1
|
Lee KJ, Chokshi S, Joshi T, Cummings M, Lyons CE, Singleton MH, Catranis E, Madiera da Silva L, Hayat F, Migaud M, Scalici J. NAD+ Boosting Through NRH Supplementation Enhances Treatment Efficacy in EOC In Vitro. Int J Mol Sci 2025; 26:1719. [PMID: 40004182 PMCID: PMC11855075 DOI: 10.3390/ijms26041719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/12/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Dihydronicotinamide rioside (NRH), the reduced form of nicotinamide riboside (NR), is a recently identified, naturally occurring precursor of arguably the most crucial cofactor for cellular function, nicotinamide adenine dinucleotide (NAD+). Recent investigation suggests that NRH is more adept at increasing NAD+ stores than traditional NAD+ precursors, and such extreme NAD+ boosting via NRH supplementation induces cytotoxicity in certain cellular contexts. It has also been shown that the lack of functional BRCA protein in epithelial ovarian cancer (EOC) directly impacts intracellular NAD+ levels. Given that altered cellular metabolism and DNA repair mechanisms are central alterations in EOC, and these processes are functionally dependent on NAD+, we sought to assess whether NRH supplementation in EOC cell lines enhanced cellular cytotoxicity alone and in combination with standard therapeutic agents. Significant cytotoxicity was noted in NRH treated cells (~40%) with minimal cell death in the nicotinic acid (NA)-treated lines. Levels of NAD(P)H were confirmed to have increased with NRH supplementation, albeit at different levels among the different cell lines. Overall, the cytotoxicity associated with NRH supplementation appears to be independent of ROS generation. Strikingly, NRH supplementation enhanced cytotoxicity of carboplatin in OVCAR8, but not ES2 or SKOV3. Paclitaxel cytotoxicity was also enhanced by the addition of NRH in OVCAR8, but not ES2 or SKOV3 cell lines. NA supplementation had no effect on baseline treatment-induced cytotoxicity. PARP inhibition by olaparib requires NAD+. Interestingly, NRH supplementation enhanced olaparib cytotoxicity in SKOV3 and OVCAR8, but not ES2 cells. NRH in combination with olaparib completely altered mitochondrial respiration, thereby shutting down energy consumption, which would lead to cell death. Coupled together with expression data of key enzymes required for NRH/NAD metabolism, this could be key in understanding mechanisms of cell death with NRH supplementation. Here, we showed that in the context of EOC, exploitation of the NAD+ bioenergetic phenotype through NRH supplementation is a biologically feasible strategy to enhance the response of traditional therapy with potentially minimal toxicity. These data suggest several potential mechanisms by which cellular NAD+ availability impacts treatment efficacy and resistance and highlights the potential utility of NAD+ metabolomics as a biomarker to guide treatment decisions.
Collapse
Affiliation(s)
- Kevin J. Lee
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Sagar Chokshi
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Tanvi Joshi
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mackenzie Cummings
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Catherine E. Lyons
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Mary Howard Singleton
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | - Elizabeth Catranis
- USA Health Mitchell Cancer Institute, University of South Alabama, Mobile, AL 36604, USA
| | | | - Faisal Hayat
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Marie Migaud
- Department of Pharmacology, University of South Alabama, Mobile, AL 36688, USA
| | - Jennifer Scalici
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| |
Collapse
|
2
|
Johnson SS, Liu D, Ewald JT, Robles-Planells C, Pulliam C, Christensen KA, Bayanbold K, Wels BR, Solst SR, O’Dorisio MS, Menda Y, Spitz DR, Fath MA. Auranofin inhibition of thioredoxin reductase sensitizes lung neuroendocrine tumor cells (NETs) and small cell lung cancer (SCLC) cells to sorafenib as well as inhibiting SCLC xenograft growth. Cancer Biol Ther 2024; 25:2382524. [PMID: 39054566 PMCID: PMC11275529 DOI: 10.1080/15384047.2024.2382524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024] Open
Abstract
Thioredoxin Reductase (TrxR) functions to recycle thioredoxin (Trx) during hydroperoxide metabolism mediated by peroxiredoxins and is currently being targeted using the FDA-approved anti-rheumatic drug, auranofin (AF), to selectively sensitize cancer cells to therapy. AF treatment decreased TrxR activity and clonogenic survival in small cell lung cancer (SCLC) cell lines (DMS273 and DMS53) as well as the H727 atypical lung carcinoid cell line. AF treatment also significantly sensitized DMS273 and H727 cell lines in vitro to sorafenib, an FDA-approved multi-kinase inhibitor that depleted intracellular glutathione (GSH). The pharmacokinetic, pharmacodynamic, and safety profile of AF was examined in nude mice with DMS273 xenografts administered AF intraperitoneally at 2 mg/kg or 4 mg/kg (IP) once (QD) or twice daily (BID) for 1-5 d. Plasma levels of AF were 10-20 μM (determined by mass spectrometry of gold), and the optimal inhibition of TrxR activity was obtained at 4 mg/kg once daily, with no effect on glutathione peroxidase 1 activity. This AF treatment extended for 14 d, inhibited TrxR (>75%), and resulted in a significant prolongation of median overall survival from 19 to 23 d (p = .04, N = 30 controls, 28 AF). In this experiment, there were no observed changes in animal bodyweight, complete blood counts (CBCs), bone marrow toxicity, blood urea nitrogen, or creatinine. These results support the hypothesis that AF effectively inhibits TrxR both in vitro and in vivo in SCLC, sensitizes NETs and SCLC to sorafenib, and could be repurposed as an adjuvant therapy with targeted agents that induce disruptions in thiol metabolism.
Collapse
Affiliation(s)
- Spenser S. Johnson
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Dijie Liu
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Jordan T. Ewald
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | | | - Casey Pulliam
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Keegan A. Christensen
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Khaliunaa Bayanbold
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Brian R. Wels
- State Hygienic Laboratory, University of Iowa, IA, USA
| | - Shane R. Solst
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - M. Sue O’Dorisio
- Department Pediatrics, University of Iowa Hospitals and Clinics, IA, USA
| | - Yusuf Menda
- Department of Radiology, Holden Comprehensive Cancer Center, University of Iowa Hospitals and Clinics, IA, USA
| | - Douglas R. Spitz
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| | - Melissa A. Fath
- Department of Radiation Oncology, Holden Comprehensive Cancer Center, Free Radical and Radiation Biology Program, University of Iowa Hospitals and Clinics, IA, USA
| |
Collapse
|
3
|
Yang M, Liu J, Li J, Wen S, Hu Y, Lu W, Liu J, Huang P, Liu P. The rheumatoid arthritis drug auranofin exerts potent anti-lymphoma effect by stimulating TXNRD-mediated ROS generation and inhibition of energy metabolism. Redox Biol 2024; 75:103245. [PMID: 38909408 PMCID: PMC11254835 DOI: 10.1016/j.redox.2024.103245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/08/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024] Open
Abstract
Since the survival of lymphoma patients who experience disease progression or relapse remains very poor, new therapeutic approaches and effective drugs are urgently needed. Here we show that auranofin (AF), an anti-rheumatoid drug thought to inhibit thioredoxin reductases (TXNRDs) as its mechanism of action, exhibited potent activity against multiple cancer types, especially effective against B cell lymphoma. Surprisingly, a knockdown of TXNRD1 and TXNRD2 did not cause significant cytotoxicity, suggesting that abrogation of TXNRD enzyme per se was insufficient to cause cancer cell death. Further mechanistic study showed that the interaction of AF with TXNRD could convert this antioxidant enzyme to a ROS-generating molecule via disrupting its electron transport, leading to a leak of electrons that interact with molecular oxygen to form superoxide. AF also suppressed energy metabolism by inhibiting both mitochondria complex II and the glycolytic enzyme GAPDH, leading to a significant depletion of ATP and inhibition of cancer growth in vitro and in vivo. Importantly, we found that the AF-mediated ROS stress could induce PD-L1 expression, revealing an unwanted effect of AF in causing immune suppression. We further showed that a combination of AF with anti-PD-1 antibody could enhance the anticancer activity in a syngeneic immune-competent mouse B-cell lymphoma model. Our study suggests that AF could be a potential drug for lymphoma treatment, and its combination with immune checkpoint inhibitors would be a logical strategy to increase the therapeutic activity.
Collapse
Affiliation(s)
- Mengqi Yang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Radiation Oncology, Peking University Shenzhen Hospital, Shenzhen, 518036, China
| | - Jiaxin Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Jianan Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
| | - Shijun Wen
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yumin Hu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Wenhua Lu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Jinyun Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Platform of Metabolomics Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Metabolic Innovation Center, Zhongshan School of Medicine, Platform of Metabolomics Center for Precision Medicine, Sun Yat-sen University, Guangzhou, Guangdong, China.
| | - Panpan Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China; Department of Medical Oncology, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China.
| |
Collapse
|
4
|
Ali W, Chen Y, Gandahi JA, Qazi IH, Sun J, Wang T, Liu Z, Zou H. Cross-Talk Between Selenium Nanoparticles and Cancer Treatment Through Autophagy. Biol Trace Elem Res 2024; 202:2931-2940. [PMID: 37817045 DOI: 10.1007/s12011-023-03886-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/24/2023] [Indexed: 10/12/2023]
Abstract
Autophagy is commonly referred as self-eating and a complex cellular process that is involved in the digestion of protein and damaged organelles through a lysosome-dependent mechanism, and this mechanism is essential for maintaining proper cellular homeostasis. Selenium is a vital trace element that plays essential functions in antioxidant defense, redox state control, and range of particular metabolic processes. Selenium nanoparticles have become known as a promising agent for biomedical use, because of their high bioavailability, low toxicity, and degradability. However, and in recent years, they have attracted the interest of researchers in developing anticancer nano-drugs. Selenium nanoparticles can be used as a potential therapeutic agent or in combination with other agents to act as carriers for the development of new treatments. More intriguingly, selenium nanoparticles have been extensively shown to impact autophagy signaling, allowing selenium nanoparticles to be used as possible cancer treatment agents. This review explored the connections between selenium and autophagy, followed by developments and current advances of selenium nanoparticles for autophagy control in various clinical circumstances. Furthermore, this study examined the functions and possible processes of selenium nanoparticles in autophagy regulation, which may help us understand how selenium nanoparticles regulate autophagy for the potential cancer treatment.
Collapse
Affiliation(s)
- Waseem Ali
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Yan Chen
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jameel Ahmed Gandahi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Izhar Hyder Qazi
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Jian Sun
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Tao Wang
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| | - Hui Zou
- College of Veterinary Medicine, Yangzhou University Yangzhou, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of the Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, People's Republic of China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, 225009, People's Republic of China.
| |
Collapse
|
5
|
Cao Y, Zhou X, Nie Q, Zhang J. Inhibition of the thioredoxin system for radiosensitization therapy of cancer. Eur J Med Chem 2024; 268:116218. [PMID: 38387331 DOI: 10.1016/j.ejmech.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024]
Abstract
Radiotherapy (RT) stands as a cornerstone in the clinical armamentarium against various cancers due to its proven efficacy. However, the intrinsic radiation resistance exhibited by cancer cells, coupled with the adverse effects of RT on normal tissues, often compromises its therapeutic potential and leads to unwanted side effects. This comprehensive review aims to consolidate our understanding of how radiosensitizers inhibit the thioredoxin (Trx) system in cellular contexts. Notable radiosensitizers, including gold nanoparticles (GNPs), gold triethylphosphine cyanide ([Au(SCN) (PEt3)]), auranofin, ceria nanoparticles (CONPs), curcumin and its derivatives, piperlongamide, indolequinone derivatives, micheliolide, motexafin gadolinium, and ethane selenide selenidazole derivatives (SeDs), are meticulously elucidated in terms of their applications in radiotherapy. In this review, the sensitization mechanisms and the current research progress of these radiosensitizers are discussed in detail, with the overall aim of providing valuable insights for the judicious application of Trx system inhibitors in the field of cancer radiosensitization therapy.
Collapse
Affiliation(s)
- Yisheng Cao
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Xiedong Zhou
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Qiuying Nie
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China
| | - Junmin Zhang
- School of Pharmacy, State Key Laboratory of Applied Organic Chemistry, and College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
6
|
Liu Y, Fan L, Yang H, Wang D, Liu R, Shan T, Xia X. Ketogenic therapy towards precision medicine for brain diseases. Front Nutr 2024; 11:1266690. [PMID: 38450235 PMCID: PMC10915067 DOI: 10.3389/fnut.2024.1266690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/29/2024] [Indexed: 03/08/2024] Open
Abstract
Precision nutrition and nutrigenomics are emerging in the development of therapies for multiple diseases. The ketogenic diet (KD) is the most widely used clinical diet, providing high fat, low carbohydrate, and adequate protein. KD produces ketones and alters the metabolism of patients. Growing evidence suggests that KD has therapeutic effects in a wide range of neuronal diseases including epilepsy, neurodegeneration, cancer, and metabolic disorders. Although KD is considered to be a low-side-effect diet treatment, its therapeutic mechanism has not yet been fully elucidated. Also, its induced keto-response among different populations has not been elucidated. Understanding the ketone metabolism in health and disease is critical for the development of KD-associated therapeutics and synergistic therapy under any physiological background. Here, we review the current advances and known heterogeneity of the KD response and discuss the prospects for KD therapy from a precision nutrition perspective.
