1
|
Wang Z, Huang J, Li Q. Selumetinib for plexiform neurofibroma: advances and ongoing challenges. Neuro Oncol 2024; 26:2391-2393. [PMID: 39362187 PMCID: PMC11630500 DOI: 10.1093/neuonc/noae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024] Open
Affiliation(s)
- Zhichao Wang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jingxuan Huang
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qingfeng Li
- Neurofibromatosis Type 1 Center and Laboratory for Neurofibromatosis Type 1 Research, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
2
|
Pascarella A, Limongelli G, De Falco A, Minale EMP, Di Nardo G, Di Marco GM, Zito Marinosci G, Olimpico G, Siani P, De Brasi D. Refractory Chylothorax and Ventricular Hypertrophy Treated with Trametinib in a Patient with Noonan Syndrome: 18-Month Follow-Up. CHILDREN (BASEL, SWITZERLAND) 2024; 11:1342. [PMID: 39594917 PMCID: PMC11593188 DOI: 10.3390/children11111342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 10/28/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
RASopathies are a group of genetic syndromes caused by germline mutations in genes involved in the RAS/Mitogen-Activated Protein Kinase signaling pathway, which regulates cellular proliferation, differentiation, and angiogenesis. Despite their involvement at different levels of this pathway, RASopathies share overlapping clinical phenotypes. Noonan syndrome is the most prevalent RASopathy, with an estimated incidence of 1 in 2500 live births, and it is typically inherited in an autosomal dominant manner, with 50% of cases involving gain-of-function mutations in the PTPN11 gene. De novo mutations are common, accounting for 60% of cases. The phenotype of Noonan syndrome includes characteristic facial and physical features, congenital cardiac defects, lymphatic and cerebrovascular anomalies, renal malformations, hematological abnormalities, developmental issues, and an increased risk of cancer. Severe congenital cardiac defects and lymphatic abnormalities significantly impact prognosis, contributing to increased morbidity and mortality. Recent therapeutic advancements have introduced trametinib, an MEK1/2 inhibitor, for treating Noonan syndrome patients with severe cardiac and lymphatic complications. To assess its efficacy, here, we present a case of a newborn with Noonan syndrome who exhibited refractory chylothorax, ventricular hypertrophy, and pulmonary stenosis who was treated with trametinib. The patient demonstrated significant improvement in chylothorax and left ventricular hypertrophy, though pulmonary stenosis persisted. This case further confirms trametinib's potential as a therapeutic option for severe Noonan syndrome complications, emphasizing the need for further clinical trials to optimize treatment protocols and evaluate long-term outcomes.
Collapse
Affiliation(s)
- Antonia Pascarella
- Unit of Chronic and Multifactorial Diseases, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.P.); (P.S.)
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Diseases Unit, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Monaldi Hospital, 81031 Naples, Italy
| | | | | | - Giangiacomo Di Nardo
- Department of Pediatric Cardiology, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (G.D.N.)
| | - Giovanni Maria Di Marco
- Department of Pediatric Cardiology, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (G.D.N.)
| | | | - Giorgia Olimpico
- Department of Translational Medical Science, Section of Pediatrics, University “Federico II”, 80131 Naples, Italy;
| | - Paolo Siani
- Unit of Chronic and Multifactorial Diseases, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy; (A.P.); (P.S.)
| | - Daniele De Brasi
- Medical Genetics Unit, Santobono-Pausilipon Children’s Hospital, 80129 Naples, Italy;
| |
Collapse
|
3
|
Gui C, Canthiya L, Zadeh G, Suppiah S. Current state of spinal nerve sheath tumor management and future advances. Neurooncol Adv 2024; 6:iii83-iii93. [PMID: 39430389 PMCID: PMC11485951 DOI: 10.1093/noajnl/vdae067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Nerve sheath tumors are the most common tumors of the spine after meningiomas. They include schwannomas, neurofibroma, and malignant peripheral nerve sheath tumors. These can arise sporadically or in association with tumor predisposition syndromes, including neurofibromatosis type 1, neurofibromatosis type 2, and schwannomatosis. Though surgery is the traditional mainstay of treatment for these tumors, the discovery of the genetic and molecular basis of these diseases in recent decades has prompted investigation into targeted therapies. Here, we give a clinical overview of spinal nerve sheath tumors, their imaging features, current management practices, and explore ongoing advances in systemic therapies.
Collapse
Affiliation(s)
- Chloe Gui
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Luxshikka Canthiya
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| | - Suganth Suppiah
- MacFeeters-Hamilton Centre for Neuro Oncology, Princess Margaret Cancer Research Center, Toronto, Ontario, Canada
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
4
|
De Landtsheer S, Badkas A, Kulms D, Sauter T. Model ensembling as a tool to form interpretable multi-omic predictors of cancer pharmacosensitivity. Brief Bioinform 2024; 25:bbae567. [PMID: 39494610 PMCID: PMC11532660 DOI: 10.1093/bib/bbae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Stratification of patients diagnosed with cancer has become a major goal in personalized oncology. One important aspect is the accurate prediction of the response to various drugs. It is expected that the molecular characteristics of the cancer cells contain enough information to retrieve specific signatures, allowing for accurate predictions based solely on these multi-omic data. Ideally, these predictions should be explainable to clinicians, in order to be integrated in the patients care. We propose a machine-learning framework based on ensemble learning to integrate multi-omic data and predict sensitivity to an array of commonly used and experimental compounds, including chemotoxic compounds and targeted kinase inhibitors. We trained a set of classifiers on the different parts of our dataset to produce omic-specific signatures, then trained a random forest classifier on these signatures to predict drug responsiveness. We used the Cancer Cell Line Encyclopedia dataset, comprising multi-omic and drug sensitivity measurements for hundreds of cell lines, to build the predictive models, and validated the results using nested cross-validation. Our results show good performance for several compounds (Area under the Receiver-Operating Curve >79%) across the most frequent cancer types. Furthermore, the simplicity of our approach allows to examine which omic layers have a greater importance in the models and identify new putative markers of drug responsiveness. We propose several models based on small subsets of transcriptional markers with the potential to become useful tools in personalized oncology, paving the way for clinicians to use the molecular characteristics of the tumors to predict sensitivity to therapeutic compounds.
