1
|
Lu H, Xie L, Guo L, Gu X, Zhu R, Yang Y, Tang F, Li M, Liu C, Wang D, Li M, Tian Y, Cai S. EGCG protects intestines of mice and pelvic cancer patients against radiation injury via the gut microbiota/D-tagatose/AMPK axis. Radiother Oncol 2025; 202:110608. [PMID: 39486483 DOI: 10.1016/j.radonc.2024.110608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/10/2024] [Accepted: 10/28/2024] [Indexed: 11/04/2024]
Abstract
BACKGROUND AND PURPOSE Radiation-induced intestinal injury (RIII) compromises the clinical utility of pelvic radiotherapy (RT). We aimed to explore the protective effect and underlying mechanism of (-)-epigallocatechin-3-gallate (EGCG) on RIII. MATERIALS AND METHODS We evaluated the protective effect of EGCG on intestine in RIII mouse model and pelvic cancer patients, while explored the underlying mechanism through (1) 16S rRNA sequencing, (2) metabolomic profiles, (3) fresh sterile fecal filtrate (SFF) transplantation, and (4) transcriptome sequencing. RESULTS EGCG efficiently prevented RIII in mouse, as reflected by improved survival, alleviated intestinal structure damage, promoted intestinal regeneration, and ameliorated gut microbiota dysbiosis. Prophylactic EGCG intervention reduced the severity of RIII in patients receiving pelvic RT. Mechanistically, the protective effect of EGCG could be transferred to other mice by SFF transplantation. EGCG enriched gut microbiota-derived metabolite D-tagatose, and oral administration of D-tagatose reproduced the radio-protective effect of EGCG via activating AMPK. CONCLUSION Oral EGCG may be a promising strategy for preventing RIII clinically, and warrant further investigation in prospective randomized phase III trials.
Collapse
Affiliation(s)
- Haiyan Lu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liwei Xie
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Liangsheng Guo
- Department of Obstetrics and Gynecology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Xuhao Gu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Ruiqiu Zhu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Yinyin Yang
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Fengling Tang
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Mingyue Li
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Chengzhi Liu
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China
| | - Difan Wang
- Suzhou Medical College of Soochow University, Suzhou 215000, China
| | - Ming Li
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou 215123, China.
| | - Ye Tian
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| | - Shang Cai
- Department of Radiotherapy and Oncology, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China; Center of PRaG therapy, Center for Cancer Diagnosis and Treatment, the Second Affiliated Hospital of Soochow University, Suzhou 215004, China.
| |
Collapse
|
2
|
Thapa R, Magar AT, Shrestha J, Panth N, Idrees S, Sadaf T, Bashyal S, Elwakil BH, Sugandhi VV, Rojekar S, Nikhate R, Gupta G, Singh SK, Dua K, Hansbro PM, Paudel KR. Influence of gut and lung dysbiosis on lung cancer progression and their modulation as promising therapeutic targets: a comprehensive review. MedComm (Beijing) 2024; 5:e70018. [PMID: 39584048 PMCID: PMC11586092 DOI: 10.1002/mco2.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/26/2024] Open
Abstract
Lung cancer (LC) continues to pose the highest mortality and exhibits a common prevalence among all types of cancer. The genetic interaction between human eukaryotes and microbial cells plays a vital role in orchestrating every physiological activity of the host. The dynamic crosstalk between gut and lung microbiomes and the gut-lung axis communication network has been widely accepted as promising factors influencing LC progression. The advent of the 16s rDNA sequencing technique has opened new horizons for elucidating the lung microbiome and its potential pathophysiological role in LC and other infectious lung diseases using a molecular approach. Numerous studies have reported the direct involvement of the host microbiome in lung tumorigenesis processes and their impact on current treatment strategies such as radiotherapy, chemotherapy, or immunotherapy. The genetic and metabolomic cross-interaction, microbiome-dependent host immune modulation, and the close association between microbiota composition and treatment outcomes strongly suggest that designing microbiome-based treatment strategies and investigating new molecules targeting the common holobiome could offer potential alternatives to develop effective therapeutic principles for LC treatment. This review aims to highlight the interaction between the host and microbiome in LC progression and the possibility of manipulating altered microbiome ecology as therapeutic targets.
Collapse
Affiliation(s)
- Rajan Thapa
- Department of Pharmacy, Universal college of medical sciencesTribhuvan UniversityBhairahawaRupendehiNepal
| | - Anjana Thapa Magar
- Department of MedicineKathmandu Medical College Teaching Hospital, SinamangalKathmanduNepal
| | - Jesus Shrestha
- School of Biomedical EngineeringUniversity of Technology SydneySydneyNew South WalesAustralia
| | - Nisha Panth
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Sobia Idrees
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Tayyaba Sadaf
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Saroj Bashyal
- Department of Pharmacy, Manmohan Memorial Institute of Health SciencesTribhuvan University, SoalteemodeKathmanduNepal
| | - Bassma H. Elwakil
- Department of Medical Laboratory Technology, Faculty of Applied Health Sciences TechnologyPharos University in AlexandriaAlexandriaEgypt
| | - Vrashabh V. Sugandhi
- Department of pharmaceutical sciences, College of Pharmacy & Health SciencesSt. John's UniversityQueensNew YorkUSA
| | - Satish Rojekar
- Department of Pharmacological SciencesIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Ram Nikhate
- Department of PharmaceuticsDattakala Shikshan Sanstha, Dattakala college of pharmacy (Affiliated to Savitribai Phule Pune universityPuneMaharashtraIndia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical SciencesSaveetha UniversityChennaiIndia
- Centre of Medical and Bio‐allied Health Sciences ResearchAjman UniversityAjmanUAE
| | - Sachin Kumar Singh
- School of Pharmaceutical SciencesLovely Professional UniversityPhagwaraIndia
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative MedicineUniversity of Technology SydneyUltimoNew South WalesAustralia
- Discipline of Pharmacy, Graduate School of HealthUniversity of Technology SydneyUltimoNew South WalesAustralia
| | - Philip M Hansbro
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| | - Keshav Raj Paudel
- Centre for Inflammation, Faculty of Science, School of Life SciencesCentenary Institute and University of Technology SydneySydneyNew South WalesAustralia
| |
Collapse
|
3
|
Xu Y, Wang L, Liao H, Li X, Zhang Y, Chen X, Xu B, Liu Y, Tu W, Liu Y. Loss of Nrf2 aggravates ionizing radiation-induced intestinal injury by activating the cGAS/STING pathway via Pirin. Cancer Lett 2024; 604:217218. [PMID: 39233044 DOI: 10.1016/j.canlet.2024.217218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/09/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Ionizing radiation (IR)-induced intestinal injury remains a major limiting factor in abdominal radiation therapy, and its pathogenesis remains unclear. In this study, mouse models of IR-induced intestinal injury were established, and the effect of IR on nuclear factor erythroid 2-related factor 2 (Nrf2) was determined. More severe IR-induced intestinal damage was observed in Nrf2 knockout (KO) mice than in wild-type mice. Then, the negative regulation of cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS/STING) signaling by Nrf2 was examined both in vivo and in vitro after IR. This was accompanied by alterations in the intestinal neutrophil and macrophage populations in mice. Subsequently, the effect of the cGAS/STING pathway on the intestinal toxicity of IR was also investigated. Moreover, the downregulation of cGAS/STING by Nrf2 via its target gene, Pirin, was confirmed using transfection assays. A rescue experiment with Pirin was also conducted using adeno-associated virus in Nrf2 KO mice. Finally, the protective effect of calcitriol against IR-induced intestinal injury, along with increased Nrf2 and Pirin levels and decreased cGAS, pSTING, and interferon-beta levels, were observed. Taken together, our results suggest that Nrf2 alleviates IR-induced intestinal injury through Pirin-mediated inhibition of the innate immunity-related cGAS/STING pathway.
Collapse
Affiliation(s)
- Yiqing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Lei Wang
- Department of Oncology, The Affiliated Lianyungang Hospital of Xuzhou Medical University, The First People's Hospital of Lianyungang, Lianyungang, Jiangsu, 222000, China
| | - Hong Liao
- Department of Laboratory Medicine, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 201204, China
| | - Xueyan Li
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yingzi Zhang
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Xuming Chen
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Bing Xu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Yi Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China
| | - Wenzhi Tu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| | - Yong Liu
- Department of Radiation Oncology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201620, China.
| |
Collapse
|
4
|
Liu K, Waldrop T, Aguilar E, Mims N, Neill D, Delahoussaye A, Li Z, Swanson D, Lin SH, Koong AC, Taniguchi CM, Loo BW, Mitra D, Schüler E. Redefining FLASH Radiation Therapy: The Impact of Mean Dose Rate and Dose Per Pulse in the Gastrointestinal Tract. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03466-7. [PMID: 39424078 DOI: 10.1016/j.ijrobp.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 08/07/2024] [Accepted: 10/06/2024] [Indexed: 10/21/2024]
Abstract
PURPOSE The understanding of how varying radiation beam parameter settings affect the induction and magnitude of the FLASH effect remains limited. We sought to systematically evaluate how the magnitude of radiation-induced gastrointestinal toxicity depends on the interplay between mean dose rate (MDR) and dose per pulse (DPP). METHODS AND MATERIALS C57BL/6J mice received total abdominal irradiation (TAI, 11-14 Gy single fraction) through either conventional (CONV) irradiation (low-DPP and low MDR, CONV) or through various combinations of DPP and MDR up to ultra-high-dose-rate beam conditions. DPPs ranging from 1 to 6 Gy were evaluated, while the total dose and MDR (>100 Gy/s) were kept constant; the effects of MDR were evaluated for the range of 0.3 to 1440 Gy/s, while the total dose and DPP were kept constant. Radiation-induced gastrointestinal toxicity was quantified in nontumor-bearing mice through the regenerating crypt assay and survival assessment. Tumor response was evaluated through tumor growth delay. RESULTS Within each tested total dose using a constant MDR (>100 Gy/s), increasing DPP led to an increase in sparing (an increase in the number of regenerating crypts), with a more prominent effect seen at 12- and 14-Gy TAI. Interestingly, at DPPs of >4 Gy, a similar level of crypt sparing was demonstrated irrespective of the MDR used (from 0.3 to 1440 Gy/s). At a fixed high-DPP of 4.7 Gy, survival was equivalently improved relative to CONV irrespective of MDR. However, at a lower DPP of 0.93 Gy, an MDR of 104 Gy/s produced a greater survival effect compared with 0.3 Gy/s. We also confirmed that high-DPP, regardless of MDR, produced the same magnitude of tumor growth delay relative to CONV using a clinically relevant melanoma mouse model. CONCLUSIONS This study demonstrates the strong influence that the beam parameter settings have on the magnitude of the FLASH effect. Both high-DPP and ultra-high-dose-rate appeared independently sufficient to produce FLASH sparing of gastrointestinal toxicity while isoeffective tumor response was maintained across all conditions.
Collapse
Affiliation(s)
- Kevin Liu
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Trey Waldrop
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas
| | - Edgardo Aguilar
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Nefetiti Mims
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Denae Neill
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Abagail Delahoussaye
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ziyi Li
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - David Swanson
- Division of Basic Sciences, Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Steven H Lin
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Albert C Koong
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cullen M Taniguchi
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Billy W Loo
- Department of Radiation Oncology & Stanford Cancer Institute, Stanford University School of Medicine, Stanford, California
| | - Devarati Mitra
- Department of Radiation Oncology, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Emil Schüler
- Department of Radiation Physics, Division of Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas; The University of Texas MD Anderson UTHealth Graduate School of Biomedical Sciences, Houston, Texas.
| |
Collapse
|
5
|
Acharya M, Venkidesh BS, Mumbrekar KD. Bacterial supplementation in mitigation of radiation-induced gastrointestinal damage. Life Sci 2024; 353:122921. [PMID: 39032692 DOI: 10.1016/j.lfs.2024.122921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 07/08/2024] [Accepted: 07/17/2024] [Indexed: 07/23/2024]
Abstract
Pelvic irradiation, a crucial treatment for pelvic malignancies, is associated with the risk of gastrointestinal (GI) damage due to the high proliferation rate of epithelial cells. The radiosensitive gastrointestinal tract acts as a dose-limiting organ. High doses of ionizing radiation can cause inflammation and rupture of mucosal barriers and can also lead to intestinal fibrosis. Intestinal damage can cause acute to chronic complications, reducing patients' quality of life. The gut microbiota plays a vital role in maintaining gut health, and any changes in the gut microbial composition can worsen damage, emphasizing the importance of therapies that target and sustain the gut microbiota during radiotherapy. One potential strategy to prevent radiation-induced GI damage is to use bacterial supplements. Research suggests that probiotic supplementation may alleviate radiation-induced gastrointestinal damage, maintaining intestinal morphology and decreasing epithelial injury in cancer patients. The observed protective effects occur through various mechanisms, including antioxidant activities, modulation of the immune response, and preservation of gut barrier function. To optimize probiotic therapies, it is imperative to elucidate these mechanisms. The efficiency of probiotics as radioprotectors is highly dependent on the time and dose of administration, and their interaction with the host immune system is a key facet of their therapeutic potential. This review explores the potential benefits of bacterial supplementation in mitigating radiation-induced GI damage and the underlying mechanism. This highlights the need for further research to establish standardized protocols and refine probiotic supplementation strategies, underscoring the potential for enhancing therapeutic outcomes in patients undergoing pelvic radiotherapy.