Collapse
Affiliation(s)
- Yang Liu
- Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, China
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Linlin Fan
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Haoying Yang
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Danli Wang
- Zhoushan People’s Hospital, Zhoushan, China
| | - Runhan Liu
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
| | - Tikun Shan
- Neurosurgery Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China
| | - Xue Xia
- Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, China
- School of Environmental and Life Sciences, College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
7
|
Li W, Yang Y, Wang J, Ge T, Wan S, Gui L, Tao Y, Song P, Yang L, Ge F, Zhang W. Establishment of bone-targeted nano-platform and the study of its combination with 2-deoxy-d-glucose enhanced photodynamic therapy to inhibit bone metastasis. J Mech Behav Biomed Mater 2024; 150:106306. [PMID: 38091923 DOI: 10.1016/j.jmbbm.2023.106306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 01/09/2024]
Abstract
At present, simple anti-tumor drugs are ineffective at targeting bone tissue and are not purposed to treat patients with bone metastasis. In this study, zoledronic acid (ZOL) demonstrated excellent bone-targeting properties as a bone-targeting ligand. The metal-organic framework (MOF) known as ZIF-90 was modified with ZOL to construct a bone-targeting-based drug delivery system. Chlorin e6 (Ce6) was loaded in the bone-targeted drug delivery system and combined with 2-deoxy-D-glucose (2-DG), which successfully treated bone tumors when enhanced photodynamic therapy was applied. The Ce6@ZIF-PEG-ZOL (Ce6@ZPZ) nanoparticles were observed to have uniform morphology, a particle size of approximately 210 nm, and a potential of approximately -30.4 mV. The results of the bone-targeting experiments showed that Ce6@ZPZ exhibited a superior bone-targeted effect when compared to Ce6@ZIF-90-PEG. The Ce6@ZPZ solution was subjected to 660 nm irradiation and the resulting production of reactive oxygen species increased over time, which could be further increased when Ce6@ZPZ was used in combination with 2-DG. Their combination had a stronger inhibitory capacity against tumor cells than either 2-DG or Ce6@ZPZ alone, increasing the rate of tumor cell apoptosis. The apoptosis rate caused by HGC-27 was 61.56% when 2-DG was combined with Ce6@ZPZ. In vivo results also showed that Ce6@ZPZ combined with 2-DG maximally inhibited tumor growth and prolonged mice survival compared to the other experimental groups. Therefore, the combination of PDT and glycolytic inhibitors serves as a potential option for the treatment of cancer.
Collapse
Affiliation(s)
- Wanzhen Li
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Yongqi Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Jun Wang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ting Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Shuixia Wan
- Soil and Fertilizer Research Institute, Anhui Academy of Agricultural Sciences, Hefei, 230031, People's Republic of China
| | - Lin Gui
- Department of Microbiology and Immunology, Wannan Medical College, Wuhu, Anhui, 241002, People's Republic of China
| | - Yugui Tao
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China
| | - Ping Song
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Liangjun Yang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Fei Ge
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| | - Weiwei Zhang
- School of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, 241000, People's Republic of China.
| |
Collapse
|
8
|
Buss LG, De Oliveira Pessoa D, Snider JM, Padi M, Martinez JA, Limesand KH. Metabolomics analysis of pathways underlying radiation-induced salivary gland dysfunction stages. PLoS One 2023; 18:e0294355. [PMID: 37983277 PMCID: PMC10659204 DOI: 10.1371/journal.pone.0294355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Salivary gland hypofunction is an adverse side effect associated with radiotherapy for head and neck cancer patients. This study delineated metabolic changes at acute, intermediate, and chronic radiation damage response stages in mouse salivary glands following a single 5 Gy dose. Ultra-high performance liquid chromatography-mass spectrometry was performed on parotid salivary gland tissue collected at 3, 14, and 30 days following radiation (IR). Pathway enrichment analysis, network analysis based on metabolite structural similarity, and network analysis based on metabolite abundance correlations were used to incorporate both metabolite levels and structural annotation. The greatest number of enriched pathways are observed at 3 days and the lowest at 30 days following radiation. Amino acid metabolism pathways, glutathione metabolism, and central carbon metabolism in cancer are enriched at all radiation time points across different analytical methods. This study suggests that glutathione and central carbon metabolism in cancer may be important pathways in the unresolved effect of radiation treatment.
Collapse
Affiliation(s)
- Lauren G Buss
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
| | - Diogo De Oliveira Pessoa
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
| | - Justin M Snider
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Megha Padi
- Biostatistics and Bioinformatics Shared Resource, Arizona Cancer Center, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, United States of America
| | - Jessica A Martinez
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| | - Kirsten H Limesand
- School of Nutritional Sciences and Wellness, University of Arizona, Tucson, AZ, United States of America
- University of Arizona Cancer Center, Tucson, AZ, United States of America
| |
Collapse
|
9
|
Glassman I, Le N, Asif A, Goulding A, Alcantara CA, Vu A, Chorbajian A, Mirhosseini M, Singh M, Venketaraman V. The Role of Obesity in Breast Cancer Pathogenesis. Cells 2023; 12:2061. [PMID: 37626871 PMCID: PMC10453206 DOI: 10.3390/cells12162061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Research has shown that obesity increases the risk for type 2 diabetes mellitus (Type 2 DM) by promoting insulin resistance, increases serum estrogen levels by the upregulation of aromatase, and promotes the release of reactive oxygen species (ROS) by macrophages. Increased circulating glucose has been shown to activate mammalian target of rapamycin (mTOR), a significant signaling pathway in breast cancer pathogenesis. Estrogen plays an instrumental role in estrogen-receptor-positive breast cancers. The role of ROS in breast cancer warrants continued investigation, in relation to both pathogenesis and treatment of breast cancer. We aim to review the role of obesity in breast cancer pathogenesis and novel therapies mediating obesity-associated breast cancer development. We explore the association between body mass index (BMI) and breast cancer incidence and the mechanisms by which oxidative stress modulates breast cancer pathogenesis. We discuss the role of glutathione, a ubiquitous antioxidant, in breast cancer therapy. Lastly, we review breast cancer therapies targeting mTOR signaling, leptin signaling, blood sugar reduction, and novel immunotherapy targets.
Collapse
Affiliation(s)
- Ira Glassman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Nghia Le
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Aamna Asif
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Anabel Goulding
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Cheldon Ann Alcantara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Annie Vu
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Abraham Chorbajian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Mercedeh Mirhosseini
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| | - Manpreet Singh
- Corona Regional Medical Center, Department of Emergency Medicine, Corona, CA 92882, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA (N.L.); (A.A.); (C.A.A.); (M.M.)
| |
Collapse
|
10
|
Garbarino O, Valenti GE, Monteleone L, Pietra G, Mingari MC, Benzi A, Bruzzone S, Ravera S, Leardi R, Farinini E, Vernazza S, Grottoli M, Marengo B, Domenicotti C. PLX4032 resistance of patient-derived melanoma cells: crucial role of oxidative metabolism. Front Oncol 2023; 13:1210130. [PMID: 37534247 PMCID: PMC10391174 DOI: 10.3389/fonc.2023.1210130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/03/2023] [Indexed: 08/04/2023] Open
Abstract
Background Malignant melanoma is the most lethal form of skin cancer which shows BRAF mutation in 50% of patients. In this context, the identification of BRAFV600E mutation led to the development of specific inhibitors like PLX4032. Nevertheless, although its initial success, its clinical efficacy is reduced after six-months of therapy leading to cancer relapse due to the onset of drug resistance. Therefore, investigating the mechanisms underlying PLX4032 resistance is fundamental to improve therapy efficacy. In this context, several models of PLX4032 resistance have been developed, but the discrepancy between in vitro and in vivo results often limits their clinical translation. Methods The herein reported model has been realized by treating with PLX4032, for six months, patient-derived BRAF-mutated melanoma cells in order to obtain a reliable model of acquired PLX4032 resistance that could be predictive of patient's treatment responses. Metabolic analyses were performed by evaluating glucose consumption, ATP synthesis, oxygen consumption rate, P/O ratio, ATP/AMP ratio, lactate release, lactate dehydrogenase activity, NAD+/NADH ratio and pyruvate dehydrogenase activity in parental and drug resistant melanoma cells. The intracellular oxidative state was analyzed in terms of reactive oxygen species production, glutathione levels and NADPH/NADP+ ratio. In addition, a principal component analysis was conducted in order to identify the variables responsible for the acquisition of targeted therapy resistance. Results Collectively, our results demonstrate, for the first time in patient-derived melanoma cells, that the rewiring of oxidative phosphorylation and the maintenance of pyruvate dehydrogenase activity and of high glutathione levels contribute to trigger the onset of PLX4032 resistance. Conclusion Therefore, it is possible to hypothesize that inhibitors of glutathione biosynthesis and/or pyruvate dehydrogenase activity could be used in combination with PLX4032 to overcome drug resistance of BRAF-mutated melanoma patients. However, the identification of new adjuvant targets related to drug-induced metabolic reprogramming could be crucial to counteract the failure of targeted therapy in metastatic melanoma.
Collapse
Affiliation(s)
- Ombretta Garbarino
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Giulia Elda Valenti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Lorenzo Monteleone
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Gabriella Pietra
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Maria Cristina Mingari
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Andrea Benzi
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Santina Bruzzone
- IRCCS Ospedale Policlinico San Martino, Genova, Italy
- Department of Experimental Medicine, Biochemistry Section, University of Genoa, Genoa, Italy
| | - Silvia Ravera
- Department of Experimental Medicine, Human Anatomy Section, University of Genoa, Genoa, Italy
| | | | | | - Stefania Vernazza
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Melania Grottoli
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| | - Cinzia Domenicotti
- Department of Experimental Medicine, General Pathology Section, University of Genoa, Genoa, Italy
| |
Collapse
|
11
|
Chen D, Lu H, Ma Y, Huang Y, Zhang T, Fan S, Lin W, Huang Y, Jin H, Ruan Y, Xu JF, Pi J. Trends and recent progresses of selenium nanoparticles as novel autophagy regulators for therapeutic development. Front Nutr 2023; 10:1116051. [PMID: 36819694 PMCID: PMC9931911 DOI: 10.3389/fnut.2023.1116051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/09/2023] [Indexed: 02/05/2023] Open
Abstract
Autophagy, one of the major intracellular degradation systems, plays an important role in maintaining normal cellular physiological functions and protecting organisms from different diseases. Selenium (Se), an essential trace element, is involved in many metabolic regulatory signaling events and plays a key role in human health. In recent years, selenium nanoparticles (Se NPs) have attracted increasing attentions in biomedical field due to their low toxicity, high bioavailability and high bioactivity. Taking the advantage of their advanced biological activities, Se NPs can be used alone as potential therapeutic agents, or combine with other agents and served as carriers for the development of novel therapeutics. More interestingly, Se NPs have been widely reported to affect autophagy signaling, which therefor allow Se NPs to be used as potential therapeutic agents against different diseases. Here, this review suggested the relationships between Se and autophagy, followed by the trends and recent progresses of Se NPs for autophagy regulation in different diseased conditions. More importantly, this work discussed the roles and potential mechanisms of Se NPs in autophagy regulating, which might enhance our understanding about how Se NPs regulate autophagy for potential disease treatment. This work is expected to promote the potential application of Se NPs as novel autophagy regulators, which might benefit the development of novel autophagy associated therapeutics.
Collapse
Affiliation(s)
- Dongsheng Chen
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hongmei Lu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yuhe Ma
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yuhe Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Tangxin Zhang
- Dongguan Key Laboratory of Environmental Medicine, School of Public Health, Guangdong Medical University, Dongguan, China
| | - Shuhao Fan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Wensen Lin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Yifan Huang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China
| | - Hua Jin
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Yongdui Ruan
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,*Correspondence: Yongdui Ruan,
| | - Jun-Fa Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jun-Fa Xu,
| | - Jiang Pi
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China,Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, China,Jiang Pi,
| |
Collapse
|
12
|
Optimization of the Solvent and In Vivo Administration Route of Auranofin in a Syngeneic Non-Small Cell Lung Cancer and Glioblastoma Mouse Model. Pharmaceutics 2022; 14:pharmaceutics14122761. [PMID: 36559255 PMCID: PMC9783082 DOI: 10.3390/pharmaceutics14122761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
The antineoplastic activity of the thioredoxin reductase 1 (TrxR) inhibitor, auranofin (AF), has already been investigated in various cancer mouse models as a single drug, or in combination with other molecules. However, there are inconsistencies in the literature on the solvent, dose and administration route of AF treatment in vivo. Therefore, we investigated the solvent and administration route of AF in a syngeneic SB28 glioblastoma (GBM) C57BL/6J and a 344SQ non-small cell lung cancer 129S2/SvPasCrl (129) mouse model. Compared to daily intraperitoneal injections and subcutaneous delivery of AF via osmotic minipumps, oral gavage for 14 days was the most suitable administration route for high doses of AF (10-15 mg/kg) in both mouse models, showing no measurable weight loss or signs of toxicity. A solvent comprising 50% DMSO, 40% PEG300 and 10% ethanol improved the solubility of AF for oral administration in mice. In addition, we confirmed that AF was a potent TrxR inhibitor in SB28 GBM tumors at high doses. Taken together, our results and results in the literature indicate the therapeutic value of AF in several in vivo cancer models, and provide relevant information about AF's optimal administration route and solvent in two syngeneic cancer mouse models.
Collapse
|
13
|
Laoukili J, van Schelven S, Küçükköse E, Verheem A, Goey K, Koopman M, Borel Rinkes I, Kranenburg O. BRAF V600E in colorectal cancer reduces sensitivity to oxidative stress and promotes site-specific metastasis by stimulating glutathione synthesis. Cell Rep 2022; 41:111728. [PMID: 36450250 DOI: 10.1016/j.celrep.2022.111728] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 12/02/2022] Open
Abstract
The presence of BRAFV600E in colorectal cancer (CRC) is associated with a higher chance of distant metastasis. Oxidative stress in disseminated tumor cells limits metastatic capacity. To study the relationship between BRAFV600E, sensitivity to oxidative stress, and metastatic capacity in CRC, we use patient-derived organoids (PDOs) and tissue samples. BRAFV600E tumors and PDOs express high levels of glutamate-cysteine ligase (GCL), the rate-limiting enzyme in glutathione synthesis. Deletion of GCL in BRAFV600E PDOs strongly reduces their capacity to form distant liver and lung metastases but does not affect peritoneal metastasis outgrowth. Vice versa, the glutathione precursor N-acetyl-cysteine promotes organ-site-specific metastasis in the liver and the lungs but not in the peritoneum. BRAFV600E confers resistance to pharmacologically induced oxidative stress in vitro, which is partially overcome by treatment with the BRAF-inhibitor vemurafenib. We conclude that GCL-driven glutathione synthesis protects BRAFV600E-expressing tumors from oxidative stress during distant metastasis to the liver and the lungs.
