1
|
Li D, Bao Q, Ren S, Ding H, Guo C, Gao K, Wan J, Wang Y, Zhu M, Xiong Y. Comprehensive Analysis of the Mechanism of Anoikis in Hepatocellular Carcinoma. Genet Res (Camb) 2024; 2024:8217215. [PMID: 39297018 PMCID: PMC11410409 DOI: 10.1155/2024/8217215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 06/25/2024] [Accepted: 08/10/2024] [Indexed: 09/21/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), ranking as the second-leading cause of global mortality among malignancies, poses a substantial burden on public health worldwide. Anoikis, a type of programmed cell death, serves as a barrier against the dissemination of cancer cells to distant organs, thereby constraining the progression of cancer. Nevertheless, the mechanism of genes related to anoikis in HCC is yet to be elucidated. Methods This paper's data (TCGA-HCC) were retrieved from the database of the Cancer Genome Atlas (TCGA). Differential gene expression with prognostic implications for anoikis was identified by performing both the univariate Cox and differential expression analyses. Through unsupervised cluster analysis, we clustered the samples according to these DEGs. By employing the least absolute shrinkage and selection operator Cox regression analysis (CRA), a clinical predictive gene signature was generated from the DEGs. The Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts (CIBERSORT) algorithm was used to determine the proportions of immune cell types. The external validation data (GSE76427) were procured from Gene Expression Omnibus (GEO) to verify the performance of the clinical prognosis gene signature. Western blotting and immunohistochemistry (IHC) analysis confirmed the expression of risk genes. Results In total, 23 prognostic DEGs were identified. Based on these 23 DEGs, the samples were categorized into four distinct subgroups (clusters 1, 2, 3, and 4). In addition, a clinical predictive gene signature was constructed utilizing ETV4, PBK, and SLC2A1. The gene signature efficiently distinguished individuals into two risk groups, specifically low and high, demonstrating markedly higher survival rates in the former group. Significant correlations were observed between the expression of these risk genes and a variety of immune cells. Moreover, the outcomes from the validation cohort analysis aligned consistently with those obtained from the training cohort analysis. The results of Western blotting and IHC showed that ETV4, PBK, and SLC2A1 were upregulated in HCC samples. Conclusion The outcomes of this paper underscore the effectiveness of the clinical prognostic gene signature, established utilizing anoikis-related genes, in accurately stratifying patients. This signature holds promise in advancing the development of personalized therapy for HCC.
Collapse
Affiliation(s)
- Dongqian Li
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Qian Bao
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Shiqi Ren
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Haoxiang Ding
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Chengfeng Guo
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Kai Gao
- Nantong University Medical School, Nantong 226001, Jiangsu, China
| | - Jian Wan
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yao Wang
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - MingYan Zhu
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| | - Yicheng Xiong
- Department of Hepatobiliary and Pancreatic Surgery Affiliated Hospital of Nantong University Medical School of Nantong University, Nantong 226001, Jiangsu, China
| |
Collapse
|
2
|
Sato S, Miura T, Ogasawara A, Shintani D, Yamaguchi S, Inui H, Yoshinaga A, Nishiyama M, Tsugane M, Hasegawa K. Evaluating the specific STAT3 inhibitor YHO-1701 in ovarian cancer cell lines and patient-derived cell models: efficacy, mechanisms, and therapeutic potential. J Gynecol Oncol 2024; 36:36.e24. [PMID: 39129332 DOI: 10.3802/jgo.2025.36.e24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 01/18/2024] [Accepted: 07/14/2024] [Indexed: 08/13/2024] Open
Abstract
OBJECTIVE Signal transducer and activator of transcription 3 (STAT3) plays key roles in regulating cancer cell proliferation, survival, and metastasis. We aimed to determine the effects of YHO-1701, an oral STAT3 inhibitor, in ovarian cancer (OC). METHODS We evaluated the impact of YHO-1701 on cell growth in patient-derived cells (PDCs) and OC cell lines using standard cell proliferation assays. Spheroid models derived from PDCs were assessed using three-dimensional (3D) cell viability assays. Antitumor activity was performed in SKOV3 xenograft mice treated orally administrated YHO-1701 with 20 mg/kg. Changes in STAT3 signaling were analyzed by western blotting. The molecular mechanisms of STAT3 inhibition were investigated by sequencing RNA and analyzing pathways in the SKOV3 using a small interfering RNA targeting STAT3 (STAT3 siRNA) and YHO-1701. RESULTS YHO-1701 inhibited the growth of OC cell lines by preventing STAT3 dimerization and decreasing the expression of its downstream signaling molecule, survivin. The growth of PDCs and spheroids obtained from patients with primary and recurrent OCs was significantly inhibited. Antitumor effect was observed in the SKOV3 xenograft mice with YHO-1701. YHO-1701 induced apoptosis in OC cells. Additionally, p53 and/or MAPK signaling pathways were upregulated in SKOV3 cells incubated with YHO-1701 and in those with STAT3 siRNA. CONCLUSION Our results showed that YHO-1701 suppressed cell growth in PDCs of OC, accompanied by survivin inhibition, and a decrease in the number of peritoneal metastasis in the mice by YHO-1701, compared with those treated with control. Therefore, YHO-1701 could be a promising candidate agent for treating OC.
Collapse
Affiliation(s)
- Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Takahito Miura
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shogo Yamaguchi
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Hiroaki Inui
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Akiko Yoshinaga
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | | | - Momomi Tsugane
- Yakult Central Institute, Yakult Honsha Co., Ltd., Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Saitama, Japan.
| |
Collapse
|
3
|
Zeng F, Du S, Wu M, Dai C, Li J, Wang J, Hu G, Cai P, Wang L. The oncogenic kinase TOPK upregulates in psoriatic keratinocytes and contributes to psoriasis progression by regulating neutrophils infiltration. Cell Commun Signal 2024; 22:386. [PMID: 39090602 PMCID: PMC11292866 DOI: 10.1186/s12964-024-01758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND T-LAK cell-oriented protein kinase (TOPK) strongly promotes the malignant proliferation of cancer cells and is recognized as a promising biomarker of tumor progression. Psoriasis is a common inflammatory skin disease featured by excessive proliferation of keratinocytes. Although we have previously reported that topically inhibiting TOPK suppressed psoriatic manifestations in psoriasis-like model mice, the exact role of TOPK in psoriatic inflammation and the underlying mechanism remains elusive. METHODS GEO datasets were analyzed to investigate the association of TOPK with psoriasis. Skin immunohistochemical (IHC) staining was performed to clarify the major cells expressing TOPK. TOPK conditional knockout (cko) mice were used to investigate the role of TOPK-specific deletion in IMQ-induced psoriasis-like dermatitis in mice. Flow cytometry was used to analyze the alteration of psoriasis-related immune cells in the lesional skin. Next, the M5-induced psoriasis cell model was used to identify the potential mechanism by RNA-seq, RT-RCR, and western blotting. Finally, the neutrophil-neutralizing antibody was used to confirm the relationship between TOPK and neutrophils in psoriasis-like dermatitis in mice. RESULTS We found that TOPK levels were strongly associated with the progression of psoriasis. TOPK was predominantly increased in the epidermal keratinocytes of psoriatic lesions, and conditional knockout of TOPK in keratinocytes suppressed neutrophils infiltration and attenuated psoriatic inflammation. Neutrophils deletion by neutralizing antibody greatly diminished the suppressive effect of TOPK cko in psoriasis-like dermatitis in mice. In addition, topical application of TOPK inhibitor OTS514 effectively attenuated already-established psoriasis-like dermatitis in mice. Mechanismly, RNA-seq revealed that TOPK regulated the expression of some genes in the IL-17 signaling pathway, such as neutrophils chemokines CXCL1, CXCL2, and CXCL8. TOPK modulated the expression of neutrophils chemokines via activating transcription factors STAT3 and NF-κB p65 in keratinocytes, thereby promoting neutrophils infiltration and psoriasis progression. CONCLUSIONS This study identified a crucial role of TOPK in psoriasis by regulating neutrophils infiltration, providing new insights into the pathogenesis of psoriasis.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Shuaixian Du
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Pengcheng Cai
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
4
|
Kato M, Ota A, Ono T, Karnan S, Hyodo T, Rahman ML, Hasan MN, Onda M, Kondo S, Ito K, Furuhashi A, Hayashi T, Konishi H, Tsuzuki S, Hosokawa Y, Kazaoka Y. PDZ-binding kinase inhibitor OTS514 suppresses the proliferation of oral squamous carcinoma cells. Oral Dis 2024; 30:223-234. [PMID: 36799330 DOI: 10.1111/odi.14533] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/28/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
OBJECTIVE PDZ-binding kinase (PBK) has been reported as a poor prognostic factor and is a promising molecular target for anticancer therapeutics. Here, we aimed to investigate the effect of specific PBK inhibitor OTS514 on the survival of OSCC cells. METHODS Four OSCC cell lines (HSC-2, HSC-3, SAS, and OSC-19) were used to examine the effect of OTS514 on cell survival and apoptosis. DNA microarray analysis was conducted to investigate the effect of OTS514 on gene expression in OSCC cells. Gene set enrichment analysis was performed to identify molecular signatures related to the antiproliferative effect of OTS514. RESULTS OTS514 decreased the cell survival of OSCC cells dose-dependently, and administration of OTS514 readily suppressed the HSC-2-derived tumor growth in immunodeficient mice. Treatment with OTS514 significantly increased the number of apoptotic cells and caspase-3/7 activity. Importantly, OTS514 suppressed the expression of E2F target genes with a marked decrease in protein levels of E2F1, a transcriptional factor. Moreover, TP53 knockdown attenuated OTS514-induced apoptosis. CONCLUSION OTS514 suppressed the proliferation of OSCC cells by downregulating the expression of E2F target genes and induced apoptosis by mediating the p53 signaling pathway. These results highlight the clinical application of PBK inhibitors in the development of molecular-targeted therapeutics against OSCC.
Collapse
Affiliation(s)
- Mikako Kato
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Takayuki Ono
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Muhammad Nazmul Hasan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Maho Onda
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Sayuri Kondo
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Kunihiro Ito
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Akifumi Furuhashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Tomio Hayashi
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshiaki Kazaoka
- Department of Oral and Maxillofacial Surgery, Aichi Medical University Hospital, Nagakute, Japan
| |
Collapse
|
5
|
Al-Shar'i NA. The design of TOPK inhibitors using similarity search, molecular docking, and MD simulations. J Biomol Struct Dyn 2024:1-12. [PMID: 38358833 DOI: 10.1080/07391102.2024.2319107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/10/2024] [Indexed: 02/17/2024]
Abstract
Cancer is still a major cause of death worldwide. Unfortunately, the majority of current anticancer treatments suffer many limitations, mainly emergence of resistance and lack of selectivity which necessitate the search for new therapeutics. The TOPK enzyme emerges as a promising target due to its overexpression in many cancer types while being rarely detected in normal tissues. Therefore, targeting TOPK would affect the malignant activity of cancerous cells while sparing normal ones. Further, its vital role in cell division, particularly in cytokinesis, adds to its safety to normal non-multiplying cells. In this study, a combined ligand and structure-based approach was utilized to identify potential TOPK inhibitors. Previously, we identified TOPK inhibitors using a structure-based approach following the construction of a 3D homology model of the TOPK enzyme. Herein, the most active identified inhibitor (lead) was used as a search query to conduct similarity search against PubChem and ChemBridge databases. Retrieved hits were filtered using drug-like filters, docked into the ATP binding site of the enzyme, and finally, the binding free energies of all docked poses were calculated. Based on the computational scores, eight hits were selected as potential TOPK inhibitors. The predicted ADMET descriptors of the eight selected hits were generally favorable. Further, MD simulations of the top scoring hit were conducted to investigate its binding dynamics compared to the lead compound and OTS964 which agreed with the docking results and propose the selected hits as potential TOPK inhibitors. Yet, biochemical testing is still needed to validate these results.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
6
|
Parvaresh H, Roozitalab G, Golandam F, Behzadi P, Jabbarzadeh Kaboli P. Unraveling the Potential of ALK-Targeted Therapies in Non-Small Cell Lung Cancer: Comprehensive Insights and Future Directions. Biomedicines 2024; 12:297. [PMID: 38397899 PMCID: PMC10887432 DOI: 10.3390/biomedicines12020297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Background and Objective: This review comprehensively explores the intricate landscape of anaplastic lymphoma kinase (ALK), focusing specifically on its pivotal role in non-small cell lung cancer (NSCLC). Tracing ALK's discovery, from its fusion with nucleolar phosphoprotein (NPM)-1 in anaplastic large cell non-Hodgkin's lymphoma (ALCL) in 1994, the review elucidates the subsequent impact of ALK gene alterations in various malignancies, including inflammatory myofibroblastoma and NSCLC. Approximately 3-5% of NSCLC patients exhibit complex ALK rearrangements, leading to the approval of six ALK-tyrosine kinase inhibitors (TKIs) by 2022, revolutionizing the treatment landscape for advanced metastatic ALK + NSCLC. Notably, second-generation TKIs such as alectinib, ceritinib, and brigatinib have emerged to address resistance issues initially associated with the pioneer ALK-TKI, crizotinib. Methods: To ensure comprehensiveness, we extensively reviewed clinical trials on ALK inhibitors for NSCLC by 2023. Additionally, we systematically searched PubMed, prioritizing studies where the terms "ALK" AND "non-small cell lung cancer" AND/OR "NSCLC" featured prominently in the titles. This approach aimed to encompass a spectrum of relevant research studies, ensuring our review incorporates the latest and most pertinent information on innovative and alternative therapeutics for ALK + NSCLC. Key Content and Findings: Beyond exploring the intricate details of ALK structure and signaling, the review explores the convergence of ALK-targeted therapy and immunotherapy, investigating the potential of immune checkpoint inhibitors in ALK-altered NSCLC tumors. Despite encouraging preclinical data, challenges observed in trials assessing combinations such as nivolumab-crizotinib, mainly due to severe hepatic toxicity, emphasize the necessity for cautious exploration of these novel approaches. Additionally, the review explores innovative directions such as ALK molecular diagnostics, ALK vaccines, and biosensors, shedding light on their promising potential within ALK-driven cancers. Conclusions: This comprehensive analysis covers molecular mechanisms, therapeutic strategies, and immune interactions associated with ALK-rearranged NSCLC. As a pivotal resource, the review guides future research and therapeutic interventions in ALK-targeted therapy for NSCLC.
