1
|
Schultz CR, Aleiwi B, Zhou XE, Suino-Powell K, Melcher K, Almeida NMS, Wilson AK, Ellsworth EL, Bachmann AS. Design, Synthesis, and Biological Activity of Novel Ornithine Decarboxylase (ODC) Inhibitors. J Med Chem 2025; 68:5760-5773. [PMID: 40035393 PMCID: PMC11912471 DOI: 10.1021/acs.jmedchem.4c03120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/31/2025] [Accepted: 02/24/2025] [Indexed: 03/05/2025]
Abstract
We here describe the design, synthesis, and biological activity of novel ornithine decarboxylase (ODC) inhibitors that show significantly higher potency in vitro than α-difluoromethylornithine (DFMO), a U.S. Food and Drug Administration (FDA) approved drug. We report two X-ray structures of ODC complexed with new ODC inhibitors, computational docking, molecular dynamics, and binding free energy calculations to validate the experimental models. The X-ray structures reveal that covalent adducts with pyridoxal phosphate (PLP) are formed in the active site of the human ODC enzyme, as verified by their preparation and enzymatic testing. Finally, we verified that the cellular activity of endogenous ODC was inhibited, and polyamine levels were reduced. Given that ODC is a clinically validated target, combined with the fact that DFMO is currently the only ODC inhibitor in clinical use for several indications, the further development of more potent ODC inhibitors with superior activity and physical properties is warranted.
Collapse
Affiliation(s)
- Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States
- International Center for Polyamine Disorders, Grand Rapids, Michigan 49503, United States
| | - Bilal Aleiwi
- Department of Pharmacology and Toxicology, College of Human Medicine, East Lansing, Michigan 48824, United States
| | - X Edward Zhou
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Kelly Suino-Powell
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Karsten Melcher
- Department of Structural Biology, Van Andel Institute, Grand Rapids, Michigan 49503, United States
| | - Nuno M S Almeida
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Angela K Wilson
- Department of Chemistry, College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United States
| | - Edmund L Ellsworth
- Department of Pharmacology and Toxicology, College of Human Medicine, East Lansing, Michigan 48824, United States
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, United States
- International Center for Polyamine Disorders, Grand Rapids, Michigan 49503, United States
| |
Collapse
|
2
|
Xie ZF, Liu HM, Zhao JF, Gao Y, Zhao YL, Zheng JY, Pei XW, Zhang N, Tian G. AMD1, a cardiotoxicity target for Maduramicin. BMC Pharmacol Toxicol 2025; 26:55. [PMID: 40069794 PMCID: PMC11895246 DOI: 10.1186/s40360-025-00897-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/07/2025] [Indexed: 03/15/2025] Open
Abstract
OBJECTIVE The aim of this study was to investigate AMD1 cardiotoxicity function for Maduramicin (Mad). METHODS SD rats were divided into control (Control) group and Mad treatment (3.5 mg/kg) group (Mad). After treatment with Mad for seven days, the levels of LDH and CK-MB in serum were detected, H&E staining and TUNEL staining were performed. In vitro, 1.0 μm Mad was used for the subsequently experiment, observing cell apoptosis from Flow cytometry. Caspase-3 and AMD1 were detected in Western blotting. Flow cytometry and Western blotting were also performed after use of siRNA-AMD1-1. Then, analysis AMD1 potential function in cardiotoxicity from bioinformatics techniques including GO, KEGG, PPI, immune infiltration and molecular docking. RESULT Maduramicin has myocardial toxic effects in vivo and vitro, which with AMD1 raised. When AMD1 was knocked down, toxic effects of Mad were alleviated. Apoptosis, proliferation and inflammation were the major pathophysiological changes in myocardial apoptosis process with AMD1-knockdown. This process involved in IL1A, IL1B, PTGS2, VEGFA, VEGFC and HBEFG, as hub genes related AMD1 cardiotoxicity function for Maduramicin. AMD1 was knocked down, their microenvironment changes: Effector memory CD4 T cell and Natural killer cell were more infiltrated, and Mast cell were less infiltrated. CONCLUSION Mad exerted cardiotoxic effects by upregulating the AMD1 gene, which may be associated with cell apoptosis, proliferation and inflammatory response. AMD1 also had cardiotoxicity function, by the impact of both myocardial cells and the microenvironment they live.
Collapse
Affiliation(s)
- Zi-Feng Xie
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Han-Meng Liu
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Fan Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan Gao
- Department of Anesthesiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Yuan-Long Zhao
- First Clinical Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Jia-Yue Zheng
- Stomatology Medical College, Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Xiao-Wei Pei
- Department of Physical Medicine and Rehabilitation, Linghai Daling River Hospital, Linghai, Liaoning, 121200, China
| | - Ning Zhang
- Department of Hematology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China
| | - Ge Tian
- Department of Cardiology, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, Liaoning, 121000, China.
| |
Collapse
|
3
|
Schramm J, Sholler C, Menachery L, Vazquez L, Saulnier Sholler G. Polyamine Inhibition with DFMO: Shifting the Paradigm in Neuroblastoma Therapy. J Clin Med 2025; 14:1068. [PMID: 40004600 PMCID: PMC11856405 DOI: 10.3390/jcm14041068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Neuroblastoma is a common childhood malignancy, and high-risk presentations, including an MYCN amplified status, continue to result in poor survival. Difluoromethylornithine (DFMO) is a new and well-tolerated treatment for high-risk neuroblastoma. This review article discusses preclinical and clinical data that resulted in the establishment of DFMO as a treatment for neuroblastoma. The review of preclinical data includes a summary of the contribution of polyamine synthetic pathways to high-risk neuroblastoma, the effect that MYCN has on polyamine synthetic pathways, and the proposed mechanism by which DFMO inhibits tumorigenesis. This understanding has led to the discussion of various preclinical combination therapies that may result in a synergistic therapeutic response for high-risk neuroblastoma. We review the clinical trials that show the successful treatment of high-risk neuroblastoma with DFMO, including comparative analysis and traditional neuroblastoma trials using propensity score matching. We review the regulatory path by which DFMO gained approval from the Federal Drug Administration for use as a maintenance therapy following the traditional high-risk neuroblastoma therapy. Finally, we discuss the role of DFMO in future clinical research for neuroblastoma and additional pediatric cancers.
Collapse
|
4
|
Zhou Y, Zhou Y, Hu J, Xiao Y, Zhou Y, Yu L. Prognostic, oncogenic roles, and pharmacogenomic features of AMD1 in hepatocellular carcinoma. Cancer Cell Int 2024; 24:398. [PMID: 39695661 DOI: 10.1186/s12935-024-03593-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND AMD1 is the gene encoding S-adenosylmethionine decarboxylase 1. How AMD1 affects the prognosis of hepatocellular carcinoma (HCC) patients is unclear. METHODS Using the Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma datasets, gene enrichment and immunological traits were compared between groups with high and low AMD1 expression. After altering AMD1 expression in HCC cells, cell viability, the clonal formation rate, and migration and invasion ability were detected. Univariate Cox regression analysis and Pearson correlation were used to screen for AMD1-related genes (ARGs). Multidimensional bioinformatic algorithms were utilized to establish a risk score model for ARGs. RESULTS AMD1 expression was notably increased in the majority of cancer types. High AMD1 expression was associated with adverse outcomes and poorer immunotherapy response in HCC patients. AMD1 exhibited higher expression levels in HCC cell lines. The efficient inhibition of HCC cell proliferation, migration, and invasion in vitro can be achieved through the downregulation of AMD1. The AMD1-related risk score was constructed with the expression of 9 ARGs, and demonstrated high predictive efficacy in multiple validation cohorts. Patients with high risk scores exhibited greater resistance to classical chemotherapy drugs. The nomogram, which consists of age, stage, and the AMD1-related risk score, was used to calculate the probability of survival for each individual. CONCLUSION The present study indicates that AMD1 functions as a potential role in HCC progression and may serve as a therapeutic target in HCC. This study constructed a novel AMD1-related scoring system for predicting the prognosis and treatment responsiveness of patients with HCC, enabling the prediction of prognosis and identification of potential treatment targets.
Collapse
Affiliation(s)
- Youliang Zhou
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yi Zhou
- Department of Orthopedic, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Jiabin Hu
- Department of Surgery, Yuhuan Hospital of Traditional Chinese Medicine, Taizhou, 317600, Zhejiang, China
| | - Yao Xiao
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China
| | - Yan Zhou
- Department of Pediatrics, The Yuhuan Branch of The First Affiliated Hospital with Wenzhou Medical University, Taizhou, 317600, Zhejiang, China.
| | - Liping Yu
- Department of Medical Insurance, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, 310015, Zhejiang, China.
| |
Collapse
|
5
|
Ji G, Zhao J, Si X, Song W. Targeting bacterial metabolites in tumor for cancer therapy: An alternative approach for targeting tumor-associated bacteria. Adv Drug Deliv Rev 2024; 211:115345. [PMID: 38834140 DOI: 10.1016/j.addr.2024.115345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 05/11/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
Emerging evidence reveal that tumor-associated bacteria (TAB) can facilitate the initiation and progression of multiple types of cancer. Recent work has emphasized the significant role of intestinal microbiota, particularly bacteria, plays in affecting responses to chemo- and immuno-therapies. Hence, it seems feasible to improve cancer treatment outcomes by targeting intestinal bacteria. While considering variable richness of the intestinal microbiota and diverse components among individuals, direct manipulating the gut microbiota is complicated in clinic. Tumor initiation and progression requires the gut microbiota-derived metabolites to contact and reprogram neoplastic cells. Hence, directly targeting tumor-associated bacteria metabolites may have the potential to provide alternative and innovative strategies to bypass the gut microbiota for cancer therapy. As such, there are great opportunities to explore holistic approaches that incorporates TAB-derived metabolites and related metabolic signals modulation for cancer therapy. In this review, we will focus on key opportunistic areas by targeting TAB-derived metabolites and related metabolic signals, but not bacteria itself, for cancer treatment, and elucidate future challenges that need to be addressed in this emerging field.
Collapse
Affiliation(s)
- Guofeng Ji
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Jingjing Zhao
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang 453100, China
| | - Xinghui Si
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Wantong Song
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| |
Collapse
|
6
|
Liu TA, Stewart TM, Casero RA. The Synergistic Benefit of Combination Strategies Targeting Tumor Cell Polyamine Homeostasis. Int J Mol Sci 2024; 25:8173. [PMID: 39125742 PMCID: PMC11311409 DOI: 10.3390/ijms25158173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/19/2024] [Accepted: 07/22/2024] [Indexed: 08/12/2024] Open
Abstract
Mammalian polyamines, including putrescine, spermidine, and spermine, are positively charged amines that are essential for all living cells including neoplastic cells. An increasing understanding of polyamine metabolism, its molecular functions, and its role in cancer has led to the interest in targeting polyamine metabolism as an anticancer strategy, as the metabolism of polyamines is frequently dysregulated in neoplastic disease. In addition, due to compensatory mechanisms, combination therapies are clinically more promising, as agents can work synergistically to achieve an effect beyond that of each strategy as a single agent. In this article, the nature of polyamines, their association with carcinogenesis, and the potential use of targeting polyamine metabolism in treating and preventing cancer as well as combination therapies are described. The goal is to review the latest strategies for targeting polyamine metabolism, highlighting new avenues for exploiting aberrant polyamine homeostasis for anticancer therapy and the mechanisms behind them.
Collapse
Affiliation(s)
- Ting-Ann Liu
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Tracy Murray Stewart
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| | - Robert A. Casero
- The Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA;
| |
Collapse
|
7
|
Ivanova ON, Gavlina AV, Karpenko IL, Zenov MA, Antseva SS, Zakirova NF, Valuev-Elliston VT, Krasnov GS, Fedyakina IT, Vorobyev PO, Bartosch B, Kochetkov SN, Lipatova AV, Yanvarev DV, Ivanov AV. Polyamine Catabolism Revisited: Acetylpolyamine Oxidase Plays a Minor Role due to Low Expression. Cells 2024; 13:1134. [PMID: 38994986 PMCID: PMC11240330 DOI: 10.3390/cells13131134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/13/2024] Open
Abstract
Biogenic polyamines are ubiquitous compounds. Dysregulation of their metabolism is associated with the development of various pathologies, including cancer, hyperproliferative diseases, and infections. The canonical pathway of polyamine catabolism includes acetylation of spermine and spermidine and subsequent acetylpolyamine oxidase (PAOX)-mediated oxidation of acetylpolyamines (back-conversion) or their direct efflux from the cell. PAOX is considered to catalyze a non-rate-limiting catabolic step. Here, we show that PAOX transcription levels are extremely low in various tumor- and non-tumor cell lines and, in most cases, do not change in response to altered polyamine metabolism. Its enzymatic activity is undetectable in the majority of cell lines except for neuroblastoma and low passage glioblastoma cell lines. Treatment of A549 cells with N1,N11-diethylnorspermine leads to PAOX induction, but its contribution to polyamine catabolism remains moderate. We also describe two alternative enzyme isoforms and show that isoform 4 has diminished oxidase activity and isoform 2 is inactive. PAOX overexpression correlates with the resistance of cancer cells to genotoxic antitumor drugs, indicating that PAOX may be a useful therapeutic target. Finally, PAOX is dispensable for the replication of various viruses. These data suggest that a decrease in polyamine levels is achieved predominantly by the secretion of acetylated spermine and spermidine rather than by back-conversion.
