1
|
Zhao J, Zhu J, Tang Y, Zheng K, Li Z. Advances in the study of the role of high-frequency mutant subunits of the SWI/SNF complex in tumors. Front Oncol 2024; 14:1463892. [PMID: 39697230 PMCID: PMC11652375 DOI: 10.3389/fonc.2024.1463892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
SWI/SNF (Switch/Sucrose non-fermentable, switch/sucrose non-fermentable) chromatin remodeling complex is a macromolecular complex composed of multiple subunits. It can use the energy generated by the hydrolysis of ATP (Adenosine triphosphate) to destroy the connection between DNA and histones, achieve the breakdown of nucleosomes, and regulate gene expression. SWI/SNF complex is essential for cell proliferation and differentiation, and the abnormal function of its subunits is closely related to tumorigenesis. Among them, ARID1A, an essential non-catalytic subunit of the SWI/SNF complex, can regulate the targeting of the complex through DNA or protein interactions. Moreover, the abnormal function of ARID1A significantly reduces the targeting of SWI/SNF complex to genes and participates in critical intracellular activities such as gene transcription and DNA synthesis. As a catalytic subunit of the SWI/SNF complex, SMARCA4 has ATPase activity that catalyzes the hydrolysis of ATP to produce energy and power the chromatin remodeling complex, which is critical to the function of the SWI/SNF complex. The study data indicate that approximately 25% of cancers have one or more SWI/SNF subunit genetic abnormalities, and at least nine different SWI/SNF subunits have been identified as having repeated mutations multiple times in various cancers, suggesting that mutations affecting SWI/SNF subunits may introduce vulnerabilities to these cancers. Here, we review the mechanism of action of ARID1A and SMARCA4, the two subunits with the highest mutation frequency in the SWI/SNF complex, and the research progress of their targeted therapy in tumors to provide a new direction for precise targeted therapy of clinical tumors.
Collapse
Affiliation(s)
- Jiumei Zhao
- Chongqing Nanchuan District People’s Hospital, Chongqing, China
| | - Jing Zhu
- Kunming Medical University, Kunming, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kepu Zheng
- Kunming Medical University, Kunming, China
| | - Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Lazzeri I, Spiegl BG, Hasenleithner SO, Speicher MR, Kircher M. LBFextract: Unveiling transcription factor dynamics from liquid biopsy data. Comput Struct Biotechnol J 2024; 23:3163-3174. [PMID: 39660220 PMCID: PMC11630664 DOI: 10.1016/j.csbj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 12/12/2024] Open
Abstract
Motivation The analysis of circulating cell-free DNA (cfDNA) holds immense promise as a non-invasive diagnostic tool across various human conditions. However, extracting biological insights from cfDNA fragments entails navigating complex and diverse bioinformatics methods, encompassing not only DNA sequence variation, but also epigenetic characteristics like nucleosome footprints, fragment length, and methylation patterns. Results We introduce Liquid Biopsy Feature extract (LBFextract), a comprehensive package designed to streamline feature extraction from cfDNA sequencing data, with the aim of enhancing the reproducibility and comparability of liquid biopsy studies. LBFextract facilitates the integration of preprocessing and postprocessing steps through alignment fragment tags and a hook mechanism. It incorporates various methods, including coverage-based and fragment length-based approaches, alongside two novel feature extraction methods: an entropy-based method to infer TF activity from fragmentomics data and a technique to amplify signals from nucleosome dyads. Additionally, it implements a method to extract condition-specific differentially active TFs based on these features for biomarker discovery. We demonstrate the use of LBFextract for the subtype classification of advanced prostate cancer patients using coverage signals at transcription factor binding sites from cfDNA. We show that LBFextract can generate robust and interpretable features that can discriminate between different clinical groups. LBFextract is a versatile and user-friendly package that can facilitate the analysis and interpretation of liquid biopsy data. Data and Code Availability and Implementation LBFextract is freely accessible at https://github.com/Isy89/LBF. It is implemented in Python and compatible with Linux and Mac operating systems. Code and data to reproduce these analyses have been uploaded to 10.5281/zenodo.10964406.
Collapse
Affiliation(s)
- Isaac Lazzeri
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
| | - Benjamin Gernot Spiegl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
| | - Samantha O. Hasenleithner
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Martin Kircher
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Berlin 10178, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
3
|
Xiang C, Wang Z, Yu Y, Han Z, Lu J, Pan L, Zhang X, Wang Z, He Y, Wang K, Peng W, Liu S, Song Y, Wu C. ARID1A loss sensitizes colorectal cancer cells to floxuridine. Neoplasia 2024; 58:101069. [PMID: 39418826 PMCID: PMC11531615 DOI: 10.1016/j.neo.2024.101069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/28/2024] [Accepted: 10/08/2024] [Indexed: 10/19/2024]
Abstract
The loss-of-function mutation of AT-rich interactive domain 1A (ARID1A) frequently occurs in various types of cancer, making it a promising therapeutic target. In the present study, we performed a screening of an FDA-approved drug library in ARID1A isogenic colorectal cancer (CRC) cells and discovered that ARID1A loss sensitizes CRC cells to floxuridine (FUDR), an antineoplastic agent used for treating hepatic metastases from CRC, both in vivo and in vitro. As a pyrimidine analogue, FUDR induces DNA damage by inhibiting thymidylate synthase (TS) activity. ARID1A, as a regulator of DNA damage repair, when lost, exacerbates FUDR-induced DNA damage, leading to increased cell apoptosis. Specifically, ARID1A deficiency impairs DNA damage repair by downregulating Chk2 phosphorylation, thereby sensitizing cancer cells to FUDR. Notably, we found that FUDR exhibited increased sensitivity in ARID1A-deficient cells compared to 5-fluorouracil (5-FU), a commonly used anticancer drug for CRC. This suggests that FUDR is superior to 5-FU in treating ARID1A-deficient CRC. In conclusion, ARID1A loss significantly heightens sensitivity to FUDR by promoting FUDR-induced DNA damage in CRC. These findings offer a novel therapeutic approach for the treatment of CRC characterized by ARID1A loss-of-function mutations.
Collapse
Affiliation(s)
- Cheng Xiang
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China; Comprehensive Medical Treatment Ward, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Wang
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingnan Yu
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zelong Han
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jingyi Lu
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Lei Pan
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Zhang
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zihuan Wang
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yilin He
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kejin Wang
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenxuan Peng
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China
| | - Side Liu
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yijiang Song
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Changjie Wu
- Guangdong Provincial key laboratory of Gastroenterology, Department of Gastroenterology, Nanfang hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
4
|
Qiu Y, Man C, Zhu L, Zhang S, Wang X, Gong D, Fan Y. R-loops' m6A modification and its roles in cancers. Mol Cancer 2024; 23:232. [PMID: 39425197 PMCID: PMC11487993 DOI: 10.1186/s12943-024-02148-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
R-loops are three-stranded nucleic acid structures composed of an RNA-DNA hybrid and a displaced DNA strand. They are widespread and play crucial roles in regulating gene expression, DNA replication, and DNA and histone modifications. However, their regulatory mechanisms remain unclear. As R-loop detection technology advances, changes in R-loop levels have been observed in cancer models, often associated with transcription-replication conflicts and genomic instability. N6-methyladenosine (m6A) is an RNA epigenetic modification that regulates gene expression by affecting RNA localization, splicing, translation, and degradation. Upon reviewing the literature, we found that R-loops with m6A modifications are implicated in tumor development and progression. This article summarizes the molecular mechanisms and detection methods of R-loops and m6A modifications in gene regulation, and reviews recent research on m6A-modified R-loops in oncology. Our goal is to provide new insights into the origins of genomic instability in cancer and potential strategies for targeted therapy.
Collapse
Affiliation(s)
- Yue Qiu
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Changfeng Man
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China
| | - Luyu Zhu
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Shiqi Zhang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China
| | - Xiaoyan Wang
- Department of Gastroenterology, The Suqian Clinical College of Xuzhou Medical University, No 120, Suzhi Road, Suqian, Jiangsu Province, 223812, People's Republic of China.
| | - Dandan Gong
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| | - Yu Fan
- Cancer Institute, Affiliated People's Hospital of Jiangsu University, No 8, Dianli Road, Zhenjiang, Jiangsu Province, 212002, People's Republic of China.
| |
Collapse
|
5
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
6
|
Ma Y, Field NR, Xie T, Briscas S, Kokinogoulis EG, Skipper TS, Alghalayini A, Sarker FA, Tran N, Bowden NA, Dickson KA, Marsh DJ. Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies-Therapeutic Vulnerabilities in Treatment-Resistant Subtypes. Cancers (Basel) 2024; 16:3068. [PMID: 39272926 PMCID: PMC11393890 DOI: 10.3390/cancers16173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.
Collapse
Affiliation(s)
- Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sarina Briscas
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emily G Kokinogoulis
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tali S Skipper
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amani Alghalayini
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Farhana A Sarker
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nikola A Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
7
|
Malone HA, Roberts CWM. Chromatin remodellers as therapeutic targets. Nat Rev Drug Discov 2024; 23:661-681. [PMID: 39014081 PMCID: PMC11534152 DOI: 10.1038/s41573-024-00978-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 07/18/2024]
Abstract
Large-scale cancer genome sequencing studies have revealed that chromatin regulators are frequently mutated in cancer. In particular, more than 20% of cancers harbour mutations in genes that encode subunits of SWI/SNF (BAF) chromatin remodelling complexes. Additional links of SWI/SNF complexes to disease have emerged with the findings that some oncogenes drive transformation by co-opting SWI/SNF function and that germline mutations in select SWI/SNF subunits are the basis of several neurodevelopmental disorders. Other chromatin remodellers, including members of the ISWI, CHD and INO80/SWR complexes, have also been linked to cancer and developmental disorders. Consequently, therapeutic manipulation of SWI/SNF and other remodelling complexes has become of great interest, and drugs that target SWI/SNF subunits have entered clinical trials. Genome-wide perturbation screens in cancer cell lines with SWI/SNF mutations have identified additional synthetic lethal targets and led to further compounds in clinical trials, including one that has progressed to FDA approval. Here, we review the progress in understanding the structure and function of SWI/SNF and other chromatin remodelling complexes, mechanisms by which SWI/SNF mutations cause cancer and neurological diseases, vulnerabilities that arise because of these mutations and efforts to target SWI/SNF complexes and synthetic lethal targets for therapeutic benefit.
Collapse
Affiliation(s)
- Hayden A Malone
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA
- St. Jude Graduate School of Biomedical Sciences, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Charles W M Roberts
- Division of Molecular Oncology, Department of Oncology, and Comprehensive Cancer Center, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
8
|
Corallo S, Lasagna A, Filippi B, Alaimo D, Tortorella A, Serra F, Vanoli A, Pedrazzoli P. Unlocking the Potential: Epstein-Barr Virus (EBV) in Gastric Cancer and Future Treatment Prospects, a Literature Review. Pathogens 2024; 13:728. [PMID: 39338919 PMCID: PMC11435077 DOI: 10.3390/pathogens13090728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
Gastric cancer (GC) is a complex disease with various etiologies. While Helicobacter pylori infection is still one of the leading risk factors for GC, increasing evidence suggests a link between GC and other infective agents such as Epstein Bar Virus (EBV). EBV-associated gastric cancer (EBVaGC) is now recognized as a distinct subgroup of GC, and the complex interactions between the virus and gastric mucosa may influence its development. A recent integrative analysis of the genome and proteome of GC tissues by The Cancer Genome Atlas project has identified EBVaGC as a specific subtype characterized by PIK3CA and ARID1A mutations, extensive DNA hyper-methylation, and activation of immune signaling pathways. These molecular characteristics are markers of the unique molecular profile of this subset of GC and are potential targets for therapy. This review aims to provide an overview of the current knowledge on EBVaGC. It will focus on the epidemiology, clinic-pathological features, and genetic characteristics of EBVaGC. Additionally, it will discuss recent data indicating the potential use of EBV infection as a predictive biomarker of response to chemotherapy and immune checkpoint inhibitors. The review also delves into potential therapeutic approaches for EBVaGC, including targeted therapies and adoptive immunotherapy, highlighting the promising potential of EBV as a therapeutic target.