Collapse
Affiliation(s)
- Hannaneh Parvaresh
- Department of Biology, Faculty of Science, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
| | - Ghazaal Roozitalab
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa 7461686688, Iran
| | - Fatemeh Golandam
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Department of Pharmacy, Mashhad University of Medical Science, Mashhad 9177948974, Iran
| | - Payam Behzadi
- Department of Microbiology, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran;
| | - Parham Jabbarzadeh Kaboli
- Division of Cancer Discovery Network, Dr. Parham Academy, Taichung 40602, Taiwan; (G.R.)
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, China Medical University, Taichung 407, Taiwan
| |
Collapse
|
7
|
Zeng F, Lu H, Wu M, Dai C, Li J, Wang J, Hu G. Topical application of TOPK inhibitor OTS514 suppresses psoriatic progression by inducing keratinocytes cell cycle arrest and apoptosis. Exp Dermatol 2023; 32:1823-1833. [PMID: 37578092 DOI: 10.1111/exd.14909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/13/2023] [Accepted: 07/29/2023] [Indexed: 08/15/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) potently promotes malignant proliferation of tumour cells and is considered as a maker of tumour progression. Psoriasis is a common inflammatory skin disease characterized by abnormal proliferation of keratinocytes. However, the role of TOPK in psoriasis has not been well elucidated. This study aims to investigate the expression and role of TOPK in psoriasis, and the role of TOPK inhibitor in psoriasis attenuation. Gene Expression Omnibus datasets derived from psoriasis patients and psoriatic model mice were screened for analysis. Skin specimens from psoriasis patients were collected for TOPK immunohistochemical staining to investigate the expression and localization of TOPK. Next, psoriatic mice model was established to further confirm TOPK expression pattern. Then, TOPK inhibitor was applied to investigate the role of TOPK in psoriasis progression. Finally, cell proliferation assay, apoptosis assay and cell cycle analysis were performed to investigate the potential mechanism involved. Our study showed that TOPK was upregulated in the lesions of both psoriasis patients and psoriatic model mice, and TOPK levels were positively associated with psoriasis progression. TOPK was upregulated in psoriatic lesions and expressed predominantly by epidermal keratinocytes. In addition, TOPK levels in epidermal keratinocytes were positively correlated with epidermal hyperplasia. Furthermore, topical application of TOPK inhibitor OTS514 obviously alleviated disease severity and epidermal hyperplasia. Mechanismly, inhibiting TOPK induces G2/M phase arrest and apoptosis of keratinocytes, thereby attenuating epidermal hyperplasia and disease progression. Collectively, this study identifies that upregulation of TOPK in keratinocytes promotes psoriatic progression, and inhibiting TOPK attenuates epidermal hyperplasia and psoriatic progression.
Collapse
Affiliation(s)
- Fanfan Zeng
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Lu
- Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengjun Wu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chan Dai
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyu Li
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinbiao Wang
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Guoyun Hu
- Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Yan S, Yue S. Identification of early diagnostic biomarkers for breast cancer through bioinformatics analysis. Medicine (Baltimore) 2023; 102:e35273. [PMID: 37713876 PMCID: PMC10508380 DOI: 10.1097/md.0000000000035273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/28/2023] [Indexed: 09/17/2023] Open
Abstract
In the realm of clinical practice, there is currently an insufficiency of distinct biomarkers available for the detection of breast cancer. It is of utmost importance to promptly employ bioinformatics methodologies to investigate prospective biomarkers for breast cancer, with the ultimate goal of achieving early diagnosis of the disease. The initial phase of this investigation involved the identification of 2 breast cancer gene chips meeting the specified criteria within the gene expression omnibus database. Subsequently, paired data analysis was conducted on these datasets, leading to the identification of differentially expressed genes (DEGs). In addition, this study executed Gene Ontology enrichment analysis and Kyoto encyclopedia of genes and genomes pathway enrichment analysis. The subsequent stage involved the construction of a protein-protein interaction network graph using the STRING website and Cytoscape software, facilitating the calculation of Hub genes. Lastly, the UALCAN database and Kaplan-Meier survival plots were utilized to perform differential expression and survival analysis on the selected Hub genes. A total of 733 DEGs were identified from the combined analysis of 2 datasets. Among these DEGs, 441 genes were found to be downregulated, while 292 genes were upregulated. The selected DEGs underwent comprehensive analysis, including gene ontology enrichment analysis, Kyoto encyclopedia of genes and genomes pathway enrichment analysis, and establishing a protein-protein interaction network. As a result, 10 Hub genes closely associated with early diagnosis of breast cancer were identified: PDZ-binding kinase, cell cycle protein A2, cell division cycle-associated protein 8, maternal embryonic leucine zipper kinase, nucleolar and spindle-associated protein 1, BIRC5, cell cycle protein B2, hyaluronan-mediated motility receptor, mitotic arrest deficient 2-like 1, and protein regulator of cytokinesis 1. The findings of this study unveiled the significant involvement of the identified 10 Hub genes in facilitating the growth and proliferation of cancer cells, particularly cell cycle protein A2, cell division cycle-associated protein 8, maternal embryonic leucine zipper kinase, nucleolar and spindle-associated protein 1, hyaluronan-mediated motility receptor, and protein regulator of cytokinesis 1, which demonstrated a more pronounced connection with the onset and progression of breast cancer. Further analysis through differential expression and survival analysis reaffirmed their strong correlation with the incidence of breast cancer. Consequently, the investigation of these 10 pertinent Hub genes presents novel prospects for potential biomarkers and valuable insights into the early diagnosis of breast cancer.
Collapse
Affiliation(s)
- Shaozhang Yan
- Breast Department, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
- Department of Traditional Chinese Medicine, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| | - Shi Yue
- Breast Department, Shanxi Provincial Hospital of Traditional Chinese Medicine, Taiyuan, Shanxi, China
- Department of Traditional Chinese Medicine, Shanxi Institute of Traditional Chinese Medicine, Taiyuan, Shanxi, China
| |
Collapse
|
9
|
Wu W, Xu J, Gao D, Xie Z, Chen W, Li W, Yuan Q, Duan L, Zhang Y, Yang X, Chen Y, Dong Z, Liu K, Jiang Y. TOPK promotes the growth of esophageal cancer in vitro and in vivo by enhancing YB1/eEF1A1 signal pathway. Cell Death Dis 2023; 14:364. [PMID: 37328464 PMCID: PMC10276051 DOI: 10.1038/s41419-023-05883-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 03/30/2023] [Accepted: 06/08/2023] [Indexed: 06/18/2023]
Abstract
T-LAK-originated protein kinase (TOPK), a dual specificity serine/threonine kinase, is up-regulated and related to poor prognosis in many types of cancers. Y-box binding protein 1 (YB1) is a DNA/RNA binding protein and serves important roles in multiple cellular processes. Here, we reported that TOPK and YB1 were both highly expressed in esophageal cancer (EC) and correlated with poor prognosis. TOPK knockout effectively suppressed EC cell proliferation and these effects were reversible by rescuing YB1 expression. Notably, TOPK phosphorylated YB1 at Thr 89 (T89) and Ser 209 (S209) amino acid residues, then the phosphorylated YB1 bound with the promoter of the eukaryotic translation elongation factor 1 alpha 1 (eEF1A1) to activate its transcription. Consequently, the AKT/mTOR signal pathway was activated by up-regulated eEF1A1 protein. Importantly, TOPK inhibitor HI-TOPK-032 suppressed the EC cell proliferation and tumor growth by TOPK/YB1/eEF1A1 signal pathway in vitro and in vivo. Taken together, our study reveals that TOPK and YB1 are essential for the growth of EC, and TOPK inhibitors may be applied to retard cell proliferation in EC. This study highlights the promising therapeutic potential of TOPK as a target for treatment of EC.
Collapse
Affiliation(s)
- Wenjie Wu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Jialuo Xu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Dan Gao
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenliang Xie
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Li
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Qiang Yuan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Lina Duan
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yuhan Zhang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Xiaoxiao Yang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China
| | - Yingying Chen
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ziming Dong
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Kangdong Liu
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Provincial Cooperative Innovation Center for Cancer Chemoprevention, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
- Cancer Chemoprevention International Collaboration Laboratory, Zhengzhou, Henan, 450000, China.
| | - Yanan Jiang
- Pathophysiology Department, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
- The China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan, 450000, China.
- Research Center of Basic Medical Science, Zhengzhou University, Zhengzhou, Henan, 450001, China.
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Zhengzhou, Henan, 450052, China.
| |
Collapse
|
10
|
Peng S, Yin Y, Zhang Y, Zhu F, Yang G, Fu Y. FYN/TOPK/HSPB1 axis facilitates the proliferation and metastasis of gastric cancer. J Exp Clin Cancer Res 2023; 42:80. [PMID: 37016377 PMCID: PMC10071617 DOI: 10.1186/s13046-023-02652-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/21/2023] [Indexed: 04/06/2023] Open
Abstract
BACKGROUND FYN is a nonreceptor tyrosine kinase that regulates diverse pathological processes. The pro-cancer role of FYN in multiple malignancies has been elucidated. However, the mechanisms that FYN promotes gastric cancer (GC) progression remain largely unknown. METHODS In vitro and in vivo assays were used to investigate the function of FYN. FYN, TOPK, p-TOPK expression in GC specimens were detected by immunohistochemistry. Phosphoproteomics assays identify TOPK downstream substrate molecules. The molecular mechanism was determined using COIP assays, pull-down assays, immunofluorescence co-localization assays, western blotting, 32p-labeled isotope radioautography assays, vitro kinase assays, and TOPK knockout mice. RESULTS FYN was found to be significantly upregulated in GC tissues as well as in GC cells. Knockdown of FYN expression markedly attenuated the malignant phenotype of GC cells in vitro and in vivo. Mechanistically, we identified TOPK/PBK as a novel downstream substrate of FYN, FYN directly phosphorylates TOPK at Y272. One phosphospecific antibodies against Y272 was developed to validate the phosphorylation of TOPK by FYN. Moreover, the TOPK-272F mutation impaired the interaction between TOPK and FYN, leading to disappeared TOPK phosphorylation. Consistently, human GC tissues displayed increased p-TOPK(Y272), which correlated with poor survival. Phosphoproteomics results showed a significant downregulation of both HSPB1 and p-HSPB1(ser15) in TOPK-knockdown cells, which was confirmed by TOPK-konckout mice. CONCLUSIONS FYN directly binds to TOPK in GC cells and phosphorylates TOPK at the Y272, which leads to proliferation and metastasis of GC. FYN-TOPK axis facilitates GC progression by phosphorylating HSPB1. Collectively, our study elucidates the pivotal role of the FYN-TOPK-HSPB1 cascade in GC.
Collapse
Affiliation(s)
- SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - YuHan Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - YiZheng Zhang
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China
| | - Feng Zhu
- Cancer Research Institute, The Affiliated Hospital of Guilin Medical University, Guilin, 541000, Guangxi, China
| | - Ge Yang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou, University, Zhengzhou, 450052, China.
| |
Collapse
|
11
|
Wang H, Zhu X, Zhao Y, Zang Y, Zhang J, Kang Y, Yang Z, Lin P, Zhang L, Zhang S. Markov State Models Underlying the N-Terminal Premodel of TOPK/PBK. J Phys Chem B 2022; 126:10662-10671. [PMID: 36512332 DOI: 10.1021/acs.jpcb.2c06559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lymphokine-activated killer T-cell-originated protein kinase (TOPK) is a potential target for cancer therapy. To explore the micromechanism, we proposed the N-terminal premodel (NTPM) of the TOPK monomer via homology modeling and molecular dynamic simulations and analyzed the conformational dynamics by Markov state model analysis. The electronegative insert (ENI) motif of the NTPM can be opened with a small probability under wild type, regulated by the so-called "N-C" interaction zone consisting of the N-terminal head, the coil between β3-strand and αC-helix, and the ENI motif. Glutamate substitution at threonine residue 9 or tyrosine residue 74 promotes the closed-open transition, revealing the details of phosphorylation. Allosteric effects induce functionally relevant structural changes, such as increased structural flexibility and active sites, which are thought to be necessary for further activation or binding. These findings provide rational structural templates for designing state-dependent inhibitors and give insight into the molecular regulatory mechanisms of TOPK monomers.
