1
|
Yu S, Park MS, Kim GY, Cho J, Jung CW, Kim HJ, Kim HY. Rare Case of Germline GATA2-Deficiency With Merkel Cell Carcinoma and Acute Myeloid Leukemia. Cancer Rep (Hoboken) 2024; 7:e70068. [PMID: 39614632 DOI: 10.1002/cnr2.70068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 10/13/2024] [Accepted: 11/12/2024] [Indexed: 12/01/2024] Open
Abstract
BACKGROUND Germline GATA2-deficiency usually manifests as immunodeficiencies and myeloid neoplasms and sometimes with dermatological diseases, including warts, panniculitis, and skin cancers. CASE We report a 36-year-old woman with germline GATA2-deficiency who developed Merkel cell carcinoma followed by acute myeloid leukemia. Molecular analysis revealed a germline GATA2 S447R variant, not reported from the previous reported case, suggesting a potential association with Merkel cell carcinoma. CONCLUSION This case broadens the spectrum of solid cancers linked to GATA2-deficiency, emphasizing the need for considering primary immunodeficiency in young patients with myeloid neoplasms or rare skin cancers, facilitating early detection and treatments.
Collapse
MESH Headings
- Humans
- Carcinoma, Merkel Cell/genetics
- Carcinoma, Merkel Cell/pathology
- Carcinoma, Merkel Cell/diagnosis
- Female
- Adult
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/complications
- Skin Neoplasms/genetics
- Skin Neoplasms/pathology
- Skin Neoplasms/diagnosis
- Germ-Line Mutation
- GATA2 Transcription Factor/genetics
- GATA2 Transcription Factor/deficiency
- GATA2 Deficiency/genetics
- GATA2 Deficiency/complications
- GATA2 Deficiency/diagnosis
- GATA2 Deficiency/pathology
Collapse
Affiliation(s)
- SooHo Yu
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Min-Seung Park
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Gyu Yeong Kim
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Junhun Cho
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Chul Won Jung
- Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hee-Jin Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun-Young Kim
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| |
Collapse
|
2
|
Abstract
Merkel cell carcinoma (MCC) is a rare cutaneous neuroendocrine tumor with a poor five-year survival rate. Yearly cases have risen nearly 350% since the early 1980s, and these are predicted to increase as the overall US population ages. MCC of the eyelid is uncommon and can be misdiagnosed as other benign inflammatory and neoplastic eyelid disorders. Although MCC of the head and neck is often more aggressive than it is at other sites, eyelid MCC shows a lower disease-specific mortality rate. A biopsy is essential for accurate diagnosis, including an immunohistochemical panel of CK20 and TTF-1, although other markers may be necessary. Staging can be assessed clinically through physical examination findings and imaging and/or pathologically with sentinel lymph node biopsy or fine-needle aspiration. Pathologic staging more accurately predicts the prognosis. Eyelid MCC treatments include Mohs micrographic surgery to allow for complete clearance and adequate reconstruction of lost tissue, followed by adjuvant radiotherapy. In advanced disease, immunotherapies are preferred over traditional chemotherapy and are a subject of ongoing research.
Collapse
Affiliation(s)
- Rodolfo Valentini
- University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Jane M Grant-Kels
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA; Department of Dermatology, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Madina Falcone
- Department of Surgery, Division of Ophthalmology, University of Connecticut School of Medicine, Farmington, Connecticut, USA
| | - Campbell L Stewart
- Department of Dermatology, University of Connecticut School of Medicine, Farmington, Connecticut, USA.
| |
Collapse
|
3
|
Nicol JTJ, Mazzoni E, Iaquinta MR, De Pace R, Gaboriaud P, Maximova N, Cason C, De Martino E, Mazziotta C, Coursaget P, Touzé A, Boz V, Comar M, Tognon M, Martini F. Prevalence of IgG antibodies against Malawi polyomavirus in patients with autoimmune diseases and lymphoproliferative disorders subjected to bone marrow transplantation. Front Immunol 2024; 14:1293313. [PMID: 38299147 PMCID: PMC10827882 DOI: 10.3389/fimmu.2023.1293313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/27/2023] [Indexed: 02/02/2024] Open
Abstract
Introduction Human polyomaviruses (HPyVs) cause persistent/latent infections in a large fraction of the population. HPyV infections may cause severe diseases in immunocompromised patients. Malawi polyomavirus (MWPyV) is the 10th discovered human polyomavirus (HPyV 10). MWPyV was found in stool samples of healthy children. So far, the few investigations carried out on HPyV 10 did not find an association with human disease. Methods In this study, to verify the putative association between MWPyV and human diseases, MWPyV seroprevalence was investigated in patients affected by i) lymphoproliferative disorders (LPDs) and ii) immune system disorders, i.e., autoimmune diseases (ADs), and in iii) healthy subjects. An indirect ELISA, employing virus-like particles (VLPs) to detect serum IgG antibodies against MWPyV/HPyV 10, was carried out. The study also revealed the prevalence of another polyomavirus, Merkel cell polyomavirus (MCPyV). Results Sera from patients with distinct autoimmune diseases (n = 44; mean age 20 years) had a prevalence of MWPyV antibodies of 68%, while in patients with lymphoproliferative disorders (n = 15; mean age 14 years), subjected to bone marrow transplantation, the prevalence was 47%. In healthy subjects (n = 66; mean age 13 years), the prevalence of MWPyV antibodies was 67%. Our immunological investigation indicates that MWPyV/HPyV 10 seroconversion occurs early in life and MWPyV/HPyV 10 appears to be another polyomavirus ubiquitous in the human population. A significantly lower MWPyV antibody reactivity together with a lower immunological profile was detected in the sera of LPD patients compared with HS2 (*p < 0.05) (Fisher's exact test). LPD and AD patients have a similar MCPyV seroprevalence compared with healthy subjects. Discussion MWPyV seroprevalence indicates that this HPyV is not associated with lymphoproliferative and autoimmune diseases. However, the ability to produce high levels of antibodies against MWPyV appears to be impaired in patients with lymphoproliferative disorders. Immunological investigations indicate that MWPyV seroconversion occurs early in life. MCPyV appears to be a ubiquitous polyomavirus, like other HPyVs, in the human population.
Collapse
Affiliation(s)
- Jérôme T. J. Nicol
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | | | - Raffaella De Pace
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Natalia Maximova
- Onco-Hematology Division, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Carolina Cason
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Eleonora De Martino
- Laboratory of Pediatric Immunology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pierre Coursaget
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Antoine Touzé
- UMR 1282 ISP Team Biologie des Infections à Polyomavirus, Faculty of Pharmacy, University of Tours, Tours, France
| | - Valentina Boz
- Department of Pediatrics, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
| | - Manola Comar
- Department of Advanced Translational Microbiology, Institute for Maternal and Child Health, IRCCS “Burlo Garofolo”, Trieste, Italy
- Department of Medical Sciences, University of Trieste, Trieste, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| |
Collapse
|
4
|
Mazziotta C, Lanzillotti C, Govoni M, Falzoni S, Tramarin ML, Mazzoni E, Tognon M, Martini F, Rotondo JC. Immunological evidence of an early seroconversion to oncogenic Merkel cell polyomavirus in healthy children and young adults. Immunology 2023; 168:671-683. [PMID: 36321356 DOI: 10.1111/imm.13601] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/30/2022] [Indexed: 11/05/2022] Open
Abstract
Oncogenic Merkel cell polyomavirus (MCPyV) provokes a widespread and asymptomatic infection in humans. Herein, sera from healthy children and young adults (HC, n = 344) aged 0-20 years old were evaluated for anti-MCPyV immunoglobulin G (IgG) and IgM antibodies employing a recently developed immunoassay. Serum MCPyV IgG data from healthy subjects (HS, n = 510) and elderlies (ES, n = 226), aged 21-65/66-100 years old, from our previous studies, were included. The anti-MCPyV IgG and IgM rates in HC sera were 40.7% and 29.7%, respectively. A lower prevalence of anti-MCPyV IgGs was found in HC aged 0-5 years old (13%) compared to 6-10 (52.3%), 11-15 (60.5%) and 16-20 years old (61.6%) cohorts. Age-stratified HCs exhibited similar anti-MCPyV IgM rates (27.9%-32.9%). Serological profiles indicated that anti-MCPyV IgGs and IgMs had low optical densities (ODs) during the first years of life, while IgM ODs appeared to decrease throughout young adulthood. A lower anti-MCPyV IgGs rate was found in HC (40.7%) than HS (61.8%) and ES (63.7%). Upon the 5-years range age-stratification, a lower anti-MCPyV IgGs rate was found in the younger HC cohort aged 0-5 years old compared to the remaining older HC/HS/ES cohorts (52.3%-72%). The younger HC cohort exhibited the lowest anti-MCPyV IgG ODs than the older cohorts. Low anti-MCPyV IgMs rates and ODs were found in the 21-25 (17.5%) and 26-30 (7.7%) years old cohorts. Our data indicate that, upon an early-in-life seroconversion, the seropositivity for oncogenic MCPyV peaks in late childhood/young adulthood and remains at high prevalence and relatively stable throughout life.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, Rheumatology Unit, University of Ferrara, Ferrara, Italy
| | - Simonetta Falzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elisa Mazzoni
- Department of Chemistry, Pharmaceutical and Agricultural Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine - Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
5
|
Kandeel M. Oncogenic Viruses-Encoded microRNAs and Their Role in the Progression of Cancer: Emerging Targets for Antiviral and Anticancer Therapies. Pharmaceuticals (Basel) 2023; 16:ph16040485. [PMID: 37111242 PMCID: PMC10146417 DOI: 10.3390/ph16040485] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/18/2023] [Accepted: 03/21/2023] [Indexed: 04/29/2023] Open
Abstract
Approximately 20% of all cases of human cancer are caused by viral infections. Although a great number of viruses are capable of causing a wide range of tumors in animals, only seven of these viruses have been linked to human malignancies and are presently classified as oncogenic viruses. These include the Epstein-Barr virus (EBV), human papillomavirus (HPV), hepatitis B virus (HBV), hepatitis C virus (HCV), Merkel cell polyomavirus (MCPyV), human herpesvirus 8 (HHV8), and human T-cell lymphotropic virus type 1 (HTLV-1). Some other viruses, such as the human immunodeficiency virus (HIV), are associated with highly oncogenic activities. It is possible that virally encoded microRNAs (miRNAs), which are ideal non-immunogenic tools for viruses, play a significant role in carcinogenic processes. Both virus-derived microRNAs (v-miRNAs) and host-derived microRNAs (host miRNAs) can influence the expression of various host-derived and virus-derived genes. The current literature review begins with an explanation of how viral infections might exert their oncogenic properties in human neoplasms, and then goes on to discuss the impact of diverse viral infections on the advancement of several types of malignancies via the expression of v-miRNAs. Finally, the role of new anti-oncoviral therapies that could target these neoplasms is discussed.
Collapse
Affiliation(s)
- Mahmoud Kandeel
- Department of Biomedical Sciences, College of Veterinary Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
6
|
Evaluation of Specific Cellular and Humoral Immune Response to Toxoplasma gondii in Patients with Autoimmune Rheumatic Diseases Immunomodulated Due to the Use of TNF Blockers. Biomedicines 2023; 11:biomedicines11030930. [PMID: 36979909 PMCID: PMC10046324 DOI: 10.3390/biomedicines11030930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/19/2023] Open
Abstract
(1) Background: TNF antagonists have been used to treat autoimmune diseases (AD). However, during the chronic phase of toxoplasmosis, TNF-α and TNFR play a significant role in maintaining disease resistance and latency. Several studies have demonstrated the risk of latent infections’ reactivation in patients infected with toxoplasmosis. Our objective was to verify whether patients with autoimmune rheumatic diseases, who use TNF antagonists and/or synthetic drugs and had previous contact with Toxoplasma gondii (IgG+), present any indication of an increased risk of toxoplasmosis reactivation. (2) Methods: Blood samples were collected, and peripheral blood mononuclear cells (PBMCs) were evaluated after stimulation with antigens of Toxoplasma gondii, with anti-CD3/anti-CD28 or without stimulus, at 48 and 96 h. CD69+, CD28+, and PD-1 stains were evaluated, in addition to intracellular expression of IFN-γ, IL-17, and IL-10 by CD4+ and the presence of regulatory CD4+ T cells by labeling CD25+, FOXP3, and LAP. The cytokines IL-2, IL-4, IL-6, IL-10, IFN-γ, TNF-α, and IL-17 were measured in the culture supernatant after 96 h. Serology for IgG and IgG1 was evaluated. (3) Results: There were no differences in the levels of IgG and IgG1 between the groups, but the IgG1 avidity was reduced in the immunobiological group compared to the control group. All groups exhibited a significant correlation between IgG and IgG1 positivity. CD4+ T lymphocytes expressing PD-1 were increased in individuals suffering from autoimmune rheumatic diseases and using disease-modifying antirheumatic drugs. In addition, treatment with TNF blockers did not seem to influence the populations of regulatory T cells and did not interfere with the expression of the cytokines IFN-γ, IL-17, and IL-10 by CD4+ cells or the production of cytokines by PBMCs from patients with AD. (4) Conclusions: This study presents evidence that the use of TNF-α blockers did not promote an immunological imbalance to the extent of impairing the anti-Toxoplasma gondii immune response and predisposing to toxoplasmosis reactivation.
Collapse
|
7
|
Liu CY, Kang NW, Takeuchi K, Chuang SS. Combined Merkel Cell Carcinoma with Nodal Presentation: Report of a Case Diagnosed with Excisional but Not Incisional Biopsy and Literature Review. Diagnostics (Basel) 2023; 13:diagnostics13030449. [PMID: 36766554 PMCID: PMC9914145 DOI: 10.3390/diagnostics13030449] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/19/2023] [Accepted: 01/24/2023] [Indexed: 01/28/2023] Open
Abstract
Merkel cell carcinoma (MCC) is a rare primary neuroendocrine carcinoma (NEC) of the skin. As compared to pure MCCs, combined MCCs are aggressive and exhibit a higher probability of metastasis. A correct diagnosis might be missed, especially when the biopsy sample is too small or too superficial. We report a 79-year-old Taiwanese male who presented with lymphadenopathy suspicious for lymphoma. A nodal biopsy showed metastatic NEC. A skin tumor in the lower back was identified, and an incisional biopsy showed only squamous cell carcinoma (SCC). A subsequent excisional biopsy was performed based on the advice of the senior pathologist because of the presence of metastatic nodal NEC. Finally, a diagnosis of combined MCC and SCC was confirmed. Our literature review identified 13 cases of combined MCC with nodal metastasis as initial presentations, all with an aggressive clinical course. Both the MCC and non-MCC components could be present in the metastatic nodes. Metastases of pure MCC cells were observed in three combined MCCs in sun-protected areas, probably pointing to a distinct pathogenesis. Excision or punch biopsy to include the deep dermal NEC component is recommended as timely diagnosis is mandatory for appropriate management of patients with this rare skin cancer.