Collapse
Affiliation(s)
- Sébastien De Landtsheer
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Apurva Badkas
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| | - Dagmar Kulms
- Experimental Dermatology, Department of Dermatology, Technische Universität-Dresden, 01307 Dresden, Germany
- National Center for Tumor Diseases, Technische Universität-Dresden, 01307 Dresden, Germany
| | - Thomas Sauter
- Department of Life Sciences and Medicine, University of Luxembourg, 2, place de l’Université, L4365 Esch-sur-Alzette, Luxembourg
| |
Collapse
|
5
|
Xiong R, Lei J, Wang L, Zhang S, Liu H, Wang H, Liu T, Lai X. Efficient analysis of adverse drug events and toxicological mechanisms of newly marketed drugs by integrating pharmacovigilance and network toxicology: selumetinib as an example. Front Pharmacol 2024; 15:1432759. [PMID: 39193326 PMCID: PMC11347787 DOI: 10.3389/fphar.2024.1432759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 07/31/2024] [Indexed: 08/29/2024] Open
Abstract
Objective To integrate pharmacovigilance and network toxicology methods to explore the potential adverse drug events (ADEs) and toxic mechanisms of selumetinib, and to provide a reference for quickly understanding the safety and toxicological mechanisms of newly marketed drugs. Methods Taking selumetinib as an example, this study integrated pharmacovigilance methods based on real-world data and network toxicology methods to analyze its ADE and its potential toxicological mechanism. First, the ADE reports of selumetinib were extracted from the US Food and Drug Administration (FDA) adverse event reporting system (FAERS), and the ADE signals were detected by reporting odds ratio (ROR) and UK medicines and healthcare products regulatory agency (MHRA) methods. The ADE signals were classified and described according to the preferred terms (PTs) and system organ class (SOC) derived from the Medical Dictionary for Regulatory Activities (MedDRA). The network toxicology method was used to analyze the toxicological mechanism of the interested SOCs. The specific steps included predicting the potential targets of selumetinib using TOXRIC, STITCH, ChEMBL, CTD, SwissTargetPreditcion, and Super-PRED databases, collecting the targets of SOC using GeneCards database, conducting protein-protein interaction (PPI) analysis through STRING database, conducting gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis through DAVID database, and testing the molecular affinity using AutoDock software. Results A total of 1388 ADE reports related to selumetinib were extracted, and 53 positive signals were detected by ROR and MHRA methods, of which 20 signals were not mentioned in the package insert, including ingrowing nail, hyperphosphatemia, cardiac valve disease, hematuria, neutropenia, etc. Analysis of the toxicological mechanism of six SOCs involved in positive ADE signals revealed that the key targets included EGFR, STAT3, AKT1, IL6, BCL2, etc., and the key pathways included PI3K/Akt pathway, apoptosis, ErbB signaling pathway, and EGFR tyrosine kinase inhibitor resistance, etc. Molecular docking assays showed spontaneous binding of selumetinib to key targets in these pathways. Conclusion The pharmacovigilance analysis identified some new potential ADEs of selumetinib, and the network toxicology analysis showed that the toxic effects of selumetinib may be related to PI3K/Akt pathway, apoptosis, ErbB signaling pathway, EGFR tyrosine kinase inhibitor resistance and other pathways.
Collapse
Affiliation(s)
- Rui Xiong
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (The 958th Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Jing Lei
- Department of Pharmacy, Daping Hospital, Army Medical University, Chongqing, China
| | - Lu Wang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (The 958th Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Shipeng Zhang
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (The 958th Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Hengxu Liu
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (The 958th Hospital of Chinese People’s Liberation Army), Chongqing, China
| | - Hongping Wang
- Department of Pharmacy, The First Affiliated Hospital of Army Medical University, Chongqing, China
| | - Tao Liu
- Department of Infectious Diseases, Navy No.971 Hospital, Qingdao, Shandong, China
| | - Xiaodan Lai
- Department of Pharmacy, Jiangbei Campus of The First Affiliated Hospital of Army Medical University (The 958th Hospital of Chinese People’s Liberation Army), Chongqing, China
| |
Collapse
|
6
|
Mudaliar D, Mansky RH, White A, Baudhuin G, Hawkinson J, Wong H, Walters MA, Gomez-Pastor R. Discovery of a CK2α'-Biased ATP-Competitive Inhibitor from a High-Throughput Screen of an Allosteric-Inhibitor-Like Compound Library. ACS Chem Neurosci 2024; 15:2703-2718. [PMID: 38908003 DOI: 10.1021/acschemneuro.4c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/24/2024] Open
Abstract
Protein kinase CK2 is a holoenzyme composed of two regulatory subunits (CK2β) and two catalytic subunits (CK2α and CK2α'). CK2 controls several cellular processes, including proliferation, inflammation, and cell death. However, CK2α and CK2α' possess different expression patterns and substrates and therefore impact each of these processes differently. Elevated CK2α participates in the development of cancer, while increased CK2α' has been associated with neurodegeneration, especially Huntington's disease (HD). HD is a fatal disease for which no effective therapies are available. Genetic deletion of CK2α' in HD mouse models has ameliorated neurodegeneration. Therefore, pharmacological inhibition of CK2α' presents a promising therapeutic strategy for treating HD. However, current CK2 inhibitors are unable to discriminate between CK2α and CK2α' due to their high structural homology, especially in the targeted ATP-binding site. Using computational analyses, we found a potential type IV ("D" pocket) allosteric site that contained different residues between CK2α and CK2α' and was distal from the ATP-binding pocket featured in both kinases. We decided to look for allosteric modulators that might interact in a biased fashion with the type IV pocket on both CK2α and CK2α'. We screened a commercial library containing ∼29,000 allosteric-kinase-inhibitor-like compounds using a CK2α' activity-dependent ADP-Glo Kinase assay. Obtained hits were counter-screened against CK2α using the ADP-Glo Kinase assay, revealing two CK2α'-biased compounds. These two compounds might serve as the basis for further medicinal chemistry optimization for the potential treatment of HD.