Collapse
Affiliation(s)
- Jamila Laoukili
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands.
| | - Susanne van Schelven
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Emre Küçükköse
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - André Verheem
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Kaitlyn Goey
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Miriam Koopman
- Department of Medical Oncology, University Medical Center, Utrecht University, Utrecht, the Netherlands
| | - Inne Borel Rinkes
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands
| | - Onno Kranenburg
- Lab Translational Oncology, University Medical Center Utrecht, G04-228, PO Box 85500, 3508GA Utrecht, the Netherlands; Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, the Netherlands.
| |
Collapse
|
14
|
Targeting ferroptosis as a vulnerability in pulmonary diseases. Cell Death Dis 2022; 13:649. [PMID: 35882850 PMCID: PMC9315842 DOI: 10.1038/s41419-022-05070-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/29/2022] [Accepted: 07/04/2022] [Indexed: 01/21/2023]
Abstract
Ferroptosis is an iron-dependent regulated cell death marked by excessive oxidative phospholipids (PLs). The polyunsaturated fatty acids-containing phospholipids (PUFA-PLs) are highly susceptible to lipid peroxidation under oxidative stress. Numerous pulmonary diseases occurrences and degenerative pathologies are driven by ferroptosis. This review discusses the role of ferroptosis in the pathogenesis of pulmonary diseases including asthma, lung injury, lung cancer, fibrotic lung diseases, and pulmonary infection. Additionally, it is proposed that targeting ferroptosis is a potential treatment for pulmonary diseases, particularly drug-resistant lung cancer or antibiotic-resistant pulmonary infection, and reduces treatment-related adverse events.
Collapse
|
15
|
Khalaf MM, Abo-Youssef AM, Malak MN, Hamzawy MA. Novel therapeutic modalities target cell signaling of Renin-Angiotensin system/NF-κB-induced cell cycle arrest and apoptosis in urethane-induced lung cancer in mice: An in vivo study. J Biochem Mol Toxicol 2022; 36:e23162. [PMID: 35822566 DOI: 10.1002/jbt.23162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/20/2022] [Accepted: 07/01/2022] [Indexed: 11/07/2022]
Abstract
BACKGROUND Lung cancer has risen to the top of the list of cancer-related deaths worldwide. Aliskiren is a direct renin inhibitor. AIM This study aims to investigate the impact of cell signaling of Renin-Angiotensin system (RAS)/NF-κB on lung cancer by investigating the potential therapeutic effects of aliskiren for lung cancer treatment in urethane-induced lung cancer in mice. METHODS Male BALB/c mice were randomly assigned to one of five treatment groups for 150 days, including (1) normal control; (2) aliskiren (25 mg/kg/i.p) daily, (3) urethane at a dose of 1.5 g/kg (i.p) at Day 1 and 60 (nonsmall cell lung cancer[NSCLC] group) (4) NSCLC mice received carboplatin (15 mg/kg/i.p) every other day for the last 4 successive weeks and (5) NSCLC mice treated with aliskiren daily. Tumor size was determined based on blood sampling, and lungs were isolated for biochemical analysis, western blot analysis assay, and histopathological examination. RESULTS Urethane demonstrated significant changes in all biochemical and molecular parameters and histological patterns. Aliskiren-treated mice had significantly lower levels of NF-κB p65, Bcl-2, cyclin D1, ICAM-1, MMP-2, and Nrf2, with an increase in the catalytic activity of caspase-3 due to its RAS inhibitory mechanism. The combined urethane administration with aliskiren demonstrated a significant improvement in the histopathological examination. CONCLUSION RAS/NF-B cell signaling is a potential therapeutic target for preventing and treating lung adenocarcinoma, evidenced by the fundamental cytotoxic mechanism and attenuation of metastasis and angiogenesis induced by the treatment of NSCLC mice with aliskiren.
Collapse
Affiliation(s)
- Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Amira M Abo-Youssef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina N Malak
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
16
|
Zhang CX, Li HW, Zhang R, Ren Z, Wu Y. Tumor Microenvironments-Adaptive Apoptotic Effects of Cytidine 5'-monophosphate-Capped Gold Nanoclusters. ACS APPLIED BIO MATERIALS 2022; 5:3452-3460. [PMID: 35714365 DOI: 10.1021/acsabm.2c00380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the present work, cytidine 5'-monophosphate capped gold nanoclusters (AuNCs@CMP) are reported as a catalyst for redox reactions, which show both oxidase- and excellent peroxidase-like activity. When employing 3,3',5,5'-tetramethylbenzidine (TMB) as a substrate in the presence of hydrogen peroxide (H2O2), the maximum velocity (Vmax) was 175 × 10-8 M s-1 in vitro. Besides, the AuNCs@CMP exhibited high catalytic activity for reactive oxygen species (ROS) generation with H2O2. Particularly, they also displayed excellent catalytic activity for ROS generation in tumor cells, being activated and promoted by the tumor microenvironment (TME). Consequently, the AuNCs@CMP show an excellent antitumor effect on HeLa and SW480 cells as assayed by flow cytometry. The antitumor mechanism of AuNCs@CMP was attributed to the high ROS generation based on the specific environments of the TME. Therefore, the present study provides TME-adaptive AuNCs@CMP with excellent mimetic peroxidase activity, producing significant ROS to kill the tumor cells in TME.
Collapse
Affiliation(s)
- Chun-Xia Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Hong-Wei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| | - Renwen Zhang
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Zhongyuan Ren
- College of Chemical & Pharmaceutical Engineering, Jilin Institute of Chemical Technology, Jilin 132022, P. R. China
| | - Yuqing Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, No. 2699 Qianjin Street, Changchun 130012, P. R. China.,Institute of Theoretical Chemistry, College of Chemistry, Jilin University, No. 2 Liutiao Road, Changchun 130023, P. R. China
| |
Collapse
|
17
|
Sedillo JC, Cryns VL. Targeting the methionine addiction of cancer. Am J Cancer Res 2022; 12:2249-2276. [PMID: 35693095 PMCID: PMC9185618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/14/2022] [Indexed: 06/15/2023] Open
Abstract
Methionine is the initiator amino acid for protein synthesis, the methyl source for most nucleotide, chromatin, and protein methylation, and the carbon backbone for various aspects of the cellular antioxidant response and nucleotide biosynthesis. Methionine is provided in the diet and serum methionine levels fluctuate based on dietary methionine content. Within the cell, methionine is recycled from homocysteine via the methionine cycle, which is linked to nutrient status via one-carbon metabolism. Unlike normal cells, many cancer cells, both in vitro and in vivo, show high methionine cycle activity and are dependent on exogenous methionine for continued growth. However, the molecular mechanisms underlying the methionine dependence of diverse malignancies are poorly understood. Methionine deprivation initiates widespread metabolic alterations in cancer cells that enable them to survive despite limited methionine availability, and these adaptive alterations can be specifically targeted to enhance the activity of methionine deprivation, a strategy we have termed "metabolic priming". Chemotherapy-resistant cell populations such as cancer stem cells, which drive treatment-resistance, are also sensitive to methionine deprivation, suggesting dietary methionine restriction may inhibit metastasis and recurrence. Several clinical trials in cancer are investigating methionine restriction in combination with other agents. This review will explore new insights into the mechanisms of methionine dependence in cancer and therapeutic efforts to translate these insights into enhanced clinical activity of methionine restriction in cancer.
Collapse
Affiliation(s)
- Joni C Sedillo
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health Madison, WI, USA
| |
Collapse
|
18
|
Gamberi T, Chiappetta G, Fiaschi T, Modesti A, Sorbi F, Magherini F. Upgrade of an old drug: Auranofin in innovative cancer therapies to overcome drug resistance and to increase drug effectiveness. Med Res Rev 2022; 42:1111-1146. [PMID: 34850406 PMCID: PMC9299597 DOI: 10.1002/med.21872] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/08/2021] [Accepted: 11/17/2021] [Indexed: 12/20/2022]
Abstract
Auranofin is an oral gold(I) compound, initially developed for the treatment of rheumatoid arthritis. Currently, Auranofin is under investigation for oncological application within a drug repurposing plan due to the relevant antineoplastic activity observed both in vitro and in vivo tumor models. In this review, we analysed studies in which Auranofin was used as a single drug or in combination with other molecules to enhance their anticancer activity or to overcome chemoresistance. The analysis of different targets/pathways affected by this drug in different cancer types has allowed us to highlight several interesting targets and effects of Auranofin besides the already well-known inhibition of thioredoxin reductase. Among these targets, inhibitory-κB kinase, deubiquitinates, protein kinase C iota have been frequently suggested. To rationalize the effects of Auranofin by a system biology-like approach, we exploited transcriptomic data obtained from a wide range of cell models, extrapolating the data deposited in the Connectivity Maps website and we attempted to provide a general conclusion and discussed the major points that need further investigation.
Collapse
Affiliation(s)
- Tania Gamberi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Giovanni Chiappetta
- Biological Mass Spectrometry and Proteomics GroupPlasticité du Cerveau UMR 8249 CNRSParisESPCI Paris‐PSLFrance
| | - Tania Fiaschi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Alessandra Modesti
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Flavia Sorbi
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| | - Francesca Magherini
- Department of Experimental and Clinical Biomedical SciencesUniversity of FlorenceFlorenceItaly
| |
Collapse
|
19
|
Kieliszek M, Bano I, Zare H. A Comprehensive Review on Selenium and Its Effects on Human Health and Distribution in Middle Eastern Countries. Biol Trace Elem Res 2022; 200:971-987. [PMID: 33884538 PMCID: PMC8761138 DOI: 10.1007/s12011-021-02716-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 04/08/2021] [Indexed: 12/16/2022]
Abstract
Selenium (Se) is an important microelement with numerous positive effects on human health and diseases. It is important to specify that the status and consumption of Se are for a specific community as the levels of Se are extremely unpredictable between different populations and regions. Our existing paper was based on the impacts of Se on human health and disease along with data on the Se levels in Middle Eastern countries. Overall, the findings of this comprehensive review show that the consumption and levels of Se are inadequate in Middle Eastern nations. Such findings, together with the growing awareness of the importance of Se to general health, require further work primarily on creating an acceptable range of blood Se concentration or other measures to determine optimal Se consumption and, consequently, to guarantee adequate Se supplementation in populations at high risk of low Se intake.
Collapse
Affiliation(s)
- Marek Kieliszek
- Department of Food Biotechnology and Microbiology, Institute of Food Sciences, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159C, 02-776 Warsaw, Poland
| | - Iqra Bano
- Department of Veterinary Physiology and Biochemistry, Shaheed Benazir Bhutto University of Veterinary & Animal Sciences Sakrand, Sindh, 67210 Pakistan
| | - Hamed Zare
- Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand, Iran
| |
Collapse
|
20
|
Gao ZY, Gu NJ, Wu MZ, Wang SY, Xu HT, Li QC, Wu GP. Human papillomavirus16 E6 but not E7 upregulates GLUT1 expression in lung cancer cells by upregulating thioredoxin expression. Technol Cancer Res Treat 2021; 20:15330338211067111. [PMID: 34939468 PMCID: PMC8721363 DOI: 10.1177/15330338211067111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Background and objective: E6 and E7 proteins in human papillomavirus (HPV) 16 are major oncogenes in several types of tumors, including lung cancer. Previous studies have demonstrated that both E6 and E7 oncoproteins can upregulate GLUT1 protein and mRNA expression levels in lung cancer cells. Thus, the present study aimed to investigate the main differences in the molecular mechanisms of GLUT1 expression regulated by E6 and E7. Methods: The double directional genetic manipulation and immunofluorescence were performed to explore the molecular mechanism of E6 or E7 upregulating the expression of GLUT1 in H1299 and A549 cell lines. Results: The overexpression of E6 in well-established lung cancer cell lines upregulated thioredoxin (Trx) protein expression. Notably, plasmid transfection or small interfering RNA transfection with E7 had no regulatory effect on Trx expression. As an important disulfide reductase of the intracellular antioxidant system, Trx plays important role in maintaining oxidative stress balance and protecting cells from oxidative damage. The overexpression of Trx increased the activation of NF-κB by upregulating p65 expression and promoting p65 nuclear translocation, and further upregulated GLUT1 protein and mRNA expression levels. The results of the present study demonstrated that E6, but not E7, upregulated GLUT1 expression in lung cancer cells by activating NF-κB due to the participation of Trx. Conclusion: These results suggest that Trx plays an important role in the pathogenesis of HPV-associated lung cancer, and propose a novel therapeutic target for HPV-associated lung cancer.
Collapse
Affiliation(s)
- Zi-Yu Gao
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China.,The College of Basic Medical Sciences of Jinzhou Medical University, Jinzhou, China
| | - Na-Jin Gu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Ming-Zhe Wu
- The First Hospital of China Medical University, Shenyang, China
| | - Shi-Yu Wang
- 24460White River Health System, Batesville, AR, USA
| | - Hong-Tao Xu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qing-Chang Li
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Guang-Ping Wu
- The First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| |
Collapse
|
21
|
Potential Role of GST- π in Lung Cancer Stem Cell Cisplatin Resistance. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9142364. [PMID: 34840986 PMCID: PMC8626171 DOI: 10.1155/2021/9142364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 11/18/2022]
Abstract
Background Cancer stem cells (CSCs) are responsible for tumorigenesis, chemoresistance, and metastasis. Chemoresistance is a major challenge in the management of lung cancer. Glutathione-sulphur-transferase-π (GST-π) plays an important role in the origin and development of various types of cancer by regulating the cellular redox balance. Recent investigations have demonstrated that GST-π is associated with the chemoresistance of lung CSCs (LCSCs). However, the mechanism of GST-π in lung cancer, particularly in LCSCs, remains unclear. The present study is aimed at exploring the potential role of GST-π in stemness and cisplatin (DDP) resistance of LCSCs. Materials and methods. In the present study, lung cancer cell spheres were established using the A549 cell line, which according to our previous research, was confirmed to exhibit characteristics of stem cells. Next, GST-π protein expression, apoptosis percentage, and intracellular reactive oxygen species (ROS) concentration in A549 adherent cells and A549 cell spheres were analyzed by western blotting and flow cytometry, respectively. Finally, DDP resistance, ROS concentration, and GST-π expression in LCSCs were analyzed following the interference with GST-π using DL-buthionine-(S,R)-sulphoximine and N-acetylcysteine. Results The results revealed that GST-π was highly expressed in A549 cell spheres compared with A549 adherent cells and was associated with a decreased intracellular ROS concentration (both P < 0.05). Regulating GST-π protein expression could alter DDP resistance of LCSCs by influencing ROS. Conclusion These results suggested that GST-π may be important for LCSC drug resistance by downregulating ROS levels. These findings may contribute to the development of new adjuvant therapeutic strategies for lung cancer.