Collapse
Affiliation(s)
- Chih-Yi Liu
- Division of Pathology, Sijhih Cathay General Hospital, New Taipei City 221, Taiwan
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City 221, Taiwan
| | - Nai-Wen Kang
- Division of Hemato-Oncology, Department of Internal Medicine, Chi-Mei Medical Center, Tainan 710, Taiwan
| | - Kengo Takeuchi
- Division of Pathology, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Pathology Project for Molecular Targets, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
- Department of Pathology, Cancer Institute Hospital, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Shih-Sung Chuang
- Department of Pathology, Chi-Mei Medical Center, Tainan 710, Taiwan
- Correspondence: ; Tel.: +886-6-2812811 (ext. 53686)
| |
Collapse
|
8
|
Mazziotta C, Cervellera CF, Lanzillotti C, Touzé A, Gaboriaud P, Tognon M, Martini F, Rotondo JC. MicroRNA dysregulations in Merkel cell carcinoma: Molecular mechanisms and clinical applications. J Med Virol 2023; 95:e28375. [PMID: 36477874 DOI: 10.1002/jmv.28375] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Merkel cell carcinoma (MCC) is an aggressive skin malignancy with two distinct etiologies. The first, which accounts for the highest proportion, is caused by Merkel cell polyomavirus (MCPyV), a DNA tumor virus. A second, UV-induced, MCC form has also been identified. Few MCC diagnostic, prognostic, and therapeutic options are available. MicroRNAs (miRNAs) are small noncoding RNA molecules, which play a key role in regulating various physiologic cellular functions including cell cycling, proliferation, differentiation, and apoptosis. Numerous miRNAs are dysregulated in cancer, by acting as either tumor suppressors or oncomiRs. The aim of this review is to collect, summarize, and discuss recent findings on miRNAs whose dysregulation has been assumed to play a role in MCC. The potential clinical application of miRNAs as diagnostic and prognostic biomarkers in MCC is also described. In the future, miRNAs will potentially gain clinical significance for the improvement of MCC diagnostic, prognostic, and therapeutic options.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | | | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- "Biologie des infections à polyomavirus" Team, UMR INRAE 1282, University of Tours, Tours, France
| | - Pauline Gaboriaud
- "Biologie des infections à polyomavirus" Team, UMR INRAE 1282, University of Tours, Tours, France
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Department of Medical Sciences, Center for Studies on Gender Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
9
|
Li J, Zhu Y, Guo G. Enthesitis-related arthritis: the clinical characteristics and factors related to MRI remission of sacroiliitis. BMC Musculoskelet Disord 2022; 23:1054. [DOI: 10.1186/s12891-022-06028-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/25/2022] [Indexed: 12/04/2022] Open
Abstract
Abstract
Background
To describe the clinical characteristics and explore the factors related to the MRI remission of sacroiliitis in patients with enthesitis-related arthritis (ERA).
Methods
Patients with ERA from 2018–2022 in our medical center were retrospectively reviewed, which identified according to Pediatric Rheumatology International Trials Organization (PRINTO) criteria. Demographics, clinical characteristics, examinations, and treatments were described. Univariate and multivariate logistic regression models were used to analyze the factors related to MRI remission of sacroiliitis in ERA.
Results
This retrospective study included 160 ERA patients (51.9% male) with a mean onset age of 9.2 ± 3.0 years. There were 144 cases (81.9%) with peripheral arthritis, and the hip, knee, and ankle joints were the most commonly involved joints. Enthesitis occurred in 48 cases (30.0%), and sacroiliitis occurred in 142 cases (88.5%) at diagnosis. Human leukocyte antigen (HLA)-B27 was positive in 33 cases (17.1%), and acute uveitis occurred in 3 cases (1.9%). The majority of patients (93.7%) were treated with disease-modifying anti-rheumatic drugs (DMARDs), and 60% with biologics. Among 62 patients with MRI-defined sacroiliitis, 27 (43.5%) cases showed improvement in the sacroiliac joint lesion after treatment. Multivariate logistic regression analysis showed that duration from onset to diagnosis of less than 3 months (OR = 3.609, 95% CI: 1.068–12.192) and active joints of more than 4 (OR = 4.916, 95% CI: 1.006–24.037) were independent factors.
Conclusion
We highlighted differences in ERA clinical characteristics. Patients with a shorter diagnosis time and more joint involvement improved more significantly in sacroiliac joint lesions after treatment.
Collapse
|
10
|
Akaike T, Cahill K, Akaike G, Huynh ET, Hippe DS, Shinohara MM, Liao J, Apisarnthanarax S, Parvathaneni U, Hall E, Bhatia S, Cheng RK, Nghiem P, Tseng YD. Management and Prognosis of Cardiac Metastatic Merkel Cell Carcinoma: A Case-Control Study and Literature Review. Cancers (Basel) 2022; 14:5914. [PMID: 36497395 PMCID: PMC9741306 DOI: 10.3390/cancers14235914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Merkel cell carcinoma (MCC), an aggressive neuroendocrine skin cancer, has a high rate (20%) of distant metastasis. Within a prospective registry of 582 patients with metastatic MCC (mMCC) diagnosed between 2003-2021, we identified 9 (1.5%) patients who developed cardiac metastatic MCC (mMCC). We compared overall survival (OS) between patients with cardiac and non-cardiac metastases in a matched case-control study. Cardiac metastasis was a late event (median 925 days from initial MCC diagnosis). The right heart was predominantly involved (8 of 9; 89%). Among 7 patients treated with immunotherapy, 6 achieved a complete or partial response of the cardiac lesion. Among these 6 responders, 5 received concurrent cardiac radiotherapy (median 20 Gray) with immunotherapy; 4 of 5 did not have local disease progression or recurrence in the treated cardiac lesion. One-year OS was 44%, which was not significantly different from non-cardiac mMCC patients (45%, p = 0.96). Though it occurs relatively late in the disease course, cardiac mMCC responded to immunotherapy and/or radiotherapy and was not associated with worse prognosis compared to mMCC at other anatomic sites. These results are timely as cardiac mMCC may be increasingly encountered in the era of immunotherapy as patients with metastatic MCC live longer.
Collapse
Affiliation(s)
- Tomoko Akaike
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Kelsey Cahill
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Gensuke Akaike
- Department of Radiology, University of Washington, Seattle, WA 98195, USA
- TRA Medical Imaging, Tacoma, WA 98402, USA
| | - Emily T. Huynh
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Daniel S. Hippe
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Michi M. Shinohara
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jay Liao
- Department of Radiation Oncology, University of Washington, Seattle, WA 91895, USA
| | | | - Upendra Parvathaneni
- Department of Radiation Oncology, University of Washington, Seattle, WA 91895, USA
| | - Evan Hall
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Shailender Bhatia
- Division of Medical Oncology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Richard K. Cheng
- Division of Cardiology, University of Washington Medical Center, Seattle, WA 98195, USA
| | - Paul Nghiem
- Division of Dermatology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Yolanda D. Tseng
- Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
- Department of Radiation Oncology, University of Washington, Seattle, WA 91895, USA
| |
Collapse
|
11
|
Passerini S, Prezioso C, Prota A, Babini G, Coppola L, Lodi A, Epifani AC, Sarmati L, Andreoni M, Moens U, Pietropaolo V, Ciotti M. Detection Analysis and Study of Genomic Region Variability of JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV in the Urine and Plasma of HIV-1-Infected Patients. Viruses 2022; 14:v14112544. [PMID: 36423152 PMCID: PMC9698965 DOI: 10.3390/v14112544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
Since it was clearly established that HIV/AIDS predisposes to the infection, persistence or reactivation of latent viruses, the prevalence of human polyomaviruses (HPyVs) among HIV-1-infected patients and a possible correlation between HPyVs and HIV sero-status were investigated. PCR was performed to detect and quantify JCPyV, BKPyV, MCPyV, HPyV6, HPyV7 and QPyV DNA in the urine and plasma samples of 103 HIV-1-infected patients. Subsequently, NCCR, VP1 and MCPyV LT sequences were examined. In addition, for MCPyV, the expression of transcripts for the LT gene was investigated. JCPyV, BKPyV and MCPyV's presence was reported, whereas HPyV6, HPyV7 and QPyV were not detected in any sample. Co-infection patterns of JCPyV, BKPyV and MCPyV were found. Archetype-like NCCRs were observed with some point mutations in plasma samples positive for JCPyV and BKPyV. The VP1 region was found to be highly conserved among these subjects. LT did not show mutations causing stop codons, and LT transcripts were expressed in MCPyV positive samples. A significant correlation between HPyVs' detection and a low level of CD4+ was reported. In conclusion, HPyV6, HPyV7 and QPyV seem to not have a clinical relevance in HIV-1 patients, whereas further studies are warranted to define the clinical importance of JCPyV, BKPyV and MCPyV DNA detection in these subjects.
Collapse
Affiliation(s)
- Sara Passerini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Carla Prezioso
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
- IRCSS San Raffaele Roma, Microbiology of Chronic Neuro-Degenerative Pathologies, 00163 Rome, Italy
| | - Annalisa Prota
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Giulia Babini
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Luigi Coppola
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Alessandra Lodi
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Anna Chiara Epifani
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Loredana Sarmati
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
| | - Ugo Moens
- Department of Medical Biology, Faculty of Health Sciences, University of Tromsø—The Arctic University of Norway, 9037 Tromsø, Norway
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Virology Unit, Polyclinic Tor Vergata, Viale Oxford 81, 00133 Rome, Italy
- Correspondence:
| |
Collapse
|
12
|
Altinkaya Çavuş M, Sav H. Opportunistic Candida Infections in Critical COVID-19 Patients. Pol J Microbiol 2022; 71:411-419. [PMID: 36185025 PMCID: PMC9608158 DOI: 10.33073/pjm-2022-036] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/19/2022] [Indexed: 11/24/2022] Open
Abstract
The frequency of opportunistic fungal infections in critically ill patients whose intensive care unit stays are prolonged due to coronavirus disease 2019 (COVID-19) is higher than in the period before COVID-19. We planned this study to improve the management of Candida infections by defining the Candida species, the etiology of infections caused by Candida species, and the antifungal susceptibility of the species. This retrospective study included patients older than 18 hospitalized in the intensive care unit (ICU) with a definitive diagnosis of COVID-19 for seven months (from March 2021 to September 2021). All study data that we recorded in a standard study form were analyzed with TURCOSA (Turcosa Analytics Ltd. Co., Turkey, www.turcosa.com.tr) statistical software. The patients were evaluated in four groups as group 1 (candidemia patients, n = 78), group 2 (candiduria patients, n = 189), group 3 (control patients, n = 57), and group 4 (patients with candidemia in urine cultures taken before Candida was detected in blood culture, n = 42). Candida species were identified using both conventional and VITEK® 2 (BioMérieux, France) methods. The antifungal susceptibility of fungi was determined using the E test method. Of the 5,583 COVID-19 patients followed during the study period, 78 developed candidemia, and 189 developed candiduria. The incidence of candidemia (per 1,000 admissions) was determined to be 1.6. As a result of statistical analysis, we found that Candida albicans was the dominant strain in candidemia and candiduria, and there was no antifungal resistance except for naturally resistant strains. Candida strains grown in blood and urine were the same in 40 of 42 patients. Mortality was 69.2% for group 1, 60.4% for group 2, and 57.8% for group 3. Antifungals were used in 34 (43.5%) patients from group 1, and 95 (50.2%) from group 2. In the candidemia group without antifungal use, mortality was quite high (77.2%). Antifungal use reduced mortality in the group 2 (p < 0.05). Length of ICU stays, comorbidity, broad-spectrum antibiotics, and corticosteroids are independent risk factors for candidemia in critically ill COVID-19 patients. Our study contributes to the knowledge of risk factors for developing COVID-19-related candida infections. The effect of candiduria on the development of candidemia in critically ill COVID-19 patients should be supported by new studies.
Collapse
Affiliation(s)
- Mıne Altinkaya Çavuş
- Department of Intensive Care, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey, E-mail:
| | - Hafıze Sav
- Department of Mycology, University of Health Sciences, Kayseri City Hospital, Kayseri, Turkey
| |
Collapse
|
13
|
Harrison A, Brahs A, Fardos M, Siddiqui F, Walker A, Miller R, Moon S. Merkel cell carcinoma in a young female on infliximab. JAAD Case Rep 2022; 27:38-40. [PMID: 35996443 PMCID: PMC9391507 DOI: 10.1016/j.jdcr.2022.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Alex Harrison
- Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine GME: Largo Medical Center, Largo, Florida
| | - Allyson Brahs
- Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine GME: Largo Medical Center, Largo, Florida
- Correspondence to: Allyson Brahs, DO, 13148 3rd St E, Madeira Beach, FL 33708.
| | | | | | - Addie Walker
- Department of Dermatology, University of Florida, Gainesville, Florida
| | - Richard Miller
- Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine GME: Largo Medical Center, Largo, Florida
- Bay Dermatology & Cosmetic Surgery, Largo, Florida
| | - Summer Moon
- Department of Dermatology, HCA Healthcare/USF Morsani College of Medicine GME: Largo Medical Center, Largo, Florida
- Bay Dermatology & Cosmetic Surgery, Largo, Florida
| |
Collapse
|
14
|
Lee KJ, Choi SY, Lee YM, Kim HW. Neutralizing Antibody Response, Safety, and Efficacy of mRNA COVID-19 Vaccines in Pediatric Patients with Inflammatory Bowel Disease: A Prospective Multicenter Case-Control Study. Vaccines (Basel) 2022; 10:vaccines10081265. [PMID: 36016153 PMCID: PMC9415578 DOI: 10.3390/vaccines10081265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/14/2023] Open
Abstract
The vaccination of immunocompromised children against coronavirus disease 2019 is an important public health issue. We evaluated the serological response, safety, and efficacy of the BNT162b2 vaccine in children with and without inflammatory bowel disease (IBD). A prospective, multicenter, case–control study was conducted in a pediatric population, including patients with IBD, aged 12–18 years. Clinical characteristics, safety profile, and serum samples for surrogate virus-neutralizing antibody testing pre- and post-BNT162b2 vaccination were assessed. The breakthrough infection rate during the Omicron outbreak was calculated to evaluate efficacy. Fifteen controls and twenty-three patients with IBD were enrolled. After two vaccine doses, the median level of percentage inhibition was highly increased, without significant differences between the groups (control 96.9 and IBD 96.3). However, it was significantly reduced in IBD patients receiving combination therapy (anti-tumor necrosis factor-α + immunomodulators) relative to those in other therapies and controls. Serious adverse events were not observed. The breakthrough infection rate was 42.1%, without statistical differences between the groups. Immunization with BNT162b2 in patients with IBD was comparable with that in healthy adolescents in terms of immunogenicity and safety. Nevertheless, the efficacy of BNT162b2 in preventing infection caused by the Omicron variant in the pediatric population was insufficient.