Collapse
Affiliation(s)
- Salvatore Corallo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Angioletta Lasagna
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Beatrice Filippi
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Domiziana Alaimo
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Anna Tortorella
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Francesco Serra
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Alessandro Vanoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
- Anatomic Pathology Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Paolo Pedrazzoli
- Department of Internal Medicine and Medical Therapy, University of Pavia, 27100 Pavia, Italy
- Department of Oncology, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
9
|
Morgan JE, Jaferi N, Shonibare Z, Huang GS. ARID1A in Gynecologic Precancers and Cancers. Reprod Sci 2024; 31:2150-2162. [PMID: 38740655 DOI: 10.1007/s43032-024-01585-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
The highest frequency of genetic alterations in the tumor suppressor ARID1A occurs in malignancies of the female reproductive tract. The prevalence of ARID1A alterations in gynecologic precancers and cancers is summarized from the literature, and the putative mechanisms of tumor suppressive action examined both in benign/precursor lesions including endometriosis and atypical hyperplasia and in malignancies of the ovary, uterus, cervix and vagina. ARID1A alterations in gynecologic cancers are usually loss-of-function mutations, resulting in diminished or absent protein expression. ARID1A deficiency results in pleiotropic downstream effects related not only to its role in transcriptional regulation as a SWI/SNF complex subunit, but also related to the functions of ARID1A in DNA replication and repair, immune modulation, cell cycle progression, endoplasmic reticulum (ER) stress and oxidative stress. The most promising actionable signaling pathway interactions and therapeutic vulnerabilities of ARID1A mutated cancers are presented with a critical review of the currently available experimental and clinical evidence. The role of ARID1A in response to chemotherapeutic agents, radiation therapy and immunotherapy is also addressed. In summary, the multi-faceted role of ARID1A mutation in precancer and cancer is examined through a clinical lens focused on development of novel preventive and therapeutic interventions for gynecological cancers.
Collapse
Affiliation(s)
- Jaida E Morgan
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Nishah Jaferi
- Yale College, Yale University, New Haven, Connecticut, USA
| | - Zainab Shonibare
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA
| | - Gloria S Huang
- Department of Obstetrics, Gynecology & Reproductive Sciences, Yale School of Medicine, Yale University, New Haven, Connecticut, USA.
- Department of Obstetrics, Gynecology & Reproductive Sciences, Division of Gynecologic Oncology, Yale School of Medicine, Yale Cancer Center, Yale University, PO Box 208063, New Haven, CT, 06520-8063, USA.
| |
Collapse
|
10
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
11
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
12
|
Kraemer M, Zander T, Alakus H, Buettner R, Lyu SI, Simon AG, Schroeder W, Bruns CJ, Quaas A. Fetal gut cell-like differentiation in esophageal adenocarcinoma defines a rare tumor subtype with therapeutically relevant claudin-6 positivity and SWI/SNF gene alteration. Sci Rep 2024; 14:13474. [PMID: 38866822 PMCID: PMC11169473 DOI: 10.1038/s41598-024-64116-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 06/05/2024] [Indexed: 06/14/2024] Open
Abstract
Esophageal adenocarcinoma (EAC) is one of the deadliest tumor entities worldwide, with a 5-year survival rate of less than 25%. Unlike other tumor entities, personalized therapy options are rare, partly due to the lack of knowledge about specific subgroups. In this publication, we demonstrate a subgroup of patients with EAC in a large screening cohort of 826 patients, characterized by specific morphological and immunohistochemical features. This subgroup represents approximately 0.7% (6/826) of the total cohort. Morphological features of this subgroup show a striking clear cytoplasm of the tumour cells and the parallel existence of rare growth patterns like yolk sac-like differentiation and enteroblastic differentiation. Immunohistochemistry reveals expression of the fetal gut cell-like proteins Sal-like protein 4 (SALL4), claudin-6, and glypican 3. Interestingly, we find a correlation with alterations of SWI/SNF-complex associated genes, which are supposed to serve as tumor suppressor genes in various tumour entities. Our results suggest a possible implication of rare tumour subtypes in the WHO classification for EACs according to the classification for gastric cancer. Furthermore, claudin-6 positive tumors have shown promising efficacy of CAR T cell therapy in the recently published BNT-211-01 trial (NCT04503278). This represents a personalized therapeutic option for this tumor subtype.
Collapse
Affiliation(s)
- Max Kraemer
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany.
| | - Thomas Zander
- Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Gastrointestinal Cancer Group Cologne GCGC, University of Cologne, Kerpener Str. 62, 50937, Cologne, Germany
| | - Hakan Alakus
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Reinhard Buettner
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Su Ir Lyu
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Adrian Georg Simon
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| | - Wolfgang Schroeder
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Christiane J Bruns
- Department of General, Visceral, Cancer and Transplantation Surgery, University Hospital Cologne, Cologne, Germany
| | - Alexander Quaas
- Faculty of Medicine, University Hospital of Cologne, Institute of Pathology, University of Cologne, Cologne, Germany
| |
Collapse
|
13
|
Bakr A, Corte GD, Veselinov O, Kelekçi S, Chen MJM, Lin YY, Sigismondo G, Iacovone M, Cross A, Syed R, Jeong Y, Sollier E, Liu CS, Lutsik P, Krijgsveld J, Weichenhan D, Plass C, Popanda O, Schmezer P. ARID1A regulates DNA repair through chromatin organization and its deficiency triggers DNA damage-mediated anti-tumor immune response. Nucleic Acids Res 2024; 52:5698-5719. [PMID: 38587186 PMCID: PMC11162808 DOI: 10.1093/nar/gkae233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/27/2024] [Accepted: 03/21/2024] [Indexed: 04/09/2024] Open
Abstract
AT-rich interaction domain protein 1A (ARID1A), a SWI/SNF chromatin remodeling complex subunit, is frequently mutated across various cancer entities. Loss of ARID1A leads to DNA repair defects. Here, we show that ARID1A plays epigenetic roles to promote both DNA double-strand breaks (DSBs) repair pathways, non-homologous end-joining (NHEJ) and homologous recombination (HR). ARID1A is accumulated at DSBs after DNA damage and regulates chromatin loops formation by recruiting RAD21 and CTCF to DSBs. Simultaneously, ARID1A facilitates transcription silencing at DSBs in transcriptionally active chromatin by recruiting HDAC1 and RSF1 to control the distribution of activating histone marks, chromatin accessibility, and eviction of RNAPII. ARID1A depletion resulted in enhanced accumulation of micronuclei, activation of cGAS-STING pathway, and an increased expression of immunomodulatory cytokines upon ionizing radiation. Furthermore, low ARID1A expression in cancer patients receiving radiotherapy was associated with higher infiltration of several immune cells. The high mutation rate of ARID1A in various cancer types highlights its clinical relevance as a promising biomarker that correlates with the level of immune regulatory cytokines and estimates the levels of tumor-infiltrating immune cells, which can predict the response to the combination of radio- and immunotherapy.
Collapse
Affiliation(s)
- Ali Bakr
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Giuditta Della Corte
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Olivera Veselinov
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Simge Kelekçi
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Mei-Ju May Chen
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yu-Yu Lin
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Gianluca Sigismondo
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
| | - Marika Iacovone
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Alice Cross
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Rabail Syed
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Yunhee Jeong
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Etienne Sollier
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Chun- Shan Liu
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Pavlo Lutsik
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Jeroen Krijgsveld
- Division of Proteomics of Stem Cells and Cancer, German Cancer Research Center (DKFZ), INF581, 69120 Heidelberg, Germany
- Heidelberg University, Medical Faculty, Heidelberg, Germany
| | - Dieter Weichenhan
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Christoph Plass
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
- German Cancer Consortium (DKTK), INF280, 69120 Heidelberg, Germany
| | - Odilia Popanda
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| | - Peter Schmezer
- Division of Cancer Epigenomics, German Cancer Research Center (DKFZ), INF280, 69120 Heidelberg, Germany
| |
Collapse
|
14
|
Zhu T, Li Q, Zhang Z, Shi J, Li Y, Zhang F, Li L, Song X, Shen J, Jia R. ARID1A loss promotes RNA editing of CDK13 in an ADAR1-dependent manner. BMC Biol 2024; 22:132. [PMID: 38835016 PMCID: PMC11151582 DOI: 10.1186/s12915-024-01927-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 05/22/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND ARID1A, a subunit of the SWI/SNF chromatin remodeling complex, is thought to play a significant role both in tumor suppression and tumor initiation, which is highly dependent upon context. Previous studies have suggested that ARID1A deficiency may contribute to cancer development. The specific mechanisms of whether ARID1A loss affects tumorigenesis by RNA editing remain unclear. RESULTS Our findings indicate that the deficiency of ARID1A leads to an increase in RNA editing levels and alterations in RNA editing categories mediated by adenosine deaminases acting on RNA 1 (ADAR1). ADAR1 edits the CDK13 gene at two previously unidentified sites, namely Q113R and K117R. Given the crucial role of CDK13 as a cyclin-dependent kinase, we further observed that ADAR1 deficiency results in changes in the cell cycle. Importantly, the sensitivity of ARID1A-deficient tumor cells to SR-4835, a CDK12/CDK13 inhibitor, suggests a promising therapeutic approach for individuals with ARID1A-mutant tumors. Knockdown of ADAR1 restored the sensitivity of ARID1A deficient cells to SR-4835 treatment. CONCLUSIONS ARID1A deficiency promotes RNA editing of CDK13 by regulating ADAR1.
Collapse
Affiliation(s)
- Tianyu Zhu
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Qian Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Zhe Zhang
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Jiahao Shi
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Yongyun Li
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China
| | - Feng Zhang
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Lingjie Li
- Department of Histoembryology, Genetics and Developmental Biology, Shanghai Key Laboratory of Reproductive Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China
| | - Xin Song
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China.
| | - Jianfeng Shen
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China.
| | - Renbing Jia
- Department of Ophthalmology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, P.R. China.
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai, P.R. China.
| |
Collapse
|
15
|
Angelico G, Attanasio G, Colarossi L, Colarossi C, Montalbano M, Aiello E, Di Vendra F, Mare M, Orsi N, Memeo L. ARID1A Mutations in Gastric Cancer: A Review with Focus on Clinicopathological Features, Molecular Background and Diagnostic Interpretation. Cancers (Basel) 2024; 16:2062. [PMID: 38893181 PMCID: PMC11171396 DOI: 10.3390/cancers16112062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
AT-rich interaction domain 1 (ARID1A) is a pivotal gene with a significant role in gastrointestinal tumors which encodes a protein referred to as BAF250a or SMARCF1, an integral component of the SWI/SNF (SWItch/sucrose non-fermentable) chromatin remodeling complex. This complex is instrumental in regulating gene expression by modifying the structure of chromatin to affect the accessibility of DNA. Mutations in ARID1A have been identified in various gastrointestinal cancers, including colorectal, gastric, and pancreatic cancers. These mutations have the potential to disrupt normal SWI/SNF complex function, resulting in aberrant gene expression and potentially contributing to the initiation and progression of these malignancies. ARID1A mutations are relatively common in gastric cancer, particularly in specific adenocarcinoma subtypes. Moreover, such mutations are more frequently observed in specific molecular subtypes, such as microsatellite stable (MSS) cancers and those with a diffuse histological subtype. Understanding the presence and implications of ARID1A mutations in GC is of paramount importance for tailoring personalized treatment strategies and assessing prognosis, particularly given their potential in predicting patient response to novel treatment strategies including immunotherapy, poly(ADP) ribose polymerase (PARP) inhibitors, mammalian target of rapamycin (mTOR) inhibitors, and enhancer of zeste 2 polycomb repressive complex 2 subunit (EZH2) inhibitors.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Giulio Attanasio
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, Anatomic Pathology, University of Catania, 95123 Catania, Italy;
| | - Lorenzo Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Cristina Colarossi
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Matteo Montalbano
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
- PhD Program in Precision Medicine, University of Palermo, 90144 Palermo, Italy
| | - Eleonora Aiello
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| | - Federica Di Vendra
- Department of Chemical, Biological and Environmental Chemistry, University of Messina, 98122 Messina, Italy
| | - Marzia Mare
- Medical Oncology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, Viagrande, 95029 Catania, Italy
| | - Nicolas Orsi
- Leeds Institute of Medical Research, St James’s University Hospital, The University of Leeds, Leeds LS9 7TF, UK;
| | - Lorenzo Memeo
- Pathology Unit, Department of Experimental Oncology, Mediterranean Institute of Oncology, 95029 Catania, Italy; (L.C.); (C.C.); (E.A.)
| |
Collapse
|
16
|
Li X, Tian S, Shi H, Ta N, Ni X, Bai C, Zhu Z, Chen Y, Shi D, Huang H, Chen L, Hu Z, Qu L, Fang Y, Bai C. The golden key to open mystery boxes of SMARCA4-deficient undifferentiated thoracic tumor: focusing immunotherapy, tumor microenvironment and epigenetic regulation. Cancer Gene Ther 2024; 31:687-697. [PMID: 38347129 PMCID: PMC11101339 DOI: 10.1038/s41417-024-00732-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/19/2024]
Abstract
SMARCA4-deficient undifferentiated thoracic tumor is extremely invasive. This tumor with poor prognosis is easily confused with SMARCA4-deficent non-small cell lung cancer or sarcoma. Standard and efficient treatment has not been established. In this review, we summarized the etiology, pathogenesis and diagnosis, reviewed current and proposed innovative strategies for treatment and improving prognosis. Immunotherapy, targeting tumor microenvironment and epigenetic regulator have improved the prognosis of cancer patients. We summarized clinicopathological features and immunotherapy strategies and analyzed the progression-free survival (PFS) and overall survival (OS) of patients with SMARCA4-UT who received immune checkpoint inhibitors (ICIs). In addition, we proposed the feasibility of epigenetic regulation in the treatment of SMARCA4-UT. To our knowledge, this is the first review that aims to explore innovative strategies for targeting tumor microenvironment and epigenetic regulation and identify potential benefit population for immunotherapy to improve the prognosis.