Collapse
Affiliation(s)
- Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anna V. Gavlina
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Martin A. Zenov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Svetlana S. Antseva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Irina T. Fedyakina
- Gamaleya National Research Centre for Epidemiology and Microbiology, Ministry of Russia, 132098 Moscow, Russia
| | - Pavel O. Vorobyev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Birke Bartosch
- INSERM U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69008 Lyon, France
- The Lyon Hepatology Institute EVEREST, 69003 Lyon, France
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Anastasiya V. Lipatova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia (M.A.Z.); (N.F.Z.); (P.O.V.)
| |
Collapse
|
8
|
Zakirova NF, Khomich OA, Smirnova OA, Molle J, Duponchel S, Yanvarev DV, Valuev-Elliston VT, Monnier L, Grigorov B, Ivanova ON, Karpenko IL, Golikov MV, Bovet C, Rindlisbacher B, Khomutov AR, Kochetkov SN, Bartosch B, Ivanov AV. Hepatitis C Virus Dysregulates Polyamine and Proline Metabolism and Perturbs the Urea Cycle. Cells 2024; 13:1036. [PMID: 38920664 PMCID: PMC11201506 DOI: 10.3390/cells13121036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/05/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Hepatitis C virus (HCV) is an oncogenic virus that causes chronic liver disease in more than 80% of patients. During the last decade, efficient direct-acting antivirals were introduced into clinical practice. However, clearance of the virus does not reduce the risk of end-stage liver diseases to the level observed in patients who have never been infected. So, investigation of HCV pathogenesis is still warranted. Virus-induced changes in cell metabolism contribute to the development of HCV-associated liver pathologies. Here, we studied the impact of the virus on the metabolism of polyamines and proline as well as on the urea cycle, which plays a crucial role in liver function. It was found that HCV strongly suppresses the expression of arginase, a key enzyme of the urea cycle, leading to the accumulation of arginine, and up-regulates proline oxidase with a concomitant decrease in proline concentrations. The addition of exogenous proline moderately suppressed viral replication. HCV up-regulated transcription but suppressed protein levels of polyamine-metabolizing enzymes. This resulted in a decrease in polyamine content in infected cells. Finally, compounds targeting polyamine metabolism demonstrated pronounced antiviral activity, pointing to spermine and spermidine as compounds affecting HCV replication. These data expand our understanding of HCV's imprint on cell metabolism.
Collapse
Affiliation(s)
- Natalia F. Zakirova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Olga A. Khomich
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga A. Smirnova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Jennifer Molle
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Sarah Duponchel
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Dmitry V. Yanvarev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Vladimir T. Valuev-Elliston
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Lea Monnier
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Boyan Grigorov
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Olga N. Ivanova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Inna L. Karpenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Mikhail V. Golikov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Cedric Bovet
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Barbara Rindlisbacher
- University Institute of Clinical Chemistry, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland; (C.B.); (B.R.)
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Sergey N. Kochetkov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| | - Birke Bartosch
- INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Université Claude Bernard Lyon 1, 69434 Lyon, France; (J.M.); (L.M.); (B.G.); (B.B.)
| | - Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (N.F.Z.); (O.A.K.); (O.A.S.); (D.V.Y.); (V.T.V.-E.); (O.N.I.); (I.L.K.); (M.V.G.); (A.R.K.); (S.N.K.)
| |
Collapse
|
9
|
Hogarty MD, Ziegler DS, Franson A, Chi YY, Tsao-Wei D, Liu K, Vemu R, Gerner EW, Bruckheimer E, Shamirian A, Hasenauer B, Balis FM, Groshen S, Norris MD, Haber M, Park JR, Matthay KK, Marachelian A. Phase 1 study of high-dose DFMO, celecoxib, cyclophosphamide and topotecan for patients with relapsed neuroblastoma: a New Approaches to Neuroblastoma Therapy trial. Br J Cancer 2024; 130:788-797. [PMID: 38200233 PMCID: PMC10912730 DOI: 10.1038/s41416-023-02525-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/22/2023] [Accepted: 11/24/2023] [Indexed: 01/12/2024] Open
Abstract
BACKGROUND MYC genes regulate ornithine decarboxylase (Odc) to increase intratumoral polyamines. We conducted a Phase I trial [NCT02030964] to determine the maximum tolerated dose (MTD) of DFMO, an Odc inhibitor, with celecoxib, cyclophosphamide and topotecan. METHODS Patients 2-30 years of age with relapsed/refractory high-risk neuroblastoma received oral DFMO at doses up to 9000 mg/m2/day, with celecoxib (500 mg/m2 daily), cyclophosphamide (250 mg/m2/day) and topotecan (0.75 mg/m2/day) IV for 5 days, for up to one year with G-CSF support. RESULTS Twenty-four patients (median age, 6.8 years) received 136 courses. Slow platelet recovery with 21-day courses (dose-levels 1 and 2) led to subsequent dose-levels using 28-day courses (dose-levels 2a-4a). There were three course-1 dose-limiting toxicities (DLTs; hematologic; anorexia; transaminases), and 23 serious adverse events (78% fever-related). Five patients (21%) completed 1-year of therapy. Nine stopped for PD, 2 for DLT, 8 by choice. Best overall response included two PR and four MR. Median time-to-progression was 19.8 months, and 3 patients remained progression-free at >4 years without receiving additional therapy. The MTD of DFMO with this regimen was 6750 mg/m2/day. CONCLUSION High-dose DFMO is tolerable when added to chemotherapy in heavily pre-treated patients. A randomized Phase 2 trial of DFMO added to chemoimmunotherapy is ongoing [NCT03794349].
Collapse
Affiliation(s)
- Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
- School of Women's and Children's Health, University of New South Wales, Sydney, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Andrea Franson
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Yueh-Yun Chi
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Denice Tsao-Wei
- Department of Preventive Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kangning Liu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Rohan Vemu
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | | | - Anasheh Shamirian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Beth Hasenauer
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Frank M Balis
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Groshen
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, Randwick, NSW, Australia
| | - Julie R Park
- St. Jude Children's Research Hospital, University of Tennessee, Memphis, TN, USA
| | - Katherine K Matthay
- UCSF Benioff Children's Hospital, UCSF School of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Araz Marachelian
- Children's Hospital Los Angeles, University of Southern California Keck School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
10
|
Xuan M, Gu X, Li J, Huang D, Xue C, He Y. Polyamines: their significance for maintaining health and contributing to diseases. Cell Commun Signal 2023; 21:348. [PMID: 38049863 PMCID: PMC10694995 DOI: 10.1186/s12964-023-01373-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 10/29/2023] [Indexed: 12/06/2023] Open
Abstract
Polyamines are essential for the growth and proliferation of mammalian cells and are intimately involved in biological mechanisms such as DNA replication, RNA transcription, protein synthesis, and post-translational modification. These mechanisms regulate cellular proliferation, differentiation, programmed cell death, and the formation of tumors. Several studies have confirmed the positive effect of polyamines on the maintenance of health, while others have demonstrated that their activity may promote the occurrence and progression of diseases. This review examines a variety of topics, such as polyamine source and metabolism, including metabolism, transport, and the potential impact of polyamines on health and disease. In addition, a brief summary of the effects of oncogenes and signaling pathways on tumor polyamine metabolism is provided. Video Abstract.
Collapse
Affiliation(s)
- Mengjuan Xuan
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Xinyu Gu
- Department of Oncology, College of Clinical Medicine, The First Affiliated Hospital, Henan University of Science and Technology, Luoyang, 471000, Henan, China
| | - Juan Li
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China
| | - Di Huang
- Department of Child Health Care, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450000, Henan, China
| | - Chen Xue
- Department of Infectious Disease, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Erqi District, Zhengzhou, 450052, Henan, China.
| | - Yuting He
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
11
|
Bagatell R, DuBois SG, Naranjo A, Belle J, Goldsmith KC, Park JR, Irwin MS. Children's Oncology Group's 2023 blueprint for research: Neuroblastoma. Pediatr Blood Cancer 2023; 70 Suppl 6:e30572. [PMID: 37458162 PMCID: PMC10587593 DOI: 10.1002/pbc.30572] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor in children and is known for its clinical heterogeneity. A greater understanding of the biology of this disease has led to both improved risk stratification and new approaches to therapy. Outcomes for children with low and intermediate risk disease are excellent overall, and efforts to decrease therapy for such patients have been largely successful. Although survival has improved over time for patients with high-risk disease and treatments evaluated in the relapse setting are now being moved into earlier phases of treatment, much work remains to improve survival and decrease therapy-related toxicities. Studies of highly annotated biobanked samples continue to lead to important insights regarding neuroblastoma biology. Such studies, along with correlative biology studies incorporated into therapeutic trials, are expected to continue to provide insights that lead to new and more effective therapies. A focus on translational science is accompanied by an emphasis on new agent development, optimized risk stratification, and international collaboration to address questions relevant to molecularly defined subsets of patients. In addition, the COG Neuroblastoma Committee is committed to addressing the patient/family experience, mitigating late effects of therapy, and studying social determinants of health in patients with neuroblastoma.
Collapse
Affiliation(s)
- Rochelle Bagatell
- Department of Pediatrics, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Steven G DuBois
- Department of Pediatrics, Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, Massachusetts, USA
| | - Arlene Naranjo
- Department of Pediatrics, University of Florida, Gainesville, Florida, USA
| | - Jen Belle
- Children's Oncology Group, Monrovia, California, USA
| | - Kelly C Goldsmith
- Department of Pediatrics, Children's Healthcare of Atlanta Inc Aflac Cancer and Blood Disorders Center, Atlanta, Georgia, USA
| | - Julie R Park
- Department of Oncology, St Jude Children's Research Hospital Department of Oncology, Memphis, Tennessee, USA
| | - Meredith S Irwin
- Department of Pediatrics, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
12
|
Zeng J, Ye Z, Shi S, Liang Y, Meng Q, Zhang Q, Le AD. Targeted inhibition of eIF5A hpu suppresses tumor growth and polarization of M2-like tumor-associated macrophages in oral cancer. Cell Death Dis 2023; 14:579. [PMID: 37653021 PMCID: PMC10471704 DOI: 10.1038/s41419-023-06109-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 09/02/2023]
Abstract
Eukaryotic initiation factor 5A2 (eIF5A2) is overexpressed in many types of cancer, and spermidine-mediated eIF5A hypusination (eIF5Ahpu) appears to be essential to most of eIF5A's biological functions, including its important role in regulating cancer cell proliferation, epithelial-mesenchymal transition (EMT), and cancer stem cell (CSC) properties as well as immune cell functions. Here we investigated the role of eIF5Ahpu in the growth of oral squamous cell carcinoma cells (OSCCs) and OSCC-induced polarization of M2-like tumor-associated macrophages (TAMs). TCGA dataset analysis revealed an overall upregulation in the mRNA expression of eIF5A2 and several key enzymes involved in polyamine (PA) metabolism in HNSCC, which was confirmed by Western blot and IHC studies. Blocking eIF5Ahpu by GC-7 but not the upstream key enzyme activities of PA metabolism, remarkably inhibited cell proliferation and the expression of EMT- and CSC-related genes in OSCC cells. In addition, blocking eIF5Ahpu robustly inhibited OSCC-induced M2-like TAM polarization in vitro. More Importantly, blocking eIF5Ahpu dramatically retarded tumor growth and infiltration/polarization of M2-like TAM in a syngeneic orthotopic murine tongue SCC model. Thus, eIF5Ahpu plays dual functions in regulating tumor cell growth and polarization of M2-TAMs in OSCC.