Collapse
|
22
|
Liu T, Sun L, Zhang Y, Wang Y, Zheng J. Imbalanced GSH/ROS and sequential cell death. J Biochem Mol Toxicol 2021; 36:e22942. [PMID: 34725879 DOI: 10.1002/jbt.22942] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/31/2021] [Accepted: 10/18/2021] [Indexed: 12/17/2022]
Abstract
Reactive oxygen species (ROS) are produced in cells during metabolic processes. Excessive intracellular ROS may react with large biomolecules, such as DNA, RNA, proteins, and small biomolecules, that is, glutathione (GSH) and unsaturated fatty acids. GSH has physiological functions, including free radical scavenging, anti-oxidation, and electrophile elimination. The disruption of ROS/GSH balance results in the deleterious oxidation and chemical modification of biomacromolecules, which eventually leads to cell-cycle arrest and proliferation inhibition, and even induces cell death. Imbalanced ROS/GSH may result from a direct increase of ROS, consumption of GSH, intracellular oxidoreductase interference, or thioredoxin activity reduction. Some chemicals including arsenic trioxide (ATO), pyrogallol (PG), and carbobenzoxy-Leu-Leu-leucinal (MG132) could also disrupt the balance of GSH and ROS. This article reviews the occurrence and consequences of the imbalance between GSH and ROS and introduces factors responsible for the disruption of cellular ROS and GSH balance, resulting in cell death. "GSH" and "ROS" were used as keywords to search the relevant literaturess.
Collapse
Affiliation(s)
- Ting Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Li Sun
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yubin Zhang
- Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang, China.,School of Pharmaceutical Sciences, Guizhou Medical University, Guiyang, China
| | - Yonglin Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, China
| |
Collapse
|
23
|
Van Loenhout J, Freire Boullosa L, Quatannens D, De Waele J, Merlin C, Lambrechts H, Lau HW, Hermans C, Lin A, Lardon F, Peeters M, Bogaerts A, Smits E, Deben C. Auranofin and Cold Atmospheric Plasma Synergize to Trigger Distinct Cell Death Mechanisms and Immunogenic Responses in Glioblastoma. Cells 2021; 10:2936. [PMID: 34831159 PMCID: PMC8616410 DOI: 10.3390/cells10112936] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 01/04/2023] Open
Abstract
Targeting the redox balance of malignant cells via the delivery of high oxidative stress unlocks a potential therapeutic strategy against glioblastoma (GBM). We investigated a novel reactive oxygen species (ROS)-inducing combination treatment strategy, by increasing exogenous ROS via cold atmospheric plasma and inhibiting the endogenous protective antioxidant system via auranofin (AF), a thioredoxin reductase 1 (TrxR) inhibitor. The sequential combination treatment of AF and cold atmospheric plasma-treated PBS (pPBS), or AF and direct plasma application, resulted in a synergistic response in 2D and 3D GBM cell cultures, respectively. Differences in the baseline protein levels related to the antioxidant systems explained the cell-line-dependent sensitivity towards the combination treatment. The highest decrease of TrxR activity and GSH levels was observed after combination treatment of AF and pPBS when compared to AF and pPBS monotherapies. This combination also led to the highest accumulation of intracellular ROS. We confirmed a ROS-mediated response to the combination of AF and pPBS, which was able to induce distinct cell death mechanisms. On the one hand, an increase in caspase-3/7 activity, with an increase in the proportion of annexin V positive cells, indicates the induction of apoptosis in the GBM cells. On the other hand, lipid peroxidation and inhibition of cell death through an iron chelator suggest the involvement of ferroptosis in the GBM cell lines. Both cell death mechanisms induced by the combination of AF and pPBS resulted in a significant increase in danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation, indicating a potential increase in immunogenicity, although the phagocytotic capacity of dendritic cells was inhibited by AF. In vivo, sequential combination treatment of AF and cold atmospheric plasma both reduced tumor growth kinetics and prolonged survival in GBM-bearing mice. Thus, our study provides a novel therapeutic strategy for GBM to enhance the efficacy of oxidative stress-inducing therapy through a combination of AF and cold atmospheric plasma.
Collapse
Affiliation(s)
- Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Delphine Quatannens
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Céline Merlin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Abraham Lin
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, 2650 Edegem, Belgium
| | - Annemie Bogaerts
- Plasma Lab for Applications in Sustainability and Medicine ANTwerp (PLASMANT), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, 2610 Wilrijk, Belgium; (J.V.L.); (L.F.B.); (D.Q.); (J.D.W.); (C.M.); (H.L.); (H.W.L.); (C.H.); (A.L.); (F.L.); (M.P.); (E.S.)
| |
Collapse
|
24
|
Malin D, Lee Y, Chepikova O, Strekalova E, Carlson A, Cryns VL. Methionine restriction exposes a targetable redox vulnerability of triple-negative breast cancer cells by inducing thioredoxin reductase. Breast Cancer Res Treat 2021; 190:373-387. [PMID: 34553295 DOI: 10.1007/s10549-021-06398-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 09/11/2021] [Indexed: 11/29/2022]
Abstract
PURPOSE Tumor cells are dependent on the glutathione and thioredoxin antioxidant pathways to survive oxidative stress. Since the essential amino acid methionine is converted to glutathione, we hypothesized that methionine restriction (MR) would deplete glutathione and render tumors dependent on the thioredoxin pathway and its rate-limiting enzyme thioredoxin reductase (TXNRD). METHODS Triple (ER/PR/HER2)-negative breast cancer (TNBC) cells were treated with control or MR media and the effects on reactive oxygen species (ROS) and antioxidant signaling were examined. To determine the role of TXNRD in MR-induced cell death, TXNRD1 was inhibited by RNAi or the pan-TXNRD inhibitor auranofin, an antirheumatic agent. Metastatic and PDX TNBC mouse models were utilized to evaluate in vivo antitumor activity. RESULTS MR rapidly and transiently increased ROS, depleted glutathione, and decreased the ratio of reduced glutathione/oxidized glutathione in TNBC cells. TXNRD1 mRNA and protein levels were induced by MR via a ROS-dependent mechanism mediated by the transcriptional regulators NRF2 and ATF4. MR dramatically sensitized TNBC cells to TXNRD1 silencing and the TXNRD inhibitor auranofin, as determined by crystal violet staining and caspase activity; these effects were suppressed by the antioxidant N-acetylcysteine. H-Ras-transformed MCF-10A cells, but not untransformed MCF-10A cells, were highly sensitive to the combination of auranofin and MR. Furthermore, dietary MR induced TXNRD1 expression in mammary tumors and enhanced the antitumor effects of auranofin in metastatic and PDX TNBC murine models. CONCLUSION MR exposes a vulnerability of TNBC cells to the TXNRD inhibitor auranofin by increasing expression of its molecular target and creating a dependency on the thioredoxin pathway.
Collapse
Affiliation(s)
- Dmitry Malin
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Yoonkyu Lee
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Olga Chepikova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.,Department of Biotechnology, Sirius University of Science and Technology, 1 Olympic Ave, 354340, Sochi, Russia
| | - Elena Strekalova
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Alexis Carlson
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA
| | - Vincent L Cryns
- Department of Medicine, University of Wisconsin Carbone Cancer Center, University of Wisconsin School of Medicine and Public Health, Madison, WI, 53705, USA.
| |
Collapse
|
25
|
Shytaj IL, Procopio FA, Tarek M, Carlon‐Andres I, Tang H, Goldman AR, Munshi M, Kumar Pal V, Forcato M, Sreeram S, Leskov K, Ye F, Lucic B, Cruz N, Ndhlovu LC, Bicciato S, Padilla‐Parra S, Diaz RS, Singh A, Lusic M, Karn J, Alvarez‐Carbonell D, Savarino A. Glycolysis downregulation is a hallmark of HIV-1 latency and sensitizes infected cells to oxidative stress. EMBO Mol Med 2021; 13:e13901. [PMID: 34289240 PMCID: PMC8350904 DOI: 10.15252/emmm.202013901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 12/12/2022] Open
Abstract
HIV-1 infects lymphoid and myeloid cells, which can harbor a latent proviral reservoir responsible for maintaining lifelong infection. Glycolytic metabolism has been identified as a determinant of susceptibility to HIV-1 infection, but its role in the development and maintenance of HIV-1 latency has not been elucidated. By combining transcriptomic, proteomic, and metabolomic analyses, we here show that transition to latent HIV-1 infection downregulates glycolysis, while viral reactivation by conventional stimuli reverts this effect. Decreased glycolytic output in latently infected cells is associated with downregulation of NAD+ /NADH. Consequently, infected cells rely on the parallel pentose phosphate pathway and its main product, NADPH, fueling antioxidant pathways maintaining HIV-1 latency. Of note, blocking NADPH downstream effectors, thioredoxin and glutathione, favors HIV-1 reactivation from latency in lymphoid and myeloid cellular models. This provides a "shock and kill effect" decreasing proviral DNA in cells from people living with HIV/AIDS. Overall, our data show that downmodulation of glycolysis is a metabolic signature of HIV-1 latency that can be exploited to target latently infected cells with eradication strategies.
Collapse
Affiliation(s)
- Iart Luca Shytaj
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Francesco Andrea Procopio
- Service of Immunology and AllergyLausanne University HospitalUniversity of LausanneLausanneSwitzerland
| | - Mohammad Tarek
- Bioinformatics DepartmentArmed Forces College of Medicine (AFCM)CairoEgypt
| | - Irene Carlon‐Andres
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | | | | | | | | | - Mattia Forcato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sheetal Sreeram
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Konstantin Leskov
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Fengchun Ye
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Bojana Lucic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Nicolly Cruz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Lishomwa C Ndhlovu
- Division of Infectious DiseasesDepartment of MedicineWeill Cornell MedicineNew YorkNYUSA
| | - Silvio Bicciato
- Department of Life SciencesUniversity of Modena and Reggio EmiliaModenaItaly
| | - Sergi Padilla‐Parra
- Division of Structural BiologyWellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Department of Infectious DiseasesFaculty of Life Sciences & MedicineKing’s College LondonLondonUK
- Randall Division of Cell and Molecular BiophysicsKing’s College LondonLondonUK
| | - Ricardo Sobhie Diaz
- Infectious Diseases DepartmentFederal University of São PauloSão PauloBrazil
| | - Amit Singh
- Indian Institute of ScienceBangaloreIndia
| | - Marina Lusic
- Department of Infectious DiseasesHeidelberg University HospitalHeidelbergGermany
- German Center for Infection ResearchHeidelbergGermany
| | - Jonathan Karn
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - David Alvarez‐Carbonell
- Department of Molecular Biology and MicrobiologyCase Western Reserve UniversityClevelandOHUSA
| | - Andrea Savarino
- Department of Infectious DiseasesItalian Institute of HealthRomeItaly
| |
Collapse
|
26
|
Yang FJ, Tan N, Zhang TY, Cheng T. Role of glutathione in ferroptosis of tumor cells. Shijie Huaren Xiaohua Zazhi 2021; 29:901-907. [DOI: 10.11569/wcjd.v29.i15.901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Ferroptosis is a type of iron-dependent lipid peroxidation and reactive oxygen species (ROS)-induced regulatory cell death discovered in recent years, which is accompanied by the increase of ROS level and the decrease of antioxidant system components, such as glutathione peroxidase in enzyme antioxidants and glutathione in non-enzyme antioxidants. Glutathione (GSH) is the predominant low-molecular-weight antioxidant with a ubiquitous distribution inside the cell, and its steady-state level depends on the absorption rate of amino acid precursors, enzyme activity, recovery of glutathione disulfide, and the balance between oxidation and reduction. At present, targeted glutathione metabolism has been used in cancer treatment widely. Compared with combination therapy, GSH depletion as a single treatment strategy has a significant effect. Therefore, further understanding of the role of GSH in ferroptosis will provide new ideas and directions for cancer treatment.