Collapse
Affiliation(s)
- Meghana Acharya
- Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Babu Santhi Venkidesh
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India
| | - Kamalesh Dattaram Mumbrekar
- Department of Radiation Biology & Toxicology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, India.
| |
Collapse
|
6
|
Wang S, Yuan Z, Gao X, Wu J, Ren Y, Yu X, Li J, Wei W. Global research trends on the links between gut microbiota and radiotherapy: a bibliometric analysis (2004-2023). Front Cell Infect Microbiol 2024; 14:1414196. [PMID: 39295732 PMCID: PMC11409093 DOI: 10.3389/fcimb.2024.1414196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 07/12/2024] [Indexed: 09/21/2024] Open
Abstract
Background There is a crosstalk between gut microbiota and radiotherapy. The aim of this study is to use bibliometric analysis to explore the research status and development trends of research on gut microbiota and radiotherapy. Methods A literature search regarding publications on gut microbiota and radiotherapy from 2004 to 2023 was retrieved. CiteSpace and VOSviewer were used to conduct the bibliometric analysis. The growth rate of publications, leading countries and institutions, preferred journals, top authors and co-cited authors, top co-cited references, keywords and citation were analyzed in this study. Results A total of 2821 papers were extracted. The number of papers has increased rapidly over the past decade, especially after 2017. The USA and China had the most publications and made great contributions to this field. The Chinese Academy of Sciences stood out as the institution with the highest number of publications, followed by the Chinese Academy of Medical Sciences & Peking Union Medical College. The most influential authors were Fan Saijun and Li Yuan. PLoS One had the most publications and the most total citations. Highly cited papers and high-frequency keywords illustrated the current status and trends. Furthermore, analysis of keyword with burst revealed that immunotherapy, acid, intestinal barrier, therapy, immunotherapy, fecal microbiota transplantation, etc, are at the forefront of research in this area. Conclusion This study provides an overview of research on gut microbiota and radiotherapy, highlighting influential contributors, impactful publications, and emerging trends. Our finding suggests avenues for further exploration to improve clinical outcomes.
Collapse
Affiliation(s)
- Shuyuan Wang
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Zhen Yuan
- School of Medicine, Nankai University, Tianjin, China
| | - Xiaohui Gao
- Department of Oncology, The Nuclear Industry 416 Hospital, Chengdu, China
| | - Jiaxing Wu
- School of Medicine, Nankai University, Tianjin, China
| | - Yifan Ren
- School of Medicine, Nankai University, Tianjin, China
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Xiufeng Yu
- Tuberculosis Hospital of Shaanxi Province, Xi'an, China
| | - Jianxiong Li
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| | - Wei Wei
- Department of Radiotherapy, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Iacovacci J, Serafini MS, Avuzzi B, Badenchini F, Cicchetti A, Devecchi A, Dispinzieri M, Doldi V, Giandini T, Gioscio E, Mancinelli E, Noris Chiorda B, Orlandi E, Palorini F, Possenti L, Reis Ferreira M, Villa S, Zaffaroni N, De Cecco L, Valdagni R, Rancati T. Intestinal microbiota composition is predictive of radiotherapy-induced acute gastrointestinal toxicity in prostate cancer patients. EBioMedicine 2024; 106:105246. [PMID: 39029427 PMCID: PMC11314862 DOI: 10.1016/j.ebiom.2024.105246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/03/2024] [Accepted: 07/02/2024] [Indexed: 07/21/2024] Open
Abstract
BACKGROUND The search for factors beyond the radiotherapy dose that could identify patients more at risk of developing radio-induced toxicity is essential to establish personalised treatment protocols for improving the quality-of-life of survivors. To investigate the role of the intestinal microbiota in the development of radiotherapy-induced gastrointestinal toxicity, the MicroLearner observational cohort study characterised the intestinal microbiota of 136 (discovery) and 79 (validation) consecutive prostate cancer patients at baseline radiotherapy. METHODS Gastrointestinal toxicity was assessed weekly during RT using CTCAE. An average grade >1.3 over time points was used to identify patients suffering from persistent acute toxicity (endpoint). The microbiota of patients was quantified from the baseline faecal samples using 16S rRNA gene sequencing technology and the Ion Reporter metagenomic pipeline. Statistical techniques and computational and machine learning tools were used to extract, functionally characterise, and predict core features of the bacterial communities of patients who developed acute gastrointestinal toxicity. FINDINGS Analysis of the core bacterial composition in the discovery cohort revealed a cluster of patients significantly enriched for toxicity, displaying a toxicity rate of 60%. Based on selected high-risk microbiota compositional features, we developed a clinical decision tree that could effectively predict the risk of toxicity based on the relative abundance of genera Faecalibacterium, Bacteroides, Parabacteroides, Alistipes, Prevotella and Phascolarctobacterium both in internal and external validation cohorts. INTERPRETATION We provide evidence showing that intestinal bacteria profiling from baseline faecal samples can be effectively used in the clinic to improve the pre-radiotherapy assessment of gastrointestinal toxicity risk in prostate cancer patients. FUNDING Italian Ministry of Health (Promotion of Institutional Research INT-year 2016, 5 × 1000, Ricerca Corrente funds). Fondazione Regionale per la Ricerca Biomedica (ID 2721017). AIRC (IG 21479).
Collapse
Affiliation(s)
- Jacopo Iacovacci
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy.
| | - Mara Serena Serafini
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Avuzzi
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Fabio Badenchini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Alessandro Cicchetti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Andrea Devecchi
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Michela Dispinzieri
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Valentina Doldi
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Tommaso Giandini
- Unit of Medical Physics, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Eliana Gioscio
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Elisa Mancinelli
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Barbara Noris Chiorda
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Ester Orlandi
- Radiation Oncology Clinical Department, National Center for Oncological Hadron Therapy (CNAO), Pavia, Italy
| | - Federica Palorini
- Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Luca Possenti
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Miguel Reis Ferreira
- King's College London, London, UK; Guys and St Thomas NHS Foundation Trust, London, UK
| | - Sergio Villa
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Nadia Zaffaroni
- Unit of Molecular Pharmacology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Loris De Cecco
- Unit of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Riccardo Valdagni
- Unit of Radiation Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Prostate Cancer Program, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Tiziana Rancati
- Data Science Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| |
Collapse
|
8
|
Stringer AM, Hargreaves BM, Mendes RA, Blijlevens NMA, Bruno JS, Joyce P, Kamath S, Laheij AMGA, Ottaviani G, Secombe KR, Tonkaboni A, Zadik Y, Bossi P, Wardill HR. Updated perspectives on the contribution of the microbiome to the pathogenesis of mucositis using the MASCC/ISOO framework. Support Care Cancer 2024; 32:558. [PMID: 39080025 PMCID: PMC11289053 DOI: 10.1007/s00520-024-08752-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 07/19/2024] [Indexed: 08/02/2024]
Abstract
Advances in the treatment of cancer have significantly improved mortality rates; however, this has come at a cost, with many treatments still limited by their toxic side effects. Mucositis in both the mouth and gastrointestinal tract is common following many anti-cancer agents, manifesting as ulcerative lesions and associated symptoms throughout the alimentary tract. The pathogenesis of mucositis was first defined in 2004 by Sonis, and almost 20 years on, the model continues to be updated reflecting ongoing research initiatives and more sophisticated analytical techniques. The most recent update, published by the Multinational Association for Supportive Care in Cancer and the International Society for Oral Oncology (MASCC/ISOO), highlights the numerous co-occurring events that underpin mucositis development. Most notably, a role for the ecosystem of microorganisms that reside throughout the alimentary tract (the oral and gut microbiota) was explored, building on initial concepts proposed by Sonis. However, many questions remain regarding the true causal contribution of the microbiota and associated metabolome. This review aims to provide an overview of this rapidly evolving area, synthesizing current evidence on the microbiota's contribution to mucositis development and progression, highlighting (i) components of the 5-phase model where the microbiome may be involved, (ii) methodological challenges that have hindered advances in this area, and (iii) opportunities for intervention.
Collapse
Affiliation(s)
- Andrea M Stringer
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Benjamin M Hargreaves
- Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Rui Amaral Mendes
- Faculty of Medicine, University of Porto/CINTESIS@RISE, Porto, Portugal
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University, Cleveland, OH, 44106-7401, USA
| | - Nicole M A Blijlevens
- Department of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Julia S Bruno
- Molecular Oncology Center, Hospital Sírio-Libanês, São Paulo, Brazil
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Srinivas Kamath
- Centre for Pharmaceutical Innovation, Clinical and Health Sciences, University of South Australia, Adelaide, 5000, Australia
| | - Alexa M G A Laheij
- Department of Oral Medicine, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, The Netherlands
- Department of Oral and Maxillofacial Surgery, UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Giulia Ottaviani
- Department of Surgical, Medical and Health Sciences, University of Trieste, Trieste, Italy
| | - Kate R Secombe
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia
| | - Arghavan Tonkaboni
- Department of Oral Medicine, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yehuda Zadik
- Department of Military Medicine and "Tzameret", Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Oral Medicine, Sedation and Imaging, Faculty of Dental Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Paolo Bossi
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| | - Hannah R Wardill
- The School of Biomedicine, Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, 5005, Australia.
- Supportive Oncology Research Group, Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Level 5S, Adelaide, 5000, Australia.
| |
Collapse
|
9
|
Lu L, Li F, Gao Y, Kang S, Li J, Guo J. Microbiome in radiotherapy: an emerging approach to enhance treatment efficacy and reduce tissue injury. Mol Med 2024; 30:105. [PMID: 39030525 PMCID: PMC11264922 DOI: 10.1186/s10020-024-00873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/08/2024] [Indexed: 07/21/2024] Open
Abstract
Radiotherapy is a widely used cancer treatment that utilizes powerful radiation to destroy cancer cells and shrink tumors. While radiation can be beneficial, it can also harm the healthy tissues surrounding the tumor. Recent research indicates that the microbiota, the collection of microorganisms in our body, may play a role in influencing the effectiveness and side effects of radiation therapy. Studies have shown that specific species of bacteria living in the stomach can influence the immune system's response to radiation, potentially increasing the effectiveness of treatment. Additionally, the microbiota may contribute to adverse effects like radiation-induced diarrhea. A potential strategy to enhance radiotherapy outcomes and capitalize on the microbiome involves using probiotics. Probiotics are living microorganisms that offer health benefits when consumed in sufficient quantities. Several studies have indicated that probiotics have the potential to alter the composition of the gut microbiota, resulting in an enhanced immune response to radiation therapy and consequently improving the efficacy of the treatment. It is important to note that radiation can disrupt the natural balance of gut bacteria, resulting in increased intestinal permeability and inflammatory conditions. These disruptions can lead to adverse effects such as diarrhea and damage to the intestinal lining. The emerging field of radiotherapy microbiome research offers a promising avenue for optimizing cancer treatment outcomes. This paper aims to provide an overview of the human microbiome and its role in augmenting radiation effectiveness while minimizing damage.
Collapse
Affiliation(s)
- Lina Lu
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China.
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China.
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China.
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China.
| | - Fengxiao Li
- Department of Pharmacy, the Affiliated Hospital of Qingdao University, Qingdao, China
| | | | - Shuhe Kang
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jia Li
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| | - Jinwang Guo
- School of Chemical Engineering, Northwest Minzu University, No.1, Northwest New Village, Lanzhou, Gansu, 730030, China
- Key Laboratory of Environment-Friendly Composite Materials of the State Ethnic Affairs Commission, Lanzhou, Gansu, China
- Gansu Provincial Biomass Function Composites Engineering Research Center, Lanzhou, Gansu, China
- Key Laboratory for Utility of Environment-Friendly Composite Materials and Biomass in, University of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
10
|
Lu HA, Wang YM, Chih Chen W, Wu CN, Lu YT, Wee Y, Wang CS, Dean Luo S. Post-irradiation dysbiosis in patients with nasopharyngeal carcinoma having received radiotherapy - A pilot study. Oral Oncol 2024; 154:106864. [PMID: 38824812 DOI: 10.1016/j.oraloncology.2024.106864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 05/02/2024] [Accepted: 05/19/2024] [Indexed: 06/04/2024]
Abstract
OBJECTIVE To compare the changes in the sinonasal mucosa microbiome in patients with nasopharyngeal carcinoma (NPC) before and after radiotherapy (RT), and to explore the pathogenesis of post-irradiation chronic rhinosinusitis (PI-CRS) and its association with dysbiosis. STUDY DESIGN Prospective cohort study. SETTING Unicenter, Tertiary referral hospital. METHODS Included patients newly diagnosed with NPC. Samples of ostiomeatal complex mucosa were collected before and after RT. Microbiome analysis was conducted using 16S rRNA sequencing, and statistical analysis was performed. Subgroup analyses based on RT modality (proton therapy or photon therapy) RESULTS: Total of 18 patients were enrolled in the study, with 62.1% receiving intensity-modulated proton therapy (IMPT). Corynebacterium was the most dominant genus identified in both the pre- and post-RT groups, with a visible increase in Staphylococcus and a decrease in Fusobacterium genus in post-RT group. Alpha-diversity did not significantly differ between groups, although the beta-diversity analysis revealed a dispersed microbiota in the post-RT group. The functional prediction indicated a higher relative abundance of taxonomies associated with biofilm formation in the post-RT group. The subgroup analysis revealed the above changes to be more significant in patients who received photon therapy (Intensity modulated radiation therapy, IMRT). CONCLUSIONS This is the first study to analyze the microbiome of patients with NPC after IMPT. We identified similarities between the post-RT microenvironment and that reported in patients with CRS, with a more apparent change noted in patients treated with IMRT. Further investigation is required to further elucidate the pathogenesis of PI-CRS and its relationship to post-RT dysbiosis, particularly IMPT.