Collapse
Affiliation(s)
- Xiang Li
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Sen Tian
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
- Department of Respiratory and Critical Care Medicine, No. 906 Hospital of the Chinese People's Liberation Army Joint Logistic Support Force, Ningbo, China
| | - Hui Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| | - Na Ta
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Xiang Ni
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Chenguang Bai
- Department of Pathology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhanli Zhu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Yilin Chen
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Dongchen Shi
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Haidong Huang
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Longpei Chen
- Department of Oncology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China
| | - Zhenhong Hu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Lei Qu
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Yao Fang
- Department of Respiratory and Critical Care Medicine, General Hospital of Central Theater Command of the Chinese People's Liberation Army, Wuhan, China
| | - Chong Bai
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), Shanghai, China.
| |
Collapse
|
17
|
Zhang J, Chen F, Tang M, Xu W, Tian Y, Liu Z, Shu Y, Yang H, Zhu Q, Lu X, Peng B, Liu X, Xu X, Gullerova M, Zhu WG. The ARID1A-METTL3-m6A axis ensures effective RNase H1-mediated resolution of R-loops and genome stability. Cell Rep 2024; 43:113779. [PMID: 38358891 DOI: 10.1016/j.celrep.2024.113779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 12/02/2023] [Accepted: 01/26/2024] [Indexed: 02/17/2024] Open
Abstract
R-loops are three-stranded structures that can pose threats to genome stability. RNase H1 precisely recognizes R-loops to drive their resolution within the genome, but the underlying mechanism is unclear. Here, we report that ARID1A recognizes R-loops with high affinity in an ATM-dependent manner. ARID1A recruits METTL3 and METTL14 to the R-loop, leading to the m6A methylation of R-loop RNA. This m6A modification facilitates the recruitment of RNase H1 to the R-loop, driving its resolution and promoting DNA end resection at DSBs, thereby ensuring genome stability. Depletion of ARID1A, METTL3, or METTL14 leads to R-loop accumulation and reduced cell survival upon exposure to cytotoxic agents. Therefore, ARID1A, METTL3, and METTL14 function in a coordinated, temporal order at DSB sites to recruit RNase H1 and to ensure efficient R-loop resolution. Given the association of high ARID1A levels with resistance to genotoxic therapies in patients, these findings open avenues for exploring potential therapeutic strategies for cancers with ARID1A abnormalities.
Collapse
Affiliation(s)
- Jun Zhang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Feng Chen
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Ming Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Wenchao Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Yuan Tian
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Zhichao Liu
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Yuxin Shu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Hui Yang
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Qian Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiaopeng Lu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Bin Peng
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xiangyu Liu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China
| | - Xingzhi Xu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Cell Biology and Medical Genetics, Shenzhen University Medical School, Shenzhen 518055, China
| | - Monika Gullerova
- Sir William Dunn School of Pathology, South Parks Road, Oxford OX1 3RE, UK
| | - Wei-Guo Zhu
- International Cancer Center, Guangdong Key Laboratory of Genome Instability and Human Disease Prevention, Department of Biochemistry and Molecular Biology, Shenzhen University Medical School, Shenzhen 518055, China; Marshall Laboratory of Biomedical Engineering, Shenzhen University Medical School, Shenzhen 518055, China; School of Basic Medical Sciences, Wannan Medical College, Wuhu, Anhui 241002, China; Department of Biochemistry and Molecular Biology, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
18
|
Hein KZ, Stephen B, Fu S. Therapeutic Role of Synthetic Lethality in ARID1A-Deficient Malignancies. JOURNAL OF IMMUNOTHERAPY AND PRECISION ONCOLOGY 2024; 7:41-52. [PMID: 38327752 PMCID: PMC10846636 DOI: 10.36401/jipo-22-37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/28/2023] [Accepted: 09/21/2023] [Indexed: 02/09/2024]
Abstract
AT-rich interaction domain 1A (ARID1A), a mammalian switch/sucrose nonfermenting complex subunit, modulates several cellular processes by regulating chromatin accessibility. It is encoded by ARID1A, an immunosuppressive gene frequently disrupted in a many tumors, affecting the proliferation, migration, and invasion of cancer cells. Targeting molecular pathways and epigenetic regulation associated with ARID1A loss, such as inhibiting the PI3K/AKT pathway or modulating Wnt/β-catenin signaling, may help suppress tumor growth and progression. Developing epigenetic drugs like histone deacetylase or DNA methyltransferase inhibitors could restore normal chromatin structure and function in cells with ARID1A loss. As ARID1A deficiency correlates with enhanced tumor mutability, microsatellite instability, high tumor mutation burden, increased programmed death-ligand 1 expression, and T-lymphocyte infiltration, ARID1A-deficient cells can be a potential therapeutic target for immune checkpoint inhibitors that warrants further exploration. In this review, we discuss the role of ARID1A in carcinogenesis, its crosstalk with other signaling pathways, and strategies to make ARID1A-deficient cells a potential therapeutic target for patients with cancer.
Collapse
Affiliation(s)
- Kyaw Z. Hein
- Department of Internal Medicine, HCA Florida Westside Hospital, Plantation, FL, USA
| | - Bettzy Stephen
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
19
|
Vogel A, Haupts A, Kloth M, Roth W, Hartmann N. A novel targeted NGS panel identifies numerous homologous recombination deficiency (HRD)-associated gene mutations in addition to known BRCA mutations. Diagn Pathol 2024; 19:9. [PMID: 38184614 PMCID: PMC10770950 DOI: 10.1186/s13000-023-01431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 12/15/2023] [Indexed: 01/08/2024] Open
Abstract
Deleterious mutations in the BRCA1 and BRCA2 genes have significant therapeutic relevance in clinical settings regarding personalized therapy approaches. BRCA1 and BRCA2 play a pivotal role in homologous recombination (HR) and thus are sensitive for PARP inhibitors (PARPi). Beyond the narrow scope of evaluating only the BRCA mutation status, PARPi can be beneficial for HR deficient (HRD) patients, who harbor mutations in other HR-associated genes. In the present retrospective study, a novel targeted HRD gene panel was validated and implemented for use with FFPE tissue. Samples of patients with ovarian, breast, pancreatic and prostate cancer were included. Variants were robustly detected with various DNA input amounts and the use of test samples showed complete concordance between previously known mutations and HRD panel results. From all the 90 samples included in this cohort, TP53 was the most frequently altered gene (73%). Deleterious BRCA1/2 mutations were found in 20 (22%) of all samples. New pathogenic or likely pathogenic mutations in additional HR-associated genes were identified in 22 (24%) patients. Taken together, the present study proves the feasibility of a new HRD gene panel with reliable panel performance and offers the possibility to easily screen for resistance mutations acquired over treatment time.Mutations in HR-associated genes, besides BRCA1/2, might represent promising potential targets for synthetic lethality approaches. Thus, a substantial number of patients may benefit from expanding the scope of therapeutic agents like PARPi.
Collapse
Affiliation(s)
- Anne Vogel
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Anna Haupts
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Michael Kloth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Wilfried Roth
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany
| | - Nils Hartmann
- Institute of Pathology, University Medical Center Mainz, Langenbeckstraße 1, Mainz, 55131, Germany.
| |
Collapse
|
20
|
Lin Z, Wang L, Xing Z, Wang F, Cheng X. Update on Combination Strategies of PARP Inhibitors. Cancer Control 2024; 31:10732748241298329. [PMID: 39500600 PMCID: PMC11539152 DOI: 10.1177/10732748241298329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
The application of PARP inhibitors has revolutionized cancer treatment and has achieved significant advancements, particularly with regard to tumors with defects in genes involved in homologous recombination repair (HRR) processes, such as BRCA1 and BRCA2. Despite the promising outcomes of PARP inhibitors, certain limitations and challenges still exist, including acquired drug resistance, severe side effects, and limited therapeutic benefits for patients without homologous recombination deficiency (HRD). Various combinations involving PARP inhibitors have been developed to overcome these limitations. Among these, combinations with immune checkpoint inhibitors, antiangiogenic agents, and various small-molecule inhibitors are well-studied strategies that show great potential for optimizing the efficacy of PARP inhibitors, overcoming resistance mechanisms, and expanding target populations. However, the efficiency and overlapping toxicity of these combination strategies for cancers vary among studies, thereby limiting their use. In this review, we describe the mechanisms and limitations of PARP inhibitors to better understand the mechanisms of combination treatments. Furthermore, we have summarized recent studies on the combination of PARP inhibitors with a range of medications and discussed their clinical efficacy. The objective of this review is to enhance the comprehensiveness of information pertaining to this topic.
Collapse
Affiliation(s)
- Zhuoqun Lin
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lingfang Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
| | - Ziyu Xing
- Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fenfen Wang
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
| | - Xiaodong Cheng
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Gynecological Oncology Department, Women’s Hospital, Zhejiang University School of Medicine, Hangzhou, P.R. China
- Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Hangzhou, P.R. China
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Hangzhou, P.R. China
| |
Collapse
|
21
|
Andraus W, Tustumi F, de Meira Junior JD, Pinheiro RSN, Waisberg DR, Lopes LD, Arantes RM, Rocha Santos V, de Martino RB, Carneiro D’Albuquerque LA. Molecular Profile of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2023; 25:461. [PMID: 38203635 PMCID: PMC10778975 DOI: 10.3390/ijms25010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively uncommon but highly aggressive primary liver cancer that originates within the liver. The aim of this study is to review the molecular profile of intrahepatic cholangiocarcinoma and its implications for prognostication and decision-making. This comprehensive characterization of ICC tumors sheds light on the disease's underlying biology and offers a foundation for more personalized treatment strategies. This is a narrative review of the prognostic and therapeutic role of the molecular profile of ICC. Knowing the molecular profile of tumors helps determine prognosis and support certain target therapies. The molecular panel in ICC helps to select patients for specific therapies, predict treatment responses, and monitor treatment responses. Precision medicine in ICC can promote improvement in prognosis and reduce unnecessary toxicity and might have a significant role in the management of ICC in the following years. The main mutations in ICC are in tumor protein p53 (TP53), Kirsten rat sarcoma virus (KRAS), isocitrate dehydrogenase 1 (IDH1), and AT-rich interactive domain-containing protein 1A (ARID1A). The rate of mutations varies significantly for each population. Targeting TP53 and KRAS is challenging due to the natural characteristics of these genes. Different stages of clinical studies have shown encouraging results with inhibitors of mutated IDH1 and target therapy for ARID1A downstream effectors. Fibroblast growth factor receptor 2 (FGFR2) fusions are an important target in patients with ICC. Immune checkpoint blockade can be applied to a small percentage of ICC patients. Molecular profiling in ICC represents a groundbreaking approach to understanding and managing this complex liver cancer. As our comprehension of ICC's molecular intricacies continues to expand, so does the potential for offering patients more precise and effective treatments. The integration of molecular profiling into clinical practice signifies the dawn of a new era in ICC care, emphasizing personalized medicine in the ongoing battle against this malignancy.