Collapse
Affiliation(s)
- Jincheng Zeng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Ziyu Ye
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
- Dongguan Key Laboratory of Medical Bioactive Molecular Developmental and Translational Research, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, 523808, Dongguan, China
| | - Shihong Shi
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Yanfang Liang
- Department of Pathology, Dongguan Hospital Affiliated to Jinan University, Bin-haiwan Central Hospital of Dongguan, 523905, Dongguan, China
| | - Qingyu Meng
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA
| | - Qunzhou Zhang
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
| | - Anh D Le
- Department of Oral and Maxillofacial Surgery and Pharmacology, University of Pennsylvania School of Dental Medicine, Philadelphia, PA, USA.
- Department of Oral & Maxillofacial Surgery, Penn Medicine Hospital of the University of Pennsylvania, Perelman Center for Advanced Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Wang K, Yang T, Zhang Y, Gao X, Tao L. The opportunities and challenges for nutritional intervention in childhood cancers. Front Nutr 2023; 10:1091067. [PMID: 36925958 PMCID: PMC10012036 DOI: 10.3389/fnut.2023.1091067] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 01/25/2023] [Indexed: 02/15/2023] Open
Abstract
Diet dictates nutrient availability in the tumor microenvironment, thus affecting tumor metabolic activity and growth. Intrinsically, tumors develop unique metabolic features and are sensitive to environmental nutrient concentrations. Tumor-driven nutrient dependencies provide opportunities to control tumor growth by nutritional restriction or supplementation. This review summarized the existing data on nutrition and pediatric cancers after systematically searching articles up to 2023 from four databases (PubMed, Web of Science, Scopus, and Ovid MEDLINE). Epidemiological studies linked malnutrition with advanced disease stages and poor clinical outcomes in pediatric cancer patients. Experimental studies identified several nutrient dependencies (i.e., amino acids, lipids, vitamins, etc.) in major pediatric cancer types. Dietary modifications such as calorie restriction, ketogenic diet, and nutrient restriction/supplementation supported pediatric cancer treatment, but studies remain limited. Future research should expand epidemiological studies through data sharing and multi-institutional collaborations and continue to discover critical and novel nutrient dependencies to find optimal nutritional approaches for pediatric cancer patients.
Collapse
Affiliation(s)
- Kaiyue Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Tianyou Yang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Yubin Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Xiang Gao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| | - Ling Tao
- Department of Nutrition and Food Hygiene, School of Public Health, Institute of Nutrition, Fudan University, Shanghai, China
| |
Collapse
|
14
|
Islam A, Shaukat Z, Hussain R, Gregory SL. One-Carbon and Polyamine Metabolism as Cancer Therapy Targets. Biomolecules 2022; 12:biom12121902. [PMID: 36551330 PMCID: PMC9775183 DOI: 10.3390/biom12121902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
Cancer metabolic reprogramming is essential for maintaining cancer cell survival and rapid replication. A common target of this metabolic reprogramming is one-carbon metabolism which is notable for its function in DNA synthesis, protein and DNA methylation, and antioxidant production. Polyamines are a key output of one-carbon metabolism with widespread effects on gene expression and signaling. As a result of these functions, one-carbon and polyamine metabolism have recently drawn a lot of interest for their part in cancer malignancy. Therapeutic inhibitors that target one-carbon and polyamine metabolism have thus been trialed as anticancer medications. The significance and future possibilities of one-carbon and polyamine metabolism as a target in cancer therapy are discussed in this review.
Collapse
Affiliation(s)
- Anowarul Islam
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Zeeshan Shaukat
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Rashid Hussain
- Clinical and Health Sciences, University of South Australia, Adelaide 5001, Australia
| | - Stephen L. Gregory
- College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia
- Correspondence: ; Tel.: +61-0466987583
| |
Collapse
|
15
|
Vorobyev PO, Kochetkov DV, Chumakov PM, Zakirova NF, Zotova-Nefedorova SI, Vasilenko KV, Alekseeva ON, Kochetkov SN, Bartosch B, Lipatova AV, Ivanov AV. 2-Deoxyglucose, an Inhibitor of Glycolysis, Enhances the Oncolytic Effect of Coxsackievirus. Cancers (Basel) 2022; 14:5611. [PMID: 36428704 PMCID: PMC9688421 DOI: 10.3390/cancers14225611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most common types of brain tumor. Despite intensive research, patients with GBM have a poor prognosis due to a very high rate of relapse and significant side effects of the treatment, with a median survival of 14.6 months. Oncolytic viruses are considered a promising strategy to eliminate GBM and other types of cancer, and several viruses have already been introduced into clinical practice. However, identification of the factors that underly the sensitivity of tumor species to oncolytic viruses or that modulate their clinical efficacy remains an important target. Here, we show that Coxsackievirus B5 (CVB5) demonstrates high oncolytic potential towards GBM primary cell species and cell lines. Moreover, 2-deoxyglucose (2DG), an inhibitor of glycolysis, potentiates the cytopathic effects of CVB5 in most of the cancer cell lines tested. The cells in which the inhibition of glycolysis enhanced oncolysis are characterized by high mitochondrial respiratory activity and glycolytic capacity, as determined by Seahorse analysis. Thus, 2-deoxyglucose and other analogs should be considered as adjuvants for oncolytic therapy of glioblastoma multiforme.
Collapse
Affiliation(s)
- Pavel O. Vorobyev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Dmitry V. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Peter M. Chumakov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Natalia F. Zakirova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sofia I. Zotova-Nefedorova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Konstantin V. Vasilenko
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
- Faculty of General Medicine, Pirogov Russian National Medical University, 117997 Moscow, Russia
| | - Olga N. Alekseeva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Sergey N. Kochetkov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Birke Bartosch
- INSERM U1052, CNRS UMR-5286, Cancer Research Center of Lyon (CRCL), 69003 Lyon, France
- University of Lyon, Université Claude-Bernard (UCBL), 69001 Lyon, France
| | - Anastasiya V. Lipatova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alexander V. Ivanov
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
16
|
Zhou L, Wang QL, Mao LH, Chen SY, Yang ZH, Liu X, Gao YH, Li XQ, Zhou ZH, He S. Hepatocyte-Specific Knock-Out of Nfib Aggravates Hepatocellular Tumorigenesis via Enhancing Urea Cycle. Front Mol Biosci 2022; 9:875324. [PMID: 35655758 PMCID: PMC9152321 DOI: 10.3389/fmolb.2022.875324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/28/2022] [Indexed: 12/23/2022] Open
Abstract
Nuclear Factor I B (NFIB) has been reported to promote tumor growth, metastasis, and liver regeneration, but its mechanism in liver cancer is not fully elucidated. The present study aims to reveal the role of NFIB in hepatocellular carcinogenesis. In our study, we constructed hepatocyte-specific NFIB gene knockout mice with CRISPR/Cas9 technology (Nfib-/-; Alb-cre), and induced liver cancer mouse model by intraperitoneal injection of DEN/CCl4. First, we found that Nfib-/- mice developed more tumor nodules and had heavier livers than wild-type mice. H&E staining indicated that the liver histological severity of Nfib-/- group was more serious than that of WT group. Then we found that the differentially expressed genes in the tumor tissue between Nfib-/- mice and wild type mice were enriched in urea cycle. Furthermore, ASS1 and CPS1, the core enzymes of the urea cycle, were significantly upregulated in Nfib-/- tumors. Subsequently, we validated that the expression of ASS1 and CPS1 increased after knockdown of NFIB by lentivirus in normal hepatocytes and also promoted cell proliferation in vitro. In addition, ChIP assay confirmed that NFIB can bind with promoter region of both ASS1 and CPS1 gene. Our study reveals for the first time that hepatocyte-specific knock-out of Nfib aggravates hepatocellular tumor development by enhancing the urea cycle.
Collapse
Affiliation(s)
- Li Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qing-Liang Wang
- Department of Pathology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Lin-Hong Mao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.,Department of Gastroenterology, Chengdu Second People's Hospital, Sichuan, China
| | - Si-Yuan Chen
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zi-Han Yang
- Department of Biomedical Science, City University of Hong Kong, Hong Kong, China
| | - Xue Liu
- Department of Pathology, College of Basic Medicine, Jining Medical University, Jining, China
| | - Yu-Hua Gao
- Key Laboratory of Precision Oncology in Universities of Shandong, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Xiao-Qin Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Hang Zhou
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Song He
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
17
|
Gao H, Li H, Wang J, Xu C, Zhu Y, Tuluhong D, Li X, Wang S, Li J. Polyamine synthesis enzyme AMD1 is closely related to the tumorigenesis and prognosis of human breast cancer. Exp Cell Res 2022; 417:113235. [DOI: 10.1016/j.yexcr.2022.113235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 05/29/2022] [Accepted: 05/29/2022] [Indexed: 11/28/2022]
|
18
|
Neuroblastoma: Essential genetic pathways and current therapeutic options. Eur J Pharmacol 2022; 926:175030. [DOI: 10.1016/j.ejphar.2022.175030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/29/2022]
|
19
|
Rodríguez-Agudo R, Goikoetxea-Usandizaga N, Serrano-Maciá M, Fernández-Tussy P, Fernández-Ramos D, Lachiondo-Ortega S, González-Recio I, Gil-Pitarch C, Mercado-Gómez M, Morán L, Bizkarguenaga M, Lopitz-Otsoa F, Petrov P, Bravo M, Van Liempd SM, Falcon-Perez JM, Zabala-Letona A, Carracedo A, Castell JV, Jover R, Martínez-Cruz LA, Delgado TC, Cubero FJ, Lucena MI, Andrade RJ, Mabe J, Simón J, Martínez-Chantar ML. Methionine Cycle Rewiring by Targeting miR-873-5p Modulates Ammonia Metabolism to Protect the Liver from Acetaminophen. Antioxidants (Basel) 2022; 11:897. [PMID: 35624761 PMCID: PMC9137496 DOI: 10.3390/antiox11050897] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 02/06/2023] Open
Abstract
Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.
Collapse
Affiliation(s)
- Rubén Rodríguez-Agudo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Naroa Goikoetxea-Usandizaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Marina Serrano-Maciá
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Pablo Fernández-Tussy
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - David Fernández-Ramos
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Sofía Lachiondo-Ortega
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Irene González-Recio
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Clàudia Gil-Pitarch
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - María Mercado-Gómez
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Laura Morán
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - Maider Bizkarguenaga
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Fernando Lopitz-Otsoa
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Precision Medicine and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain
| | - Petar Petrov
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Miren Bravo
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Sebastiaan Martijn Van Liempd
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
| | - Juan Manuel Falcon-Perez
- Metabolomics Platform, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (S.M.V.L.); (J.M.F.-P.)
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
| | - Amaia Zabala-Letona
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
| | - Arkaitz Carracedo
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain;
- Cancer Cell Signaling and Metabolism Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain;
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Instituto Carlos III, 28029 Madrid, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Research Health Institute, 48903 Barakaldo, Spain
| | - Jose Vicente Castell
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Ramiro Jover
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Hepatología Experimental, Health Research Institute Hospital La Fe, Av. Fernando Abril Martorell, 46026 Valencia, Spain
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Valencia, Av. de Blasco Ibáñez 15, 46010 Valencia, Spain
| | - Luis Alfonso Martínez-Cruz
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Teresa Cardoso Delgado
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
| | - Francisco Javier Cubero
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Department of Immunology, Ophthalmology and ENT, Complutense University School of Medicine, Instituto de Investigación Sanitaria Gregorio Marañon (IiSGM), 28040 Madrid, Spain;
| | - María Isabel Lucena
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Servicio de Farmacología Clínica, Instituto de Investigación Biomédica de Málaga—IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
- UICEC IBIMA, Plataforma ISCiii de Investigación Clínica, 28020 Madrid, Spain
| | - Raúl Jesús Andrade
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
- Unidad de Gestión Clínica de Enfermedades Digestivas, Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Universitario Virgen de la Victoria, Universidad de Málaga, 29010 Malaga, Spain
| | - Jon Mabe
- IK4-Tekniker, 20600 Eibar, Spain;
| | - Jorge Simón
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| | - María Luz Martínez-Chantar
- Liver Disease Laboratory, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Building 801A, 48160 Derio, Spain; (R.R.-A.); (N.G.-U.); (M.S.-M.); (P.F.-T.); (D.F.-R.); (S.L.-O.); (I.G.-R.); (C.G.-P.); (M.M.-G.); (M.B.); (F.L.-O.); (P.P.); (M.B.); (L.A.M.-C.); (T.C.D.)