Collapse
Affiliation(s)
- Kyung Jae Lee
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Department of Pediatrics, Seoul National University Children’s Hospital, Seoul 03080, Korea
| | - So Yoon Choi
- Department of Pediatrics, Kosin University Gospel Hospital, Kosin University College of Medicine, Busan 49267, Korea
| | - Yoo Min Lee
- Department of Pediatrics, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon 14584, Korea
| | - Han Wool Kim
- Department of Pediatrics, Hallym University Sacred Heart Hospital, Anyang 14068, Korea
- Department of Pediatrics, College of Medicine, Hallym University, Chuncheon 24252, Korea
- Correspondence: ; Tel.: +82-31-380-3730
| |
Collapse
|
15
|
Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Libener R, Guaschino R, Gafà R, Lanza G, Martini F, Tognon M. Sera from Patients with Malignant Pleural Mesothelioma Tested Positive for IgG Antibodies against SV40 Large T Antigen: The Viral Oncoprotein. JOURNAL OF ONCOLOGY 2022; 2022:7249912. [PMID: 35874636 PMCID: PMC9307391 DOI: 10.1155/2022/7249912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/27/2022] [Accepted: 06/11/2022] [Indexed: 11/17/2022]
Abstract
Malignant pleural mesothelioma (MPM), a fatal tumor, is mainly linked to the asbestos exposure. It has been reported that together with the inhalation of asbestos fibers, other factors are involved in the MPM onset, including simian virus 40 (SV40). SV40, a polyomavirus with oncogenic potential, induces (i) in vitro the mesenchymal cell transformation, whereas (ii) in vivo the MPM onset in experimental animals. The association between MPM and SV40 in humans remains to be elucidated. Sera (n = 415) from MPM-affected patients (MPM cohort 1; n = 152) and healthy subjects (HSs, n = 263) were investigated for their immunoglobulin G (IgG) against simian virus 40 large tumor antigen (Tag), which is the transforming protein. Sera were investigated with an indirect enzyme-linked immunosorbent assay (ELISA) using two synthetic peptides from SV40 Tag protein. SV40 Tag protein was evaluated by immunohistochemical (IHC) staining on MPM samples (MPM cohort 2; n = 20). Formalin-fixed and paraffin-embedded (FFPE) samples were obtained from MPM patients unrelated to MPM serum donors. The proportion of sera, from MPM patients, showing antibodies against SV40 Tag (34%) was significantly higher compared to HSs (20%) (odds ratio 2.049, CI 95% 1.32-3.224; p=0.0026). Immunohistochemical staining (IHS) assays showed SV40 Tag expression in 8/20, 40% of MPM specimens. These results indicate that SV40 is linked to a large fraction of MPM. It is worth noting that the prevalence of SV40 Tag antibodies detected in sera from cohort 1 of MPM patients is similar to the prevalence of SV40 Tag found to be expressed in FFPE tissues from MPM cohort 2.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Chemical, Pharmaceutical and Agricultural Sciences—DOCPAS, University of Ferrara, Ferrara 44121, Italy
| | - Ilaria Bononi
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara 44121, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, Ferrara 44121, Italy
| | - Roberta Libener
- Mesothelioma BioBank, Pathology Unit, City Hospital, Alessandria, Italy
| | | | - Roberta Gafà
- Section of Pathology, Department of Translational Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Giovanni Lanza
- Section of Pathology, Department of Translational Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, Ferrara 44121, Italy
- Laboratory for Technologies of Advanced Therapies, Department of Medical Sciences, University of Ferrara, Ferrara 44121, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Section of Experimental Medicine, School of Medicine, University of Ferrara, Ferrara 44121, Italy
| |
Collapse
|
16
|
Rotondo JC, Martini F, Maritati M, Caselli E, Gallenga CE, Guarino M, De Giorgio R, Mazziotta C, Tramarin ML, Badiale G, Tognon M, Contini C. Advanced Molecular and Immunological Diagnostic Methods to Detect SARS-CoV-2 Infection. Microorganisms 2022; 10:1193. [PMID: 35744711 PMCID: PMC9231257 DOI: 10.3390/microorganisms10061193] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/06/2022] [Accepted: 06/06/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19 emerged in late 2019 in China and quickly spread across the globe, causing over 521 million cases of infection and 6.26 million deaths to date. After 2 years, numerous advances have been made. First of all, the preventive vaccine, which has been implemented in record time, is effective in more than 95% of cases. Additionally, in the diagnostic field, there are numerous molecular and antigenic diagnostic kits that are equipped with high sensitivity and specificity. Real Time-PCR-based assays for the detection of viral RNA are currently considered the gold-standard method for SARS-CoV-2 diagnosis and can be used efficiently on pooled nasopharyngeal, or oropharyngeal samples for widespread screening. Moreover, additional, and more advanced molecular methods such as droplet-digital PCR (ddPCR), clustered regularly interspaced short palindromic repeats (CRISPR) and next-generation sequencing (NGS), are currently under development to detect the SARS-CoV-2 RNA. However, as the number of subjects infected with SARS-CoV-2 continuously increases globally, health care systems are being placed under increased stress. Thus, the clinical laboratory plays an important role, helping to select especially asymptomatic individuals who are actively carrying the live replicating virus, with fast and non-invasive molecular technologies. Recent diagnostic strategies, other than molecular methods, have been adopted to either detect viral antigens, i.e., antigen-based immunoassays, or human anti-SARS-CoV-2 antibodies, i.e., antibody-based immunoassays, in nasal or oropharyngeal swabs, as well as in blood or saliva samples. However, the role of mucosal sIgAs, which are essential in the control of viruses entering the body through mucosal surfaces, remains to be elucidated, and in particular the role of the immune response in counteracting SARS-CoV-2 infection, primarily at the site(s) of virus entry that appears to be promising.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Orthopaedic Ward, Casa di Cura Santa Maria Maddalena, 45030 Occhiobello, Italy
| | - Elisabetta Caselli
- Section of Microbiology, CIAS Research Center and LTTA, Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Carla Enrica Gallenga
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Matteo Guarino
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Roberto De Giorgio
- Department of Translational Medicine, St. Anna University Hospital of Ferrara, University of Ferrara, 44124 Ferrara, Italy; (M.G.); (R.D.G.)
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Maria Letizia Tramarin
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Giada Badiale
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (F.M.); (M.M.); (C.E.G.); (C.M.); (M.L.T.); (G.B.); (M.T.)
| |
Collapse
|
17
|
Spada F, Bossi P, Caracò C, Sileni VC, Dei Tos AP, Fazio N, Grignani G, Maio M, Quaglino P, Queirolo P, Ascierto PA. Nationwide multidisciplinary consensus on the clinical management of Merkel cell carcinoma: a Delphi panel. J Immunother Cancer 2022; 10:jitc-2022-004742. [PMID: 35701070 PMCID: PMC9198700 DOI: 10.1136/jitc-2022-004742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/16/2022] [Indexed: 11/04/2022] Open
Abstract
Merkel cell carcinoma (MCC) is a rare and highly aggressive cutaneous neuroendocrine carcinoma. The MCC incidence rate has rapidly grown over the last years, with Italy showing the highest increase among European countries. This malignancy has been the focus of active scientific research over the last years, focusing mainly on pathogenesis, new therapeutic trials and diagnosis. A national expert board developed 28 consensus statements that delineated the evolution of disease management and highlighted the paradigm shift towards the use of immunological strategies, which were then presented to a national MCC specialists panel for review. Sixty-five panelists answered both rounds of the questionnaire. The statements were divided into five areas: a high level of agreement was reached in the area of guidelines and multidisciplinary management, even if in real life the multidisciplinary team was not always represented by all the specialists. In the diagnostic pathway area, imaging played a crucial role in diagnosis and initial staging, planning for surgery or radiation therapy, assessment of treatment response and surveillance of recurrence and metastases. Concerning diagnosis, the usefulness of Merkel cell polyomavirus is recognized, but the agreement and consensus regarding the need for cytokeratin evaluation appears greater. Regarding the areas of clinical management and follow-up, patients with MCC require customized treatment. There was a wide dispersion of results and the suggestion to increase awareness about the adjuvant radiation therapy. The panelists unanimously agreed that the information concerning avelumab provided by the JAVELIN Merkel 200 study is adequate and reliable and that the expanded access program data could have concrete clinical implications. An immunocompromised patient with advanced MCC can be treated with immunotherapy after multidisciplinary risk/benefit assessment, as evidenced by real-world analysis and highlighted in the guidelines. A very high consensus regarding the addition of radiotherapy to treat the ongoing focal progression of immunotherapy was observed. This paper emphasizes the importance of collaboration and communication among the interprofessional team members and encourages managing patients with MCC within dedicated multidisciplinary teams. New insights in the treatment of this challenging cancer needs the contribution of many and different experts.
Collapse
Affiliation(s)
- Francesca Spada
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, Milano, Italy
| | - Paolo Bossi
- Medical Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health-Medical Oncology, University of Brescia, ASST-Spedali Civili, Brescia, Italy
| | - Corrado Caracò
- Melanoma and Skin Cancers Surgery Unit, Istituto Nazionale Tumori IRCCS Fondazione "G. Pascale", Napoli, Italy
| | | | | | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology (IEO) IRCCS, Milano, Italy
| | - Giovanni Grignani
- Division of Medical Oncology, Candiolo Cancer Institute FPO IRCCS, Candiolo, Italy
| | - Michele Maio
- Center for Immuno-Oncology, Department of Oncology, University Hospital of Siena, Siena, Italy
| | - Pietro Quaglino
- Dermatologic Clinic, Department of Medical Sciences, University of Turin, Torino, Italy
| | - Paola Queirolo
- Melanoma and Sarcoma Medical Treatment, European Institute of Oncology (IEO), Milano, Italy
| | - Paolo Antonio Ascierto
- Melanoma Cancer Immunotherapy and Development Therapeutics Unit, Istituto Nazionale Tumori IRCCS Fondazione "G.Pascale", Napoli, Italy
| | | |
Collapse
|
18
|
Mazziotta C, Lanzillotti C, Gafà R, Touzé A, Durand MA, Martini F, Rotondo JC. The Role of Histone Post-Translational Modifications in Merkel Cell Carcinoma. Front Oncol 2022; 12:832047. [PMID: 35350569 PMCID: PMC8957841 DOI: 10.3389/fonc.2022.832047] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 02/01/2022] [Indexed: 12/12/2022] Open
Abstract
Merkel Cell Carcinoma (MCC) is a rare but highly aggressive form of non–melanoma skin cancer whose 5-year survival rate is 63%. Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, is the etiological agent of MCC. Although representing a small proportion of MCC cases, MCPyV-negative MCCs have also been identified. The role of epigenetic mechanisms, including histone post-translational modifications (PTMs) in MCC, have been only partially determined. This review aims to describe the most recent progress on PTMs and their regulative factors in the context of MCC onset/development, providing an overview of current findings on both MCC subtypes. An outline of current knowledge on the potential employment of PTMs and related factors as diagnostic and prognostic markers, as well as novel treatment strategies targeting the reversibility of PTMs for MCC therapy is provided. Recent research shows that PTMs are emerging as important epigenetic players involved in MCC onset/development, and therefore may show a potential clinical significance. Deeper and integrated knowledge of currently known PTM dysregulations is of paramount importance in order to understand the molecular basis of MCC and improve the diagnosis, prognosis, and therapeutic options for this deadly tumor.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Roberta Gafà
- Department of Translational Medicine and for Romagna, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- ISP "Biologie des infections à polyomavirus" Team, UMR INRA 1282, University of Tours, Tours, France
| | - Marie-Alice Durand
- ISP "Biologie des infections à polyomavirus" Team, UMR INRA 1282, University of Tours, Tours, France
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
19
|
Mazziotta C, Pellielo G, Tognon M, Martini F, Rotondo JC. Significantly Low Levels of IgG Antibodies Against Oncogenic Merkel Cell Polyomavirus in Sera From Females Affected by Spontaneous Abortion. Front Microbiol 2022; 12:789991. [PMID: 34970247 PMCID: PMC8712937 DOI: 10.3389/fmicb.2021.789991] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 12/12/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA tumor virus ubiquitous in humans. MCPyV establishes a clinically asymptomatic lifelong infection in healthy immunocompetent individuals. Viral infections are considered to be risk factors for spontaneous abortion (SA), which is the most common adverse complication of pregnancy. The role of MCPyV in SA remains undetermined. Herein, the impact of MCPyV infection in females affected by SA was investigated. Specifically, an indirect enzyme-linked immunosorbent assay (ELISA) method with two linear synthetic peptides/mimotopes mimicking MCPyV antigens was used to investigate immunoglobulin G (IgG) antibodies against MCPyV in sera from 94 females affected by SA [mean ± standard deviation (SD) age 35 ± (6) years] and from 96 healthy females undergoing voluntary pregnancy interruption [VI, mean (±SD) age 32 ± (7) years]. MCPyV seroprevalence and serological profiles were analyzed. The overall prevalence of serum IgG antibodies against MCPyV was 35.1% (33/94) and 37.5% (36/96) in SA and VI females, respectively (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in females with SA compared to those undergoing VI (p < 0.05), thus indicating a reduced IgG antibody response in SA females. Circulating IgGs were identified in sera from SA and VI females. Our immunological findings indicate that a relatively reduced fraction of pregnant females carry serum anti-MCPyV IgG antibodies, while SA females presented a more pronounced decrease in IgG antibody response to MCPyV. Although yet to be determined, this immunological decrease might prompt an increase in MCPyV multiplication events in females experiencing abortive events. The role of MCPyV in SA, if present, remains to be determined.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy.,Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
20
|
Mesenchymal Stem Cell-Based Therapy for Rheumatoid Arthritis. Int J Mol Sci 2021; 22:ijms222111592. [PMID: 34769021 PMCID: PMC8584240 DOI: 10.3390/ijms222111592] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/23/2021] [Accepted: 10/24/2021] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have great potential to differentiate into various types of cells, including but not limited to, adipocytes, chondrocytes and osteoblasts. In addition to their progenitor characteristics, MSCs hold unique immunomodulatory properties that provide new opportunities in the treatment of autoimmune diseases, and can serve as a promising tool in stem cell-based therapy. Rheumatoid arthritis (RA) is a chronic systemic autoimmune disorder that deteriorates quality and function of the synovium membrane, resulting in chronic inflammation, pain and progressive cartilage and bone destruction. The mechanism of RA pathogenesis is associated with dysregulation of innate and adaptive immunity. Current conventional treatments by steroid drugs, antirheumatic drugs and biological agents are being applied in clinical practice. However, long-term use of these drugs causes side effects, and some RA patients may acquire resistance to these drugs. In this regard, recently investigated MSC-based therapy is considered as a promising approach in RA treatment. In this study, we review conventional and modern treatment approaches, such as MSC-based therapy through the understanding of the link between MSCs and the innate and adaptive immune systems. Moreover, we discuss recent achievements in preclinical and clinical studies as well as various strategies for the enhancement of MSC immunoregulatory properties.