Collapse
Affiliation(s)
| | - Francisco Tustumi
- Department of Gastroenterology, Transplantation Unit, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Li JJ, Lee CS. The Role of the AT-Rich Interaction Domain 1A Gene ( ARID1A) in Human Carcinogenesis. Genes (Basel) 2023; 15:5. [PMID: 38275587 PMCID: PMC10815128 DOI: 10.3390/genes15010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) (SWI/SNF) complex uses energy from ATP hydrolysis to mobilise nucleosomes on chromatin. Components of SWI/SNF are mutated in 20% of all human cancers, of which mutations in AT-rich binding domain protein 1A (ARID1A) are the most common. ARID1A is mutated in nearly half of ovarian clear cell carcinoma and around one-third of endometrial and ovarian carcinomas of the endometrioid type. This review will examine in detail the molecular functions of ARID1A, including its role in cell cycle control, enhancer regulation, and the prevention of telomerase activity. ARID1A has key roles in the maintenance of genomic integrity, including DNA double-stranded break repair, DNA decatenation, integrity of the cohesin complex, and reduction in replication stress, and is also involved in mismatch repair. The role of ARID1A loss in the pathogenesis of some of the most common human cancers is discussed, with a particular emphasis on gynaecological cancers. Finally, several promising synthetic lethal strategies, which exploit the specific vulnerabilities of ARID1A-deficient cancer cells, are briefly mentioned.
Collapse
Affiliation(s)
- Jing Jing Li
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia
| | - Cheok Soon Lee
- Department of Anatomical Pathology, Liverpool Hospital, Liverpool, NSW 2170, Australia;
- Discipline of Pathology, School of Medicine, Western Sydney University, Sydney, NSW 2560, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW 2170, Australia
- Department of Tissue Pathology and Diagnostic Oncology, Royal Prince Alfred Hospital, Camperdown, NSW 2010, Australia
| |
Collapse
|
23
|
Xing B, Zhang X, Gu X, Xiang L, Wang C, Jin Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J Cancer Res Clin Oncol 2023; 149:17529-17541. [PMID: 37906351 DOI: 10.1007/s00432-023-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE As one of the most common gynecologic malignancies, endometrial cancer (EC) is driven by multiple genetic alterations that may be targeted for treatments. AT-rich interaction domain 1A (ARID1A) gene mutations were reported as early events in endometrial carcinogenesis. METHODS To explore the alterations of downstream molecular pathways caused by ARID1A mutations and the associated therapeutic implications, we edited ARID1A gene in human endometrial cancer cell line Ishikawa using the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-Associated Proteins (CRISPR/Cas9) technology. We successfully constructed a stable Ishikawa cell line with a confirmed 10 bp deletion on the ARID1A gene, which resulted in a code-shift mutation and gene knockout. RESULTS Compared with unedited wild-type cells, ARID1A knockout (KO) led to reduced apoptosis, accelerated transformation from G0/G1 to S phase, and enhanced cell proliferation. ARID1A deficiency would reduce the protein levels of p21, caspase 7, and caspase 9 in Ishikawa endometrial cancer cells compared with the wild-type cells. In addition, ARID1A KO resulted in high levels of microsatellite instability (MSI-H). Moreover, transcriptomic analyses showed that ARID1A KO can lead to activated phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Furthermore, experimental analyses demonstrated that ARID1A KO cells had reduced expression of genetic instability-associated markers mutL homologue 1 (MLH1) and progesterone receptor B (PR) and increased p-Akt expression. CONCLUSION These findings support further exploration of ARID1A as a therapeutic target for EC and provide insight into developing more effective treatments in EC, such as the combinatory use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Baoling Xing
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Xiaoying Zhang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xia Gu
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lintao Xiang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Cuiping Wang
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yueling Jin
- Management Department of Scientific Research, Shanghai Science and Technology Museum, Shanghai, 200127, China
| |
Collapse
|
24
|
Lu S, Duan R, Cong L, Song Y. The effects of ARID1A mutation in gastric cancer and its significance for treatment. Cancer Cell Int 2023; 23:296. [PMID: 38008753 PMCID: PMC10676575 DOI: 10.1186/s12935-023-03154-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 11/21/2023] [Indexed: 11/28/2023] Open
Abstract
Gastric cancer (GC) has emerged as a significant issue in public health all worldwide as a result of its high mortality rate and dismal prognosis. AT-rich interactive domain 1 A (ARID1A) is a vital component of the switch/sucrose-non-fermentable (SWI/SNF) chromatin remodeling complex, and ARID1A mutations occur in various tumors, leading to protein loss and decreased expression; it then affects the tumor biological behavior or prognosis. More significantly, ARID1A mutations will likely be biological markers for immune checkpoint blockade (ICB) treatment and selective targeted therapy. To provide theoretical support for future research on the stratification of individuals with gastric cancer with ARID1A as a biomarker to achieve precision therapy, we have focused on the clinical significance, predictive value, underlying mechanisms, and possible treatment strategies for ARID1A mutations in gastric cancer in this review.
Collapse
Affiliation(s)
- Shan Lu
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ruifeng Duan
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Liang Cong
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China
| | - Ying Song
- Gastroenteric Medicine and Digestive Endoscopy Center, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
25
|
Sanchez-Martin A, Sanchon-Sanchez P, Romero MR, Marin JJG, Briz O. Impact of tumor suppressor genes inactivation on the multidrug resistance phenotype of hepatocellular carcinoma cells. Biomed Pharmacother 2023; 165:115209. [PMID: 37499450 DOI: 10.1016/j.biopha.2023.115209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/13/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023] Open
Abstract
The response of advanced hepatocellular carcinoma (HCC) to pharmacological treatments is unsatisfactory and heterogeneous. Inactivation of tumor suppressor genes (TSGs) by genetic and epigenetic events is frequent in HCC. This study aimed at investigating the impact of frequently altered TSGs on HCC chemoresistance. TSG alterations were screened by in silico analysis of TCGA-LIHC database, and their relationship with survival was investigated. These TSGs were silenced in HCC-derived cell lines using CRISPR/Cas9. TLDA was used to determine the expression of a panel of 94 genes involved in the resistome. Drug sensitivity, cell proliferation, colony formation and cell migration were assessed. The in silico study revealed the down-regulation of frequently inactivated TSGs in HCC (ARID1A, PTEN, CDH1, and the target of p53, CDKN1A). The presence of TP53 and ARID1A variants and the low expression of PTEN and CDH1 correlated with a worse prognosis of HCC patients. In PLC/PRF/5 cells, ARID1A knockout (ARID1AKO) induced increased sensitivity to cisplatin, doxorubicin, and cabozantinib, without affecting other characteristics of malignancy. PTENKO and E-CadKO showed minimal changes in malignancy, resistome, and drug response. In p53KO HepG2 cells, enhanced malignant properties and higher resistance to cisplatin, doxorubicin, sorafenib, and regorafenib were found. This was associated with changes in the resistome. In conclusion, the altered expression and function of several TSGs are involved in the heterogeneity of HCC chemoresistance and other features of malignancy, contributing to the poor prognosis of these patients. Individual identification of pharmacological vulnerabilities is required to select the most appropriate treatment for each patient.
Collapse
Affiliation(s)
- Anabel Sanchez-Martin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Paula Sanchon-Sanchez
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Marta R Romero
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J G Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain.
| | - Oscar Briz
- Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute for Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
26
|
Yu ZC, Li T, Tully E, Huang P, Chen CN, Oberdoerffer P, Gaillard S, Shih IM, Wang TL. Temozolomide Sensitizes ARID1A-Mutated Cancers to PARP Inhibitors. Cancer Res 2023; 83:2750-2762. [PMID: 37306706 PMCID: PMC10527942 DOI: 10.1158/0008-5472.can-22-3646] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/02/2023] [Accepted: 06/07/2023] [Indexed: 06/13/2023]
Abstract
ARID1A is a subunit of SWI/SNF chromatin remodeling complexes and is mutated in many types of human cancers, especially those derived from endometrial epithelium, including ovarian and uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). Loss-of-function mutations in ARID1A alter epigenetic regulation of transcription, cell-cycle checkpoint control, and DNA damage repair. We report here that mammalian cells with ARID1A deficiency harbor accumulated DNA base lesions and increased abasic (AP) sites, products of glycosylase in the first step of base excision repair (BER). ARID1A mutations also delayed recruitment kinetics of BER long-patch repair effectors. Although ARID1A-deficient tumors were not sensitive to monotherapy with DNA-methylating temozolomide (TMZ), the combination of TMZ with PARP inhibitors (PARPi) potently elicited double-strand DNA breaks, replication stress, and replication fork instability in ARID1A-deficient cells. The TMZ and PARPi combination also significantly delayed in vivo growth of ovarian tumor xenografts carrying ARID1A mutations and induced apoptosis and replication stress in xenograft tumors. Together, these findings identified a synthetic lethal strategy to enhance the response of ARID1A-mutated cancers to PARP inhibition, which warrants further experimental exploration and clinical trial validation. SIGNIFICANCE The combination of temozolomide and PARP inhibitor exploits the specific DNA damage repair status of ARID1A-inactivated ovarian cancers to suppress tumor growth.
Collapse
Affiliation(s)
- Zheng-Cheng Yu
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tianhe Li
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ellen Tully
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Peng Huang
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Chih-Ning Chen
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Philipp Oberdoerffer
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Radiation Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Stephanie Gaillard
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Ie-Ming Shih
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| | - Tian-Li Wang
- Departments of Pathology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Oncology, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
- Gynecology and Obstetrics, Johns Hopkins Medical Institutions, Baltimore, MD, 21231, USA
| |
Collapse
|
27
|
Soto-Castillo JJ, Llavata-Marti L, Fort-Culillas R, Andreu-Cobo P, Moreno R, Codony C, García Del Muro X, Alemany R, Piulats JM, Martin-Liberal J. SWI/SNF Complex Alterations in Tumors with Rhabdoid Features: Novel Therapeutic Approaches and Opportunities for Adoptive Cell Therapy. Int J Mol Sci 2023; 24:11143. [PMID: 37446319 DOI: 10.3390/ijms241311143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin-remodeling complex is one of the most remarkably altered epigenetic regulators in cancer. Pathogenic mutations in genes encoding SWI/SNF-related proteins have been recently described in many solid tumors, including rare and aggressive malignancies with rhabdoid features with no standard therapies in advanced or metastatic settings. In recent years, clinical trials with targeted drugs aimed at restoring its function have shown discouraging results. However, preclinical data have found an association between these epigenetic alterations and response to immune therapy. Thus, the rationale for immunotherapy strategies in SWI/SNF complex alteration-related tumors is strong. Here, we review the SWI/SNF complex and how its dysfunction drives the oncogenesis of rhabdoid tumors and the proposed strategies to revert this alteration and promising novel therapeutic approaches, including immune checkpoint inhibition and adoptive cell therapy.