Collapse
Affiliation(s)
- He Wang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Xun Zhu
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yizhen Zhao
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Yongjian Zang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Jianwen Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Ying Kang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Zhiwei Yang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Peng Lin
- National Translational Science Center for Molecular Medicine & Department of Cell Biology, Fourth Military Medical University, Xi'an710032, China
| | - Lei Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| | - Shengli Zhang
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an710049, China
| |
Collapse
|
12
|
A practical spatial analysis method for elucidating the biological mechanisms of cancers with abdominal dissemination in vivo. Sci Rep 2022; 12:20303. [PMID: 36434071 PMCID: PMC9700726 DOI: 10.1038/s41598-022-24827-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022] Open
Abstract
Elucidation of spatial interactions between cancer and host cells is important for the development of new therapies against disseminated cancers. The aim of this study is to establish easy and useful method for elucidating spatial interactions. In this study, we developed a practical spatial analysis method using a gel-based embedding system and applied it to a murine model of cancer dissemination. After euthanization, every abdominal organ enclosed in the peritoneum was extracted en bloc. We injected agarose gel into the peritoneal cavities to preserve the spatial locations of the organs, including their metastatic niches, and then produced specimens when the gel had solidified. Preservation of the original spatial localization was confirmed by correlating magnetic resonance imaging results with the sectioned specimens. We examined the effects of spatial localization on cancer hypoxia using immunohistochemical hypoxia markers. Finally, we identified the mRNA expression of the specimens and demonstrated the applicability of spatial genetic analysis. In conclusion, we established a practical method for the in vivo investigation of spatial location-specific biological mechanisms in disseminated cancers. Our method can elucidate dissemination mechanisms, find therapeutic targets, and evaluate cancer therapeutic effects.
Collapse
|
13
|
Inhibiting ALK-TOPK signaling pathway promotes cell apoptosis of ALK-positive NSCLC. Cell Death Dis 2022; 13:828. [PMID: 36167821 PMCID: PMC9515217 DOI: 10.1038/s41419-022-05260-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 09/07/2022] [Accepted: 09/12/2022] [Indexed: 01/23/2023]
Abstract
T-LAK cell-oriented protein kinase (TOPK) is a potential therapeutic target in tumors. However, its role in anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) has not been reported. Here, we found that TOPK was highly expressed in ALK-positive NSCLC. Additionally, ALK was identified as another upstream kinase of TOPK by in vitro kinase assay screening. Then, it was proven that ALK phosphorylated TOPK at Y74 in vitro and ex vivo, and the pathways downstream of ALK-TOPK were explored by phosphoproteomic analysis. Subsequently, we demonstrated that inhibiting TOPK enhanced tumor sensitivity to alectinib (an ALK inhibitor). The combination of alectinib and HI-032 (a TOPK inhibitor) suppressed the growth and promoted the apoptosis of ALK-positive NSCLC cells ex vivo and in vivo. Our findings reveal a novel ALK-TOPK signaling pathway in ALK-positive NSCLC. The combination of alectinib and HI-032 might be a promising therapeutic strategy for improving the sensitivity of ALK-positive NSCLC to targeted therapy.
Collapse
|
14
|
Xiao J, Liu Z, Wang J, Zhang S, Zhang Y. Identification of cuprotosis-mediated subtypes, the development of a prognosis model, and influence immune microenvironment in hepatocellular carcinoma. Front Oncol 2022; 12:941211. [PMID: 36110946 PMCID: PMC9468823 DOI: 10.3389/fonc.2022.941211] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/05/2022] [Indexed: 12/25/2022] Open
Abstract
Purpose Cuprotosis is a newly discovered form of non-apoptotic regulated cell death and is characterized by copper-dependent and associated with mitochondrial respiration. However, the prognostic significance and function of cuprotosis-related genes (CRGs) in hepatocellular carcinoma (HCC) are unknown. This study aims to develop cuprotosis-mediated patterns-related gene (CMPRG) prediction models for the prognosis of patients with HCC, exploring the functional underlying the CRGs on the influence of tumor microenvironment (TME) features. Experimental design This study obtained transcriptome profiling and the corresponding clinical information from the TCGA and GEO databases. Besides, the Cox regression model with LASSO was implemented to build a multi-gene signature, which was then validated in an internal validation set and two external validation sets through Kaplan-Meier, DCA, and ROC analyses. Results According to the LASSO analysis, we screened out a cuprotosis-mediated pattern 5-gene combination (including PBK; MMP1; GNAZ; GPC1 and AKR1D1). A nomogram was constructed for the presentation of the final model. The ROC curve assessed the model’s predictive ability, which resulted in an area under the curve (AUC) values ranging from 0.604 to 0.787 underwent internal and two external validation sets. Meanwhile, the risk score divided the patients into two groups of high and low risk, and the survival rate of high-risk patients was significantly lower than that of low-risk patients (P<0.01). The risk score could be an independent prognostic factor in the multifactorial Cox regression analysis (P<0.01). Functional analysis revealed that immune status, mutational loads, and drug sensitivity differed between the two risk groups. Conclusions In summary, we identified three cuprotosis-mediated patterns in HCC. And CMPRGs are a promising candidate biomarker for HCC early detection, owing to their strong performance in predicting HCC prognosis and therapy. Quantifying cuprotosis-mediated patterns in individual samples may help improve the understanding of multiomic characteristics and guide the development of targeted therapy for HCC.
Collapse
Affiliation(s)
- Jingjing Xiao
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- School of Clinical Medicine, Guizhou Medical University, Guiyang, China
| | - Zhenhua Liu
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Jinlong Wang
- Department of Critical Care Medicine, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Shuaimin Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
| | - Yi Zhang
- Department of Hepatobiliary Surgery, Guizhou Provincial People’s Hospital, Guiyang, China
- *Correspondence: Yi Zhang,
| |
Collapse
|
15
|
Shi H, Xu H, Chai C, Qin Z, Zhou W. Integrated bioinformatics analysis of potential biomarkers for pancreatic cancer. J Clin Lab Anal 2022; 36:e24381. [PMID: 35403252 PMCID: PMC9102654 DOI: 10.1002/jcla.24381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Pancreatic cancer, particularly pancreatic ductal adenocarcinoma (PDA), is an aggressive malignancy associated with a low 5-year survival rate. Poor outcomes associated with PDA are attributable to late detection and inoperability. Most patients with PDA are diagnosed with locally advanced and metastatic disease. Such cases are primarily treated with chemotherapy and radiotherapy. Because of the lack of effective molecular targets, early diagnosis and successful therapies are limited. The purpose of this study was to screen key candidate genes for PDA using a bioinformatic approach and to research their potential functional, pathway mechanisms associated with PDA progression. It may help to understand the role of associated genes in the development and progression of PDA and identify relevant molecular markers with value for early diagnosis and targeted therapy. MATERIALS AND METHODS To identify novel genes associated with carcinogenesis and progression of PDA, we analyzed the microarray datasets GSE62165, GSE125158, and GSE71989 from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were identified, and the Database for Annotation, Visualization, and Integrated Discovery (DAVID) was used for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses. A protein-protein interaction (PPI) network was constructed using STRING, and module analysis was performed using Cytoscape. Gene Expression Profiling Interactive Analysis (GEPIA) was used to evaluate the differential expression of hub genes in patients with PDA. In addition, we verified the expression of these genes in PDA cell lines and normal pancreatic epithelial cells. RESULTS A total of 202 DEGs were identified and these were found to be enriched for various functions and pathways, including cell adhesion, leukocyte migration, extracellular matrix organization, extracellular region, collagen trimer, membrane raft, fibronectin-binding, integrin binding, protein digestion, and absorption, and focal adhesion. Among these DEGs, 12 hub genes with high degrees of connectivity were selected. Survival analysis showed that the hub genes (HMMR, CEP55, CDK1, UHRF1, ASPM, RAD51AP1, DLGAP5, KIF11, SHCBP1, PBK, and HMGB2) may be involved in the tumorigenesis and development of PDA, highlighting their potential as diagnostic and therapeutic factors in PDA. CONCLUSIONS In summary, the DEGs and hub genes identified in the present study not only contribute to a better understanding of the molecular mechanisms underlying the carcinogenesis and progression of PDA but may also serve as potential new biomarkers and targets for PDA.
Collapse
Affiliation(s)
- Huaqing Shi
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
| | - Hao Xu
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Changpeng Chai
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| | - Zishun Qin
- School of StomatologyLanzhou UniversityLanzhouChina
| | - Wence Zhou
- The First Clinical Medical CollegeLanzhou UniversityLanzhouChina
- Department of General SurgeryThe First Hospital of Lanzhou UniversityLanzhouChina
| |
Collapse
|
16
|
Wu J, Zhu RD, Cao GM, Du JC, Liu X, Diao LZ, Zhang ZY, Hu YS, Liu XH, Shi JB. Discovery of novel paeonol-based derivatives against skin inflammation in vitro and in vivo. J Enzyme Inhib Med Chem 2022; 37:817-831. [PMID: 35220836 PMCID: PMC8890542 DOI: 10.1080/14756366.2022.2043852] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
T-LAK-cell-originated protein kinase (TOPK), a novel member of the mitogen-activated protein kinase family, is considered an effective therapeutic target for skin inflammation. In this study, a series (A − D) of paeonol derivatives was designed and synthesised using a fragment growing approach, and their anti-inflammatory activities against lipopolysaccharide (LPS)-induced nitric oxide production in RAW264.7 cells were tested. Among them, compound B12 yielded the best results (IC50 = 2.14 μM) with low toxicity (IC50 > 50 µM). Preliminary mechanistic studies indicated that this compound could inhibit the TOPK-p38/JNK signalling pathway and phosphorylate downstream related proteins. A murine psoriasis-like skin inflammation model was used to determine its therapeutic effect.
Collapse
Affiliation(s)
- Jing Wu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Ren De Zhu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Guo Min Cao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jun Cheng Du
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Xin Liu
- Department of Clinical Medicine, Second Clinical Medical College, Anhui Medical University, Hefei, P. R. China
| | - Liang Zhuo Diao
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Zhao Yan Zhang
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Yang Sheng Hu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
- Department of Medicine, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, P. R. China
| | - Xin Hua Liu
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| | - Jing Bo Shi
- School of Pharmacy, Anhui Medical University, Hefei, P. R. China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, P. R. China
| |
Collapse
|
17
|
Lee DH, Jeong YJ, Won JY, Sim HI, Park Y, Jin HS. PBK/TOPK Is a Favorable Prognostic Biomarker Correlated with Antitumor Immunity in Colon Cancers. Biomedicines 2022; 10:biomedicines10020299. [PMID: 35203508 PMCID: PMC8869639 DOI: 10.3390/biomedicines10020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/23/2022] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
Immune checkpoint inhibitor therapy has proven efficacy in a subset of colon cancer patients featuring a deficient DNA mismatch repair system or a high microsatellite instability profile. However, there is high demand for more effective biomarkers to expand the colon cancer population responding to ICI therapy. PBK/TOPK, a serine/threonine kinase, plays a role in cell cycle regulation and mitotic progression. Here, we investigated the correlation between PBK/TOPK expression and tumor immunity and its prognostic value in colon cancer. Based on large-scale bioinformatics analysis, we discovered that elevated PBK/TOPK expression predicted a favorable outcome in patients with colon cancer and was positively associated with immune infiltration levels of CD8+ T cells, CD4+ T cells, natural killer cells, and M1 macrophages. In contrast, a negative correlation was found between PBK/TOPK expression and immune suppressor cells, including regulatory T cells and M2 macrophages. Furthermore, the expression of PBK/TOPK was correlated with the expression of T-cell cytotoxicity genes in colon cancer. Additionally, high PBK/TOPK expression was associated with mutations in DNA damage repair genes, and thus with increased tumor mutation and neoantigen burden. These findings suggest that PBK/TOPK may serve as a prognostic and predictive biomarker for immunotherapy in colon cancer.
Collapse
Affiliation(s)
- Dong-Hee Lee
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Yu-Jeong Jeong
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Ju-Young Won
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
| | - Hye-In Sim
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
| | - Yoon Park
- Center for Theragnosis, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- Correspondence: (Y.P.); (H.-S.J.)
| | - Hyung-Seung Jin
- Department of Convergence Medicine, Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (D.-H.L.); (Y.-J.J.); (J.-Y.W.)
- Correspondence: (Y.P.); (H.-S.J.)
| |
Collapse
|
18
|
The role of T-LAK cell-originated protein kinase in targeted cancer therapy. Mol Cell Biochem 2022; 477:759-769. [PMID: 35037144 DOI: 10.1007/s11010-021-04329-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 12/07/2021] [Indexed: 10/19/2022]
Abstract
Targeted therapy has gradually become the first-line clinical tumor therapy due to its high specificity and low rate of side effects. TOPK (T-LAK cell-originated protein kinase), a MAP kinase, is highly expressed in various tumor tissues, while it is rarely expressed in normal tissues, with the exceptions of testicular germ cells and some fetal tissues. It can promote cancer cell proliferation and migration and is also related to drug resistance. Therefore, TOPK is considered a good therapeutic target. Moreover, a number of studies have shown that targeting TOPK can inhibit the proliferation of cancer cells and promote their apoptosis. Here, we discussed the biological functions of TOPK in cancer and summarized its tumor-related signaling network and known TOPK inhibitors. Finally, the role of TOPK in targeted cancer therapy was concluded, and future research directions for TOPK were assessed.