Collapse
|
21
|
Rotondo JC, Mazziotta C, Lanzillotti C, Tognon M, Martini F. Epigenetic Dysregulations in Merkel Cell Polyomavirus-Driven Merkel Cell Carcinoma. Int J Mol Sci 2021; 22:11464. [PMID: 34768895 PMCID: PMC8584046 DOI: 10.3390/ijms222111464] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is a small DNA virus with oncogenic potential. MCPyV is the causative agent of Merkel Cell Carcinoma (MCC), a rare but aggressive tumor of the skin. The role of epigenetic mechanisms, such as histone posttranslational modifications (HPTMs), DNA methylation, and microRNA (miRNA) regulation on MCPyV-driven MCC has recently been highlighted. In this review, we aim to describe and discuss the latest insights into HPTMs, DNA methylation, and miRNA regulation, as well as their regulative factors in the context of MCPyV-driven MCC, to provide an overview of current findings on how MCPyV is involved in the dysregulation of these epigenetic processes. The current state of the art is also described as far as potentially using epigenetic dysregulations and related factors as diagnostic and prognostic tools is concerned, in addition to targets for MCPyV-driven MCC therapy. Growing evidence suggests that the dysregulation of HPTMs, DNA methylation, and miRNA pathways plays a role in MCPyV-driven MCC etiopathogenesis, which, therefore, may potentially be clinically significant for this deadly tumor. A deeper understanding of these mechanisms and related factors may improve diagnosis, prognosis, and therapy for MCPyV-driven MCC.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy; (C.M.); (C.L.); (M.T.)
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
22
|
Mazziotta C, Lanzillotti C, Govoni M, Pellielo G, Mazzoni E, Tognon M, Martini F, Rotondo JC. Decreased IgG Antibody Response to Viral Protein Mimotopes of Oncogenic Merkel Cell Polyomavirus in Sera From Healthy Elderly Subjects. Front Immunol 2021; 12:738486. [PMID: 34733278 PMCID: PMC8558529 DOI: 10.3389/fimmu.2021.738486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/22/2021] [Indexed: 12/14/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) is the main causative agent of Merkel cell carcinoma (MCC), a rare but aggressive skin tumor with a typical presentation age >60 years. MCPyV is ubiquitous in humans. After an early-age primary infection, MCPyV establishes a clinically asymptomatic lifelong infection. In immunocompromised patients/individuals, including elders, MCC can arise following an increase in MCPyV replication events. Elders are prone to develop immunesenescence and therefore represent an important group to investigate. In addition, detailed information on MCPyV serology in elders has been debated. These findings cumulatively indicate the need for new research verifying the impact of MCPyV infection in elderly subjects (ES). Herein, sera from 226 ES, aged 66-100 years, were analyzed for anti-MCPyV IgGs with an indirect ELISA using peptides mimicking epitopes from the MCPyV capsid proteins VP1-2. Immunological data from sera belonging to a cohort of healthy subjects (HS) (n = 548) aged 18-65 years, reported in our previous study, were also included for comparisons. Age-/gender-specific seroprevalence and serological profiles were investigated. MCPyV seroprevalence in ES was 63.7% (144/226). Age-specific MCPyV seroprevalence resulted as 62.5% (25/40), 71.7% (33/46), 64.9% (37/57), 63.8% (30/47), and 52.8% (19/36) in ES aged 66-70, 71-75, 76-80, 81-85, and 86-100 years, respectively (p > 0.05). MCPyV seroprevalence was 67% (71/106) and 61% (73/120) in ES males and females, respectively (p > 0.05). Lack of age-/gender-related variations in terms of MCPyV serological profiles was found in ES (p > 0.05). Notably, serological profile analyses indicated lower optical densities (ODs) in ES compared with HS (p < 0.05), while lower ODs were also determined in ES males compared with HS males (p < 0.05). Our data cumulatively suggest that oncogenic MCPyV circulates in elders asymptomatically at a relatively high prevalence, while immunesenescence might be responsible for a decreased IgG antibody response to MCPyV, thereby potentially leading to an increase in MCPyV replication levels. In the worse scenario, alongside other factors, MCPyV might drive MCC carcinogenesis, as described in elders with over 60 years of age.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Giulia Pellielo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
23
|
Vincenzi F, Rotondo JC, Pasquini S, Di Virgilio F, Varani K, Tognon M. A 3 Adenosine and P2X7 Purinergic Receptors as New Targets for an Innovative Pharmacological Therapy of Malignant Pleural Mesothelioma. Front Oncol 2021; 11:679285. [PMID: 34660262 PMCID: PMC8518529 DOI: 10.3389/fonc.2021.679285] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/09/2021] [Indexed: 01/23/2023] Open
Abstract
Human malignant pleural mesothelioma (MPM) is a rare, but aggressive tumor of the serosal cavities whose 5-year survival rate is 15%. At present, there are no effective therapies for MPM. Although recent findings suggest that A3 adenosine (A3AR) and P2X7 (P2X7R) receptors can be employed as antitumoral pharmacological targets in MPM, their potential role in a combined therapy is currently unknown. The A3AR agonist Cl-IB-MECA and the P2X7 receptor antagonist AZ10606120, as a single compound or in combination, were investigated in vitro for their anti-tumor activities. Assays were carried out in MPM cell lines IST-Mes2 and MPP89 and in primary human normal mesothelial cells (HMCs), as control. Single treatment with Cl-IB-MECA reduced cell proliferation and favored a pro-apoptotic effect in both MPP89 and IST-Mes2 cell lines, whereas AZ10606120 inhibited cell proliferation and induced apoptosis in IST-Mes2, only. The combined treatment with Cl-IB-MECA and AZ10606120 reduced cell proliferation and favored apoptosis in MPP89 and IST-Mes2 cell lines, whereas no synergistic effect was detected. These data cumulatively suggest the absence of a synergistic effect in combined targeting of A3 adenosine and P2X7 receptors of MPM cell lines. This study may stimulate further investigations aimed at determining new combinations of antitumor compounds and more effective therapeutic strategies against MPM.
Collapse
Affiliation(s)
- Fabrizio Vincenzi
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Experimental Medicine Section, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| | - Silvia Pasquini
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Francesco Di Virgilio
- Department of Medical Sciences, Experimental Medicine Section, Pathology Unit, University of Ferrara, Ferrara, Italy
| | - Katia Varani
- Department of Translational Medicine, Pharmacology Section, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Experimental Medicine Section, Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, Ferrara, Italy
| |
Collapse
|
24
|
Rotondo JC, Martini F, Maritati M, Mazziotta C, Di Mauro G, Lanzillotti C, Barp N, Gallerani A, Tognon M, Contini C. SARS-CoV-2 Infection: New Molecular, Phylogenetic, and Pathogenetic Insights. Efficacy of Current Vaccines and the Potential Risk of Variants. Viruses 2021; 13:1687. [PMID: 34578269 PMCID: PMC8473168 DOI: 10.3390/v13091687] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/11/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a newly discovered coronavirus responsible for the coronavirus disease 2019 (COVID-19) pandemic. COVID-19 has rapidly become a public health emergency of international concern. Although remarkable scientific achievements have been reached since the beginning of the pandemic, the knowledge behind this novel coronavirus, in terms of molecular and pathogenic characteristics and zoonotic potential, is still relatively limited. Today, there is a vaccine, or rather several vaccines, which, for the first time in the history of highly contagious infectious diseases that have plagued mankind, has been manufactured in just one year. Currently, four vaccines are licensed by regulatory agencies, and they use RNA or viral vector technologies. The positive effects of the vaccination campaign are being felt in many parts of the world, but the disappearance of this new infection is still far from being a reality, as it is also threatened by the presence of novel SARS-CoV-2 variants that could undermine the effectiveness of the vaccine, hampering the immunization control efforts. Indeed, the current findings indicate that SARS-CoV-2 is adapting to transmission in humans more efficiently, while further divergence from the initial archetype should be considered. In this review, we aimed to provide a collection of the current knowledge regarding the molecular, phylogenetic, and pathogenetic insights into SARS-CoV-2. The most recent findings obtained with respect to the impact of novel emerging SARS-CoV-2 variants as well as the development and implementation of vaccines are highlighted.
Collapse
Affiliation(s)
- John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, 44121 Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Giulia Di Mauro
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
- Center for Studies on Gender Medicine, Department of Medical Sciences, University of Ferrara, 64/b, Fossato di Mortara Street, 44121 Ferrara, Italy
| | - Nicole Barp
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Altea Gallerani
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
25
|
Comparative Study on Epstein-Barr Virus-Positive Mucocutaneous Ulcer and Methotrexate-Associated Lymphoproliferative Disorders Developed in the Oral Mucosa: A Case Series of 10 Patients and Literature Review. Diagnostics (Basel) 2021; 11:diagnostics11081375. [PMID: 34441310 PMCID: PMC8394712 DOI: 10.3390/diagnostics11081375] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 07/27/2021] [Accepted: 07/28/2021] [Indexed: 11/17/2022] Open
Abstract
Methotrexate-associated lymphoproliferative disorder (MTX-LPD) is an iatrogenic immunodeficiency-associated lymphoproliferative disorder that occurs mainly with MTX use. This disorder has been associated with Epstein-Barr virus (EBV) infection. In 2017, the WHO newly defined the disease concept of EBV-positive mucocutaneous ulcer (EBV-MCU) as a good-prognosis EBV-related disease. Here, we report 10 cases of MTX-LPD or EBV-MCU in the oral mucosa. This retrospective, observational study was conducted with MTX-LPD or EBV-MCU in the oral mucosa patients who visited us during the nine year period from 2012 to 2021. We gathered the basic information, underlying disease, histopathological evaluation, treatment and prognosis for the subjects. All were being treated with MTX for rheumatoid arthritis. EBV infection was positive in all cases by immunohistochemistry. A complete or partial response was obtained in all cases with the withdrawal of MTX. Our results suggests that the most common risk factor for developing EBV-MCU is the use of immunosuppressive drugs. The most common site of onset is the oral mucosa, which may be attributed to the mode of EBV infection and the high incidence of chronic irritation of the oral mucosa. A small number of patients had been diagnosed with MTX-LPD, but we consider that these cases were EBV-MCU based on our study.
Collapse
|
26
|
Ultra-Low Dose Cytokines in Rheumatoid Arthritis, Three Birds with One Stone as the Rationale of the 2LARTH ® Micro-Immunotherapy Treatment. Int J Mol Sci 2021; 22:ijms22136717. [PMID: 34201546 PMCID: PMC8268272 DOI: 10.3390/ijms22136717] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/20/2021] [Indexed: 12/12/2022] Open
Abstract
Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are two cytokines involved in the perpetuation of the chronic inflammation state characterizing rheumatoid arthritis (RA). Significant advances in the treatment of this pathology have been made over the past ten years, partially through the development of anti-TNF and anti-IL-1 therapies. However, major side effects still persist and new alternative therapies should be considered. The formulation of the micro-immunotherapy medicine (MIM) 2LARTH® uses ultra-low doses (ULD) of TNF-α, IL-1β, and IL-2, in association with other immune factors, to gently restore the body’s homeostasis. The first part of this review aims at delineating the pivotal roles played by IL-1β and TNF-α in RA physiopathology, leading to the development of anti-TNF and anti-IL-1 therapeutic agents. In a second part, an emphasis will be made on explaining the rationale of using multiple therapeutic targets, including both IL-1β and TNF-α in 2LARTH® medicine. Particular attention will be paid to the ULD of those two main pro-inflammatory factors in order to counteract their overexpression through the lens of their molecular implication in RA pathogenesis.