Collapse
Affiliation(s)
- Feng-Juan Yang
- Department of Human Anatomy, Basic Medical College, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Ning Tan
- Scientific Experiment Center, Department of Human Anatomy, Basic Medical College Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| | - Tian-Yu Zhang
- Department of Urology, the Affiliated Hospital, Guilin Medical University, Guilin 541004, Guangxi Zhuang Autonomous Region, China
| | - Tan Cheng
- Department of Human Anatomy, Basic Medical College, Guilin Medical University, Guilin 541199, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
27
|
Sishc BJ, Ding L, Nam TK, Heer CD, Rodman SN, Schoenfeld JD, Fath MA, Saha D, Pulliam CF, Langen B, Beardsley RA, Riley DP, Keene JL, Spitz DR, Story MD. Avasopasem manganese synergizes with hypofractionated radiation to ablate tumors through the generation of hydrogen peroxide. Sci Transl Med 2021; 13:eabb3768. [PMID: 33980575 PMCID: PMC8314936 DOI: 10.1126/scitranslmed.abb3768] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 04/20/2021] [Indexed: 12/11/2022]
Abstract
Avasopasem manganese (AVA or GC4419), a selective superoxide dismutase mimetic, is in a phase 3 clinical trial (NCT03689712) as a mitigator of radiation-induced mucositis in head and neck cancer based on its superoxide scavenging activity. We tested whether AVA synergized with radiation via the generation of hydrogen peroxide, the product of superoxide dismutation, to target tumor cells in preclinical xenograft models of non-small cell lung cancer (NSCLC), head and neck squamous cell carcinoma, and pancreatic ductal adenocarcinoma. Treatment synergy with AVA and high dose per fraction radiation occurred when mice were given AVA once before tumor irradiation and further increased when AVA was given before and for 4 days after radiation, supporting a role for oxidative metabolism. This synergy was abrogated by conditional overexpression of catalase in the tumors. In addition, in vitro NSCLC and mammary adenocarcinoma models showed that AVA increased intracellular hydrogen peroxide concentrations and buthionine sulfoximine- and auranofin-induced inhibition of glutathione- and thioredoxin-dependent hydrogen peroxide metabolism selectively enhanced AVA-induced killing of cancer cells compared to normal cells. Gene expression in irradiated tumors treated with AVA suggested that increased inflammatory, TNFα, and apoptosis signaling also contributed to treatment synergy. These results support the hypothesis that AVA, although reducing radiotherapy damage to normal tissues, acts synergistically only with high dose per fraction radiation regimens analogous to stereotactic ablative body radiotherapy against tumors by a hydrogen peroxide-dependent mechanism. This tumoricidal synergy is now being tested in a phase I-II clinical trial in humans (NCT03340974).
Collapse
Affiliation(s)
- Brock J Sishc
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Lianghao Ding
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Taek-Keun Nam
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Collin D Heer
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Samuel N Rodman
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Joshua D Schoenfeld
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Debabrata Saha
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Casey F Pulliam
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, IA 52242, USA
| | - Britta Langen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Robert A Beardsley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Dennis P Riley
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Jeffery L Keene
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA
| | - Douglas R Spitz
- Galera Therapeutics Inc., 2 West Liberty Blvd., Suite 110, Malvern, PA 19355, USA.
| | - Michael D Story
- Division of Molecular Radiation Biology, Department of Radiation Oncology, and Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
28
|
AboYoussef AM, Khalaf MM, Malak MN, Hamzawy MA. Repurposing of sildenafil as antitumour; induction of cyclic guanosine monophosphate/protein kinase G pathway, caspase-dependent apoptosis and pivotal reduction of Nuclear factor kappa light chain enhancer of activated B cells in lung cancer. J Pharm Pharmacol 2021; 73:1080-1091. [PMID: 33856030 DOI: 10.1093/jpp/rgab049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/23/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Lung cancer is one of the most frequent types of cancers that lead to death. Sildenafil is a potent inhibitor of phosphodiesterase-5 and showed potential anticancer effects, which has not yet been fully evaluated. Thus, this study aims to investigate the potential anticancer effect of sildenafil in urethane-induced lung cancer in BALB/c mice. METHODS Five-week-old male BALB/c mice were treated with either (i) normal saline only, (ii) sildenafil only 50 mg kg-1/ P.O every other day for the last four successive weeks, (iii) urethane 1.5 gm kg-1 i.p (at day 1 and day 60), (iv) carboplatin after urethane induction, or (v) sildenafil after urethane induction. KEY FINDINGS It was shown that sildenafil significantly increased the levels of cGMP and Caspase-3 with a reduction of NF-κB, Bcl-2, Cyclin D1, intercellular adhesion molecule 1, matrix metalloproteinase-2 levels and normalisation of Nrf2 along with pronounced improvement in the histological patterns. CONCLUSIONS These results indicated that sildenafil markedly induces cell cycle arrest, apoptosis and inhibits the metastatic activity through activation of cyclic guanosine monophosphate/protein kinase G pathway and down-regulation of cyclin D1 and nuclear factor kappa light chain enhancer of activated B cells with downstream anti-apoptotic gene Bcl-2, which underscores the critical importance of future using sildenafil in the treatment of lung cancer.
Collapse
Affiliation(s)
- Amira M AboYoussef
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa M Khalaf
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Marina N Malak
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Mohamed A Hamzawy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Fayoum University, Fayoum, Egypt
| |
Collapse
|
29
|
Bebber CM, Thomas ES, Stroh J, Chen Z, Androulidaki A, Schmitt A, Höhne MN, Stüker L, de Pádua Alves C, Khonsari A, Dammert MA, Parmaksiz F, Tumbrink HL, Beleggia F, Sos ML, Riemer J, George J, Brodesser S, Thomas RK, Reinhardt HC, von Karstedt S. Ferroptosis response segregates small cell lung cancer (SCLC) neuroendocrine subtypes. Nat Commun 2021; 12:2048. [PMID: 33824345 PMCID: PMC8024350 DOI: 10.1038/s41467-021-22336-4] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 03/09/2021] [Indexed: 02/06/2023] Open
Abstract
Loss of TP53 and RB1 in treatment-naïve small cell lung cancer (SCLC) suggests selective pressure to inactivate cell death pathways prior to therapy. Yet, which of these pathways remain available in treatment-naïve SCLC is unknown. Here, through systemic analysis of cell death pathway availability in treatment-naïve SCLC, we identify non-neuroendocrine (NE) SCLC to be vulnerable to ferroptosis through subtype-specific lipidome remodeling. While NE SCLC is ferroptosis resistant, it acquires selective addiction to the TRX anti-oxidant pathway. In experimental settings of non-NE/NE intratumoral heterogeneity, non-NE or NE populations are selectively depleted by ferroptosis or TRX pathway inhibition, respectively. Preventing subtype plasticity observed under single pathway targeting, combined treatment kills established non-NE and NE tumors in xenografts, genetically engineered mouse models of SCLC and patient-derived cells, and identifies a patient subset with drastically improved overall survival. These findings reveal cell death pathway mining as a means to identify rational combination therapies for SCLC.
Collapse
Affiliation(s)
- Christina M Bebber
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Emily S Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Imperial College London, London, UK
| | - Jenny Stroh
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Zhiyi Chen
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Ariadne Androulidaki
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Anna Schmitt
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Michaela N Höhne
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Lukas Stüker
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Cleidson de Pádua Alves
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Armin Khonsari
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Marcel A Dammert
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Fatma Parmaksiz
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Hannah L Tumbrink
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Filippo Beleggia
- Clinic I for Internal Medicine, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Martin L Sos
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany
| | - Jan Riemer
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
- Department for Chemistry, Institute for Biochemistry, University of Cologne, Cologne, Germany
| | - Julie George
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
| | - Susanne Brodesser
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany
| | - Roman K Thomas
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany
- Institute of Pathology, Medical Faculty, University Hospital of Cologne, Cologne, Germany
- DKFZ, German Cancer Research Center, German Cancer Consortium (DKTK), Heidelberg, Germany
| | - H Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Silvia von Karstedt
- Department of Translational Genomics, Medical Faculty, University of Cologne, Cologne, Germany.
- CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
- Center for Molecular Medicine Cologne, Medical Faculty, University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
30
|
Freire Boullosa L, Van Loenhout J, Flieswasser T, De Waele J, Hermans C, Lambrechts H, Cuypers B, Laukens K, Bartholomeus E, Siozopoulou V, De Vos WH, Peeters M, Smits ELJ, Deben C. Auranofin reveals therapeutic anticancer potential by triggering distinct molecular cell death mechanisms and innate immunity in mutant p53 non-small cell lung cancer. Redox Biol 2021; 42:101949. [PMID: 33812801 PMCID: PMC8113045 DOI: 10.1016/j.redox.2021.101949] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/22/2022] Open
Abstract
Auranofin (AF) is an FDA-approved antirheumatic drug with anticancer properties that acts as a thioredoxin reductase 1 (TrxR) inhibitor. The exact mechanisms through which AF targets cancer cells remain elusive. To shed light on the mode of action, this study provides an in-depth analysis on the molecular mechanisms and immunogenicity of AF-mediated cytotoxicity in the non-small cell lung cancer (NSCLC) cell line NCI–H1299 (p53 Null) and its two isogenic derivates with mutant p53 R175H or R273H accumulation. TrxR is highly expressed in a panel of 72 NSCLC patients, making it a valid druggable target in NSCLC for AF. The presence of mutant p53 overexpression was identified as an important sensitizer for AF in (isogenic) NSCLC cells as it was correlated with reduced thioredoxin (Trx) levels in vitro. Transcriptome analysis revealed dysregulation of genes involved in oxidative stress response, DNA damage, granzyme A (GZMA) signaling and ferroptosis. Although functionally AF appeared a potent inhibitor of GPX4 in all NCI–H1299 cell lines, the induction of lipid peroxidation and consequently ferroptosis was limited to the p53 R273H expressing cells. In the p53 R175H cells, AF mainly induced large-scale DNA damage and replication stress, leading to the induction of apoptotic cell death rather than ferroptosis. Importantly, all cell death types were immunogenic since the release of danger signals (ecto-calreticulin, ATP and HMGB1) and dendritic cell maturation occurred irrespective of (mutant) p53 expression. Finally, we show that AF sensitized cancer cells to caspase-independent natural killer cell-mediated killing by downregulation of several key targets of GZMA. Our data provides novel insights on AF as a potent, clinically available, off-patent cancer drug by targeting mutant p53 cancer cells through distinct cell death mechanisms (apoptosis and ferroptosis). In addition, AF improves the innate immune response at both cytostatic (natural killer cell-mediated killing) and cytotoxic concentrations (dendritic cell maturation).
Collapse
Affiliation(s)
- Laurie Freire Boullosa
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium.
| | - Jinthe Van Loenhout
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Tal Flieswasser
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Jorrit De Waele
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium; Department of Pathology, Antwerp University Hospital, Edegem, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| | - Bart Cuypers
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium; Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Kris Laukens
- Adrem Data Lab, Department of Computer Science, University of Antwerp, Antwerp, Belgium
| | - Esther Bartholomeus
- Department of Medical Genetics, University of Antwerp, Antwerp University Hospital, Edegem, Belgium
| | | | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Wilrijk, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium; Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, Edegem, Belgium
| | - Evelien L J Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium; Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Wilrijk, Belgium
| |
Collapse
|
31
|
Freire Boullosa L, Van Loenhout J, Deben C. Endogenous antioxidants in the prognosis and treatment of lung cancer. Cancer 2021. [DOI: 10.1016/b978-0-12-819547-5.00004-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
32
|
Triphenylphosphonium derivatives disrupt metabolism and inhibit melanoma growth in vivo when delivered via a thermosensitive hydrogel. PLoS One 2020; 15:e0244540. [PMID: 33378390 PMCID: PMC7773266 DOI: 10.1371/journal.pone.0244540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 12/11/2020] [Indexed: 12/27/2022] Open
Abstract
Despite dramatic improvements in outcomes arising from the introduction of targeted therapies and immunotherapies, metastatic melanoma is a highly resistant form of cancer with 5 year survival rates of <35%. Drug resistance is frequently reported to be associated with changes in oxidative metabolism that lead to malignancy that is non-responsive to current treatments. The current report demonstrates that triphenylphosphonium(TPP)-based lipophilic cations can be utilized to induce cytotoxicity in pre-clinical models of malignant melanoma by disrupting mitochondrial metabolism. In vitro experiments demonstrated that TPP-derivatives modified with aliphatic side chains accumulated in melanoma cell mitochondria; disrupted mitochondrial metabolism; led to increases in steady-state levels of reactive oxygen species; decreased total glutathione; increased the fraction of glutathione disulfide; and caused cell killing by a thiol-dependent process that could be rescued by N-acetylcysteine. Furthermore, TPP-derivative-induced melanoma toxicity was enhanced by glutathione depletion (using buthionine sulfoximine) as well as inhibition of thioredoxin reductase (using auranofin). In addition, there was a structure-activity relationship between the aliphatic side-chain length of TPP-derivatives (5–16 carbons), where longer carbon chains increased melanoma cell metabolic disruption and cell killing. In vivo bio-distribution experiments showed that intratumoral administration of a C14-TPP-derivative (12-carbon aliphatic chain), using a slow-release thermosensitive hydrogel as a delivery vehicle, localized the drug at the melanoma tumor site. There, it was observed to persist and decrease the growth rate of melanoma tumors. These results demonstrate that TPP-derivatives selectively induce thiol-dependent metabolic oxidative stress and cell killing in malignant melanoma and support the hypothesis that a hydrogel-based TPP-derivative delivery system could represent a therapeutic drug-delivery strategy for melanoma.
Collapse
|
33
|
Rashmi R, Jayachandran K, Zhang J, Menon V, Muhammad N, Zahner M, Ruiz F, Zhang S, Cho K, Wang Y, Huang X, Huang Y, McCormick ML, Rogers BE, Spitz DR, Patti GJ, Schwarz JK. Glutaminase Inhibitors Induce Thiol-Mediated Oxidative Stress and Radiosensitization in Treatment-Resistant Cervical Cancers. Mol Cancer Ther 2020; 19:2465-2475. [PMID: 33087507 DOI: 10.1158/1535-7163.mct-20-0271] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/24/2020] [Accepted: 10/02/2020] [Indexed: 12/19/2022]
Abstract
The purpose of this study was to determine if radiation (RT)-resistant cervical cancers are dependent upon glutamine metabolism driven by activation of the PI3K pathway and test whether PI3K pathway mutation predicts radiosensitization by inhibition of glutamine metabolism. Cervical cancer cell lines with and without PI3K pathway mutations, including SiHa and SiHa PTEN-/- cells engineered by CRISPR/Cas9, were used for mechanistic studies performed in vitro in the presence and absence of glutamine starvation and the glutaminase inhibitor, telaglenastat (CB-839). These studies included cell survival, proliferation, quantification of oxidative stress parameters, metabolic tracing with stable isotope-labeled substrates, metabolic rescue, and combination studies with L-buthionine sulfoximine (BSO), auranofin (AUR), and RT. In vivo studies of telaglenastat ± RT were performed using CaSki and SiHa xenografts grown in immune-compromised mice. PI3K-activated cervical cancer cells were selectively sensitive to glutamine deprivation through a mechanism that included thiol-mediated oxidative stress. Telaglenastat treatment decreased total glutathione pools, increased the percent glutathione disulfide, and caused clonogenic cell killing that was reversed by treatment with the thiol antioxidant, N-acetylcysteine. Telaglenastat also sensitized cells to killing by glutathione depletion with BSO, thioredoxin reductase inhibition with AUR, and RT. Glutamine-dependent PI3K-activated cervical cancer xenografts were sensitive to telaglenastat monotherapy, and telaglenastat selectively radiosensitized cervical cancer cells in vitro and in vivo These novel preclinical data support the utility of telaglenastat for glutamine-dependent radioresistant cervical cancers and demonstrate that PI3K pathway mutations may be used as a predictive biomarker for telaglenastat sensitivity.
