1
|
Wu S, Cheng L, Luo T, Makeudom A, Wang L, Krisanaprakornkit S. Overexpression of a disintegrin and metalloproteinase 9 (ADAM9) in relation to poor prognosis of patients with oral squamous cell carcinoma. Discov Oncol 2024; 15:582. [PMID: 39441449 PMCID: PMC11499557 DOI: 10.1007/s12672-024-01422-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
This study investigates the expressions of ADAM9, CDCP1 and t-PA in OSCC and their impacts on patient prognosis. Previous research has demonstrated the overexpression of ADAM9 and activation of plasminogen activator in OSCC, but CDCP1's role remains unexplored. While these biomolecules are known to contribute to lung cancer metastasis, their concurrent expressions in OSCC have not been thoroughly examined. Our aim is to assess the expressions of ADAM9, CDCP1, and t-PA in OSCC specimens, compare them with normal oral tissues, and explore their correlation with OSCC's clinicopathological features and patient survival outcomes.
Collapse
Affiliation(s)
- Shuangjiang Wu
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Lang Cheng
- School of Stomatology, Southwest Medical University, Luzhou, China
| | - Tao Luo
- Department of Pathology, The Fifth Hospital of Deyang, Deyang, China
| | - Anupong Makeudom
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, 365 Moo 12, Nang Lae Subdistrict, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand
| | - Lei Wang
- Department of Oral and Maxillofacial Surgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
- Department of Oral and Maxillofacial Surgery, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou, China
| | - Suttichai Krisanaprakornkit
- School of Dentistry, Mae Fah Luang University Medical Center, Mae Fah Luang University, 365 Moo 12, Nang Lae Subdistrict, Mueang Chiang Rai District, Chiang Rai, 57100, Thailand.
| |
Collapse
|
2
|
Hosseinpour-Soleimani F, Salmasi Z, Ghasemi Y, Tajbakhsh A, Savardashtaki A. MicroRNAs and proteolytic cleavage of receptors in cancers: A comprehensive review of regulatory interactions and therapeutic implications. Heliyon 2024; 10:e28167. [PMID: 38560206 PMCID: PMC10979173 DOI: 10.1016/j.heliyon.2024.e28167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/13/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024] Open
Abstract
Cancer remains a challenging disease worldwide, necessitating innovative approaches to better comprehend its underlying molecular mechanisms and devise effective therapeutic strategies. Over the past decade, microRNAs (miRNAs) have emerged as crucial players in cancer progression due to their regulatory roles in various cellular processes. Moreover, the involvement of unwanted soluble receptors has gained increasing attention because they contribute to tumorigenesis or drug resistance by disrupting normal signaling pathways and neutralizing ligands. This comprehensive review explores the intricate interplay between miRNAs and unwanted-soluble receptors in the context of cancer biology. This study provides an analysis of the regulatory interactions between miRNAs and these receptors, elucidating how miRNAs can either suppress or enhance their expression. MiRNAs can directly target receptor transcripts, thereby regulating soluble receptor levels. They also modulate the proteolytic cleavage of membrane-bound receptors into soluble forms by targeting sheddases, such as ADAMs and MMPs. Furthermore, the review delves into the therapeutic potential of manipulating miRNAs to modulate unwanted soluble receptors. Various strategies, including synthetic miRNA mimics or anti-miRNAs, hold promise for restoring or inhibiting miRNA function to counteract aberrant receptor activity. Moreover, exploring miRNA-based delivery systems may provide targeted and precise therapies that minimizing off-target effects. In conclusion, this review sheds light on the intricate regulatory networks involving miRNAs and unwanted soluble receptors in cancer biology thereby uncovering novel therapeutic targets, and paving the way for developing innovative anti-cancer therapies.
Collapse
Affiliation(s)
- Fatemeh Hosseinpour-Soleimani
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Applied Cell Sciences and Tissue Engineering, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Tajbakhsh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
| | - Amir Savardashtaki
- Department of Medical Biotechnology, School of Advanced Medical Sciences And, Technologies, Shiraz University Of, Medical Sciences, Shiraz, 71362 81407, Iran
- Infertility Research Center, Shiraz University Med Ical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Wei QY, Jin F, Wang ZY, Li BJ, Cao WB, Sun ZY, Mo SJ. MicroRNAs: A novel signature in the metastasis of esophageal squamous cell carcinoma. World J Gastroenterol 2024; 30:1497-1523. [PMID: 38617454 PMCID: PMC11008420 DOI: 10.3748/wjg.v30.i11.1497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/12/2024] [Accepted: 03/01/2024] [Indexed: 03/21/2024] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is a malignant epithelial tumor, characterized by squamous cell differentiation, it is the sixth leading cause of cancer-related deaths globally. The increased mortality rate of ESCC patients is predominantly due to the advanced stage of the disease when discovered, coupled with higher risk of metastasis, which is an exceedingly malignant characteristic of cancer, frequently leading to a high mortality rate. Unfortunately, there is currently no specific and effective marker to predict and treat metastasis in ESCC. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules, approximately 22 nucleotides in length. miRNAs are vital in modulating gene expression and serve pivotal regulatory roles in the occurrence, progression, and prognosis of cancer. Here, we have examined the literature to highlight the intimate correlations between miRNAs and ESCC metastasis, and show that ESCC metastasis is predominantly regulated or regulated by genetic and epigenetic factors. This review proposes a potential role for miRNAs as diagnostic and therapeutic biomarkers for metastasis in ESCC metastasis, with the ultimate aim of reducing the mortality rate among patients with ESCC.
Collapse
Affiliation(s)
- Qi-Ying Wei
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Feng Jin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhong-Yu Wang
- Department of Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Bing-Jie Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Wen-Bo Cao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Zhi-Yan Sun
- Division of Special Service, Department of Basic Oncology, School of Basic Medicine, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| | - Sai-Jun Mo
- Department of Basic Science of Oncology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, Henan Province, China
| |
Collapse
|
4
|
Song XQ, Chen BB, Jin YM, Wang CY. DNMT1-mediated epigenetic suppression of FBXO32 expression promoting cyclin dependent kinase 9 (CDK9) survival and esophageal cancer cell growth. Cell Cycle 2024; 23:262-278. [PMID: 38597826 PMCID: PMC11057636 DOI: 10.1080/15384101.2024.2309022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 12/25/2023] [Indexed: 04/11/2024] Open
Abstract
Esophageal cancer (EC) is a common and serious form of cancer, and while DNA methyltransferase-1 (DNMT1) promotes DNA methylation and carcinogenesis, the role of F-box protein 32 (FBXO32) in EC and its regulation by DNMT1-mediated methylation is still unclear. FBXO32 expression was examined in EC cells with high DNMT1 expression using GSE163735 dataset. RT-qPCR assessed FBXO32 expression in normal and EC cells, and impact of higher FBXO32 expression on cell proliferation, migration, and invasion was evaluated, along with EMT-related proteins. The xenograft model established by injecting EC cells transfected with FBXO32 was used to evaluate tumor growth, apoptosis, and tumor cells proliferation and metastasis. Chromatin immunoprecipitation (ChIP) assay was employed to study the interaction between DNMT1 and FBXO32. HitPredict, co-immunoprecipitation (Co-IP), and Glutathione-S-transferase (GST) pulldown assay analyzed the interaction between FBXO32 and cyclin dependent kinase 9 (CDK9). Finally, the ubiquitination assay identified CDK9 ubiquitination, and its half-life was measured using cycloheximide and confirmed through western blotting. DNMT1 negatively correlated with FBXO32 expression in esophageal cells. High FBXO32 expression was associated with better overall survival in patients. Knockdown of DNMT1 in EC cells increased FBXO32 expression and suppressed malignant phenotypes. FBXO32 repressed EC tumor growth and metastasis in mice. Enrichment of DNMT1 in FBXO32 promoter region led to increased DNA methylation and reduced transcription. Mechanistically, FBXO32 degraded CDK9 through promoting its ubiquitination.
Collapse
Affiliation(s)
- Xian-Qiang Song
- Department of Radiotherapy, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Bin-Bin Chen
- Departments of Laboratory Medicine, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Yong-Mei Jin
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| | - Chang-Yong Wang
- Department of Cardiothoracic Surgery, Qinhuai Medical District, General Hospital of Eastern Theater Command, Nanjing, PR China
| |
Collapse
|
5
|
Yang ML, Lin CL, Chen YC, Lu IA, Su BH, Chen YH, Liu KT, Wu CL, Shiau AL. Prothymosin α accelerates dengue virus-induced thrombocytopenia. iScience 2024; 27:108422. [PMID: 38213625 PMCID: PMC10783621 DOI: 10.1016/j.isci.2023.108422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/31/2023] [Accepted: 11/07/2023] [Indexed: 01/13/2024] Open
Abstract
Thrombocytopenia is the hallmark finding in dengue virus (DENV) infection. Prothymosin α (ProT) has both intracellular and extracellular functions involved in cell cycle progression, cell differentiation, gene regulation, oxidative stress response, and immunomodulation. In this study, we found that ProT levels were elevated in dengue patient sera as well as DENV-infected megakaryoblasts and their culture supernatants. ProT transgenic mice had reduced platelet counts with prolonged bleeding times. Upon treatment with DENV plus anti-CD41 antibody, they exhibited severe skin hemorrhage. Furthermore, overexpression of ProT suppressed megakaryocyte differentiation. Infection with DENV inhibited miR-126 expression, upregulated DNA (cytosine-5)-methyltransferase 1 (DNMT1), downregulated GATA-1, and increased ProT expression. Upregulation of ProT led to Nrf2 activation and reduced reactive oxygen species production, thereby suppressing megakaryopoiesis. We report the pathophysiological role of ProT in DENV infection and propose an involvement of the miR-126-DNMT1-GATA-1-ProT-Nrf2 signaling axis in DENV-induced thrombocytopenia.
Collapse
Affiliation(s)
- Mei-Lin Yang
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chia-Ling Lin
- Department of Pediatrics, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
| | - Yi-Cheng Chen
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-An Lu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Bing-Hua Su
- School of Respiratory Therapy, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yen-Hsu Chen
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, Graduate Institute of Medicine, Sepsis Research Center, Center of Tropical Medicine and Infectious Diseases, Kaohsiung Medical University, Kaohsiung, Taiwan
- Department of Biological Science and Technology, College of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan
- Institute of Medical Science and Technology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Kuan-Ting Liu
- Department of Emergency Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chao-Liang Wu
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
6
|
Ahuja P, Yadav R, Goyal S, Yadav C, Ranga S, Kadian L. Targeting epigenetic deregulations for the management of esophageal carcinoma: recent advances and emerging approaches. Cell Biol Toxicol 2023; 39:2437-2465. [PMID: 37338772 DOI: 10.1007/s10565-023-09818-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
Ranking from seventh in incidence to sixth in mortality, esophageal carcinoma is considered a severe malignancy of food pipe. Later-stage diagnosis, drug resistance, and a high mortality rate contribute to its lethality. Esophageal squamous cell carcinoma and esophageal adenocarcinoma are the two main histological subtypes of esophageal carcinoma, with squamous cell carcinoma alone accounting for more than eighty percent of its cases. While genetic anomalies are well known in esophageal cancer, accountability of epigenetic deregulations is also being explored for the recent two decades. DNA methylation, histone modifications, and functional non-coding RNAs are the crucial epigenetic players involved in the modulation of different malignancies, including esophageal carcinoma. Targeting these epigenetic aberrations will provide new insights into the development of biomarker tools for risk stratification, early diagnosis, and effective therapeutic intervention. This review discusses different epigenetic alterations, emphasizing the most significant developments in esophageal cancer epigenetics and their potential implication for the detection, prognosis, and treatment of esophageal carcinoma. Further, the preclinical and clinical status of various epigenetic drugs has also been reviewed.