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (J.V.C.); (R.J.); (F.J.C.); (M.I.L.); (R.J.A.)
| |
Collapse
|
20
|
Qiu L, Zhou R, Luo Z, Wu J, Jiang H. CDC27-ODC1 Axis Promotes Metastasis, Accelerates Ferroptosis and Predicts Poor Prognosis in Neuroblastoma. Front Oncol 2022; 12:774458. [PMID: 35242701 PMCID: PMC8886130 DOI: 10.3389/fonc.2022.774458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Neuroblastoma (NB) is a devastating malignancy threatening children’s health, and amplification of MYCN is associated with treatment failure and a poor outcome. Here, we aimed to demonstrate the role of cell division cycle 27 (CDC27), an important core subunit of the anaphase-promoting complex, and its clinical significance in NB patients. In functional assays, we illustrated that CDC27 promoted the cell growth, metastasis and sphere-formation ability of NB cells both in vitro and in vivo. To further understand the potential mechanism, SK-N-SH cells were transfected with CDC27 siRNA, and RNA-sequencing was performed. The results revealed that downregulation of CDC27 led to markedly reduced expression of ODC1, which is a well-established direct target of MYCN. Subsequently, we further illustrated that suppression of ODC1 significantly attenuated the promotion effect of CDC27 on the proliferation, metastasis, and sphere-formation ability of NB cells, hinting that CDC27 exerted its biological behavior in NB at least partly in an ODC1-dependent manner. In addition, CDC27 rendered cells more vulnerable to ferroptosis, while knockdown of ODC1 markedly reversed the pro-ferroptotic effect of CDC27. Collectively, our data is the first to report that the CDC27/ODC1 axis promotes tumorigenesis and acts as a positive regulator of ferroptosis in NB, highlighting that CDC27 may represent a novel therapeutic strategy and prognostic biomarker in neuroblastoma.
Collapse
Affiliation(s)
- Lin Qiu
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Rui Zhou
- Department of General Surgery, The Third Affiliated Hospital of Southern Medical University, Southern Medical University, Guangzhou, China.,Department of Hepatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ziyan Luo
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jiangxue Wu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Hua Jiang
- Department of Hematology/Oncology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Comprehensive Metabolic Profiling of MYC-Amplified Medulloblastoma Tumors Reveals Key Dependencies on Amino Acid, Tricarboxylic Acid and Hexosamine Pathways. Cancers (Basel) 2022; 14:cancers14051311. [PMID: 35267619 PMCID: PMC8909278 DOI: 10.3390/cancers14051311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 02/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The oncogene MYC alters cellular metabolism. Medulloblastoma is the most common malignant pediatric brain tumor. MYC-amplified medulloblastoma has a poor prognosis, and the metabolism of MYC-amplified medulloblastoma is poorly understood. We performed comprehensive metabolic profiling of MYC-amplified medulloblastoma and found increased reliance on potentially targetable pathways. We also found that the metabolism of MYC-amplified cell lines differed from orthotopic brain tumors in vitro and in flank tumors, suggesting that analyses conducted in vitro or in flank tumors may miss key vulnerabilities. Abstract Reprograming of cellular metabolism is a hallmark of cancer. Altering metabolism allows cancer cells to overcome unfavorable microenvironment conditions and to proliferate and invade. Medulloblastoma is the most common malignant brain tumor of children. Genomic amplification of MYC defines a subset of poor-prognosis medulloblastoma. We performed comprehensive metabolic studies of human MYC-amplified medulloblastoma by comparing the metabolic profiles of tumor cells in three different conditions—in vitro, in flank xenografts and in orthotopic xenografts in the cerebellum. Principal component analysis showed that the metabolic profiles of brain and flank high-MYC medulloblastoma tumors clustered closely together and separated away from normal brain and in vitro MYC-amplified cells. Compared to normal brain, MYC-amplified medulloblastoma orthotopic xenograft tumors showed upregulation of the TCA cycle as well as the synthesis of nucleotides, hexosamines, amino acids and glutathione. There was significantly higher glucose uptake and usage in orthotopic xenograft tumors compared to flank xenograft tumors and cells in culture. In orthotopic tumors, glucose was the main carbon source for the de novo synthesis of glutamate, glutamine and glutathione through the TCA cycle. In vivo, the glutaminase II pathway was the main pathway utilizing glutamine. Glutathione was the most abundant upregulated metabolite in orthotopic tumors compared to normal brain. Glutamine-derived glutathione was synthesized through the glutamine transaminase K (GTK) enzyme in vivo. In conclusion, high MYC medulloblastoma cells have different metabolic profiles in vitro compared to in vivo, and key vulnerabilities may be missed by not performing in vivo metabolic analyses.
Collapse
|
22
|
Ivanov AV, Khomutov AR. Biogenic Polyamines and Related Metabolites. Biomolecules 2021; 12:14. [PMID: 35053162 PMCID: PMC8773558 DOI: 10.3390/biom12010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022] Open
Abstract
The specific regulation of cell metabolism is one of cornerstones of biochemistry [...].
Collapse
Affiliation(s)
- Alexander V. Ivanov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Alex R. Khomutov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| |
Collapse
|
23
|
Ciaccio R, De Rosa P, Aloisi S, Viggiano M, Cimadom L, Zadran SK, Perini G, Milazzo G. Targeting Oncogenic Transcriptional Networks in Neuroblastoma: From N-Myc to Epigenetic Drugs. Int J Mol Sci 2021; 22:12883. [PMID: 34884690 PMCID: PMC8657550 DOI: 10.3390/ijms222312883] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/13/2022] Open
Abstract
Neuroblastoma (NB) is one of the most frequently occurring neurogenic extracranial solid cancers in childhood and infancy. Over the years, many pieces of evidence suggested that NB development is controlled by gene expression dysregulation. These unleashed programs that outline NB cancer cells make them highly dependent on specific tuning of gene expression, which can act co-operatively to define the differentiation state, cell identity, and specialized functions. The peculiar regulation is mainly caused by genetic and epigenetic alterations, resulting in the dependency on a small set of key master transcriptional regulators as the convergence point of multiple signalling pathways. In this review, we provide a comprehensive blueprint of transcriptional regulation bearing NB initiation and progression, unveiling the complexity of novel oncogenic and tumour suppressive regulatory networks of this pathology. Furthermore, we underline the significance of multi-target therapies against these hallmarks, showing how novel approaches, together with chemotherapy, surgery, or radiotherapy, can have substantial antineoplastic effects, disrupting a wide variety of tumorigenic pathways through combinations of different treatments.
Collapse
|
24
|
Ramos-Inza S, Ruberte AC, Sanmartín C, Sharma AK, Plano D. NSAIDs: Old Acquaintance in the Pipeline for Cancer Treatment and Prevention─Structural Modulation, Mechanisms of Action, and Bright Future. J Med Chem 2021; 64:16380-16421. [PMID: 34784195 DOI: 10.1021/acs.jmedchem.1c01460] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The limitations of current chemotherapeutic drugs are still a major issue in cancer treatment. Thus, targeted multimodal therapeutic approaches need to be strategically developed to successfully control tumor growth and prevent metastatic burden. Inflammation has long been recognized as a hallmark of cancer and plays a key role in the tumorigenesis and progression of the disease. Several epidemiological, clinical, and preclinical studies have shown that traditional nonsteroidal anti-inflammatory drugs (NSAIDs) exhibit anticancer activities. This Perspective reports the most recent outcomes for the treatment and prevention of different types of cancers for several NSAIDs alone or in combination with current chemotherapeutic drugs. Furthermore, an extensive review of the most promising structural modifications is reported, such as phospho, H2S, and NO releasing-, selenium-, metal complex-, and natural product-NSAIDs, among others. We also provide a perspective about the new strategies used to obtain more efficient NSAID- or NSAID derivative- formulations for targeted delivery.
Collapse
Affiliation(s)
- Sandra Ramos-Inza
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Ana Carolina Ruberte
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| | - Arun K Sharma
- Department of Pharmacology, Penn State Cancer Institute, CH72, Penn State College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Irunlarrea 1, E-31008 Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdiSNA), Irunlarrea 3, E-31008 Pamplona, Spain
| |
Collapse
|
25
|
Li QZ, Zuo ZW, Zhou ZR, Ji Y. Polyamine homeostasis-based strategies for cancer: The role of combination regimens. Eur J Pharmacol 2021; 910:174456. [PMID: 34464603 DOI: 10.1016/j.ejphar.2021.174456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/14/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023]
Abstract
Spermine, spermidine and putrescine polyamines are naturally occurring ubiquitous positively charged amines and are essential metabolites for biological functions in our life. These compounds play a crucial role in many cell processes, including cellular proliferation, growth, and differentiation. Intracellular levels of polyamines depend on their biosynthesis, transport and degradation. Polyamine levels are high in cancer cells, which leads to the promotion of tumor growth, invasion and metastasis. Targeting polyamine metabolism as an anticancer strategy is considerably rational. Due to compensatory mechanisms, a single strategy does not achieve satisfactory clinical effects when using a single agent. Combination regimens are more clinically promising for cancer chemoprevention because they work synergistically with causing little or no adverse effects due to each individual agent being used at lower doses. Moreover, bioactive substances have advantages over single chemical agents because they can affect multiple targets. In this review, we discuss anticancer strategies targeting polyamine metabolism and describe how combination treatments and effective natural active ingredients are promising therapies. The existing research suggests that polyamine metabolic enzymes are important therapeutic targets and that combination therapies can be more effective than monotherapies based on polyamine depletion.
Collapse
Affiliation(s)
- Qi-Zhang Li
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China.
| | - Zan-Wen Zuo
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Ze-Rong Zhou
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| | - Yan Ji
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Industrial Fermentation (Ministry of Education), Institute of Biomedical and Pharmaceutical Sciences, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, Hubei, 430068, PR China
| |
Collapse
|
26
|
Roundhill EA, Chicon-Bosch M, Jeys L, Parry M, Rankin KS, Droop A, Burchill SA. RNA sequencing and functional studies of patient-derived cells reveal that neurexin-1 and regulators of this pathway are associated with poor outcomes in Ewing sarcoma. Cell Oncol (Dordr) 2021; 44:1065-1085. [PMID: 34403115 PMCID: PMC8516792 DOI: 10.1007/s13402-021-00619-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
PURPOSE The development of biomarkers and molecularly targeted therapies for patients with Ewing sarcoma (ES) in order to minimise morbidity and improve outcome is urgently needed. Here, we set out to isolate and characterise patient-derived ES primary cell cultures and daughter cancer stem-like cells (CSCs) to identify biomarkers of high-risk disease and candidate therapeutic targets. METHODS Thirty-two patient-derived primary cultures were established from treatment-naïve tumours and primary ES-CSCs isolated from these cultures using functional methods. By RNA-sequencing we analysed the transcriptome of ES patient-derived cells (n = 24) and ES-CSCs (n = 11) to identify the most abundant and differentially expressed genes (DEGs). Expression of the top DEG(s) in ES-CSCs compared to ES cells was validated at both RNA and protein levels. The functional and prognostic potential of the most significant gene (neurexin-1) was investigated using knock-down studies and immunohistochemistry of two independent tumour cohorts. RESULTS ES-CSCs were isolated from all primary cell cultures, consistent with the premise that ES is a CSC driven cancer. Transcriptional profiling confirmed that these cells were of mesenchymal origin, revealed novel cell surface targets for therapy that regulate cell-extracellular matrix interactions and identified candidate drivers of progression and relapse. High expression of neurexin-1 and low levels of regulators of its activity, APBA1 and NLGN4X, were associated with poor event-free and overall survival rates. Knock-down of neurexin-1 decreased viable cell numbers and spheroid formation. CONCLUSIONS Genes that regulate extracellular interactions, including neurexin-1, are candidate therapeutic targets in ES. High levels of neurexin-1 at diagnosis are associated with poor outcome and identify patients with localised disease that will relapse. These patients could benefit from more intensive or novel treatment modalities. The prognostic significance of neurexin-1 should be validated independently.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Antineoplastic Agents/pharmacology
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Bone Neoplasms/genetics
- Bone Neoplasms/metabolism
- Calcium-Binding Proteins/genetics
- Calcium-Binding Proteins/metabolism
- Cell Adhesion Molecules, Neuronal/genetics
- Cell Adhesion Molecules, Neuronal/metabolism
- Cell Line, Tumor
- Child
- Doxorubicin/pharmacology
- Gene Expression Regulation, Neoplastic
- Humans
- Kaplan-Meier Estimate
- Neoplastic Stem Cells/drug effects
- Neoplastic Stem Cells/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Neural Cell Adhesion Molecules/genetics
- Neural Cell Adhesion Molecules/metabolism
- Prognosis
- Sarcoma, Ewing/genetics
- Sarcoma, Ewing/metabolism
- Sequence Analysis, RNA/methods
- Transcriptome/genetics
- Tumor Cells, Cultured
- Vincristine/pharmacology
Collapse
Affiliation(s)
- Elizabeth Ann Roundhill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Mariona Chicon-Bosch
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK
| | - Lee Jeys
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Michael Parry
- Royal Orthopaedic Hospital NHS Foundation Trust, Bristol Road South, Northfield, Birmingham, B31 2AP, UK
| | - Kenneth S Rankin
- Translational and Clinical Research Institute, Paul O'Gorman Building, Framlington Place, Newcastle upon Tyne, NE2 4AD, UK
| | - Alastair Droop
- Wellcome Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Susan Ann Burchill
- Children's Cancer Research Group, Leeds Institute of Medical Research, St. James's University Hospital, Leeds, LS9 7TF, UK.