Collapse
|
19
|
Fakhouri LI, Al-Shar'i NA. The design of TOPK inhibitors using structure-based pharmacophore modeling and molecular docking based on an MD-refined homology model. Mol Divers 2022; 26:2679-2702. [PMID: 35031933 DOI: 10.1007/s11030-021-10361-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Accepted: 12/01/2021] [Indexed: 11/27/2022]
Abstract
The TOPK enzyme (also known as PBK) is a serine-threonine protein kinase that is rarely detected in normal tissues yet is found to be overexpressed and activated in a variety of cancers such as lung, colorectal, breast, and esophageal cancer. Its prevalence in cancerous cells is associated with their poor prognosis and responsiveness to treatment. This enzyme plays a vital role in cell division, specifically in regulating cytokinesis. Unlike drugs targeting early phases in mitosis, inhibition of cytokinesis by targeting biomolecules that are unique to multiplying cells poses no threat to the normal function of non-multiplying cells. Studies have shown that inhibition of cytokinesis is promising in suppressing the growth of proliferating cancerous cells as exemplified by the complete tumor regression seen with the suppression of TOPK. Herein, we report the identification of potent TOPK inhibitors with anticancer potential using a structure-based drug design approach. The only available crystal structure of TOPK corresponds to a double mutant (T9E and T198E) dimer with a distorted N-lobe conformation, thus 3D homology modeling was implemented to rebuild the enzyme's native conformation. The resulting refined model was used to generate 3D pharmacophore models for the virtual screening of small molecules databases. Retrieved hits were filtered, docked into the ATP binding site of the enzyme, rescored, and the binding free energies for the top consensually scoring hits were calculated. Consequently, 45 compounds were selected and their in vitro inhibitory activity against TOPK was tested revealing four potential hits with the most active compound having an IC50 of 3.85 µM. This compound will be chosen as a lead compound to synthesize analogs aiming to enhance potency and drug-like properties and to enrich the SAR data.
Collapse
Affiliation(s)
- Lara I Fakhouri
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| | - Nizar A Al-Shar'i
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Jordan University of Science and Technology, P.O. Box 3030, Irbid, 22110, Jordan.
| |
Collapse
|
20
|
Liu Y, Xiang J, Peng G, Shen C. Omics- and Pharmacogenomic Evidence for the Prognostic, Regulatory, and Immune-Related Roles of PBK in a Pan-Cancer Cohort. Front Mol Biosci 2021; 8:785370. [PMID: 34859058 PMCID: PMC8632063 DOI: 10.3389/fmolb.2021.785370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/27/2021] [Indexed: 01/05/2023] Open
Abstract
PDZ-binding kinase (PBK) is known to regulate tumor progression in some cancer types. However, its relationship to immune cell infiltration and prognosis in different cancers is unclear. This was investigated in the present study by analyzing data from TCGA, GEO, GETx, TIMER, CPTAC, GEPIA2, cBioPortal, GSCALite, PROGNOSCAN, PharmacoDB, STRING, and ENCORI databases. PBK was overexpressed in most tumors including adenocortical carcinoma (hazard ratio [HR] = 2.178, p < 0.001), kidney renal clear cell carcinoma (KIRC; HR = 1.907, p < 0.001), kidney renal papillary cell carcinoma (HR = 3.024, p < 0.001), and lung adenocarcinoma (HR = 1.255, p < 0.001), in which it was associated with poor overall survival and advanced pathologic stage. PBK methylation level was a prognostic marker in thyroid carcinoma (THCA). PBK expression was positively correlated with the levels of BIRC5, CCNB1, CDC20, CDK1, DLGAP5, MAD2L1, MELK, PLK1, TOP2A, and TTK in 32 tumor types; and with the levels of the transcription factors E2F1 and MYC, which regulate apoptosis, the cell cycle, cell proliferation and invasion, tumorigenesis, and metastasis. It was also negatively regulated by the microRNAs hsa-miR-101-5p, hsa-miR-145-5p, and hsa-miR-5694. PBK expression in KIRC, liver hepatocellular carcinoma, THCA, and thymoma was positively correlated with the infiltration of immune cells including B cells, CD4+T cells, CD8+ T cells, macrophages, monocytes, and neutrophils. The results of the functional enrichment analysis suggested that PBK and related genes contribute to tumor development via cell cycle regulation. We also identified 20 drugs that potentially inhibit PBK expression. Thus, PBK is associated with survival outcome in a variety of cancers and may promote tumor development and progression by increasing immune cell infiltration into the tumor microenvironment. These findings indicate that PBK is a potential therapeutic target and has prognostic value in cancer treatment.
Collapse
Affiliation(s)
- Yi Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Juan Xiang
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Gang Peng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chenfu Shen
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
21
|
Thanindratarn P, Wei R, Dean DC, Singh A, Federman N, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK): an emerging prognostic biomarker and therapeutic target in osteosarcoma. Mol Oncol 2021; 15:3721-3737. [PMID: 34115928 PMCID: PMC8637563 DOI: 10.1002/1878-0261.13039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 05/12/2021] [Accepted: 06/11/2021] [Indexed: 12/29/2022] Open
Abstract
T-lymphokine-activated killer (T-LAK) cell-originated protein kinase (TOPK) is an emerging target with critical roles in various cancers; however, its expression and function in osteosarcoma remain unexplored. We evaluated TOPK expression using RNA sequencing and gene expression data from public databases (TARGET-OS, CCLE, GTEx, and GENT2) and immunohistochemistry in an osteosarcoma tissue microarray (TMA). TOPK gene expression was significantly higher in osteosarcoma than normal tissues and directly correlated with shorter overall survival. TOPK was overexpressed in 83.3% of the osteosarcoma specimens within our TMA and all osteosarcoma cell lines, whereas normal osteoblast cells had no aberrant expression. High expression of TOPK associated with metastasis, disease status, and shorter overall survival. Silencing of TOPK with small interfering RNA (siRNA) decreased cell viability, and inhibition with the selective inhibitor OTS514 suppressed osteosarcoma cell proliferation, migration, colony-forming ability, and spheroid growth. Enhanced chemotherapeutic sensitivity and a synergistic effect were also observed with the combination of OTS514 and either doxorubicin or cisplatin in osteosarcoma cell lines. Taken together, our study demonstrated that TOPK is a potential prognostic biomarker and therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Department of Orthopedic SurgeryChulabhorn HospitalHRH Princess Chulabhorn College of Medical ScienceChulabhorn Royal AcademyBangkokThailand
| | - Ran Wei
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
- Musculoskeletal Tumor CenterBeijing Key Laboratory of Musculoskeletal TumorPeking University People’s HospitalBeijingChina
| | - Dylan C. Dean
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Arun Singh
- Sarcoma ServiceDivision of Hematology‐OncologyDavid Geffen School of Medicine at UCLALos AngelesCAUSA
| | - Noah Federman
- Department of PediatricsMattel Children’s HospitalDavid Geffen School of Medicine at UCLALos AngelesCAUSA
- UCLA’s Jonsson Comprehensive Cancer CenterLos AngelesCAUSA
| | - Scott D. Nelson
- Department of PathologyUniversity of CaliforniaLos AngelesCAUSA
| | - Francis J. Hornicek
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| | - Zhenfeng Duan
- Department of Orthopaedic SurgerySarcoma Biology LaboratoryDavid Geffen School of MedicineUniversity of CaliforniaLos AngelesCAUSA
| |
Collapse
|
22
|
WGCNA Identifies Translational and Proteasome-Ubiquitin Dysfunction in Rett Syndrome. Int J Mol Sci 2021; 22:ijms22189954. [PMID: 34576118 PMCID: PMC8465861 DOI: 10.3390/ijms22189954] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/14/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Rett Syndrome (RTT) is an X linked neurodevelopmental disorder caused by mutations in the methyl-CpG-binding protein 2 (MECP2) gene, resulting in severe cognitive and physical disabilities. Despite an apparent normal prenatal and postnatal development period, symptoms usually present around 6 to 18 months of age. Little is known about the consequences of MeCP2 deficiency at a molecular and cellular level before the onset of symptoms in neural cells, and subtle changes at this highly sensitive developmental stage may begin earlier than symptomatic manifestation. Recent transcriptomic studies of patient induced pluripotent stem cells (iPSC)-differentiated neurons and brain organoids harbouring pathogenic mutations in MECP2, have unravelled new insights into the cellular and molecular changes caused by these mutations. Here we interrogated transcriptomic modifications in RTT patients using publicly available RNA-sequencing datasets of patient iPSCs harbouring pathogenic mutations and healthy control iPSCs by Weighted Gene Correlation Network Analysis (WGCNA). Preservation analysis identified core gene pathways involved in translation, ribosomal function, and ubiquitination perturbed in some MECP2 mutant iPSC lines. Furthermore, differential gene expression of the parental fibroblasts and iPSC-derived neurons revealed alterations in genes in the ubiquitination pathway and neurotransmission in fibroblasts and differentiated neurons respectively. These findings might suggest that global translational dysregulation and proteasome ubiquitin function in Rett syndrome begins in progenitor cells prior to lineage commitment and differentiation into neural cells.
Collapse
|
23
|
Functional genomics for breast cancer drug target discovery. J Hum Genet 2021; 66:927-935. [PMID: 34285339 PMCID: PMC8384626 DOI: 10.1038/s10038-021-00962-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 07/05/2021] [Indexed: 01/14/2023]
Abstract
Breast cancer is a heterogeneous disease that develops through a multistep process via the accumulation of genetic/epigenetic alterations in various cancer-related genes. Current treatment options for breast cancer patients include surgery, radiotherapy, and chemotherapy including conventional cytotoxic and molecular-targeted anticancer drugs for each intrinsic subtype, such as endocrine therapy and antihuman epidermal growth factor receptor 2 (HER2) therapy. However, these therapies often fail to prevent recurrence and metastasis due to resistance. Overall, understanding the molecular mechanisms of breast carcinogenesis and progression will help to establish therapeutic modalities to improve treatment. The recent development of comprehensive omics technologies has led to the discovery of driver genes, including oncogenes and tumor-suppressor genes, contributing to the development of molecular-targeted anticancer drugs. Here, we review the development of anticancer drugs targeting cancer-specific functional therapeutic targets, namely, MELK (maternal embryonic leucine zipper kinase), TOPK (T-lymphokine-activated killer cell-originated protein kinase), and BIG3 (brefeldin A-inhibited guanine nucleotide-exchange protein 3), as identified through comprehensive breast cancer transcriptomics.
Collapse
|
24
|
Liu C, Barger CJ, Karpf AR. FOXM1: A Multifunctional Oncoprotein and Emerging Therapeutic Target in Ovarian Cancer. Cancers (Basel) 2021; 13:3065. [PMID: 34205406 PMCID: PMC8235333 DOI: 10.3390/cancers13123065] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/11/2021] [Accepted: 06/16/2021] [Indexed: 02/08/2023] Open
Abstract
Forkhead box M1 (FOXM1) is a member of the conserved forkhead box (FOX) transcription factor family. Over the last two decades, FOXM1 has emerged as a multifunctional oncoprotein and a robust biomarker of poor prognosis in many human malignancies. In this review article, we address the current knowledge regarding the mechanisms of regulation and oncogenic functions of FOXM1, particularly in the context of ovarian cancer. FOXM1 and its associated oncogenic transcriptional signature are enriched in >85% of ovarian cancer cases and FOXM1 expression and activity can be enhanced by a plethora of genomic, transcriptional, post-transcriptional, and post-translational mechanisms. As a master transcriptional regulator, FOXM1 promotes critical oncogenic phenotypes in ovarian cancer, including: (1) cell proliferation, (2) invasion and metastasis, (3) chemotherapy resistance, (4) cancer stem cell (CSC) properties, (5) genomic instability, and (6) altered cellular metabolism. We additionally discuss the evidence for FOXM1 as a cancer biomarker, describe the rationale for FOXM1 as a cancer therapeutic target, and provide an overview of therapeutic strategies used to target FOXM1 for cancer treatment.
Collapse
Affiliation(s)
| | | | - Adam R. Karpf
- Eppley Institute and Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68918-6805, USA; (C.L.); (C.J.B.)
| |
Collapse
|
25
|
Liu S, Wu M, Wang F. Research Progress in Prognostic Factors and Biomarkers of Ovarian Cancer. J Cancer 2021; 12:3976-3996. [PMID: 34093804 PMCID: PMC8176232 DOI: 10.7150/jca.47695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 04/22/2021] [Indexed: 12/14/2022] Open
Abstract
Ovarian cancer is a serious threat to women's health; its early diagnosis rate is low and prone to metastasis and recurrence. The current conventional treatment for ovarian cancer is a combination of platinum and paclitaxel chemotherapy based on surgery. The recurrence and progression of ovarian cancer with poor prognosis is a major challenge in treatment. With rapid advances in technology, understanding of the molecular pathways involved in ovarian cancer recurrence and progression has increased, biomarker-guided treatment options can greatly improve the prognosis of patients. This review systematically discusses and summarizes existing and new information on prognostic factors and biomarkers of ovarian cancer, which is expected to improve the clinical management of patients and lead to effective personalized treatment.