Collapse
Affiliation(s)
- Deepti Mudaliar
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Angel White
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Grace Baudhuin
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | | | - Henry Wong
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Michael A Walters
- Department of Medicinal Chemistry, Institute for Therapeutics Discovery and Development, University of Minnesota, Minneapolis, Minnesota 55414, United States
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, Minnesota 55414, United States
| |
Collapse
|
7
|
Vlashi R, Sun F, Zheng C, Zhang X, Liu J, Chen G. The molecular biology of NF2/Merlin on tumorigenesis and development. FASEB J 2024; 38:e23809. [PMID: 38967126 DOI: 10.1096/fj.202400019rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/06/2024]
Abstract
The neurofibromatosis type 2 (NF2) gene, known for encoding the tumor suppressor protein Merlin, is central to the study of tumorigenesis and associated cellular processes. This review comprehensively examines the multifaceted role of NF2/Merlin, detailing its structural characteristics, functional diversity, and involvement in various signaling pathways such as Wnt/β-catenin, Hippo, TGF-β, RTKs, mTOR, Notch, and Hedgehog. These pathways are crucial for cellular growth, proliferation, and differentiation. NF2 mutations are specifically linked to the development of schwannomas, meningiomas, and ependymomas, although the precise mechanisms of tumor formation in these specific cell types remain unclear. Additionally, the review explores Merlin's role in embryogenesis, highlighting the severe developmental defects and embryonic lethality caused by NF2 deficiency. The potential therapeutic strategies targeting these genetic aberrations are also discussed, emphasizing inhibitors of mTOR, HDAC, and VEGF as promising avenues for treatment. This synthesis of current knowledge underscores the necessity for ongoing research to elucidate the detailed mechanisms of NF2/Merlin and develop effective therapeutic strategies, ultimately aiming to improve the prognosis and quality of life for individuals with NF2 mutations.
Collapse
Affiliation(s)
- Rexhina Vlashi
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Fuju Sun
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Chenggong Zheng
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xingen Zhang
- Department of Orthopedics, Jiaxing Key Laboratory for Minimally Invasive Surgery in Orthopaedics & Skeletal Regenerative Medicine, Zhejiang Rongjun Hospital, Jiaxing, China
| | - Jie Liu
- Department of Cancer Center, Jiaxing Hospital of Traditional Chinese Medicine, Jiaxing, China
| | - Guiqian Chen
- College of Life Science and Medicine, Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
8
|
Nikanjam M, Wells K, Kato S, Adashek JJ, Block S, Kurzrock R. Reverse repurposing: Potential utility of cancer drugs in nonmalignant illnesses. MED 2024; 5:689-717. [PMID: 38749442 PMCID: PMC11246816 DOI: 10.1016/j.medj.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/03/2024] [Accepted: 04/18/2024] [Indexed: 06/02/2024]
Abstract
Growth and immune process dysregulation can result in both cancer and nonmalignant disease (hereditary or acquired, with and without predisposition to malignancy). Moreover, perhaps unexpectedly, many nonmalignant illnesses harbor genomic alterations indistinguishable from druggable oncogenic drivers. Therefore, targeted compounds used successfully to treat cancer may have therapeutic potential for nonmalignant conditions harboring the same target. MEK, PI3K/AKT/mTOR, fibroblast growth factor receptor (FGFR), and NRG1/ERBB pathway genes have all been implicated in both cancer and noncancerous conditions, and several cognate antagonists, as well as Bruton's tyrosine kinase inhibitors, JAK inhibitors, and CD20-directed antibodies, have established or theoretical therapeutic potential to bridge cancer and benign diseases. Intriguingly, pharmacologically tractable cancer drivers characterize a wide spectrum of disorders without malignant potential, including but not limited to Alzheimer's disease and a variety of other neurodegenerative conditions, rheumatoid arthritis, achondroplastic dwarfism, and endometriosis. Expanded repositioning of oncology agents in order to benefit benign but serious medical illnesses is warranted.
Collapse
Affiliation(s)
- Mina Nikanjam
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA.
| | - Kaitlyn Wells
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Shumei Kato
- Division of Hematology-Oncology, University of California, San Diego, La Jolla, CA, USA
| | - Jacob J Adashek
- Department of Oncology, Johns Hopkins University, Baltimore, MD, USA
| | - Shanna Block
- Department of Pharmacy, University of California, San Diego, La Jolla, CA, USA
| | - Razelle Kurzrock
- Division of Hematology-Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, WI, USA; WIN Consortium, Chevilly-Larue, France.
| |
Collapse
|
9
|
Gorai S, Rathore G, Das K. Selumetinib-A Comprehensive Review of the New FDA-Approved Drug for Neurofibromatosis. Indian Dermatol Online J 2024; 15:701-705. [PMID: 39050082 PMCID: PMC11265740 DOI: 10.4103/idoj.idoj_569_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 03/04/2024] [Accepted: 04/05/2024] [Indexed: 07/27/2024] Open
Affiliation(s)
- Surajit Gorai
- Department of Dermatology, Day Care Building, Apollo Multispeciality Hospital, Kolkata, West Bengal, India
| | - Gyanesh Rathore
- Department of Dermatology, Day Care Building, Apollo Multispeciality Hospital, Kolkata, West Bengal, India
| | - Kinnor Das
- Department of Dermatology, Day Care Building, Apollo Multispeciality Hospital, Kolkata, West Bengal, India
| |
Collapse
|
10
|
Perrin S, Protic S, Bretegnier V, Laurendeau I, de Lageneste OD, Panara N, Ruckebusch O, Luka M, Masson C, Maillard T, Coulpier F, Pannier S, Wicart P, Hadj-Rabia S, Radomska KJ, Zarhrate M, Ménager M, Vidaud D, Topilko P, Parfait B, Colnot C. MEK-SHP2 inhibition prevents tibial pseudarthrosis caused by NF1 loss in Schwann cells and skeletal stem/progenitor cells. Sci Transl Med 2024; 16:eadj1597. [PMID: 38924432 DOI: 10.1126/scitranslmed.adj1597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 01/15/2024] [Accepted: 05/24/2024] [Indexed: 06/28/2024]
Abstract
Congenital pseudarthrosis of the tibia (CPT) is a severe pathology marked by spontaneous bone fractures that fail to heal, leading to fibrous nonunion. Half of patients with CPT are affected by the multisystemic genetic disorder neurofibromatosis type 1 (NF1) caused by mutations in the NF1 tumor suppressor gene, a negative regulator of RAS-mitogen-activated protein kinase (MAPK) signaling pathway. Here, we analyzed patients with CPT and Prss56-Nf1 knockout mice to elucidate the pathogenic mechanisms of CPT-related fibrous nonunion and explored a pharmacological approach to treat CPT. We identified NF1-deficient Schwann cells and skeletal stem/progenitor cells (SSPCs) in pathological periosteum as affected cell types driving fibrosis. Whereas NF1-deficient SSPCs adopted a fibrotic fate, NF1-deficient Schwann cells produced critical paracrine factors including transforming growth factor-β and induced fibrotic differentiation of wild-type SSPCs. To counteract the elevated RAS-MAPK signaling in both NF1-deficient Schwann cells and SSPCs, we used MAPK kinase (MEK) and Src homology 2 containing protein tyrosine phosphatase 2 (SHP2) inhibitors. Combined MEK-SHP2 inhibition in vivo prevented fibrous nonunion in the Prss56-Nf1 knockout mouse model, providing a promising therapeutic strategy for the treatment of fibrous nonunion in CPT.