| |
Collapse
|
27
|
Novita Sari I, Setiawan T, Seock Kim K, Toni Wijaya Y, Won Cho K, Young Kwon H. Metabolism and function of polyamines in cancer progression. Cancer Lett 2021; 519:91-104. [PMID: 34186159 DOI: 10.1016/j.canlet.2021.06.020] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/11/2021] [Accepted: 06/22/2021] [Indexed: 01/18/2023]
Abstract
Polyamines are essential for the proliferation, differentiation, and development of eukaryotes. They include spermine, spermidine, and the diamine precursor putrescine, and are low-molecular-weight, organic polycations with more than two amino groups. Their intracellular concentrations are strictly maintained within a specific physiological range through several regulatory mechanisms in normal cells. In contrast, polyamine metabolism is dysregulated in many neoplastic states, including cancer. In various types of cancer, polyamine levels are elevated, and crosstalk occurs between polyamine metabolism and oncogenic pathways, such as mTOR and RAS pathways. Thus, polyamines might have potential as therapeutic targets in the prevention and treatment of cancer. The molecular mechanisms linking polyamine metabolism to carcinogenesis must be unraveled to develop novel inhibitors of polyamine metabolism. This overview describes the nature of polyamines, their association with carcinogenesis, the development of polyamine inhibitors and their potential, and the findings of clinical trials.
Collapse
Affiliation(s)
- Ita Novita Sari
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Tania Setiawan
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kwang Seock Kim
- Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Yoseph Toni Wijaya
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea
| | - Kae Won Cho
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| | - Hyog Young Kwon
- Department of Integrated Biomedical Science, Soonchunhyang University, Cheonan-si, 31151, Republic of Korea; Soonchunhyang Institute of Medi-bio Science (SIMS), Soonchunhyang University, Cheonan-si, 31151, Republic of Korea.
| |
Collapse
|
28
|
Gamble LD, Purgato S, Henderson MJ, Di Giacomo S, Russell AJ, Pigini P, Murray J, Valli E, Milazzo G, Giorgi FM, Cowley M, Ashton LJ, Bhalshankar J, Schleiermacher G, Rihani A, Van Maerken T, Vandesompele J, Speleman F, Versteeg R, Koster J, Eggert A, Noguera R, Stallings RL, Tonini GP, Fong K, Vaksman Z, Diskin SJ, Maris JM, London WB, Marshall GM, Ziegler DS, Hogarty MD, Perini G, Norris MD, Haber M. A G316A Polymorphism in the Ornithine Decarboxylase Gene Promoter Modulates MYCN-Driven Childhood Neuroblastoma. Cancers (Basel) 2021; 13:cancers13081807. [PMID: 33918978 PMCID: PMC8069650 DOI: 10.3390/cancers13081807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 03/29/2021] [Accepted: 04/06/2021] [Indexed: 01/13/2023] Open
Abstract
Simple Summary Neuroblastoma is a devasting childhood cancer in which multiple copies (amplification) of the cancer-causing gene MYCN strongly predict poor outcome. Neuroblastomas are reliant on high levels of cellular components called polyamines for their growth and malignant behavior, and the gene regulating polyamine synthesis is called ODC1. ODC1 is often coamplified with MYCN, and in fact is regulated by MYCN, and like MYCN is prognostic of poor outcome. Here we studied a naturally occurring genetic variant or polymorphism that occurs in the ODC1 gene, and used gene editing to demonstrate the functional importance of this variant in terms of ODC1 levels and growth of neuroblastoma cells. We showed that this variant impacts the ability of MYCN to regulate ODC1, and that it also influences outcome in neuroblastoma, with the rarer variant associated with a better survival. This study addresses the important topic of genetic polymorphisms in cancer. Abstract Ornithine decarboxylase (ODC1), a critical regulatory enzyme in polyamine biosynthesis, is a direct transcriptional target of MYCN, amplification of which is a powerful marker of aggressive neuroblastoma. A single nucleotide polymorphism (SNP), G316A, within the first intron of ODC1, results in genotypes wildtype GG, and variants AG/AA. CRISPR-cas9 technology was used to investigate the effects of AG clones from wildtype MYCN-amplified SK-N-BE(2)-C cells and the effect of the SNP on MYCN binding, and promoter activity was investigated using EMSA and luciferase assays. AG clones exhibited decreased ODC1 expression, growth rates, and histone acetylation and increased sensitivity to ODC1 inhibition. MYCN was a stronger transcriptional regulator of the ODC1 promoter containing the G allele, and preferentially bound the G allele over the A. Two neuroblastoma cohorts were used to investigate the clinical impact of the SNP. In the study cohort, the minor AA genotype was associated with improved survival, while poor prognosis was associated with the GG genotype and AG/GG genotypes in MYCN-amplified and non-amplified patients, respectively. These effects were lost in the GWAS cohort. We have demonstrated that the ODC1 G316A polymorphism has functional significance in neuroblastoma and is subject to allele-specific regulation by the MYCN oncoprotein.
Collapse
Affiliation(s)
- Laura D. Gamble
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Stefania Purgato
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Michelle J. Henderson
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Simone Di Giacomo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Amanda J. Russell
- Cancer Research Program, The Garvan Institute of Medical Research, Darlinghurst, NSW 2010, Australia;
| | - Paolo Pigini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Jayne Murray
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Emanuele Valli
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Giorgio Milazzo
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Federico M. Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Mark Cowley
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
| | - Lesley J. Ashton
- Research Portfolio, University of Sydney, Sydney, NSW 2008, Australia;
| | - Jaydutt Bhalshankar
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Gudrun Schleiermacher
- SIREDO, Department of Paediatric, Adolescents and Young Adults Oncology and INSERM U830, Institut Curie, 26 rue d’Ulm, 75005 Paris, France; (J.B.); (G.S.)
| | - Ali Rihani
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Tom Van Maerken
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Jo Vandesompele
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Frank Speleman
- Center for Medical Genetics, Ghent University, C. Heymanslaan 10, 9000 Ghent, Belgium; (A.R.); (T.V.M.); (J.V.); (F.S.)
| | - Rogier Versteeg
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Jan Koster
- Department of Oncogenomics, Academic Medical Center, University of Amsterdam, 1100 Amsterdam, The Netherlands; (R.V.); (J.K.)
| | - Angelika Eggert
- Department of Pediatric Hematology, Oncology and SCT, Charité-University Hospital Berlin, Campus Virchow-Klinikum, 10117 Berlin, Germany;
| | - Rosa Noguera
- Department of Pathology, Medical School, University of Valencia, 46010 Valencia, Spain;
- CIBERONC-INCLIVA, Biomedical Health Research Institute, 46010 Valencia, Spain
| | - Raymond L. Stallings
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, D02 YN77 Dublin 2, Ireland;
| | - Gian Paolo Tonini
- Neuroblastoma Laboratory, Fondazione Istituto di Ricerca Pediatrica Città della Speranza, 35127 Padova, Italy;
| | - Kwun Fong
- Thoracic Research Centre, University of Queensland, The Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Zalman Vaksman
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sharon J. Diskin
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - John M. Maris
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Wendy B. London
- Dana-Farber/Boston Children’s Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Glenn M. Marshall
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - David S. Ziegler
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Kids Cancer Centre, Sydney Children’s Hospital, High St, Randwick, NSW 2031, Australia
| | - Michael D. Hogarty
- Division of Oncology and Center for Childhood Cancer Research, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA; (Z.V.); (S.J.D.); (J.M.M.); (M.D.H.)
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Giovanni Perini
- Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy; (S.P.); (S.D.G.); (P.P.); (G.M.); (F.M.G.); (G.P.)
| | - Murray D. Norris
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW 2052, Australia
| | - Michelle Haber
- Children’s Cancer Institute, Lowy Cancer Research Centre, UNSW Australia, PO Box 81, Randwick, NSW 2031, Australia; (L.D.G.); (M.J.H.); (J.M.); (E.V.); (M.C.); (G.M.M.); (D.S.Z.); (M.D.N.)
- Correspondence: ; Tel.: +61-(02)-9385-2170
| |
Collapse
|
29
|
Bian X, Shi D, Xing K, Zhou H, Lu L, Yu D, Wu W. AMD1 upregulates hepatocellular carcinoma cells stemness by FTO mediated mRNA demethylation. Clin Transl Med 2021; 11:e352. [PMID: 33783988 PMCID: PMC7989706 DOI: 10.1002/ctm2.352] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND S-adenosylmethionine decarboxylase proenzyme (AMD1) is a key enzyme involved in the synthesis of spermine (SPM) and spermidine (SPD), which are associated with multifarious cellular processes. It is also found to be an oncogene in multiple cancers and a potential target for tumor therapy. Nevertheless, the role AMD1 plays in hepatocellular carcinoma (HCC) is still unknown. METHODS HCC samples were applied to detect AMD1 expression and evaluate its associations with clinicopathological features and prognosis. Subcutaneous and orthotopic tumor mouse models were constructed to analyze the proliferation and metastasis of HCC cells after AMD1 knockdown or overexpression. Drug sensitive and tumor sphere assay were performed to investigate the effect of AMD1 on HCC cells stemness. Real-time quantitative PCR (qRT-PCR), western blot, immunohistochemical (IHC) and m6A-RNA immunoprecipitation (Me-RIP) sequencing/qPCR were applied to explore the potential mechanisms of AMD1 in HCC. Furthermore, immunofluorescence, co-IP (Co-IP) assays, and mass spectrometric (MS) analyses were performed to verify the proteins interacting with AMD1. RESULTS AMD1 was enriched in human HCC tissues and suggested a poor prognosis. High AMD1 level could promote SRY-box transcription factor 2 (SOX2), Kruppel like factor 4 (KLF4), and NANOG expression of HCC cells through obesity-associated protein (FTO)-mediated mRNA demethylation. Mechanistically, high AMD1 expression increased the levels of SPD in HCC cells, which could modify the scaffold protein, Ras GTPase-activating-like protein 1 (IQGAP1) and enhance the interaction between IQGAP1 and FTO. This interaction could enhance the phosphorylation and decrease the ubiquitination of FTO. CONCLUSIONS AMD1 could stabilize the interaction of IQGAP1 with FTO, which then promotes FTO expression and increases HCC stemness. AMD1 shows prospects as a prognostic predictor and a therapeutic target for HCC.