Collapse
Affiliation(s)
- Parul Ahuja
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Ritu Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India.
| | - Sandeep Goyal
- Department of Internal Medicine, Pt. B.D, Sharma University of Health Sciences, (Haryana), Rohtak, 124001, India
| | - Chetna Yadav
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Shalu Ranga
- Department of Genetics, Maharshi Dayanand University, (Haryana), Rohtak, 124001, India
| | - Lokesh Kadian
- Department of Dermatology, School of Medicine, Indiana University, Indianapolis, Indiana, 46202, USA
| |
Collapse
|
7
|
Saviana M, Le P, Micalo L, Del Valle-Morales D, Romano G, Acunzo M, Li H, Nana-Sinkam P. Crosstalk between miRNAs and DNA Methylation in Cancer. Genes (Basel) 2023; 14:1075. [PMID: 37239435 PMCID: PMC10217889 DOI: 10.3390/genes14051075] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
miRNAs are some of the most well-characterized regulators of gene expression. Integral to several physiological processes, their aberrant expression often drives the pathogenesis of both benign and malignant diseases. Similarly, DNA methylation represents an epigenetic modification influencing transcription and playing a critical role in silencing numerous genes. The silencing of tumor suppressor genes through DNA methylation has been reported in many types of cancer and is associated with tumor development and progression. A growing body of literature has described the crosstalk between DNA methylation and miRNAs as an additional layer in the regulation of gene expression. Methylation in miRNA promoter regions inhibits its transcription, while miRNAs can target transcripts and subsequently regulate the proteins responsible for DNA methylation. Such relationships between miRNA and DNA methylation serve an important regulatory role in several tumor types and highlight a novel avenue for potential therapeutic targets. In this review, we discuss the crosstalk between DNA methylation and miRNA expression in the pathogenesis of cancer and describe how miRNAs influence DNA methylation and, conversely, how methylation impacts the expression of miRNAs. Finally, we address how these epigenetic modifications may be leveraged as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Patrick Nana-Sinkam
- Department of Internal Medicine, Division of Pulmonary Diseases and Critical Care Medicine, Virginia Commonwealth University, 1250 E. Marshall Street, Richmond, VA 23298, USA
| |
Collapse
|
8
|
Kalita A, Sikora-Skrabaka M, Nowakowska-Zajdel E. Role of Some microRNA/ADAM Proteins Axes in Gastrointestinal Cancers as a Novel Biomarkers and Potential Therapeutic Targets—A Review. Curr Issues Mol Biol 2023; 45:2917-2936. [PMID: 37185715 PMCID: PMC10136553 DOI: 10.3390/cimb45040191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/16/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Gastrointestinal (GI) cancers are some of the most common cancers in the world and their number is increasing. Their etiology and pathogenesis are still unclear. ADAM proteins are a family of transmembrane and secreted metalloproteinases that play a role in cancerogenesis, metastasis and neoangiogenesis. MicroRNAs are small single-stranded non-coding RNAs that take part in the post-transcriptional regulation of gene expression. Some ADAM proteins can be targets for microRNAs. In this review, we analyze the impact of microRNA/ADAM protein axes in GI cancers.
Collapse
Affiliation(s)
- Agnieszka Kalita
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Magdalena Sikora-Skrabaka
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| | - Ewa Nowakowska-Zajdel
- Department of Nutrition-Related Disease Prevention, Department of Metabolic Disease Prevention, Faculty of Health Sciences in Bytom, Medical University of Silesia in Katowice, 40-055 Katowice, Poland
- Department of Clinical Oncology, No. 4 Provincial Specialist Hospital, 41-902 Bytom, Poland
| |
Collapse
|
9
|
miR-539-5p regulates Srebf1 transcription in the skeletal muscle of diabetic mice by targeting DNA methyltransferase 3b. MOLECULAR THERAPY - NUCLEIC ACIDS 2022; 29:718-732. [PMID: 36090753 PMCID: PMC9439965 DOI: 10.1016/j.omtn.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
Aberrant DNA methylation is associated with diabetes, but the precise regulatory events that control the levels and activity of DNA methyltransferases (DNMTs) is not well understood. Here we show that miR-539-5p targets Dnmt3b and regulates its cellular levels. miR-539-5p and Dnmt3b show inverse patterns of expression in skeletal muscle of diabetic mice. By binding to the 3′ UTR of Dnmt3b, miR-539-5p downregulates its levels in C2C12 cells and in human primary skeletal muscle cells. miR-539-5p-Dnmt3b interaction regulates Srebf1 transcription by altering methylation at CpG islands within Srebf1 in C2C12 cells. Dnmt3b inhibition alone was sufficient to upregulate Srebf1 transcription. In vivo antagonism of miR-539-5p in normal mice induced hyperglycemia and hyperinsulinemia and impaired oral glucose tolerance. These mice had elevated Dnmt3b and decreased Srebf1 levels in skeletal muscle. db/db mice injected with miR-539-5p mimics showed improved circulatory glucose and cholesterol levels. Oral glucose tolerance improved together with normalization of Dnmt3b and Srebf1 levels in skeletal muscle. Our results support a critical role of miR-539-5p and Dnmt3b in aberrant skeletal muscle metabolism during diabetes by regulating Srebf1 transcription; modulating the miR-539-5p-Dnmt3b axis might have therapeutic potential for addressing altered skeletal muscle physiology during insulin resistance and type 2 diabetes.
Collapse
|
10
|
Chandrasekera P, Perfetto M, Lu C, Zhuo M, Bahudhanapati H, Li J, Chen WC, Kulkarni P, Christian L, Liu J, Yien YY, Yu C, Wei S. Metalloprotease ADAM9 cleaves ephrin-B ligands and differentially regulates Wnt and mTOR signaling downstream of Akt kinase in colorectal cancer cells. J Biol Chem 2022; 298:102225. [PMID: 35780836 PMCID: PMC9358476 DOI: 10.1016/j.jbc.2022.102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 12/02/2022] Open
Abstract
Ephrin-B signaling has been implicated in many normal and pathological processes, including neural crest development and tumor metastasis. We showed previously that proteolysis of ephrin-B ligands by the disintegrin metalloprotease ADAM13 is necessary for canonical Wnt signal activation and neural crest induction in Xenopus, but it was unclear if these mechanisms are conserved in mammals. Here, we report that mammalian ADAM9 cleaves ephrin-B1 and ephrin-B2 and can substitute for Xenopus ADAM13 to induce the neural crest. We found that ADAM9 expression is elevated in human colorectal cancer (CRC) tissues and that knockdown (KD) of ADAM9 inhibits the migration and invasion of SW620 and HCT116 CRC cells by reducing the activity of Akt kinase, which is antagonized by ephrin-Bs. Akt is a signaling node that activates multiple downstream pathways, including the Wnt and mTOR pathways, both of which can promote CRC cell migration/invasion. Surprisingly, we also found that KD of ADAM9 downregulates Wnt signaling but has negligible effects on mTOR signaling in SW620 cells; in contrast, mTOR activity is suppressed while Wnt signaling remains unaffected by ADAM9 KD in HCT116 cells. These results suggest that mammalian ADAM9 cleaves ephrin-Bs to derepress Akt and promote CRC migration and invasion; however, the signaling pathways downstream of Akt are differentially regulated by ADAM9 in different CRC cell lines, reflecting the heterogeneity of CRC cells in responding to manipulations of upstream Akt regulators.
Collapse
Affiliation(s)
| | - Mark Perfetto
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Department of Biology, West Virginia University, Morgantown, West Virginia, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Congyu Lu
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Minghui Zhuo
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | | | - Jiejing Li
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA; Department of Clinical Laboratory, The Affiliated Hospital of KMUST, Medical School, Kunming University of Science and Technology, Kunming, China
| | - Wei-Chih Chen
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Pallavi Kulkarni
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA
| | - Laura Christian
- Department of Biology, West Virginia University, Morgantown, West Virginia, USA
| | - Jun Liu
- Department of Biochemistry and Cancer Institute, West Virginia University School of Medicine, Morgantown, West Virginia, USA
| | - Yvette Y Yien
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA; Pittsburgh Heart, Lung and Blood Vascular Medicine Institute and Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Shuo Wei
- Department of Biological Sciences, University of Delaware, Newark, Delaware, USA.
| |
Collapse
|
11
|
Zheng YJ, Liang TS, Wang J, Zhao JY, Zhai SN, Yang DK, Wang LD. Long non-coding RNA ZNF667-AS1 retards the development of esophageal squamous cell carcinoma via modulation of microRNA-1290-mediated PRUNE2. Transl Oncol 2022; 21:101371. [PMID: 35504176 PMCID: PMC9079108 DOI: 10.1016/j.tranon.2022.101371] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 01/14/2022] [Accepted: 02/11/2022] [Indexed: 11/28/2022] Open
|
12
|
Wang H, Song Z, Xie E, Chen J, Tang B, Wang F, Min J. Targeting the LSD1-G9a-ER Stress Pathway as a Novel Therapeutic Strategy for Esophageal Squamous Cell Carcinoma. RESEARCH 2022; 2022:9814652. [PMID: 35707047 PMCID: PMC9185438 DOI: 10.34133/2022/9814652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 04/24/2022] [Indexed: 12/12/2022]
Abstract
Despite recent advances in the management and treatment of esophageal squamous cell carcinoma (ESCC), the prognosis remains extremely poor, and current nonsurgical treatment options are limited. To identify new therapeutic targets, we screened a curated library of epigenetic compounds using a panel of cancer cell lines and found that coinhibiting the histone demethylase LSD1 and the histone methyltransferase G9a potently suppresses cell growth; similar results were obtained by knocking down both LSD1 and G9a expression. Importantly, we also found that inhibiting LSD1 and G9a significantly decreased tumor growth in a xenograft mouse model with ESCC cell lines. To examine the clinical relevance of these findings, we performed immunohistochemical analyses of microarray profiling data obtained from human esophageal squamous cancer tissues and found that both LSD1 and G9a are upregulated in cancer tissues compared to healthy tissues, and this increased expression was significantly correlated with poor prognosis. Mechanistically, we discovered that inhibiting LSD1 and G9a induces cell death via S-phase arrest and apoptosis, and cotargeting ER stress pathways increased this effect both in vitro and in vivo. Taken together, these findings provide compelling evidence that targeting LSD1, G9a, and ER stress-related pathways may serve as a viable therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Hongxiao Wang
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
- Department of Pathology, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, People’s Hospital of Henan University, Zhengzhou 450003, China
| | - Zijun Song
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Enjun Xie
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Junyi Chen
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Biyao Tang
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Fudi Wang
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
- The First Affiliated Hospital, The Second Affiliated Hospital, Basic Medical Sciences, School of Public Health, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Junxia Min
- The First Affiliated Hospital, The Fourth Affiliated Hospital, Institute of Translational Medicine, School of Public Health, Cancer Center, State Key Laboratory of Experimental Hematology, Zhejiang University School of Medicine, Hangzhou 310058, China
| |
Collapse
|
13
|
Wu F, Yang Q, Mi Y, Wang F, Cai K, Zhang Y, Wang Y, Wang X, Gui Y, Li Q. miR-29b-3p Inhibitor Alleviates Hypomethylation-Related Aberrations Through a Feedback Loop Between miR-29b-3p and DNA Methylation in Cardiomyocytes. Front Cell Dev Biol 2022; 10:788799. [PMID: 35478963 PMCID: PMC9035530 DOI: 10.3389/fcell.2022.788799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
As a member of the miR-29 family, miR-29b regulates global DNA methylation through target DNA methyltransferases (DNMTs) and acts as both a target and a key effector in DNA methylation. In this study, we found that miR-29b-3p expression was inversely correlated with DNMT expression in the heart tissues of patients with congenital heart disease (CHD), but whether it interacts with DNMTs in cardiomyocytes remains unknown. Further results revealed a feedback loop between miR-29b-3p and DNMTs in cardiomyocytes. Moreover, miR-29b-3p inhibitor relieved the deformity of hypomethylated zebrafish and restored the DNA methylation patterns in cardiomyocytes, resulting in increased proliferation and renormalization of gene expression. These results suggest mutual regulation between miR-29b-3p and DNMTs in cardiomyocytes and support the epigenetic normalization of miRNA-based therapy in cardiomyocytes.