Collapse
Affiliation(s)
- Ramachandran Rashmi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Kay Jayachandran
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Jin Zhang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,Institute for Informatics, Washington University School of Medicine, St. Louis, Missouri
| | - Vishnu Menon
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri.,School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, India
| | - Naoshad Muhammad
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael Zahner
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Fiona Ruiz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Sisi Zhang
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Kevin Cho
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Yuting Wang
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaojing Huang
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Yi Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Gary J Patti
- Department of Chemistry, Washington University School of Medicine, St. Louis, Missouri.,Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri. .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri.,Alvin J. Siteman Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
34
|
Non-competitive heme oxygenase-1 activity inhibitor reduces non-small cell lung cancer glutathione content and regulates cell proliferation. Mol Biol Rep 2020; 47:1949-1964. [PMID: 32056044 DOI: 10.1007/s11033-020-05292-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 01/24/2020] [Accepted: 01/29/2020] [Indexed: 12/30/2022]
Abstract
Non-small cell lung cancer (NSCLC) remains the leading cause of cancer-related death mainly due to its high metastatic rate. Impairment of redox homeostasis mechanisms has been previously described in NSCLC and is associated with the disease itself as well as with comorbidities such as smoking. The aim of the present in vitro study was to evaluate the effect of selective and non-competitive inhibition of heme oxygenase-1 (HO-1) on cancer redox homeostasis with particular regards to glutathione (GSH) metabolism related enzymes. NSCLC cell line (A549) was treated with the HO-1 activity inhibitor VP13/47 (10 µM) and we further evaluated cell viability, apoptosis, mitochondrial dysfunction and oxidative stress. Our results showed that VP13/47 significantly reduced HO-1 expression and total HO activity thus, resulting in a significant reduction of cell viability, proliferation and increased apoptosis, mitochondrial dysfunction and oxidative stress. Consistently with increased oxidative stress, we also showed that reduced GSH was significantly decreased and such effect was also accompanied by a significant downregulation of the enzymes involved in its biosynthesis. Taken all together our results show that selective HO-1 inhibition significantly impairs NSCLC progression and may represent a possible pharmacological strategy for new chemotherapy agents.
Collapse
|
35
|
Endo-Munoz L, Bennett TC, Topkas E, Wu SY, Thamm DH, Brockley L, Cooper M, Sommerville S, Thomson M, O'Connell K, Lane A, Bird G, Peaston A, Matigian N, Straw RC, Saunders NA. Auranofin improves overall survival when combined with standard of care in a pilot study involving dogs with osteosarcoma. Vet Comp Oncol 2019; 18:206-213. [PMID: 31441983 DOI: 10.1111/vco.12533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 08/11/2019] [Accepted: 08/16/2019] [Indexed: 12/29/2022]
Abstract
Osteosarcoma is the most common paediatric primary bone malignancy. The major cause of death in osteosarcoma is drug-resistant pulmonary metastasis. Previous studies have shown that thioredoxin reductase 2 is a driver of metastasis in osteosarcoma and can be inhibited by auranofin (AF). Moreover, studies have shown that AF significantly reduces pulmonary metastases in xenotransplant models. Here, we describe a phase I/II study of AF in canine osteosarcoma, a well-recognized spontaneous model of human osteosarcoma. We performed a single-arm multicentre pilot study of AF in combination with standard of care (SOC) (amputation + carboplatin). We recruited 40 dogs to the trial and used a historical SOC-only control group (n = 26). Dogs >15 kg received 9 mg AF q3d PO and dogs <15 kg received 6 mg q3d. Follow-up occurred over at least a 3-year period. Auranofin plus SOC improved overall survival (OS) (P = .036) in all dogs treated. The improved outcome was attributable entirely to improved OS in male dogs (P = .009). At the time of writing, 10 dogs (25%) survive without measurable disease in the treatment group with survival times ranging between 806 and 1525 days. Our study shows that AF improves OS in male dogs when combined with SOC. Our findings have translational relevance for the management of canine and human osteosarcoma. Our data justify a larger multicentre phase 2 trial in dogs and a phase I/II trial in human patients with refractory disease at the time of initial surgery.
Collapse
Affiliation(s)
- Liliana Endo-Munoz
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia.,Olivia Newton-John Cancer Research Institute, School of Cancer Medicine, La Trobe University, Melbourne, Victoria, Australia
| | | | - Eleni Topkas
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| | - Sherry Y Wu
- School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | - Douglas H Thamm
- Flint Animal Cancer Center, Colorado State University, Fort Collins, Colorado
| | - Laura Brockley
- Victorian Animal Cancer Care, Melbourne, Victoria, Australia
| | - Maureen Cooper
- Victorian Animal Cancer Care, Melbourne, Victoria, Australia
| | - Scott Sommerville
- Department of Orthopedic Oncology, Princess Alexandra Hospital and The Wesley Hospital, Brisbane, Queensland, Australia
| | - Maurine Thomson
- Veterinary Specialist Services, Brisbane, Queensland, Australia
| | | | - Amy Lane
- Small Animal Oncology, Newcastle, New South Wales, Australia
| | - Guy Bird
- Veterinary Emergency Centre and Hospital, James Cook University School of Veterinary and Biomedical Science, Townsville, Queensland, Australia
| | - Anne Peaston
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide, South Australia, Australia
| | - Nicholas Matigian
- QFAB Bioinformatics, BIODATA Institute of Molecular Bioscience, The University of Queensland, Brisbane, Australia
| | - Rodney C Straw
- Brisbane Veterinary Specialist Centre, Brisbane, Queensland, Australia.,Australian Consortium of Comparative Oncology of the Australian Animal Cancer Foundation, Brisbane, Queensland, Australia
| | - Nicholas A Saunders
- Translational Research Institute, The University of Queensland Diamantina Institute, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
36
|
Floberg JM, Wang L, Bandara N, Rashmi R, Mpoy C, Garbow JR, Rogers BE, Patti GJ, Schwarz JK. Alteration of Cellular Reduction Potential Will Change 64Cu-ATSM Signal With or Without Hypoxia. J Nucl Med 2019; 61:427-432. [PMID: 31586008 DOI: 10.2967/jnumed.119.230805] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 09/04/2019] [Indexed: 01/11/2023] Open
Abstract
Therapies targeting reductive/oxidative (redox) metabolism hold potential in cancers resistant to chemotherapy and radiation. A redox imaging marker would help identify cancers susceptible to redox-directed therapies. Copper(II)-diacetyl-bis(4-methylthiosemicarbazonato) (Cu-ATSM) is a PET tracer developed for hypoxia imaging that could potentially be used for this purpose. We aimed to demonstrate that Cu-ATSM signal is dependent on cellular redox state, irrespective of hypoxia. Methods: We investigated the relationship between 64Cu-ATSM signal and redox state in human cervical and colon cancer cells. We altered redox state using drug strategies and single-gene mutations in isocitrate dehydrogenases (IDH1/2). Concentrations of reducing molecules were determined by spectrophotometry and liquid chromatography-mass spectrometry and compared with 64Cu-ATSM signal in vitro. Mouse models of cervical cancer were used to evaluate the relationship between 64Cu-ATSM signal and levels of reducing molecules in vivo, as well as to evaluate the change in 64Cu-ATSM signal after redox-active drug treatment. Results: A correlation exists between baseline 64Cu-ATSM signal and cellular concentration of glutathione, nicotinamide adenine dinucleotide phosphate (NADPH), and nicotinamide adenine dinucleotide (NADH). Altering NADH and NADPH metabolism using drug strategies and IDH1 mutations resulted in significant changes in 64Cu-ATSM signal under normoxic conditions. Hypoxia likewise changed 64Cu-ATSM signal, but treatment of hypoxic cells with redox-active drugs resulted in a more dramatic change than hypoxia alone. A significant difference in NADPH was seen between cervical tumor orthotopic implants in vivo, without a corresponding difference in 64Cu-ATSM signal. After treatment with β-lapachone, there was a change in 64Cu-ATSM signal in xenograft tumors smaller than 50 mg but not in larger tumors. Conclusion: 64Cu-ATSM signal reflects redox state, and altering redox state impacts 64Cu-ATSM metabolism. Our animal data suggest there are other modulating factors in vivo. These findings have implications for the use of 64Cu-ATSM as a predictive marker for redox therapies, though further in vivo work is needed.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Lingjue Wang
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Nilantha Bandara
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Ramachandran Rashmi
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Joel R Garbow
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, Missouri.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri; and
| | - Buck E Rogers
- Department of Radiation Oncology, Washington University, St. Louis, Missouri
| | - Gary J Patti
- Department of Chemistry, Washington University, St. Louis, Missouri
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University, St. Louis, Missouri.,Alvin J. Siteman Cancer Center, Washington University, St. Louis, Missouri; and.,Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri
| |
Collapse
|
37
|
Bi J, Yang S, Li L, Dai Q, Borcherding N, Wagner BA, Buettner GR, Spitz DR, Leslie KK, Zhang J, Meng X. Metadherin enhances vulnerability of cancer cells to ferroptosis. Cell Death Dis 2019; 10:682. [PMID: 31527591 PMCID: PMC6746770 DOI: 10.1038/s41419-019-1897-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/29/2019] [Accepted: 08/20/2019] [Indexed: 02/07/2023]
Abstract
Ferroptosis is an iron-dependent, non-apoptotic form of regulated cell death driven by lipid hydroperoxides within biological membranes. Although therapy-resistant mesenchymal-high cancers are particularly vulnerable to ferroptosis inducers, especially phospholipid glutathione peroxidase 4 (GPx4) inhibitors, the underlying mechanism is yet to be deciphered. As such, the full application of GPx4 inhibitors in cancer therapy remains challenging. Here we demonstrate that metadherin (MTDH) confers a therapy-resistant mesenchymal-high cell state and enhanced sensitivity to inducers of ferroptosis. Mechanistically, MTDH inhibited GPx4, as well as the solute carrier family 3 member 2 (SLC3A2, a system Xc- heterodimerization partner), at both the messenger RNA and protein levels. Our metabolomic studies demonstrated that MTDH reduced intracellular cysteine, but increased glutamate levels, ultimately decreasing levels of glutathione and setting the stage for increased vulnerability to ferroptosis. Finally, we observed an enhanced antitumor effect when we combined various ferroptosis inducers both in vitro and in vivo; the level of MTDH correlated with the ferroptotic effect. We have demonstrated for the first time that MTDH enhances the vulnerability of cancer cells to ferroptosis and may serve as a therapeutic biomarker for future ferroptosis-centered cancer therapy.
Collapse
Affiliation(s)
- Jianling Bi
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA
| | - Shujie Yang
- Department of Pathology, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Long Li
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA
| | - Qun Dai
- Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Iowa City, IA, 52242, USA.,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 2330 Shawnee Mission Pkwy #210, Westwood, KS, 66205, USA
| | - Nicholas Borcherding
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Medical Science Training Program (MSTP), Iowa City, IA, 52242, USA
| | - Brett A Wagner
- Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Garry R Buettner
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Douglas R Spitz
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.,Free Radical Radiation Biology, and Division of the Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA, 52242, USA
| | - Kimberly K Leslie
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA.,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA
| | - Jun Zhang
- Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA. .,Department of Internal Medicine, Division of Hematology, Oncology and Blood & Marrow Transplantation, Iowa City, IA, 52242, USA. .,Division of Medical Oncology, Department of Internal Medicine, University of Kansas Cancer Center, University of Kansas Medical Center, 2330 Shawnee Mission Pkwy #210, Westwood, KS, 66205, USA. .,Department of Cancer Biology, University of Kansas Cancer Center, University of Kansas Medical Center, 3005B Wahl Hall East, 3901 Rainbow Blvd, Kansas City, KS, 66160, USA.
| | - Xiangbing Meng
- Department of Obstetrics and Gynecology, Iowa City, IA, 52242, USA. .,Department of Pathology, Iowa City, IA, 52242, USA. .,Holden Comprehensive Cancer Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
38
|
Targeting Glutathione Metabolism: Partner in Crime in Anticancer Therapy. Nutrients 2019; 11:nu11081926. [PMID: 31426306 PMCID: PMC6724225 DOI: 10.3390/nu11081926] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 12/27/2022] Open
Abstract
Glutathione (GSH) is the predominant low-molecular-weight antioxidant with a ubiquitous distribution inside the cell. The steady-state level of cellular GSH is dependent on the balance between synthesis, hydrolysis, recycling of glutathione disulphide (GSSG) as well as cellular extrusion of reduced, oxidized, or conjugated-forms. The augmented oxidative stress typical of cancer cells is accompanied by an increase of glutathione levels that confers them growth advantage and resistance to a number of chemotherapeutic agents. Targeting glutathione metabolism has been widely investigated for cancer treatment although GSH depletion as single therapeutic strategy has resulted largely ineffective if compared with combinatorial approaches. In this review, we circumstantiate the role of glutathione in tumour development and progression focusing on how interfering with different steps of glutathione metabolism can be exploited for therapeutic purposes. A dedicated section on synthetic lethal interactions with GSH modulators will highlight the promising option of harnessing glutathione metabolism for patient-directed therapy in cancer.