Collapse
Affiliation(s)
- Xinyu Bian
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Dongmin Shi
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Kailin Xing
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Hongxin Zhou
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Lili Lu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| | - Dahai Yu
- Department of Radiation Oncology, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Weizhong Wu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, China
| |
Collapse
|
30
|
Hamouda NN, Van den Haute C, Vanhoutte R, Sannerud R, Azfar M, Mayer R, Cortés Calabuig Á, Swinnen JV, Agostinis P, Baekelandt V, Annaert W, Impens F, Verhelst SHL, Eggermont J, Martin S, Vangheluwe P. ATP13A3 is a major component of the enigmatic mammalian polyamine transport system. J Biol Chem 2020; 296:100182. [PMID: 33310703 PMCID: PMC7948421 DOI: 10.1074/jbc.ra120.013908] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 11/27/2020] [Accepted: 12/11/2020] [Indexed: 12/13/2022] Open
Abstract
Polyamines, such as putrescine, spermidine, and spermine, are physiologically important polycations, but the transporters responsible for their uptake in mammalian cells remain poorly characterized. Here, we reveal a new component of the mammalian polyamine transport system using CHO-MG cells, a widely used model to study alternative polyamine uptake routes and characterize polyamine transport inhibitors for therapy. CHO-MG cells present polyamine uptake deficiency and resistance to a toxic polyamine biosynthesis inhibitor methylglyoxal bis-(guanylhydrazone) (MGBG), but the molecular defects responsible for these cellular characteristics remain unknown. By genome sequencing of CHO-MG cells, we identified mutations in an unexplored gene, ATP13A3, and found disturbed mRNA and protein expression. ATP13A3 encodes for an orphan P5B-ATPase (ATP13A3), a P-type transport ATPase that represents a candidate polyamine transporter. Interestingly, ATP13A3 complemented the putrescine transport deficiency and MGBG resistance of CHO-MG cells, whereas its knockdown in WT cells induced a CHO-MG phenotype demonstrated as a decrease in putrescine uptake and MGBG sensitivity. Taken together, our findings identify ATP13A3, which has been previously genetically linked with pulmonary arterial hypertension, as a major component of the mammalian polyamine transport system that confers sensitivity to MGBG.
Collapse
Affiliation(s)
- Norin Nabil Hamouda
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Chris Van den Haute
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium; Leuven Viral Vector Core, KU Leuven, Leuven, Belgium
| | - Roeland Vanhoutte
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Ragna Sannerud
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Mujahid Azfar
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Rupert Mayer
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | | | - Johannes V Swinnen
- Laboratory of Lipid Metabolism and Cancer, Department of Oncology, LKI - Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Laboratory of Cell Death Research & Therapy, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Department of Oncology, VIB-KU Leuven Center for Cancer Biology, KU Leuven, Leuven, Belgium
| | - Veerle Baekelandt
- Laboratory for Neurobiology and Gene Therapy, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Wim Annaert
- VIB-KU Leuven Laboratory of Membrane Trafficking, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Francis Impens
- Department for Biomolecular Medicine, VIB Center for Medical Biotechnology, VIB Proteomics Core, Ghent University, Ghent, Belgium
| | - Steven H L Verhelst
- Laboratory of Chemical Biology, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium; Chemical Proteomics, Leibniz Institute for Analytical Sciences ISAS, Dortmund, Germany
| | - Jan Eggermont
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Shaun Martin
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Peter Vangheluwe
- Laboratory of Cellular Transport Systems, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium.
| |
Collapse
|
31
|
Zafar A, Wang W, Liu G, Wang X, Xian W, McKeon F, Foster J, Zhou J, Zhang R. Molecular targeting therapies for neuroblastoma: Progress and challenges. Med Res Rev 2020; 41:961-1021. [PMID: 33155698 PMCID: PMC7906923 DOI: 10.1002/med.21750] [Citation(s) in RCA: 221] [Impact Index Per Article: 44.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/25/2020] [Accepted: 10/28/2020] [Indexed: 01/09/2023]
Abstract
There is an urgent need to identify novel therapies for childhood cancers. Neuroblastoma is the most common pediatric solid tumor, and accounts for ~15% of childhood cancer‐related mortality. Neuroblastomas exhibit genetic, morphological and clinical heterogeneity, which limits the efficacy of existing treatment modalities. Gaining detailed knowledge of the molecular signatures and genetic variations involved in the pathogenesis of neuroblastoma is necessary to develop safer and more effective treatments for this devastating disease. Recent studies with advanced high‐throughput “omics” techniques have revealed numerous genetic/genomic alterations and dysfunctional pathways that drive the onset, growth, progression, and resistance of neuroblastoma to therapy. A variety of molecular signatures are being evaluated to better understand the disease, with many of them being used as targets to develop new treatments for neuroblastoma patients. In this review, we have summarized the contemporary understanding of the molecular pathways and genetic aberrations, such as those in MYCN, BIRC5, PHOX2B, and LIN28B, involved in the pathogenesis of neuroblastoma, and provide a comprehensive overview of the molecular targeted therapies under preclinical and clinical investigations, particularly those targeting ALK signaling, MDM2, PI3K/Akt/mTOR and RAS‐MAPK pathways, as well as epigenetic regulators. We also give insights on the use of combination therapies involving novel agents that target various pathways. Further, we discuss the future directions that would help identify novel targets and therapeutics and improve the currently available therapies, enhancing the treatment outcomes and survival of patients with neuroblastoma.
Collapse
Affiliation(s)
- Atif Zafar
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| | - Gang Liu
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Xinjie Wang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA
| | - Wa Xian
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Frank McKeon
- Department of Biology and Biochemistry, Stem Cell Center, University of Houston, Houston, Texas, USA
| | - Jennifer Foster
- Department of Pediatrics, Texas Children's Hospital, Section of Hematology-Oncology Baylor College of Medicine, Houston, Texas, USA
| | - Jia Zhou
- Department of Pharmacology and Toxicology, Chemical Biology Program, University of Texas Medical Branch, Galveston, Texas, USA
| | - Ruiwen Zhang
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas, USA.,Drug Discovery Institute, University of Houston, Houston, Texas, USA
| |
Collapse
|
32
|
Abstract
Informative and realistic mouse models of high-risk neuroblastoma are central to understanding mechanisms of tumour initiation, progression, and metastasis. They also play vital roles in validating tumour drivers and drug targets, as platforms for assessment of new therapies and in the generation of drug sensitivity data that can inform treatment decisions for individual patients. This review will describe genetically engineered mouse models of specific subsets of high-risk neuroblastoma, the development of patient-derived xenograft models that more broadly represent the diversity and heterogeneity of the disease, and models of primary and metastatic disease. We discuss the research applications, advantages, and limitations of each model type, the importance of model repositories and data standards for supporting reproducible, high-quality research, and potential future directions for neuroblastoma mouse models.
Collapse
Affiliation(s)
- Alvin Kamili
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Caroline Atkinson
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.,Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia. .,School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
33
|
Rai SK, Bril F, Hatch HM, Xu Y, Shelton L, Kalavalapalli S, Click A, Lee D, Beecher C, Kirby A, Kong K, Trevino J, Jha A, Jatav S, Kriti K, Luthra S, Garrett TJ, Guingab-Cagmat J, Plant D, Bose P, Cusi K, Hromas RA, Tischler AS, Powers JF, Gupta P, Bibb J, Beuschlein F, Robledo M, Calsina B, Timmers H, Taieb D, Kroiss M, Richter S, Langton K, Eisenhofer G, Bergeron R, Pacak K, Tevosian SG, Ghayee HK. Targeting pheochromocytoma/paraganglioma with polyamine inhibitors. Metabolism 2020; 110:154297. [PMID: 32562798 PMCID: PMC7482423 DOI: 10.1016/j.metabol.2020.154297] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Pheochromocytomas (PCCs) and paragangliomas (PGLs) are neuroendocrine tumors that are mostly benign. Metastatic disease does occur in about 10% of cases of PCC and up to 25% of PGL, and for these patients no effective therapies are available. Patients with mutations in the succinate dehydrogenase subunit B (SDHB) gene tend to have metastatic disease. We hypothesized that a down-regulation in the active succinate dehydrogenase B subunit should result in notable changes in cellular metabolic profile and could present a vulnerability point for successful pharmacological targeting. METHODS Metabolomic analysis was performed on human hPheo1 cells and shRNA SDHB knockdown hPheo1 (hPheo1 SDHB KD) cells. Additional analysis of 115 human fresh frozen samples was conducted. In vitro studies using N1,N11-diethylnorspermine (DENSPM) and N1,N12- diethylspermine (DESPM) treatments were carried out. DENSPM efficacy was assessed in human cell line derived mouse xenografts. RESULTS Components of the polyamine pathway were elevated in hPheo1 SDHB KD cells compared to wild-type cells. A similar observation was noted in SDHx PCC/PGLs tissues compared to their non-mutated counterparts. Specifically, spermidine, and spermine were significantly elevated in SDHx-mutated PCC/PGLs, with a similar trend in hPheo1 SDHB KD cells. Polyamine pathway inhibitors DENSPM and DESPM effectively inhibited growth of hPheo1 cells in vitro as well in mouse xenografts. CONCLUSIONS This study demonstrates overactive polyamine pathway in PCC/PGL with SDHB mutations. Treatment with polyamine pathway inhibitors significantly inhibited hPheo1 cell growth and led to growth suppression in xenograft mice treated with DENSPM. These studies strongly implicate the polyamine pathway in PCC/PGL pathophysiology and provide new foundation for exploring the role for polyamine analogue inhibitors in treating metastatic PCC/PGL. PRéCIS: Cell line metabolomics on hPheo1 cells and PCC/PGL tumor tissue indicate that the polyamine pathway is activated. Polyamine inhibitors in vitro and in vivo demonstrate that polyamine inhibitors are promising for malignant PCC/PGL treatment. However, further research is warranted.
Collapse
Affiliation(s)
- Sudhir Kumar Rai
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville, FL, USA
| | - Fernando Bril
- Department of Medicine, Division of Endocrinology, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Heather M Hatch
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA
| | - Yiling Xu
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville, FL, USA
| | - Laura Shelton
- Scientific Project Development, Human Metabolome Technologies, Boston, MA, USA
| | - Srilaxmi Kalavalapalli
- Department of Medicine, Division of Endocrinology, University of Florida, Gainesville, FL, USA
| | - Arielle Click
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | | - Austin Kirby
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Kimi Kong
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jose Trevino
- Department of Surgery, University of Florida, Gainesville, FL, USA
| | | | | | | | | | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Joy Guingab-Cagmat
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, USA
| | - Daniel Plant
- Department of Physiological Sciences, University of Florida, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Prodip Bose
- Department of Physiological Sciences, University of Florida, Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Kenneth Cusi
- Department of Medicine, Division of Endocrinology, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, USA
| | - Robert A Hromas
- Department of Medicine, University of Texas Health Science Center, San Antonio, TX, USA
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - James F Powers
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA, USA
| | - Priyanka Gupta
- Department of Surgery, University of Alabama, Birmingham, AL, USA
| | - James Bibb
- Department of Surgery, University of Alabama, Birmingham, AL, USA
| | - Felix Beuschlein
- Klinik für Endokrinologie, Diabetologie und Klinische Ernährung, UniversitätsSpital Zurich, Zurich, Switzerland
| | - Mercedes Robledo
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Bruna Calsina
- Hereditary Endocrine Cancer Group, Spanish National Cancer Research Center (CNIO), and Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - Henri Timmers
- Department of Internal Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - David Taieb
- Department of Nuclear Medicine, La Timone University Hospital, European Center for Research in Medical Imaging, Aix Marseille Université, Marseille, France
| | - Matthias Kroiss
- Department of Internal Medicine, Division of Endocrinology and Diabetology, University Hospital Würzburg, University of Würzburg, Würzburg, Germany
| | - Susan Richter
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Katharina Langton
- Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Graeme Eisenhofer
- Institute of Clinical Chemistry and Laboratory Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Department of Medicine III, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany; Division of Clinical Neurochemistry, Institute of Clinical Chemistry and Laboratory Medicine, and Department of Medicine, Faculty of Medicine, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany
| | - Raymond Bergeron
- Department of Medicinal Chemistry, University of Florida, Gainesville, FL, USA
| | - Karel Pacak
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
| | - Sergei G Tevosian
- Department of Physiological Sciences, University of Florida, Gainesville, FL, USA.
| | - Hans K Ghayee
- Department of Medicine, Division of Endocrinology, University of Florida and Malcom Randall VA Medical Center, Gainesville, FL, USA.
| |
Collapse
|
34
|
Oncology Therapeutics Targeting the Metabolism of Amino Acids. Cells 2020; 9:cells9081904. [PMID: 32824193 PMCID: PMC7463463 DOI: 10.3390/cells9081904] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 08/12/2020] [Accepted: 08/13/2020] [Indexed: 12/19/2022] Open
Abstract
Amino acid metabolism promotes cancer cell proliferation and survival by supporting building block synthesis, producing reducing agents to mitigate oxidative stress, and generating immunosuppressive metabolites for immune evasion. Malignant cells rewire amino acid metabolism to maximize their access to nutrients. Amino acid transporter expression is upregulated to acquire amino acids from the extracellular environment. Under nutrient depleted conditions, macropinocytosis can be activated where proteins from the extracellular environment are engulfed and degraded into the constituent amino acids. The demand for non-essential amino acids (NEAAs) can be met through de novo synthesis pathways. Cancer cells can alter various signaling pathways to boost amino acid usage for the generation of nucleotides, reactive oxygen species (ROS) scavenging molecules, and oncometabolites. The importance of amino acid metabolism in cancer proliferation makes it a potential target for therapeutic intervention, including via small molecules and antibodies. In this review, we will delineate the targets related to amino acid metabolism and promising therapeutic approaches.