Collapse
Affiliation(s)
- Shuna Liu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Ming Wu
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| | - Fang Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China, 210029
- National Key Clinical Department of Laboratory Medicine, Nanjing, China, 210029
| |
Collapse
|
26
|
Huang H, Lee MH, Liu K, Dong Z, Ryoo Z, Kim MO. PBK/TOPK: An Effective Drug Target with Diverse Therapeutic Potential. Cancers (Basel) 2021; 13:cancers13092232. [PMID: 34066486 PMCID: PMC8124186 DOI: 10.3390/cancers13092232] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Cancer is a major public health problem worldwide, and addressing its morbidity, mortality, and prevalence is the first step towards appropriate control measures. Over the past several decades, many pharmacologists have worked to identify anti-cancer targets and drug development strategies. Within this timeframe, many natural compounds have been developed to inhibit cancer growth by targeting kinases, such as AKT, AURKA, and TOPK. Kinase assays and computer modeling are considered to be effective and powerful tools for target screening, as they can predict physical interactions between small molecules and their bio-molecular targets. In the present review, we summarize the inhibitors and compounds that target TOPK and describe its role in cancer progression. The extensive body of research that has investigated the contribution of TOPK to cancer suggests that it may be a promising target for cancer therapy. Abstract T-lymphokine-activated killer cell-originated protein kinase (TOPK, also known as PDZ-binding kinase or PBK) plays a crucial role in cell cycle regulation and mitotic progression. Abnormal overexpression or activation of TOPK has been observed in many cancers, including colorectal cancer, triple-negative breast cancer, and melanoma, and it is associated with increased development, dissemination, and poor clinical outcomes and prognosis in cancer. Moreover, TOPK phosphorylates p38, JNK, ERK, and AKT, which are involved in many cellular functions, and participates in the activation of multiple signaling pathways related to MAPK, PI3K/PTEN/AKT, and NOTCH1; thus, the direct or indirect interactions of TOPK make it a highly attractive yet elusive target for cancer therapy. Small molecule inhibitors targeting TOPK have shown great therapeutic potential in the treatment of cancer both in vitro and in vivo, even in combination with chemotherapy or radiotherapy. Therefore, targeting TOPK could be an important approach for cancer prevention and therapy. Thus, the purpose of the present review was to consider and analyze the role of TOPK as a drug target in cancer therapy and describe the recent findings related to its role in tumor development. Moreover, this review provides an overview of the current progress in the discovery and development of TOPK inhibitors, considering future clinical applications.
Collapse
Affiliation(s)
- Hai Huang
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
| | - Mee-Hyun Lee
- College of Korean Medicine, Dongshin University, Naju, Jeollanamdo 58245, Korea;
| | - Kangdong Liu
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zigang Dong
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Department of Pathophysiology, School of Basic Medical Sciences, The Academy of Medical Science, College of Medical, Zhengzhou University, Zhengzhou 450001, China
| | - Zeayoung Ryoo
- School of Life Science, Kyungpook National University, Daegu 41566, Korea
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| | - Myoung Ok Kim
- Department of Animal Science and Biotechnology, ITRD, Kyungpook National University, Sangju 37224, Korea;
- China-US (Henan) Hormel Cancer Institute, Zhengzhou 450008, China; (K.L.); (Z.D.)
- Correspondence: (Z.R.); (M.O.K.); Tel.: +82-54-530-1234 (M.O.K.)
| |
Collapse
|
27
|
Ma J, Xing B, Cao Y, He X, Bennett KE, Tong C, An C, Hojnacki T, Feng Z, Deng S, Ling S, Xie G, Wu Y, Ren Y, Yu M, Katona BW, Li H, Naji A, Hua X. Menin-regulated Pbk controls high fat diet-induced compensatory beta cell proliferation. EMBO Mol Med 2021; 13:e13524. [PMID: 33821572 PMCID: PMC8103087 DOI: 10.15252/emmm.202013524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022] Open
Abstract
Pancreatic beta cells undergo compensatory proliferation in the early phase of type 2 diabetes. While pathways such as FoxM1 are involved in regulating compensatory beta cell proliferation, given the lack of therapeutics effectively targeting beta cell proliferation, other targetable pathways need to be identified. Herein, we show that Pbk, a serine/threonine protein kinase, is essential for high fat diet (HFD)‐induced beta cell proliferation in vivo using a Pbk kinase deficiency knock‐in mouse model. Mechanistically, JunD recruits menin and HDAC3 complex to the Pbk promoter to reduce histone H3 acetylation, leading to epigenetic repression of Pbk expression. Moreover, menin inhibitor (MI) disrupts the menin–JunD interaction and augments Pbk transcription. Importantly, MI administration increases beta cell proliferation, ameliorating hyperglycemia, and impaired glucose tolerance (IGT) in HFD‐induced diabetic mice. Notably, Pbk is required for the MI‐induced beta cell proliferation and improvement of IGT. Together, these results demonstrate the repressive role of the menin/JunD/Pbk axis in regulating HFD‐induced compensatory beta cell proliferation and pharmacologically regulating this axis may serve as a novel strategy for type 2 diabetes therapy.
Collapse
Affiliation(s)
- Jian Ma
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bowen Xing
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yan Cao
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xin He
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Kate E Bennett
- Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Chao Tong
- Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiying An
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Taylor Hojnacki
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Zijie Feng
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunbin Deng
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
| | - Sunbin Ling
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Gengchen Xie
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yuan Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Yue Ren
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ming Yu
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bryson W Katona
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Division of Gastroenterology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Hongzhe Li
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ali Naji
- Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Xianxin Hua
- Department of Cancer Biology, Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Institute for Diabetes, Obesity, and Metabolism, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
28
|
Ma H, Han F, Yan X, Qi G, Li Y, Li R, Yan S, Yuan C, Song K, Kong B. PBK promotes aggressive phenotypes of cervical cancer through ERK/c-Myc signaling pathway. J Cell Physiol 2021; 236:2767-2781. [PMID: 33184870 DOI: 10.1002/jcp.30134] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 08/20/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Cervical cancer is the fourth most frequent cancer in women worldwide. PDZ-binding kinase (PBK) is proven to promote the malignant behaviors of various carcinomas. However, its functional roles and oncogenic mechanisms in cervical cancer are poorly understood. In this study, we reported that PBK was highly expressed in cervical cancer tissues. PBK promoted the proliferation, metastasis, and cisplatin resistance of cervical cancer cells. OTS514, a specific PBK inhibitor, could significantly suppress proliferation and metastasis of cervical cancer cells in vitro and in a xenograft model. Besides, OTS514 could enhance cisplatin-based chemosensitivity in cervical cancer cells. Mechanistically, PBK promoted the expression and stabilization of c-Myc through phosphorylating ERK1/2. OTS514 suppressed the phosphorylation of ERK1/2 and the transcriptional activity of c-Myc. Furthermore, inhibition of the ERK signal pathway by U0126 reversed the increased proliferation and metastasis induced by overexpression of PBK. Exogenous expression of c-Myc counteracted the decreased proliferation and metastasis evoked by knockdown of PBK. In conclusion, PBK promoted the malignant progression of cervical cancer through ERK/c-Myc signal pathway. PBK might be a promising molecular target for cervical cancer treatment.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Fang Han
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaohui Yan
- Department of Infectious Diseases, Binzhou People's Hospital, Binzhou, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Cell Biology, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Kun Song
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, China
- Department of Oncology, Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
29
|
Fu X, Zhao R, Yoon G, Shim JH, Choi BY, Yin F, Xu B, Laster KV, Liu K, Dong Z, Lee MH. 3-Deoxysappanchalcone Inhibits Skin Cancer Proliferation by Regulating T-Lymphokine-Activated Killer Cell-Originated Protein Kinase in vitro and in vivo. Front Cell Dev Biol 2021; 9:638174. [PMID: 33842463 PMCID: PMC8027363 DOI: 10.3389/fcell.2021.638174] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 02/16/2021] [Indexed: 12/12/2022] Open
Abstract
Background Skin cancer is one of the most commonly diagnosed cancers worldwide. The 5-year survival rate of the most aggressive late-stage skin cancer ranges between 20 and 30%. Thus, the discovery and investigation of novel target therapeutic agents that can effectively treat skin cancer is of the utmost importance. The T-lymphokine-activated killer cell-originated protein kinase (TOPK), which belongs to the serine-threonine kinase class of the mitogen-activated protein kinase kinase (MAPKK) family, is highly expressed and activated in skin cancer. The present study investigates the role of 3-deoxysappanchalcone (3-DSC), a plant-derived functional TOPK inhibitor, in suppressing skin cancer cell growth. Purpose In the context of skin cancer prevention and therapy, we clarify the effect and mechanism of 3-DSC on different types of skin cancer and solar-simulated light (SSL)-induced skin hyperplasia. Methods In an in vitro study, western blotting and in vitro kinase assays were utilized to determine the protein expression of TOPK and its activity, respectively. Pull-down assay with 3-DSC and TOPK (wild-type and T42A/N172 mutation) was performed to confirm the direct interaction between T42A/N172 amino acid sites of TOPK and 3-DSC. Cell proliferation and anchorage-independent cell growth assays were utilized to determine the effect of 3-DSC on cell growth. In an in vivo study, the thickness of skin and tumor size were measured in the acute SSL-induced inflammation mouse model or SK-MEL-2 cell-derived xenografts mouse model treated with 3-DSC. Immunohistochemistry analysis of tumors isolated from SK-MEL-2 cell-derived xenografts was performed to determine whether cell-based results observed upon 3-DSC treatment could be recapitulated in vivo. Results 3-DSC is able to inhibit cell proliferation in skin cancer cells in an anchorage-dependent and anchorage-independent manner by regulation of TOPK and its related signaling pathway in vitro. We also found that application of 3-DSC reduced acute SSL-induced murine skin hyperplasia. Additionally, we observed that 3-DSC decreased SK-MEL-2 cell-derived xenograft tumor growth through attenuating phosphorylation of TOPK and its downstream effectors including ERK, RSK, and c-Jun. Conclusions Our results suggest that 3-DSC may function in a chemopreventive and chemotherapeutic capacity by protecting against UV-induced skin hyperplasia and inhibiting tumor cell growth by attenuating TOPK signaling, respectively.
Collapse
Affiliation(s)
- Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Goo Yoon
- Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Jung-Hyun Shim
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Pharmacy, College of Pharmacy, Mokpo National University, Muan, South Korea
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Cheongju, South Korea
| | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,Department of Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Beibei Xu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,College of Korean Medicine, Dongshin University, Naju, South Korea
| |
Collapse
|
30
|
Yang Y, Wu ZX, Wang JQ, Teng QX, Lei ZN, Lusvarghi S, Ambudkar SV, Chen ZS, Yang DH. OTS964, a TOPK Inhibitor, Is Susceptible to ABCG2-Mediated Drug Resistance. Front Pharmacol 2021; 12:620874. [PMID: 33658942 PMCID: PMC7917255 DOI: 10.3389/fphar.2021.620874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/08/2021] [Indexed: 01/12/2023] Open
Abstract
OTS964 is a potent T-LAK cell-originated protein kinase (TOPK) inhibitor. Herein, we investigated the interaction of OTS964 and multidrug resistance (MDR)-associated ATP-binding cassette sub-family G member 2 (ABCG2). The cell viability assay indicated that the effect of OTS964 is limited in cancer drug-resistant and transfected cells overexpressing ABCG2. We found that the known ABCG2 transporter inhibitor has the ability to sensitize ABCG2-overexpressing cells to OTS964. In mechanism-based studies, OTS964 shows inhibitory effect on the efflux function mediated by ABCG2, and in turn, affects the pharmacokinetic profile of other ABCG2 substrate-drugs. Furthermore, OTS964 upregulates ABCG2 protein expression, resulting in enhanced resistance to ABCG2 substrate-drugs. The ATPase assay demonstrated that OTS964 stimulates ATPase activity of ABCG2 in a concentration-dependent manner. The computational molecular docking analysis combined with results from ATPase assay suggested that OTS964 interacts with drug-binding pocket of ABCG2 and has substrate-like behaviors. Thus, OTS964 is an MDR-susceptible agent due to its interactions with ABCG2, and overexpression of ABCG2 transporter may attenuate its therapeutic effect in cancer cells.
Collapse
Affiliation(s)
- Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Jing-Quan Wang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Qiu-Xu Teng
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Zi-Ning Lei
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Sabrina Lusvarghi
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Suresh V Ambudkar
- Laboratory of Cell Biology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, United States
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Dong-Hua Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| |
Collapse
|
31
|
PBK/TOPK: A Therapeutic Target Worthy of Attention. Cells 2021; 10:cells10020371. [PMID: 33670114 PMCID: PMC7916869 DOI: 10.3390/cells10020371] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/18/2022] Open
Abstract
Accumulating evidence supports the role of PDZ-binding kinase (PBK)/T-lymphokine-activated killer-cell-originated protein kinase (TOPK) in mitosis and cell-cycle progression of mitotically active cells, especially proliferative malignant cells. PBK/TOPK was confirmed to be associated with the development, progression, and metastasis of malignancies. Therefore, it is a potential therapeutic target in cancer therapy. Many studies have been conducted to explore the clinical applicability of potent PBK/TOPK inhibitors. However, PBK/TOPK has also been shown to be overexpressed in normal proliferative cells, including sperm and neural precursor cells in the subventricular zone of the adult brain, as well as under pathological conditions, such as ischemic tissues, including the heart, brain, and kidney, and plays important roles in their physiological functions, including proliferation and self-renewal. Thus, more research is warranted to further our understanding of PBK/TOPK inhibitors before we can consider their applicability in clinical practice. In this study, we first review the findings, general features, and signaling mechanisms involved in the regulation of mitosis and cell cycle. We then review the functions of PBK/TOPK in pathological conditions, including tumors and ischemic conditions in the heart, brain, and kidney. Finally, we summarize the advances in potent and selective inhibitors and describe the potential use of PBK/TOPK inhibitors in clinical settings.