Collapse
Affiliation(s)
- Fang Wu
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Department of Neonatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Yang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yaping Mi
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Feng Wang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Ke Cai
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Yawen Zhang
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
| | - Youhua Wang
- Department of Cardiology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Wang
- Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yonghao Gui
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- Cardiovascular Center, NHC Key Laboratory of Neonatal Diseases, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Qiang Li, ; Yonghao Gui,
| | - Qiang Li
- Translational Medical Center for Development and Disease, Shanghai Key Laboratory of Birth Defect Prevention and Control, NHC Key Laboratory of Neonatal Diseases, Institute of Pediatrics, Children’s Hospital of Fudan University, National Children’s Medical Center, Shanghai, China
- *Correspondence: Qiang Li, ; Yonghao Gui,
| |
Collapse
|
14
|
Liu Z, Huang Y, Han Z, Shen Z, Yu S, Wang T, Dong Z, Kang M. Exosome-mediated miR-25/miR-203 as a potential biomarker for esophageal squamous cell carcinoma: improving early diagnosis and revealing malignancy. Transl Cancer Res 2022; 10:5174-5182. [PMID: 35116367 PMCID: PMC8799214 DOI: 10.21037/tcr-21-1123] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 10/24/2021] [Indexed: 01/23/2023]
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is the leading cause of cancer death in men and women worldwide. The poor prognosis and rapid increase in ESCC incidence highlight the need to promote early detection and prediction. Identifying key molecular targets involved in ESCC monitoring and progression is critical for ESCC patients. Methods This study examined miR-25/miR-203 as a biomarker for ESCC patients. Real-time quantitative polymerase chain reaction (PCR) was used to detect miR-25/miR-203 expression levels in tissues and serum exosomes, and MiR-25/miR-203 upregulation was confirmed in ESCC. Results We found that the miR-25/miR-203 ratio in cancer tissues from 36 ESCC patients was significantly enhanced compared with that in adjacent tissues. Moreover, the serum level of miR-25/miR-203 in 57 ESCC patients was higher than that in 31 healthy volunteers. Intriguingly, in 38 ESCC patients, the level of miR-25/miR-203 decreased significantly after surgery. Using ROC curve statistical analysis, we found that each group of miR-25/miR-203 had obvious sensitivity and high specificity. The miR-25/miR-203 relationship with the clinicopathological features of ESCC patients was also analyzed. MiR-25/miR-203 was significantly associated with the ESCC TNM-stage and lymph node metastasis, which predicts the prognosis of ESCC and reflects tumor progression. Conclusions This study highlights the feasibility of using exosome-mediated miR-25/miR-203 as a vital noninvasive biomarker for the detection and treatment monitoring of ESCC.
Collapse
Affiliation(s)
- Zhun Liu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ying Huang
- Department of Infusion, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ziyang Han
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Zhimin Shen
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shaobin Yu
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China
| | - Tao Wang
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Zhaonan Dong
- Jiangsu Engineering Research Center for Tumor Molecular Diagnosis, Suzhou, China
| | - Mingqiang Kang
- Department of Thoracic Surgery, Fujian Medical University Union Hospital, Fuzhou, China.,Key Laboratory of Gastrointestinal Cancer (Fujian Medical University), Ministry of Education, Fuzhou, China
| |
Collapse
|
15
|
Lin YS, Kuo TT, Lo CC, Cheng WC, Chang WC, Tseng GC, Bai ST, Huang YK, Hsieh CY, Hsu HS, Jiang YF, Lin CY, Lai LC, Li XG, Sher YP. ADAM9 functions as a transcriptional regulator to drive angiogenesis in esophageal squamous cell carcinoma. Int J Biol Sci 2021; 17:3898-3910. [PMID: 34671207 PMCID: PMC8495400 DOI: 10.7150/ijbs.65488] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 08/29/2021] [Indexed: 11/25/2022] Open
Abstract
Hypoxia and angiogenesis play key roles in the pathogenesis of esophageal squamous cell carcinoma (ESCC), but regulators linking these two pathways to drive tumor progression remain elusive. Here we provide evidence of ADAM9's novel function in ESCC progression. Increasing expression of ADAM9 was correlated with poor clinical outcomes in ESCC patients. Suppression of ADAM9 function diminished ESCC cell migration and in vivo metastasis in ESCC xenograft mouse models. Using cellular fractionation and imaging, we found a fraction of ADAM9 was present in the nucleus and was uniquely associated with gene loci known to be linked to the angiogenesis pathway demonstrated by genome-wide ChIP-seq. Mechanistically, nuclear ADAM9, triggered by hypoxia-induced translocation, functions as a transcriptional repressor by binding to promoters of genes involved in the negative regulation of angiogenesis, and thereby promotes tumor angiogenesis in plasminogen/plasmin pathway. Moreover, ADAM9 suppresses plasminogen activator inhibitor-1 gene transcription by interacting with its transcription factors at the promoter. Our findings uncover a novel regulatory mechanism of ADAM9 as a transcriptional regulator in angiogenesis and highlight ADAM9 as a promising therapeutic target for ESCC treatment.
Collapse
Affiliation(s)
- Yu-Sen Lin
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Division of Thoracic Surgery, China Medical University Hospital, Taichung 404, Taiwan
| | - Ting-Ting Kuo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Chia-Chien Lo
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Wei-Chao Chang
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Guan-Chin Tseng
- Department of Anatomic Pathology, Nantou Hospital of the Ministry of Health and Welfare, Nantou 540, Taiwan
| | - Shih-Ting Bai
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Yu-Kai Huang
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Chih-Ying Hsieh
- Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan
| | - Han-Shui Hsu
- Division of Thoracic Surgery, Department of Surgery, Taipei Veterans General Hospital, Taipei 112, Taiwan.,Institute of Emergency and Care Medicine, School of Medicine, National Yang-Ming University, Taipei 112, Taiwan
| | - Yi-Fan Jiang
- Graduate Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei 106, Taiwan
| | - Chen-Yuan Lin
- School of Pharmacy, China Medical University, Taichung 404, Taiwan.,Division of Hematology and Oncology, China Medical University Hospital, Taichung 404, Taiwan
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan
| | - Yuh-Pyng Sher
- Graduate Institute of Clinical Medical Science, China Medical University, Taichung 404, Taiwan.,Center for Molecular Medicine, China Medical University Hospital, Taichung 404, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 404, Taiwan.,Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
| |
Collapse
|
16
|
Chen N, Zhang G, Fu J, Wu Q. Identification of Key Modules and Hub Genes Involved in Esophageal Squamous Cell Carcinoma Tumorigenesis Using WCGNA. Cancer Control 2021; 27:1073274820978817. [PMID: 33345608 PMCID: PMC8480348 DOI: 10.1177/1073274820978817] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Introduction: The mechanistic basis for the development of esophageal squamous cell carcinoma (ESCC) remains poorly understood. The goal of the present study was thus to characterize mRNA and long noncoding RNA (lncRNA) expression profiles associated with ESCC in order to identify key hub genes associated with the pathogenesis of this cancer. Materials and Methods: The GSE26866 and GSE45670 datasets from the Gene Expression Omnibus (GEO) database were used to conduct a weighted gene co-expression network analysis (WGCNA), after which Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were conducted. Cytoscape was additionally used to construct lncRNA-mRNA networks, after which hub genes were identified and validated through the assessment of TCGA datasets and clinical samples. Results: Two gene modules were found to be closely linked to ESCC tumorigenesis. These genes were enriched in cell cycle, MAPK signaling, JAK-STAT signaling, pyrimidine metabolism, arachidonic acid metabolism, and P53 signaling pathway activity, all of which are directly linked with the development of cancer. In total, we identified and validated 9 hub genes associated with ESCC (DDX18, DNMT1, NCAPG, WDHD1, PRR11, VOPP1, ZKSCAN5, LC35C2, and PHACTR2). Conclusion: In summary, we identified key gene modules and hub genes associated with ESCC development, and we constructed a lncRNA-mRNA network pertaining to this cancer type. These results provide a foundation for future research regarding the mechanistic basis of ESCC.
Collapse
Affiliation(s)
- Nanzheng Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Guangjian Zhang
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Junke Fu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Qifei Wu
- Department of Thoracic Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
17
|
Cui D, Cheung ALM. Roles of microRNAs in tumorigenesis and metastasis of esophageal squamous cell carcinoma. World J Clin Oncol 2021; 12:609-622. [PMID: 34513596 PMCID: PMC8394161 DOI: 10.5306/wjco.v12.i8.609] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/11/2021] [Accepted: 07/22/2021] [Indexed: 02/06/2023] Open
Abstract
Esophageal squamous cell carcinoma (ESCC) is the major subtype of esophageal cancer that is prevalent in Eastern Asia. Despite recent advances in therapy, the outcome of ESCC patients is still dismal. MicroRNAs (miRNAs) are non-coding RNAs which can negatively modulate gene expression at the post-transcriptional level. The involvement and roles of miRNAs have become one of the hot topics of cancer research in recent years. In ESCC, genetic variations within miRNA coding genes were found to have distinct epidemiological significance in different populations. Dysregulated expression of several miRNAs was reported to be associated with therapeutic response. Functionally, miRNAs can act either in an oncogenic or a tumor-suppressive manner during tumorigenesis of ESCC by interrupting signaling pathways associated with cell proliferation, metabolism, cancer stemness, and resistance to chemo- or radiotherapy. Moreover, miRNAs modulate metastasis of ESCC by targeting genes that regulate cytoskeleton dynamics, extracellular matrix remodeling, epithelial-mesenchymal transition, and tumor microenvironment. Most importantly, mounting evidence suggests that inhibiting oncogenic miRNAs or restoring the loss of tumor-suppressive miRNAs has therapeutic potential in the treatment of ESCC. Here, we review and discuss recent studies on the significance, biological functions, and therapeutic potential of miRNAs in tumorigenesis and metastasis of ESCC.
Collapse
Affiliation(s)
- Di Cui
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| | - Annie LM Cheung
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, University of Hong Kong, Hong Kong 999077, China
| |
Collapse
|
18
|
Gennart I, Petit A, Wiggers L, Pejaković S, Dauchot N, Laurent S, Coupeau D, Muylkens B. Epigenetic Silencing of MicroRNA-126 Promotes Cell Growth in Marek's Disease. Microorganisms 2021; 9:microorganisms9061339. [PMID: 34205549 PMCID: PMC8235390 DOI: 10.3390/microorganisms9061339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/12/2021] [Accepted: 06/14/2021] [Indexed: 12/30/2022] Open
Abstract
During latency, herpesvirus infection results in the establishment of a dormant state in which a restricted set of viral genes are expressed. Together with alterations of the viral genome, several host genes undergo epigenetic silencing during latency. These epigenetic dysregulations of cellular genes might be involved in the development of cancer. In this context, Gallid alphaherpesvirus 2 (GaHV-2), causing Marek’s disease (MD) in susceptible chicken, was shown to impair the expression of several cellular microRNAs (miRNAs). We decided to focus on gga-miR-126, a host miRNA considered a tumor suppressor through signaling pathways controlling cell proliferation. Our objectives were to analyze the cause and the impact of miR-126 silencing during GaHV-2 infection. This cellular miRNA was found to be repressed at crucial steps of the viral infection. In order to determine whether miR-126 low expression level was associated with specific epigenetic signatures, DNA methylation patterns were established in the miR-126 gene promoter. Repression was associated with hypermethylation at a CpG island located in the miR-126 host gene epidermal growth factor like-7 (EGFL-7). A strategy was developed to conditionally overexpress miR-126 and control miRNAs in transformed CD4+ T cells propagated from Marek’s disease (MD) lymphoma. This functional assay showed that miR-126 restoration specifically diminishes cell proliferation. We identified CT10 regulator of kinase (CRK), an adaptor protein dysregulated in several human malignancies, as a candidate target gene. Indeed, CRK protein levels were markedly reduced by the miR-126 restoration.
Collapse
Affiliation(s)
- Isabelle Gennart
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Astrid Petit
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| | - Laetitia Wiggers
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Srđan Pejaković
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Nicolas Dauchot
- Unit of Research in Plant Cellular and Molecular Biology (URBV), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium;
| | - Sylvie Laurent
- Département Santé Animale, Institut National de la Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE), Centre Val de Loire, 37380 Nouzilly, France;
| | - Damien Coupeau
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
| | - Benoît Muylkens
- Integrated Veterinary Research Unit (URVI), Namur Research Institute for Life Sciences (NARILIS), Université de Namur, 61 Rue de Bruxelles, 5000 Namur, Belgium; (I.G.); (L.W.); (S.P.); (D.C.)
- Correspondence: (A.P.); (B.M.)
| |
Collapse
|
19
|
miRNAs Involved in Esophageal Carcinogenesis and miRNA-Related Therapeutic Perspectives in Esophageal Carcinoma. Int J Mol Sci 2021; 22:ijms22073640. [PMID: 33807389 PMCID: PMC8037581 DOI: 10.3390/ijms22073640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play a pivotal role in many aspects of cell biology, including cancer development. Within esophageal cancer, miRNAs have been proved to be involved in all phases of carcinogenesis, from initiation to metastatic spread. Several miRNAs have been found to be dysregulated in esophageal premalignant lesions, namely Barrett’s esophagus, Barrett’s dysplasia, and squamous dysplasia. Furthermore, numerous studies have investigated the alteration in the expression levels of many oncomiRNAs and tumor suppressor miRNAs in esophageal squamous cell carcinoma and esophageal adenocarcinoma, thus proving how miRNAs are able modulate crucial regulatory pathways of cancer development. Considering these findings, miRNAs may have a role not only as a diagnostic and prognostic tool, but also as predictive biomarker of response to anti-cancer therapies and as potential therapeutic targets. This review aims to summarize several studies on the matter, focusing on the possible diagnostic–therapeutic implications.