Collapse
|
35
|
Anti-GD2 induced allodynia in rats can be reduced by pretreatment with DFMO. PLoS One 2020; 15:e0236115. [PMID: 32697811 PMCID: PMC7375533 DOI: 10.1371/journal.pone.0236115] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
Background Anti-GD2 therapy with dinutuximab is effective in improving the survival of high-risk neuroblastoma patients in remission and after relapse. However, allodynia is the major dose-limiting side effect, hindering its use for neuroblastoma patients at higher doses and for other GD2-expressing malignancies. As polyamines can enhance neuronal sensitization, including development of allodynia and other forms of pathological pain, we hypothesized that polyamine depletion might prove an effective strategy for relief of anti-GD2 induced allodynia. Method Sprague-Dawley rats were allowed to drink water containing various concentrations of difluoromethylornithine (DFMO) for several days prior to behavioral testing. Anti-GD2 (14G2a) was injected into the tail vein of lightly sedated animals and basal mechanical hindpaw withdrawal threshold assessed by von Frey filaments. Endpoint serum DFMO and polyamines, assessed 24h after 14G2a injection, were measured by HPLC and mass spectrometry. Results An i.v. injection of 14G2a causes increased paw sensitivity to light touch in this model, a response that closely mimics patient allodynia. Animals allowed to drink water containing 1% DFMO exhibited a significant reduction of 14G2a-induced pain sensitivity (allodynia). Increasing the dosage of the immunotherapeutic increased the magnitude (intensity and duration) of the pain behavior. Administration of DFMO attenuated the enhanced sensitivity. Consistent with the known actions of DFMO on ornithine decarboxylase (ODC), serum putrescene and spermidine levels were significantly reduced by DFMO, though the decrease in endpoint polyamine levels did not directly correlate with the behavioral changes. Conclusions Our results demonstrate that DFMO is an effective agent for reducing anti-GD2 -induced allodynia. Using DFMO in conjunction with dinutuximab may allow for dose escalation in neuroblastoma patients. The reduction in pain may be sufficient to allow new patient populations to utilize this therapy given the more acceptable side effect profile. Thus, DFMO may be an important adjunct to anti-GD2 immunotherapy in addition to a role as a potential anti-cancer therapeutic.
Collapse
|
36
|
Abstract
PURPOSE OF REVIEW In an attempt to identify potential new therapeutic targets, efforts to describe the metabolic features unique to cancer cells are increasingly being reported. Although current standard of care regimens for several pediatric malignancies incorporate agents that target tumor metabolism, these drugs have been part of the therapeutic landscape for decades. More recent research has focused on the identification and targeting of new metabolic vulnerabilities in pediatric cancers. The purpose of this review is to describe the most recent translational findings in the metabolic targeting of pediatric malignancies. RECENT FINDINGS Across multiple pediatric cancer types, dependencies on a number of key metabolic pathways have emerged through study of patient tissue samples and preclinical modeling. Among the potentially targetable vulnerabilities are glucose metabolism via glycolysis, oxidative phosphorylation, amino acid and polyamine metabolism, and NAD metabolism. Although few agents have yet to move forward into clinical trials for pediatric cancer patients, the robust and promising preclinical data that have been generated suggest that future clinical trials should rationally test metabolically targeted agents for relevant disease populations. SUMMARY Recent advances in our understanding of the metabolic dependencies of pediatric cancers represent a source of potential new therapeutic opportunities for these diseases.
Collapse
|
37
|
Houghton PJ, Kurmasheva RT. Challenges and Opportunities for Childhood Cancer Drug Development. Pharmacol Rev 2019; 71:671-697. [PMID: 31558580 PMCID: PMC6768308 DOI: 10.1124/pr.118.016972] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cancer in children is rare with approximately 15,700 new cases diagnosed in the United States annually. Through use of multimodality therapy (surgery, radiation therapy, and aggressive chemotherapy), 70% of patients will be "cured" of their disease, and 5-year event-free survival exceeds 80%. However, for patients surviving their malignancy, therapy-related long-term adverse effects are severe, with an estimated 50% having chronic life-threatening toxicities related to therapy in their fourth or fifth decade of life. While overall intensive therapy with cytotoxic agents continues to reduce cancer-related mortality, new understanding of the molecular etiology of many childhood cancers offers an opportunity to redirect efforts to develop effective, less genotoxic therapeutic options, including agents that target oncogenic drivers directly, and the potential for use of agents that target the tumor microenvironment and immune-directed therapies. However, for many high-risk cancers, significant challenges remain.
Collapse
Affiliation(s)
- Peter J Houghton
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| | - Raushan T Kurmasheva
- Greehey Children's Cancer Research Institute, University of Texas Health, San Antonio, Texas
| |
Collapse
|
38
|
Sánchez-Jiménez F, Medina MÁ, Villalobos-Rueda L, Urdiales JL. Polyamines in mammalian pathophysiology. Cell Mol Life Sci 2019; 76:3987-4008. [PMID: 31227845 PMCID: PMC11105599 DOI: 10.1007/s00018-019-03196-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/11/2019] [Accepted: 06/14/2019] [Indexed: 02/07/2023]
Abstract
Polyamines (PAs) are essential organic polycations for cell viability along the whole phylogenetic scale. In mammals, they are involved in the most important physiological processes: cell proliferation and viability, nutrition, fertility, as well as nervous and immune systems. Consequently, altered polyamine metabolism is involved in a series of pathologies. Due to their pathophysiological importance, PA metabolism has evolved to be a very robust metabolic module, interconnected with the other essential metabolic modules for gene expression and cell proliferation/differentiation. Two different PA sources exist for animals: PA coming from diet and endogenous synthesis. In the first section of this work, the molecular characteristics of PAs are presented as determinant of their roles in living organisms. In a second section, the metabolic specificities of mammalian PA metabolism are reviewed, as well as some obscure aspects on it. This second section includes information on mammalian cell/tissue-dependent PA-related gene expression and information on crosstalk with the other mammalian metabolic modules. The third section presents a synthesis of the physiological processes described as modulated by PAs in humans and/or experimental animal models, the molecular bases of these regulatory mechanisms known so far, as well as the most important gaps of information, which explain why knowledge around the specific roles of PAs in human physiology is still considered a "mysterious" subject. In spite of its robustness, PA metabolism can be altered under different exogenous and/or endogenous circumstances so leading to the loss of homeostasis and, therefore, to the promotion of a pathology. The available information will be summarized in the fourth section of this review. The different sections of this review also point out the lesser-known aspects of the topic. Finally, future prospects to advance on these still obscure gaps of knowledge on the roles on PAs on human physiopathology are discussed.
Collapse
Affiliation(s)
- Francisca Sánchez-Jiménez
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Miguel Ángel Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain
| | - Lorena Villalobos-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain
| | - José Luis Urdiales
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Andalucía Tech, and IBIMA (Biomedical Research Institute of Málaga), Málaga, Spain.
- UNIT 741, CIBER de Enfermedades Raras (CIBERER), 29071, Málaga, Spain.
| |
Collapse
|
39
|
Chen K, Liu H, Liu Z, Luo S, Patz EF, Moorman PG, Su L, Shen S, Christiani DC, Wei Q. Genetic variants in RUNX3, AMD1 and MSRA in the methionine metabolic pathway and survival in nonsmall cell lung cancer patients. Int J Cancer 2019; 145:621-631. [PMID: 30650190 PMCID: PMC6828159 DOI: 10.1002/ijc.32128] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 11/13/2018] [Accepted: 11/27/2018] [Indexed: 12/18/2022]
Abstract
Abnormal methionine dependence in cancer cells has led to methionine restriction as a potential therapeutic strategy. We hypothesized that genetic variants involved in methionine-metabolic genes are associated with survival in nonsmall cell lung cancer (NSCLC) patients. Therefore, we investigated associations of 16,378 common single-nucleotide polymorphisms (SNPs) in 97 methionine-metabolic pathway genes with overall survival (OS) in NSCLC patients using genotyping data from two published genome-wide association study (GWAS) datasets. In the single-locus analysis, 1,005 SNPs were significantly associated with NSCLC OS (p < 0.05 and false-positive report probability < 0.2) in the discovery dataset. Three SNPs (RUNX3 rs7553295 G > T, AMD1 rs1279590 G > A and MSRA rs73534533 C > A) were replicated in the validation dataset, and their meta-analysis showed an adjusted hazards ratio [HR] of 0.82 [95% confidence interval (CI) =0.75-0.89] and pmeta = 2.86 × 10-6 , 0.81 (0.73-0.91) and pmeta = 4.63 × 10-4 , and 0.77 (0.68-0.89) and pmeta = 2.07 × 10-4 , respectively). A genetic score of protective genotypes of these three SNPs revealed an increased OS in a dose-response manner (ptrend < 0.0001). Further expression quantitative trait loci (eQTL) analysis showed significant associations between these genotypes and mRNA expression levels. Moreover, differential expression analysis further supported a tumor-suppressive effect of MSRA, with lower mRNA levels in both lung squamous carcinoma and adenocarcinoma (p < 0.0001 and < 0.0001, respectively) than in adjacent normal tissues. Additionally, low mutation rates of these three genes indicated the critical roles of these functional SNPs in cancer progression. Taken together, these genetic variants of methionine-metabolic pathway genes may be promising predictors of survival in NSCLC patients.
Collapse
Affiliation(s)
- Ka Chen
- Research Center for Nutrition and Food Safety, Institute of Military Preventive Medicine, Third Military Medical University, Chongqing 400038, P. R. China
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Hongliang Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Zhensheng Liu
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sheng Luo
- Department of Biostatistics and Bioinformatics, Duke University School of Medicine, Durham, NC 27710, USA
| | - Edward F. Patz
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Radiology, Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Patricia G. Moorman
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Li Su
- Department of Community and Family Medicine, Duke University Medical Center, Durham, NC, USA
| | - Sipeng Shen
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
| | - David C. Christiani
- Departments of Environmental Health and Department of Epidemiology, Harvard School of Public Health, Boston, MA, 02115 USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Qingyi Wei
- Duke Cancer Institute, Duke University Medical Center, Durham, NC 27710, USA
- Department of Population Health Sciences, Duke University School of Medicine, Durham, NC 27710, USA
- Department of Medicine, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
40
|
Wide spectrum targeted metabolomics identifies potential ovarian cancer biomarkers. Life Sci 2019; 222:235-244. [PMID: 30853626 DOI: 10.1016/j.lfs.2019.03.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 02/21/2019] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
AIMS Despite of almost a hundred years of research on cancer metabolism, the biological background of cancerogenesis and cancer-related reprogramming of metabolism remains not fully understood. In order to comprehensively and effectively diagnose and treat the deadliest diseases, the mechanisms underlying these diseases have to be discovered urgently. Among the gynecological malignancies, ovarian cancer is the most common cause of death. The aim of the study was to search for potential cancer-related differences in concentrations of metabolites and interactions between them in serum of women with ovarian cancer and benign ovarian tumor in comparison with healthy controls using targeted metabolomics. These metabolites might serve as biomarkers in the future. MAIN METHODS We used wide spectrum targeted metabolomics to evaluate serum concentrations of metabolites related to ovarian cancer and compared them against benign ovarian tumors and healthy controls. The measurements were performed using high performance liquid chromatography coupled with triple quadrupole tandem mass spectrometry technique in highly-selective multiple reaction monitoring mode. KEY FINDINGS In this study we confirmed our previous findings about the role of histidine and citrulline in ovarian cancer as well as we indicated new lipid compounds (lysoPC a C16:1, PC aa C32:2, PC aa C34:4 and PC aa C 36:6) potentially involved in cancer metabolism. SIGNIFICANCES We indicated interesting interactions between metabolites for further in-depth research which could potentially serve as clinically useful biomarkers in future. Moreover, the presented work attempts to visualize a possible 3D-network of relationships between the molecules found to be related to ovarian malignancy.