Collapse
|
32
|
Wang MY, Qi B, Wang F, Lin ZR, Li MY, Yin WJ, Zhu YY, He L, Yu Y, Yang F, Liu JQ, Chen DP. PBK phosphorylates MSL1 to elicit epigenetic modulation of CD276 in nasopharyngeal carcinoma. Oncogenesis 2021; 10:9. [PMID: 33431797 PMCID: PMC7801519 DOI: 10.1038/s41389-020-00293-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/15/2022] Open
Abstract
CD276 (also known as B7-H3, an immune checkpoint molecule) is aberrantly overexpressed in many cancers. However, the upregulation mechanism and in particular, whether oncogenic signaling has a role, is unclear. Here we demonstrate that a pro-oncogenic kinase PBK, the expression of which is associated with immune infiltration in nasopharyngeal carcinoma (NPC), stimulates the expression of CD276 epigenetically. Mechanistically, PBK phosphorylates MSL1 and enhances the interaction between MSL1 and MSL2, MSL3, and KAT8, the components of the MSL complex. As a consequence, PBK promotes the enrichment of MSL complex on CD276 promoter, leading to the increased histone H4 K16 acetylation and the activation of CD276 transcription. In addition, we show that CD276 is highly upregulated and associated with immune infiltrating levels in NPC. Collectively, our findings describe a novel PBK/MSL1/CD276 signaling axis, which may play an important role in immune evasion of NPC and may be targeted for cancer immunotherapy.
Collapse
Affiliation(s)
- Meng-Yao Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Bin Qi
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Fang Wang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Zhi-Rui Lin
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, 510245, Guangzhou, China
| | - Ming-Yi Li
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Wen-Jing Yin
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Yan-Yi Zhu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Lu He
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Yi Yu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Fang Yang
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China
| | - Jin-Quan Liu
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China.
| | - Dong-Ping Chen
- Department of Radiation Oncology, Affiliated Cancer Hospital and Institute of Guangzhou Medical University, 510245, Guangzhou, China.
| |
Collapse
|
33
|
Zhu K, Cheng X, Wang S, Zhang H, Zhang Y, Wang X, Chen Y, Wu J. PBK/TOPK Inhibitor Suppresses the Progression of Prolactinomas. Front Endocrinol (Lausanne) 2021; 12:706909. [PMID: 35126305 PMCID: PMC8815076 DOI: 10.3389/fendo.2021.706909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 12/20/2021] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Prolactinoma is the most common type of pituitary tumors, and its resultant tumor occupying and hormone disturbance greatly damage the health of patients. In this study, we investigated a protein kinase-PDZ Binding Kinase (PBK)/T-LAK Cell-Originated Protein Kinase (TOPK) as a candidate protein regulating prolactin (PRL) secretion and tumor growth of prolactinomas. METHODS Downloaded prolactinoma transcriptome dataset from Gene Expression Omnibus (GEO) database, and screened differentially expressed genes (DEGs) between normal pituitary tissues and prolactinoma tissues. Then, Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs were performed, a protein-protein interaction (PPI) network was constructed and the hub genes were identified. After a literature search, TOPK was presumed as an candidate target regulating the prolactinoma. We found a specific inhibitor of TOPK to investigate its effects on the proliferation, migration, apoptosis and PRL secretion of pituitary tumor cells. Finally, the regulation of TOPK inhibitor on its downstream target-p38 Mitogen Activated Protein Kinase (p38 MAPK) was detected to explore the potential mechanism. RESULTS A total of 361 DEGs were identified, and 20 hub genes were screened out. TOPK inhibitor HI-TOPK-032 could suppress the proliferation & migration and induce apoptosis of pituitary tumor cells in vitro, and reduce PRL secretion and tumor growth in vivo. HI-TOPK-032 also inhibited the phosphorylation level of the downstream target p38 MAPK, suggesting that TOPK inhibitors regulate the development of prolactinoma by mediating p38 MAPK. CONCLUSION Our study of identification and functional validation of TOPK suggests that this candidate can be a promising molecular target for prolactinoma treatment.
Collapse
Affiliation(s)
- Kejing Zhu
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
- School of Medicine, Xiangyang Polytechnic, Xiangyang, China
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xueting Cheng
- The Second Clinical College, Wuhan University, Wuhan, China
| | - Shuman Wang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Hong Zhang
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
| | - Yu Zhang
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Xiong Wang
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| | - Yonggang Chen
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| | - Jinhu Wu
- Department of Pharmacy, Tongren Hospital Affiliated to Wuhan University, The Third Hospital of Wuhan, Wuhan, China
- *Correspondence: Xiong Wang, ; Yonggang Chen, ; Jinhu Wu,
| |
Collapse
|
34
|
Ikeda Y, Sato S, Yabuno A, Shintani D, Ogasawara A, Miwa M, Zewde M, Miyamoto T, Fujiwara K, Nakamura Y, Hasegawa K. High expression of maternal embryonic leucine-zipper kinase (MELK) impacts clinical outcomes in patients with ovarian cancer and its inhibition suppresses ovarian cancer cells growth ex vivo. J Gynecol Oncol 2020; 31:e93. [PMID: 33078598 PMCID: PMC7593222 DOI: 10.3802/jgo.2020.31.e93] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 07/07/2020] [Accepted: 08/09/2020] [Indexed: 12/24/2022] Open
Abstract
Objective Maternal embryonic leucine zipper kinase (MELK) is receiving an attention as a therapeutic target in various types of cancers. In this study, we aimed to evaluate the prognostic significance of MELK expression in ovarian cancer using clinical samples, and assessed the efficacy of a small molecule MELK inhibitor, OTS167, using patient-derived ovarian cancer cells as well as cell lines. Methods Expression levels of MELK in 11 ovarian cancer cell lines were confirmed by western blotting. Inhibitory concentration of OTS167 was determined by colorimetric assay. MELK messenger RNA (mRNA) expression was evaluated in 228 ovarian cancer patients by quantitative polymerase chain reaction. Growth inhibition of OTS167 was also evaluated using freshly-isolated primary ovarian cancer cells including spheroid formation condition. Results MELK mRNA expression was significantly higher in ovarian cancer than in normal ovaries (p<0.001), and high MELK mRNA expression was observed in patients with advanced stage, positive ascites cytology and residual tumor size. Patients with high MELK mRNA expression showed shorter progression-free survival (p=0.001). Expression of MELK was also confirmed in 10 of 11 ovarian cancer cell lines tested, and the half maximal inhibitory concentration of MELK inhibitor, OTS167, ranged from 9.3 to 60 nM. Additionally, OTS167 showed significant growth inhibitory effect against patient-derived ovarian cancer cells, regardless of their tumor locations, histologic subtypes and stages. Conclusions We demonstrated MELK as both a prognostic marker and a therapeutic target for ovarian cancer using clinical ovarian cancer samples. MELK inhibition by OTS167 may be an effective approach to treat ovarian cancer patients.
Collapse
Affiliation(s)
- Yuji Ikeda
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan.,Department of Medicine, The University of Chicago, Chicago, IL, USA
| | - Sho Sato
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Akira Yabuno
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Daisuke Shintani
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Aiko Ogasawara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Maiko Miwa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Makda Zewde
- Department of Medicine, The University of Chicago, Chicago, IL, USA
| | | | - Keiichi Fujiwara
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Yusuke Nakamura
- Department of Medicine, The University of Chicago, Chicago, IL, USA.,Cancer Precision Medicine Center, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kosei Hasegawa
- Department of Gynecologic Oncology, Saitama Medical University International Medical Center, Hidaka, Japan.
| |
Collapse
|
35
|
Thanindratarn P, Dean DC, Nelson SD, Hornicek FJ, Duan Z. T-LAK cell-originated protein kinase (TOPK) is a Novel Prognostic and Therapeutic Target in Chordoma. Cell Prolif 2020; 53:e12901. [PMID: 32960500 PMCID: PMC7574876 DOI: 10.1111/cpr.12901] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/15/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
Objectives To assess the expression, prognostic value, and functionality of T‐lymphokine‐activated killer (T‐LAK) cell‐originated protein kinase (TOPK) in chordoma pathogenesis. Materials and Methods TOPK expression in chordoma was assessed via immunohistochemical staining of a tissue microarray (TMA) and correlated with patient clinicopathology. TOPK expression in chordoma cell lines and fresh patient tissues was then evaluated by Western blot. TOPK small interfering RNA (siRNA) and the specific inhibitor OTS514 were applied to determine the roles of TOPK in chordoma pathogenicity. The effect of TOPK expression on chordoma cell clonogenicity was also investigated using clonogenic assays. A 3D cell culture model was utilized to mimic in vivo environment to validate the effect of TOPK inhibition on chordoma cells. Results TOPK was highly expressed in 78.2% of the chordoma specimens in the TMA and all chordoma cell lines. High TOPK expression significantly correlated with metastasis, recurrence, disease status and shorter overall survival. Knockdown of TOPK with specific siRNA resulted in significantly decrease chordoma cell viability. Inhibition of TOPK with OTS514 significantly inhibited chordoma cell growth and proliferation, colony‐forming capacity and ex vivo spheroid growth. Conclusions High expression of TOPK is an important predictor of poor prognosis in chordoma. Inhibition of TOPK resulted in significantly decrease chordoma cell proliferation and increase apoptosis. Our results indicate TOPK as a novel prognostic biomarker and therapeutic target for chordoma.
Collapse
Affiliation(s)
- Pichaya Thanindratarn
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.,Department of Orthopedic Surgery, Chulabhorn hospital, HRH Princess Chulabhorn College of Medical Science, Chulabhorn Royal Academy, Bangkok, Thailand
| | - Dylan C Dean
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, University of California, Los Angeles, CA, USA
| | - Francis J Hornicek
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Zhenfeng Duan
- Department of Orthopedic Surgery, Sarcoma Biology Laboratory, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| |
Collapse
|
36
|
Chen D, Schnepp RW. RNA Binding Protein LIN28B: a prime time player shaping neuroblastoma aggression and metastasis. Oncoscience 2020; 7:52-56. [PMID: 32923517 PMCID: PMC7458334 DOI: 10.18632/oncoscience.512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/17/2020] [Indexed: 11/25/2022] Open
Affiliation(s)
- Dongdong Chen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA
| | - Robert W Schnepp
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
37
|
Ota A, Hanamura I, Karnan S, Inaguma S, Takei N, Lam VQ, Mizuno S, Kanasugi J, Wahiduzzaman M, Rahman ML, Hyodo T, Konishi H, Tsuzuki S, Ikeda H, Takami A, Hosokawa Y. Novel Interleukin-6 Inducible Gene PDZ-Binding Kinase Promotes Tumor Growth of Multiple Myeloma Cells. J Interferon Cytokine Res 2020; 40:389-405. [PMID: 32721246 PMCID: PMC7462034 DOI: 10.1089/jir.2020.0111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Multiple myeloma (MM) remains an intractable hematological malignancy, despite recent advances in anti-MM drugs. Here, we show that role of PDZ binding kinase (PBK) in MM tumor growth. We identified that interleukin-6 (IL-6) readily increases PBK expression. Kaplan–Meier analysis showed that the MM patients with higher expression of PBK have a significant shorter survival time compared with those with moderate/lower expression of PBK. Knockout of PBK dramatically suppressed in vivo tumor growth in MM cells, while genome editing of PBK changing from asparagine to serine substitution (rs3779620) slightly suppresses the tumor formation. Mechanistically, loss of PBK increased the number of apoptotic cells with concomitant decrease in the phosphorylation level of Stat3 as well as caspase activities. A novel PBK inhibitor OTS514 significantly decreased KMS-11-derived tumor growth. These findings highlight the novel oncogenic role of PBK in tumor growth of myeloma, and it might be a novel therapeutic target for the treatment of patients with MM.