Collapse
Affiliation(s)
- Simon Perrin
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Sanela Protic
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | | | - Ingrid Laurendeau
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
| | | | - Nicolas Panara
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
| | - Odile Ruckebusch
- Université Paris Est Creteil, INSERM, IMRB, Plateforme de Cytométrie en flux, 94000 Creteil, France
| | - Marine Luka
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Cécile Masson
- Bioinformatics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, 75015 Paris, France
- INSERM US24/CNRS UAR3633, Paris Cité University, 75015 Paris, France
| | - Théodora Maillard
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Fanny Coulpier
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Stéphanie Pannier
- Department of Pediatric Orthopedic Surgery and Traumatology, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | - Philippe Wicart
- Department of Pediatric Orthopedic Surgery and Traumatology, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | - Smail Hadj-Rabia
- Department of Dermatology, Reference Center for Rare Skin Diseases (MAGEC), Imagine Institute, Necker-Enfants Malades Hospital, AP-HP, Paris Cité University, 75015 Paris, France
| | | | - Mohammed Zarhrate
- INSERM US24/CNRS UAR3633, Paris Cité University, 75015 Paris, France
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, 75015 Paris, France
| | - Mickael Ménager
- Paris Cité University, Imagine Institute, Laboratory of Inflammatory Responses and Transcriptomic Networks in Diseases, Atip-Avenir Team, INSERM UMR 1163, 75015 Paris, France
- Labtech Single-Cell@Imagine, Imagine Institute, INSERM UMR 1163, 75015 Paris, France
| | - Dominique Vidaud
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Piotr Topilko
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| | - Béatrice Parfait
- INSERM UMR S1016, Institut Cochin, Université Paris Cité, 75014 Paris, France
- Service de Médecine Génomique des Maladies de Système et d'Organe, Hôpital Cochin, DMU BioPhyGen, Assistance Publique-Hôpitaux de Paris, AP-HP, Centre-Université Paris Cité, F-75014 Paris, France
| | - Céline Colnot
- Université Paris Est Creteil, INSERM, IMRB, 94000 Creteil, France
| |
Collapse
|
11
|
Gazzin A, Fornari F, Cardaropoli S, Carli D, Tartaglia M, Ferrero GB, Mussa A. Exploring New Drug Repurposing Opportunities for MEK Inhibitors in RASopathies: A Comprehensive Review of Safety, Efficacy, and Future Perspectives of Trametinib and Selumetinib. Life (Basel) 2024; 14:731. [PMID: 38929714 PMCID: PMC11204468 DOI: 10.3390/life14060731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/29/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
The RASopathies are a group of syndromes caused by genetic variants that affect the RAS-MAPK signaling pathway, which is essential for cell response to diverse stimuli. These variants functionally converge towards the overactivation of the pathway, leading to various constitutional and mosaic conditions. These syndromes show overlapping though distinct clinical presentations and share congenital heart defects, hypertrophic cardiomyopathy (HCM), and lymphatic dysplasia as major clinical features, with highly variable prevalence and severity. Available treatments have mainly been directed to target the symptoms. However, repurposing MEK inhibitors (MEKis), which were originally developed for cancer treatment, to target evolutive aspects occurring in these disorders is a promising option. Animal models have shown encouraging results in treating various RASopathy manifestations, including HCM and lymphatic abnormalities. Clinical reports have also provided first evidence supporting the effectiveness of MEKi, especially trametinib, in treating life-threatening conditions associated with these disorders. Nevertheless, despite notable improvements, there are adverse events that occur, necessitating careful monitoring. Moreover, there is evidence indicating that multiple pathways can contribute to these disorders, indicating a current need to more accurate understand of the underlying mechanism of the disease to apply an effective targeted therapy. In conclusion, while MEKi holds promise in managing life-threatening complications of RASopathies, dedicated clinical trials are required to establish standardized treatment protocols tailored to take into account the individual needs of each patient and favor a personalized treatment.
Collapse
Affiliation(s)
- Andrea Gazzin
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, 10126 Turin, Italy;
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
| | - Federico Fornari
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Simona Cardaropoli
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| | - Diana Carli
- Department of Medical Sciences, University of Turin, 10126 Turin, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital IRCCS, 00165 Rome, Italy
| | | | - Alessandro Mussa
- Clinical Pediatrics Genetics Unit, Regina Margherita Children’s Hospital, 10126 Turin, Italy
- Postgraduate School of Pediatrics, Department of Public Health and Pediatrics, University of Turin, 10126 Turin, Italy
| |
Collapse
|
12
|
Hirbe AC, Dehner CA, Dombi E, Eulo V, Gross AM, Sundby T, Lazar AJ, Widemann BC. Contemporary Approach to Neurofibromatosis Type 1-Associated Malignant Peripheral Nerve Sheath Tumors. Am Soc Clin Oncol Educ Book 2024; 44:e432242. [PMID: 38710002 DOI: 10.1200/edbk_432242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Most malignant peripheral nerve sheath tumors (MPNSTs) are clinically aggressive high-grade sarcomas, arising in individuals with neurofibromatosis type 1 (NF1) at a significantly elevated estimated lifetime frequency of 8%-13%. In the setting of NF1, MPNSTs arise from malignant transformation of benign plexiform neurofibroma and borderline atypical neurofibromas. Composed of neoplastic cells from the Schwannian lineage, these cancers recur in approximately 50% of individuals, and most patients die within five years of diagnosis, despite surgical resection, radiation, and chemotherapy. Treatment for metastatic disease is limited to cytotoxic chemotherapy and investigational clinical trials. In this article, we review the pathophysiology of this aggressive cancer and current approaches to surveillance and treatment.