Collapse
Affiliation(s)
- Heng-An Lu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Ming Wang
- Department of Radiation Oncology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Proton and Radiation Therapy Center, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Wei Chih Chen
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ching-Nung Wu
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Public Health, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yen-Ting Lu
- Department of Otolaryngology, St. Martin De Porres Hospital, Chiayi, Taiwan; Department of Otolaryngology, Chung Shan Medical University Hospital, Taichung, Taiwan; School of Medicine, Chung Shan Medical University, Taichung, Taiwan
| | - Yinshen Wee
- Department of Pathology, University of Utah, Salt Lake City, UT 84112, USA
| | - Ching-Shuen Wang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng Dean Luo
- Department of Otolaryngology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; School of Traditional Chinese Medicine, Chang Gung University College of Medicine, Taoyuan 33302, Taiwan; Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan.
| |
Collapse
|
11
|
Ge Z, Chen C, Chen J, Jiang Z, Chen L, Wei Y, Chen H, He L, Zou Y, Long X, Zhan H, Wang H, Wang H, Lu Y. Gut Microbiota-Derived 3-Hydroxybutyrate Blocks GPR43-Mediated IL6 Signaling to Ameliorate Radiation Proctopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306217. [PMID: 38742466 PMCID: PMC11267371 DOI: 10.1002/advs.202306217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/23/2024] [Indexed: 05/16/2024]
Abstract
Radiation proctopathy (RP) is a common complication of radiotherapy for pelvic malignancies with high incidence. RP accompanies by microbial dysbiosis. However, how the gut microbiota affects the disease remains unclear. Here, metabolomics reveals that the fecal and serous concentrations of microbiota-derived 3-hydroxybutyrate (3HB) are significantly reduced in RP mice and radiotherapeutic patients. Moreover, the concentration of 3HB is negatively associated with the expression of proinflammatory IL6 that is increased along with the severity of radiation damage. 3HB treatment significantly downregulates IL6 expression and alleviates IL6-mediated radiation damage. Irradiated cell-fecal microbiota co-culture experiments and in vivo assays show that such a radioprotection of 3HB is mediated by GPR43. Microbiome analysis reveals that radiation leads to a distinct bacterial community compared to untreated controls, in which Akkermansia muciniphila is significantly reduced in RP mice and radiotherapeutic patients and is associated with lower 3HB concentration. Gavage of A. muciniphila significantly increases 3HB concentration, downregulates GPR43 and IL6 expression, and ameliorates radiation damage. Collectively, these results demonstrate that the gut microbiota, including A. muciniphila, induce higher concentrations of 3HB to block GPR43-mediated IL6 signaling, thereby conferring radioprotection. The findings reveal a novel implication of the gut-immune axis in radiation pathophysiology, with potential therapeutic applications.
Collapse
Affiliation(s)
- Zhenhuang Ge
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Chun Chen
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Shanghai General Hospital, School of MedicineShanghai Jiao Tong UniversityShanghai201620China
| | - Junyi Chen
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Zhou Jiang
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Lingming Chen
- School of Medical TechnologyGuangdong Medical UniversityDongguan523808China
| | - Yingqi Wei
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Haiyang Chen
- Department of Radiation Oncology, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
| | - Lei He
- Affiliated Cancer Hospital & Institute of Guangzhou Medical UniversityGuangzhou510095China
- Key Laboratory for Cell HomeostasisCancer Research of Guangdong Higher Education InstitutesGuangzhou510095China
| | - Yi Zou
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Xiaoxuan Long
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hongyu Zhan
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Huaiming Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Hui Wang
- Department of Colorectal Surgery, The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhou510655China
- Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor DiseasesSupported by National Key Clinical DisciplineGuangzhou510655China
| | - Yongjun Lu
- Run Ze Laboratory for Gastrointestinal Microbiome Study, School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| |
Collapse
|
12
|
Long L, Zhang Y, Zang J, Liu P, Liu W, Sun C, Tian D, Li P, Tian J, Xiao J. Investigating the relationship between postoperative radiotherapy and intestinal flora in rectal cancer patients: a study on efficacy and radiation enteritis. Front Oncol 2024; 14:1408436. [PMID: 38988709 PMCID: PMC11233437 DOI: 10.3389/fonc.2024.1408436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/11/2024] [Indexed: 07/12/2024] Open
Abstract
Objective This study aimed to investigate the impact of radiation therapy and radiation enteritis on intestinal flora, providing insights for treatment and prevention. Methods Fecal samples were collected from 16 patients undergoing pelvic radiotherapy at Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital). Samples were collected before and after radiotherapy (27-30Gy), and analyzed using DNA sequencing and biostatistical methods. Results Patients with radiation enteritis showed increased α-diversity and β-diversity of intestinal flora compared to those without radiation enteritis. Differences in flora composition were observed, with higher abundance of secondary pathways such as amino acid metabolism, carbohydrate metabolism, cofactors and vitamins metabolism, and lipid metabolism. Conclusion The study revealed that patients developing radiation enteritis during pelvic radiation therapy had increased diversity and abundance of intestinal flora compared to those who did not develop radiation enteritis. Additionally, patients without radiation enteritis showed significantly higher diversity and abundance of intestinal flora post-radiation compared to pre-radiation.
Collapse
Affiliation(s)
- Lin Long
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Yexi Zhang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Jianhua Zang
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Peng Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Wei Liu
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Cheng Sun
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Dan Tian
- Department of Hepatobiliary Surgery, Third Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Ping Li
- Department of Endocrinology, Qingdao Endocrine and Diabetes Hospital, Qingdao, Shandong, China
| | - Jin Tian
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| | - Jun Xiao
- Qingdao Hiser Hospital Affiliated of Qingdao University (Qingdao Traditional Chinese Medicine Hospital), Qingdao, Shandong, China
| |
Collapse
|
13
|
Then CK, Paillas S, Moomin A, Misheva MD, Moir RA, Hay SM, Bremner D, Roberts Nee Nellany KS, Smith EE, Heidari Z, Sescu D, Wang X, Suárez-Bonnet A, Hay N, Murdoch SL, Saito R, Collie-Duguid ESR, Richardson S, Priestnall SL, Wilson JM, Gurumurthy M, Royle JS, Samuel LM, Ramsay G, Vallis KA, Foster KR, McCullagh JSO, Kiltie AE. Dietary fibre supplementation enhances radiotherapy tumour control and alleviates intestinal radiation toxicity. MICROBIOME 2024; 12:89. [PMID: 38745230 PMCID: PMC11092108 DOI: 10.1186/s40168-024-01804-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/02/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Non-toxic approaches to enhance radiotherapy outcomes are beneficial, particularly in ageing populations. Based on preclinical findings showing that high-fibre diets sensitised bladder tumours to irradiation by modifying the gut microbiota, along with clinical evidence of prebiotics enhancing anti-cancer immunity, we hypothesised that dietary fibre and its gut microbiota modification can radiosensitise tumours via secretion of metabolites and/or immunomodulation. We investigated the efficacy of high-fibre diets combined with irradiation in immunoproficient C57BL/6 mice bearing bladder cancer flank allografts. RESULT Psyllium plus inulin significantly decreased tumour size and delayed tumour growth following irradiation compared to 0.2% cellulose and raised intratumoural CD8+ cells. Post-irradiation, tumour control positively correlated with Lachnospiraceae family abundance. Psyllium plus resistant starch radiosensitised the tumours, positively correlating with Bacteroides genus abundance and increased caecal isoferulic acid levels, associated with a favourable response in terms of tumour control. Psyllium plus inulin mitigated the acute radiation injury caused by 14 Gy. Psyllium plus inulin increased caecal acetate, butyrate and propionate levels, and psyllium alone and psyllium plus resistant starch increased acetate levels. Human gut microbiota profiles at the phylum level were generally more like mouse 0.2% cellulose profiles than high fibre profiles. CONCLUSION These supplements may be useful in combination with radiotherapy in patients with pelvic malignancy. Video Abstract.
Collapse
Affiliation(s)
- Chee Kin Then
- Department of Oncology, University of Oxford, Oxford, UK
- Department of Radiation Oncology, Shunag Ho Hospital, Taipei Medical University, New Taipai City, Taiwan
| | - Salome Paillas
- Department of Oncology, University of Oxford, Oxford, UK
| | - Aliu Moomin
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - Mariya D Misheva
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
- Oxford Centre for Microbiome Studies, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| | - Rachel A Moir
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Susan M Hay
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK
| | - David Bremner
- The Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | - Ellen E Smith
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Zeynab Heidari
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Daniel Sescu
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - Xuedan Wang
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alejandro Suárez-Bonnet
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Nadine Hay
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Sarah L Murdoch
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Ryoichi Saito
- Lineberger Comprehensive Cancer Centre, University of North Carolina at Chapel Hill, Chapel Hill, USA
- The Department of Urology, Kyoto University, Kyoto, Japan
| | - Elaina S R Collie-Duguid
- Centre for Genome Enabled Biology and Medicine, School of Medicine Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Simon L Priestnall
- Department of Pathobiology and Population Sciences, The Royal Veterinary College, London, UK
| | - Joan M Wilson
- NHS Grampian Biorepository, Aberdeen Royal Infirmary, Aberdeen, UK
| | | | - Justine S Royle
- Department of Urology, Aberdeen Royal Infirmary, Aberdeen, UK
| | - Leslie M Samuel
- Department of Oncology, Aberdeen Royal Infirmary, Aberdeen, UK
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
| | - George Ramsay
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK
- Health Services Research Unit, University of Aberdeen, Aberdeen, UK
| | | | - Kevin R Foster
- Department of Biology, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - James S O McCullagh
- Chemistry Research Laboratory, Department of Chemistry, Mansfield Road, University of Oxford, Oxford, UK
| | - Anne E Kiltie
- Department of Oncology, University of Oxford, Oxford, UK.
- The Rowett Institute, University of Aberdeen, Aberdeen, UK.
- Aberdeen Cancer Centre, University of Aberdeen, Aberdeen, UK.
- The School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
| |
Collapse
|
14
|
Blake SJ, Wolf Y, Boursi B, Lynn DJ. Role of the microbiota in response to and recovery from cancer therapy. Nat Rev Immunol 2024; 24:308-325. [PMID: 37932511 DOI: 10.1038/s41577-023-00951-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2023] [Indexed: 11/08/2023]
Abstract
Our understanding of how the microbiota affects the balance between response to and failure of cancer treatment by modulating the tumour microenvironment and systemic immune system has advanced rapidly in recent years. Microbiota-targeting interventions in patients with cancer are an area of intensive investigation. Promisingly, phase I-II clinical trials have shown that interventions such as faecal microbiota transplantation can overcome resistance to immune checkpoint blockade in patients with melanoma, improve therapeutic outcomes in treatment-naive patients and reduce therapy-induced immunotoxicities. Here, we synthesize the evidence showing that the microbiota is an important determinant of both cancer treatment efficacy and treatment-induced acute and long-term toxicity, and we discuss the complex and inter-related mechanisms involved. We also assess the potential of microbiota-targeting interventions, including bacterial engineering and phage therapy, to optimize the response to and recovery from cancer therapy.
Collapse
Affiliation(s)
- Stephen J Blake
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia
| | - Yochai Wolf
- Ella Lemelbaum Institute for Immuno-oncology and Skin Cancer, Sheba Medical Center, Tel Hashomer, Israel
- Department of Pathology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ben Boursi
- School of Medicine, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Department of Oncology, Sheba Medical Center, Tel Hashomer, Israel
- Center of Clinical Epidemiology and Biostatistics, University of Pennsylvania, Philadelphia, PA, USA
| | - David J Lynn
- Precision Cancer Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia.
- College of Medicine and Public Health, Flinders University, Adelaide, South Australia, Australia.
| |
Collapse
|
15
|
Giridhar P, Pradhan S, Dokania S, Venkatesulu B, Sarode R, Welsh JS. Microbiome and Abdominopelvic Radiotherapy Related Chronic Enteritis: A Microbiome-based Mechanistic Role of Probiotics and Antibiotics. Am J Clin Oncol 2024; 47:246-252. [PMID: 38193365 DOI: 10.1097/coc.0000000000001082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Chronic diarrhea and abdominal pain after radiotherapy continue to be a problem in cancer survivors. Gut microbiomes are essential for preventing intestinal inflammation, maintaining intestinal integrity, maintaining enterohepatic circulation, regulating bile acid metabolism, and absorption of nutrients, including fat-soluble vitamins. Gut microbiome dysbiosis is expected to cause inflammation, bile acid malabsorption, malnutrition, and associated symptoms. Postradiotherapy, Firmicutes and Bacteroidetes phylum are significantly decreased while Fusobacteria and other unclassified bacteria are increased. Available evidence suggests harmful bacteria Veillonella, Erysipelotrichaceae, and Ruminococcus are sensitive to Metronidazole or Ciprofloxacin. Beneficial bacteria lactobacillus and Bifidobacterium are relatively resistant to metronidazole. We hypothesize and provide an evidence-based review that short-course targeted antibiotics followed by specific probiotics may lead to alleviation of radiation enteritis.