Collapse
|
39
|
Kshattry S, Saha A, Gries P, Tiziani S, Stone E, Georgiou G, DiGiovanni J. Enzyme-mediated depletion of l-cyst(e)ine synergizes with thioredoxin reductase inhibition for suppression of pancreatic tumor growth. NPJ Precis Oncol 2019; 3:16. [PMID: 31231686 PMCID: PMC6546752 DOI: 10.1038/s41698-019-0088-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 05/01/2019] [Indexed: 01/05/2023] Open
Abstract
Perturbing redox homeostasis potentially constitutes a selective cancer-killing strategy. An engineered human enzyme, cyst(e)inase that degrades extracellular cysteine (l-Cys) and cystine (CSSC) leading to depletion of intracellular l-Cys and glutathione (GSH) was evaluated for its effects on pancreatic cancer cell lines. Cyst(e)inase caused oxidative stress and apoptosis in only Panc1 cells, whereas MIA-PaCa2 and BxPC3 cells demonstrated survival under conditions of cyst(e)inase-mediated l-Cys depletion through maintenance of mitochondrial metabolism and lower levels of reactive oxygen species (ROS). A correlation was also observed between thioredoxin 1 protein levels and resistance to cyst(e)inase treatment. Notably, cyst(e)inase in combination with auranofin, a thioredoxin reductase inhibitor, caused a synergistic increase in mitochondrial ROS and apoptosis and inhibition of mitophagy in the more resistant cells. In addition, auranofin treatment sensitized the more resistant pancreatic cancer xenografts to cyst(e)inase without systemic toxicity. These data provide strong rationale to further investigate therapeutic strategies that target multiple antioxidant pathways for treatment of pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Sabin Kshattry
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723 USA
| | - Achinto Saha
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723 USA
| | - Paul Gries
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723 USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723 USA
| | - Everett Stone
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712 USA
| | - George Georgiou
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712 USA
- Department of Chemical Engineering, The University of Texas at Austin, Austin, Texas 78712 USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, Dell Pediatric Research Institute, The University of Texas at Austin, 1400 Barbara Jordan Blvd, Austin, TX 78723 USA
| |
Collapse
|
40
|
Jia JJ, Geng WS, Wang ZQ, Chen L, Zeng XS. The role of thioredoxin system in cancer: strategy for cancer therapy. Cancer Chemother Pharmacol 2019; 84:453-470. [PMID: 31079220 DOI: 10.1007/s00280-019-03869-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 05/04/2019] [Indexed: 01/16/2023]
|
41
|
Floberg JM, Schwarz JK. Manipulation of Glucose and Hydroperoxide Metabolism to Improve Radiation Response. Semin Radiat Oncol 2019; 29:33-41. [PMID: 30573182 DOI: 10.1016/j.semradonc.2018.10.007] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dysregulated glucose and redox metabolism are near universal features of cancers. They therefore represent potential selectively toxic metabolic targets. This review outlines the preclinical and clinical data for targeting glucose and hydroperoxide metabolism in cancer, with a focus on drug strategies that have the most available evidence. In particular, inhibition of glycolysis using 2-deoxyglucose, and inhibition of redox metabolism using the glutathione pathway inhibitor buthionine sulfoximine and the thioredoxin pathway inhibitor auranofin, have shown promise in preclinical studies to increase sensitivity to chemotherapy and radiation by increasing intracellular oxidative stress. Combined inhibition of glycolysis, glutathione, and thioredoxin pathways sensitizes highly glycolytic, radioresistant cancer models in vitro and in vivo. Although the preclinical data support this approach, clinical data are limited to exploratory trials using a single drug in combination with either chemotherapy or radiation. Open research questions include optimizing drug strategies for targeting glycolysis and redox metabolism, determining the appropriate timing for administering this therapy with concurrent chemotherapy and radiation, and identifying biomarkers to determine the cancers that would benefit most from this approach. Given the quality of preclinical evidence, dual targeting of glycolysis and redox metabolism in combination with chemotherapy and radiation should be further evaluated in clinical trials.
Collapse
Affiliation(s)
- John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, MO; Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO; Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO.
| |
Collapse
|
42
|
Li C, Sun L, Lin H, Qin Z, Tu J, Li J, Chen K, Babu V S, Lin L. Glutamine starvation inhibits snakehead vesiculovirus replication via inducing autophagy associated with the disturbance of endogenous glutathione pool. FISH & SHELLFISH IMMUNOLOGY 2019; 86:1044-1052. [PMID: 30590160 DOI: 10.1016/j.fsi.2018.12.041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/15/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Autophagy is a degradation cellular process which also plays an important role in virus infection. Glutamine is an essential substrate for the synthesis of glutathione which is the most abundant thiol-containing compound within the cells and plays a key role in the antioxidant defense and intracellular signaling. There is an endogenous cellular glutathione pool which consists of two forms of glutathione, i.e. the reduced form (GSH) and the oxidized form (GSSG). GSH serves as an intracellular antioxidant to maintain cellular redox homeostasis by scavenging free radicals and other reactive oxygen species (ROS) which can lead to autophagy. Under physiological conditions, the concentration of GSSG is only about 1% of total glutathione, while stress condition can result in a transient increase of GSSG. In our previous report, we showed that the replication of snakehead fish vesiculovirus (SHVV) was significant inhibited in SSN-1 cells cultured in the glutamine-starvation medium, however the underlying mechanism remains enigmatic. Here, we revealed that the addition of L-Buthionine-sulfoximine (BSO), a specific inhibitor of the GSH synthesis, could decrease the γ-glutamate-cysteine ligase (GCL) activity and GSH levels, resulting in autophagy and significantly inhibition of the replication of SHVV in SSN-1 cells cultured in the complete medium. On the other hand, the replication of SHVV was rescued and the autophagy was inhibited in the SSN-1 cells cultured in the glutamine-starvation medium supplemented with additional GSH. Furthermore, the inhibition of the synthesis of GSH had not significantly affected the generation of reactive oxygen species (ROS). However, it significantly decreased level of GSH and enhanced the level of GSSG, resulting in the decrease of the value of GSH/GSSG, indicating that it promoted the cellular oxidative stress. Overall, the present study demonstrated that glutamine starvation impaired the replication of SHVV in SSN-1 cells via inducing autophagy associated with the disturbance of the endogenous glutathione pool.
Collapse
Affiliation(s)
- Cheng Li
- Department of Core Facility, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Lindan Sun
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Hanzuo Lin
- Faculty of Arts, University of British Columbia, Vancouver, British Columbia, V6T1W9, Canada
| | - Zhendong Qin
- Department of Core Facility, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Jiagang Tu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jun Li
- Department of Core Facility, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China
| | - Keping Chen
- Institute of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, 212000, China
| | - Sarath Babu V
- Department of Core Facility, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China.
| | - Li Lin
- Department of Core Facility, Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, Guangdong Provincial Key Laboratory of Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China; Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei, 430070, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China.
| |
Collapse
|
43
|
Chen X, Mims J, Huang X, Singh N, Motea E, Planchon SM, Beg M, Tsang AW, Porosnicu M, Kemp ML, Boothman DA, Furdui CM. Modulators of Redox Metabolism in Head and Neck Cancer. Antioxid Redox Signal 2018; 29:1660-1690. [PMID: 29113454 PMCID: PMC6207163 DOI: 10.1089/ars.2017.7423] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 11/04/2017] [Indexed: 12/12/2022]
Abstract
SIGNIFICANCE Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment. Recent Advances: Emerging targeted therapies against other proteins of interest as well as programmed cell death protein 1 and programmed death-ligand 1 immunotherapies are being explored in clinical trials. CRITICAL ISSUES The disease heterogeneity, invasiveness, and resistance to standard of care RT or chemoradiation therapy continue to constitute significant roadblocks for treatment and patients' quality of life (QOL) despite improvements in treatment modality and the emergence of new therapies over the past two decades. FUTURE DIRECTIONS As reviewed here, alterations in redox metabolism occur at all stages of HNSCC management, providing opportunities for improved prevention, early detection, response to therapies, and QOL. Bioinformatics and computational systems biology approaches are key to integrate redox effects with multiomics data from cells and clinical specimens and to identify redox modifiers or modifiable target proteins to achieve improved clinical outcomes. Antioxid. Redox Signal.
Collapse
Affiliation(s)
- Xiaofei Chen
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jade Mims
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Xiumei Huang
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Naveen Singh
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Edward Motea
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | | | - Muhammad Beg
- Department of Internal Medicine, Division of Hematology-Oncology, UT Southwestern Medical Center, Dallas, Texas
| | - Allen W. Tsang
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mercedes Porosnicu
- Department of Internal Medicine, Section of Hematology and Oncology, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Melissa L. Kemp
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - David A. Boothman
- Departments of Pharmacology, Radiation Oncology, and Simmons Comprehensive Cancer Center, UT Southwestern Medical Center, Dallas, Texas
| | - Cristina M. Furdui
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| |
Collapse
|
44
|
Falls KC, Sharma RA, Lawrence YR, Amos RA, Advani SJ, Ahmed MM, Vikram B, Coleman CN, Prasanna PG. Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities: Current Challenges and New Approaches: Report of the Symposium Held at the 63rd Annual Meeting of the Radiation Research Society, 15-18 October 2017; Cancun, Mexico. Radiat Res 2018; 190:350-360. [PMID: 30280985 PMCID: PMC6322391 DOI: 10.1667/rr15121.1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The National Cancer Institute's (NCI) Radiation Research Program (RRP) is endeavoring to increase the relevance of preclinical research to improve outcomes of radiation therapy for cancer patients. These efforts include conducting symposia, workshops and educational sessions at annual meetings of professional societies, including the American Association of Physicists in Medicine, American Society of Radiation Oncology, Radiation Research Society (RRS), Radiosurgery Society, Society of Nuclear Medicine and Molecular Imaging, Society for Immunotherapy of Cancer and the American Association of Immunology. A symposium entitled "Radiation-Drug Combinations to Improve Clinical Outcomes and Reduce Normal Tissue Toxicities" was conducted by the NCI's RRP during the 63rd Annual Meeting of the RRS on October 16, 2017 in Cancun, Mexico. In this symposium, discussions were held to address the challenges in developing radiation-drug combinations, optimal approaches with scientific evidence to replace standard-of-care, approaches to reduce normal tissue toxicities and enhance post-treatment quality-of-life and recent advances in antibody-drug conjugates. The symposium included two broad overview talks followed by two talks illustrating examples of radiation-drug combinations under development. The overview talks identified the essential preclinical infrastructure necessary to accelerate progress in the development of evidence and important challenges in the translation of drug combinations to the clinic from the laboratory. Also addressed, in the example talks (in light of the suggested guidelines and identified challenges), were the development and translation of novel antibody drug conjugates as well as repurposing of drugs to improve efficacy and reduce normal tissue toxicities. Participation among a cross section of clinicians, scientists and scholars-in-training alike who work in this focused area highlighted the importance of continued discussions to identify and address complex challenges in this emerging area in radiation oncology.
Collapse
Affiliation(s)
- Kelly C. Falls
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Carver College of Medicine, Holden Comprehensive Cancer Center, The University of Iowa, Iowa City, Iowa 52242
- Scholar-in-Training, Radiation Research Society
| | - Ricky A. Sharma
- NHR University College of London Hospitals Biomedical Research Center, UCL Cancer Institute, University College London, United Kingdom
| | - Yaacov R. Lawrence
- Center for Translational Research in Radiation Oncology, Department of Radiation Oncology, Sheba Medical Center affiliated with Tel Aviv University, Tel HaShomer 5265601, Israel
| | - Richard A. Amos
- Proton and Advanced Radiotherapy Group, Department of Medical Physics and Biomedical Engineering, University College London, London, United Kingdom
| | - Sunil J. Advani
- Department of Radiation Medicine and Applied Sciences, University of California, San Diego, Moores Cancer Center, La Jolla, California 92093
| | - Mansoor M. Ahmed
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - Bhadrasain Vikram
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - C. Norman Coleman
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| | - Pataje G. Prasanna
- National Cancer Institute, Division of Cancer Treatment and Diagnosis, Radiation Research Program, Bethesda, Maryland 20892
| |
Collapse
|
45
|
Luo M, Shang L, Brooks MD, Jiagge E, Zhu Y, Buschhaus JM, Conley S, Fath MA, Davis A, Gheordunescu E, Wang Y, Harouaka R, Lozier A, Triner D, McDermott S, Merajver SD, Luker GD, Spitz DR, Wicha MS. Targeting Breast Cancer Stem Cell State Equilibrium through Modulation of Redox Signaling. Cell Metab 2018; 28:69-86.e6. [PMID: 29972798 PMCID: PMC6037414 DOI: 10.1016/j.cmet.2018.06.006] [Citation(s) in RCA: 252] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 03/13/2018] [Accepted: 06/08/2018] [Indexed: 12/16/2022]
Abstract
Although breast cancer stem cells (BCSCs) display plasticity transitioning between quiescent mesenchymal-like (M) and proliferative epithelial-like (E) states, how this plasticity is regulated by metabolic or oxidative stress remains poorly understood. Here, we show that M- and E-BCSCs rely on distinct metabolic pathways and display markedly different sensitivities to inhibitors of glycolysis and redox metabolism. Metabolic or oxidative stress generated by 2DG, H2O2, or hypoxia promotes the transition of ROSlo M-BCSCs to a ROShi E-state. This transition is reversed by N-acetylcysteine and mediated by activation of the AMPK-HIF1α axis. Moreover, E-BCSCs exhibit robust NRF2-mediated antioxidant responses, rendering them vulnerable to ROS-induced differentiation and cytotoxicity following suppression of NRF2 or downstream thioredoxin (TXN) and glutathione (GSH) antioxidant pathways. Co-inhibition of glycolysis and TXN and GSH pathways suppresses tumor growth, tumor-initiating potential, and metastasis by eliminating both M- and E-BCSCs. Exploiting metabolic vulnerabilities of distinct BCSC states provides a novel therapeutic approach targeting this critical tumor cell population.
