To further examine the potential of cyclosporine in the treatment of 5-FU-induced mucositis in a longer duration, the animals (N = 15) were given 2 challenges of 5-FU within 6 hours. All mice were dosed daily until day 9 with either cyclosporine (100 mg/kg) or phosphate-buffered saline (PBS). RESULTS Six hours after 5-FU challenge, 25 mg/kg etanercept and 50 mg/kg cyclosporine had no effect on 5-FU-induced apoptosis (P > 0.05). However, 100 mg/kg cyclosporine significantly reduced the cumulative level of apoptosis >41.6% of the intestinal crypt surface (P < 0.05). During long-term observation, all mice began to lose weight at a rate of approximately 0.8 g/day after 5-FU exposure. The rates of weight loss and survival were not affected by cyclosporine treatment. The diarrhea onset began on day 4 with 46.7% of the PBS-treated mice showing signs of diarrhea compared with 53.3% in the cyclosporine group. The diarrhea score for both groups plateaued on day 7, with a cumulative score of 41 for the PBS group and 50 for the cyclosporine group. Cyclosporine treatment did not affect the diarrhea onset day or severity compared with the PBS-treated group (P > 0.05). CONCLUSIONS Our data indicated that etanercept is not a suitable treatment for 5-FU-induced mucositis. Despite decreased apoptosis in the gut, cyclosporine did not affect the severity of the diarrhea or survival. Therefore, we concluded that cyclosporine treatment was only effective in mediating the short-term apoptotic events in the intestines but has no long-term effect on the animals' survival and diarrhea.
Collapse
Affiliation(s)
- David Tung
- BioMed Valley Discoveries, Kansas City, Missouri
| | | | | | | | - Saurabh Saha
- BioMed Valley Discoveries, Kansas City, Missouri
| |
Collapse
|
38
|
Nolan KA, Dunstan MS, Caraher MC, Scott KA, Leys D, Stratford IJ. In silico screening reveals structurally diverse, nanomolar inhibitors of NQO2 that are functionally active in cells and can modulate NF-κB signaling. Mol Cancer Ther 2011; 11:194-203. [PMID: 22090421 DOI: 10.1158/1535-7163.mct-11-0543] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The National Cancer Institute chemical database has been screened using in silico docking to identify novel nanomolar inhibitors of NRH:quinone oxidoreductase 2 (NQO2). The inhibitors identified from the screen exhibit a diverse range of scaffolds and the structure of one of the inhibitors, NSC13000 cocrystalized with NQO2, has been solved. This has been used to aid the generation of a structure-activity relationship between the computationally derived binding affinity and experimentally measured enzyme inhibitory potency. Many of the compounds are functionally active as inhibitors of NQO2 in cells at nontoxic concentrations. To show this, advantage was taken of the NQO2-mediated toxicity of the chemotherapeutic drug CB1954. The toxicity of this drug is substantially reduced when the function of NQO2 is inhibited, and many of the compounds achieve this in cells at nanomolar concentrations. The NQO2 inhibitors also attenuated TNFα-mediated, NF-кB-driven transcriptional activity. The link between NQO2 and the regulation of NF-кB was confirmed by using short interfering RNA to NQO2 and by the observation that NRH, the cofactor for NQO2 enzyme activity, could regulate NF-кB activity in an NQO2-dependent manner. NF-кB is a potential therapeutic target and this study reveals an underlying mechanism that may be usable for developing new anticancer drugs.