Collapse
|
20
|
Buranaphatthana W, Wu S, Makeudom A, Sastraruji T, Supanchart C, Krisanaprakornkit S. Involvement of the A disintegrin and metalloproteinase 9 in oral cancer cell invasion. Eur J Oral Sci 2021; 129:e12775. [PMID: 33786875 DOI: 10.1111/eos.12775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 02/06/2023]
Abstract
The aims of this study were to determine the functional roles of the transmembrane glycoprotein, Disintegrin and metalloproteinase domain-containing protein 9 (ADAM 9), in the phosphorylation of epidermal growth factor receptor (EGFR) and AKT and in the aggressiveness of oral cancer cells. Immunohistochemistry and immunoblotting were conducted to determine expression of ADAM 9 and the levels of EGFR phosphorylated at the tyrosine 1173 residue (p-EGFRtyr1173 ) and AKT phosphorylated at the serine 473 residue (p-AKTser473 ) in oral cancer tissues and in the oral cancer cell lines HN5, HN6, HN15, and HN008. Small interfering RNA (siRNA) was used to inhibit expression of ADAM9 mRNA, and thus production of ADAM9 protein, in oral cancer cells. ADAM9-knockdown cells were examined for p-EGFRtyr1173 and p-AKTser473 levels and used for cell proliferation and invasion assays. A positive correlation among overexpression of ADAM 9, p-EGFRtyr1173 , and p-AKTser473 was found in oral cancer tissues. These biomolecules were also overexpressed in HN6 and HN15 cell lines. Expression of ADAM9 in HN6 and HN15 cells was statistically significantly inhibited by siRNA against ADAM9 mRNA (siADAM9) compared with the negative-control siRNA (scramble). The levels of p-AKTser473 , but not those of p-EGFRtyr1173 , were statistically significantly blocked by siADAM9. Although the proliferation rates of ADAM9 knocked-down HN6 and HN15 cells did not differ from those of cells exposed to scramble, a statistically significant decrease in cell invasion was found in these ADAM9-silenced cells. These results suggest a functional role of the ADAM 9/AKT signaling pathway in oral cancer cell invasion, which may be beneficial as a therapeutic target of oral cancer.
Collapse
Affiliation(s)
- Worakanya Buranaphatthana
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Shuangjiang Wu
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Anupong Makeudom
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Thanapat Sastraruji
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Chayarop Supanchart
- Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Suttichai Krisanaprakornkit
- Department of Oral Biology and Diagnostic Sciences, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand.,Center of Excellence in Oral and Maxillofacial Biology, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
21
|
Wang W, Fang F, Ozes A, Nephew KP. Targeting Ovarian Cancer Stem Cells by Dual Inhibition of HOTAIR and DNA Methylation. Mol Cancer Ther 2021; 20:1092-1101. [PMID: 33785648 DOI: 10.1158/1535-7163.mct-20-0826] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/11/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Ovarian cancer is a chemoresponsive tumor with very high initial response rates to standard therapy consisting of platinum/paclitaxel. However, most women eventually develop recurrence, which rapidly evolves into chemoresistant disease. Persistence of ovarian cancer stem cells (OCSCs) at the end of therapy has been shown to contribute to resistant tumors. In this study, we demonstrate that the long noncoding RNA HOTAIR is overexpressed in HGSOC cell lines. Furthermore, HOTAIR expression was upregulated in OCSCs compared with non-CSC, ectopic overexpression of HOTAIR enriched the ALDH+ cell population and HOTAIR overexpression increased spheroid formation and colony-forming ability. Targeting HOTAIR using peptide nucleic acid-PNA3, which acts by disrupting the interaction between HOTAIR and EZH2, in combination with a DNMT inhibitor inhibited OCSC spheroid formation and decreased the percentage of ALDH+ cells. Disrupting HOTAIR-EZH2 with PNA3 in combination with the DNMTi on the ability of OCSCs to initiate tumors in vivo as xenografts was examined. HGSOC OVCAR3 cells were treated with PNA3 in vitro and then implanted in nude mice. Tumor growth, initiation, and stem cell frequency were inhibited. Collectively, these results demonstrate that blocking HOTAIR-EZH2 interaction combined with inhibiting DNA methylation is a potential approach to eradicate OCSCs and block disease recurrence.
Collapse
Affiliation(s)
- Weini Wang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Fang Fang
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Ali Ozes
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana
| | - Kenneth P Nephew
- Medical Sciences, Indiana University School of Medicine, Bloomington, Indiana. .,Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, Indiana
| |
Collapse
|
22
|
Islam F, Gopalan V, Lam AK. Roles of MicroRNAs in Esophageal Squamous Cell Carcinoma Pathogenesis. Methods Mol Biol 2021; 2129:241-257. [PMID: 32056182 DOI: 10.1007/978-1-0716-0377-2_18] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
MicroRNAs (miRNAs) are 20-22 nucleotides long single-stranded noncoding RNAs. They regulate gene expression posttranscriptionally by base pairing with the complementary sequences in the 3'-untranslated region of their targeted mRNA. Aberrant expression of miRNAs leads to alterations in the expression of oncogenes and tumor suppressors, thereby affecting cellular growth, proliferation, apoptosis, motility, and invasion capacity of gastrointestinal cells, including cells of esophageal squamous cell carcinoma (ESCC). Thus, alterations in miRNAs expression associated with the pathogenesis and progression of ESCC. In addition, expression profiles of miRNAs correlated with various clinicopathological factors, including pathological stages, histological differentiation, invasion, metastasis of cancer, as well as survival rates and therapy response of patients with ESCC. Consequently, expression profiles of miRNAs could be useful as diagnostic, prognostic, and prediction biomarkers in ESCC. Herein, we describe the quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and microarray methods for detection and quantitate miRNAs in ESCC. In addition, we summarize the roles of miRNAs in ESCC pathogenesis, progression, and prognosis.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia.,Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi, Bangladesh
| | - Vinod Gopalan
- Cancer Molecular Pathology of School of Medicine, Griffith University, Gold Coast, Queensland, Australia
| | - Alfred K Lam
- Cancer Molecular Pathology, School of Medicine, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
23
|
Liao L, Yao Z, Fang W, He Q, Xu WW, Li B. Epigenetics in Esophageal Cancer: From Mechanisms to Therapeutics. SMALL METHODS 2020; 4:2000391. [DOI: 10.1002/smtd.202000391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Indexed: 02/05/2023]
Affiliation(s)
- Long Liao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Zi‐Ting Yao
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wang‐Kai Fang
- The Key Laboratory of Molecular Biology for High Cancer Incidence Coastal Chaoshan Area Department of Biochemistry and Molecular Biology Shantou University Medical College Shantou 515041 China
| | - Qing‐Yu He
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Wen Wen Xu
- MOE Key Laboratory of Tumor Molecular Biology and Guangdong Provincial Key Laboratory of Bioengineering Medicine National Engineering Research Center of Genetic Medicine Institute of Biomedicine College of Life Science and Technology Jinan University Guangzhou 510632 China
| | - Bin Li
- MOE Key Laboratory of Tumor Molecular Biology and Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes Institute of Life and Health Engineering College of Life Science and Technology Jinan University Guangzhou 510632 China
| |
Collapse
|
24
|
Abstract
The ADAMs family belongs to the transmembrane protein superfamily of zinc-dependent metalloproteases, which consists of multiple domains. These domains have independent but complementary functions that enable them to participate in multiple biological processes. Among them, ADAM9 can not only participate in the degradation of extracellular matrix as a metalloprotease, but also mediate tumor cell adhesion through its deintegrin domain, which is closely related to tumor invasion and metastasis. It is widely expressed in a variety of tumor cells and can affect the proliferation, invasion and metastasis of related cancer cells. We provide our views on current progress, its increasing importance as a strategic treatment goal, and our vision for the future of ADAM9.
Collapse
Affiliation(s)
- M A Haoyuan
- Department of Clinical Medicine, China Medical University , Liaoning, Shenyang, China
| | - L I Yanshu
- Department of Cell Biology, Key Laboratory of Cell Biology, Ministry of Public Health, and Key Laboratory of Medical Cell Biology, Ministry of Education, China Medical University , Liaoning, Shenyang, China
| |
Collapse
|
25
|
Businello G, Parente P, Mastracci L, Pennelli G, Traverso G, Milione M, Bellan E, Michelotto M, Kotsafti A, Grillo F, Fassan M. The Pathologic and Molecular Landscape of Esophageal Squamous Cell Carcinogenesis. Cancers (Basel) 2020; 12:cancers12082160. [PMID: 32759723 PMCID: PMC7465394 DOI: 10.3390/cancers12082160] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/27/2020] [Accepted: 08/01/2020] [Indexed: 02/07/2023] Open
Abstract
Esophageal squamous cell carcinoma represents the most common histotype of epithelial neoplasm occurring within esophageal mucosa worldwide. Despite the comprehensive molecular characterization of this entity, to date no significant targeted therapy has been introduced into clinical practice. In this review, we describe the molecular landscape of esophageal squamous cell carcinoma based on the most recent literature. Moreover, we focus on other rare variants and on the relationship with head and neck squamous cell carcinomas.
Collapse
Affiliation(s)
- Gianluca Businello
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (G.P.); (E.B.); (M.M.)
| | - Paola Parente
- Pathology Unit, Fondazione IRCCS Ospedale Casa Sollievo della Sofferenza, 71013 San Giovanni Rotondo FG, Italy;
| | - Luca Mastracci
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16132 Genova, Italy; (L.M.); (F.G.)
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy;
| | - Gianmaria Pennelli
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (G.P.); (E.B.); (M.M.)
| | | | - Massimo Milione
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy;
| | - Elena Bellan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (G.P.); (E.B.); (M.M.)
| | - Mauro Michelotto
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (G.P.); (E.B.); (M.M.)
| | - Andromachi Kotsafti
- Laboratory of Advanced Translational Research, Veneto Institute of Oncology IOV–IRCCS, 35128 Padua, Italy;
| | - Federica Grillo
- Anatomic Pathology, Ospedale Policlinico San Martino IRCCS, 16132 Genova, Italy; (L.M.); (F.G.)
- Anatomic Pathology, Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genova, 16132 Genova, Italy;
| | - Matteo Fassan
- Surgical Pathology Unit, Department of Medicine (DIMED), University of Padua, 35121 Padua, Italy; (G.B.); (G.P.); (E.B.); (M.M.)
- Correspondence: or ; Tel.: +39-49-821-1312; Fax: +39-49-827-2277
| |
Collapse
|
26
|
Shen W, Yu L, Cong A, Yang S, Wang P, Han G, Gu B, Zhang W. Silencing lncRNA AFAP1-AS1 Inhibits the Progression of Esophageal Squamous Cell Carcinoma Cells via Regulating the miR-498/VEGFA Axis. Cancer Manag Res 2020; 12:6397-6409. [PMID: 32801880 PMCID: PMC7402668 DOI: 10.2147/cmar.s254302] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose In view of the continuous increase of the mortality rate, esophageal squamous cell carcinoma (ESCC) develops into a major health concern. In this study, we aimed to investigate the underlying mechanism of long noncoding RNA (lncRNA) actin filament-associated protein 1 antisense RNA (AFAP1-AS1)/microRNA-498 (miR-498)/vascular endothelial growth factor A (VEGFA) in ESCC cells. Methods The expression levels of AFAP1-AS1, miR-498 and VEGFA in ESCC tissues and cells were detected using quantitative real-time polymerase chain reaction (qRT-PCR). The effects of AFAP1-AS1 on ESCC cells proliferation and apoptosis were measured by methyl thiazolyl tetrazolium (MTT) and flow cytometry, respectively. Transwell assay was carried out to determine cell migration. In addition, VEGFA and cell behaviors-related proteins were determined by Western blot analysis. The targeted relationships of AFAP1-AS1 were verified by dual-luciferase reporter and RNA pull-down assays. Results The expression levels of lncRNA AFAP1-AS1 and VEGFA mRNA were upregulated, but miR-498 was downregulated in ESCC tissues and cells. Moreover, miR-498 was directly targeted by AFAP1-AS1 and there was a negative correlation between miR-498 and AFAP1-AS1. Functionally, AFAP1-AS1 silencing inhibited the proliferation and migration and induced apoptosis of ESCC cells. Interestingly, miR-498 inhibition rescued the effects of AFAP1-AS1 knockdown on cell proliferation, apoptosis and migration and restored the expression levels of tumor-developing marker proteins of AFAP1-AS1 silencing in Eca109 and KYSE-30 cells. Furthermore, VEGFA was verified as a direct target of miR-498 and reversed the effects of miR-498 overexpression on cell behaviors of ESCC in vitro. Conclusion Downregulation of AFAP1-AS1 impeded the proliferation and migration and induced apoptosis of ESCC cells by regulating miR-498/VEGFA axis, which might serve as a novel biomarker for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Wenhao Shen
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Lei Yu
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Aihua Cong
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Song Yang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Peng Wang
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Gaohua Han
- Department of Oncology, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China.,Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China
| | - Bin Gu
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Emergency, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| | - Wei Zhang
- Medical School of Nantong University, Nantong, Jiangsu, People's Republic of China.,Department of Infectious Disease, Taizhou People's Hospital, Taizhou, Jiangsu, People's Republic of China
| |
Collapse
|
27
|
Zhou R, Cho WCS, Ma V, Cheuk W, So YK, Wong SCC, Zhang M, Li C, Sun Y, Zhang H, Chan LWC, Tian M. ADAM9 Mediates Triple-Negative Breast Cancer Progression via AKT/NF-κB Pathway. Front Med (Lausanne) 2020; 7:214. [PMID: 32637415 PMCID: PMC7317048 DOI: 10.3389/fmed.2020.00214] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 04/29/2020] [Indexed: 12/12/2022] Open
Abstract
Upregulation of a disintegrin and metalloprotease 9 (ADAM9) is correlated with progression of cancers, such as prostate, bladder, and pancreatic cancers. However, its role in triple-negative breast cancer (TNBC) is still unclear. Our study aimed to investigate whether ADAM9 is upregulated and promoted the aggressiveness in TNBC. Breast cancer cell lines and patient specimens were used to evaluate the ADAM9 expression by western blotting and immunohistochemistry staining, respectively. Compared with the non-TNBC, ADAM9 expression was significantly increased in TNBC cells and TNBC patient specimens. Based on the data acquired from public databases, the correlation between ADAM9 expression and breast cancer patient survival was analyzed by Kaplan-Meier method. It was shown that ADAM9 overexpression was significantly correlated with poorer survival in patients with TNBC. Furthermore, ADAM9 in TNBC cells was knocked down by small interference RNA and then studied by the MTT/colony formation assay, wound healing assay and transwell invasion assay on the cell proliferation, migration, and invasion, respectively. We found that inhibiting ADAM9 expression suppressed TNBC cell proliferation, migration, and invasion by lowering the activation of AKT/NF-κB pathway. Our results demonstrated that ADAM9 is an important molecule in mediating TNBC aggressiveness and may be a potential useful therapeutic target in TNBC treatment.