Collapse
Affiliation(s)
- Juan José Soto-Castillo
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Lucía Llavata-Marti
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Roser Fort-Culillas
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 17007 Girona, Spain
| | - Pablo Andreu-Cobo
- Medical Oncology Department, Parc Tauli Hospital Universitari, 08208 Sabadell, Spain
| | - Rafael Moreno
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Carles Codony
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Xavier García Del Muro
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Ramon Alemany
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Josep M Piulats
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
- Cancer Immunotherapy Group, iPROCURE Program, Bellvitge Biomedical Research Institute (IDIBELL), Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| | - Juan Martin-Liberal
- Medical Oncology Department, Catalan Institute of Oncology (ICO), 08908 Hospitalet de Llobregat, Spain
| |
Collapse
|
28
|
Zimmer K, Kocher F, Untergasser G, Kircher B, Amann A, Baca Y, Xiu J, Korn WM, Berger MD, Lenz HJ, Puccini A, Fontana E, Shields AF, Marshall JL, Hall M, El-Deiry WS, Hsiehchen D, Macarulla T, Tabernero J, Pichler R, Khushman M, Manne U, Lou E, Wolf D, Sokolova V, Schnaiter S, Zeimet AG, Gulhati P, Widmann G, Seeber A. PBRM1 mutations might render a subtype of biliary tract cancers sensitive to drugs targeting the DNA damage repair system. NPJ Precis Oncol 2023; 7:64. [PMID: 37400502 DOI: 10.1038/s41698-023-00409-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/31/2023] [Indexed: 07/05/2023] Open
Abstract
Polybromo-1 (PBRM1) loss of function mutations are present in a fraction of biliary tract cancers (BTCs). PBRM1, a subunit of the PBAF chromatin-remodeling complex, is involved in DNA damage repair. Herein, we aimed to decipher the molecular landscape of PBRM1 mutated (mut) BTCs and to define potential translational aspects. Totally, 1848 BTC samples were analyzed using next-generation DNA-sequencing and immunohistochemistry (Caris Life Sciences, Phoenix, AZ). siRNA-mediated knockdown of PBRM1 was performed in the BTC cell line EGI1 to assess the therapeutic vulnerabilities of ATR and PARP inhibitors in vitro. PBRM1 mutations were identified in 8.1% (n = 150) of BTCs and were more prevalent in intrahepatic BTCs (9.9%) compared to gallbladder cancers (6.0%) or extrahepatic BTCs (4.5%). Higher rates of co-mutations in chromatin-remodeling genes (e.g., ARID1A 31% vs. 16%) and DNA damage repair genes (e.g., ATRX 4.4% vs. 0.3%) were detected in PBRM1-mutated (mut) vs. PBRM1-wildtype (wt) BTCs. No difference in real-world overall survival was observed between PBRM1-mut and PBRM1-wt patients (HR 1.043, 95% CI 0.821-1.325, p = 0.731). In vitro, experiments suggested that PARP ± ATR inhibitors induce synthetic lethality in the PBRM1 knockdown BTC model. Our findings served as the scientific rationale for PARP inhibition in a heavily pretreated PBRM1-mut BTC patient, which induced disease control. This study represents the largest and most extensive molecular profiling study of PBRM1-mut BTCs, which in vitro sensitizes to DNA damage repair inhibiting compounds. Our findings might serve as a rationale for future testing of PARP/ATR inhibitors in PBRM1-mut BTCs.
Collapse
Affiliation(s)
- Kai Zimmer
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Florian Kocher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Gerold Untergasser
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Brigitte Kircher
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
- Tyrolean Cancer Research Institute, Innsbruck, Austria
| | - Arno Amann
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | | | | | | | - Martin D Berger
- Department of Medical Oncology, Inselspital, University of Bern, Bern, Switzerland
| | - Heinz-Josef Lenz
- Division of Medical Oncology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Alberto Puccini
- Medical Oncology Unit 1, Ospedale Policlinico San Martino, Genoa, Italy
| | - Elisa Fontana
- Drug Development Unit, Sarah Cannon Research Institute UK, Marylebone, London, UK
| | - Anthony F Shields
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI, USA
| | - John L Marshall
- Ruesch Center for The Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Michael Hall
- Department of Hematology and Oncology, Fox Chase Cancer Center, Temple University Health System, Philadelphia, PA, USA
| | - Wafik S El-Deiry
- Department of Pathology and Laboratory Medicine, Cancer Center at Brown University, Providence, RI, USA
| | - David Hsiehchen
- Division of Hematology and Oncology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Teresa Macarulla
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain
| | - Josep Tabernero
- Medical Oncology Department, Vall d'Hebron Hospital Campus and Institute of Oncology (VHIO), IOB-Quiron, Barcelona, Spain
| | - Renate Pichler
- Department of Urology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Moh'd Khushman
- O'Neal Comprehensive Cancer Center, the University of Alabama at Birmingham, Birmingham, Al, USA
| | - Upender Manne
- O'Neal Comprehensive Cancer Center, the University of Alabama at Birmingham, Birmingham, Al, USA
| | - Emil Lou
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - Dominik Wolf
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria
| | - Viktorija Sokolova
- Department of Nuclear Medicine, Provincial Hospital of Bolzano (SABES-ASDAA), Teaching Hospital of the Paracelsus Medical Private University, Bolzano-Bozen, Italy
| | - Simon Schnaiter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynaecology, Comprehensive Cancer Center Innsbruck, Medical University of Innsbruck, Innsbruck, Austria
| | - Pat Gulhati
- Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, USA
| | - Gerlig Widmann
- Department of Radiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas Seeber
- Department of Hematology and Oncology, Comprehensive Cancer Center Innsbruck (CCCI), Medical University Innsbruck (MUI), Innsbruck, Austria.
| |
Collapse
|
29
|
Reddy D, Bhattacharya S, Workman JL. (mis)-Targeting of SWI/SNF complex(es) in cancer. Cancer Metastasis Rev 2023; 42:455-470. [PMID: 37093326 PMCID: PMC10349013 DOI: 10.1007/s10555-023-10102-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 04/05/2023] [Indexed: 04/25/2023]
Abstract
The ATP-dependent chromatin remodeling complex SWI/SNF (also called BAF) is critical for the regulation of gene expression. During the evolution from yeast to mammals, the BAF complex has evolved an enormous complexity that contains a high number of subunits encoded by various genes. Emerging studies highlight the frequent involvement of altered mammalian SWI/SNF chromatin-remodeling complexes in human cancers. Here, we discuss the recent advances in determining the structure of SWI/SNF complexes, highlight the mechanisms by which mutations affecting these complexes promote cancer, and describe the promising emerging opportunities for targeted therapies.
Collapse
Affiliation(s)
- Divya Reddy
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA
| | | | - Jerry L Workman
- Stowers Institute for Medical Research, Kansas City, MO, 64110, USA.
| |
Collapse
|
30
|
Bure IV, Nemtsova MV. Mutual Regulation of ncRNAs and Chromatin Remodeling Complexes in Normal and Pathological Conditions. Int J Mol Sci 2023; 24:ijms24097848. [PMID: 37175555 PMCID: PMC10178202 DOI: 10.3390/ijms24097848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Chromatin remodeling is the one of the main epigenetic mechanisms of gene expression regulation both in normal cells and in pathological conditions. In recent years, a growing number of investigations have confirmed that epigenetic regulators are tightly connected and form a comprehensive network of regulatory pathways and feedback loops. Genes encoding protein subunits of chromatin remodeling complexes are often mutated and change their expression in diseases, as well as non-coding RNAs (ncRNAs). Moreover, different mechanisms of their mutual regulation have already been described. Further understanding of these processes may help apply their clinical potential for establishment of the diagnosis, prognosis, and treatment of the diseases. The therapeutic targeting of the chromatin structure has many limitations because of the complexity of its regulation, with the involvement of a large number of genes, proteins, non-coding transcripts, and other intermediary molecules. However, several successful strategies have been proposed to target subunits of chromatin remodeling complexes and genes encoding them, as well as the ncRNAs that regulate the operation of these complexes and direct them to the target gene regions. In our review, we focus on chromatin remodeling complexes and ncRNAs, their mutual regulation, role in cellular processes and potential clinical application.
Collapse
Affiliation(s)
- Irina V Bure
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Marina V Nemtsova
- Laboratory of Medical Genetics, I.M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
- Laboratory of Epigenetics, Research Centre for Medical Genetics, 115522 Moscow, Russia
| |
Collapse
|
31
|
Lebedev T, Kousar R, Patrick B, Usama M, Lee MK, Tan M, Li XG. Targeting ARID1A-Deficient Cancers: An Immune-Metabolic Perspective. Cells 2023; 12:cells12060952. [PMID: 36980292 PMCID: PMC10047504 DOI: 10.3390/cells12060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic remodeling and metabolic reprogramming, two well-known cancer hallmarks, are highly intertwined. In addition to their abilities to confer cancer cell growth advantage, these alterations play a critical role in dynamically shaping the tumor microenvironment and antitumor immunity. Recent studies point toward the interplay between epigenetic regulation and metabolic rewiring as a potentially targetable Achilles' heel in cancer. In this review, we explore the key metabolic mechanisms that underpin the immunomodulatory role of AT-rich interaction domain 1A (ARID1A), the most frequently mutated epigenetic regulator across human cancers. We will summarize the recent advances in targeting ARID1A-deficient cancers by harnessing immune-metabolic vulnerability elicited by ARID1A deficiency to stimulate antitumor immune response, and ultimately, to improve patient outcome.
Collapse
Affiliation(s)
- Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Muhammad Usama
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Meng-Kuei Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| |
Collapse
|
32
|
Asaka S, Liu Y, Yu ZC, Rahmanto YS, Ono M, Asaka R, Miyamoto T, Yen TT, Ayhan A, Wang TL, Shih IM. ARID1A Regulates Progesterone Receptor Expression in Early Endometrial Endometrioid Carcinoma Pathogenesis. Mod Pathol 2023; 36:100045. [PMID: 36853791 DOI: 10.1016/j.modpat.2022.100045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 09/13/2022] [Accepted: 10/18/2022] [Indexed: 01/11/2023]
Abstract
Loss of progesterone receptor (PR) expression is an established risk factor for unresponsiveness to progesterone therapy in patients with endometrial atypical hyperplasia and endometrioid carcinoma. ARID1A is one of the most commonly mutated genes in endometrioid carcinomas, and the loss of its expression is associated with tumor progression. In this study, we investigated the roles of ARID1A deficiency in PR expression in human and murine endometrial epithelial neoplasia. An analysis of genome-wide chromatin immunoprecipitation sequencing in isogenic ARID1A-/- and ARID1A+/+ human endometrial epithelial cells revealed that ARID1A-/- cells showed significantly reduced chromatin immunoprecipitation sequencing signals for ARID1A, BRG1, and H3K27AC in the PgR enhancer region. We then performed immunohistochemistry to correlate the protein expression levels of ARID1A, estrogen receptor, and PR in 50 human samples of endometrial atypical hyperplasia and 75 human samples of endometrial carcinomas. The expression levels of PR but not were significantly lower in ARID1A-deficient low-grade endometrial carcinomas and atypical hyperplasia (P = .0002). When Pten and Pten/Arid1a conditional knockout murine models were used, Pten-/-;Arid1a-/- mice exhibited significantly decreased epithelial PR expression in endometrial carcinomas (P = .003) and atypical hyperplasia (P < .0001) compared with that in the same tissues from Pten-/-;Arid1a+/+ mice. Our data suggest that the loss of ARID1A expression, as occurs in ARID1A-mutated endometrioid carcinomas, decreases PgR transcription by modulating the PgR enhancer region during early tumor development.
Collapse
Affiliation(s)
- Shiho Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Laboratory Medicine, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ying Liu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yohan Suryo Rahmanto
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Motoki Ono
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ryoichi Asaka
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Tsutomu Miyamoto
- Department of Obstetrics and Gynecology, Shinshu University School of Medicine, Matsumoto, Japan
| | - Ting-Tai Yen
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Ayse Ayhan
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Seirei Mikatahara Hospital, Hamamatsu, Japan; Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
33
|
Sadek M, Sheth A, Zimmerman G, Hays E, Vélez-Cruz R. The role of SWI/SNF chromatin remodelers in the repair of DNA double strand breaks and cancer therapy. Front Cell Dev Biol 2022; 10:1071786. [PMID: 36605718 PMCID: PMC9810387 DOI: 10.3389/fcell.2022.1071786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022] Open
Abstract
Switch/Sucrose non-fermenting (SWI/SNF) chromatin remodelers hydrolyze ATP to push and slide nucleosomes along the DNA thus modulating access to various genomic loci. These complexes are the most frequently mutated epigenetic regulators in human cancers. SWI/SNF complexes are well known for their function in transcription regulation, but more recent work has uncovered a role for these complexes in the repair of DNA double strand breaks (DSBs). As radiotherapy and most chemotherapeutic agents kill cancer cells by inducing double strand breaks, by identifying a role for these complexes in double strand break repair we are also identifying a DNA repair vulnerability that can be exploited therapeutically in the treatment of SWI/SNF-mutated cancers. In this review we summarize work describing the function of various SWI/SNF subunits in the repair of double strand breaks with a focus on homologous recombination repair and discuss the implication for the treatment of cancers with SWI/SNF mutations.