Collapse
|
41
|
Aminzadeh-Gohari S, Feichtinger RG, Kofler B. Energy Metabolism and Metabolic Targeting of Neuroblastoma. NEUROBLASTOMA 2019:113-132. [DOI: 10.1016/b978-0-12-812005-7.00007-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
42
|
Resolution of Gastric Cancer-Promoting Inflammation: A Novel Strategy for Anti-cancer Therapy. Curr Top Microbiol Immunol 2019; 421:319-359. [PMID: 31123895 DOI: 10.1007/978-3-030-15138-6_13] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The connection between inflammation and cancer was initially recognized by Rudolf Virchow in the nineteenth century. During the last decades, a large body of evidence has provided support to his hypothesis, and now inflammation is recognized as one of the hallmarks of cancer, both in etiopathogenesis and ongoing tumor growth. Infection with the pathogen Helicobacter pylori is the primary causal factor in 90% of gastric cancer (GC) cases. As we increase our understanding of how chronic inflammation develops in the stomach and contributes to carcinogenesis, there is increasing interest in targeting cancer-promoting inflammation as a strategy to treat GC. Moreover, once cancer develops and anti-cancer immune responses are suppressed, there is evidence of a substantial shift in the microenvironment and new targets for immune therapy emerge. In this chapter, we provide insight into inflammation-related factors, including T lymphocytes, macrophages, pro-inflammatory chemokines, and cytokines, which promote H. pylori-associated GC initiation and growth. While intervening with chronic inflammation is not a new practice in rheumatology or gastroenterology, this approach has not been fully explored for its potential to prevent carcinogenesis or to contribute to the treatment of GC. This review highlights current and possible strategies for therapeutic intervention including (i) targeting pro-inflammatory mediators, (ii) targeting growth factors and pathways involved in angiogenesis in the gastric tumor microenvironment, and (iii) enhancing anti-tumor immunity. In addition, we highlight a significant number of clinical trials and discuss the importance of individual tumor characterization toward offering personalized immune-related therapy.
Collapse
|
43
|
DUSP5 expression associates with poor prognosis in human neuroblastoma. Exp Mol Pathol 2018; 105:272-278. [DOI: 10.1016/j.yexmp.2018.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/23/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
|
44
|
Makena MR, Cho HE, Nguyen TH, Koneru B, Verlekar DU, Hindle A, Kang MH, Reynolds CP. Cytotoxic activity of difluoromethylornithine compared with fenretinide in neuroblastoma cell lines. Pediatr Blood Cancer 2018; 65:e27447. [PMID: 30251395 PMCID: PMC9621602 DOI: 10.1002/pbc.27447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 07/31/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Maintenance therapy with 13-cis-retinoic acid and immunotherapy (given after completion of intensive cytotoxic therapy) improves outcome for high-risk neuroblastoma patients. The synthetic retinoid fenretinide (4-HPR) achieved multiple complete responses in relapse/refractory neuroblastoma in early-phase clinical trials, has low systemic toxicity, and has been considered for maintenance therapy clinical trials. Difluoromethylornithine (DFMO, an irreversible inhibitor of ornithine decarboxylase with minimal single-agent clinical response data) is being used for maintenance therapy of neuroblastoma. We evaluated the cytotoxic activity of DFMO and fenretinide in neuroblastoma cell lines. PROCEDURE We tested 16 neuroblastoma cell lines in bone marrow-level hypoxia (5% O2 ) using the DIMSCAN cytotoxicity assay. Polyamines were measured by HPLC-mass spectrometry and apoptosis by transferase dUTP nick end labeling (TUNEL) using flow cytometry. RESULTS At clinically achievable levels (100 μM), DFMO significantly decreased (P < 0.05) polyamine putrescine and achieved modest cytotoxicity (<1 log (90% cytotoxicity). Prolonged exposures (7 days) or culture in 2% and 20% O2 did not enhance DFMO cytotoxicity. However, fenretinide (10 μM) even at a concentration lower than clinically achievable in neuroblastoma patients (20 μM) induced ≥ 1 log cell kill in 14 cell lines. The average IC90 and IC99 of fenretinide was 4.7 ± 1 μM and 9.9 ± 1.8 μM, respectively. DFMO did not induce a significant increase (P > 0.05) in apoptosis (TUNEL assay). Apoptosis by fenretinide was significantly higher (P < 0.001) compared with DFMO or controls. CONCLUSIONS DFMO as a single agent has minimal cytotoxic activity for neuroblastoma cell lines.
Collapse
Affiliation(s)
- Monish R. Makena
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Hwang Eui Cho
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Thinh H. Nguyen
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Balakrishna Koneru
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Dattesh U. Verlekar
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Ashly Hindle
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - Min H. Kang
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| | - C. Patrick Reynolds
- Cancer Center, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Departments of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pharmacology and Neuroscience, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Pediatrics, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX.,Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, TX
| |
Collapse
|
45
|
Abstract
This paper is in recognition of the 100th birthday of Dr. Herbert Tabor, a true pioneer in the polyamine field for over 70 years, who served as the editor-in-chief of the Journal of Biological Chemistry from 1971 to 2010. We review current knowledge of MYC proteins (c-MYC, MYCN, and MYCL) and focus on ornithine decarboxylase 1 (ODC1), an important bona fide gene target of MYC, which encodes the sentinel, rate-limiting enzyme in polyamine biosynthesis. Although notable advances have been made in designing inhibitors against the "undruggable" MYCs, their downstream targets and pathways are currently the main avenue for therapeutic anticancer interventions. To this end, the MYC-ODC axis presents an attractive target for managing cancers such as neuroblastoma, a pediatric malignancy in which MYCN gene amplification correlates with poor prognosis and high-risk disease. ODC and polyamine levels are often up-regulated and contribute to tumor hyperproliferation, especially of MYC-driven cancers. We therefore had proposed to repurpose α-difluoromethylornithine (DFMO), an FDA-approved, orally available ODC inhibitor, for management of neuroblastoma, and this intervention is now being pursued in several clinical trials. We discuss the regulation of ODC and polyamines, which besides their well-known interactions with DNA and tRNA/rRNA, are involved in regulating RNA transcription and translation, ribosome function, proteasomal degradation, the circadian clock, and immunity, events that are also controlled by MYC proteins.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503 and
| | - Dirk Geerts
- the Department of Medical Biology, Amsterdam University Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
46
|
Abstract
Advances in our understanding of the metabolism and molecular functions of polyamines and their alterations in cancer have led to resurgence in the interest of targeting polyamine metabolism as an anticancer strategy. Increasing knowledge of the interplay between polyamine metabolism and other cancer-driving pathways, including the PTEN-PI3K-mTOR complex 1 (mTORC1), WNT signalling and RAS pathways, suggests potential combination therapies that will have considerable clinical promise. Additionally, an expanding number of promising clinical trials with agents targeting polyamines for both therapy and prevention are ongoing. New insights into molecular mechanisms linking dysregulated polyamine catabolism and carcinogenesis suggest additional strategies that can be used for cancer prevention in at-risk individuals. In addition, polyamine blocking therapy, a strategy that combines the inhibition of polyamine biosynthesis with the simultaneous blockade of polyamine transport, can be more effective than therapies based on polyamine depletion alone and may involve an antitumour immune response. These findings open up new avenues of research into exploiting aberrant polyamine metabolism for anticancer therapy.
Collapse
Affiliation(s)
- Robert A Casero
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA.
| | - Tracy Murray Stewart
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD, USA
| | - Anthony E Pegg
- Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
47
|
Novel Therapies for Relapsed and Refractory Neuroblastoma. CHILDREN-BASEL 2018; 5:children5110148. [PMID: 30384486 PMCID: PMC6262328 DOI: 10.3390/children5110148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 12/17/2022]
Abstract
While recent increases in our understanding of the biology of neuroblastoma have allowed for more precise risk stratification and improved outcomes for many patients, children with high-risk neuroblastoma continue to suffer from frequent disease relapse, and despite recent advances in our understanding of neuroblastoma pathogenesis, the outcomes for children with relapsed neuroblastoma remain poor. These children with relapsed neuroblastoma, therefore, continue to need novel treatment strategies based on a better understanding of neuroblastoma biology to improve outcomes. The discovery of new tumor targets and the development of novel antibody- and cell-mediated immunotherapy agents have led to a large number of clinical trials for children with relapsed neuroblastoma, and additional clinical trials using molecular and genetic tumor profiling to target tumor-specific aberrations are ongoing. Combinations of these new therapeutic modalities with current treatment regimens will likely be needed to improve the outcomes of children with relapsed and refractory neuroblastoma.
Collapse
|
48
|
Molecularly Targeted Therapy for Neuroblastoma. CHILDREN-BASEL 2018; 5:children5100142. [PMID: 30326621 PMCID: PMC6210520 DOI: 10.3390/children5100142] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Revised: 09/26/2018] [Accepted: 09/27/2018] [Indexed: 12/13/2022]
Abstract
Neuroblastoma is the most common extra-cranial solid tumor encountered in childhood and accounts for 15% of pediatric cancer-related deaths. Although there has been significant improvement in the outcomes for patients with high-risk disease, the therapy needed to achieve a cure is quite toxic and for those that do experience a disease recurrence, the prognosis is very dismal. Given this, there is a tremendous need for novel therapies for children with high-risk neuroblastoma and the molecular discoveries over recent years provide hope for developing new, less toxic, and potentially more efficacious treatments. Here I discuss many of the molecular aberrations identified thus far in neuroblastoma, as well as the agents in development to target these changes. The progress made in both the preclinical arena and in early phase drug development provide much promise for the future of precision medicine in neuroblastoma.
Collapse
|
49
|
Fletcher JI, Ziegler DS, Trahair TN, Marshall GM, Haber M, Norris MD. Too many targets, not enough patients: rethinking neuroblastoma clinical trials. Nat Rev Cancer 2018; 18:389-400. [PMID: 29632319 DOI: 10.1038/s41568-018-0003-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neuroblastoma is a rare solid tumour of infancy and early childhood with a disproportionate contribution to paediatric cancer mortality and morbidity. Combination chemotherapy, radiation therapy and immunotherapy remains the standard approach to treat high-risk disease, with few recurrent, actionable genetic aberrations identified at diagnosis. However, recent studies indicate that actionable aberrations are far more common in relapsed neuroblastoma, possibly as a result of clonal expansion. In addition, although the major validated disease driver, MYCN, is not currently directly targetable, multiple promising approaches to target MYCN indirectly are in development. We propose that clinical trial design needs to be rethought in order to meet the challenge of providing rigorous, evidence-based assessment of these new approaches within a fairly small patient population and that experimental therapies need to be assessed at diagnosis in very-high-risk patients rather than in relapsed and refractory patients.
Collapse
Affiliation(s)
- Jamie I Fletcher
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Toby N Trahair
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- Kids Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia
- School of Women's and Children's Health, UNSW Sydney, Kensington, NSW, Australia
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.
- University of New South Wales Centre for Childhood Cancer Research, UNSW Sydney, Kensington, NSW, Australia.
| |
Collapse
|
50
|
Myc, Oncogenic Protein Translation, and the Role of Polyamines. Med Sci (Basel) 2018; 6:medsci6020041. [PMID: 29799508 PMCID: PMC6024823 DOI: 10.3390/medsci6020041] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 05/19/2018] [Accepted: 05/22/2018] [Indexed: 01/21/2023] Open
Abstract
Deregulated protein synthesis is a common feature of cancer cells, with many oncogenic signaling pathways directly augmenting protein translation to support the biomass needs of proliferating tissues. MYC’s ability to drive oncogenesis is a consequence of its essential role as a governor linking cell cycle entry with the requisite increase in protein synthetic capacity, among other biomass needs. To date, direct pharmacologic inhibition of MYC has proven difficult, but targeting oncogenic signaling modules downstream of MYC, such as the protein synthetic machinery, may provide a viable therapeutic strategy. Polyamines are essential cations found in nearly all living organisms that have both direct and indirect roles in the control of protein synthesis. Polyamine metabolism is coordinately regulated by MYC to increase polyamines in proliferative tissues, and this is further augmented in the many cancer cells harboring hyperactivated MYC. In this review, we discuss MYC-driven regulation of polyamines and protein synthetic capacity as a key function of its oncogenic output, and how this dependency may be perturbed through direct pharmacologic targeting of components of the protein synthetic machinery, such as the polyamines themselves, the eukaryotic translation initiation factor 4F (eIF4F) complex, and the eukaryotic translation initiation factor 5A (eIF5A).
Collapse
|