Collapse
Affiliation(s)
- Angela C Hirbe
- Division of Oncology, Department of Medicine, Siteman Cancer Center, Barnes Jewish Hospital and Washington University School of Medicine, St Louis, MO
| | - Carina A Dehner
- Department of Anatomic Pathology and Laboratory Medicine, Indiana University, Indianapolis, IN
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Vanessa Eulo
- Division of Oncology, Department of Medicine, University of Alabama, Birmingham, AL
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Taylor Sundby
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Alexander J Lazar
- Departments of Pathology & Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
13
|
Chaput D, Andelfinger G. MEK Inhibition for RASopathy-Associated Hypertrophic Cardiomyopathy: Clinical Application of a Basic Concept. Can J Cardiol 2024; 40:789-799. [PMID: 38432396 DOI: 10.1016/j.cjca.2024.02.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/13/2024] [Accepted: 02/15/2024] [Indexed: 03/05/2024] Open
Abstract
The term "RASopathies" designates a group of developmental syndromes that are caused by activating variants of the rat sarcoma virus protein (RAS)/mitogen-activated protein kinase (MAPK) cascade. The most prevalent clinical diagnosis is Noonan syndrome, and other, less prevalent conditions include Noonan syndrome with multiple lentigines, Costello syndrome, cardiofaciocutaneous syndrome, and others. Hypertrophic cardiomyopathy occurs in 10% of these patients and can be severe and life-threating. Recently, repurposing of medications inhibiting the RAS/MAPK on a compassionate use basis has emerged as a promising concept to improve the outcome of these patients. Herein, we specifically review the role of the RAS/MAPK pathway in RASopathy-associated cardiomyopathy, and discuss the role of small-molecule inhibition in the treatment of this condition. We describe how drug repurposing of trametinib (mitogen-activated protein/extracellular signal-regulated kinase inhibition) and sirolimus/everolimus (mammalian target of rapamycin inhibition) was performed, how genotype-specific therapies are chosen and followed, as well as initial outcomes from early case series. Finally, we lay out the challenges and opportunities for trials that aim to quantify the benefits of this approach.
Collapse
Affiliation(s)
- Dominic Chaput
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| | - Gregor Andelfinger
- Cardiovascular Genetics Research Laboratory, CHU Sainte Justine Research Center, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada.
| |
Collapse
|
14
|
John L, Singh G, Dombi E, Wolters PL, Martin S, Baldwin A, Steinberg SM, Bernstein J, Whitcomb P, Pichard DC, Dufek A, Gillespie A, Heisey K, Bornhorst M, Fisher MJ, Weiss BD, Kim A, Widemann BC, Gross AM. Development and pilot validation of a novel disfigurement severity scale for plexiform neurofibromas in children with neurofibromatosis type 1. Clin Trials 2024; 21:189-198. [PMID: 37877369 PMCID: PMC11003851 DOI: 10.1177/17407745231206402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
BACKGROUND/AIMS We developed an observer disfigurement severity scale for neurofibroma-related plexiform neurofibromas to assess change in plexiform neurofibroma-related disfigurement and evaluated its feasibility, reliability, and validity. METHODS Twenty-eight raters, divided into four cohorts based on neurofibromatosis type 1 familiarity and clinical experience, were shown photographs of children in a clinical trial (NCT01362803) at baseline and 1 year on selumetinib treatment for plexiform neurofibromas (n = 20) and of untreated participants with plexiform neurofibromas (n = 4). Raters, blinded to treatment and timepoint, completed the 0-10 disfigurement severity score for plexiform neurofibroma on each image (0 = not at all disfigured, 10 = very disfigured). Raters evaluated the ease of completing the scale, and a subset repeated the procedure to assess intra-rater reliability. RESULTS Mean baseline disfigurement severity score for plexiform neurofibroma ratings were similar for the selumetinib group (6.23) and controls (6.38). Mean paired differences between pre- and on-treatment ratings was -1.01 (less disfigurement) in the selumetinib group and 0.09 in the control (p = 0.005). For the disfigurement severity score for plexiform neurofibroma ratings, there was moderate-to-substantial agreement within rater cohorts (weighted kappa range = 0.46-0.66) and agreement between scores of the same raters at repeat sessions (p > 0.05). In the selumetinib group, change in disfigurement severity score for plexiform neurofibroma ratings was moderately correlated with change in plexiform neurofibroma volume with treatment (r = 0.60). CONCLUSION This study demonstrates that our observer-rated disfigurement severity score for plexiform neurofibroma was feasible, reliable, and documented improvement in disfigurement in participants with plexiform neurofibroma shrinkage. Prospective studies in larger samples are needed to validate this scale further.
Collapse
Affiliation(s)
- Liny John
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gurbani Singh
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Eva Dombi
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Pamela L Wolters
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Staci Martin
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Baldwin
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Seth M Steinberg
- Biostatistics and Data Management Section, Office of the Clinical Director, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jessica Bernstein
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patricia Whitcomb
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Dominique C Pichard
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Anne Dufek
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andy Gillespie
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kara Heisey
- Clinical Research Directorate (CRD), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Miriam Bornhorst
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - Michael J Fisher
- Division of Oncology, Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| | - Brian D Weiss
- Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - AeRang Kim
- Center for Cancer and Blood Disorders, Children’s National Hospital, Washington, DC, USA
| | - Brigitte C Widemann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Andrea M Gross
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
15
|
Saint-Laurent C, Mazeyrie L, Yart A, Edouard T. Novel therapeutic perspectives in Noonan syndrome and RASopathies. Eur J Pediatr 2024; 183:1011-1019. [PMID: 37863846 PMCID: PMC10951041 DOI: 10.1007/s00431-023-05263-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/22/2023]
Abstract
Noonan syndrome belongs to the family of RASopathies, a group of multiple congenital anomaly disorders caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway. Collectively, all these pathogenic variants lead to increased RAS/MAPK activation. The better understanding of the molecular mechanisms underlying the different manifestations of NS and RASopathies has led to the identification of molecular targets for specific pharmacological interventions. Many specific agents (e.g. SHP2 and MEK inhibitors) have already been developed for the treatment of RAS/MAPK-driven malignancies. In addition, other molecules with the property of modulating RAS/MAPK activation are indicated in non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolemia). Conclusion: Drug repositioning of these molecules represents a challenging approach to treat or prevent medical complications associated with RASopathies. What is Known: • Noonan syndrome and related disorders are caused by pathogenic variants in genes encoding components or regulators of the RAS/mitogen-activated protein kinase (MAPK) signalling pathway, resulting in increased activation of this pathway. • This group of disorders is now known as RASopathies and represents one of the largest groups of multiple congenital anomaly diseases known. What is New: • The identification of pathophysiological mechanisms provides new insights into the development of specific therapeutic strategies, in particular treatment aimed at reducing RAS/MAPK hyperactivation. • Drug repositioning of specific agents already developed for the treatment of malignant (e.g. SHP2 and MEK inhibitors) or non-malignant diseases (e.g. C-type natriuretic peptide analogues in achondroplasia or statins in hypercholesterolaemia) represents a challenging approach to the treatment of RASopathies.