Collapse
Affiliation(s)
- Maria Sadek
- Biomedical Sciences Program, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Anand Sheth
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Grant Zimmerman
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
| | - Emily Hays
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
| | - Renier Vélez-Cruz
- Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, United States
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, United States
- Chicago College of Optometry, Midwestern University, Downers Grove, IL, United States
- Chicago College of Pharmacy, Midwestern University, Downers Grove, IL, United States
| |
Collapse
|
34
|
Zhang FL, Li DQ. Targeting Chromatin-Remodeling Factors in Cancer Cells: Promising Molecules in Cancer Therapy. Int J Mol Sci 2022; 23:12815. [PMID: 36361605 PMCID: PMC9655648 DOI: 10.3390/ijms232112815] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 03/28/2024] Open
Abstract
ATP-dependent chromatin-remodeling complexes can reorganize and remodel chromatin and thereby act as important regulator in various cellular processes. Based on considerable studies over the past two decades, it has been confirmed that the abnormal function of chromatin remodeling plays a pivotal role in genome reprogramming for oncogenesis in cancer development and/or resistance to cancer therapy. Recently, exciting progress has been made in the identification of genetic alteration in the genes encoding the chromatin-remodeling complexes associated with tumorigenesis, as well as in our understanding of chromatin-remodeling mechanisms in cancer biology. Here, we present preclinical evidence explaining the signaling mechanisms involving the chromatin-remodeling misregulation-induced cancer cellular processes, including DNA damage signaling, metastasis, angiogenesis, immune signaling, etc. However, even though the cumulative evidence in this field provides promising emerging molecules for therapeutic explorations in cancer, more research is needed to assess the clinical roles of these genetic cancer targets.
Collapse
Affiliation(s)
- Fang-Lin Zhang
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Da-Qiang Li
- Shanghai Cancer Center and Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Cancer Institute, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Department of Breast Surgery, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Breast Cancer, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Mandal J, Mandal P, Wang TL, Shih IM. Treating ARID1A mutated cancers by harnessing synthetic lethality and DNA damage response. J Biomed Sci 2022; 29:71. [PMID: 36123603 PMCID: PMC9484255 DOI: 10.1186/s12929-022-00856-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Chromatin remodeling is an essential cellular process for organizing chromatin structure into either open or close configuration at specific chromatin locations by orchestrating and modifying histone complexes. This task is responsible for fundamental cell physiology including transcription, DNA replication, methylation, and damage repair. Aberrations in this activity have emerged as epigenomic mechanisms in cancer development that increase tumor clonal fitness and adaptability amidst various selection pressures. Inactivating mutations in AT-rich interaction domain 1A (ARID1A), a gene encoding a large nuclear protein member belonging to the SWI/SNF chromatin remodeling complex, result in its loss of expression. ARID1A is the most commonly mutated chromatin remodeler gene, exhibiting the highest mutation frequency in endometrium-related uterine and ovarian carcinomas. As a tumor suppressor gene, ARID1A is essential for regulating cell cycle, facilitating DNA damage repair, and controlling expression of genes that are essential for maintaining cellular differentiation and homeostasis in non-transformed cells. Thus, ARID1A deficiency due to somatic mutations propels tumor progression and dissemination. The recent success of PARP inhibitors in treating homologous recombination DNA repair-deficient tumors has engendered keen interest in developing synthetic lethality-based therapeutic strategies for ARID1A-mutated neoplasms. In this review, we summarize recent advances in understanding the biology of ARID1A in cancer development, with special emphasis on its roles in DNA damage repair. We also discuss strategies to harness synthetic lethal mechanisms for future therapeutics against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Ie-Ming Shih
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, USA.
| |
Collapse
|
36
|
Li R, Xiong G, Zhao J, Yang L. Targeting the alterations of ARID1A in pancreatic cancer: tumorigenesis, prediction of treatment, and prognostic value. Am J Transl Res 2022; 14:5952-5964. [PMID: 36247295 PMCID: PMC9556451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/01/2022] [Indexed: 06/16/2023]
Abstract
The chromatin remodeling gene AT-rich interactive domain 1A (ARID1A), encoding a subunit of the switch/sucrose non-fermentable (SWI/SNF) complex, is one of the most frequently mutated chromatin regulators across a broad spectrum of cancers. Most of the ARID1A alterations are inactivating, leading to the loss or reduced expression of the protein. Recently, ARID1A has been demonstrated as a tumor suppressor gene in pancreatic ductal adenocarcinoma (PDAC), as its inactive alterations attribute to carcinogenesis. Importantly, ARID1A alterations are revealed as predictive biomarkers for the selection of targeted therapy and immune checkpoint blockade (ICB) therapy. In PDAC, the application of ARID1A alterations in stratifying patients for precise treatment has also been widely explored in preclinical and early clinic studies with encouraging preliminary results. Furthermore, the prognostic value of ARID1A mutations in PDAC has been suggested by various studies. In this review, we focus on the functions of ARID1A alterations in PDAC, particularly their functions during carcinogenesis and their predictive value in treatment selection and prognosis, to provide a comprehensive overview on our current understanding of ARID1A alterations in PDAC.
Collapse
Affiliation(s)
- Ruichao Li
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Guangbing Xiong
- Department of Biliary-Pancreatic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Jun Zhao
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| | - Lin Yang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhan, China
| |
Collapse
|
37
|
Krishnamurthy N, Kato S, Lippman S, Kurzrock R. Chromatin remodeling (SWI/SNF) complexes, cancer, and response to immunotherapy. J Immunother Cancer 2022. [PMCID: PMC9442488 DOI: 10.1136/jitc-2022-004669] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Chromatin regulation involves four subfamilies composed of ATP-dependent multifunctional protein complexes that remodel the way DNA is packaged. The SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex subfamily mediates nucleosome reorganization and hence activation/repression of critical genes. The SWI/SNF complex is composed of the BRG-/BRM-associated factor and Polybromo-associated BAF complexes, which in turn have multiple subunits. Significantly, ~20% of malignancies harbor alterations in >1 of these subunits, making the genes encoding SWI/SNF family members among the most vulnerable to genomic aberrations in cancer. ARID1A is the largest subunit of the SWI/SNF complex and is altered in ~40%–50% of ovarian clear cell cancers and ~15%–30% of cholangiocarcinomas, in addition to a variety of other malignancies. Importantly, outcome was improved after immune checkpoint blockade (ICB) in patients with ARID1A-altered versuss wild-type tumors, and this result was independent of microsatellite instability or tumor mutational burden. Another subunit—PBRM1—is mutated in ~40% of clear cell renal cell carcinomas and ~12% of cholangiocarcinomas; there are contradictory reports regarding ICB responsiveness. Two other SWI/SNF subunits of interest are SMARCA4 and SMARCB1. SMARCA4 loss is the hallmark of small cell carcinoma of the ovary hypercalcemic type (and is found in a variety of other malignancies); SMARCA4 germline alterations lead to rhabdoid tumor predisposition syndrome-2; SMARCB1 germline alterations, rhabdoid tumor predisposition syndrome-1. Remarkable, although anecdotal, responses to ICB have been reported in both SMARCA4-aberrant and SMARCB1-aberrant advanced cancers. This review focuses on the role that SWI/SNF chromatin remodeling subunits play in carcinogenesis, the immune microenvironment, and in immunotherapy responsiveness.
Collapse
Affiliation(s)
- Nithya Krishnamurthy
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Yale University, New Haven, Connecticut, USA
| | - Shumei Kato
- Yale University, New Haven, Connecticut, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Scott Lippman
- Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Medicine, Division of Hematology/Oncology, and Center for Personalized Cancer Therapy, University of California, Moores Cancer Center, La Jolla, California, USA
| | - Razelle Kurzrock
- Worldwide Innovative Network for Personalized Cancer Therapy, San Diego, California, USA
| |
Collapse
|
38
|
Jones CA, Tansey WP, Weissmiller AM. Emerging Themes in Mechanisms of Tumorigenesis by SWI/SNF Subunit Mutation. Epigenet Insights 2022; 15:25168657221115656. [PMID: 35911061 PMCID: PMC9329810 DOI: 10.1177/25168657221115656] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
The SWI/SNF chromatin remodeling complex uses the energy of ATP hydrolysis to alter contacts between DNA and nucleosomes, allowing regions of the genome to become accessible for biological processes such as transcription. The SWI/SNF chromatin remodeler is also one of the most frequently altered protein complexes in cancer, with upwards of 20% of all cancers carrying mutations in a SWI/SNF subunit. Intense studies over the last decade have probed the molecular events associated with SWI/SNF dysfunction in cancer and common themes are beginning to emerge in how tumor-associated SWI/SNF mutations promote malignancy. In this review, we summarize current understanding of SWI/SNF complexes, their alterations in cancer, and what is known about the impact of these mutations on tumor-relevant transcriptional events. We discuss how enhancer dysregulation is a common theme in SWI/SNF mutant cancers and describe how resultant alterations in enhancer and super-enhancer activity conspire to block development and differentiation while promoting stemness and self-renewal. We also identify a second emerging theme in which SWI/SNF perturbations intersect with potent oncoprotein transcription factors AP-1 and MYC to drive malignant transcriptional programs.
Collapse
Affiliation(s)
- Cheyenne A Jones
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - April M Weissmiller
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, USA
| |
Collapse
|
39
|
Wood LD, Canto MI, Jaffee EM, Simeone DM. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022; 163:386-402.e1. [PMID: 35398344 PMCID: PMC9516440 DOI: 10.1053/j.gastro.2022.03.056] [Citation(s) in RCA: 347] [Impact Index Per Article: 115.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/13/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer, due to both its late stage at diagnosis and its resistance to chemotherapy. However, recent advances in our understanding of the biology of PDAC have revealed new opportunities for early detection and targeted therapy of PDAC. In this review, we discuss the pathogenesis of PDAC, including molecular alterations in tumor cells, cellular alterations in the tumor microenvironment, and population-level risk factors. We review the current status of surveillance and early detection of PDAC, including populations at high risk and screening approaches. We outline the diagnostic approach to PDAC and highlight key treatment considerations, including how therapeutic approaches change with disease stage and targetable subtypes of PDAC. Recent years have seen significant improvements in our approaches to detect and treat PDAC, but large-scale, coordinated efforts will be needed to maximize the clinical impact for patients and improve overall survival.
Collapse
Affiliation(s)
- Laura D Wood
- Departments of Pathology and Oncology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Marcia Irene Canto
- Division of Gastroenterology and Hepatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Elizabeth M Jaffee
- Sidney Kimmel Cancer Center, Skip Viragh Center for Pancreatic Cancer Research and Clinical Care, Bloomberg-Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Diane M Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
40
|
Ren T, Wang J, Tang W, Chen D, Wang S, Zhang X, Yang D. ARID1A has prognostic value in acute myeloid leukemia and promotes cell proliferation via TGF-β1/SMAD3 signaling. Clin Exp Med 2022:10.1007/s10238-022-00863-8. [PMID: 35867200 DOI: 10.1007/s10238-022-00863-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 07/04/2022] [Indexed: 11/03/2022]
Abstract
Previous studies have shown that the gene AT-rich interactive domain-containing protein 1A (ARID1A) is a subunit of SWI/SNF chromatin remodeling complex that acts as a tumor suppressor gene in several cancers and plays a vital role in tumorigenesis. However, its biological functions in acute myeloid leukemia (AML) are still unclear. Here, we tried to elaborate the expression of ARID1A in patients with AML, in leukemia cells, as well as the molecular mechanisms. Our results indicated that the expression of ARID1A was significantly downregulated in the bone marrow of patients with AML and relapsed patients compared with healthy subjects and patients in complete remission. Meantime, receiver operating characteristic curve analysis showed that the expression of ARID1A could be used to discriminate between patients with AML and patients in complete remission. We further constructed a knockdown cell model to determine the regulatory mechanisms of ARID1A in AML cells. We found that the decreased expression of ARID1A promoted cell proliferation, suppressed cellular apoptosis, and impeded cell cycle arrest via TGF-β1/SMAD3 signaling pathway. These results revealed that the reduced expression of ARID1A promoted cell proliferation via the TGF-β1/SMAD3 cascade and served as a prognostic biomarker for AML and therapeutic targets.