Collapse
Affiliation(s)
- Ming Luo
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Li Shang
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Michael D Brooks
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Evelyn Jiagge
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongyou Zhu
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Johanna M Buschhaus
- Center of Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sarah Conley
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Melissa A Fath
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - April Davis
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elizabeth Gheordunescu
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yongfang Wang
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ramdane Harouaka
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ann Lozier
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Daniel Triner
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sean McDermott
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sofia D Merajver
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gary D Luker
- Center of Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, University of Iowa, Iowa City, IA 52242, USA
| | - Max S Wicha
- Department of Internal Medicine, Division of Hematology & Oncology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Zhang H, Rose BJ, Pyuen AA, Thamm DH. In vitro antineoplastic effects of auranofin in canine lymphoma cells. BMC Cancer 2018; 18:522. [PMID: 29724201 PMCID: PMC5934856 DOI: 10.1186/s12885-018-4450-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/27/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The orally available gold complex auranofin (AF) has been used in humans, primarily as an antirheumatic/immunomodulatory agent. It has been safely administered to healthy dogs to establish pharmacokinetic parameters for oral administration, and has also been used as a treatment in some dogs with immune-mediated conditions. Multiple in vitro studies have recently suggested that AF may possess antineoplastic properties. Spontaneous canine lymphoma may be a very useful translational model for the study of human lymphoma, prompting the evaluation of AF in canine lymphoma cells. METHODS We investigated the antineoplastic activity of AF in 4 canine lymphoid tumor derived cell lines through measurements of proliferation, apoptosis, thioredoxin reductase (TrxR) activity and generation of reactive oxygen species (ROS), and detected the effects of AF when combined with conventional cytotoxic drugs using the Chou and Talalay method. We also evaluated the antiproliferative effects of AF in primary canine lymphoma cells using a bioreductive fluorometric assay. RESULTS At concentrations that appear clinically achievable in humans, AF demonstrated potent antiproliferative and proapoptotic effects in canine lymphoid tumor cell lines. TrxR inhibition and increased ROS production was observed following AF treatment. Moreover, a synergistic antiproliferative effect was observed when AF was combined with lomustine or doxorubicin. CONCLUSIONS Auranofin appears to inhibit the growth and initiate apoptosis in canine lymphoma cells in vitro at clinically achievable concentrations. Therefore, this agent has the potential to have near-term benefit for the treatment of canine lymphoma, as well as a translational model for human lymphoma. Decreased TrxR activity and increasing ROS production may be useful biomarkers of drug exposure.
Collapse
Affiliation(s)
- Hong Zhang
- Department of Veterinary Clinical Science, College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Barbara J Rose
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80523-1620, USA
| | - Alex A Pyuen
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80523-1620, USA.,Present Address: Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, The University of Georgia, 2200 College Station Rd, Athens, GA, 30602, USA
| | - Douglas H Thamm
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, 300 West Drake Road, Fort Collins, CO, 80523-1620, USA. .,Cell and Molecular Biology Graduate Program, Colorado State University, Fort Collins, CO, USA. .,Comprehensive Cancer Center, University of Colorado, Aurora, CO, USA.
| |
Collapse
|
47
|
Hyter S, Hirst J, Pathak H, Pessetto ZY, Koestler DC, Raghavan R, Pei D, Godwin AK. Developing a genetic signature to predict drug response in ovarian cancer. Oncotarget 2018; 9:14828-14848. [PMID: 29599910 PMCID: PMC5871081 DOI: 10.18632/oncotarget.23663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 12/13/2017] [Indexed: 12/15/2022] Open
Abstract
There is a lack of personalized treatment options for women with recurrent platinum-resistant ovarian cancer. Outside of bevacizumab and a group of poly ADP-ribose polymerase inhibitors, few options are available to women that relapse. We propose that efficacious drug combinations can be determined via molecular characterization of ovarian tumors along with pre-established pharmacogenomic profiles of repurposed compounds. To that end, we selectively performed multiple two-drug combination treatments in ovarian cancer cell lines that included reactive oxygen species inducers and HSP90 inhibitors. This allowed us to select cell lines that exhibit disparate phenotypes of proliferative inhibition to a specific drug combination of auranofin and AUY922. We profiled altered mechanistic responses from these agents in both reactive oxygen species and HSP90 pathways, as well as investigated PRKCI and lncRNA expression in ovarian cancer cell line models. Generation of dual multi-gene panels implicated in resistance or sensitivity to this drug combination was produced using RNA sequencing data and the validity of the resistant signature was examined using high-density RT-qPCR. Finally, data mining for the prevalence of these signatures in a large-scale clinical study alluded to the prevalence of resistant genes in ovarian tumor biology. Our results demonstrate that high-throughput viability screens paired with reliable in silico data can promote the discovery of effective, personalized therapeutic options for a currently untreatable disease.
Collapse
Affiliation(s)
- Stephen Hyter
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeff Hirst
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Harsh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| | - Ziyan Y. Pessetto
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
| | - Devin C. Koestler
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Rama Raghavan
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Dong Pei
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Andrew K. Godwin
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Cancer Center, University of Kansas Medical Center, Kansas City, KS, USA
| |
Collapse
|
48
|
Colla R, Izzotti A, De Ciucis C, Fenoglio D, Ravera S, Speciale A, Ricciarelli R, Furfaro AL, Pulliero A, Passalacqua M, Traverso N, Pronzato MA, Domenicotti C, Marengo B. Glutathione-mediated antioxidant response and aerobic metabolism: two crucial factors involved in determining the multi-drug resistance of high-risk neuroblastoma. Oncotarget 2018; 7:70715-70737. [PMID: 27683112 PMCID: PMC5342585 DOI: 10.18632/oncotarget.12209] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
Neuroblastoma, a paediatric malignant tumor, is initially sensitive to etoposide, a drug to which many patients develop chemoresistance. In order to investigate the molecular mechanisms responsible for etoposide chemoresistance, HTLA-230, a human MYCN-amplified neuroblastoma cell line, was chronically treated with etoposide at a concentration that in vitro mimics the clinically-used dose. The selected cells (HTLA-Chr) acquire multi-drug resistance (MDR), becoming less sensitive than parental cells to high doses of etoposide or doxorubicin. MDR is due to several mechanisms that together contribute to maintaining non-toxic levels of H2O2. In fact, HTLA-Chr cells, while having an efficient aerobic metabolism, are also characterized by an up-regulation of catalase activity and higher levels of reduced glutathione (GSH), a thiol antioxidant compound. The combination of such mechanisms contributes to prevent membrane lipoperoxidation and cell death. Treatment of HTLA-Chr cells with L-Buthionine-sulfoximine, an inhibitor of GSH biosynthesis, markedly reduces their tumorigenic potential that is instead enhanced by the exposure to N-Acetylcysteine, able to promote GSH synthesis. Collectively, these results demonstrate that GSH and GSH-related responses play a crucial role in the acquisition of MDR and suggest that GSH level monitoring is an efficient strategy to early identify the onset of drug resistance and to control the patient's response to therapy.
Collapse
Affiliation(s)
- Renata Colla
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Alberto Izzotti
- Department of Health Sciences, University of Genova, Genova, Italy.,IRCCS AOU San Martino IST Genova, Genova, Italy
| | - Chiara De Ciucis
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Daniela Fenoglio
- Center of Excellence for Biomedical Research, Department of Internal Medicine, University of Genova, Genova, Italy
| | - Silvia Ravera
- Department of Pharmacy, University of Genova, Genova, Italy
| | - Andrea Speciale
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | | | | | - Mario Passalacqua
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Nicola Traverso
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine, University of Genova, Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine, University of Genova, Genova, Italy
| |
Collapse
|
49
|
Stafford WC, Peng X, Olofsson MH, Zhang X, Luci DK, Lu L, Cheng Q, Trésaugues L, Dexheimer TS, Coussens NP, Augsten M, Ahlzén HSM, Orwar O, Östman A, Stone-Elander S, Maloney DJ, Jadhav A, Simeonov A, Linder S, Arnér ESJ. Irreversible inhibition of cytosolic thioredoxin reductase 1 as a mechanistic basis for anticancer therapy. Sci Transl Med 2018; 10:eaaf7444. [PMID: 29444979 PMCID: PMC7059553 DOI: 10.1126/scitranslmed.aaf7444] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 02/01/2017] [Accepted: 12/14/2017] [Indexed: 12/25/2022]
Abstract
Cancer cells adapt to their inherently increased oxidative stress through activation of the glutathione (GSH) and thioredoxin (TXN) systems. Inhibition of both of these systems effectively kills cancer cells, but such broad inhibition of antioxidant activity also kills normal cells, which is highly unwanted in a clinical setting. We therefore evaluated targeting of the TXN pathway alone and, more specifically, selective inhibition of the cytosolic selenocysteine-containing enzyme TXN reductase 1 (TXNRD1). TXNRD1 inhibitors were discovered in a large screening effort and displayed increased specificity compared to pan-TXNRD inhibitors, such as auranofin, that also inhibit the mitochondrial enzyme TXNRD2 and additional targets. For our lead compounds, TXNRD1 inhibition correlated with cancer cell cytotoxicity, and inhibitor-triggered conversion of TXNRD1 from an antioxidant to a pro-oxidant enzyme correlated with corresponding increases in cellular production of H2O2 In mice, the most specific TXNRD1 inhibitor, here described as TXNRD1 inhibitor 1 (TRi-1), impaired growth and viability of human tumor xenografts and syngeneic mouse tumors while having little mitochondrial toxicity and being better tolerated than auranofin. These results display the therapeutic anticancer potential of irreversibly targeting cytosolic TXNRD1 using small molecules and present potent and selective TXNRD1 inhibitors. Given the pronounced up-regulation of TXNRD1 in several metastatic malignancies, it seems worthwhile to further explore the potential benefit of specific irreversible TXNRD1 inhibitors for anticancer therapy.
Collapse
Affiliation(s)
- William C Stafford
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
| | - Xiaoxiao Peng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Maria Hägg Olofsson
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Xiaonan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Diane K Luci
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Li Lu
- Karolinska Experimental Research and Imaging Center, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
| | - Qing Cheng
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Lionel Trésaugues
- Division of Biophysics, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Thomas S Dexheimer
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Nathan P Coussens
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Martin Augsten
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Hanna-Stina Martinsson Ahlzén
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Owe Orwar
- Oblique Therapeutics AB, SE 413 46 Gothenburg, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - Arne Östman
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- University of Bergen, Postboks 7804, N-5020 Bergen, Norway
| | - Sharon Stone-Elander
- Department of Neuroradiology, Positron Emission Tomography Radiochemistry, Karolinska University Hospital, SE 171 76 Stockholm, Sweden
- Department of Clinical Neurosciences, Karolinska Institutet, SE 171 77 Stockholm, Sweden
| | - David J Maloney
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Ajit Jadhav
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Anton Simeonov
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-4874, USA
| | - Stig Linder
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 77 Stockholm, Sweden
- Division of Drug Research, Department of Medicine and Health, Linköping University, SE 581 83 Linköping, Sweden
| | - Elias S J Arnér
- Division of Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, SE 171 77 Stockholm, Sweden.
| |
Collapse
|
50
|
Rashmi R, Huang X, Floberg JM, Elhammali AE, McCormick ML, Patti GJ, Spitz DR, Schwarz JK. Radioresistant Cervical Cancers Are Sensitive to Inhibition of Glycolysis and Redox Metabolism. Cancer Res 2018; 78:1392-1403. [PMID: 29339540 DOI: 10.1158/0008-5472.can-17-2367] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/21/2017] [Accepted: 01/10/2018] [Indexed: 12/14/2022]
Abstract
Highly glycolytic cervical cancers largely resist treatment by cisplatin and coadministered pelvic irradiation as the present standard of care. In this study, we investigated the effects of inhibiting glycolysis and thiol redox metabolism to evaluate them as alternate treatment strategies in these cancers. In a panel of multiple cervical cancer cell lines, we evaluated sensitivity to inhibition of glycolysis (2-deoxyglucose, 2-DG) with or without simultaneous inhibition of glutathione and thioredoxin metabolism (BSO/AUR). Intracellular levels of total and oxidized glutathione, thioredoxin reductase activity, and indirect measures of intracellular reactive oxygen species were compared before and after treatment. Highly radioresistant cells were the most sensitive to 2-DG, whereas intermediate radioresistant cells were sensitive to 2-DG plus BSO/AUR. In response to 2-DG/BSO/AUR treatment, we observed increased levels of intracellular oxidized glutathione, redox-sensitive dye oxidation, and decreased glucose utilization via multiple metabolic pathways including the tricarboxylic acid cycle. 2-DG/BSO/AUR treatment delayed the growth of tumors composed of intermediate radioresistant cells and effectively radiosensitized these tumors at clinically relevant radiation doses both in vitro and in vivo Overall, our results support inhibition of glycolysis and intracellular redox metabolism as an effective alternative drug strategy for the treatment of highly glycolytic and radioresistant cervical cancers.Significance: This study suggests a simple metabolic approach to strike at an apparent Achilles' heel in highly glycolytic, radioresistant forms of cervical cancers, possibly with broader applications in cancer therapy. Cancer Res; 78(6); 1392-403. ©2018 AACR.
Collapse
Affiliation(s)
- Ramachandran Rashmi
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Xiaojing Huang
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - John M Floberg
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri
| | - Adnan E Elhammali
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Michael L McCormick
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Gary J Patti
- Departments of Chemistry and Medicine, Washington University, St. Louis, Missouri
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, Holden Comprehensive Cancer Center, University of Iowa, Iowa City, Iowa
| | - Julie K Schwarz
- Department of Radiation Oncology, Washington University School of Medicine, St. Louis, Missouri. .,Department of Cell Biology and Physiology, Alvin J. Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|