Collapse
|
27
|
Mazziotta C, Lanzillotti C, Torreggiani E, Oton-Gonzalez L, Iaquinta MR, Mazzoni E, Gaboriaud P, Touzé A, Silvagni E, Govoni M, Martini F, Tognon M, Rotondo JC. Serum Antibodies Against the Oncogenic Merkel Cell Polyomavirus Detected by an Innovative Immunological Assay With Mimotopes in Healthy Subjects. Front Immunol 2021; 12:676627. [PMID: 34168646 PMCID: PMC8217635 DOI: 10.3389/fimmu.2021.676627] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/20/2021] [Indexed: 12/22/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV), a small DNA tumor virus, has been detected in Merkel cell carcinoma (MCC) and in normal tissues. Since MCPyV infection occurs in both MCC-affected patients and healthy subjects (HS), innovative immunoassays for detecting antibodies (abs) against MCPyV are required. Herein, sera from HS were analyzed with a novel indirect ELISA using two synthetic peptides mimicking MCPyV capsid protein epitopes of VP1 and VP2. Synthetic peptides were designed to recognize IgGs against MCPyV VP mimotopes using a computer-assisted approach. The assay was set up evaluating its performance in detecting IgGs anti-MCPyV on MCPyV-positive (n=65) and -negative (n=67) control sera. Then, the ELISA was extended to sera (n=548) from HS aged 18-65 yrs old. Age-specific MCPyV-seroprevalence was investigated. Performance evaluation indicated that the assay showed 80% sensitivity, 91% specificity and 83.9% accuracy, with positive and negative predictive values of 94.3% and 71%, respectively. The ratio expected/obtained data agreement was 86%, with a Cohen's kappa of 0.72. Receiver-operating characteristic (ROC) curves analysis indicated that the areas under the curves (AUCs) for the two peptides were 0.82 and 0.74, respectively. Intra-/inter-run variations were below 9%. The overall prevalence of serum IgGs anti-MCPyV in HS was 62.9% (345/548). Age-specific MCPyV-seroprevalence was 63.1% (82/130), 56.7% (68/120), 64.5% (91/141), and 66.2% (104/157) in HS aged 18-30, 31-40, 41-50 and 51-65 yrs old, respectively (p>0.05). Performance evaluation suggests that our indirect ELISA is reliable in detecting IgGs anti-MCPyV. Our immunological data indicate that MCPyV infection occurs asymptomatically, at a relatively high prevalence, in humans.
Collapse
Affiliation(s)
- Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | - Elena Torreggiani
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Pauline Gaboriaud
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Antoine Touzé
- ISP “Biologie des infections à polyomavirus” Team, UMR INRA 1282, University of Tours, Tours, France
| | - Ettore Silvagni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Marcello Govoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | |
Collapse
|
28
|
Dubois M, Abi Rached H, Escande A, Dezoteux F, Darloy F, Jouin A, Kyheng M, Labreuche J, Dziwniel V, Mirabel X, Mortier L. Outcome of early stage Merkel carcinoma treated by exclusive radiation: a study of 53 patients. Radiat Oncol 2021; 16:90. [PMID: 33990201 PMCID: PMC8120723 DOI: 10.1186/s13014-021-01815-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Purpose Early stage Merkel cell carcinoma (MCC) is a rare and aggressive primary skin cancer. The standard of care for MCC is broad excision and adjuvant external beam radiation therapy (EBRT). However, for some patients, anesthesia is contraindicated, while others run the risk of serious aesthetic sequelae. In such cases, exclusive radiotherapy is an interesting alternative to surgery. Though limited data is available, this study evaluates exclusive radiotherapy for MCC, using data from the largest retrospective study to date. Methods All patients who were followed in our center between 1989 and 2019 for histologically proven early stage MCC were included in the study. They were treated either by surgery with a 2-cm clear margin followed by adjuvant radiotherapy (RT) or by exclusive RT. Survival rates with adjuvant and exclusive EBRT were analyzed using Cox model and Fine and Gray model depending on the type of survival. p value < 0.05 was considered significant.
Results Eighty-four patients treated for MCC were included. Fifty-three of them (63.1%) were treated by exclusive RT, and 31 (36.9%) had surgical excision followed by adjuvant RT. Local relapse rate was 13.7% (95% CI 8.0–43.7) in the RT monotherapy group (group A) and 25.8% (95% CI 10.3–56.2) in the surgery + RT group (group B) (p = 0.42). No statistical difference was found for nodal relapse (p = 0.81), metastatic relapse (p = 0.10), disease free survival (p = 0.83) or overall survival (p = 0.98).
Conclusion Our study suggests that exclusive radiotherapy for early Merkel cell carcinoma leads to a similar oncological outcome as combined treatment, with fewer aesthetic sequelae. The approach is interesting for elderly patients with comorbidities or patients for whom surgery would cause significant functional or aesthetic sequelae. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01815-4.
Collapse
Affiliation(s)
- Manon Dubois
- CHU Lille, Service de Dermatologie, 59000, Lille, France.
| | - Henry Abi Rached
- CHU Lille, Service de Dermatologie, 59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, 59000, Lille, France.,H. Warembourg, School of Medicine, University of Lille, Lille, France
| | - Alexandre Escande
- H. Warembourg, School of Medicine, University of Lille, Lille, France.,University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France.,CRIStAL Laboratory, UMR 9189, University of Lille, Villeneuve d'Ascq, France
| | - Frédéric Dezoteux
- CHU Lille, Service de Dermatologie, 59000, Lille, France.,H. Warembourg, School of Medicine, University of Lille, Lille, France
| | - Franck Darloy
- Radiotherapy Center, Centre Léonard de Vinci, Dechy, France
| | - Anaïs Jouin
- Radiotherapy Center, Centre de Cancérologie Les Dentellières, Valenciennes, France
| | - Maeva Kyheng
- Department of Biostatistics, CHU Lille, 59000, Lille, France.,Univ. Lille, CHU Lille, ULR 2694 - METRICS: Evaluation Des Technologies de Santé Et Des Pratiques Médicales, 59000, Lille, France
| | - Julien Labreuche
- Department of Biostatistics, CHU Lille, 59000, Lille, France.,Univ. Lille, CHU Lille, ULR 2694 - METRICS: Evaluation Des Technologies de Santé Et Des Pratiques Médicales, 59000, Lille, France
| | - Véronique Dziwniel
- Languages Department, Centrale Lille Institut, Villeneuve d'Ascq, France
| | - Xavier Mirabel
- University Department of Radiation Oncology, Oscar Lambret Comprehensive Cancer Center, Lille, France
| | - Laurent Mortier
- CHU Lille, Service de Dermatologie, 59000, Lille, France.,Univ. Lille, Inserm, CHU Lille, U1189 - ONCO-THAI - Assisted Laser Therapy and Immunotherapy for Oncology, 59000, Lille, France.,H. Warembourg, School of Medicine, University of Lille, Lille, France.,CARADERM Network, Lille, France
| |
Collapse
|
29
|
Zwijnenburg EM, Lubeek SF, Werner JE, Amir AL, Weijs WL, Takes RP, Pegge SA, van Herpen CM, Adema GJ, Kaanders JHAM. Merkel Cell Carcinoma: New Trends. Cancers (Basel) 2021; 13:cancers13071614. [PMID: 33807446 PMCID: PMC8036880 DOI: 10.3390/cancers13071614] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/29/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary In this review, we discuss a rare skin cancer that occurs mostly in elderly people called “Merkel cell carcinoma” (MCC). The incidence is increasing due to ageing of the population, increased sun exposure, and the use of medication that inhibits the immune system. Unlike most other skin cancers, MCC grows rapidly and forms metastases easily. We discuss the biology and treatment of MCC. Management should be by an experienced and multidisciplinary team, and treatment must start quickly. The standard practice of MCC treatment is surgery followed by radiotherapy. However, because it concerns an elderly and often frail population, (extensive) surgery may not always be feasible due to the associated morbidity. In those situations, radiotherapy alone is a good alternative. An important new development is immunotherapy that can cause long-lasting responses in a significant proportion of the patients with recurrent or metastatic MCC. Abstract Merkel cell carcinoma (MCC) is a rare neuroendocrine tumor of the skin mainly seen in the elderly. Its incidence is rising due to ageing of the population, increased sun exposure, and the use of immunosuppressive medication. Additionally, with the availability of specific immunohistochemical markers, MCC is easier to recognize. Typically, these tumors are rapidly progressive and behave aggressively, emphasizing the need for early detection and prompt diagnostic work-up and start of treatment. In this review, the tumor biology and immunology, current diagnostic and treatment modalities, as well as new and combined therapies for MCC, are discussed. MCC is a very immunogenic tumor which offers good prospects for immunotherapy. Given its rarity, the aggressiveness, and the frail patient population it concerns, MCC should be managed in close collaboration with an experienced multidisciplinary team.
Collapse
Affiliation(s)
- Ellen M. Zwijnenburg
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
| | - Satish F.K. Lubeek
- Department of Dermatology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | | | - Avital L. Amir
- Department of Pathology, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Willem L.J. Weijs
- Department of Maxillofacial Surgery, Radboudumc 6525 GA Nijmegen, The Netherlands;
| | - Robert P. Takes
- Department of Head and Neck Surgery, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Sjoert A.H. Pegge
- Department of Radiology and Nuclear Medicine, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | | | - Gosse J. Adema
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
| | - Johannes H. A. M. Kaanders
- Department of Radiation Oncology, Radboudumc, 6525 GA Nijmegen, The Netherlands; (E.M.Z.); (G.J.A.)
- Correspondence: ; Tel.: +31-629-501-943
| |
Collapse
|
30
|
Mazzoni E, Iaquinta MR, Lanzillotti C, Mazziotta C, Maritati M, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Bioactive Materials for Soft Tissue Repair. Front Bioeng Biotechnol 2021; 9:613787. [PMID: 33681157 PMCID: PMC7933465 DOI: 10.3389/fbioe.2021.613787] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 01/26/2021] [Indexed: 01/29/2023] Open
Abstract
Over the past decades, age-related pathologies have increased abreast the aging population worldwide. The increased age of the population indicates that new tools, such as biomaterials/scaffolds for damaged tissues, which display high efficiency, effectively and in a limited period of time, for the regeneration of the body's tissue are needed. Indeed, scaffolds can be used as templates for three-dimensional tissue growth in order to promote the tissue healing stimulating the body's own regenerative mechanisms. In tissue engineering, several types of biomaterials are employed, such as bioceramics including calcium phosphates, bioactive glasses, and glass-ceramics. These scaffolds seem to have a high potential as biomaterials in regenerative medicine. In addition, in conjunction with other materials, such as polymers, ceramic scaffolds may be used to manufacture composite scaffolds characterized by high biocompatibility, mechanical efficiency and load-bearing capabilities that render these biomaterials suitable for regenerative medicine applications. Usually, bioceramics have been used to repair hard tissues, such as bone and dental defects. More recently, in the field of soft tissue engineering, this form of scaffold has also shown promising applications. Indeed, soft tissues are continuously exposed to damages, such as burns or mechanical traumas, tumors and degenerative pathology, and, thereby, thousands of people need remedial interventions such as biomaterials-based therapies. It is known that scaffolds can affect the ability to bind, proliferate and differentiate cells similar to those of autologous tissues. Therefore, it is important to investigate the interaction between bioceramics and somatic/stem cells derived from soft tissues in order to promote tissue healing. Biomimetic scaffolds are frequently employed as drug-delivery system using several therapeutic molecules to increase their biological performance, leading to ultimate products with innovative functionalities. This review provides an overview of essential requirements for soft tissue engineering biomaterials. Data on recent progresses of porous bioceramics and composites for tissue repair are also presented.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | | | | | - Chiara Mazziotta
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics-National Research Council (ISTEC-CNR), Faenza, Italy
| | - Mauro Tognon
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
31
|
Oton-Gonzalez L, Rotondo JC, Cerritelli L, Malagutti N, Lanzillotti C, Bononi I, Ciorba A, Bianchini C, Mazziotta C, De Mattei M, Pelucchi S, Tognon M, Martini F. Association between oncogenic human papillomavirus type 16 and Killian polyp. Infect Agent Cancer 2021; 16:3. [PMID: 33413530 PMCID: PMC7792173 DOI: 10.1186/s13027-020-00342-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/25/2020] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Killian polyp (KP) is a benign lesion that arises from the maxillary sinus. The etiology of KP is unknown. The aim of this study was to investigate the potential involvement of human papilloma- (HPV) and polyoma-viruses (HPyV) infections in the onset of KP. METHODS DNA from antral (n = 14) and nasal (n = 14) KP fractions were analyzed for HPV and HPyV sequences, genotypes, viral DNA load and physical status along with expression of viral proteins and p16 cellular protein. RESULTS The oncogenic HPV16 was detected in 3/14 (21.4%) antral KPs, whilst nasal KPs tested HPV-negative (0/14). The mean HPV16 DNA load was 4.65 ± 2.64 copy/104 cell. The whole HPV16 episomal genome was detected in one KP sample, whereas HPV16 DNA integration in two KPs. P16 mRNA level was lower in the KP sample carrying HPV16 episome than in KPs carrying integrated HPV16 and HPV- negative KPs (p< 0.001). None of the antral and nasal KP samples tested positive for HPyV DNA (0/28). CONCLUSIONS A fraction of KP tested positive for the oncogenic HPV16. HPV16 detection in the KP antral portion may be consistent with HPV16 infection derived from the maxillary sinus. HPV16 DNA integration represents a novel finding. Altogether, these data improve our knowledge on the association between KP and HPV infection, whereas it indicates that the KP onset is heterogeneous.