Collapse
Affiliation(s)
- Tianying Ren
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Jing Wang
- Key Laboratory for Pediatrics of Integrated Traditional and Western Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Wenqiang Tang
- Central Laboratory, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Dongliang Chen
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Shuang Wang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China
| | - Xiaole Zhang
- Department of Hematology, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China.
| | - Dawei Yang
- Zhong Yuan Academy of Biological Medicine, Liaocheng People's Hospital, Liaocheng, 252000, Shandong, People's Republic of China.
| |
Collapse
|
41
|
Jackson CG, Moore KN, Cantrell L, Erickson BK, Duska LR, Richardson DL, Landrum LM, Holman LL, Walker JL, Mannel RS, Moxley KM, Queimado L, Cohoon A, Ding K, Dockery LE. A phase II trial of bevacizumab and rucaparib in recurrent carcinoma of the cervix or endometrium. Gynecol Oncol 2022; 166:44-49. [PMID: 35491267 PMCID: PMC10428664 DOI: 10.1016/j.ygyno.2022.04.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 11/22/2022]
Abstract
OBJECTIVE The aim of this study was to examine the tolerability and efficacy of combination bevacizumab rucaparib therapy in patients with recurrent cervical or endometrial cancer. PATIENTS & METHODS Thirty-three patients with recurrent cervical or endometrial cancer were enrolled. Patients were required to have tumor progression after first line treatment for metastatic, or recurrent disease. Rucaparib was given at 600 mg BID twice daily for each 21-day cycle. Bevacizumab was given at 15 mg/kg on day 1 of each 21-day cycle. The primary endpoint was efficacy as determined by objective response rate or 6-month progression free survival. RESULTS Of the 33 patients enrolled, 28 were evaluable. Patients with endometrial cancer had a response rate of 17% while patients with cervical cancer had a response rate of 14%. Median progression free survival was 3.8 months (95% C·I 2.5 to 5.7 months), and median overall survival was 10.1 months (95% C·I 7.0 to 15.1 months). Patients with ARID1A mutations displayed a better response rate (33%) and 6-month progression free survival (PFS6) rate (67%) than the entire study population. Observed toxicity was similar to that of previous studies with bevacizumab and rucaparib. CONCLUSIONS The combination of bevacizumab with rucaparib did not show significantly increased anti-tumor activity in all patients with recurrent cervical or endometrial cancer. However, patients with ARID1A mutations had a higher response rate and PFS6 suggesting this subgroup may benefit from the combination of bevacizumab and rucaparib. Further study is needed to confirm this observation. No new safety signals were seen.
Collapse
Affiliation(s)
- C G Jackson
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K N Moore
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L Cantrell
- Division of Gynecologic Oncology, University of Virginia, Department of Obstetrics and Gynecology; Charlottesville, VA, USA
| | - B K Erickson
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of Minnesota; Minneapolis, MN, USA
| | - L R Duska
- Division of Gynecologic Oncology, University of Virginia, Department of Obstetrics and Gynecology; Charlottesville, VA, USA
| | - D L Richardson
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L M Landrum
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L L Holman
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - J L Walker
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - R S Mannel
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K M Moxley
- Stephenson Cancer Center Section of Gynecologic Oncology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L Queimado
- Department of Otolaryngology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - A Cohoon
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - K Ding
- Department of Biostatistics and Epidemiology, University of Oklahoma Health Sciences Center; Oklahoma City, OK, USA
| | - L E Dockery
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, University of North Carolina; Chapel Hill, NC, USA.
| |
Collapse
|
42
|
Beinse G, Just PA, Le Frere Belda MA, Laurent-Puig P, Jacques S, Koual M, Garinet S, Leroy K, Delanoy N, Blons H, Gervais C, Durdux C, Chapron C, Goldwasser F, Terris B, Badoual C, Taly V, Bats AS, Borghese B, Alexandre J. Discovery and validation of a transcriptional signature identifying homologous recombination-deficient breast, endometrial and ovarian cancers. Br J Cancer 2022; 127:1123-1132. [PMID: 35752712 DOI: 10.1038/s41416-022-01900-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/03/2022] [Accepted: 06/15/2022] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Molecular alterations leading to homologous recombination deficiency (HRD) are heterogeneous. We aimed to identify a transcriptional profile shared by endometrial (UCEC), breast (BRCA) and ovarian (OV) cancers with HRD. METHODS Genes differentially expressed with HRD genomic score (continuous gHRD score) in UCEC/BRCA/OV were identified using edgeR, and used to train a RNAseq score (ridge-regression model) predictive of the gHRD score (PanCanAtlas, N = 1684 samples). The RNAseq score was applied in independent gynaecological datasets (CARPEM/CPTAC/SCAN/TCGA, N = 4038 samples). Validations used ROC curves, linear regressions and Pearson correlations. Overall survival (OS) analyses used Kaplan-Meier curves and Cox models. RESULTS In total, 656 genes were commonly up/downregulated with gHRD score in UCEC/BRCA/OV. Upregulated genes were enriched for nuclear/chromatin/DNA-repair processes, while downregulated genes for cytoskeleton (gene ontologies). The RNAseq score correlated with gHRD score in independent gynaecological cancers (R² = 0.4-0.7, Pearson correlation = 0.64-0.86, all P < 10-11), and was predictive of gHRD score >42 (RNAseq HRD profile; AUC = 0.95/0.92/0.78 in UCEC/BRCA/OV). RNAseq HRD profile was associated (i) with better OS in platinum-treated advanced TP53-mutated-UCEC (P < 0.001) and OV (P = 0.013), and (ii) with poorer OS (P < 0.001) and higher benefit of adjuvant chemotherapy in Stage I-III BRCA (interaction test, P < 0.001). CONCLUSIONS UCEC/BRCA/OV with HRD-associated genomic scars share a common transcriptional profile. RNAseq signatures might be relevant for identifying HRD-gynaecological cancers, for prognostication and for therapeutic decision.
Collapse
Affiliation(s)
- Guillaume Beinse
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France
| | - Pierre-Alexandre Just
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Marie-Aude Le Frere Belda
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Européen Georges Pompidou, Paris, France
| | - Pierre Laurent-Puig
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Paris, France
| | | | - Meriem Koual
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Européen Georges Pompidou, Paris, France
| | - Simon Garinet
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Karen Leroy
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Nicolas Delanoy
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Helene Blons
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Biology, Hopital Européen Georges Pompidou, Paris, France
| | - Claire Gervais
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Européen Georges Pompidou, Paris, France
| | - Catherine Durdux
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Radiotherapy, Hopital Européen Georges Pompidou, Paris, France
| | - Charles Chapron
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Cochin, Paris, France
| | - François Goldwasser
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Benoit Terris
- Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Cochin, Paris, France.,Université de Paris Cité, Paris, France
| | - Cecile Badoual
- Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Pathology, Hopital Européen Georges Pompidou, Paris, France
| | - Valerie Taly
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France
| | - Anne-Sophie Bats
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Européen Georges Pompidou, Paris, France
| | - Bruno Borghese
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France.,Université de Paris Cité, Paris, France.,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Gynecological Surgery, Hopital Cochin, Paris, France
| | - Jérôme Alexandre
- Centre de Recherche des Cordeliers, « Equipe labélisée Ligue Contre le Cancer », CNRS SNC 5096, Sorbonne Université, Université de Paris Cité, INSERM, Paris, France. .,Institut du Cancer Paris CARPEM, AP-HP, APHP.Centre, Department of Medical Oncology, Hopital Cochin, Paris, France. .,Université de Paris Cité, Paris, France.
| |
Collapse
|
43
|
Effects of Tumor Mutational Burden and Gene Alterations Associated with Radiation Response on Outcomes of Postoperative Radiation Therapy in Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2022; 113:335-344. [PMID: 35157996 PMCID: PMC9976944 DOI: 10.1016/j.ijrobp.2022.02.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/31/2022] [Accepted: 02/06/2022] [Indexed: 01/19/2023]
Abstract
PURPOSE Postoperative radiation therapy (PORT) in resected non-small cell lung cancer (NSCLC) improves locoregional outcomes, but recent randomized data do not support its unselected use. We assessed if tumor mutational burden (TMB) and mutations in genes associated with radiation sensitivity can select patients for PORT. METHODS AND MATERIALS Patients with resected NSCLC treated with and without PORT who underwent tumor genomic profiling were examined. The incidence of locoregional failures (LRFs) in patients with deleterious mutations in DNA damage response and repair (DDR) genes and genes associated with radiation resistance (KEAP1/NFE2L2/STK11/PIK3CA) were investigated. Cox modeling and receiver operating characteristic curve (ROC) analysis assessed the relationship between TMB and locoregional control (LRC). RESULTS Eighty-nine patients with NSCLC treated with PORT were analyzed, with a 2-year LRF rate of 19% (95% confidence interval, 10%-27%). Among patients treated with PORT, those with mutations in radiation resistance genes (n = 16 [18%]) had significantly more LRFs than patients without mutations (2-year LRF rate: 60% vs 11%; P < .001). On multivariate analysis, radiation-resistance mutations were associated with LRF after PORT (hazard ratio, 7.42; P < .001). Patients with mutations identified in DDR genes (n = 15 [17%]) had significantly improved LRC (P = .048) and no LRF events after PORT. On multivariate analysis, a higher TMB was associated with improved LRC after PORT (hazard ratio, 0.86; P = .01), and TMB was associated with PORT outcomes (area under ROC curve, 0.67-0.77). These genomic markers were not similarly associated with LRF in patients not treated with PORT. CONCLUSIONS The data suggest that patients with radiation-resistance gene alterations may derive minimal benefit from PORT, whereas patients with high TMB and/or alterations in DDR genes may benefit from PORT and be suited for future precision-RT strategies. Prospective studies are necessary to validate these findings.
Collapse
|
44
|
Qin C, Ji Z, Zhai E, Xu K, Zhang Y, Li Q, Jing H, Wang X, Song X. PARP inhibitor olaparib enhances the efficacy of radiotherapy on XRCC2-deficient colorectal cancer cells. Cell Death Dis 2022; 13:505. [PMID: 35643812 PMCID: PMC9148313 DOI: 10.1038/s41419-022-04967-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 12/14/2022]
Abstract
The use of PARP inhibitors in combination with radiotherapy is a promising strategy to locally enhance DNA damage in tumors. Loss of XRCC2 compromises DNA damage repairs, and induced DNA damage burdens may increase the reliance on PARP-dependent DNA repairs of cancer cells to render cell susceptibility to PARP inhibitor therapy. Here we tested the hypothesis that XRCC2 loss sensitizes colorectal cancer (CRC) to PARP inhibitor in combination with radiotherapy (RT). We show that high levels of XRCC2 or PARP1 in LARC patients were significantly associated with poor overall survival (OS). Co-expression analyses found that low levels of PARP1 and XRCC2 were associated with better OS. Our in vitro experiments indicated that olaparib+IR led to reduced clonogenic survival, more DNA damage, and longer durations of cell cycle arrest and senescence in XRCC2-deficient cells relative to wild-type cells. Furthermore, our mouse xenograft experiments indicated that RT + olaparib had greater anti-tumor effects and led to long-term remission in mice with XRCC2-deficient tumors. These findings suggest that XRCC2-deficient CRC acquires high sensitivity to PARP inhibition after IR treatment and supports the clinical development for the use of olaparib as a radiosensitizer for treatment of XRCC2-deficient CRC.
Collapse
Affiliation(s)
- Changjiang Qin
- grid.256922.80000 0000 9139 560XDepartment of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Zhiyu Ji
- grid.256922.80000 0000 9139 560XDepartment of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Ertao Zhai
- grid.412615.50000 0004 1803 6239Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Kaiwu Xu
- grid.412615.50000 0004 1803 6239Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yijie Zhang
- Department of Medical Oncology, Huaihe Hospital of Hennan University, Kaifeng, China
| | - Quanying Li
- grid.256922.80000 0000 9139 560XDepartment of Gastrointestinal Surgery, Huaihe Hospital of Henan University, Kaifeng, China
| | - Hong Jing
- Department of Pathology, Huaihe Hospital of Hennan University, Kaifeng, China
| | - Xiaoliang Wang
- grid.413087.90000 0004 1755 3939Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Xinming Song
- grid.412615.50000 0004 1803 6239Department of Gastrointestinal and Pancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
45
|
Yin C, Kulasekaran M, Roy T, Decker B, Alexander S, Margolis M, Jha RC, Kupfer GM, He AR. Homologous Recombination Repair in Biliary Tract Cancers: A Prime Target for PARP Inhibition? Cancers (Basel) 2022; 14:2561. [PMID: 35626165 PMCID: PMC9140037 DOI: 10.3390/cancers14102561] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/10/2022] [Accepted: 05/14/2022] [Indexed: 01/27/2023] Open
Abstract
Biliary tract cancers (BTCs) are a heterogeneous group of malignancies that make up ~7% of all gastrointestinal tumors. It is notably aggressive and difficult to treat; in fact, >70% of patients with BTC are diagnosed at an advanced, unresectable stage and are not amenable to curative therapy. For these patients, chemotherapy has been the mainstay treatment, providing an inadequate overall survival of less than one year. Despite the boom in targeted therapies over the past decade, only a few targeted agents have been approved in BTCs (i.e., IDH1 and FGFR inhibitors), perhaps in part due to its relatively low incidence. This review will explore current data on PARP inhibitors (PARPi) used in homologous recombination deficiency (HRD), particularly with respect to BTCs. Greater than 28% of BTC cases harbor mutations in genes involved in homologous recombination repair (HRR). We will summarize the mechanisms for PARPi and its role in synthetic lethality and describe select genes in the HRR pathway contributing to HRD. We will provide our rationale for expanding patient eligibility for PARPi use based on literature and anecdotal evidence pertaining to mutations in HRR genes, such as RAD51C, and the potential use of reliable surrogate markers of HRD.