Collapse
Affiliation(s)
- Céline Saint-Laurent
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France
| | - Laurène Mazeyrie
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Armelle Yart
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France
| | - Thomas Edouard
- RESTORE Research Center, Université de Toulouse, Institut National de La Santé Et de La Recherche Médicale 1301, Centre National de La Recherche Scientifique 5070, Toulouse, France.
- Endocrine, Bone Diseases, and Genetics Unit, Reference Center for Endocrine Diseases of Growth and Development, FIRENDO Network, Children's Hospital, Toulouse University Hospital, 330 Avenue de Grande-Bretagne TSA 70034, 31059, Toulouse Cedex 9, France.
| |
Collapse
|
16
|
White EE, Rhodes SD. The NF1+/- Immune Microenvironment: Dueling Roles in Neurofibroma Development and Malignant Transformation. Cancers (Basel) 2024; 16:994. [PMID: 38473354 PMCID: PMC10930863 DOI: 10.3390/cancers16050994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Neurofibromatosis type 1 (NF1) is a common genetic disorder resulting in the development of both benign and malignant tumors of the peripheral nervous system. NF1 is caused by germline pathogenic variants or deletions of the NF1 tumor suppressor gene, which encodes the protein neurofibromin that functions as negative regulator of p21 RAS. Loss of NF1 heterozygosity in Schwann cells (SCs), the cells of origin for these nerve sheath-derived tumors, leads to the formation of plexiform neurofibromas (PNF)-benign yet complex neoplasms involving multiple nerve fascicles and comprised of a myriad of infiltrating stromal and immune cells. PNF development and progression are shaped by dynamic interactions between SCs and immune cells, including mast cells, macrophages, and T cells. In this review, we explore the current state of the field and critical knowledge gaps regarding the role of NF1(Nf1) haploinsufficiency on immune cell function, as well as the putative impact of Schwann cell lineage states on immune cell recruitment and function within the tumor field. Furthermore, we review emerging evidence suggesting a dueling role of Nf1+/- immune cells along the neurofibroma to MPNST continuum, on one hand propitiating PNF initiation, while on the other, potentially impeding the malignant transformation of plexiform and atypical neurofibroma precursor lesions. Finally, we underscore the potential implications of these discoveries and advocate for further research directed at illuminating the contributions of various immune cells subsets in discrete stages of tumor initiation, progression, and malignant transformation to facilitate the discovery and translation of innovative diagnostic and therapeutic approaches to transform risk-adapted care.
Collapse
Affiliation(s)
- Emily E. White
- Medical Scientist Training Program, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Steven D. Rhodes
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- Division of Pediatric Hematology/Oncology/Stem Cell Transplant, Indiana University School of Medicine, Indianapolis, IN 46202, USA
- IU Simon Comprehensive Cancer Center, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| |
Collapse
|
17
|
Srivastava P, Gupta S, Bamba C, Daniel R, Kaur P, Kaur A, Panigrahi I, Mandal K. Neurofibromatosis type 1: Clinical characteristics and mutation spectrum in a North Indian cohort. Heliyon 2024; 10:e23685. [PMID: 38226287 PMCID: PMC10788438 DOI: 10.1016/j.heliyon.2023.e23685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/28/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Background Neurofibromatosis type 1 (NF1) is a unique, highly penetrant neuro-cutaneous disorder with a wide range of manifestations. Though the clinical diagnosis of NF1 is straight forward, there can be other disorders which mimic NF1, especially its cutaneous features. Here we describe the clinical and mutation spectrum of a series of individuals whose primary diagnosis was NF1 or NF1 related disorders. Methods We have screened 29 unrelated individuals who fulfilled the clinical criteria of NF1. Whole exome sequencing (WES) was done in all individuals except one with suspected microdeletion syndrome with NF1 in whom Cytogenetic microarray (CMA) was done. Results Out of 29 suspected patients, 25 had germline pathogenic/likely pathogenic variants involving NF1 gene. Five novel and 20 known variants in coding and non-coding regions were identified, among them 7 variants were deletions (28%), 7 nonsense (28%), 3 splice-site (12%), 4 missense (16%), 2 duplications (8%) and 2 (8%) were contiguous deletions. In those where NF1 variants were not detected, 3 had neurofibromatosis type 2 (NF2) and 1 rare autosomal recessive form of Elher Danlos syndrome. Conclusion We hereby present the wide range of manifestations in different age groups and the mutation spectrum ranging from small scale variants to contiguous gene deletion syndromes involving NF1 gene. We highlight the usefulness of molecular testing and its importance in tumor surveillance and genetic counseling in this disorder.
Collapse
Affiliation(s)
- Priyanka Srivastava
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Shifali Gupta
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Chitra Bamba
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Roshan Daniel
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Parminder Kaur
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Anupriya Kaur
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Inusha Panigrahi
- Genetic Metabolic Unit, Advanced Pediatrics Centre, Post Graduate Institute of Medical Education & Research (PGIMER), Chandigarh, 160012, India
| | - Kausik Mandal
- Department of Medical Genetics, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| |
Collapse
|
18
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 83] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
19
|
Sarin KY, Kincaid J, Sell B, Shahryari J, Duncton MAJ, Morefield E, Sun W, Prieto K, Chavez-Chiang O, de Moran Segura C, Nguyen J, Bronson RT, Plotkin SR, Kochendoerfer GG, Fenn P, Wootton MA, Powala C, de Souza MP, Tsai KY. Development of a MEK inhibitor, NFX-179, as a chemoprevention agent for squamous cell carcinoma. Sci Transl Med 2023; 15:eade1844. [PMID: 37820007 DOI: 10.1126/scitranslmed.ade1844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 09/19/2023] [Indexed: 10/13/2023]
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common skin cancer. Although cSCC contributes to substantial morbidity and mortality in high-risk individuals, deployment of otherwise effective chemoprevention of cSCC is limited by toxicities. Our systematic computational drug repurposing screen predicted that selumetinib, a MAPK (mitogen-activated protein kinase) kinase inhibitor (MEKi), would reverse transcriptional signatures associated with cSCC development, consistent with our genomic analysis implicating MEK as a chemoprevention target. Although systemic MEKi suppresses the formation of cSCC in mice, systemic MEKi can cause severe adverse effects. Here, we report the development of a metabolically labile MEKi, NFX-179, designed to potently and selectively suppress the MAPK pathway in the skin before rapid metabolism in the systemic circulation. NFX-179 was identified on the basis of its biochemical and cellular potency, selectivity, and rapid metabolism upon systemic absorption. In our ultraviolet-induced cSCC mouse model, topical application of NFX-179 gel reduced the formation of new cSCCs by an average of 60% at doses of 0.1% and greater at 28 days. We further confirmed the localized nature of these effects in an additional split-mouse randomized controlled study where suppression of cSCC was observed only in drug-treated areas. No toxicities were observed. NFX-179 inhibits the growth of human SCC cell lines in a dose-dependent manner, and topical NFX-179 application penetrates human skin and inhibits MAPK signaling in human cSCC explants. Together, our data provide a compelling rationale for using topical MEK inhibition through the application of NFX-179 gel as an effective strategy for cSCC chemoprevention.