Collapse
Affiliation(s)
| | | | | | - Bhanuprasad Venkatesulu
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| | - Rahul Sarode
- Department of Microbiology, Mahamana Pandit Madanmohan Malaviya Cancer Centre/Homi Bhabha Cancer hospital, Tata Memorial Centre, Varanasi, India
| | - James S Welsh
- Department of Radiation Oncology, Loyola University Chicago, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Maywood
- Department of Radiation Oncology, MPMMCC/HBCH Varanasi Edward Hines Veteran Affairs Hospital, Chicago, IL
| |
Collapse
|
16
|
Ratiner K, Ciocan D, Abdeen SK, Elinav E. Utilization of the microbiome in personalized medicine. Nat Rev Microbiol 2024; 22:291-308. [PMID: 38110694 DOI: 10.1038/s41579-023-00998-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/20/2023]
Abstract
Inter-individual human variability, driven by various genetic and environmental factors, complicates the ability to develop effective population-based early disease detection, treatment and prognostic assessment. The microbiome, consisting of diverse microorganism communities including viruses, bacteria, fungi and eukaryotes colonizing human body surfaces, has recently been identified as a contributor to inter-individual variation, through its person-specific signatures. As such, the microbiome may modulate disease manifestations, even among individuals with similar genetic disease susceptibility risks. Information stored within microbiomes may therefore enable early detection and prognostic assessment of disease in at-risk populations, whereas microbiome modulation may constitute an effective and safe treatment tailored to the individual. In this Review, we explore recent advances in the application of microbiome data in precision medicine across a growing number of human diseases. We also discuss the challenges, limitations and prospects of analysing microbiome data for personalized patient care.
Collapse
Affiliation(s)
- Karina Ratiner
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Dragos Ciocan
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Suhaib K Abdeen
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| | - Eran Elinav
- Systems Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
- Division of Cancer-Microbiome Research, DKFZ, Heidelberg, Germany.
| |
Collapse
|
17
|
Talapko J, Talapko D, Katalinić D, Kotris I, Erić I, Belić D, Vasilj Mihaljević M, Vasilj A, Erić S, Flam J, Bekić S, Matić S, Škrlec I. Health Effects of Ionizing Radiation on the Human Body. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:653. [PMID: 38674299 PMCID: PMC11052428 DOI: 10.3390/medicina60040653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024]
Abstract
Radioactivity is a process in which the nuclei of unstable atoms spontaneously decay, producing other nuclei and releasing energy in the form of ionizing radiation in the form of alpha (α) and beta (β) particles as well as the emission of gamma (γ) electromagnetic waves. People may be exposed to radiation in various forms, as casualties of nuclear accidents, workers in power plants, or while working and using different radiation sources in medicine and health care. Acute radiation syndrome (ARS) occurs in subjects exposed to a very high dose of radiation in a very short period of time. Each form of radiation has a unique pathophysiological effect. Unfortunately, higher organisms-human beings-in the course of evolution have not acquired receptors for the direct "capture" of radiation energy, which is transferred at the level of DNA, cells, tissues, and organs. Radiation in biological systems depends on the amount of absorbed energy and its spatial distribution, particularly depending on the linear energy transfer (LET). Photon radiation with low LET leads to homogeneous energy deposition in the entire tissue volume. On the other hand, radiation with a high LET produces a fast Bragg peak, which generates a low input dose, whereby the penetration depth into the tissue increases with the radiation energy. The consequences are mutations, apoptosis, the development of cancer, and cell death. The most sensitive cells are those that divide intensively-bone marrow cells, digestive tract cells, reproductive cells, and skin cells. The health care system and the public should raise awareness of the consequences of ionizing radiation. Therefore, our aim is to identify the consequences of ARS taking into account radiation damage to the respiratory system, nervous system, hematopoietic system, gastrointestinal tract, and skin.
Collapse
Affiliation(s)
- Jasminka Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Domagoj Talapko
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Electrical Engineering, Computer Science and Information Technology Osijek, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Darko Katalinić
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivan Kotris
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- General Hospital Vukovar, Županijska 35, 32000 Vukovar, Croatia
| | - Ivan Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Surgery, Osijek University Hospital Center, 31000 Osijek, Croatia
| | - Dino Belić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Mila Vasilj Mihaljević
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Vukovar, 32000 Vukovar, Croatia
| | - Ana Vasilj
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Health Center Osijek, 31000 Osijek, Croatia
| | - Suzana Erić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Josipa Flam
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Department of Radiotherapy and Oncology, University Hospital Center Osijek, 31000 Osijek, Croatia
| | - Sanja Bekić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
- Family Medicine Practice, 31000 Osijek, Croatia
| | - Suzana Matić
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia (M.V.M.); (S.E.); (J.F.)
| | - Ivana Škrlec
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| |
Collapse
|
18
|
Thandar M, Yang X, Zhu Y, Zhang X, Chen Z, Huang S, Chi P. Dysbiosis of gut microbiota and metabolites is associated with radiation-induced colorectal fibrosis and is restored by adipose-derived mesenchymal stem cell therapy. Life Sci 2024; 341:122502. [PMID: 38350495 DOI: 10.1016/j.lfs.2024.122502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/01/2024] [Accepted: 02/08/2024] [Indexed: 02/15/2024]
Abstract
AIMS This study aimed to investigate the effects of adipose-derived mesenchymal stem cells (ADSCs) on radiation-induced colorectal fibrosis (RICF) along with the associated dysbiosis of gut microbiota and metabolites. MAIN METHODS Fecal microbiota were assessed through 16S rRNA gene sequencing, and the fecal metabolome was characterized using liquid chromatography-mass spectrometry and gas chromatography-mass spectrometry. The correlation between microbiota and metabolome data was explored. KEY FINDINGS ADSC injection demonstrated a significant restoration of radiation-induced intestinal damage in vivo. At the phylum level, irradiated rats exhibited an increase in Bacteroidota and Campilobacterota, and a decrease in Firmicutes and Desulfobacterota, contrasting with the ADSC treatment group. Metabolomic analysis revealed 72 differently expressed metabolites (DEMs) from gas chromatography-mass spectrometry and 284 DEMs from liquid chromatography-mass spectrometry in the radiation group compared to the blank group. In the ADSC treatment group versus the radiation group, 36 DEMs from gas chromatography-mass spectrometry and 341 DEMs from liquid chromatography-mass spectrometry were identified. KEGG enrichment analysis implicated pathways such as steroid hormone biosynthesis, gap junction, primary bile acid biosynthesis, citrate cycle, cAMP signaling pathway, and alanine, aspartate, and glutamate metabolism during RICF progression and after treated with ADSCs. Correlation analysis highlighted the role of ADSCs in modulating the metabolic process of Camelledionol in fecal Bacteroides. SIGNIFICANCE These findings underscore the potential of ADSCs in reversing dysbiosis and restoring normal colonic flora in the context of RICF, offering valuable insights for therapeutic interventions targeting radiation-induced complications.
Collapse
Affiliation(s)
- Mya Thandar
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Xiaojie Yang
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China; Department of Thoracic Surgery, Third Affiliated Hospital of Chongqing Medical University, Chongqing 401100, China
| | - Yuanchang Zhu
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Xueying Zhang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China
| | - Zhifen Chen
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| | - Shenghui Huang
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| | - Pan Chi
- Department of Colorectal Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China; Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Department of Colorectal Surgery, Fuzhou, Fujian Province 350001, China; Training Center of Minimally Invasive Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province 350001, China.
| |
Collapse
|
19
|
Chalif J, Wang H, Spakowicz D, Quick A, Arthur EK, O'Malley D, Chambers LM. The microbiome and gynecologic cancer: cellular mechanisms and clinical applications. Int J Gynecol Cancer 2024; 34:317-327. [PMID: 38088183 DOI: 10.1136/ijgc-2023-004894] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024] Open
Abstract
The microbiome plays a vital function in maintaining human health and homeostasis. Each microbiota has unique characteristics, including those of the gastrointestinal and female reproductive tract. Dysbiosis, or alterations to the composition of the microbial communities, impacts the microbiota-host relationship and is linked to diseases, including cancer. In addition, studies have demonstrated that the microbiota can contribute to a pro-carcinogenic state through altered host immunologic response, modulation of cell proliferation, signaling, gene expression, and dysregulated metabolism of nutrients and hormones.In recent years, the microbiota of the gut and female reproductive tracts have been linked to many diseases, including gynecologic cancers. Numerous pre-clinical and clinical studies have demonstrated that specific bacteria or microbial communities may contribute to the development of gynecologic cancers. Further, the microbiota may also impact the toxicity and efficacy of cancer therapies, including chemotherapy, immunotherapy, and radiation therapy in women with gynecologic malignancies. The microbiota is highly dynamic and may be altered through various mechanisms, including diet, exercise, medications, and fecal microbiota transplantation. This review provides an overview of the current literature detailing the relationship between gynecologic cancers and the microbiota of the female reproductive and gastrointestinal tracts, focusing on mechanisms of carcinogenesis and strategies for modulating the microbiota for cancer prevention and treatment. Advancing our understanding of the complex relationship between the microbiota and gynecologic cancer will provide a novel approach for prevention and therapeutic modulation in the future.
Collapse
Affiliation(s)
- Julia Chalif
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Heather Wang
- Ohio University College of Osteopathic Medicine, Athens, Ohio, USA
| | - Daniel Spakowicz
- Division of Medical Oncology, The Ohio State University Comprehensive Cancer Centre, Columbus, Ohio, USA
| | - Allison Quick
- Radiation Oncology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Elizabeth K Arthur
- The Ohio State University Comprehensive Cancer Center - James Cancer Hospital and Solove Research Institute, Columbus, Ohio, USA
| | - David O'Malley
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| | - Laura M Chambers
- Divison of Gynecologic Oncology, The Ohio State University Comprehensive Cancer Center - Arthur G James Cancer Hospital and Richard J Solove Research Institute, Columbus, Ohio, USA
| |
Collapse
|
20
|
Liu X, Li Y, Gu M, Xu T, Wang C, Chang P. Radiation enteropathy-related depression: A neglectable course of disease by gut bacterial dysbiosis. Cancer Med 2024; 13:e6865. [PMID: 38457257 PMCID: PMC10923036 DOI: 10.1002/cam4.6865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 03/10/2024] Open
Abstract
Radiation enteropathy (RE) is common in patients treated with radiotherapy for pelvic-abdominal cancers. Accumulating data indicate that gut commensal bacteria determine intestinal radiosensitivity. Radiotherapy can result in gut bacterial dysbiosis. Gut bacterial dysbiosis contributes to the pathogenesis of RE. Mild to moderate depressive symptoms can be observed in patients with RE in clinical settings; however, the rate of these symptoms has not been reported. Studies have demonstrated that gut bacterial dysbiosis induces depression. In the state of comorbidity, RE and depression may be understood as local and abscopal manifestations of gut bacterial disorders. The ability of comorbid depression to worsen inflammatory bowel disease (IBD) has long been demonstrated and is associated with dysfunction of cholinergic neural anti-inflammatory pathways. There is a lack of direct evidence for RE comorbid with depression. It is widely accepted that RE shares similar pathophysiologic mechanisms with IBD. Therefore, we may be able to draw on the findings of the relationship between IBD and depression. This review will explore the relationship between gut bacteria, RE, and depression in light of the available evidence and indicate a method for investigating the mechanisms of RE combined with depression. We will also describe new developments in the treatment of RE with probiotics, prebiotics, and fecal microbial transplantation.
Collapse
Affiliation(s)
- Xinliang Liu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Ying Li
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Meichen Gu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Tiankai Xu
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| | - Chuanlei Wang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery CenterThe First Hospital of Jilin UniversityChangchunChina
| | - Pengyu Chang
- Department of Radiation Oncology and TherapyThe First Hospital of Jilin UniversityChangchunChina
| |
Collapse
|
21
|
Wang W, Cui B, Nie Y, Sun L, Zhang F. Radiation injury and gut microbiota-based treatment. Protein Cell 2024; 15:83-97. [PMID: 37470727 PMCID: PMC10833463 DOI: 10.1093/procel/pwad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023] Open
Abstract
The exposure to either medical sources or accidental radiation can cause varying degrees of radiation injury (RI). RI is a common disease involving multiple human body parts and organs, yet effective treatments are currently limited. Accumulating evidence suggests gut microbiota are closely associated with the development and prevention of various RI. This article summarizes 10 common types of RI and their possible mechanisms. It also highlights the changes and potential microbiota-based treatments for RI, including probiotics, metabolites, and microbiota transplantation. Additionally, a 5P-Framework is proposed to provide a comprehensive strategy for managing RI.