Collapse
Affiliation(s)
- Karen A Nolan
- School of Pharmacy and Pharmaceutical Sciences, University of Manchester and Manchester Cancer Research Centre, Manchester M13 9PT, United Kingdom
| | | | | | | | | | | |
Collapse
|
39
|
Guan X, Liao Z, Ma H, Qian J, Liu Z, Yuan X, Gomez D, Komaki R, Wang LE, Wei Q. TNFRSF1B +676 T>G polymorphism predicts survival of non-small cell lung cancer patients treated with chemoradiotherapy. BMC Cancer 2011; 11:447. [PMID: 21995493 PMCID: PMC3220654 DOI: 10.1186/1471-2407-11-447] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 10/14/2011] [Indexed: 11/10/2022] Open
Abstract
Background The dysregulation of gene expression in the TNF-TNFR superfamily has been involved in various human cancers including non-small cell lung cancer (NSCLC). Furthermore, functional polymorphisms in TNF-α and TNFRSF1B genes that alter gene expression are likely to be associated with risk and clinical outcomes of cancers. However, few reported studies have investigated the association between potentially functional SNPs in both TNF-α and TNFRSF1B and prognosis of NSCLC patients treated with chemoradiotherapy. Methods We genotyped five potentially functional polymorphisms of TNF-α and TNFRSF1B genes [TNF-α -308 G>A (rs1800629) and -1031 T>C (rs1799964); TNFRSF1B +676 T>G (rs1061622), -1709A>T(rs652625) and +1663A>G (rs1061624)] in 225 NSCLC patients treated with chemoradiotherapy or radiotherapy alone. Kaplan-Meier survival analysis, log-rank tests and Cox proportional hazard models were used to evaluate associations between these variants and NSCLC overall survival (OS). Results We found that the TNFRSF1B +676 GG genotype was associated with a significantly better OS of NSCLC (GG vs. TT: adjusted HR = 0.38, 95% CI = 0.15-0.94; GG vs. GT/TT: adjusted HR = 0.35, 95% CI = 0.14-0.88). Further stepwise multivariate Cox regression analysis showed that the TNFRSF1B +676 GG was an independent prognosis predictor in this NSCLC cohort (GG vs. GT/TT: HR = 0.35, 95% CI = 0.14-0.85), in the presence of node status (N2-3 vs. N0-1: HR = 1.60, 95% CI = 1.09-2.35) and tumor stage (T3-4 vs. T0-2: HR = 1.48, 95% CI = 1.08-2.03). Conclusions Although the exact biological function for this SNP remains to be explored, our findings suggest a possible role of TNFRSF1B +676 T>G (rs1061622) in the prognosis of NSCLC. Further large and functional studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Xiaoxiang Guan
- Department of Epidemiology, The University of Texas M. D. Anderson Cancer Center, 1515 Holcombe Blvd, Houston, Texas 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Hill RP, Zaidi A, Mahmood J, Jelveh S. Investigations into the role of inflammation in normal tissue response to irradiation. Radiother Oncol 2011; 101:73-9. [PMID: 21726914 DOI: 10.1016/j.radonc.2011.06.017] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 06/07/2011] [Accepted: 06/07/2011] [Indexed: 12/20/2022]
Abstract
PURPOSE Radiation-induced inflammation and production of reactive oxygen species (ROS) play a critical role in normal tissue response. In this study we have examined some aspects of these effects in lung and skin. METHODS The superoxide dismutase (SOD) catalase mimetic, EUK-207, and genistein, an isoflavone with anti-inflammatory properties, were given post-irradiation and micronuclei (MN) formation was determined in cells derived from irradiated lung and skin. Changes in breathing rate were measured using a plethysmograph following irradiation of C57Bl6 mice knocked out for tumor necrosis factor (TNF)-alpha or its receptors, TNFR1/2, or treated with endotoxin (lipopolysaccharide - LPS). RESULTS Both EUK-207 and genistein given after irradiation caused a large reduction in MN levels observed in lung cells during 14 weeks post-irradiation but ceasing treatment resulted in a rebound in MN levels at 28 weeks post-irradiation. In contrast, treatment with EUK-207 was largely ineffective in reducing MN observed in skin cells post-irradiation. Knock-out of TNF-alpha resulted in a reduced increase in breathing rate (peak at 12 weeks post-irradiation) relative to wild-type and TNFR1/2 knock-out. Treatment with LPS 1 h post-irradiation also reduced the increase in breathing rate. CONCLUSIONS The increase in MN in lung cells after treatment with EUK-207 or genistein was stopped suggests that continuing ROS production contributes to DNA damage in lung cells over prolonged periods. That this effect was not seen in skin suggests this mechanism is less prominent in this tissue. The reduced level of radiation pneumonitis (as monitored by breathing rate changes) in animals knocked out for TNF-alpha suggests that this cytokine plays a significant role in inducing inflammation in lung following irradiation. The similar effect observed following LPS given post-irradiation suggests the possibility that such treatment modifies the long-term cyclic inflammatory response following irradiation in lungs.