Collapse
Affiliation(s)
- Lucia Oton-Gonzalez
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - John Charles Rotondo
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Luca Cerritelli
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Nicola Malagutti
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Carmen Lanzillotti
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Ilaria Bononi
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Andrea Ciorba
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Bianchini
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Chiara Mazziotta
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Monica De Mattei
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy
| | - Stefano Pelucchi
- Department of Biomedical Sciences and Specialistic Surgeries, ENT Section, University of Ferrara and University Hospital of Ferrara, 8, Aldo Moro Square, 44124, Cona, Italy
| | - Mauro Tognon
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| | - Fernanda Martini
- Department of Medical Sciences, Laboratories of Cell Biology and Molecular Genetics, School of Medicine, University of Ferrara, 64/B, Fossato di Mortara Street, 44121, Ferrara, Italy.
| |
Collapse
|
32
|
Rotondo JC, Oton-Gonzalez L, Mazziotta C, Lanzillotti C, Iaquinta MR, Tognon M, Martini F. Simultaneous Detection and Viral DNA Load Quantification of Different Human Papillomavirus Types in Clinical Specimens by the High Analytical Droplet Digital PCR Method. Front Microbiol 2020; 11:591452. [PMID: 33329471 PMCID: PMC7710522 DOI: 10.3389/fmicb.2020.591452] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/19/2020] [Indexed: 12/31/2022] Open
Abstract
Human papillomaviruses (HPVs) are small DNA tumor viruses that mainly infect mucosal epithelia of anogenital and upper respiratory tracts. There has been progressive demand for more analytical assays for HPV DNA quantification. A novel droplet digital PCR (ddPCR) method was developed to simultaneously detect and quantify HPV DNA from different HPV types. DdPCR was initially tested for assay sensitivity, accuracy, specificity as well as intra- and inter-run assay variation employing four recombinant plasmids containing HPV16, HPV18, HPV11, and HPV45 DNAs. The assay was extended to investigate/quantify HPV DNA in Cervical Intraepithelial Neoplasia (CIN, n = 45) specimens and human cell lines (n = 4). DdPCR and qPCR data from clinical samples were compared. The assay showed high accuracy, sensitivity and specificity, with low intra-/inter- run variations, in detecting/quantifying HPV16/18/11/45 DNAs. HPV DNA was detected in 51.1% (23/45) CIN DNA samples by ddPCR, whereas 40% (18/45) CIN tested HPV-positive by qPCR. Five CIN, tested positive by ddPCR, were found to be negative by qPCR. In CIN specimens, the mean HPV DNA loads determined by ddPCR were 3.81 copy/cell (range 0.002-51.02 copy/cell), whereas 8.04 copy/cell (range 0.003-78.73 copy/cell) by qPCR. DdPCR and qPCR concordantly detected HPV DNA in SiHa, CaSki and Hela cells, whereas HaCaT tested HPV-negative. The correlation between HPV DNA loads simultaneously detected by ddPCR/qPCR in CINs/cell lines was good (R 2 = 0.9706, p < 0.0001). Our data indicate that ddPCR is a valuable technique in quantifying HPV DNA load in CIN specimens and human cell lines, thereby improving clinical applications, such as patient management after primary diagnosis of HPV-related lesions with HPV-type specific assays.
Collapse
Affiliation(s)
| | | | | | | | | | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| |
Collapse
|
33
|
Lodhi N, Tun M, Nagpal P, Inamdar AA, Ayoub NM, Siyam N, Oton-Gonzalez L, Gerona A, Morris D, Sandhu R, Suh KS. Biomarkers and novel therapeutic approaches for diffuse large B-cell lymphoma in the era of precision medicine. Oncotarget 2020; 11:4045-4073. [PMID: 33216822 PMCID: PMC7646825 DOI: 10.18632/oncotarget.27785] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Despite the great efforts for better treatment options for diffuse large B-cell lymphoma (DLBCL) (most common form of non-Hodgkin lymphoma, NHL) to treat and prevent relapse, it continues to be a challenge. Here, we present an overview of DLBCL and address the diagnostic assays and molecular techniques used in its diagnosis, role of biomarkers in detection, treatment of early and advanced stage DLBCL, and novel drug regimens. We discuss the significant biomarkers that have emerged as essential tools for stratifying patients according to risk factors and for providing insights into the use of more targeted and individualized therapeutics. We discuss techniques such as gene expression studies, including next-generation sequencing, which have enabled a more understanding of the complex pathogenesis of DLBCL and have helped determine molecular targets for novel therapeutic agents. We examine current treatment approaches, outline the findings of completed clinical trials, and provide updates for ongoing clinical trials. We highlight clinical trials relevant to the significant fraction of DLBCL patients who present with complex cases marked by high relapse rates. Supported by an increased understanding of targetable pathways in DLBCL, clinical trials involving specialized combination therapies are bringing us within reach the promise of an effective cure to DLBCL using precision medicine. Optimization of therapy remains a crucial objective, with the end goal being a balance between high survival rates through targeted and personalized treatment while reducing adverse effects in DLBCL patients of all subsets.
Collapse
Affiliation(s)
- Niraj Lodhi
- Department of Immunotherapeutic and Biotechnology, Texas Tech Health Science Center, Abilene, TX, USA
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Moe Tun
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- These authors contributed equally to this work
| | - Poonam Nagpal
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- College of Natural, Applied, and Health Sciences, Kean University, Union, NJ, USA
| | - Arati A. Inamdar
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Nehad M. Ayoub
- Department of Clinical Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Noor Siyam
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | | | - Angela Gerona
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Dainelle Morris
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Rana Sandhu
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
| | - Kwangsun Stephen Suh
- Formerly: The Genomics and Biomarkers Program, John Theurer Cancer Center at Hackensack University Medical Center, David Jurist Research Building, Hackensack, NJ, USA
- DiagnoCine, Hackensack, NJ, USA
| |
Collapse
|
34
|
Tognon M, Tagliapietra A, Magagnoli F, Mazziotta C, Oton-Gonzalez L, Lanzillotti C, Vesce F, Contini C, Rotondo JC, Martini F. Investigation on Spontaneous Abortion and Human Papillomavirus Infection. Vaccines (Basel) 2020; 8:E473. [PMID: 32854278 PMCID: PMC7563606 DOI: 10.3390/vaccines8030473] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/12/2020] [Indexed: 02/07/2023] Open
Abstract
Viral infections are considered to be risk factors for spontaneous abortion (SA). Conflicting results have been reported on the association between Human Papillomavirus (HPV) and SA. HPV DNA was investigated in matched chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from women who experienced SA (n = 80, cases) and women who underwent a voluntary interruption of pregnancy (VI; n = 80, controls) by qualitative PCR and quantitative droplet digital PCR (ddPCR). Viral genotyping was performed using real-time PCR in HPV-positive samples. Specific IgG antibodies against HPV16 were investigated in sera from SA (n = 80) and VI (n = 80) females using indirect ELISA assays. None of the DNA samples from SA subjects was HPV-positive (0/80), whilst HPV DNA was detected in 2.5% of VI women (p > 0.05), with a mean viral DNA load of 7.12 copy/cell. VI samples (n = 2) were found to be positive for the HPV45 genotype. The ddPCR assay revealed a higher number of HPV-positive samples. HPV DNA was detected in 3.7% and 5% of SA and VI chorionic tissues, respectively, with mean viral DNA loads of 0.13 copy/cell in SA and 1.79 copy/cell in VI (p >0.05) samples. All DNA samples from the PBMCs of SA and VI females tested HPV-negative by both PCR and ddPCR. The overall prevalence of serum anti-HPV16 IgG antibodies was 37.5% in SA and 30% in VI (p > 0.05) women. For the first time, HPV DNA was detected and quantitatively analyzed using ddPCR in chorionic villi tissues and PBMCs from SA and VI women. Circulating IgG antibodies against HPV16 were detected in sera from SA and VI females. Our results suggest that HPV infection in chorionic villi may be a rare event. Accordingly, it is likely that HPV has no significant role in SA.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - John Charles Rotondo
- Department of Medical Sciences, University of Ferrara, Fossato di Mortara street, 64, 44121 Ferrara, Italy; (M.T.); (A.T.); (F.M.); (C.M.); (L.O.-G.); (C.L.); (F.V.); (C.C.)
| | - Fernanda Martini
- Department of Medical Sciences, University of Ferrara, Fossato di Mortara street, 64, 44121 Ferrara, Italy; (M.T.); (A.T.); (F.M.); (C.M.); (L.O.-G.); (C.L.); (F.V.); (C.C.)
| |
Collapse
|
35
|
Tagliapietra A, Rotondo JC, Bononi I, Mazzoni E, Magagnoli F, Maritati M, Contini C, Vesce F, Tognon M, Martini F. Footprints of BK and JC polyomaviruses in specimens from females affected by spontaneous abortion. Hum Reprod 2020; 34:433-440. [PMID: 30590693 DOI: 10.1093/humrep/dey375] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/19/2018] [Accepted: 11/30/2018] [Indexed: 01/25/2023] Open
Abstract
STUDY QUESTION Are JC polyomavirus (JCPyV) and BK polyomavirus (BKPyV) infections associated with spontaneous abortion (SA)? SUMMARY ANSWER There is no association of JCPyV or BKPyV with SA. WHAT IS KNOWN ALREADY A large number of risk factors have been associated with SA. The role of polyomaviruses, including JCPyV and BKPyV, in SA remains to be clarified. STUDY DESIGN, SIZE, DURATION This is a case-control study including women affected by spontaneous abortion (SA, n = 100, the cases) and women who underwent voluntary interruption of pregnancy (VI, n = 100, the controls). PARTICIPANTS/MATERIALS, SETTING, METHODS Viral DNAs were investigated by qualitative PCR and quantitative droplet-digital PCR (ddPCR) in matched chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from SA (n = 100) and VI (n = 100). Indirect ELISAs with mimotopes/synthetic peptides corresponding to JCPyV and BKPyV viral capsid protein 1 epitopes were then employed to investigate specific IgG antibodies against JCPyV and BKPyV in human sera from SA (n = 80) and VI (n = 80) cohorts. MAIN RESULTS AND THE ROLE OF CHANCE JCPyV DNA was detected in 51% and 61% of SA and VI samples, respectively, with a mean viral DNA load of 7.92 copy/104 cells in SA and 5.91 copy/104 cells in VI (P > 0.05); BKPyV DNA was detected in 11% and 12% of SA and VI specimens, respectively, with a mean viral DNA load of 2.7 copy/104 cells in SA and 3.08 copy/104 cells in VI (P > 0.05). JCPyV was more prevalent than BKPyV in both SA and VI specimens (P < 0.0001). In PBMCs from the SA and VI cohorts, JCPyV DNA was detected with a prevalence of 8% and 12%, respectively, with a mean viral DNA load of 2.29 copy/104 cells in SA and 1.88 copy/104 cells in VI (P > 0.05). The overall prevalence of serum IgG antibodies against JCPyV detected by indirect ELISAs was 52.5% and 48.7% in SA and VI groups, respectively, whereas BKPyV-positive sera were found in 80% SA and 78.7% VI samples. LIMITATIONS, REASONS FOR CAUTION This study did not investigate the presence of viral mRNA and/or proteins, which are indicative of an active viral infection, and these might be taken into consideration in future studies. WIDER IMPLICATIONS OF THE FINDINGS JCPyV and BKPyV DNA sequences were detected and quantitatively analyzed for the first time by PCR/ddPCR in chorionic villi tissues and PBMCs from SA and VI specimens. Moreover specific immunological approaches detected serum IgG against JCPyV/BKPyV. Statistical analyses, however, do not indicate an association between these polyomaviruses and SA. STUDY FUNDING/COMPETING INTEREST(S) This work was supported by the University of Ferrara, FAR research grants and the University Hospital of Ferrara/University of Ferrara joint grant. No potential conflicts of interest were disclosed.
Collapse
Affiliation(s)
- A Tagliapietra
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - J C Rotondo
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - I Bononi
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - E Mazzoni
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - F Magagnoli
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - M Maritati
- Department of Medical Sciences; Section of Infectious Diseases and Dermatology; University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - C Contini
- Department of Medical Sciences; Section of Infectious Diseases and Dermatology; University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - F Vesce
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, 8, Aldo Moro Street, Ferrara, Italy
| | - M Tognon
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| | - F Martini
- Department of Morphology, Surgery and Experimental Medicine; Section of Pathology, Oncology and Experimental Biology; Laboratories of Cell Biology and Molecular Genetics, University of Ferrara, 64/B, Fossato di Mortara Street, Ferrara, Italy
| |
Collapse
|
36
|
Provenzano M, Allayeh AK. Liquid Biopsy to Detect DNA/RNA Based Markers of Small DNA Oncogenic Viruses for Prostate Cancer Diagnosis, Prognosis, and Prediction. Front Oncol 2020; 10:778. [PMID: 32733786 PMCID: PMC7362723 DOI: 10.3389/fonc.2020.00778] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 04/21/2020] [Indexed: 12/19/2022] Open
Affiliation(s)
- Maurizio Provenzano
- Oncology Research Unit, Department of Urology and Division of Surgical Research, University Hospital of Zurich, Schlieren, Switzerland.,Department of Immunology, University Hospital of Zurich, Zürich, Switzerland
| | - Abdou Kamal Allayeh
- Oncology Research Unit, Department of Urology and Division of Surgical Research, University Hospital of Zurich, Schlieren, Switzerland.,Virology Lab 176, Environmental Research Division, National Research Centre, Cairo, Egypt
| |
Collapse
|
37
|
Epstein–Barr Virus Infection Related to Low White Blood Cell Count in Cancer Patients Receiving Chemotherapy in Al-Najaf Governorate/Iraq. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2020. [DOI: 10.22207/jpam.14.2.59] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
Prezioso C, Obregon F, Ambroselli D, Petrolo S, Checconi P, Rodio DM, Coppola L, Nardi A, de Vito C, Sarmati L, Andreoni M, Palamara AT, Ciotti M, Pietropaolo V. Merkel Cell Polyomavirus (MCPyV) in the Context of Immunosuppression: Genetic Analysis of Noncoding Control Region (NCCR) Variability among a HIV-1-Positive Population. Viruses 2020; 12:v12050507. [PMID: 32375383 PMCID: PMC7291121 DOI: 10.3390/v12050507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Background: Since limited data are available about the prevalence of Merkel cell polyomavirus (MCPyV) and the genetic variability of its noncoding control region (NCCR) in the context of immunosuppression, this study aimed to investigate the distribution of MCPyV in anatomical sites other than the skin and the behavior of NCCR among an HIV-1-positive population. Methods: Urine, plasma, and rectal swabs specimens from a cohort of 66 HIV-1-positive patients were collected and subjected to quantitative real-time polymerase chain reaction (qPCR) for MCPyV DNA detection. MCPyV-positive samples were amplified by nested PCR targeting the NCCR, and NCCRs alignment was carried out to evaluate the occurrence of mutations and to identify putative binding sites for cellular factors. Results: MCPyV DNA was detected in 10/66 urine, in 7/66 plasma, and in 23/66 rectal samples, with a median value of 5 × 102 copies/mL, 1.5 × 102 copies/mL, and 2.3 × 103 copies/mL, respectively. NCCR sequence analysis revealed a high degree of homology with the MCC350 reference strain in urine, whereas transitions, transversions, and single or double deletions were observed in plasma and rectal swabs. In these latter samples, representative GTT and GTTGA insertions were also observed. Search for putative binding sites of cellular transcription factors showed that in several strains, deletions, insertions, or single base substitutions altered the NCCR canonical configuration. Conclusions: Sequencing analysis revealed the presence of numerous mutations in the NCCR, including insertions and deletions. Whether these mutations may have an impact on the pathogenic features of the virus remains to be determined. qPCR measured on average a low viral load in the specimens analyzed, with the exception of those with the GTTGA insertion.