Collapse
Affiliation(s)
- Weihong Wang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Bota Cui
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
| | - Yongzhan Nie
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi’an 710032, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| | - Lijuan Sun
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Northwest University, Xi’an 710069, China
| | - Faming Zhang
- Department of Microbiota Medicine and Medical Center for Digestive Diseases, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
- Department of Microbiotherapy, Sir Run Run Hospital, Nanjing Medical University, Nanjing 211166, China
- National Clinical Research Center for Digestive Diseases, Xi’an 710032, China
| |
Collapse
|
22
|
Yarahmadi A, Afkhami H. The role of microbiomes in gastrointestinal cancers: new insights. Front Oncol 2024; 13:1344328. [PMID: 38361500 PMCID: PMC10867565 DOI: 10.3389/fonc.2023.1344328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 12/20/2023] [Indexed: 02/17/2024] Open
Abstract
Gastrointestinal (GI) cancers constitute more than 33% of new cancer cases worldwide and pose a considerable burden on public health. There exists a growing body of evidence that has systematically recorded an upward trajectory in GI malignancies within the last 5 to 10 years, thus presenting a formidable menace to the health of the human population. The perturbations in GI microbiota may have a noteworthy influence on the advancement of GI cancers; however, the precise mechanisms behind this association are still not comprehensively understood. Some bacteria have been observed to support cancer development, while others seem to provide a safeguard against it. Recent studies have indicated that alterations in the composition and abundance of microbiomes could be associated with the progression of various GI cancers, such as colorectal, gastric, hepatic, and esophageal cancers. Within this comprehensive analysis, we examine the significance of microbiomes, particularly those located in the intestines, in GI cancers. Furthermore, we explore the impact of microbiomes on various treatment modalities for GI cancer, including chemotherapy, immunotherapy, and radiotherapy. Additionally, we delve into the intricate mechanisms through which intestinal microbes influence the efficacy of GI cancer treatments.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamed Afkhami
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
23
|
Zhang H, Dong M, Zheng J, Yang Y, He J, Liu T, Wei H. Fecal bacteria-free filtrate transplantation is proved as an effective way for the recovery of radiation-induced individuals in mice. Front Cell Infect Microbiol 2024; 13:1343752. [PMID: 38357210 PMCID: PMC10864540 DOI: 10.3389/fcimb.2023.1343752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 12/27/2023] [Indexed: 02/16/2024] Open
Abstract
Background Ionizing radiation can cause intestinal microecological dysbiosis, resulting in changes in the composition and function of gut microbiota. Altered gut microbiota is closely related to the development and progression of radiation-induced intestinal damage. Although microbiota-oriented therapeutic options such as fecal microbiota transplantation (FMT) have shown some efficacy in treating radiation toxicity, safety concerns endure. Therefore, fecal bacteria-free filtrate transplantation (FFT), which has the potential to become a possible alternative therapy, is well worth investigating. Herein, we performed FFT in a mouse model of radiation exposure and monitored its effects on radiation damage phenotypes, gut microbiota, and metabolomic profiles to assess the effectiveness of FFT as an alternative therapy to FMT safety concerns. Results FFT treatment conferred radioprotection against radiation-induced toxicity, representing as better intestinal integrity, robust proinflammatory and anti-inflammatory cytokines homeostasis, and accompanied by significant shifts in gut microbiome. The bacterial compartment of recipients following FFT was characterized by an enrichment of radioprotective microorganisms (members of family Lachnospiraceae). Furthermore, metabolome data revealed increased levels of microbially generated short-chain fatty acids (SCFAs) in the feces of FFT mice. Conclusions FFT improves radiation-induced intestinal microecological dysbiosis by reshaping intestinal mucosal barrier function, gut microbiota configurations, and host metabolic profiles, highlighting FFT regimen as a promising safe alternative therapy for FMT is effective in the treatment of radiation intestinal injury.
Collapse
Affiliation(s)
- Hang Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Miaomiao Dong
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jixia Zheng
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Yapeng Yang
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Jinhui He
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| | - Tianhao Liu
- Department of Gastroenterology, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Hong Wei
- State Key Laboratory of Agricultural Microbiology, College of Animal Science and Technology, College of Animal Medicine, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
24
|
Chen Y, Wang X, Ye Y, Ren Q. Gut microbiota in cancer: insights on microbial metabolites and therapeutic strategies. Med Oncol 2023; 41:25. [PMID: 38129370 DOI: 10.1007/s12032-023-02249-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
In recent years, the role of gut microbiota in cancer treatment has attracted substantial attention. It is now well established that gut microbiota and its metabolites significantly contribute to the incidence, treatment, and prognosis of various cancers. This review provides a comprehensive review on the pivotal role of gut microbiota and their metabolites in cancer initiation and progression. Furthermore, it evaluates the impact of gut microbiota on the efficacy and associated side effects of anticancer therapies, including radiotherapy, chemotherapy, and immunotherapy, thus emphasizing the clinical importance of gut microbiota reconstitution in cancer treatment.
Collapse
Affiliation(s)
- Yalan Chen
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Xibin Wang
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Yuwei Ye
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China
| | - Qian Ren
- The First School of Clinical Medicine, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu Province, China.
- Gansu Province Clinical Research Center for Digestive Diseases, Lanzhou University, Lanzhou, 730000, Gansu Province, China.
| |
Collapse
|
25
|
Jia Y, Zou K, Zou L. Research progress of metabolomics in cervical cancer. Eur J Med Res 2023; 28:586. [PMID: 38093395 PMCID: PMC10717910 DOI: 10.1186/s40001-023-01490-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 10/30/2023] [Indexed: 12/17/2023] Open
Abstract
INTRODUCTION Cervical cancer threatens women's health seriously. In recent years, the incidence of cervical cancer is on the rise, and the age of onset tends to be younger. Prevention, early diagnosis and specific treatment have become the main means to change the prognosis of cervical cancer patients. Metabolomics research can directly reflect the changes of biochemical processes and microenvironment in the body, which can provide a comprehensive understanding of the changes of metabolites in the process of disease occurrence and development, and provide new ways for the prevention and diagnosis of diseases. OBJECTIVES The aim of this study is to review the metabolic changes in cervical cancer and the application of metabolomics in the diagnosis and treatment. METHODS PubMed, Web of Science, Embase and Scopus electronic databases were systematically searched for relevant studies published up to 2022. RESULTS With the emergence of metabolomics, metabolic regulation and cancer research are further becoming a focus of attention. By directly reflecting the changes in the microenvironment of the body, metabolomics research can provide a comprehensive understanding of the patterns of metabolites in the occurrence and development of diseases, thus providing new ideas for disease prevention and diagnosis. CONCLUSION With the continuous, in-depth research on metabolomics research technology, it will bring more benefits in the screening, diagnosis and treatment of cervical cancer with its advantages of holistic and dynamic nature.
Collapse
Affiliation(s)
- Yuhan Jia
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China
| | - Kun Zou
- Department of Radiotherapy, The First Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| | - Lijuan Zou
- Department of Radiotherapy, The Second Hospital of Dalian Medical University, Dalian, Liaoning Province, China.
| |
Collapse
|
26
|
Lu Q, Liang Y, Tian S, Jin J, Zhao Y, Fan H. Radiation-Induced Intestinal Injury: Injury Mechanism and Potential Treatment Strategies. TOXICS 2023; 11:1011. [PMID: 38133412 PMCID: PMC10747544 DOI: 10.3390/toxics11121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Radiation-induced intestinal injury (RIII) is one of the most common intestinal complications caused by radiotherapy for pelvic and abdominal tumors and it seriously affects the quality of life of patients. However, the treatment of acute RIII is essentially symptomatic and nutritional support treatment and an ideal means of prevention and treatment is lacking. Researchers have conducted studies at the cellular and animal levels and found that some chemical or biological agents have good therapeutic effects on RIII and may be used as potential candidates for clinical treatment. This article reviews the injury mechanism and potential treatment strategies based on cellular and animal experiments to provide new ideas for the diagnosis and treatment of RIII in clinical settings.
Collapse
Affiliation(s)
- Qianying Lu
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yangfan Liang
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Sijia Tian
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Jie Jin
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Yanmei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| | - Haojun Fan
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin 300072, China; (Q.L.); (Y.L.); (S.T.); (J.J.)
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin 300072, China
| |
Collapse
|
27
|
Danckaert W, Spaas M, Sundahl N, De Bruycker A, Fonteyne V, De Paepe E, De Wagter C, Vanhaecke L, Ost P. Microbiome and metabolome dynamics during radiotherapy for prostate cancer. Radiother Oncol 2023; 189:109950. [PMID: 37827280 DOI: 10.1016/j.radonc.2023.109950] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/02/2023] [Accepted: 10/07/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND Prostate cancer patients treated with radiotherapy are susceptible to acute gastrointestinal (GI) toxicity due to substantial overlap of the intestines with the radiation volume. Due to their intimate relationship with GI toxicity, faecal microbiome and metabolome dynamics during radiotherapy were investigated. MATERIAL & METHODS This prospective study included 50 prostate cancer patients treated with prostate (bed) only radiotherapy (PBRT) (n = 28) or whole pelvis radiotherapy (WPRT) (n = 22) (NCT04638049). Longitudinal sampling was performed prior to radiotherapy, after 10 fractions, near the end of radiotherapy and at follow-up. Patient symptoms were dichotomized into a single toxicity score. Microbiome and metabolome fingerprints were analyzed by 16S rRNA gene sequencing and ultra-high-performance liquid chromatography hybrid high-resolution mass spectrometry, respectively. RESULTS The individual α-diversity did not significantly change over time. Microbiota composition (β-diversity) changed significantly over treatment (PERMANOVA p-value = 0.03), but there was no significant difference in stability when comparing PBRT versus WPRT. Levels of various metabolites were significantly altered during radiotherapy. Baseline α-diversity was not associated with any toxicity outcome. Based on the metabolic fingerprint, no natural clustering according to toxicity profile could be achieved. CONCLUSIONS Radiation dose and treatment volume demonstrated limited effects on microbiome and metabolome fingerprints. In addition, no distinctive signature for toxicity status could be established. There is an ongoing need for toxicity risk stratification tools for diagnostic and therapeutic purposes, but the current evidence implies that the translation of metabolic and microbial biomarkers into routine clinical practice remains challenging.
Collapse
Affiliation(s)
- Willeke Danckaert
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Mathieu Spaas
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Nora Sundahl
- Department of Radiation Oncology, AZ Groeninge Kortrijk, Kortrijk, Belgium
| | - Aurélie De Bruycker
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Department of Radiation Oncology, AZ Groeninge Kortrijk, Kortrijk, Belgium
| | - Valérie Fonteyne
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Ellen De Paepe
- Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium
| | - Carlos De Wagter
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Radiation Oncology, Ghent University Hospital, Ghent, Belgium
| | - Lynn Vanhaecke
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Laboratory of Integrative Metabolomics (LIMET), Department of Translational Physiology, Infectiology and Public Health, Faculty of Veterinary Medicine, Ghent University, Ghent, Belgium; Institute for Global Food Security, School of Biological Sciences, Queen's University, BT7 1NN Belfast, United Kingdom
| | - Piet Ost
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium; Department of Radiation Oncology, Iridium Netwerk, Wilrijk, Belgium
| |
Collapse
|
28
|
Van Dingenen L, Segers C, Wouters S, Mysara M, Leys N, Kumar-Singh S, Malhotra-Kumar S, Van Houdt R. Dissecting the role of the gut microbiome and fecal microbiota transplantation in radio- and immunotherapy treatment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1298264. [PMID: 38035338 PMCID: PMC10687483 DOI: 10.3389/fcimb.2023.1298264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/31/2023] [Indexed: 12/02/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most commonly diagnosed cancers and poses a major burden on the human health worldwide. At the moment, treatment of CRC consists of surgery in combination with (neo)adjuvant chemotherapy and/or radiotherapy. More recently, immune checkpoint blockers (ICBs) have also been approved for CRC treatment. In addition, recent studies have shown that radiotherapy and ICBs act synergistically, with radiotherapy stimulating the immune system that is activated by ICBs. However, both treatments are also associated with severe toxicity and efficacy issues, which can lead to temporary or permanent discontinuation of these treatment programs. There's growing evidence pointing to the gut microbiome playing a role in these issues. Some microorganisms seem to contribute to radiotherapy-associated toxicity and hinder ICB efficacy, while others seem to reduce radiotherapy-associated toxicity or enhance ICB efficacy. Consequently, fecal microbiota transplantation (FMT) has been applied to reduce radio- and immunotherapy-related toxicity and enhance their efficacies. Here, we have reviewed the currently available preclinical and clinical data in CRC treatment, with a focus on how the gut microbiome influences radio- and immunotherapy toxicity and efficacy and if these treatments could benefit from FMT.
Collapse
Affiliation(s)
- Lena Van Dingenen
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Charlotte Segers
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Shari Wouters
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Mohamed Mysara
- Bioinformatics Group, Center for Informatics Science, School of Information Technology and Computer Science, Nile University, Giza, Egypt
| | - Natalie Leys
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| | - Samir Kumar-Singh
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, Faculty of Medicine, University of Antwerp, Antwerp, Belgium
| | - Rob Van Houdt
- Nuclear Medical Applications, Belgian Nuclear Research Centre, SCK CEN, Mol, Belgium
| |
Collapse
|
29
|
Jang B, Chung MG, Lee DS. Association between gut microbial change and acute gastrointestinal toxicity in patients with prostate cancer receiving definitive radiation therapy. Cancer Med 2023; 12:20727-20735. [PMID: 37921267 PMCID: PMC10709749 DOI: 10.1002/cam4.6636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND This prospective study investigated the association between gut microbial changes and acute gastrointestinal toxicities in prostate cancer patients receiving definitive radiation therapy (RT). METHODS Seventy-nine fecal samples were analyzed. Stool samples were collected at the following timepoints: pre-RT (prRT), 2 weeks after the start of RT (RT-2w), 5 weeks after the start of RT (RT-5w), 1 month after completion of RT (poRT-1 m), and 3 months after completion of RT (poRT-3 m). We computed the microbial community polarization index (MCPI) as an indicator of RT-induced dysbiosis. RESULTS Patients experiencing toxicity had lower alpha diversity, especially at RT-2w (p = 0.037) and RT-5w (p = 0.003). Compared to patients without toxicity, the MCPI in those experiencing toxicities was significantly elevated (p = 0.019). In terms of predicted metabolic pathways, we found linearly decreasing pathways, including carbon fixation pathways in prokaryotes (p = 0.035) and the bacterial secretion system (p = 0.005), in patients who experienced toxicities. CONCLUSIONS We showed RT-induced dysbiosis among patients who experienced toxicities. Reduced diversity and elevated RT-related MCPI could be helpfully used for developing individualized RT approaches.