Collapse
Affiliation(s)
- Rui Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.,Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - William C S Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Victor Ma
- Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong, China
| | - Wah Cheuk
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - Yik-Ka So
- Department of Pathology, Queen Elizabeth Hospital, Hong Kong, China
| | - S C Cesar Wong
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mingrong Zhang
- Department of Advanced Nuclear Medicine Sciences, National Institute of Radiological Sciences, Chiba, Japan
| | - Cong Li
- Key Laboratory of Smart Drug Delivery, Ministry of Education, School of Pharmacy, Fudan University, Shanghai, China
| | - Yujie Sun
- State Key Laboratory of Membrane Biology, Biomedical Pioneer Innovation Center, School of Life Sciences, Peking University, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China.,Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China.,The College of Biomedical Engineering and Instrument Science of Zhejiang University, Hangzhou, China.,Department of Nuclear Medicine, The First Hospital of Shanxi Medical University, Taiyuan, China
| | - Lawrence W C Chan
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Mei Tian
- Department of Nuclear Medicine and Medical PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
28
|
miR193b Promotes Apoptosis of Gastric Cancer Cells via Directly Mediating the Akt Pathway. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2863236. [PMID: 32596290 PMCID: PMC7273449 DOI: 10.1155/2020/2863236] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 04/25/2020] [Indexed: 12/25/2022]
Abstract
Gastric cancer (GC) is one of the most common and fatal malignancies worldwide. MicroRNAs (miRNAs) play a critical role in tumor initiation, proliferation, and metastasis of gastric cancer. miR193b has been identified as a tumor suppressor in a variety of tumor types; however, its role in gastric cancer is yet to be determined. Here, we found a significant downregulation of miR193b expression in both human gastric cancer tissues (p < 0.05) and human gastric cancer cell lines (p < 0.01). Furthermore, the expression level of miR193b correlated with the tumor type, tumor size, and clinical stage (p < 0.05). In vitro, miR193b overexpression inhibited cell survival and induced apoptosis in GC cell lines, indicating that miR193b plays a role in the development of gastric cancer. KRAS was verified as the target of miR193b, and KRAS overexpression attenuated miR193b-induced apoptosis (p < 0.05). Moreover, we found that the Akt pathway negatively regulated miR193b, also affecting apoptosis. Further analyses indicated that PIK3CA mutation and KRAS amplification are two mutually exclusive pathways (p < 0.01), and we hypothesize that both two pathways could result in the carcinogenic overactivation of KRAS. Thus, our results suggest that the Akt-miR193b-KRAS axis may act as a mechanism affecting apoptosis in gastric cancer cells.
Collapse
|
29
|
Epigenetic Alterations in Oesophageal Cancer: Expression and Role of the Involved Enzymes. Int J Mol Sci 2020; 21:ijms21103522. [PMID: 32429269 PMCID: PMC7278932 DOI: 10.3390/ijms21103522] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/12/2020] [Accepted: 05/13/2020] [Indexed: 12/25/2022] Open
Abstract
Oesophageal cancer is a life-threatening disease, accounting for high mortality rates. The poor prognosis of this malignancy is mostly due to late diagnosis and lack of effective therapies for advanced disease. Epigenetic alterations may constitute novel and attractive therapeutic targets, owing to their ubiquity in cancer and their reversible nature. Herein, we offer an overview of the most important studies which compared differences in expression of enzymes that mediate epigenetic alterations between oesophageal cancer and normal mucosa, as well as in vitro data addressing the role of these genes/proteins in oesophageal cancer. Furthermore, The Cancer Genome Atlas database was interrogated for the correlation between expression of these epigenetic markers and standard clinicopathological features. We concluded that most epigenetic players studied thus far are overexpressed in tumours compared to normal tissue. Furthermore, functional assays suggest an oncogenic role for most of those enzymes, supporting their potential as therapeutic targets in oesophageal cancer.
Collapse
|
30
|
Lin WC, Chen LH, Hsieh YC, Yang PW, Lai LC, Chuang EY, Lee JM, Tsai MH. miR-338-5p inhibits cell proliferation, colony formation, migration and cisplatin resistance in esophageal squamous cancer cells by targeting FERMT2. Carcinogenesis 2020; 40:883-892. [PMID: 30576425 DOI: 10.1093/carcin/bgy189] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 12/13/2018] [Accepted: 12/20/2018] [Indexed: 12/22/2022] Open
Abstract
Esophageal cancer is one of the leading causes of cancer death in the male population of Eastern Asia. In addition, esophageal squamous cell carcinoma (ESCC) is the major type of esophageal cancer among the world. Owing to the poor overall 5-year survival rate, novel effective treatment strategies are needed. MicroRNAs are important gene regulators that are dysregulated in many cancer types. In our previous study, we applied next-generation sequencing to demonstrate that miR-338-5p was downregulated in the tumor tissue of patients with versus without recurrence. In this study, we further studied the roles of miR-338-5p in ESCC. The expression of endogenous miR-338-5p was at lower levels in ESCC cells compared with normal cells. Functional assays showed that miR-338-5p reduced cell proliferation, colony formation, migration and cisplatin resistance in an ESCC cell line, CE-81T. Potential target genes of miR-338-5p were identified by microarray and prediction tools, and 31 genes were selected. Among these, Fermitin family homolog 2 (FERMT2) plays an oncogenic role in ESCC, so it was chosen for further study. Luciferase assays showed the direct binding between miR-338-5p and the 3' untranslated region of FERMT2. Silencing of FERMT2 inhibited cell proliferation, colony formation, migration and cisplatin resistance. Pathway analysis revealed that the integrin-linked protein kinase signaling pathway, in which FERMT2 participates, was significantly affected by a miR-338-5p mimic. Our results suggest that miR-338-5p may play an antioncogenic role in ESCC via repressing FERMT2.
Collapse
Affiliation(s)
- Wen-Chun Lin
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan
| | - Li-Han Chen
- Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan
| | - Yao-Chin Hsieh
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Pei-Wen Yang
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Liang-Chuan Lai
- Graduate Institute of Physiology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan.,Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Jang-Ming Lee
- Department of Surgery, National Taiwan University Hospital and National Taiwan University College of Medicine
| | - Mong-Hsun Tsai
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.,Genome and Systems Biology Degree Program, Academia Sinica, Taipei, Taiwan.,Institute of Biotechnology, National Taiwan University, Taipei, Taiwan.,Bioinformatics and Biostatistics Core, NTU Center of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.,Center for Biotechnology, National Taiwan University, Taipei, Taiwan.,Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
31
|
Nammian P, Razban V, Tabei SMB, Asadi-Yousefabad SL. MicroRNA-126: Dual Role in Angiogenesis Dependent Diseases. Curr Pharm Des 2020; 26:4883-4893. [PMID: 32364067 DOI: 10.2174/1381612826666200504120737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA-126, a microRNA implicated in blood vessel integrity and angiogenesis is significantly up/down regulated in different physiological and pathological conditions related to angiogenesis such as cardiovascular formation and angiogenesis dependent diseases. MicroRNA-126 plays a critical role in angiogenesis via regulating the proliferation, differentiation, migration, and apoptosis of angiogenesis related cells such as endothelial cells. OBJECTIVE The aim of this review is to investigate the molecular mechanisms and the effects of microRNA-126 on the process of angiogenesis in pathophysiological conditions. METHODS To conduct this review, related articles published between 2001 and 2019 were collected from the PubMed, Web of Science, Google Scholar, Scopus and Scientific Information Database using search terms such as microRNA-126, angiogenesis, cardiovascular disorders, hypoxia, VEFG-A, endothelial cells, VEGF pathway, and gene silencing. Then, the qualified articles were reviewed. RESULTS MicroRNA-126 regulates the response of endothelial cells to VEGF, through directly repressing multiple targets, including Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-b). MicroRNA-126 -3p and microRNA-126 -5p have cell-type and strandspecific functions and also various targets in angiogenesis that lead to the regulation of angiogenesis via different pathways and consequently diverse responses. CONCLUSION MicroRNA-126 can bind to multiple targets and potentially be both positive and negative regulators of gene expression. Thus, microRNA-126 could cause the opposite biological effects depending on the context. As a result, understanding the different cellular pathways through which microRNA-126 regulates angiogenesis in various situations is a critical aspect in the development of novel and effective treatments for diseases with insufficient angiogenesis.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
32
|
Cao D, Mikosz AM, Ringsby AJ, Anderson KC, Beatman EL, Koike K, Petrache I. MicroRNA-126-3p Inhibits Angiogenic Function of Human Lung Microvascular Endothelial Cells via LAT1 (L-Type Amino Acid Transporter 1)-Mediated mTOR (Mammalian Target of Rapamycin) Signaling. Arterioscler Thromb Vasc Biol 2020; 40:1195-1206. [PMID: 32212853 PMCID: PMC7370836 DOI: 10.1161/atvbaha.119.313800] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE MicroRNA-126-3p (miR-126) is required for angiogenesis during organismal development or the repair of injured arterial vasculature. The role of miR-126 in lung microvascular endothelial cells, which are essential for gas exchange and for lung injury repair and regeneration, remains poorly understood. Considering the significant heterogeneity of endothelial cells from different vascular beds, we aimed to determine the role of miR-126 in regulating lung microvascular endothelial cell function and to elucidate its downstream signaling pathways. Approach and Results: Overexpression and knockdown of miR-126 in primary human lung microvascular endothelial cells (HLMVEC) were achieved via transfections of miR-126 mimics and antisense inhibitors. Increasing miR-126 levels in HLMVEC reduced cell proliferation, weakened tube formation, and increased cell apoptosis, whereas decreased miR-126 levels stimulated cell proliferation and tube formation. Whole-genome RNA sequencing revealed that miR-126 was associated with an antiangiogenic and proapoptotic transcriptomic profile. Using validation assays and knockdown approaches, we identified that the effect of miR-126 on HLMVEC angiogenesis was mediated by the LAT1 (L-type amino acid transporter 1), via regulation of mTOR (mammalian target of rapamycin) signaling. Furthermore, downregulation of miR-126 in HLMVEC inhibited cell apoptosis and improved endothelial tube formation during exposure to environmental insults such as cigarette smoke. CONCLUSIONS miR-126 inhibits HLMVEC angiogenic function by targeting the LAT1-mTOR signaling axis, suggesting that miR-126 inhibition may be useful for conditions associated with microvascular loss, whereas miR-126 augmentation may help control unwanted microvascular angiogenesis.