Collapse
Affiliation(s)
- Chao Yin
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Monika Kulasekaran
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Tina Roy
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| | - Brennan Decker
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Sonja Alexander
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Mathew Margolis
- Foundation Medicine, Cambridge, MA 20007, USA; (B.D.); (S.A.); (M.M.)
| | - Reena C. Jha
- Department of Radiology, Georgetown University Medical Center, Washington, DC 20007, USA;
| | - Gary M. Kupfer
- Departments of Oncology and Pediatrics, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA;
| | - Aiwu R. He
- Ruesch Center for the Cure of Gastrointestinal Cancers, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC 20007, USA; (C.Y.); (M.K.); (T.R.)
| |
Collapse
|
46
|
Machnicki MM, Rzepakowska A, Janowska J, Pepek M, Krop A, Pruszczyk K, Stawinski P, Rydzanicz M, Grzybowski J, Gornicka B, Wnuk M, Ploski R, Osuch-Wojcikiewicz E, Stoklosa T. Analysis of Mutational Profile of Hypopharyngeal and Laryngeal Head and Neck Squamous Cell Carcinomas Identifies KMT2C as a Potential Tumor Suppressor. Front Oncol 2022; 12:768954. [PMID: 35664801 PMCID: PMC9160230 DOI: 10.3389/fonc.2022.768954] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 04/08/2022] [Indexed: 12/24/2022] Open
Abstract
Hypopharyngeal cancer is a poorly characterized type of head and neck squamous cell carcinoma (HNSCC) with bleak prognosis and only few studies focusing specifically on the genomic profile of this type of cancer. We performed molecular profiling of 48 HPV (Human Papilloma Virus)-negative tumor samples including 23 originating from the hypopharynx and 25 from the larynx using a targeted next-generation sequencing approach. Among genes previously described as significantly mutated, TP53, FAT1, NOTCH1, KMT2C, and CDKN2A were found to be most frequently mutated. We also found that more than three-quarters of our patients harbored candidate actionable or prognostic alterations in genes belonging to RTK/ERK/PI3K, cell-cycle, and DNA-damage repair pathways. Using previously published data we compared 67 hypopharyngeal cancers to 595 HNSCC from other sites and found no prominent differences in mutational frequency except for CASP8 and HRAS genes. Since we observed relatively frequent mutations of KTM2C (MLL3) in our dataset, we analyzed their role, in vitro, by generating a KMT2C-mutant hypopharyngeal cancer cell line FaDu with CRISPR-Cas9. We demonstrated that KMT2C loss-of-function mutations resulted in increased colony formation and proliferation, in concordance with previously published results. In summary, our results show that the mutational profile of hypopharyngeal cancers might be similar to the one observed for other head and neck cancers with respect to minor differences and includes multiple candidate actionable and prognostic genetic alterations. We also demonstrated, for the first time, that the KMT2C gene may play a role of tumor suppressor in HNSCC, which opens new possibilities in the search for new targeted treatment approaches.
Collapse
Affiliation(s)
- Marcin M. Machnicki
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marcin M. Machnicki, ; Tomasz Stoklosa,
| | - Anna Rzepakowska
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Monika Pepek
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Alicja Krop
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Piotr Stawinski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | | | - Jakub Grzybowski
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Barbara Gornicka
- Department of Pathology, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Wnuk
- Department of Biology, University of Rzeszow, Rzeszow, Poland
| | - Rafal Ploski
- Department of Medical Genetics, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Osuch-Wojcikiewicz
- Department of Otorhinolaryngology, Head and Neck Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Stoklosa
- Department of Tumor Biology and Genetics, Medical University of Warsaw, Warsaw, Poland
- *Correspondence: Marcin M. Machnicki, ; Tomasz Stoklosa,
| |
Collapse
|
47
|
Wang Y, Duan M, Peng Z, Fan R, He Y, Zhang H, Xiong W, Jiang W. Advances of DNA Damage Repair-Related Drugs and Combination With Immunotherapy in Tumor Treatment. Front Immunol 2022; 13:854730. [PMID: 35281059 PMCID: PMC8904426 DOI: 10.3389/fimmu.2022.854730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 01/31/2022] [Indexed: 12/21/2022] Open
Abstract
Cancer therapy has been an important and popular area in cancer research. With medical technology developing, the appearance of various targeted drugs and immunotherapy offer more choices to cancer treatment. With the increase in drug use, people have found more and more cases in which tumors are resistant to DNA damage repair (DDR)-based drugs. Recently, the concept of combination therapy has been brought up in cancer research. It takes advantages of combining two or more therapies with different mechanisms, aiming to benefit from the synergistic effects and finally rescue patients irresponsive to single therapies. Combination therapy has the potential to improve current treatment of refractory and drug-resistant tumors. Among the methods used in combination therapy, DDR is one of the most popular methods. Recent studies have shown that combined application of DDR-related drugs and immunotherapies significantly improve the therapeutic outcomes of malignant tumors, especially solid tumors.
Collapse
Affiliation(s)
- Yumin Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Meihan Duan
- School of Medicine, Tsinghua University, Beijing, China
| | - Zhouying Peng
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| | - Ruohao Fan
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Yuxiang He
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China.,Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
| | - Hua Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Wei Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, China
| | - Weihong Jiang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China
| |
Collapse
|
48
|
Megino-Luque C, Sisó P, Mota-Martorell N, Navaridas R, de la Rosa I, Urdanibia I, Albertí-Valls M, Santacana M, Pinyol M, Bonifaci N, Macià A, Llobet-Navas D, Gatius S, Matias-Guiu X, Eritja N. ARID1A-deficient cells require HDAC6 for progression of endometrial carcinoma. Mol Oncol 2022; 16:2235-2259. [PMID: 35167193 PMCID: PMC9168762 DOI: 10.1002/1878-0261.13193] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/22/2021] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
AT‐rich interactive domain‐containing protein 1A (ARID1A) loss‐of‐function mutation accompanied by a loss of ARID1A protein expression is frequently observed in endometrial carcinomas. However, the molecular mechanisms linking these genetic changes to the altered pathways regulating tumour initiation, maintenance and/or progression remain poorly understood. Thus, the main aim of this study was to analyse the role of ARID1A loss of function in endometrial tumorigenesis. Here, using different endometrial in vitro and in vivo models, such as tumoral cell lines, 3D primary cultures and metastatic or genetically modified mouse models, we show that altered expression of ARID1A is not enough to initiate endometrial tumorigenesis. However, in an established endometrial cancer context, ARID1A loss of function accelerates tumoral progression and metastasis through the disruption of the G2/M cell cycle checkpoint and ATM/ATR‐mediated DNA damage checkpoints, increases epithelial cell proliferation rates and induces epithelial mesenchymal transition through the activation of histone deacetylase 6 (HDAC6). Next, we demonstrated that the inhibition of HDAC6 function, using the HDAC6‐specific inhibitor ACY1215 or by transfection with HDAC6 short hairpin RNA (shRNA), can reverse the migratory and invasive phenotype of ARID1A‐knockdown cells. Further, we also show that inhibition of HDAC6 activity causes an apoptotic vulnerability to etoposide treatments in ARID1A‐deficient cells. In summary, the findings exposed in this work indicate that the inhibition of HDAC6 activity is a potential therapeutic strategy for patients suffering from ARID1A‐mutant endometrial cancer diagnosed in advanced stages.
Collapse
Affiliation(s)
- Cristina Megino-Luque
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Pol Sisó
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Natalia Mota-Martorell
- Metabolic Physiopathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Raúl Navaridas
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Inés de la Rosa
- Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Izaskun Urdanibia
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Manel Albertí-Valls
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Maria Santacana
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Scientific and Technical Service of Immunohistochemistry, Biomedical Research Institute of Lleida (IRBLleida), Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Miquel Pinyol
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari Arnau de Vilanova, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Núria Bonifaci
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain
| | - Anna Macià
- Oncologic Pathology Group, Department of Experimental Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - David Llobet-Navas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Molecular Mechanisms and Experimental Therapy in Oncology-Oncobell Program, Bellvitge Biomedical Research Institute (IDIBELL), Gran via De l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Sònia Gatius
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| | - Xavier Matias-Guiu
- Oncologic Pathology Group, Department of Basic Medical Sciences, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain.,Department of Pathology, Hospital Universitari de Bellvitge, IDIBELL, University of Barcelona, Av. Gran via de l'Hospitalet 199, 08908, L'Hospitalet de Llobregat, Barcelona, Spain
| | - Núria Eritja
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Monforte de Lemos 3-5, 28029, Madrid, Spain.,Oncologic Pathology Group, Department of Medicine, Biomedical Research Institute of Lleida (IRBLleida), University of Lleida, Av. Rovira Roure 80, 25198, Lleida, Spain
| |
Collapse
|
49
|
Schiff JP, Spraker MB, Duriseti S, Shaikh S, Murad HF, Mutch DG, Robinson CG, Kavanaugh J, Lin AJ. Tumor Lysis Syndrome in a Patient With Metastatic Endometrial Cancer Treated With Lattice Stereotactic Body Radiation Therapy. Adv Radiat Oncol 2021; 7:100797. [PMID: 34761139 PMCID: PMC8567179 DOI: 10.1016/j.adro.2021.100797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 11/24/2022] Open
Affiliation(s)
| | | | | | | | | | - David G Mutch
- Obstetrics and Gynecology, Division of Gynecologic Oncology, Washington University School of Medicine, St Louis, Missouri
| | | | | | | |
Collapse
|
50
|
Park Y, Jung JG, Yu ZC, Asaka R, Shen W, Wang Y, Jung WH, Tomaszewski A, Shimberg G, Chen Y, Parimi V, Gaillard S, Shih IM, Wang TL. A novel human endometrial epithelial cell line for modeling gynecological diseases and for drug screening. J Transl Med 2021; 101:1505-1512. [PMID: 34376780 PMCID: PMC8720294 DOI: 10.1038/s41374-021-00624-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/25/2021] [Indexed: 11/09/2022] Open
Abstract
Endometrium-related malignancies including uterine endometrioid carcinoma, ovarian clear cell carcinoma and ovarian endometrioid carcinoma are major types of gynecologic cancer, claiming more than 13,000 women's lives annually in the United States. In vitro cell models that recapitulate "normal" endometrial epithelial cells and their malignant counterparts are critically needed to facilitate the studies of pathogenesis in endometrium-related carcinomas. To achieve this objective, we have established a human endometrial epithelial cell line, hEM3, through immortalization and clonal selection from a primary human endometrium culture. hEM3 exhibits stable growth in vitro without senescence. hEM3 expresses protein markers characteristic of the endometrial epithelium, and they include PAX8, EpCAM, cytokeratin 7/8, and ER. hEM3 does not harbor pathogenic germline mutations in genes involving DNA mismatch repair (MMR) or homologous repair (HR) pathways. Despite its unlimited capacity of in vitro proliferation, hEM3 cells are not transformed, as they are not tumorigenic in immunocompromised mice. The cell line is amenable for gene editing, and we have established several gene-specific knockout clones targeting ARID1A, a tumor suppressor gene involved in the SWI/SNF chromatin remodeling. Drug screening demonstrates that both HDAC inhibitor and PARP inhibitor are effective in targeting cells with ARID1A deletion. Together, our data support the potential of hEM3 as a cell line model for studying the pathobiology of endometrium-related diseases and for developing effective precision therapies.
Collapse
Affiliation(s)
- Youngran Park
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jin-Gyoung Jung
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryoichi Asaka
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wenjing Shen
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yeh Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Wei-Hung Jung
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Alicja Tomaszewski
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Geoff Shimberg
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Vamsi Parimi
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stephanie Gaillard
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|