Collapse
Affiliation(s)
- Kavita Y Sarin
- Department of Dermatology, Stanford University Medical Center, Stanford, CA 94063, USA
| | | | - Brittney Sell
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | | | | | | | - Wenchao Sun
- Department of Dermatology, Stanford University Medical Center, Stanford, CA 94063, USA
| | - Karol Prieto
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Omar Chavez-Chiang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Carlos de Moran Segura
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Jonathan Nguyen
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| | - Roderick T Bronson
- Department of Immunology, Rodent Histopathology Core, Harvard Medical School, Boston, MA 02115, USA
| | | | | | - Peter Fenn
- NFlection Therapeutics, Boston, MA 02116, USA
| | | | | | | | - Kenneth Y Tsai
- Department of Tumor Biology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
- Department of Pathology, H. Lee Moffitt Cancer Center & Research Institute, Tampa, FL 33612, USA
| |
Collapse
|
20
|
Pillay-Smiley N, Fletcher JS, de Blank P, Ratner N. Shedding New Light: Novel Therapies for Common Disorders in Children with Neurofibromatosis Type I. Pediatr Clin North Am 2023; 70:937-950. [PMID: 37704352 DOI: 10.1016/j.pcl.2023.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Neurofibromatosis type I (NF1) is a common dominantly inherited disorder, and one of the most common of the RASopathies. Most individuals with NF1 develop plexiform neurofibromas and cutaneous neurofibromas, nerve tumors caused by NF1 loss of function in Schwann cells. Cell culture models and mouse models of NF1 are being used to test drug efficacy in preclinical trials, which led to Food and Drug Administration approval for use of MEK inhibitors to shrink most inoperable plexiform neurofibromas. This article details methods used for testing in preclinical models, and outlines newer models that may identify additional, curative, strategies.
Collapse
Affiliation(s)
- Natasha Pillay-Smiley
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Jonathan S Fletcher
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA; Current Address: Division of Hematology-Oncology, University of Texas Southwestern, Dallas, TX, USA
| | - Peter de Blank
- University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229-0731, USA; Cancer and Blood Diseases Institute, The Cure Starts Now Foundation Brain Tumor Center, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA.
| |
Collapse
|
21
|
González-Muñoz T, Di Giannatale A, García-Silva S, Santos V, Sánchez-Redondo S, Savini C, Graña-Castro O, Blanco-Aparicio C, Fischer S, De Wever O, Creus-Bachiller E, Ortega-Bertran S, Pisapia DJ, Rodríguez-Peralto JL, Fernández-Rodríguez J, Pérez-Portabella CR, Alaggio R, Benassi MS, Pazzaglia L, Scotlandi K, Ratner N, Yohay K, Theuer CP, Peinado H. Endoglin, a Novel Biomarker and Therapeutical Target to Prevent Malignant Peripheral Nerve Sheath Tumor Growth and Metastasis. Clin Cancer Res 2023; 29:3744-3758. [PMID: 37432984 DOI: 10.1158/1078-0432.ccr-22-2462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2022] [Accepted: 07/06/2023] [Indexed: 07/13/2023]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are highly aggressive soft-tissue sarcomas that lack effective treatments, underscoring the urgent need to uncover novel mediators of MPNST pathogenesis that may serve as potential therapeutic targets. Tumor angiogenesis is considered a critical event in MPNST transformation and progression. Here, we have investigated whether endoglin (ENG), a TGFβ coreceptor with a crucial role in angiogenesis, could be a novel therapeutic target in MPNSTs. EXPERIMENTAL DESIGN ENG expression was evaluated in human peripheral nerve sheath tumor tissues and plasma samples. Effects of tumor cell-specific ENG expression on gene expression, signaling pathway activation and in vivo MPNST growth and metastasis, were investigated. The efficacy of ENG targeting in monotherapy or in combination with MEK inhibition was analyzed in xenograft models. RESULTS ENG expression was found to be upregulated in both human MPNST tumor tissues and plasma-circulating small extracellular vesicles. We demonstrated that ENG modulates Smad1/5 and MAPK/ERK pathway activation and pro-angiogenic and pro-metastatic gene expression in MPNST cells and plays an active role in tumor growth and metastasis in vivo. Targeting with ENG-neutralizing antibodies (TRC105/M1043) decreased MPNST growth and metastasis in xenograft models by reducing tumor cell proliferation and angiogenesis. Moreover, combination of anti-ENG therapy with MEK inhibition effectively reduced tumor cell growth and angiogenesis. CONCLUSIONS Our data unveil a tumor-promoting function of ENG in MPNSTs and support the use of this protein as a novel biomarker and a promising therapeutic target for this disease.