Collapse
Affiliation(s)
- Danting Cao
- Department of Pharmacology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Andrew M. Mikosz
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Alexandra J. Ringsby
- Department of Chemical and Biomolecular Engineering, University of California Berkeley, Berkeley, CA
| | - Kelsey C. Anderson
- Center for Genes, Environment and Health, National Jewish Health, Denver, CO
| | - Erica L. Beatman
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| | - Kengo Koike
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
- Division of Respiratory Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Irina Petrache
- Department of Pharmacology Graduate Training Program, University of Colorado Anschutz Medical Campus, Aurora, CO
- Division of Pulmonary, Critical Care and Sleep Medicine, National Jewish Health, Denver, CO
| |
Collapse
|
33
|
Su JF, Zhao F, Gao ZW, Hou YJ, Li YY, Duan LJ, Lun SM, Yang HJ, Li JK, Dai NT, Shen FF, Zhou FY. piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathol Res Pract 2020; 216:152848. [PMID: 32051106 DOI: 10.1016/j.prp.2020.152848] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/21/2020] [Accepted: 02/04/2020] [Indexed: 12/18/2022]
Abstract
Piwi-interacting RNAs (piRNAs) dysregulation occurs frequently in extensive cancers. However, there was no report about piRNA expression in esophageal cancer (EC). In this study, the expression levels of piR-823 and DNMT1, DNMT3A, DNMT3B were detected in 54 pairs of ESCC tissues and adjacent normal tissues using the quantitative real-time polymerase chain reaction method. Pearson's chi-squared test and receiver operating characteristic curves were established to evaluate the diagnostic and prognostic value of piR-823 in ESCC. Spearman's correlation analysis was used to evaluate the association between piR-823 and DNMTs. We found that piR-823 was significantly upregulated in ESCC tissues compared with matched normal tissues (P = 0.0213), the level of piR-823 was significantly associated with lymph node metastasis (P = 0.042). The ROC curve analysis of piR-823 expression level yielded an area under the ROC curve value of 0.713 (P = 0.0001). DNMT3B was upregulated in ESCC tissues compared with matched normal tissues (P = 0.0286). There was an obvious positive correlation between piR-823 and DNMT3B expression (r = 0.6420, P < 0.0001). In conclusion, for the first time, we provided evidence about piRNA expression in EC. piRNA-823 and DNMT3B were both upregulated in ESCC and positively correlated with each other, suggesting the tumor oncogenic role of piR-823 in ESCC to epigenetically induce aberrant DNA methylation through DNMT3B. In addition, piRNA-823 showed high specificity in detecting ESCC and higher piRNA-823 level indicated higher risk of lymph node metastasis, suggesting its diagnostic and prognostic biomarker potential.
Collapse
Affiliation(s)
- Jing-Fen Su
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Fang Zhao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Zhao-Wei Gao
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Yong-Jie Hou
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Yuan-Yuan Li
- Biotecan company, Shanghai, People's Republic of China
| | - Li-Juan Duan
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Shu-Min Lun
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Hai-Jun Yang
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Jun-Kuo Li
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Ning-Tao Dai
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China
| | - Fang-Fang Shen
- Key Laboratory for Tumor Translational Medicine, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, Henan, People's Republic of China
| | - Fu-You Zhou
- Anyang Key Laboratory for Esophageal Cancer Research, Anyang Cancer Hospital, the Forth Affiliated Hospital of Henan University of Science and Technology, Anyang, Henan, People's Republic of China.
| |
Collapse
|
34
|
Salama Y, Heida AH, Yokoyama K, Takahashi S, Hattori K, Heissig B. The EGFL7-ITGB3-KLF2 axis enhances survival of multiple myeloma in preclinical models. Blood Adv 2020; 4:1021-1037. [PMID: 32191808 PMCID: PMC7094020 DOI: 10.1182/bloodadvances.2019001002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Angiogenic factors play a key role in multiple myeloma (MM) growth, relapse, and drug resistance. Here we show that malignant plasma cells (cell lines and patient-derived MM cells) express angiocrine factor EGF like-7 (EGFL7) mRNA and protein. MM cells both produced EGFL7 and expressed the functional EGFL7 receptor integrin β 3 (ITGB3), resulting in ITGB3 phosphorylation and focal adhesion kinase activation. Overexpression of ITGB3 or EGFL7 enhanced MM cell adhesion and proliferation. Intriguingly, ITGB3 overexpression upregulated the transcription factor Krüppel-like factor 2 (KLF2), which further enhanced EGFL7 transcription in MM cells, thereby establishing an EGFL7-ITGB3-KLF2-EGFL7 amplification loop that supports MM cell survival and proliferation. EGFL7 expression was found in certain plasma cells of patients with refractory MM and of patients at primary diagnosis. NOD.CB17-Prkdc/J mice transplanted with MM cells showed elevated human plasma EGFL7 levels. EGFL7 knockdown in patient-derived MM cells and treatment with neutralizing antibodies against EGFL7 inhibited MM cell growth in vitro and in vivo. We demonstrate that the standard-of-care MM drug bortezomib upregulates EGFL7, ITGB3, and KLF2 expression in MM cells. Inhibition of EGFL7 signaling in synergy with BTZ may provide a novel strategy for inhibiting MM cell proliferation.
Collapse
Affiliation(s)
- Yousef Salama
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine
| | - Andries Hendrik Heida
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | - Satoshi Takahashi
- Department of Hematology and Oncology, Center for Stem Cell Biology and Regenerative Medicine, Institute of Medical Science, The University of Tokyo, Tokyo, Japan; and
| | | | - Beate Heissig
- Division of Stem Cell Dynamics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Department of Immunological Diagnosis, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
35
|
Jones VA, Patel PM, Gibson FT, Cordova A, Amber KT. The Role of Collagen XVII in Cancer: Squamous Cell Carcinoma and Beyond. Front Oncol 2020; 10:352. [PMID: 32266137 PMCID: PMC7096347 DOI: 10.3389/fonc.2020.00352] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Alterations in the extracellular matrix (ECM) likely facilitate the first steps of cancer cell metastasis and supports tumor progression. Recent data has demonstrated that alterations in collagen XVII (BP180), a transmembrane protein and structural component of the ECM, can have profound effects on cancer invasiveness. Collagen XVII is a homotrimer of three α1 (XVII) chains. Its intracellular domain contains binding sites for plectin, integrin β4, and BP230, while the extracellular domain facilitates interactions between the cell and the ECM. Collagen XVII and its shed ectodomain have been implicated in cell motility and adhesion and are believed to promote tumor development and invasion. A strong association of collagen XVII ectodomain shedding and tumor invasiveness occurs in squamous cell carcinoma (SCC). Aberrant expression of collagen XVII has been reported in many epithelial cancers, ranging from squamous cell carcinoma to colon, pancreatic, mammary, and ovarian carcinoma. Thus, in this review, we focus on collagen XVII's role in neoplasia and tumorigenesis. Lastly, we discuss the importance of targeting collagen XVII and its ectodomain shedding as a novel strategy to curb tumor growth and reduce metastatic potential.
Collapse
Affiliation(s)
- Virginia A Jones
- Skin Immunology Laboratory, Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| | - Payal M Patel
- Skin Immunology Laboratory, Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| | - Frederick T Gibson
- Skin Immunology Laboratory, Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| | - Adriana Cordova
- Skin Immunology Laboratory, Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| | - Kyle T Amber
- Skin Immunology Laboratory, Department of Dermatology, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
36
|
Xue WL, Chen RQ, Zhang QQ, Li XH, Cao L, Li MY, Li Y, Lin G, Chen Y, Wang MJ, Zhu YC. Hydrogen sulfide rescues high glucose-induced migration dysfunction in HUVECs by upregulating miR-126-3p. Am J Physiol Cell Physiol 2020; 318:C857-C869. [PMID: 32186933 DOI: 10.1152/ajpcell.00406.2019] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Diabetes (especially Type II) is one of the primary threats to cardiovascular health. Wound healing defects and vascular dysfunction are common in diabetic patients, and the primary cause of deterioration is sustained high plasma glucose. microRNA, a noncoding RNA, has regulatory functions that are critical to maintaining homeostasis. MicroRNA (miR)-126-3p is a potential diabetes biomarker and a proangiogenic factor, and its plasma level decreases in diabetic patients. Previous studies have revealed the proangiogenic character of the gasotransmitter hydrogen sulfide (H2S). However, little is known about the relationship between H2S and miR-126-3p when the extracellular glucose level is high, let alone their influences on deteriorated endothelial cell migration, a key component of angiogenesis, which is crucial for wound healing. Human umbilical vein endothelial cells (HUVECs) were treated with high glucose (33.3 mmol/L) or normal glucose (5.5 mmol/L) for 48 h. Affymetrix miRNA profiling and real-time PCR were used to validate the miRNA expression. An H2S probe (HSip-1) was used to detect endogenous H2S. Scratch wound-healing assays were used to evaluate HUVEC migration. The protein levels were quantified by Western blot. Both exogenous and endogenous H2S could upregulate the miR-126-3p levels in HUVECs or muscle tissue. High glucose decreased the H2S level and the protein expression of the H2S-producing enzyme cystathionine γ-lyase (CSE) in HUVECs; however, the DNA methyltransferase 1 (DNMT1) protein level was upregulated. CSE overexpression not only increased the miR-126-3p level by decreasing the DNMT1 protein level but also rescued the deteriorated cell migration in HUVECs treated with high glucose. DNMT1 overexpression decreased the miR-126-3p level and inhibited the migration of HUVECs, whereas silencing DNMT1 improved cell migration. High glucose decreased the endogenous H2S and miR-126-3p levels and increased the DNMT1 expression, thus inducing the migration dysfunction of HUVECs. Treatment with exogenous H2S or the overexpression of the endogenously produced enzyme CSE would rescue this migration dysfunction through H2S-DNMT1-miR-126-3p.
Collapse
Affiliation(s)
- Wen-Long Xue
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Rui-Qin Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qing-Qing Zhang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Xing-Hui Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Lei Cao
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Meng-Yao Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ye Li
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ge Lin
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ying Chen
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Ming-Jie Wang
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Yi-Chun Zhu
- Shanghai Key Laboratory of Bioactive Small Molecules and Shanghai Key Laboratory of Clinical Geriatric Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Gaetani S, Monaco F, Alessandrini F, Tagliabracci A, Sabbatini A, Bracci M, Valentino M, Neuzil J, Amati M, Santarelli L, Tomasetti M. Mechanism of miR-222 and miR-126 regulation and its role in asbestos-induced malignancy. Int J Biochem Cell Biol 2020; 121:105700. [PMID: 32006662 DOI: 10.1016/j.biocel.2020.105700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 01/22/2020] [Accepted: 01/27/2020] [Indexed: 12/19/2022]
Abstract
MiR-222 and miR-126 are associated with asbestos exposure and the ensuing malignancy, but the mechanism(s) of their regulation remain unclear. We evaluated the mechanism by which asbestos regulates miR-222 and miR-126 expression in the context of cancer etiology. An 'in vitro' model of carcinogen-induced cell transformation was used based on exposing bronchial epithelium BEAS-2B cells to three different carcinogens including asbestos. Involvement of the EGFR pathway and the role of epigenetics have been investigated in carcinogen-transformed cells and in malignant mesothelioma, a neoplastic disease associated with asbestos exposure. Increased expression of miR-222 and miR-126 were found in asbestos-transformed cells, but not in cells exposed to arsenic and chrome. Asbestos-mediated activation of the EGFR pathway and macrophages-induced inflammation resulted in miR-222 upregulation, which was reversed by EGFR inhibition. Conversely, asbestos-induced miR-126 expression was affected neither by EGFR modulation nor inflammation. Rather than methylation of the miR-126 host gene EGFL7, epigenetic mechanism involving DNMT1- and PARP1-mediated chromatin remodeling was found to upregulate of miR-126 in asbestos-exposed cells, while miR-126 was downregulated in malignant cells. Analysis of MM tissue supported the role of PARP1 in miR-126 regulation. Therefore, activation of the EGFR pathway and the PARP1-mediated epigenetic regulation both play a role in asbestos-induced miRNA expression, associated with in asbestos-induced carcinogenesis and tumor progression.