Collapse
|
41
|
Soluble TNF-α Receptor I Encoded on Plasmid Vector and Its Application in Experimental Gene Therapy of Radiation-Induced Lung Fibrosis. Arch Immunol Ther Exp (Warsz) 2011; 59:315-26. [DOI: 10.1007/s00005-011-0133-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/07/2011] [Indexed: 01/10/2023]
|
42
|
Laskin DL, Sunil VR, Gardner CR, Laskin JD. Macrophages and tissue injury: agents of defense or destruction? Annu Rev Pharmacol Toxicol 2011; 51:267-88. [PMID: 20887196 DOI: 10.1146/annurev.pharmtox.010909.105812] [Citation(s) in RCA: 445] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The past several years have seen the accumulation of evidence demonstrating that tissue injury induced by diverse toxicants is due not only to their direct effects on target tissues but also indirectly to the actions of resident and infiltrating macrophages. These cells release an array of mediators with cytotoxic, pro- and anti-inflammatory, angiogenic, fibrogenic, and mitogenic activity, which function to fight infections, limit tissue injury, and promote wound healing. However, following exposure to toxicants, macrophages can become hyperresponsive, resulting in uncontrolled or dysregulated release of mediators that exacerbate acute tissue injury and/or promote the development of chronic diseases such as fibrosis and cancer. Evidence suggests that the diverse activity of macrophages is mediated by distinct subpopulations that develop in response to signals within their microenvironment. Understanding the precise roles of these different macrophage populations in the pathogenic response to toxicants is key to designing effective treatments for minimizing tissue damage and chronic disease and for facilitating wound repair.
Collapse
Affiliation(s)
- Debra L Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, New Jersey 08854, USA.
| | | | | | | |
Collapse
|
43
|
Sunil VR, Patel-Vayas K, Shen J, Gow AJ, Laskin JD, Laskin DL. Role of TNFR1 in lung injury and altered lung function induced by the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide. Toxicol Appl Pharmacol 2011; 250:245-55. [PMID: 21070800 PMCID: PMC3520488 DOI: 10.1016/j.taap.2010.10.027] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 10/15/2010] [Accepted: 10/27/2010] [Indexed: 01/08/2023]
Abstract
Lung toxicity induced by sulfur mustard is associated with inflammation and oxidative stress. To elucidate mechanisms mediating pulmonary damage, we used 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. Male mice (B6129) were treated intratracheally with CEES (3 or 6 mg/kg) or control. Animals were sacrificed 3, 7 or 14 days later and bronchoalveolar lavage (BAL) fluid and lung tissue collected. Treatment of mice with CEES resulted in an increase in BAL protein, an indication of alveolar epithelial damage, within 3 days. Expression of Ym1, an oxidative stress marker also increased in the lung, along with inducible nitric oxide synthase, and at 14 days, cyclooxygenase-2 and monocyte chemotactic protein-1, inflammatory proteins implicated in tissue injury. These responses were attenuated in mice lacking the p55 receptor for TNFα (TNFR1-/-), demonstrating that signaling via TNFR1 is key to CEES-induced injury, oxidative stress, and inflammation. CEES-induced upregulation of CuZn-superoxide dismutase (SOD) and MnSOD was delayed or absent in TNFR1-/- mice, relative to WT mice, suggesting that TNFα mediates early antioxidant responses to lung toxicants. Treatment of WT mice with CEES also resulted in functional alterations in the lung including decreases in compliance and increases in elastance. Additionally, methacholine-induced alterations in total lung resistance and central airway resistance were dampened by CEES. Loss of TNFR1 resulted in blunted functional responses to CEES. These effects were most notable in the airways. These data suggest that targeting TNFα signaling may be useful in mitigating lung injury, inflammation and functional alterations induced by vesicants.