Collapse
Affiliation(s)
- Bum‐Sup Jang
- Department of Radiation OncologyCollege of MedicineSeoul National UniversitySeoulKorea
| | - Moon Gyu Chung
- Microbiome centerKorea Research Institute of Bio‐medical ScienceDaejeonKorea
| | - Dong Soo Lee
- Department of Radiation Oncology, College of MedicineThe Catholic University of KoreaSeoulKorea
| |
Collapse
|
30
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
31
|
Wu Y, Zhang Y, Zhang W, Huang Y, Lu X, Shang L, Zhou Z, Chen X, Li S, Cheng S, Song Y. The tremendous clinical potential of the microbiota in the treatment of breast cancer: the next frontier. J Cancer Res Clin Oncol 2023; 149:12513-12534. [PMID: 37382675 DOI: 10.1007/s00432-023-05014-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023]
Abstract
Although significant advances have been made in the diagnosis and treatment of breast cancer (BC) in recent years, BC remains the most common cancer in women and one of the main causes of death among women worldwide. Currently, more than half of BC patients have no known risk factors, emphasizing the significance of identifying more tumor-related factors. Therefore, we urgently need to find new therapeutic strategies to improve prognosis. Increasing evidence demonstrates that the microbiota is present in a wider range of cancers beyond colorectal cancer. BC and breast tissues also have different types of microbiotas that play a key role in carcinogenesis and in modulating the efficacy of anticancer treatment, for instance, chemotherapy, radiotherapy, and immunotherapy. In recent years, studies have confirmed that the microbiota can be an important factor directly and/or indirectly affecting the occurrence, metastasis and treatment of BC by regulating different biological processes, such as estrogen metabolism, DNA damage, and bacterial metabolite production. Here, we review the different microbiota-focused studies associated with BC and explore the mechanisms of action of the microbiota in BC initiation and metastasis and its application in various therapeutic strategies. We found that the microbiota has vital clinical value in the diagnosis and treatment of BC and could be used as a biomarker for prognosis prediction. Therefore, modulation of the gut microbiota and its metabolites might be a potential target for prevention or therapy in BC.
Collapse
Affiliation(s)
- Yang Wu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Yue Zhang
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wenwen Zhang
- Department of Gynecology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuanxi Huang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiangshi Lu
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Lingmin Shang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Zhaoyue Zhou
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Xiaolu Chen
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shuhui Li
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China
| | - Shaoqiang Cheng
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| | - Yanni Song
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, 150 Haping Road, Nangang District, Harbin, 150081, China.
| |
Collapse
|
32
|
Maddern AS, Coller JK, Bowen JM, Gibson RJ. The Association between the Gut Microbiome and Development and Progression of Cancer Treatment Adverse Effects. Cancers (Basel) 2023; 15:4301. [PMID: 37686576 PMCID: PMC10487104 DOI: 10.3390/cancers15174301] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/10/2023] Open
Abstract
Adverse effects are a common consequence of cytotoxic cancer treatments. Over the last two decades there have been significant advances in exploring the relationship between the gut microbiome and these adverse effects. Changes in the gut microbiome were shown in multiple clinical studies to be associated with the development of acute gastrointestinal adverse effects, including diarrhoea and mucositis. However, more recent studies showed that changes in the gut microbiome may also be associated with the long-term development of psychoneurological changes, cancer cachexia, and fatigue. Therefore, the aim of this review was to examine the literature to identify potential contributions and associations of the gut microbiome with the wide range of adverse effects from cytotoxic cancer treatments.
Collapse
Affiliation(s)
- Amanda S. Maddern
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| | - Janet K. Coller
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Joanne M. Bowen
- School of Biomedicine, The University of Adelaide, Adelaide, SA 5005, Australia; (J.K.C.); (J.M.B.)
| | - Rachel J. Gibson
- School of Allied Health Science and Practice, The University of Adelaide, Adelaide, SA 5005, Australia;
| |
Collapse
|
33
|
Xue X, Li R, Chen Z, Li G, Liu B, Guo S, Yue Q, Yang S, Xie L, Zhang Y, Zhao J, Tan R. The role of the symbiotic microecosystem in cancer: gut microbiota, metabolome, and host immunome. Front Immunol 2023; 14:1235827. [PMID: 37691931 PMCID: PMC10484231 DOI: 10.3389/fimmu.2023.1235827] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 07/12/2023] [Indexed: 09/12/2023] Open
Abstract
The gut microbiota is not just a simple nutritional symbiosis that parasitizes the host; it is a complex and dynamic ecosystem that coevolves actively with the host and is involved in a variety of biological activities such as circadian rhythm regulation, energy metabolism, and immune response. The development of the immune system and immunological functions are significantly influenced by the interaction between the host and the microbiota. The interactions between gut microbiota and cancer are of a complex nature. The critical role that the gut microbiota plays in tumor occurrence, progression, and treatment is not clear despite the already done research. The development of precision medicine and cancer immunotherapy further emphasizes the importance and significance of the question of how the microbiota takes part in cancer development, progression, and treatment. This review summarizes recent literature on the relationship between the gut microbiome and cancer immunology. The findings suggest the existence of a "symbiotic microecosystem" formed by gut microbiota, metabolome, and host immunome that is fundamental for the pathogenesis analysis and the development of therapeutic strategies for cancer.
Collapse
Affiliation(s)
- Xiaoyu Xue
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Zhenni Chen
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
- College of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Guiyu Li
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Bisheng Liu
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Shanshan Guo
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Qianhua Yue
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Siye Yang
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Linlin Xie
- Traditional Chinese Medicine Hospital Affiliated to Southwest Medical University, Classical Chinese Medicine Diagnosis and Treatment Center, Luzhou, China
| | - Yiguan Zhang
- School of Pharmacy, Southwest Medical University, Luzhou, China
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Junning Zhao
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| | - Ruirong Tan
- Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medical Sciences, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Translational Chinese Medicine Key Laboratory of Sichuan Province, Chengdu, China
| |
Collapse
|
34
|
Xu J, Xu X, Hua D, Yuan Z, Bai M, Song H, Yang L, Li J, Zhu D, Liu H. Defatted hempseed meal altered the metabolic profile of fermented yogurt and enhanced the ability to alleviate constipation in rats. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4778-4791. [PMID: 36971462 DOI: 10.1002/jsfa.12575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Hempseeds (Cannabis sativa L.) are rich in easily digestible proteins, fats, polyunsaturated fatty acids, and insoluble fiber and are of high nutritional value. Probiotics have been found to relieve constipation, which solves a health problem that constantly troubles a lot of people. Therefore, the changes in the metabolites of fermented yogurt with or without 10% defatted hempseed meal (10% SHY or 0% SHY respectively) were studied and their laxative effects were examined through animal experiments. RESULTS Amino acids and peptides, terpene glycosides, carbohydrates, lineolic acids, and fatty acids were found to be the major contributors to the discrimination of the metabolic profile between 0% SHY and 10% SHY. The differentially accumulated metabolites may lead to the discrepancy in the yogurt's functionality. Animal experiments showed that the 10% SHY treatment prevented constipation by increasing feces number, fecal water content, and small intestinal transit rate and reducing inflammatory injury in loperamide-induced constipated rats. Further analysis of the gut microbiota revealed that 10% SHY gavage increased the relative abundances of the Lactobacillus, Allobaculum, Turicibacter, Oscillibacter, Ruminococcus, and Phascolarctobacterium genera in the constipated rats, whereas Akkermansia, Clostridium_XIVa, Bacteroides, Staphylococcus, and Clostridium_IV were decreased. The combination of defatted hempseed meal and probiotics was found to be effective in relieving constipation, probably due to the enriched amino acids and peptides, such as Thr-Leu and lysinoalanine through correlation analysis. CONCLUSION Our findings indicated that defatted hempseed meal in yogurt altered the metabolic profile and effectively alleviated constipation in rats, which is a promising therapeutic candidate for constipation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxin Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Xinyue Xu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Dong Hua
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Zhiheng Yuan
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Miao Bai
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Hong Song
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Lina Yang
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - Jifeng Li
- Liaoning Qiaopai Biotech Co. Ltd, Jinzhou, China
| | - Danshi Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| | - He Liu
- College of Food Science and Technology, Bohai University, Jinzhou, China
| |
Collapse
|
35
|
Shukla PK, Rao RG, Meena AS, Giorgianni F, Lee SC, Raju P, Shashikanth N, Shekhar C, Beranova S, Balazs L, Tigyi G, Gosain A, Rao R. Paneth cell dysfunction in radiation injury and radio-mitigation by human α-defensin 5. Front Immunol 2023; 14:1174140. [PMID: 37638013 PMCID: PMC10448521 DOI: 10.3389/fimmu.2023.1174140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 07/14/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction The mechanism underlying radiation-induced gut microbiota dysbiosis is undefined. This study examined the effect of radiation on the intestinal Paneth cell α-defensin expression and its impact on microbiota composition and mucosal tissue injury and evaluated the radio-mitigative effect of human α-defensin 5 (HD5). Methods Adult mice were subjected to total body irradiation, and Paneth cell α-defensin expression was evaluated by measuring α-defensin mRNA by RT-PCR and α-defensin peptide levels by mass spectrometry. Vascular-to-luminal flux of FITC-inulin was measured to evaluate intestinal mucosal permeability and endotoxemia by measuring plasma lipopolysaccharide. HD5 was administered in a liquid diet 24 hours before or after irradiation. Gut microbiota was analyzed by 16S rRNA sequencing. Intestinal epithelial junctions were analyzed by immunofluorescence confocal microscopy and mucosal inflammatory response by cytokine expression. Systemic inflammation was evaluated by measuring plasma cytokine levels. Results Ionizing radiation reduced the Paneth cell α-defensin expression and depleted α-defensin peptides in the intestinal lumen. α-Defensin down-regulation was associated with the time-dependent alteration of gut microbiota composition, increased gut permeability, and endotoxemia. Administration of human α-defensin 5 (HD5) in the diet 24 hours before irradiation (prophylactic) significantly blocked radiation-induced gut microbiota dysbiosis, disruption of intestinal epithelial tight junction and adherens junction, mucosal barrier dysfunction, and mucosal inflammatory response. HD5, administered 24 hours after irradiation (treatment), reversed radiation-induced microbiota dysbiosis, tight junction and adherens junction disruption, and barrier dysfunction. Furthermore, HD5 treatment also prevents and reverses radiation-induced endotoxemia and systemic inflammation. Conclusion These data demonstrate that radiation induces Paneth cell dysfunction in the intestine, and HD5 feeding prevents and mitigates radiation-induced intestinal mucosal injury, endotoxemia, and systemic inflammation.
Collapse
Affiliation(s)
- Pradeep K. Shukla
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Roshan G. Rao
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Avtar S. Meena
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Francesco Giorgianni
- College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sue Chin Lee
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Preeti Raju
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Nitesh Shashikanth
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Chandra Shekhar
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Sarka Beranova
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Louisa Balazs
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Gabor Tigyi
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - Ankush Gosain
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| | - RadhaKrishna Rao
- College of Medicine, University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
36
|
Devarakonda S, Thorsell A, Hedenström P, Rezapour A, Heden L, Banerjee S, Johansson MEV, Birchenough G, Toft Morén A, Gustavsson K, Skokic V, Pettersson VL, Sjöberg F, Kalm M, Al Masri M, Ekh M, Fagman H, Wolving M, Perkins R, Morales RA, Castillo F, Villablanca EJ, Yrlid U, Bergmark K, Steineck G, Bull C. Low-grade intestinal inflammation two decades after pelvic radiotherapy. EBioMedicine 2023; 94:104691. [PMID: 37480626 PMCID: PMC10393618 DOI: 10.1016/j.ebiom.2023.104691] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/13/2023] [Accepted: 06/19/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Radiotherapy is effective in the treatment of cancer but also causes damage to non-cancerous tissue. Pelvic radiotherapy may produce chronic and debilitating bowel symptoms, yet the underlying pathophysiology is still undefined. Most notably, although pelvic radiotherapy causes an acute intestinal inflammation there is no consensus on whether the late-phase pathophysiology contains an inflammatory component or not. To address this knowledge gap, we examined the potential presence of a chronic inflammation in mucosal biopsies from irradiated pelvic cancer survivors. METHODS We biopsied 24 cancer survivors two to 20 years after pelvic radiotherapy, and four non-irradiated controls. Using tandem mass tag (TMT) mass spectrometry and mRNA sequencing (mRNA-seq), we charted proteomic and transcriptomic profiles of the mucosal tissue previously exposed to a high or a low/no dose of radiation. Changes in the immune cell populations were determined with flow cytometry. The integrity of the protective mucus layers were determined by permeability analysis and 16S rRNA bacterial detection. FINDINGS 942 proteins were differentially expressed in mucosa previously exposed to a high radiation dose compared to a low radiation dose. The data suggested a chronic low-grade inflammation with neutrophil activity, which was confirmed by mRNA-seq and flow cytometry and further supported by findings of a weakened mucus barrier with bacterial infiltration. INTERPRETATION Our results challenge the idea that pelvic radiotherapy causes an acute intestinal inflammation that either heals or turns fibrotic without progression to chronic inflammation. This provides a rationale for exploring novel strategies to mitigate chronic bowel symptoms in pelvic cancer survivors. FUNDING This study was supported by the King Gustav V Jubilee Clinic Cancer Foundation (CB), The Adlerbertska Research Foundation (CB), The Swedish Cancer Society (GS), The Swedish State under the ALF agreement (GS and CB), Mary von Sydow's foundation (MA and VP).