Collapse
Affiliation(s)
- Simona Gaetani
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Federica Alessandrini
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Adriano Tagliabracci
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Armando Sabbatini
- Division of Thoracic Surgery, United Hospitals, Ancona, 60126, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Matteo Valentino
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, 4222, Qld, Australia; Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague-West, 252 50, Czech Republic
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy.
| | - Marco Tomasetti
- Department of Clinical and Molecular Sciences, Section of Experimental and Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/A, 60020, Ancona, Italy.
| |
Collapse
|
38
|
Tang L, Liou YL, Wan ZR, Tang J, Zhou Y, Zhuang W, Wang G. Aberrant DNA methylation of PAX1, SOX1 and ZNF582 genes as potential biomarkers for esophageal squamous cell carcinoma. Biomed Pharmacother 2019; 120:109488. [DOI: 10.1016/j.biopha.2019.109488] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 09/08/2019] [Accepted: 09/22/2019] [Indexed: 12/23/2022] Open
|
39
|
Tomasetti M, Gaetani S, Monaco F, Neuzil J, Santarelli L. Epigenetic Regulation of miRNA Expression in Malignant Mesothelioma: miRNAs as Biomarkers of Early Diagnosis and Therapy. Front Oncol 2019; 9:1293. [PMID: 31850200 PMCID: PMC6897284 DOI: 10.3389/fonc.2019.01293] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/07/2019] [Indexed: 12/12/2022] Open
Abstract
Asbestos exposure leads to epigenetic and epigenomic modifications that, in association with ROS-induced DNA damage, contribute to cancer onset. Few miRNAs epigenetically regulated in MM have been described in literature; miR-126, however, is one of them, and its expression is regulated by epigenetic mechanisms. Asbestos exposure induces early changes in the miRNAs, which are reversibly expressed as protective species, and their inability to reverse reflects the inability of the cells to restore the physiological miRNA levels despite the cessation of carcinogen exposure. Changes in miRNA expression, which results from genetic/epigenetic changes during tumor formation and evolution, can be detected in fluids and used as cancer biomarkers. This article has reviewed the epigenetic mechanisms involved in miRNA expression in MM, focusing on their role as biomarkers of early diagnosis and therapeutic effects.
Collapse
Affiliation(s)
- Marco Tomasetti
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Simona Gaetani
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| | - Jiri Neuzil
- Mitochondria, Apoptosis and Cancer Research Group, School of Medical Science, Griffith University, Southport, QLD, Australia.,Molecular Therapy Group, Institute of Biotechnology, Czech Academy of Sciences, Prague, Czechia
| | - Lory Santarelli
- Section of Occupational Medicine, Department of Clinical and Molecular Sciences, Polytechnic University of Marche, Ancona, Italy
| |
Collapse
|
40
|
TEX9 and eIF3b functionally synergize to promote the progression of esophageal squamous cell carcinoma. BMC Cancer 2019; 19:875. [PMID: 31481019 PMCID: PMC6724304 DOI: 10.1186/s12885-019-6071-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 08/21/2019] [Indexed: 12/29/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is one of the most frequent malignant digestive tumors around the world. We previously demonstrated that eIF3b could promote the progression of ESCC. The exact mechanisms underlying these effects remained unknown. Methods Quantitative proteomics was applied to detect the potential targets of Eukaryotic translation initiation factor 3 subunit b (eIF3b). RT-qPCR and Western blot were performed to detect the expression of targeted gene and pathway related genes. RNA-immunoprecipitation was applied to verify the binding of eIF3b with targeted gene. Moreover, CCK-8 assay, colony-formation assay, transwell assay, flow cytometry for cell apoptosis and tumor xenograft assay were performed to analyze the regulation of the targeted gene on the bio-function of ESCC cells. Results Quantitative proteomics data showed that Testis-expressed protein 9 (TEX9) expression was positively associated with eIF3b expression. RT-qPCR and Western blot results confirmed the quantitative proteomics data and demonstrated that TEX9 expression was positively correlated with TNM stage in ESCC. Furtherly, RNA-immunoprecipitation confirmed that eIF3b binding to TEX9 mRNA. The bio-function related assay demonstrated that TEX9 and eIF3b functionally synergized to promote the proliferation and migration, and inhibited the apoptosis of ESCC cells. In the analysis of mechanism, we revealed that TEX9 and eIF3b promoted the progression of ESCC through the activation of AKT signaling pathway. Conclusions The synergized promoting role of TEX9 and eIF3b in the progression of ESCC may provide a novel mechanism for exploring viable therapeutic strategies for ESCC. Electronic supplementary material The online version of this article (10.1186/s12885-019-6071-9) contains supplementary material, which is available to authorized users.
Collapse
|
41
|
Wang JJ, Zou JX, Wang H, Duan ZJ, Wang HB, Chen P, Liu PQ, Xu JZ, Chen HW. Histone methyltransferase NSD2 mediates the survival and invasion of triple-negative breast cancer cells via stimulating ADAM9-EGFR-AKT signaling. Acta Pharmacol Sin 2019; 40:1067-1075. [PMID: 30670815 PMCID: PMC6786427 DOI: 10.1038/s41401-018-0199-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/23/2018] [Indexed: 02/05/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a heterogeneous disease with a poor prognosis due to the lack of an effective targeted therapy. Histone lysine methyltransferases (KMTs) have emerged as attractive drug targets for cancer therapy. However, the function of the majority of KMTs in TNBC has remained largely unknown. In the current study, we found that KMT nuclear receptor binding SET domain protein 2 (NSD2) is overexpressed in TNBC tumors and that its overexpression is associated with poor survival of TNBC patients. NSD2 regulates TNBC cell survival and invasion and is required for tumorigenesis and tumor growth. Mechanistically, NSD2 directly controls the expression of EGFR and ADAM9, a member of the ADAM (a disintegrin and metalloproteinase) family that mediates the release of growth factors, such as HB-EGF. Through its methylase activity, NSD2 overexpression stimulates EGFR-AKT signaling and promotes TNBC cell resistance to the EGFR inhibitor gefitinib. Together, our results identify NSD2 as a major epigenetic regulator in TNBC and provide a rationale for targeting NSD2 alone or in combination with EGFR inhibitors as a targeted therapy for TNBC.
Collapse
Affiliation(s)
- Jun-Jian Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - June X Zou
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Hong Wang
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Zhi-Jian Duan
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA
| | - Hai-Bin Wang
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Peng Chen
- First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Pei-Qing Liu
- School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jian-Zhen Xu
- Computational Systems Biology Lab, Shantou University Medical College, Shantou, 515041, China.
| | - Hong-Wu Chen
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California, Davis, CA, USA.
- Comprehensive Cancer Center, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
42
|
Xiao Y, Su M, Ou W, Wang H, Tian B, Ma J, Tang J, Wu J, Wu Z, Wang W, Zhou Y. Involvement of noncoding RNAs in epigenetic modifications of esophageal cancer. Biomed Pharmacother 2019; 117:109192. [PMID: 31387188 DOI: 10.1016/j.biopha.2019.109192] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 12/16/2022] Open
Abstract
Esophageal cancer (EC) is a serious digestive malignancy and is a leading cause of cancer-related mortality. Apart from genetic mutations, many epigenetic alterations including DNA methylation and histone modifications associated with chromatin remodeling have been identified in the regulation of gene expression in EC. Recently, noncoding RNAs, and mainly lncRNAs and miRNAs, have been revealed to be involved in the epigenetic regulation of EC. In this review, we focus on describing new insights on epigenetic processes associated with noncoding RNAs, which have been characterized to be responsible for the development and progression of EC.
Collapse
Affiliation(s)
- Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Min Su
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wei Ou
- Department of Pharmacy, The First People's Hospital of Yue Yang, Yue Yang, PR China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Bo Tian
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Junliang Ma
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jinming Tang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Jie Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Zhining Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China
| | - Wenxiang Wang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| | - Yong Zhou
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, PR China.
| |
Collapse
|
43
|
Abstract
Esophageal cancer (EC) is an extremely aggressive cancer with one of the highest mortality rates. The cancer is generally only diagnosed at the later stages and has a poor 5-year survival rate due to the limited treatment options. China and South Africa are two countries with a very high prevalence rate of EC. EC rates in South Africa have been on the increase, and esophageal squamous cell carcinoma is the predominant subtype and a primary cause of cancer-related deaths in the black and male mixed ancestry populations in South Africa. The incidence of EC is highest in the Eastern Cape Province, especially in the rural areas such as the Transkei, where the consumption of foods contaminated with Fusarium verticillioides is thought to play a major contributing role to the incidence of EC. China is responsible for almost half of all new cases of EC globally. In China, the prevalence of EC varies greatly. However, the two main areas of high prevalence are the southern Taihang Mountain area (Linxian, Henan Province) and the north Jiangsu area. In both countries, environmental toxins play a major role in increasing the chance that an individual will develop EC. These associative factors include tobacco use, alcohol consumption, nutritional deficiencies and exposure to environmental toxins. However, genetic polymorphisms also play a role in predisposing individuals to EC. These include single-nucleotide polymorphisms that can be found in both protein-coding genes and in non-coding sequences such as miRNAs. The aim of this review is to summarize the contribution of genetic polymorphisms to EC in South Africa and to compare and contrast this to the genetic polymorphisms observed in EC in the most comprehensively studied population group, the Chinese.
Collapse
Affiliation(s)
- Mohammed Alaouna
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Rodney Hull
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa,
| | - Clement Penny
- Department of Internal Medicine, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Zodwa Dlamini
- Research, Innovation & Engagements Portfolio, Mangosuthu University of Technology, Durban, South Africa,
| |
Collapse
|
44
|
Zhai W, Zhu R, Ma J, Gong D, Zhang H, Zhang J, Chen Y, Huang Y, Zheng J, Xue W. A positive feed-forward loop between LncRNA-URRCC and EGFL7/P-AKT/FOXO3 signaling promotes proliferation and metastasis of clear cell renal cell carcinoma. Mol Cancer 2019; 18:81. [PMID: 30953521 PMCID: PMC6449923 DOI: 10.1186/s12943-019-0998-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/07/2019] [Indexed: 12/21/2022] Open
Abstract
Background The aberrant expression of long noncoding RNAs (lncRNAs) has recently emerged as key molecules in human cancers; however, whether lncRNAs are implicated in the progression of clear cell renal cell carcinoma (ccRCC) remains unclear. Methods Candidate lncRNAs were selected using microarray analysis and quantitative real-time PCR (qRT-PCR) was performed to detect lncRNAs expression in human ccRCC tissues. Overexpression and knocking down experiments in vivo and in vitro were performed to uncover the biological roles of lncRNA-URRCC on ccRCC cell proliferation and invasion. Microarray, chromatin immunoprecipitation, Luciferase reporter assay and western blot were constructed to investigate the molecular mechanisms underlying the functions of lncRNA-URRCC. Results The microarray analysis and qRT-PCR identified a new lncRNA, URRCC, whose expression is upregulated in RCC samples and associated with poor prognosis, leading to promote ccRCC cell proliferation and invasion. Mechanistically, URRCC enhances the expression of EGFL7 via mediating histone H3 acetylation of EGFL7 promoter, activation of P-AKT signaling, and suppressing P-AKT downstream gene, FOXO3. In return, FOXO3 could inhibit the transcription of URRCC via binding to the special region on the promoter of URRCC. Conclusions Our data suggests that targeting this newly identified feed-back loop between LncRNA-URRCC and EGFL7/P-AKT/FOXO3 signaling may enhance the efficacy of existing therapy and potentially imparts a new avenue to develop more potent therapeutic approaches to suppress RCC progression. Electronic supplementary material The online version of this article (10.1186/s12943-019-0998-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhai
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China.
| | - Rujian Zhu
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China.,Department of Urology, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Junjie Ma
- Department of Urology, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 2800 Gongwei Road, Pudong, Shanghai, 201399, China
| | - Dongkui Gong
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Haimin Zhang
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine in Tongji University, Shanghai, 200072, China
| | - Jin Zhang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Yonghui Chen
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Yiran Huang
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China
| | - Junhua Zheng
- Department of Urology, Shanghai First People's Hospital, School of Medicine in Shanghai Jiao Tong University, Shanghai, 200080, China.
| | - Wei Xue
- Department of Urology, Renji Hospital, School of Medicine in Shanghai Jiao Tong University, 160 Pujian Road, Pudong District, Shanghai, 200127, China.
| |
Collapse
|
45
|
Wang Y, Hu Y, Guo J, Wang L. miR-148a-3p Suppresses the Proliferation and Invasion of Esophageal Cancer by Targeting DNMT1. Genet Test Mol Biomarkers 2019; 23:98-104. [PMID: 30735457 DOI: 10.1089/gtmb.2018.0285] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AIM To identify whether miR-148a-3p interacts with DNA (cytosine-5)-methyltransferase 1 (DNMT1) in esophageal cancer. METHODS A luciferase assay and immunoblotting were performed to detect the relationship between miR-148a-3p and DNMT1. The MTT method, Annexin V/propidium iodide staining, and Transwell assays were adopted to assess the biological behaviors in EC109 cells. The association between the expression level of miR-148a-3p, clinical features, and prognosis were evaluated by chi-square test and univariate survival analysis. RESULTS In this study, DNMT1 was identified as a direct target of miR-148a-3p by luciferase assay and Western blot. Real-time quantitative PCR analyses showed that the relative expression levels of miR-148a-3p and DNMT1 were reduced in esophageal cancer samples compared with adjacent tissues; and a negative relationship between both was indicated. Upon overexpression of miR-148a-3p in esophageal cancer cells, proliferation and invasion were significantly suppressed, and apoptosis was promoted. A higher level of miR-148a-3p was correlated with better patient outcomes. CONCLUSIONS Our study indicated that miR-148a-3p, by targeting DNMT1, likely regulates cell proliferation and invasion in esophageal cancer. miR-148a-3p might also be used prognostically in esophageal cancer and serve as a therapeutic target in the future.