Collapse
Affiliation(s)
- Akinobu Ota
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Ichiro Hanamura
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Sivasundaram Karnan
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shingo Inaguma
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Norio Takei
- Institute for Animal Experimentation, Faculty of Medicine, Hokkaido University, Sapporo, Japan
| | - Vu Quang Lam
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shohei Mizuno
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Jo Kanasugi
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Wahiduzzaman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Md Lutfur Rahman
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Toshinori Hyodo
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroyuki Konishi
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Shinobu Tsuzuki
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Hiroshi Ikeda
- Department of Pathology, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Akiyoshi Takami
- Division of Hematology, Department of Internal Medicine, Aichi Medical University School of Medicine, Nagakute, Japan
| | - Yoshitaka Hosokawa
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Japan
| |
Collapse
|
38
|
Chen D, Cox J, Annam J, Weingart M, Essien G, Rathi KS, Rokita JL, Khurana P, Cuya SM, Bosse KR, Pilgrim A, Li D, Shields C, Laur O, Maris JM, Schnepp RW. LIN28B promotes neuroblastoma metastasis and regulates PDZ binding kinase. Neoplasia 2020; 22:231-241. [PMID: 32339949 PMCID: PMC7186370 DOI: 10.1016/j.neo.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/28/2020] [Accepted: 04/01/2020] [Indexed: 12/17/2022]
Abstract
Neuroblastoma is an aggressive pediatric malignancy of the neural crest with suboptimal cure rates and a striking predilection for widespread metastases, underscoring the need to identify novel therapeutic vulnerabilities. We recently identified the RNA binding protein LIN28B as a driver in high-risk neuroblastoma and demonstrated it promotes oncogenic cell proliferation by coordinating a RAN-Aurora kinase A network. Here, we demonstrate that LIN28B influences another key hallmark of cancer, metastatic dissemination. Using a murine xenograft model of neuroblastoma dissemination, we show that LIN28B promotes metastasis. We demonstrate that this is in part due to the effects of LIN28B on self-renewal and migration, providing an understanding of how LIN28B shapes the metastatic phenotype. Our studies reveal that the let-7 family, which LIN28B inhibits, decreases self-renewal and migration. Next, we identify PDZ Binding Kinase (PBK) as a novel LIN28B target. PBK is a serine/threonine kinase that promotes the proliferation and self-renewal of neural stem cells and serves as an oncogenic driver in multiple aggressive malignancies. We demonstrate that PBK is both a novel direct target of let-7i and that MYCN regulates PBK expression, thus elucidating two oncogenic drivers that converge on PBK. Functionally, PBK promotes self-renewal and migration, phenocopying LIN28B. Taken together, our findings define a role for LIN28B in neuroblastoma metastasis and define the targetable kinase PBK as a potential novel vulnerability in metastatic neuroblastoma.
Collapse
Affiliation(s)
- Dongdong Chen
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Julie Cox
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jayabhargav Annam
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Melanie Weingart
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Grace Essien
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Komal S Rathi
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jo Lynne Rokita
- Center for Data-Driven Discovery in Biomedicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Bioinformatics and Health Informatics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Priya Khurana
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Selma M Cuya
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Kristopher R Bosse
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Adeiye Pilgrim
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Daisy Li
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | - Cara Shields
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA
| | | | - John M Maris
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert W Schnepp
- Aflac Cancer and Blood Disorders Center, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta, Atlanta, GA 30322, USA; Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
39
|
Zhao R, Choi BY, Wei L, Fredimoses M, Yin F, Fu X, Chen H, Liu K, Kundu JK, Dong Z, Lee MH. Acetylshikonin suppressed growth of colorectal tumour tissue and cells by inhibiting the intracellular kinase, T-lymphokine-activated killer cell-originated protein kinase. Br J Pharmacol 2020; 177:2303-2319. [PMID: 31985814 PMCID: PMC7174886 DOI: 10.1111/bph.14981] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 12/26/2019] [Accepted: 12/31/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND AND PURPOSE Overexpression or aberrant activation of the T-lymphokine-activated killer cell-originated protein kinase (TOPK) promotes gene expression and growth of solid tumours, implying that TOPK would be a rational target in developing novel anticancer drugs. Acetylshikonin, a diterpenoid compound isolated from Lithospermum erythrorhizon root, exerts a range of biological activities. Here we have investigated whether acetylshikonin, by acting as an inhibitor of TOPK, can attenuate the proliferation of colorectal cancer cells and the growth of patient-derived tumours, in vitro and in vivo. EXPERIMENTAL APPROACH Targets of acetylshikonin, were identified using kinase profiling analysis, kinetic/binding assay, and computational docking analysis and knock-down techniques. Effects of acetylshikonin on colorectal cancer growth and the underlying mechanisms were evaluated in cell proliferation assays, propidium iodide and annexin-V staining analyses and western blots. Patient-derived tumour xenografts in mice (PDX) and immunohistochemistry were used to assess anti-tumour effects of acetylshikonin. KEY RESULTS Acetylshikonin directly inhibited TOPK activity, interacting with the ATP-binding pocket of TOPK. Acetylshikonin suppressed cell proliferation by inducing cell cycle arrest at the G1 phase, stimulated apoptosis, and increased the expression of apoptotic biomarkers in colorectal cancer cell lines. Mechanistically, acetylshikonin diminished the phosphorylation and activation of TOPK signalling. Furthermore, acetylshikonin decreased the volume of PDX tumours and reduced the expression of TOPK signalling pathway in xenograft tumours. CONCLUSION AND IMPLICATIONS Acetylshikonin suppressed growth of colorectal cancer cells by attenuating TOPK signalling. Targeted inhibition of TOPK by acetylshikonin might be a promising new approach to the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Ran Zhao
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Bu Young Choi
- Department of Pharmaceutical Science and Engineering, School of Convergence Bioscience and Technology, Seowon University, Chungbuk, South Korea
| | - Lixiao Wei
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | | | - Fanxiang Yin
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Xiaorong Fu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Hanyong Chen
- The Hormel Institute, University of Minnesota, Austin, Minnesota
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| | - Joydeb Kumar Kundu
- Li Ka Shing Applied Virology Institute, University of Alberta, Edmonton, Alberta, Canada
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China
| | - Mee-Hyun Lee
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China.,China-US (Henan) Hormel Cancer Institute, Zhengzhou, China.,The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, China
| |
Collapse
|
40
|
Liposomal OTS964, a TOPK inhibitor: a simple method to estimate OTS964 association with liposomes that relies on enhanced OTS964 fluorescence when bound to albumin. Drug Deliv Transl Res 2020; 9:1082-1094. [PMID: 31209826 DOI: 10.1007/s13346-019-00651-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OTS964 is an inhibitor of T-lymphokine-activated killer cell-originated protein kinase (TOPK), a protein kinase important for mitosis and highly expressed in ovarian and lung cancers. This compound demonstrated potent anti-proliferative activity in a panel of cell lines positive for TOPK; however, when administered to mouse xenograft models, adverse hematopoietic toxicities were observed. To overcome this problem, OTS964 was encapsulated into liposomes and a liposomal formulation of OTS964 is now considered a lead candidate for clinical development. To support clinical development of this formulation, it is critically important to define assays that can easily distinguish between free and liposomal OTS964. Here, we develop a new assay to determine liposomal OTS964 encapsulation (percentage of drug associated with the liposomes) and OTS964 that is dissociated from the liposomes (percentage of drug released from liposomes) by monitoring the enhanced OTS964 fluorescence after its binding to albumin. The optical properties of OTS964 were investigated and three absorbance peaks were identified (235 nm, 291 nm, and 352 nm). Fluorescence was observed at 350 nm (excitation) and 470 nm (emission). Interestingly, the fluorescence of OTS964 increased 18-fold in the presence of serum proteins and more specifically albumin. This phenomenon was used to discriminate between the amounts of drug associated with the liposomes or released from the liposomes. Controls consisting of liposomal OTS964 permeabilized with saponins or octyl glucopyranoside served to confirm that drug release could be monitored by albumin-associated increases in fluorescence. The OTS964 liposomal formulation proved to be very stable with less than 10% release after 4 days in phosphate-buffered saline at 37 °C. The quantity of drug associated with the liposomal surface but not inside the liposomes could also be estimated using this approach. These studies present a novel approach to characterize liposomal release of OTS964, in real time and in a non-invasive manner while acquiring additional information about the spatial distribution of liposomal drug.
Collapse
|
41
|
TOPK promotes metastasis of esophageal squamous cell carcinoma by activating the Src/GSK3β/STAT3 signaling pathway via γ-catenin. BMC Cancer 2019; 19:1264. [PMID: 31888532 PMCID: PMC6937732 DOI: 10.1186/s12885-019-6453-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/11/2019] [Indexed: 11/29/2022] Open
Abstract
Background Esophageal squamous cell carcinoma (ESCC) is a fatal disease with poor prognosis. The predominant reason for ESCC-related death is distal metastasis. A comprehensive understanding of the molecular mechanism underlying metastasis is needed for improving patient prognosis. T-LAK cell-originated protein kinase (TOPK) is a MAPKK-like kinase, which plays a vital role in various physiological and pathophysiological processes. However, the role of TOPK in ESCC metastasis is unclear. Methods Tissue array was used to evaluate the correlation between TOPK expression and ESCC lymph node metastasis. Wound healing assay, transwell assay, and lung metastasis mice model were used to examine the role of TOPK in the migration of ESCC cells in vitro and in vivo. Protein kinase array, mass spectrometry (MS), and molecular modeling were used to examine the pathways and direct target proteins of TOPK that are involved in ESCC metastasis. Additionally, immunofluorescence and western blotting analyses were performed to verify these findings. Results The enhanced expression of TOPK was correlated with lymph node metastasis in the ESCC tissues. TOPK knockdown or treatment with the TOPK inhibitor (HI-TOPK-032) decreased the invasion and migration of ESCC cells in vitro. HI-TOPK-032 also inhibited the lung metastasis in ESCC cell xenograft in vivo model. Moreover, TOPK promoted the invasion of ESCC cells by activating the Src/GSK3β/STAT3 and ERK signaling pathways via γ-catenin. Conclusion The findings of this study reveal that TOPK is involved in ESCC metastasis and promoted the ESCC cell mobility by activating the Src/GSK3β/STAT3 and ERK signaling pathways. This indicated that TOPK may be a potential molecular therapeutic target for ESCC metastasis.
Collapse
|
42
|
Mao P, Bao G, Wang YC, Du CW, Yu X, Guo XY, Li RC, Wang MD. PDZ-Binding Kinase-Dependent Transcriptional Regulation of CCNB2 Promotes Tumorigenesis and Radio-Resistance in Glioblastoma. Transl Oncol 2019; 13:287-294. [PMID: 31874375 PMCID: PMC6931196 DOI: 10.1016/j.tranon.2019.09.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 09/25/2019] [Accepted: 09/25/2019] [Indexed: 01/06/2023] Open
Abstract
Increasing evidence has indicated that PDZ binding kinase (PBK) promotes proliferation, invasion, and therapeutic resistance in a variety of cancer types. However, the physiological function and therapy-resistant role of PBK in GBM remain underexplored. In this study, PBK was identified as one of the most therapy-resistant genes with significantly elevated expression level in GBM. Moreover, the high expression level of PBK was essential for GBM tumorigenesis and radio-resistance both in vitro and in vivo. Clinically, aberrant activation of PBK was correlated with poor clinical prognosis. In addition, inhibition of PBK dramatically enhanced the efficacy of radiation therapy in GBM cells. Mechanically, PBK-dependent transcriptional regulation of CCNB2 was critical for tumorigenesis and radio-resistance in GBM cells. Collectively, PBK promotes tumorigenesis and radio-resistance in GBM and may serve as a novel therapeutic target for GBM treatment.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China.
| | - Gang Bao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Yi-Chang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Xiao-Ye Guo
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Rui-Chun Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710061, China
| |
Collapse
|
43
|
Pirovano G, Roberts S, Reiner T. TOPKi-NBD: a fluorescent small molecule for tumor imaging. Eur J Nucl Med Mol Imaging 2019; 47:1003-1010. [PMID: 31734783 DOI: 10.1007/s00259-019-04608-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 11/07/2019] [Indexed: 10/25/2022]
Abstract
PURPOSE OTS514 is a highly specific inhibitor targeting lymphokine-activated killer T cell-originated protein kinase (TOPK). A fluorescently labeled TOPK inhibitor could be used for tumor delineation or intraoperative imaging, potentially improving patient care. METHODS Fluorescently labeled OTS514 was obtained by conjugating the fluorescent small molecule NBD to the TOPK inhibitor. HCT116 colorectal cancer cells were used to generate tumors in NSG mice for in vivo studies. Images were generated in vitro using confocal microscopy and ex vivo using an IVIS Spectrum. RESULTS OTS514 was successfully conjugated to a fluorescent sensor and validated in vitro, in vivo, and ex vivo. The labeling reaction led to TOPKi-NBD with 67% yield and 97% purity after purification. We were able to test binding properties of TOPKi-NBD to its target, TOPK, and compared them to the precursor inhibitor. EC50s showed similar target affinities for TOPKi-NBD and the unlabeled OTS514. TOPKi-NBD showed specific tumor uptake after systemic administration and was microscopically detectable inside cancer cells ex vivo. Blocking controls performed with an excess of the unlabeled OTS514 confirmed specificity of the compound. Overall, the results represent a first step toward the development of a class of TOPK-specific fluorescent inhibitors for in vivo imaging and tumor delineation. CONCLUSIONS TOPK has the potential to be a new molecular target for cancer-specific imaging in a large variety of tumors. This could lead to broad applications in vitro and in vivo.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA. .,Department of Radiology, Weill Cornell Medical College, 1300 York Avenue, New York, NY, 10065, USA. .,Chemical Biology Program, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
| |
Collapse
|
44
|
Stefka AT, Johnson D, Rosebeck S, Park JH, Nakamura Y, Jakubowiak AJ. Potent anti-myeloma activity of the TOPK inhibitor OTS514 in pre-clinical models. Cancer Med 2019; 9:324-334. [PMID: 31714026 PMCID: PMC6943155 DOI: 10.1002/cam4.2695] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/30/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022] Open
Abstract
Multiple myeloma (MM) continues to be considered incurable, necessitating new drug discovery. The mitotic kinase T‐LAK cell‐originated protein kinase/PDZ‐binding kinase (TOPK/PBK) is associated with proliferation of tumor cells, maintenance of cancer stem cells, and poor patient prognosis in many cancers. In this report, we demonstrate potent anti‐myeloma effects of the TOPK inhibitor OTS514 for the first time. OTS514 induces cell cycle arrest and apoptosis at nanomolar concentrations in a series of human myeloma cell lines (HMCL) and prevents outgrowth of a putative CD138+ stem cell population from MM patient‐derived peripheral blood mononuclear cells. In bone marrow cells from MM patients, OTS514 treatment exhibited preferential killing of the malignant CD138+ plasma cells compared with the CD138− compartment. In an aggressive mouse xenograft model, OTS964 given orally at 100 mg/kg 5 days per week was well tolerated and reduced tumor size by 48%‐81% compared to control depending on the initial graft size. FOXO3 and its transcriptional targets CDKN1A (p21) and CDKN1B (p27) were elevated and apoptosis was induced with OTS514 treatment of HMCLs. TOPK inhibition also induced loss of FOXM1 and disrupted AKT, p38 MAPK, and NF‐κB signaling. The effects of OTS514 were independent of p53 mutation or deletion status. Combination treatment of HMCLs with OTS514 and lenalidomide produced synergistic effects, providing a rationale for the evaluation of TOPK inhibition in existing myeloma treatment regimens.