Collapse
Affiliation(s)
- Carla Prezioso
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy; (C.P.); (A.T.P.)
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Francisco Obregon
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Donatella Ambroselli
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Sara Petrolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Paola Checconi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy;
| | - Donatella Maria Rodio
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Luigi Coppola
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
| | - Angelo Nardi
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Corrado de Vito
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
| | - Loredana Sarmati
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Massimo Andreoni
- Infectious Diseases Clinic, Policlinic Tor Vergata, 00133 Rome, Italy; (L.C.); (L.S.); (M.A.)
- Department of System Medicine, Tor Vergata University of Rome, 00133 Rome, Italy
| | - Anna Teresa Palamara
- IRCSS San Raffaele Pisana, Microbiology of Chronic Neuro-Degenerative Pathologies, 00166 Rome, Italy; (C.P.); (A.T.P.)
- Department of Public Health and Infectious Diseases, Institute Pasteur, Cenci-Bolognetti Foundation, Sapienza University of Rome, 00185 Rome, Italy
| | - Marco Ciotti
- Laboratory of Clinical Microbiology and Virology, Polyclinic Tor Vergata Foundation, 00133 Rome, Italy;
| | - Valeria Pietropaolo
- Department of Public Health and Infectious Diseases, “Sapienza” University, 00185 Rome, Italy; (F.O.); (D.A.); (S.P.); (D.M.R.); (A.N.); (C.d.V.)
- Correspondence: ; Tel.: +39-06-4991-4439
| |
Collapse
|
39
|
McIlroy D, Halary F, Bressollette-Bodin C. Intra-patient viral evolution in polyomavirus-related diseases. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180301. [PMID: 30955497 DOI: 10.1098/rstb.2018.0301] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Human polyomaviruses show relatively little genetic polymorphism between isolates, indicating that these viruses are genetically stable between hosts. However, it has become increasingly clear that intra-host molecular evolution is a feature of some polyomavirus (PyV) infections in humans. Mutations inducing premature stop codons in the early region of the integrated Merkel cell PyV genome lead to the expression of a truncated form of the large tumour (LT) antigen that is critical for the transformation of Merkel cell carcinoma (MCC) cells. Non-coding control region (NCCR) rearrangements and point mutations in virion protein (VP) 1 have been described in both JCPyV and BKPyV infections. In the context of JCPyV infection, molecular evolution at both these loci allows the virus to replicate effectively in the central nervous system, thereby leading to the development of progressive multifocal leukoencephalopathy (PML). In BKPyV infection, NCCR rearrangements have been linked to higher rates of virus replication in the kidney, and are proposed to play a direct causal role in the development of PyV-associated nephropathy. In all three of these infections, therefore, intra-host viral evolution appears to be an essential component of the disease process. This article is part of the theme issue 'Silent cancer agents: multi-disciplinary modelling of human DNA oncoviruses'.
Collapse
Affiliation(s)
- Dorian McIlroy
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,2 Faculté des Sciences et des Techniques, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Franck Halary
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France
| | - Céline Bressollette-Bodin
- 1 Centre de Recherche en Transplantation et Immunologie UMR 1064, INSERM, Université de Nantes , 44093 Nantes cedex 01 , France.,3 Faculté de Médecine, Université de Nantes , 44093 Nantes cedex 01 , France.,4 Institut de Transplantation Urologie Néphrologie (ITUN), CHU Nantes , 44093 Nantes cedex 01 , France.,5 Service de Virologie, CHU Nantes , 44093 Nantes cedex 01 , France
| |
Collapse
|
40
|
Malagutti N, Rotondo JC, Cerritelli L, Melchiorri C, De Mattei M, Selvatici R, Oton-Gonzalez L, Stomeo F, Mazzoli M, Borin M, Mores B, Ciorba A, Tognon M, Pelucchi S, Martini F. High Human Papillomavirus DNA loads in Inflammatory Middle Ear Diseases. Pathogens 2020; 9:224. [PMID: 32197385 PMCID: PMC7157545 DOI: 10.3390/pathogens9030224] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 03/14/2020] [Accepted: 03/15/2020] [Indexed: 01/19/2023] Open
Abstract
Background. Previous studies reported human papillomaviruses (HPVs) in middle ear tumors, whereas these viruses have been poorly investigated in chronic inflammatory middle ear diseases. We investigated HPVs in non-tumor middle ear diseases, including chronic otitis media (COM). Methods. COM specimens (n = 52), including chronic suppurative otitis media (CSOM) (n =38) and cholesteatoma (COMC) (n = 14), as well as normal middle ear (NME) specimens (n = 56) were analyzed. HPV sequences and DNA loads were analyzed by quantitative-PCR. HPV genotyping was performed by direct sequencing. Results. HPV DNA was detected in 23% (12/52) of COM and in 30.4% (17/56) of NME (p > 0.05). Specifically, HPV DNA sequences were found in 26.3% (10/38) of CSOM and in 14.3% (2/14) of COMC (p > 0.05). Interestingly, the HPV DNA load was higher in COMC (mean 7.47 copy/cell) than in CSOM (mean 1.02 copy/cell) and NME (mean 1.18 copy/cell) (P = 0.03 and P = 0.017 versus CSOM and NME, respectively). HPV16 and HPV18 were the main genotypes detected in COMC, CSOM and NME. Conclusions. These data suggest that HPV may infect the middle ear mucosa, whereas HPV-positive COMCs are associated with higher viral DNA loads as compared to NME.
Collapse
Affiliation(s)
- Nicola Malagutti
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Luca Cerritelli
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Claudio Melchiorri
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Monica De Mattei
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Rita Selvatici
- Department of Medical Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Lucia Oton-Gonzalez
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Francesco Stomeo
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Manuela Mazzoli
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Michela Borin
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Beatrice Mores
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Andrea Ciorba
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| | - Stefano Pelucchi
- ENT Department, University Hospital of Ferrara, 44121 Ferrara, Italy; (N.M.); (L.C.); (C.M.); (F.S.); (M.M.); (M.B.); (B.M.); (S.P.)
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy; (J.C.R.); (M.D.M.); (L.O.-G.); (M.T.)
| |
Collapse
|
41
|
Mazzoni E, Pellegrinelli E, Mazziotta C, Lanzillotti C, Rotondo JC, Bononi I, Iaquinta MR, Manfrini M, Vesce F, Tognon M, Martini F. Mother-to-child transmission of oncogenic polyomaviruses BKPyV, JCPyV and SV40. J Infect 2020; 80:563-570. [PMID: 32097686 DOI: 10.1016/j.jinf.2020.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/29/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Polyomavirus (PyV) infections have been associated with different diseases. BK (BKPyV), JC (JCPyV) and simian virus 40 (SV40) are the three main PyVs whose primary infection occurs early in life. Their vertical transmission was investigated in this study. METHODS PyV sequences were analyzed by the digital droplet PCR in blood, serum, placenta, amniotic fluid, vaginal smear from two independent cohorts of pregnant females and umbilical cord blood (UCB) samples. IgG antibodies against the three PyVs were investigated by indirect E.L.I.S.As with viral mimotopes. RESULTS DNAs from blood, vaginal smear and placenta tested BKPyV-, JCPyV- and SV40-positive with a distinct prevalence, while amniotic fluids were all PyVs-negative. A prevalence of 3%, 7%, and 3% for BKPyV, JCPyV and SV40 DNA sequences, respectively, was obtained in UCBs. Serum IgG antibodies from pregnant females reached an overall prevalence of 62%, 42% and 17% for BKPyV, JCPyV and SV40, respectively. Sera from newborns (UCB) tested IgG-positive with a prevalence of 10% for BKPyV/JCPyV and 3% for SV40. CONCLUSIONS In this investigation, PyV vertical transmission was revealed by detecting PyV DNA sequences and IgG antibodies in samples from females and their offspring suggesting a potential risk of diseases in newborns.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Elena Pellegrinelli
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Chiara Mazziotta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Carmen Lanzillotti
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - John Charles Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Maria Rosa Iaquinta
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy
| | - Marco Manfrini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy; Biostatistic Unit, GVM Care & Research, Maria Cecilia Hospital, Cotignola, Italy
| | - Fortunato Vesce
- Section of Gynecology and Obstetrics, Department of Morphology, Surgery and Experimental Medicine, School of Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, 64/b, Fossato di Mortara Street, Ferrara 44121, Italy.
| |
Collapse
|
42
|
Mazzoni E, D'Agostino A, Iaquinta MR, Bononi I, Trevisiol L, Rotondo JC, Patergnani S, Giorgi C, Gunson MJ, Arnett GW, Nocini PF, Tognon M, Martini F. Hydroxylapatite-collagen hybrid scaffold induces human adipose-derived mesenchymal stem cells to osteogenic differentiation in vitro and bone regrowth in patients. Stem Cells Transl Med 2019; 9:377-388. [PMID: 31834992 PMCID: PMC7031637 DOI: 10.1002/sctm.19-0170] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 10/10/2019] [Indexed: 12/17/2022] Open
Abstract
Tissue engineering-based bone graft is an emerging viable treatment modality to repair and regenerate tissues damaged as a result of diseases or injuries. The structure and composition of scaffolds should modulate the classical osteogenic pathways in human stem cells. The osteoinductivity properties of the hydroxylapatite-collagen hybrid scaffold named Coll/Pro Osteon 200 were investigated in an in vitro model of human adipose mesenchymal stem cells (hASCs), whereas the clinical evaluation was carried out in maxillofacial patients. Differentially expressed genes (DEGs) induced by the scaffold were analyzed using the Osteogenesis RT2 PCR Array. The osteoinductivity potential of the scaffold was also investigated by studying the alkaline phosphatase (ALP) activity, matrix mineralization, osteocalcin (OCN), and CLEC3B expression protein. Fifty patients who underwent zygomatic augmentation and bimaxillary osteotomy were evaluated clinically, radiologically, and histologically during a 3-year follow-up. Among DEGs, osteogenesis-related genes, including BMP1/2, ALP, BGLAP, SP7, RUNX2, SPP1, and EGFR, which play important roles in osteogenesis, were found to be upregulated. The genes to cartilage condensation SOX9, BMPR1B, and osteoclast cells TNFSF11 were detected upregulated at every time point of the investigation. This scaffold has a high osteoinductivity revealed by the matrix mineralization, ALP activity, OCN, and CLEC3B expression proteins. Clinical evaluation evidences that the biomaterial promotes bone regrowth. Histological results of biopsy specimens from patients showed prominent ossification. Experimental data using the Coll/Pro Osteon 200 indicate that clinical evaluation of bone regrowth in patients, after scaffold implantation, was supported by DEGs implicated in skeletal development as shown in "in vitro" experiments with hASCs.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - Maria Rosa Iaquinta
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | | | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Carlotta Giorgi
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Michael J Gunson
- Private Practice, Arnett and Gunson Facial Reconstruction, Santa Barbara, California
| | - G William Arnett
- Private Practice, Arnett and Gunson Facial Reconstruction, Santa Barbara, California.,Department of Oral and Maxillofacial Surgery, Loma Linda University, Loma Linda, California
| | | | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
43
|
Iaquinta MR, Mazzoni E, Bononi I, Rotondo JC, Mazziotta C, Montesi M, Sprio S, Tampieri A, Tognon M, Martini F. Adult Stem Cells for Bone Regeneration and Repair. Front Cell Dev Biol 2019; 7:268. [PMID: 31799249 PMCID: PMC6863062 DOI: 10.3389/fcell.2019.00268] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
The regeneration of bone fractures, resulting from trauma, osteoporosis or tumors, is a major problem in our super-aging society. Bone regeneration is one of the main topics of concern in regenerative medicine. In recent years, stem cells have been employed in regenerative medicine with interesting results due to their self-renewal and differentiation capacity. Moreover, stem cells are able to secrete bioactive molecules and regulate the behavior of other cells in different host tissues. Bone regeneration process may improve effectively and rapidly when stem cells are used. To this purpose, stem cells are often employed with biomaterials/scaffolds and growth factors to accelerate bone healing at the fracture site. Briefly, this review will describe bone structure and the osteogenic differentiation of stem cells. In addition, the role of mesenchymal stem cells for bone repair/regrowth in the tissue engineering field and their recent progress in clinical applications will be discussed.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Chiara Mazziotta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Simone Sprio
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council, Faenza, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
44
|
Törüner M, Akpınar H, Akyüz F, Dağlı Ü, Hamzaoğlu HÖ, Tezel A, Ünsal B, Yıldırım S, Çelik AF. 2019 Expert opinion on biological treatment use in inflammatory bowel disease management. THE TURKISH JOURNAL OF GASTROENTEROLOGY : THE OFFICIAL JOURNAL OF TURKISH SOCIETY OF GASTROENTEROLOGY 2019; 30:S913-S946. [PMID: 32207688 PMCID: PMC7372973 DOI: 10.5152/tjg.2019.061119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 10/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Murat Törüner
- Department of Gastroenterology, Ankara University School of Medicine, Ankara, Turkey
| | - Hale Akpınar
- Department of Gastroenterology, Dokuz Eylül University School of Medicine, İzmir, Turkey
| | - Filiz Akyüz
- Department of Gastroenterology, İstanbul University School of Medicine, İstanbul, Turkey
| | - Ülkü Dağlı
- Department of Gastroenterology, Başkent University School of Medicine, İstanbul, Turkey
| | - Hülya Över Hamzaoğlu
- Department of Gastroenterology, İstanbul Acıbadem Fulya Hospital, İstanbul, Turkey
| | - Ahmet Tezel
- Department of Gastroenterology, Trakya University School of Medicine, Edirne, Turkey
| | - Belkıs Ünsal
- Department of Gastroenterology, Katip Çelebi University School of Medicine, İzmir, Turkey
| | - Süleyman Yıldırım
- Department of Gastroenterology, İstanbul University-Cerrahpaşa Cerrahpaşa School of Medicine, İstanbul, Turkey
| | - Aykut Ferhat Çelik
- Department of Gastroenterology, İstanbul University-Cerrahpaşa Cerrahpaşa School of Medicine, İstanbul, Turkey
| |
Collapse
|
45
|
Bobrowicz M, Zagozdzon R, Domagala J, Vasconcelos-Berg R, Guenova E, Winiarska M. Monoclonal Antibodies in Dermatooncology-State of the Art and Future Perspectives. Cancers (Basel) 2019; 11:E1420. [PMID: 31554169 PMCID: PMC6826541 DOI: 10.3390/cancers11101420] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/08/2019] [Accepted: 09/17/2019] [Indexed: 12/21/2022] Open
Abstract
Monoclonal antibodies (mAbs) targeting specific proteins are currently the most popular form of immunotherapy used in the treatment of cancer and other non-malignant diseases. Since the first approval of anti-CD20 mAb rituximab in 1997 for the treatment of B-cell malignancies, the market is continuously booming and the clinically used mAbs have undergone a remarkable evolution. Novel molecular targets are constantly emerging and the development of genetic engineering have facilitated the introduction of modified mAbs with improved safety and increased capabilities to activate the effector mechanisms of the immune system. Next to their remarkable success in hematooncology, mAbs have also an already established role in the treatment of solid malignancies. The recent development of mAbs targeting the immune checkpoints has opened new avenues for the use of this form of immunotherapy, also in the immune-rich milieu of the skin. In this review we aim at presenting a comprehensive view of mAbs' application in the modern treatment of skin cancer. We present the characteristics and efficacy of mAbs currently used in dermatooncology and summarize the recent clinical trials in the field. We discuss the side effects and strategies for their managing.