Collapse
Affiliation(s)
- Yuping Wang
- First Oncology Ward, Henan Province Hospital of TCM, Zhengzhou, P.R. China
| | - Yuna Hu
- First Oncology Ward, Henan Province Hospital of TCM, Zhengzhou, P.R. China
| | - Junhui Guo
- First Oncology Ward, Henan Province Hospital of TCM, Zhengzhou, P.R. China
| | - Lingling Wang
- First Oncology Ward, Henan Province Hospital of TCM, Zhengzhou, P.R. China
| |
Collapse
|
46
|
Wu DM, Wen X, Han XR, Wang S, Wang YJ, Shen M, Fan SH, Zhang ZF, Shan Q, Li MQ, Hu B, Lu J, Chen GQ, Zheng YL. Bone Marrow Mesenchymal Stem Cell-Derived Exosomal MicroRNA-126-3p Inhibits Pancreatic Cancer Development by Targeting ADAM9. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:229-245. [PMID: 30925451 PMCID: PMC6439275 DOI: 10.1016/j.omtn.2019.02.022] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/30/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Pancreatic cancer is a lethal malignancy with relatively few effective therapies. Recent investigations have highlighted the role of microRNAs (miRNAs) as crucial regulators in various tumor processes including tumor progression. Hence the current study aimed to investigate the role of bone marrow mesenchymal stem cell (BMSC)-derived exosomal microRNA-126-3p (miR-126-3p) in pancreatic cancer. Initially, miRNA candidates and related genes associated with pancreatic cancer were screened. PANC-1 cells were transfected with miR-126-3p or silenced a disintegrin and a metalloproteinase-9 (ADAM9) to examine their regulatory roles in pancreatic cancer cells. Additionally, exosomes derived from BMSCs were isolated and co-cultured with pancreatic cancer cells to elucidate the effects of exosomes in pancreatic cancer. Furthermore, the effects of overexpressed miR-126-3p derived from BMSCs exosomes on proliferation, migration, invasion, apoptosis, tumor growth, and metastasis of pancreatic cancer cells were analyzed in connection with lentiviral packaged miR-126-3p in vivo. Restored miR-126-3p was observed to suppress pancreatic cancer through downregulating ADAM9. Notably, overexpressed miR-126-3p derived from BMSCs exosomes inhibited the proliferation, invasion, and metastasis of pancreatic cancer cells, and promoted their apoptosis both in vitro and in vivo. Taken together, the key findings of the study indicated that overexpressed miR-126-3p derived from BMSCs exosomes inhibited the development of pancreatic cancer through the downregulation of ADAM9, highlighting the potential of miR-126-3p as a novel biomarker for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Dong-Mei Wu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xin Wen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Xin-Rui Han
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shan Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Yong-Jian Wang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Min Shen
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Shao-Hua Fan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Zi-Feng Zhang
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Qun Shan
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Meng-Qiu Li
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Bin Hu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China
| | - Jun Lu
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| | - Gui-Quan Chen
- State Key Laboratory of Pharmaceutical Biotechnology, MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing 210061, Jiangsu, China.
| | - Yuan-Lin Zheng
- Key Laboratory for Biotechnology on Medicinal Plants of Jiangsu Province, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China; College of Health Sciences, Jiangsu Normal University, Xuzhou 221116, Jiangsu, China.
| |
Collapse
|
47
|
Farooqi AA, Fuentes-Mattei E, Fayyaz S, Raj P, Goblirsch M, Poltronieri P, Calin GA. Interplay between epigenetic abnormalities and deregulated expression of microRNAs in cancer. Semin Cancer Biol 2019; 58:47-55. [PMID: 30742906 DOI: 10.1016/j.semcancer.2019.02.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 01/23/2019] [Accepted: 02/07/2019] [Indexed: 02/07/2023]
Abstract
Epigenetic abnormalities and aberrant expression of non-coding RNAs are two emerging features of cancer cells, both of which are responsible for deregulated gene expression. In this review, we describe the interplay between the two. Specific themes include epigenetic silencing of tumor suppressor miRNAs, epigenetic activation of oncogenic miRNAs, epigenetic aberrations caused by miRNAs, and naturally occurring compounds which modulate miRNA expression through epigenetic mechanisms.
Collapse
Affiliation(s)
| | - Enrique Fuentes-Mattei
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Priyank Raj
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew Goblirsch
- College of Science, Department of Chemistry & Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Palmiro Poltronieri
- National Research Council Italy Institute of Sciences of Food Productions (CNR-ISPA), Via Lecce-Monteroni km 7, 73100 Lecce, Italy
| | - George A Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA; Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
48
|
Hu M, Xiong S, Chen Q, Zhu S, Zhou X. Novel role of microRNA-126 in digestive system cancers: From bench to bedside. Oncol Lett 2018; 17:31-41. [PMID: 30655735 PMCID: PMC6313097 DOI: 10.3892/ol.2018.9639] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 09/28/2018] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs (miRNAs) are ubiquitously expressed, small, non-coding RNAs that regulate the expression of approximately 30% of the human genes at the post-transcriptional level. miRNAs have emerged as crucial modulators in the initiation and progression of various diseases, including numerous cancer types. The high incidence rate of cancer and the large number of cancer-associated cases of mortality are mostly due to a lack of effective treatments and biomarkers for early diagnosis. Therefore there is an urgent requirement to further understand the underlying mechanisms of tumorigenesis. MicroRNA-126 (miR-126) is significantly downregulated in a number of tumor types and is commonly identified as a tumor suppressor in digestive system cancers (DSCs). miR-126 downregulates various oncogenes, including disintegrin and metalloproteinase domain-containing protein 9, v-crk sarcoma virus CT10 oncogene homolog and phosphoinositide-3-kinase regulatory subunit 2. These genes are involved in a number of tumor-associated signaling pathways, including angiogenesis, epithelial-mensenchymal transition and metastasis pathways. The aim of the current review was to summarize the role of miR-126 in DSCs, in terms of its dysregulation, target genes and associated signaling pathways. In addition, the current review has discussed the potential clinical application of miR-126 as a biomarker and therapeutic target for DSCs.
Collapse
Affiliation(s)
- Mingli Hu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shengwei Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Qiaofeng Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Shixuan Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| | - Xiaodong Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, P.R. China
| |
Collapse
|
49
|
Tomasetti M, Re M, Monaco F, Gaetani S, Rubini C, Bertini A, Pasquini E, Bersaglieri C, Bracci M, Staffolani S, Colomba M, Gregorini A, Valentino M, Tagliabracci A, Bovenzi M, Neuzil J, Amati M, Santarelli L. MiR-126 in intestinal-type sinonasal adenocarcinomas: exosomal transfer of MiR-126 promotes anti-tumour responses. BMC Cancer 2018; 18:896. [PMID: 30223817 PMCID: PMC6142309 DOI: 10.1186/s12885-018-4801-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 09/05/2018] [Indexed: 12/14/2022] Open
Abstract
Background Intestinal-type sinonasal adenocarcinomas (ITACs) are aggressive malignancies related to wood dust and leather exposure. ITACs are generally associated with advanced stage at presentation due to the insidious growth pattern and non-specific symptoms. Therefore, biomarkers that can detect the switch from the benign disease to malignancy are needed. Essential for tumour growth, angiogenesis is an important step in tumour development and progression. This process is strictly regulated, and MiR-126 considered its master modulator. Methods We have investigated MiR-126 levels in ITACs and compared them to benign sinonasal lesions, such as sinonasal-inverted papillomas (SIPs) and inflammatory polyps (NIPs). The tumour-suppressive functions of MiR-126 were also evaluated. Results We found that MiR-126 can significantly distinguish malignancy from benign nasal forms. The low levels of MiR-126 in ITACs point to its role in tumour progression. In this context, restoration of MiR-126 induced metabolic changes, and inhibited cell growth and the tumorigenic potential of MNSC cells. Conclusions We report that MiR-126 delivered via exosomes from endothelial cells promotes anti-tumour responses. This paracrine transfer of MiRs may represent a new approach towards MiR-based therapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4801-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marco Tomasetti
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy. .,International Society of Doctors for the Environment (ISDE), Arezzo, Italy.
| | - Massimo Re
- Department of Clinical and Molecular Sciences, Section of Otorhinolaryngology, Polytechnic University of Marche, Ancona, Italy
| | - Federica Monaco
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Simona Gaetani
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Corrado Rubini
- Department of Biomedical Sciences and Public Health, Section of Anatomical Pathology, Polytechnic University of Marche, Ancona, Italy
| | - Andrea Bertini
- Department of Clinical and Molecular Sciences, Section of Otorhinolaryngology, Polytechnic University of Marche, Ancona, Italy
| | - Ernesto Pasquini
- Surgical Department, ENT Metropolitan Unit, Bellaria & Budrio Hospital, Bologna, Italy
| | - Cristiana Bersaglieri
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Massimo Bracci
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Sara Staffolani
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Mariastella Colomba
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, PU, Italy
| | - Armando Gregorini
- Department of Biomolecular Sciences, University of Urbino "Carlo Bo", Urbino, PU, Italy
| | - Matteo Valentino
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Adriano Tagliabracci
- Department of Biomedical Sciences and Public Health, Section of Legal Medicine, Polytechnic University of Marche, Ancona, Italy
| | - Massimo Bovenzi
- Department of Medical Sciences, Clinical Unit of Occupational Medicine, School of Medicine, University of Trieste, Trieste, Italy
| | - Jiri Neuzil
- School of Medical Science, Griffith University, Southport, Australia.,Institute of Biotechnology, Czech Academy of Sciences, Prague-West, Czech Republic
| | - Monica Amati
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy
| | - Lory Santarelli
- Department of Clinical and Molecular Sciences, Section of Occupational Medicine, Polytechnic University of Marche, Via Tronto 10/a, 60020, Ancona, Italy.
| |
Collapse
|
50
|
Co-activation of super-enhancer-driven CCAT1 by TP63 and SOX2 promotes squamous cancer progression. Nat Commun 2018; 9:3619. [PMID: 30190462 PMCID: PMC6127298 DOI: 10.1038/s41467-018-06081-9] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 08/13/2018] [Indexed: 01/17/2023] Open
Abstract
Squamous cell carcinomas (SCCs) are aggressive malignancies. Previous report demonstrated that master transcription factors (TFs) TP63 and SOX2 exhibited overlapping genomic occupancy in SCCs. However, functional consequence of their frequent co-localization at super-enhancers remains incompletely understood. Here, epigenomic profilings of different types of SCCs reveal that TP63 and SOX2 cooperatively and lineage-specifically regulate long non-coding RNA (lncRNA) CCAT1 expression, through activation of its super-enhancers and promoter. Silencing of CCAT1 substantially reduces cellular growth both in vitro and in vivo, phenotyping the effect of inhibiting either TP63 or SOX2. ChIRP analysis shows that CCAT1 forms a complex with TP63 and SOX2, which regulates EGFR expression by binding to the super-enhancers of EGFR, thereby activating both MEK/ERK1/2 and PI3K/AKT signaling pathways. These results together identify a SCC-specific DNA/RNA/protein complex which activates TP63/SOX2-CCAT1-EGFR cascade and promotes SCC tumorigenesis, advancing our understanding of transcription dysregulation in cancer biology mediated by master TFs and super-enhancers. Master regulator transcription factors TP63 and SOX2 have been reported to overlap in genomic occupancy in squamous cell carcinomas (SCCs). Here, the authors demonstrate that TP63 and SOX2 promote co-operatively long non-coding RNA CCAT1 expression through activating its super-enhancer, and CCAT1 forms a complex with TP63 and SOX2, which regulates EGFR super-enhancers and enhances both the MEK/ERK1/2 and PI3K/AKT signaling pathways in SCC.
Collapse
|