Collapse
Affiliation(s)
- Andrew T Stefka
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - David Johnson
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Shaun Rosebeck
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jae-Hyun Park
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Yusuke Nakamura
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | |
Collapse
|
45
|
Lin A, Giuliano CJ, Palladino A, John KM, Abramowicz C, Yuan ML, Sausville EL, Lukow DA, Liu L, Chait AR, Galluzzo ZC, Tucker C, Sheltzer JM. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci Transl Med 2019; 11:eaaw8412. [PMID: 31511426 PMCID: PMC7717492 DOI: 10.1126/scitranslmed.aaw8412] [Citation(s) in RCA: 389] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 06/19/2019] [Accepted: 08/01/2019] [Indexed: 12/14/2022]
Abstract
Ninety-seven percent of drug-indication pairs that are tested in clinical trials in oncology never advance to receive U.S. Food and Drug Administration approval. While lack of efficacy and dose-limiting toxicities are the most common causes of trial failure, the reason(s) why so many new drugs encounter these problems is not well understood. Using CRISPR-Cas9 mutagenesis, we investigated a set of cancer drugs and drug targets in various stages of clinical testing. We show that-contrary to previous reports obtained predominantly with RNA interference and small-molecule inhibitors-the proteins ostensibly targeted by these drugs are nonessential for cancer cell proliferation. Moreover, the efficacy of each drug that we tested was unaffected by the loss of its putative target, indicating that these compounds kill cells via off-target effects. By applying a genetic target-deconvolution strategy, we found that the mischaracterized anticancer agent OTS964 is actually a potent inhibitor of the cyclin-dependent kinase CDK11 and that multiple cancer types are addicted to CDK11 expression. We suggest that stringent genetic validation of the mechanism of action of cancer drugs in the preclinical setting may decrease the number of therapies tested in human patients that fail to provide any clinical benefit.
Collapse
Affiliation(s)
- Ann Lin
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Christopher J Giuliano
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Ann Palladino
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Kristen M John
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Hofstra University, Hempstead, NY 11549, USA
| | - Connor Abramowicz
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- New York Institute of Technology, Glen Head, NY 11545, USA
| | - Monet Lou Yuan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Syosset High School, Syosset, NY 11791, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Luwei Liu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | - Clara Tucker
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
- Stony Brook University, Stony Brook, NY 11794, USA
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
46
|
Pirovano G, Roberts S, Brand C, Donabedian PL, Mason C, de Souza PD, Higgins GS, Reiner T. [ 18F]FE-OTS964: a Small Molecule Targeting TOPK for In Vivo PET Imaging in a Glioblastoma Xenograft Model. Mol Imaging Biol 2019; 21:705-712. [PMID: 30357568 PMCID: PMC6482100 DOI: 10.1007/s11307-018-1288-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE Lymphokine-activated killer T cell-originated protein kinase (TOPK) is a fairly new cancer biomarker with great potential for clinical applications. The labeling of a TOPK inhibitor with F-18 can be exploited for positron emission tomography (PET) imaging allowing more accurate patient identification, stratification, and disease monitoring. PROCEDURES [18F]FE-OTS964 was produced starting from OTS964, a preclinical drug which specifically binds to TOPK, and using a two-step procedure with [18F]fluoroethyl p-toluenesulfonate as a prosthetic group. Tumors were generated in NSG mice by subcutaneous injection of U87 glioblastoma cells. Animals were injected with [18F]FE-OTS964 and PET imaging and ex vivo biodistribution analysis was carried out. RESULTS [18F]FE-OTS964 was successfully synthesized and validated in vivo as a PET imaging agent. The labeling reaction led to 15.1 ± 7.5 % radiochemical yield, 99 % radiochemical purity, and high specific activity. Chemical identity of the radiotracer was confirmed by co-elution on an analytical HPLC with a cold-labeled standard. In vivo PET imaging and biodistribution analysis showed tumor uptake of 3.06 ± 0.30 %ID/cc, which was reduced in animals co-injected with excess blocking dose of OTS541 to 1.40 ± 0.42 %ID/cc. CONCLUSIONS [18F]FE-OTS964 is the first TOPK inhibitor for imaging purposes and may prove useful in the continued investigation of the pharmacology of TOPK inhibitors and the biology of TOPK in cancer patients.
Collapse
Affiliation(s)
- Giacomo Pirovano
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Sheryl Roberts
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christian Brand
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Patrick L Donabedian
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Christian Mason
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Paula Demétrio de Souza
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA
| | - Geoff S Higgins
- CRUK/MRC Oxford Institute for Radiation Oncology, University of Oxford, Oxford, UK
| | - Thomas Reiner
- Department of Radiology, Memorial Sloan-Kettering Cancer Center, 1275 York Avenue, New York, NY, 10065, USA.
- Department of Radiology, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
47
|
Yang QX, Zhong S, He L, Jia XJ, Tang H, Cheng ST, Ren JH, Yu HB, Zhou L, Zhou HZ, Ren F, Hu ZW, Gong R, Huang AL, Chen J. PBK overexpression promotes metastasis of hepatocellular carcinoma via activating ETV4-uPAR signaling pathway. Cancer Lett 2019; 452:90-102. [PMID: 30914208 DOI: 10.1016/j.canlet.2019.03.028] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 02/28/2019] [Accepted: 03/20/2019] [Indexed: 01/04/2023]
Abstract
Invasion and metastasis are the predominant causes of lethal outcomes in patients with hepatocellular carcinoma (HCC). However, the molecular mechanism underlying the invasive or metastatic process are still insufficiently understood. Here, we first integrated several public databases and identified a novel protein kinase, PDZ-binding kinase (PBK) that was frequently upregulated and correlated with poor prognosis in patients with HCC. Gain- or loss-of-function analysis revealed that PBK promoted migration and invasion of HCC cells both in vitro and in vivo. Mechanistically, PBK enhanced uPAR expression by activating its promoter activity. Chromatin immunoprecipitation (ChIP) assay showed that ETV4 directly bound to the core region of uPAR promoter while PBK could enhance the binding of ETV4 to uPAR promoter. In orthotopic mouse model, PBK knockdown markedly inhibited the lung metastasis of HCC cells, while this effect was significantly restored by uPAR overexpression. Finally, there was a positive correlation between PBK and uPAR, ETV4 and uPAR in HCC clinical samples. Collectively, these findings revealed that PBK acted as a crucial kinase by promoting invasion and migration via the ETV4-uPAR signaling pathway, and it therefore could be a promising diagnostic biomarker and therapeutic target for HCC metastasis.
Collapse
Affiliation(s)
- Qiu-Xia Yang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Shan Zhong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Lin He
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xiao-Jiong Jia
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hua Tang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Sheng-Tao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ji-Hua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hai-Bo Yu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Li Zhou
- Department of Epidemiology, School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hong-Zhong Zhou
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Fang Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhong-Wen Hu
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Rui Gong
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ai-Long Huang
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases designated by the Chinese Ministry of Education, Institute for Viral Hepatitis, Department of Infectious Diseases, The Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
48
|
Abstract
BACKGROUND The prognostic significance of PBK/TOPK overexpression in solid tumors remains controversial. Therefore, we carried out a meta-analysis to evaluate the impact of PBK/TOPK overexpression in solid tumors on patients' overall survival (OS) and disease-free survival (DFS). METHODS Relevant articles were identified through searching the PubMed, Embase and Web of Science up to May 2017. The pooled hazard ratio (HR) with 95% confidence interval (CI) was used to estimate the effects. RESULTS In this meta-analysis, 12 studies involving 1571 participants were included, PBK/TOPK overexpression was significantly associated with poor OS (pooled HR = 1.91, 95%CI = 1.22-3.00, P = .005) and short DFS (pooled HR = 1.95, 95%CI = 1.46-2.58, P < .001). CONCLUSIONS PBK/TOPK overexpression was associated with poor survival in human solid tumors which may be a valuable prognosis biomarker and a potential therapeutic target of solid tumors.
Collapse
|
49
|
Ma H, Li Y, Wang X, Wu H, Qi G, Li R, Yang N, Gao M, Yan S, Yuan C, Kong B. PBK, targeted by EVI1, promotes metastasis and confers cisplatin resistance through inducing autophagy in high-grade serous ovarian carcinoma. Cell Death Dis 2019; 10:166. [PMID: 30778048 PMCID: PMC6379381 DOI: 10.1038/s41419-019-1415-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/17/2019] [Accepted: 02/01/2019] [Indexed: 01/21/2023]
Abstract
High-grade serous ovarian carcinoma (HGSOC) is the most lethal type of gynecologic malignancy. Chemoresistance is the main reason for the poor prognosis of HGSOC. PDZ-binding kinase (PBK) promotes the malignant progression of various carcinomas. However, the roles and clinical significance of PBK in HGSOC remain unclear. Here, we reported that PBK was overexpressed in HGSOC tissues and cell lines. High PBK expression was associated with a poor prognosis, metastasis, and cisplatin resistance of HGSOC. Overexpression of PBK promoted autophagy and enhanced cisplatin resistance via the ERK/mTOR signaling pathway. Further study showed that inhibition of autophagy by chloroquine or bafilomycin A1 reversed PBK-induced cisplatin resistance. Overexpression of PBK decreased ovarian cancer responsiveness to cisplatin treatment through inducing autophagy in vivo. We also demonstrated that the PBK inhibitor OTS514 augmented the growth inhibition effect of cisplatin in vitro and in vivo. Moreover, ecotropic viral integration site-1 (EVI1) could regulate PBK expression through directly targeting the PBK promoter region. In conclusion, high PBK expression was correlated with a poor prognosis, metastasis, and cisplatin resistance through promoting autophagy in HGSOC. PBK might be a promising target for the early diagnosis and individual treatment of ovarian cancer.
Collapse
Affiliation(s)
- Hanlin Ma
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Yingwei Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Institute of Oncology, School of Medicine, Shandong University, 250012, Jinan, China
| | - Xiangxiang Wang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Huan Wu
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Gonghua Qi
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Rongrong Li
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Ning Yang
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Min Gao
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Shi Yan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Cunzhong Yuan
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China.,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China
| | - Beihua Kong
- Department of Obstetrics and Gynecology, Qilu Hospital, Shandong University, 250012, Jinan, China. .,Gynecologic Oncology Key Laboratory of Shandong Province, Qilu Hospital, Shandong University, 250012, Jinan, China.
| |
Collapse
|
50
|
Zhang Y, Yang X, Wang R, Zhang X. Prognostic Value of PDZ-Binding Kinase/T-LAK Cell-Originated Protein Kinase (PBK/TOPK) in Patients with Cancer. J Cancer 2019; 10:131-137. [PMID: 30662533 PMCID: PMC6329853 DOI: 10.7150/jca.28216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Accepted: 10/24/2018] [Indexed: 01/01/2023] Open
Abstract
Background: PDZ-binding kinase/T-LAK cell-originated protein kinase (PBK/TOPK) plays a critical role in tumorigenesis and cancer progression. However, the prognostic roles in cancer patients are inconsistent or even controversial. Therefore, we performed a meta-analysis to investigate the prognostic value of PBK/TOPK in cancers. Methods: Literature search was performed using several online databases (PubMed, Web of Science, Embase, Cochrane Library, and Google Scholar, National Knowledge Infrastructure and Wanfang) for eligible articles published up to May 1, 2018. The relationship between PBK/TOPK expression and prognosis in cancers was investigated by using pooled hazard ratios (HRs) with 95% confidence intervals (CIs) through STATA 12.0 software. Results: Totally 20 eligible studies were included in this meta-analysis. The pooled results showed that carriers with high protein expression of PBK/TOPK were significantly associated with poor OS (HR: 1.69, 95% CI: 1.33-2.04) in various cancers, and patients with increased PBK/TOPK protein expression were significantly correlated with inferior RFS (HR: 1.63, 95% CI: 1.02-2.24) and short DFS (HR: 1.69, 95% CI: 1.16-2.23). Conclusions: The findings suggest that PBK/TOPK protein expression might serve as a prognostic tumor marker in cancers.
Collapse
Affiliation(s)
- Yi Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xianjin Yang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Rong Wang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| | - Xu Zhang
- Department of General Surgery, the First People's Hospital of Neijiang, Neijiang 641000, Sichuan Province, P. R. China
| |
Collapse
|