Collapse
Affiliation(s)
- Vasanthi R. Sunil
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Kinal Patel-Vayas
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jianliang Shen
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Andrew J. Gow
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jeffrey D. Laskin
- Department of Environmental and Occupational Medicine, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, Piscataway, NJ 08854, USA
| | - Debra L. Laskin
- Department of Pharmacology and Toxicology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
44
|
Abstract
Radiation leaves a fairly characteristic footprint in biological materials, but this is rapidly all but obliterated by the canonical biological responses to the radiation damage. The innate immune recognition systems that sense "danger" through direct radiation damage and through associated collateral damage set in motion a chain of events that, in a tissue compromised by radiation, often unwittingly result in oscillating waves of molecular and cellular responses as tissues attempt to heal. Understanding "nature's whispers" that inform on these processes will lead to novel forms of intervention targeted more precisely towards modifying them in an appropriate and timely fashion so as to improve the healing process and prevent or mitigate the development of acute and late effects of normal tissue radiation damage, whether it be accidental, as a result of a terrorist incident, or of therapeutic treatment of cancer. Here we attempt to discuss some of the non-free radical scavenging mechanisms that modify radiation responses and comment on where we see them within a conceptual framework of an evolving radiation-induced lesion.
Collapse
Affiliation(s)
- Kwanghee Kim
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - William H. McBride
- Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095, USA
| |
Collapse
|
45
|
|
46
|
Downing L, Sawarynski KE, Li J, McGonagle M, Sims MD, Marples B. A simple quantitative method for assessing pulmonary damage after x irradiation. Radiat Res 2010; 173:536-44. [PMID: 20334526 DOI: 10.1667/rr1712.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Pulmonary damage after radiotherapy is typically characterized by an initial alveolar inflammation (pneumonitis) followed by chronic fibrosis. In the present study, changes in lung architecture were measured in the pneumonitis phase after whole-body low-dose X irradiation of C57BL/6 mice. Radiation damage was evaluated at 24 h and 1-8 weeks postirradiation. Three distinct scoring systems were used: ( 1 ) manually evaluating alveolar distortion and infiltration of inflammatory cells into the alveolar space using a continuous numerical scale across an entire lung section, ( 2 ) physically measuring the average thickness of the alveolar septa from multiple representative microscope fields, and ( 3 ) a new rapid automated mathematical algorithm based on image segmentation of alveolar space across an entire section. Each scoring method detected significant changes in alveolar architecture at the earliest times compared with sham-treated controls and gave comparable evaluations of injury. The results from the automated mathematical algorithm correlated significantly with both the manual evaluation method (Spearman's correlation coefficient rho = 0.044) and the direct physical measurement of septa thickness (rho = 0.002). These data demonstrate that evaluating alveolar space by segmentation analysis provides a reliable method for scoring early pulmonary radiation damage that is consistent with more established methodologies but is more rapid and is independent of potential operator and selection bias.
Collapse
Affiliation(s)
- L Downing
- Department of Radiation Oncology, William Beaumont Hospital, Royal Oak, Michigan 48073, USA
| | | | | | | | | | | |
Collapse
|
47
|
Abstract
The body senses "danger" from "damaged self" molecules through members of the same receptor superfamily it uses for microbial "non-self", triggering canonical signaling pathways that lead to the generation of acute inflammatory responses. For this reason, the biology of normal tissue responses to moderate and clinically relevant doses of radiation is inextricably connected to innate immunity. The complex sequence of inflammatory events that ensues causes further cell and tissue damage to eliminate potential invaders but also leads to cytoprotective responses that limit the spread of damage and to wound healing through tissue regeneration or replacement. These sequential processes are orchestrated through multiple feedback control mechanisms involving cyclical production of free radicals and cytokines that are common to both radiation and immune signaling. This requires a concerted effort by resident tissue and inflammatory cell types, with macrophages apparently leading the way. The initial response to moderate doses of radiation therefore feeds into a pro-inflammatory paradigm whose eventual outcome is critically dependent upon the properties of the immune cells that are involved in tissue damage, regeneration and repair and that are in part under genetic influence. Importantly, these canonical pathways provide targets for interventions aimed at modifying normal tissue radiation responses. In this review, we examine areas of intersection between innate immunity and normal tissue radiobiology.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| | - William H. McBride
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| |
Collapse
|
48
|
Abstract
IMPORTANCE OF THE FIELD Ionizing radiation (IR) can produce deleterious effects in living tissues, leading to significant morbidity and a potentially fatal illness affecting various organs dose-dependently. As people may be exposed to IR during cancer radiotherapy or as a result of a radiological/nuclear incident or act of terrorism, the danger of irradiation represents a serious public health problem. At present, however, this problem remains largely impervious to medical management. There is, therefore, a pressing need to develop safe and effective radiation countermeasure (RC) agents to prevent, mitigate or treat the harmful consequences of IR exposure. AREAS COVERED IN THIS REVIEW Recent advances in the search for RC agents as reflected by the relevant patent literature of the past five years along with peer-reviewed publications are surveyed. WHAT THE READER WILL GAIN A total of 43 patents, describing approximately 38 chemically diverse compounds with RC potential are analyzed. These include antioxidants capable of scavenging IR-induced free radicals, modulators of cell death signaling or cell cycle progression, cytokines or growth factors promoting tissue repair and inhibitors of inflammatory cytokines. TAKE HOME MESSAGE Several of these RC candidates appear promising, including at least two that are undergoing evaluation for fast-track clinical development.