Collapse
Affiliation(s)
- Sravani Devarakonda
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Annika Thorsell
- Proteomics Core Facility, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Per Hedenström
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden; Department of Gastroenterology and Hepatology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Azar Rezapour
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Lisen Heden
- Pelvic Cancer Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Sanghita Banerjee
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Malin E V Johansson
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - George Birchenough
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Amelie Toft Morén
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Gustavsson
- Pelvic Cancer Rehabilitation, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Viktor Skokic
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Molecular Medicine and Surgery and Department of Pelvic Cancer, Karolinska Institute, Stockholm, Sweden
| | - Victor L Pettersson
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Fei Sjöberg
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Marie Kalm
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 413 90 Gothenburg, Sweden
| | - Mohammad Al Masri
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Michaela Ekh
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Fagman
- Department of Laboratory Medicine, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg and Department of Clinical Patology, Sahlgrenska University Hospital, Gothenburg, Sweden
| | - Mats Wolving
- Department of Pathology, Sahlgrenska University Hospital, Göteborg, Sweden
| | - Rosie Perkins
- Department of Molecular and Clinical Medicine, Institute of Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Rodrigo A Morales
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Francisca Castillo
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Eduardo J Villablanca
- Immunology and Allergy Unit, Department of Medicine, Solna, Karolinska Institute and University Hospital, Stockholm, Sweden
| | - Ulf Yrlid
- Department of Microbiology and Immunology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Karin Bergmark
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Gunnar Steineck
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Bull
- Division of Clinical Cancer Epidemiology, Department of Oncology, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
37
|
Chen L, Wang Z, Wu J, Yao Q, Peng J, Zhang C, Chen H, Li Y, Jiang Z, Liu Y, Shi C. Released dsDNA-triggered inflammasomes serve as intestinal radioprotective targets. Clin Transl Immunology 2023; 12:e1452. [PMID: 37333051 PMCID: PMC10276537 DOI: 10.1002/cti2.1452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 05/05/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023] Open
Abstract
Objectives Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy. Methods Pro-inflammatory cytokines were detected by ELISA. Radiation-induced intestinal injury in mice was analyzed by means of survival curves, body weight, HE staining of intestines, and intestinal barrier integrity. Western blot, immunofluorescence staining, co-immunoprecipitation assay and flow cytometry were used to investigate the regulatory role of dsDNA on inflammasomes. Results Here, we show that a high level of IL-1β and IL-18 is associated with diarrhoea in colorectal cancer (CRC) patients during radiotherapy, which accounts for intestinal radiotoxicity. Subsequently, we found that the dose-dependently released dsDNA from the intestinal epithelial cells (IECs) serves as the potential immunogenic molecule for radiation-induced intestinal mucositis. Our results further indicate that the released dsDNA transfers into the macrophages in an HMGB1/RAGE-dependent manner and then triggers absent in melanoma 2 (AIM2) inflammasome activation and the IL-1β and IL-18 secretion. Finally, we show that the FDA-approved disulfiram (DSF), a newly identified inflammasome inhibitor, could mitigate intestinal radiotoxicity by controlling inflammasome. Conclusion These findings indicate that the extracellular self-dsDNA released from the irradiated IECs is a potential immunogen to stimulate immune cells and trigger the subsequent intestinal mucositis, while blunting the dsDNA-triggered inflammasome in macrophages may represent an exciting therapeutic strategy for side effects control during abdominal radiotherapy.
Collapse
Affiliation(s)
- Long Chen
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
- Shigatse Branch, Xinqiao Hospital, Army 953 HospitalArmy Medical UniversityShigatseChina
| | - Ziwen Wang
- Department of CardiologyGeriatric Cardiovascular Disease Research and Treatment Center, 252 Hospital of PLABaodingChina
| | - Jie Wu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Quan Yao
- Integrative Cancer Center & Cancer Clinical Research Center, Sichuan Cancer Center, School of Medicine, Sichuan Cancer Hospital & InstituteUniversity of Electronic Science and Technology of ChinaChengduChina
| | - Jingjing Peng
- Department of OncologyWestern Theater General HospitalChengduChina
| | - Chi Zhang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Hongdan Chen
- Breast and Thyroid Surgical Department, Chongqing General HospitalUniversity of Chinese Academy of SciencesChongqingChina
| | - Yingjie Li
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Zhongyong Jiang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Yunsheng Liu
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Rocket Force MedicineArmy Medical UniversityChongqingChina
| |
Collapse
|
38
|
Yi Y, Lu W, Shen L, Wu Y, Zhang Z. The gut microbiota as a booster for radiotherapy: novel insights into radio-protection and radiation injury. Exp Hematol Oncol 2023; 12:48. [PMID: 37218007 DOI: 10.1186/s40164-023-00410-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
Approximately 60-80% of cancer patients treated with abdominopelvic radiotherapy suffer post-radiotherapy toxicities including radiation enteropathy and myelosuppression. Effective preventive and therapeutic strategies are lacking for such radiation injury. The gut microbiota holds high investigational value for deepening our understanding of the pathogenesis of radiation injury, especially radiation enteropathy which resembles inflammatory bowel disease pathophysiology and for facilitating personalized medicine by providing safer therapies tailored for cancer patients. Preclinical and clinical data consistently support that gut microbiota components including lactate-producers, SCFA-producers, indole compound-producers and Akkermansia impose intestinal and hematopoietic radio-protection. These features serve as potential predictive biomarkers for radiation injury, together with the microbial diversity which robustly predicts milder post-radiotherapy toxicities in multiple types of cancer. The accordingly developed manipulation strategies including selective microbiota transplantation, probiotics, purified functional metabolites and ligands to microbe-host interactive pathways are promising radio-protectors and radio-mitigators that merit extensive validation in clinical trials. With massive mechanistic investigations and pilot clinical trials reinforcing its translational value the gut microbiota may boost the prediction, prevention and mitigation of radiation injury. In this review, we summarize the state-of-the-art landmark researches related with radio-protection to provide illuminating insights for oncologists, gastroenterologists and laboratory scientists interested in this overlooked complexed disorder.
Collapse
Affiliation(s)
- Yuxi Yi
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Weiqing Lu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China
| | - Lijun Shen
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Zhen Zhang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
- Shanghai Clinical Research Center for Radiation Oncology, Shanghai, China.
- Shanghai Key Laboratory of Radiation Oncology, Shanghai, China.
| |
Collapse
|
39
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
Munteanu R, Feder RI, Onaciu A, Munteanu VC, Iuga CA, Gulei D. Insights into the Human Microbiome and Its Connections with Prostate Cancer. Cancers (Basel) 2023; 15:cancers15092539. [PMID: 37174009 PMCID: PMC10177521 DOI: 10.3390/cancers15092539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
The human microbiome represents the diversity of microorganisms that live together at different organ sites, influencing various physiological processes and leading to pathological conditions, even carcinogenesis, in case of a chronic imbalance. Additionally, the link between organ-specific microbiota and cancer has attracted the interest of numerous studies and projects. In this review article, we address the important aspects regarding the role of gut, prostate, urinary and reproductive system, skin, and oral cavity colonizing microorganisms in prostate cancer development. Various bacteria, fungi, virus species, and other relevant agents with major implications in cancer occurrence and progression are also described. Some of them are assessed based on their values of prognostic or diagnostic biomarkers, while others are presented for their anti-cancer properties.
Collapse
Affiliation(s)
- Raluca Munteanu
- Department of In Vivo Studies, Research Center for Advanced Medicine-MEDFUTURE, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Hematology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Victor Babes Street 8, 400012 Cluj-Napoca, Romania
| | - Richard-Ionut Feder
- Department of In Vivo Studies, Research Center for Advanced Medicine-MEDFUTURE, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| | - Anca Onaciu
- Department of NanoBioPhysics, Research Center for Advanced Medicine-MEDFUTURE, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
- Department of Pharmaceutical Physics and Biophysics, "Iuliu Hațieganu" University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Vlad Cristian Munteanu
- Department of Urology, The Oncology Institute "Prof Dr. Ion Chiricuta", 400015 Cluj-Napoca, Romania
- Department of Urology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Cristina-Adela Iuga
- Department of Proteomics and Metabolomics, Research Center for Advanced Medicine-MEDFUTURE, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, Louis Pasteur Street 6, 400349 Cluj-Napoca, Romania
| | - Diana Gulei
- Department of In Vivo Studies, Research Center for Advanced Medicine-MEDFUTURE, "Iuliu Hatieganu" University of Medicine and Pharmacy, 400337 Cluj-Napoca, Romania
| |
Collapse
|
41
|
Yu Y, Lin X, Feng F, Wei Y, Wei S, Gong Y, Guo C, Wang Q, Shuai P, Wang T, Qin H, Li G, Yi L. Gut microbiota and ionizing radiation-induced damage: Is there a link? ENVIRONMENTAL RESEARCH 2023; 229:115947. [PMID: 37080277 DOI: 10.1016/j.envres.2023.115947] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/14/2023] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
According to observational findings, ionizing radiation (IR) triggers dysbiosis of the intestinal microbiota, affecting the structural composition, function, and species of the gut microbiome and its metabolites. These modifications can further exacerbate IR-induced damage and amplify proinflammatory immune responses. Conversely, commensal bacteria and favorable metabolites can remodel the IR-disturbed gut microbial structure, promote a balance between anti-inflammatory and proinflammatory mechanisms in the body, and mitigate IR toxicity. The discovery of effective and safe remedies to prevent and treat radiation-induced injuries is vitally needed because of the proliferation of radiation toxicity threats produced by recent radiological public health disasters and increasing medical exposures. This review examines how the gut microbiota and its metabolites are linked to the processes of IR-induced harm. We highlight protective measures based on interventions with gut microbes to optimize the distress caused by IR damage to human health. We offer prospects for research in emerging and promising areas targeting the prevention and treatment of IR-induced damage.
Collapse
Affiliation(s)
- Yueqiu Yu
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Xiang Lin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Feiyang Feng
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yuanyun Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Shuang Wei
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Yaqi Gong
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Caimao Guo
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Qingyu Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Peimeng Shuai
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Tiantian Wang
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Hui Qin
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Guoqing Li
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Lan Yi
- Institute of Cytology and Genetics, The Hengyang Key Laboratory of Cellular Stress Biology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| |
Collapse
|
42
|
Zheng L, Zhang L, Tang L, Huang D, Pan D, Guo W, He S, Huang Y, Chen Y, Xiao X, Tang B, Chen J. Gut microbiota is associated with response to 131I therapy in patients with papillary thyroid carcinoma. Eur J Nucl Med Mol Imaging 2023; 50:1453-1465. [PMID: 36512067 PMCID: PMC10027784 DOI: 10.1007/s00259-022-06072-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
PURPOSE Radioactive iodine (131I) therapy is a conventional post-surgery treatment widely used for papillary thyroid carcinoma (PTC). Since 131I is orally administered, we hypothesize that it may affect gut microbiome. This study aims to investigate alterations of intestinal microbiome caused by 131I therapy in PTC patients and explore its association with response to 131I therapy. METHODS Fecal samples of 60 PTC patients pre- and post-131I therapy were collected to characterize the 131I therapy-induced gut microbiota alterations using 16S rRNA gene sequencing. According to the inclusion criteria, sequence data of 40 out of the 60 patients, divided into excellent response (ER) group and non-excellent response (NER) group, were recruited to investigate the possible connection between gut microbiota and response to 131I therapy. Multivariate binary logistic regression was employed to construct a predictive model for response to 131I therapy. RESULTS Microbial richness, diversity, and composition were tremendously altered by 131I therapy. A significant decline of Firmicutes to Bacteroides (F/B) ratio was observed post-131I therapy. 131I therapy also led to changes of gut microbiome-related metabolic pathways. Discrepancies in β diversity were found between ER and NER groups both pre- and post-131I therapy. Furthermore, a predictive model for response to 131I therapy with a p value of 0.003 and an overall percentage correct of 80.0% was established, with three variables including lymph node metastasis, relative abundance of g_Bifidobacterium and g_Dorea. Among them, g_Dorea was identified to be an in independent predictor of response to 131I therapy (p = 0.04). CONCLUSION For the first time, the present study demonstrates the gut microbial dysbiosis caused by 131I therapy in post-surgery PTC patients and reveals a previously undefined role of gut microbiome as predictor for 131I ablation response. G_Dorea and g_Bifidobacterium may be potential targets for clinical intervention to improve response to 131I in post-operative PTC patients. TRIAL REGISTRATION ChiCTR2100048000. Registered 28 June 2021.