Collapse
Affiliation(s)
| | - Radoslaw Zagozdzon
- Department of Clinical Immunology, Medical University of Warsaw, 02-006 Warsaw, Poland.
- Department of Immunology, Transplantology and Internal Diseases, Medical University of Warsaw, 02-006 Warsaw, Poland.
| | - Joanna Domagala
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland.
- Postgraduate School of Molecular Medicine, 02-091 Warsaw, Poland.
| | - Roberta Vasconcelos-Berg
- Department of Dermatology, University Hospital Basel, University of Basel, 4031 Basel, Switzerland.
| | - Emmanuella Guenova
- Department of Dermatology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland.
- Department of Dermatology, University of Lausanne, 1011 Lausanne, Switzerland.
| | - Magdalena Winiarska
- Department of Immunology, Medical University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
46
|
Tagliapietra A, Rotondo JC, Bononi I, Mazzoni E, Magagnoli F, Gonzalez LO, Contini C, Vesce F, Tognon M, Martini F. Droplet-digital PCR assay to detect Merkel cell polyomavirus sequences in chorionic villi from spontaneous abortion affected females. J Cell Physiol 2019; 235:1888-1894. [PMID: 31549405 DOI: 10.1002/jcp.29213] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 09/03/2019] [Indexed: 12/12/2022]
Abstract
Droplet-digital polymerase chain reaction (ddPCR) technique was set up to detect/quantify Merkel cell polyomavirus (MCPyV) DNA in clinical specimens, including chorionic villi and peripheral blood mononuclear cells (PBMCs) from spontaneous abortion (SA)-affected females. This ddPCR assay showed high accuracy, sensitivity, and specificity in detecting MCPyV DNA cloned in a recombinant plasmid vector, the control. ddPCR was extended to MCPyV DNA to investigate/quantify its sequences in clinical samples. Overall, 400 samples were analyzed, that is, 100 chorionic villi and 100 PBMCs, from SA females (n = 100), the cases, and 100 chorionic villi and 100 PBMCs from females who underwent voluntary pregnancy interruption (VI, n = 100), the control. MCPyV DNA was detected in 4/100 (4%) and 5/100 (5%) of SA and VI chorionic villi, respectively. The mean viral DNA load was 1.99 ( ± 0.94 standard mean deviation [SD]) copy/104 cells in SA and 3.02 ( ± 1.86 [SD]) copy/104 cells in VI. In PBMCs, MCPyV DNA was revealed in 9/100 (9%) and 14/100 (14%) of SA and VI, with a mean of 2.09 ( ± 1.17 [SD]) copy/104 cells and 4.09 ( ± 4.26 [SD]) copy/104 cells in SA and VI, respectively. MCPyV gene expression analysis by quantitative PCR for the large T antigen (LT) and viral capsid protein 1 (VP1) showed their mRNAs in 2/4 (50%) SA- and 2/5 (40%) VI-MCPyV-positive samples. MCPyV DNA was detected/quantified using the ddPCR technique, in chorionic villi and PBMCs from SA and VI. In our experimental conditions, ddPCR provided a powerful tool to detect/quantify MCPyV DNA sequences in clinical samples.
Collapse
Affiliation(s)
- Andrea Tagliapietra
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - John Charles Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Federica Magagnoli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Lucia Oton Gonzalez
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Carlo Contini
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Fortunato Vesce
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
47
|
Rotondo JC, Mazzoni E, Bononi I, Tognon M, Martini F. Association Between Simian Virus 40 and Human Tumors. Front Oncol 2019; 9:670. [PMID: 31403031 PMCID: PMC6669359 DOI: 10.3389/fonc.2019.00670] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Simian virus 40 (SV40) is a small DNA tumor virus of monkey origin. This polyomavirus was administered to human populations mainly through contaminated polio vaccines, which were produced in naturally infected SV40 monkey cells. Previous molecular biology and recent immunological assays have indicated that SV40 is spreading in human populations, independently from earlier SV40-contaminated vaccines. SV40 DNA sequences have been detected at a higher prevalence in specific human cancer specimens, such as the brain and bone tumors, malignant pleural mesotheliomas, and lymphoproliferative disorders, compared to the corresponding normal tissues/specimens. However, other investigations, which reported negative data, did not confirm an association between SV40 and human tumors. To circumvent the controversies, which have arisen because of these molecular biology studies, immunological researches with newly developed indirect ELISA tests were carried out in serum samples from patients affected by the same kind of tumors as mentioned above. These innovative indirect ELISAs employ synthetic peptides as mimotopes/specific SV40 antigens. SV40 mimotopes do not cross-react with the homologous human polyomaviruses, BKPyV, and JCPyV. Immunological data obtained from indirect ELISAs, using SV40 mimotopes, employed to analyze serum samples from oncological patients, have indicated that these sera had a higher prevalence of antibodies against SV40 compared to healthy subjects. The main data on (i) the biology and genetics of SV40; (ii) the epidemiology of SV40 in the general population, (iii) the mechanisms of SV40 transformation; (iv) the putative role of SV40 in the onset/progression of specific human tumors, and (v) its association with other human diseases are reported in this review.
Collapse
Affiliation(s)
- John Charles Rotondo
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Mazzoni
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Mauro Tognon
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Section of Pathology, Oncology and Experimental Biology, Department of Morphology, Surgery and Experimental Medicine, University of Ferrara, Ferrara, Italy
| |
Collapse
|
48
|
Iaquinta MR, Mazzoni E, Manfrini M, D'Agostino A, Trevisiol L, Nocini R, Trombelli L, Barbanti-Brodano G, Martini F, Tognon M. Innovative Biomaterials for Bone Regrowth. Int J Mol Sci 2019; 20:E618. [PMID: 30709008 PMCID: PMC6387157 DOI: 10.3390/ijms20030618] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/25/2019] [Accepted: 01/29/2019] [Indexed: 12/16/2022] Open
Abstract
The regenerative medicine, a new discipline that merges biological sciences and the fundamental of engineering to develop biological substitutes, has greatly benefited from recent advances in the material engineering and the role of stem cells in tissue regeneration. Regenerative medicine strategies, involving the combination of biomaterials/scaffolds, cells, and bioactive agents, have been of great interest especially for the repair of damaged bone and bone regrowth. In the last few years, the life expectancy of our population has progressively increased. Aging has highlighted the need for intervention on human bone with biocompatible materials that show high performance for the regeneration of the bone, efficiently and in a short time. In this review, the different aspects of tissue engineering applied to bone engineering were taken into consideration. The first part of this review introduces the bone cellular biology/molecular genetics. Data on biomaterials, stem cells, and specific growth factors for the bone regrowth are reported in this review.
Collapse
Affiliation(s)
- Maria Rosa Iaquinta
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Elisa Mazzoni
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Marco Manfrini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | | | | | - Riccardo Nocini
- Department of Surgery, University of Verona, 37129 Verona, Italy.
| | - Leonardo Trombelli
- Research Centre for the Study of Periodontal and Peri-Implant Diseases, University of Ferrara, 44121 Ferrara, Italy.
| | | | - Fernanda Martini
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| | - Mauro Tognon
- Department of Morphology, Surgery, and Experimental Medicine, University of Ferrara, 44121 Ferrara, Italy.
| |
Collapse
|
49
|
Contini C, Rotondo JC, Magagnoli F, Maritati M, Seraceni S, Graziano A, Poggi A, Capucci R, Vesce F, Tognon M, Martini F. Investigation on silent bacterial infections in specimens from pregnant women affected by spontaneous miscarriage. J Cell Physiol 2018; 234:100-107. [PMID: 30078192 DOI: 10.1002/jcp.26952] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/01/2018] [Indexed: 12/12/2022]
Abstract
Miscarriage is one of the main complications occurring in pregnancy. The association between adverse pregnancy outcomes and silent bacterial infections has been poorly investigated. Ureaplasma parvum and urealiticum, Mycoplasma genitalium and hominis and Chlamydia trachomatis DNA sequences have been investigated by polymerase chain reaction (PCR) methods in chorionic villi tissues and peripheral blood mononuclear cells (PBMCs) from females with spontaneous abortion (SA, n = 100) and females who underwent voluntary interruption of pregnancy (VI, n = 100). U. parvum DNA was detected in 14% and 15% of SA and VI, respectively, with a mean of bacterial DNA load of 1.3 × 10-1 copy/cell in SA and 2.8 × 10 -3 copy/cell in VI; U. urealiticum DNA was detected in 3% and 2% of SA and VI specimens, respectively, with a mean DNA load of 3.3 × 10-3 copy/cell in SA and 1.6 × 10-3 copy/cell in VI; M. hominis DNA was detected in 5% of SA specimens with a DNA load of 1.3 × 10-4 copy/cell and in 6% of VI specimens with a DNA load of 1.4 × 10-4 copy/cell; C. trachomatis DNA was detected in 3% of SA specimens with a DNA load of 1.5 × 10-4 copy/cell and in 4% of VI specimens with a mean DNA load of 1.4 × 10-4 copy/cell. In PBMCs from the SA and VI groups, Ureaplasma spp, Mycoplasma spp and C. trachomatis DNAs were detected with a prevalence of 1%-3%. Bacteria were investigated, for the first time, by quantitative real-time PCR (qPCR) in chorionic villi tissues and PBMCs from women affected by SA and VI. These data may help to understand the role and our knowledge of the silent infections in SA.
Collapse
Affiliation(s)
- Carlo Contini
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - John C Rotondo
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Federica Magagnoli
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Martina Maritati
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Silva Seraceni
- Department of Medical Sciences, Section of Infectious Diseases and Dermatology, University of Ferrara, Ferrara, Italy
| | - Angela Graziano
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Ferrara, Italy
| | - Alice Poggi
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Ferrara, Italy
| | - Roberta Capucci
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Ferrara, Italy
| | - Fortunato Vesce
- Department of Morphology, Surgery and Experimental Medicine, Section of Obstetrics and Gynecology, Ferrara, Italy
| | - Mauro Tognon
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Fernanda Martini
- Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|
50
|
Mazzoni E, Rotondo JC, Marracino L, Selvatici R, Bononi I, Torreggiani E, Touzé A, Martini F, Tognon MG. Detection of Merkel Cell Polyomavirus DNA in Serum Samples of Healthy Blood Donors. Front Oncol 2017; 7:294. [PMID: 29238698 PMCID: PMC5712532 DOI: 10.3389/fonc.2017.00294] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 11/16/2017] [Indexed: 12/27/2022] Open
Abstract
Merkel cell polyomavirus (MCPyV) has been detected in 80% of Merkel cell carcinomas (MCC). In the host, the MCPyV reservoir remains elusive. MCPyV DNA sequences were revealed in blood donor buffy coats. In this study, MCPyV DNA sequences were investigated in the sera (n = 190) of healthy blood donors. Two MCPyV DNA sequences, coding for the viral oncoprotein large T antigen (LT), were investigated using polymerase chain reaction (PCR) methods and DNA sequencing. Circulating MCPyV sequences were detected in sera with a prevalence of 2.6% (5/190), at low-DNA viral load, which is in the range of 1–4 and 1–5 copies/μl by real-time PCR and droplet digital PCR, respectively. DNA sequencing carried out in the five MCPyV-positive samples indicated that the two MCPyV LT sequences which were analyzed belong to the MKL-1 strain. Circulating MCPyV LT sequences are present in blood donor sera. MCPyV-positive samples from blood donors could represent a potential vehicle for MCPyV infection in receivers, whereas an increase in viral load may occur with multiple blood transfusions. In certain patient conditions, such as immune-depression/suppression, additional disease or old age, transfusion of MCPyV-positive samples could be an additional risk factor for MCC onset.
Collapse
Affiliation(s)
- Elisa Mazzoni
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - John C Rotondo
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Luisa Marracino
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Rita Selvatici
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Ferrara, Italy
| | - Ilaria Bononi
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Elena Torreggiani
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Antoine Touzé
- UMR INRA 1282 ISP, Faculté des Sciences Pharmaceutiques, Université Francois Rabelais, Tours, France
| | - Fernanda Martini
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| | - Mauro G Tognon
- Laboratories of Cell Biology and Molecular Genetics, Department of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Ferrara, Italy
| |
Collapse
|