Collapse
Affiliation(s)
- Francis Dumont
- Université de Strasbourg, Centre Régional de Lutte contre le Cancer Paul Strauss, Laboratoire de Radiobiologie EA-3430, 3 rue de la Porte de l'Hôpital, F-67065 Strasbourg, France
| | | | | |
Collapse
|
49
|
TNF-alpha regulates the effects of irradiation in the mouse bone marrow microenvironment. PLoS One 2010; 5:e8980. [PMID: 20126546 PMCID: PMC2813873 DOI: 10.1371/journal.pone.0008980] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 01/12/2010] [Indexed: 12/14/2022] Open
Abstract
Background Secondary bone marrow (BM) myelodysplastic syndromes (MDS) are increasingly common, as a result of radio or chemotherapy administered to a majority of cancer patients. Patients with secondary MDS have increased BM cell apoptosis, which results in BM dysfunction (cytopenias), and an increased risk of developing fatal acute leukemias. In the present study we asked whether TNF-α, known to regulate cell apoptosis, could modulate the onset of secondary MDS. Principal Findings We show that TNF-α is induced by irradiation and regulates BM cells apoptosis in vitro and in vivo. In contrast to irradiated wild type (WT) mice, TNF-α deficient (TNF-α KO) mice or WT mice treated with a TNF-α-neutralizing antibody were partially protected from the apoptotic effects of irradiation. Next we established a 3-cycle irradiation protocol, in which mice were sub-lethally irradiated once monthly over a 3 month period. In this model, irradiated WT mice presented loss of microsatellite markers on BM cells, low white blood cell (WBC) counts, reduced megakaryocyte (MK) and platelet levels (thrombocytopenia) and macrocytic anemia, phenoypes that suggest the irradiation protocol resulted in BM dysfunction with clinical features of MDS. In contrast, TNF-α KO mice were protected from the irradiation effects: BM cell apoptosis following irradiation was significantly reduced, concomitant with sustained BM MK numbers and absence of other cytopenias. Moreover, irradiated WT mice with long term (≥5 months) BM dysfunction had increased BM angiogenesis, MMPs and VEGF and NFkB p65, suggestive of disease progression. Conclusion Taken together, our data shows that TNF-α induction following irradiation modulates BM cell apoptosis and is a crucial event in BM dysfunction, secondary MDS onset and progression.
Collapse
|
50
|
Silencing of CT120 by antisense oligonucleotides could inhibit the lung cancer cells growth. Ir J Med Sci 2009; 179:217-23. [PMID: 20024628 DOI: 10.1007/s11845-009-0418-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 08/05/2009] [Indexed: 12/27/2022]
Abstract
BACKGROUND AND AIMS The CT120 gene had been proven to be a novel gene closely related to pulmonary carcinogenesis and cancer progression. Our aim was to explore the mechanism of growth suppression caused by silencing CT120. METHODS CT120 was detected in lung cancer tissues and the cell line A549, and the cell clones for silencing CT120 were obtained. Then the target genes were detected and the downstream proteins from the silencing of CT120 were separated and identified. RESULTS The expression of CT120 was higher in lung cancer tissues and A549 cells. Silencing of CT120 was shown to inhibit cell growth, reduce the expression of cyclin D1 and Cdk4, and increase the expression of p53 and caspase-3. The differential proteins were related to carcinogenesis, invasiveness, and metastasis. CONCLUSION CT120 may play an important role in tumor progression, and the down-regulation of CT120 expression could be a new drug target candidate in the treatment of lung cancer.
Collapse
|