Collapse
Affiliation(s)
- Lei Zheng
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Linjing Zhang
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Li Tang
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China
| | - Dingde Huang
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Deng Pan
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Wei Guo
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Song He
- Nuclear Medicine Department, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University (Army Medical University), Chongqing, China
| | - Yong Huang
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China
| | - Yu Chen
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China
| | - Xu Xiao
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China.
| | - Bo Tang
- Department of Gastroenterology, Xinqiao Hospital (the Second Affiliated Hospital), Third Military Medical University, (Army Medical University), Chongqing, China.
| | - Jing Chen
- State Key Laboratory of Trauma, Burns and Combined Injury of China, Institute of Burn Research, Southwest Hospital (the First Affiliated Hospital), Third Military Medical University, (Army Medical University), Gao Tan Yan Street, Chongqing, 400038, China.
| |
Collapse
|
43
|
Di Tucci C, De Vito I, Muzii L. Immune-Onco-Microbiome: A New Revolution for Gynecological Cancers. Biomedicines 2023; 11:biomedicines11030782. [PMID: 36979761 PMCID: PMC10045465 DOI: 10.3390/biomedicines11030782] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Despite significant advances in understanding the pathogenetic mechanisms underlying gynaecological cancers, these cancers still remain widespread. Recent research points to a possible link between microbiota and cancer, and the most recent attention is focusing on the relationship between the microbiome, the immune system, and cancer. The microbiome diversity can affect carcinogenesis and the patient’s immune response, modulating the inflammatory cascade and the severity of adverse events. In this review, we presented the recent evidence regarding microbiome alterations in patients with gynaecological tumours to understand if the link that exists between microbiome, immunity, and cancer can guide the prophylactic, diagnostic, and therapeutic management of gynaecological cancers.
Collapse
Affiliation(s)
- Chiara Di Tucci
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
- Correspondence:
| | | | - Ludovico Muzii
- Department of Maternal and Child Health and Urological Sciences, Sapienza University, 00161 Rome, Italy
| |
Collapse
|
44
|
Wang Y, Qu S, Chen M, Cui Y, Shi C, Pu X, Gao W, Li Q, Han J, Zhang A. Effects of buckwheat milk Co-fermented with two probiotics and two commercial yoghurt strains on gut microbiota and production of short-chain Fatty Acids. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
|
45
|
Amit U, Facciabene A, Ben-Josef E. Radiation Therapy and the Microbiome; More Than a Gut Feeling. Cancer J 2023; 29:84-88. [PMID: 36957978 DOI: 10.1097/ppo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
ABSTRACT It is increasingly recognized that heterogeneities in tumor response and severity of adverse effects in irradiated patients can be attributed to the tumor microenvironment and host-related factors. Among the latter, a growing body of literature in recent years has demonstrated the role of the patient's microbiome in modulating both tumor and normal tissue response to radiotherapy (RT). Upon contact with the environment after birth, the infant's gastrointestinal tract is rapidly colonized by microbiota, which is low in diversity and predominantly characterized by 2 dominant species, Actinobacteria and Proteobacteria. With time, intestinal microbiota diversity increases, and colonization of Firmicutes and Bacteroidetes becomes dominant. By the time a child reaches 3 years, the gut microbiota composition has been reshaped and is relatively similar to that of an adult. The microbiome colonizing the different body organs comprises various species and abundances, which may impact human health. Although the adult microbiome composition is thought to remain stable in health, microbiome diversity and composition respond to different environmental and pathological conditions, including pharmaceutical interventions and RT. Our review focuses on how the gut microbiota modulates normal tissue toxicity and tumor control. Readers who want to learn more about how RT shapes gut microbiome diversity and composition are referred to several excellent recently published reviews.
Collapse
Affiliation(s)
| | | | - Edgar Ben-Josef
- From the Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
46
|
Ferreira MR, Andreyev JN, Wedlake L, Dearnaley DP. Comment on "Exploiting dietary fibre and the gut microbiota in pelvic radiotherapy patients". Br J Cancer 2023; 128:711-712. [PMID: 36717675 PMCID: PMC9977733 DOI: 10.1038/s41416-023-02163-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Affiliation(s)
- Miguel R Ferreira
- Guys and St Thomas NHS Foundation Trust, London, UK.
- King's College London, London, UK.
| | | | | | - David P Dearnaley
- The Royal Marsden NHS Foundation Trust, London, UK
- The Institute of Cancer Research, London, UK
| |
Collapse
|
47
|
Zheng Z, Hu Y, Tang J, Xu W, Zhu W, Zhang W. The implication of gut microbiota in recovery from gastrointestinal surgery. Front Cell Infect Microbiol 2023; 13:1110787. [PMID: 36926517 PMCID: PMC10011459 DOI: 10.3389/fcimb.2023.1110787] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/15/2023] [Indexed: 03/08/2023] Open
Abstract
Recovery from gastrointestinal (GI) surgery is often interrupted by the unpredictable occurrence of postoperative complications, including infections, anastomotic leak, GI dysmotility, malabsorption, cancer development, and cancer recurrence, in which the implication of gut microbiota is beginning to emerge. Gut microbiota can be imbalanced before surgery due to the underlying disease and its treatment. The immediate preparations for GI surgery, including fasting, mechanical bowel cleaning, and antibiotic intervention, disrupt gut microbiota. Surgical removal of GI segments also perturbs gut microbiota due to GI tract reconstruction and epithelial barrier destruction. In return, the altered gut microbiota contributes to the occurrence of postoperative complications. Therefore, understanding how to balance the gut microbiota during the perioperative period is important for surgeons. We aim to overview the current knowledge to investigate the role of gut microbiota in recovery from GI surgery, focusing on the crosstalk between gut microbiota and host in the pathogenesis of postoperative complications. A comprehensive understanding of the postoperative response of the GI tract to the altered gut microbiota provides valuable cues for surgeons to preserve the beneficial functions and suppress the adverse effects of gut microbiota, which will help to enhance recovery from GI surgery.
Collapse
Affiliation(s)
| | | | | | | | | | - Wei Zhang
- Department of General Surgery, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
48
|
Leung T, Cavallero S, Mondot S, Parnot C, Yssaad H, Becherirat S, Guitard N, Thery H, Schernberg A, Breitwiller H, Chargari C, Francois S. Correlation Between Serum and Urine Biomarkers and the Intensity of Acute Radiation Cystitis in Patients Treated With Radiation Therapy for Localized Prostate Cancer: Protocol for the Radiotoxicity Bladder Biomarkers (RABBIO) Study. JMIR Res Protoc 2023; 12:e38362. [PMID: 36626198 PMCID: PMC9874987 DOI: 10.2196/38362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Despite improvements in radiation techniques, pelvic radiotherapy is responsible for acute and delayed bladder adverse events, defined as radiation cystitis. The initial symptoms of bladder injury secondary to pelvic irradiation are likely to occur during treatment or within 3 months of radiotherapy in approximately 50% of irradiated patients, and have a significant impact on their quality of life. The pathophysiology of radiation cystitis is not well understood, particularly because of the risk of complications associated with access to bladder tissue after irradiation, which limits our ability to study this process and develop treatments. OBJECTIVE It is an original study combining digital data collection to monitor patients' symptoms and biological markers during irradiation. The main objective of our study is to evaluate the correlation of biological biomarkers with the intensity of acute radiation cystitis and the quality of life of patients, assessed with the digital telemonitoring platform Cureety. METHODS Patients with intermediate-risk localized prostate cancer who are eligible for localized radiotherapy will be included. Inflammatory biomarkers will be analyzed in urine and blood samples before the start of radiotherapy and at weeks 4, 12, and 48 of irradiation, through quantitative methods such as a multiplex Luminex assay, flow cytometry, and enzyme-linked immunosorbent assay. We will also characterize the patients' gut and urine microbiota composition using 16S ribosomal RNA sequencing technology. Between sample collection visits, patients will complete various questionnaires related to radiation cystitis symptoms (using the International Prostate Symptom Score), adverse events, and quality of life (using the Functional Assessment of Cancer Therapy-Prostate questionnaire), using the Cureety digital remote monitoring platform. Upon receipt of the questionnaires, an algorithm will process the information and classify patients in accordance with the severity of symptoms and adverse events reported on the basis of Common Terminology Criteria for Adverse Events and International Prostate Symptom Score standards. This will allow us to correlate levels of urinary, blood, and fecal biomarkers with the severity of acute radiation cystitis symptoms and patient-reported quality of life. RESULTS The study started in March 2022. We estimate a recruitment period of approximately 18 months, and the final results are expected in 2024. CONCLUSIONS This prospective study is the first to explore the overexpression of inflammatory proteins in fluid biopsies from patients with symptoms of acute radiation cystitis. In addition, the 1-year follow-up after treatment will allow us to predict which patients are at risk of late radiation cystitis and to refer them for radioprotective treatment. The results of this study will allow us to develop strategies to limit radiation damage to the bladder and improve the quality of life of patients. TRIAL REGISTRATION ClinicalTrials.gov NCT05246774; https://clinicaltrials.gov/ct2/show/NCT05246774?term=NCT05246774. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/38362.
Collapse
Affiliation(s)
| | - Sophie Cavallero
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Stanislas Mondot
- Paris-Saclay university, Institut National de Recherche pour l'Agriculture, Jouy-en-Josas, France
| | | | | | | | - Nathalie Guitard
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Hélène Thery
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | | | | | - Cyrus Chargari
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| | - Sabine Francois
- Institut de Recherche Biomédicale des Armées, Bretigny sur Orge, France
| |
Collapse
|
49
|
Sminia P, Guipaud O, Viktorsson K, Ahire V, Baatout S, Boterberg T, Cizkova J, Dostál M, Fernandez-Palomo C, Filipova A, François A, Geiger M, Hunter A, Jassim H, Edin NFJ, Jordan K, Koniarová I, Selvaraj VK, Meade AD, Milliat F, Montoro A, Politis C, Savu D, Sémont A, Tichy A, Válek V, Vogin G. Clinical Radiobiology for Radiation Oncology. RADIOBIOLOGY TEXTBOOK 2023:237-309. [DOI: 10.1007/978-3-031-18810-7_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
AbstractThis chapter is focused on radiobiological aspects at the molecular, cellular, and tissue level which are relevant for the clinical use of ionizing radiation (IR) in cancer therapy. For radiation oncology, it is critical to find a balance, i.e., the therapeutic window, between the probability of tumor control and the probability of side effects caused by radiation injury to the healthy tissues and organs. An overview is given about modern precision radiotherapy (RT) techniques, which allow optimal sparing of healthy tissues. Biological factors determining the width of the therapeutic window are explained. The role of the six typical radiobiological phenomena determining the response of both malignant and normal tissues in the clinic, the 6R’s, which are Reoxygenation, Redistribution, Repopulation, Repair, Radiosensitivity, and Reactivation of the immune system, is discussed. Information is provided on tumor characteristics, for example, tumor type, growth kinetics, hypoxia, aberrant molecular signaling pathways, cancer stem cells and their impact on the response to RT. The role of the tumor microenvironment and microbiota is described and the effects of radiation on the immune system including the abscopal effect phenomenon are outlined. A summary is given on tumor diagnosis, response prediction via biomarkers, genetics, and radiomics, and ways to selectively enhance the RT response in tumors. Furthermore, we describe acute and late normal tissue reactions following exposure to radiation: cellular aspects, tissue kinetics, latency periods, permanent or transient injury, and histopathology. Details are also given on the differential effect on tumor and late responding healthy tissues following fractionated and low dose rate irradiation as well as the effect of whole-body exposure.
Collapse
|
50
|
Shakyawar SK, Mishra NK, Vellichirammal NN, Cary L, Helikar T, Powers R, Oberley-Deegan RE, Berkowitz DB, Bayles KW, Singh VK, Guda C. A Review of Radiation-Induced Alterations of Multi-Omic Profiles, Radiation Injury Biomarkers, and Countermeasures. Radiat Res 2023; 199:89-111. [PMID: 36368026 PMCID: PMC10279411 DOI: 10.1667/rade-21-00187.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 10/24/2022] [Indexed: 11/13/2022]
Abstract
Increasing utilization of nuclear power enhances the risks associated with industrial accidents, occupational hazards, and the threat of nuclear terrorism. Exposure to ionizing radiation interferes with genomic stability and gene expression resulting in the disruption of normal metabolic processes in cells and organs by inducing complex biological responses. Exposure to high-dose radiation causes acute radiation syndrome, which leads to hematopoietic, gastrointestinal, cerebrovascular, and many other organ-specific injuries. Altered genomic variations, gene expression, metabolite concentrations, and microbiota profiles in blood plasma or tissue samples reflect the whole-body radiation injuries. Hence, multi-omic profiles obtained from high-resolution omics platforms offer a holistic approach for identifying reliable biomarkers to predict the radiation injury of organs and tissues resulting from radiation exposures. In this review, we performed a literature search to systematically catalog the radiation-induced alterations from multi-omic studies and radiation countermeasures. We covered radiation-induced changes in the genomic, transcriptomic, proteomic, metabolomic, lipidomic, and microbiome profiles. Furthermore, we have covered promising multi-omic biomarkers, FDA-approved countermeasure drugs, and other radiation countermeasures that include radioprotectors and radiomitigators. This review presents an overview of radiation-induced alterations of multi-omics profiles and biomarkers, and associated radiation countermeasures.
Collapse
Affiliation(s)
- Sushil K Shakyawar
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Nitish K Mishra
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Neetha N Vellichirammal
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Lynnette Cary
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Robert Powers
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
- Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, Lincoln NE 68588, USA
| | - Rebecca E Oberley-Deegan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - David B Berkowitz
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln NE 65888, USA
| | - Kenneth W Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Center for Biomedical Informatics Research and Innovation, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|