Collapse
Affiliation(s)
- Teresa González-Muñoz
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Angela Di Giannatale
- Department of Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Susana García-Silva
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Vanesa Santos
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Sara Sánchez-Redondo
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Claudia Savini
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
- Patients in Science, Medical Writing and Communication, Valencia, Spain
| | - Osvaldo Graña-Castro
- Bioinformatics Unit, Structural Biology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Carmen Blanco-Aparicio
- Experimental Therapeutics Program, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Suzanne Fischer
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Cancer Research Institute Ghent, Ghent, Belgium
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium
| | - Edgar Creus-Bachiller
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - Sara Ortega-Bertran
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
| | - David J Pisapia
- Englander Institute of Precision Medicine, Weill Cornell Medicine, New York, New York
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, New York
| | - Jose L Rodríguez-Peralto
- Department of Dermatology, 12 de Octubre University Hospital, Complutense University of Madrid, Investigation institute I+12, CIBERONC, Madrid, Spain
| | - Juana Fernández-Rodríguez
- Hereditary Cancer Program, Catalan Institute of Oncology, Hospitalet de Llobregat, Barcelona, Spain
- Program in Molecular Mechanisms and Experimental Therapy in Oncology (Oncobell), IDIBELL, Hospitalet de Llobregat, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
- Plataforma Mouse Lab, Servicios Científico-Técnicos, IDIBELL, l'Hospitalet de Llobregat, Barcelona, Spain
| | | | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
- Department of Medical-Surgical Sciences and Biotechnologies La Sapienza University, Rome, Italy
| | - Maria Serena Benassi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Laura Pazzaglia
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Nancy Ratner
- Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio
| | - Kaleb Yohay
- New York University Grossman School of Medicine, New York, New York
| | | | - Héctor Peinado
- Microenvironment and Metastasis Laboratory, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
22
|
de Nigris F, Meo C, Palinski W. Combination of Genomic Landsscape and 3D Culture Functional Assays Bridges Sarcoma Phenotype to Target and Immunotherapy. Cells 2023; 12:2204. [PMID: 37681936 PMCID: PMC10486752 DOI: 10.3390/cells12172204] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023] Open
Abstract
Genomic-based precision medicine has not only improved tumour therapy but has also shown its weaknesses. Genomic profiling and mutation analysis have identified alterations that play a major role in sarcoma pathogenesis and evolution. However, they have not been sufficient in predicting tumour vulnerability and advancing treatment. The relative rarity of sarcomas and the genetic heterogeneity between subtypes also stand in the way of gaining statistically significant results from clinical trials. Personalized three-dimensional tumour models that reflect the specific histologic subtype are emerging as functional assays to test anticancer drugs, complementing genomic screening. Here, we provide an overview of current target therapy for sarcomas and discuss functional assays based on 3D models that, by recapitulating the molecular pathways and tumour microenvironment, may predict patient response to treatments. This approach opens new avenues to improve precision medicine when genomic and pathway alterations are not sufficient to guide the choice of the most promising treatment. Furthermore, we discuss the aspects of the 3D culture assays that need to be improved, such as the standardisation of growth conditions and the definition of in vitro responses that can be used as a cut-off for clinical implementation.
Collapse
Affiliation(s)
- Filomena de Nigris
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Concetta Meo
- Department of Precision Medicine, School of Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Wulf Palinski
- Department of Medicine, University of California San Diego, La Jolla, CA 92037, USA;
| |
Collapse
|
23
|
Kuhn E, Natacci F, Corbo M, Pisani L, Ferrero S, Bulfamante G, Gambini D. The Contribution of Oxidative Stress to NF1-Altered Tumors. Antioxidants (Basel) 2023; 12:1557. [PMID: 37627552 PMCID: PMC10451967 DOI: 10.3390/antiox12081557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/27/2023] Open
Abstract
The neurofibromatosis-1 gene (NF1) was initially characterized because its germline mutation is responsible for an inherited syndromic disease predisposing tumor development, in particular neurofibromas but also various malignancies. Recently, large-scale tumor sequencing efforts have demonstrated NF1 as one of the most frequently mutated genes in human cancer, being mutated in approximately 5-10% of all tumors, especially in malignant peripheral nerve sheath tumors and different skin tumors. NF1 acts as a tumor suppressor gene that encodes neurofibromin, a large protein that controls neoplastic transformation through several molecular mechanisms. On the other hand, neurofibromin loss due to NF1 biallelic inactivation induces tumorigenic hyperactivation of Ras and mTOR signaling pathways. Moreover, neurofibromin controls actin cytoskeleton structure and the metaphase-anaphase transition. Consequently, neurofibromin deficiency favors cell mobility and proliferation as well as chromosomal instability and aneuploidy, respectively. Growing evidence supports the role of oxidative stress in NF1-related tumorigenesis. Neurofibromin loss induces oxidative stress both directly and through Ras and mTOR signaling activation. Notably, innovative therapeutic approaches explore drug combinations that further increase reactive oxygen species to boost the oxidative unbalance of NF1-altered cancer cells. In our paper, we review NF1-related tumors and their pathogenesis, highlighting the twofold contribution of oxidative stress, both tumorigenic and therapeutic.
Collapse
Affiliation(s)
- Elisabetta Kuhn
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Federica Natacci
- Medical Genetics Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Massimo Corbo
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Luigi Pisani
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| | - Stefano Ferrero
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Pathology Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Gaetano Bulfamante
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20122 Milan, Italy; (S.F.); (G.B.)
- Human Pathology and Molecular Pathology, TOMA Advanced Biomedical Assays S.p.A., 21052 Busto Arsizio, Italy
| | - Donatella Gambini
- Department of Neurorehabilitation Sciences, Casa di Cura Igea, 20144 Milan, Italy; (M.C.); (L.P.); (D.G.)
| |
Collapse
|
24
|
Xu AL, Suresh KV, Gomez JA, Emans JB, Larson AN, Cahill PJ, Andras LM, White KK, Miller DJ, Murphy JS, Groves ML, Belzberg AJ, Hwang SW, Rosser TL, Staedtke V, Ullrich NJ, Sato AA, Blakeley JO, Schorry EK, Gross AM, Redding GJ, Sponseller PD. Consensus-Based Best Practice Guidelines for the Management of Spinal Deformity and Associated Tumors in Pediatric Neurofibromatosis Type 1: Screening and Surveillance, Surgical Intervention, and Medical Therapy. J Pediatr Orthop 2023; 43:e531-e537. [PMID: 37253707 PMCID: PMC10523927 DOI: 10.1097/bpo.0000000000002431] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
BACKGROUND Spinal conditions, such as scoliosis and spinal tumors, are prevalent in neurofibromatosis type 1 (NF1). Despite the recognized importance of their early detection and treatment, there remain knowledge gaps in how to approach these manifestations. The purpose of this study was to utilize the experience of a multidisciplinary committee of experts to establish consensus-based best practice guidelines (BPGs) for spinal screening and surveillance, surgical intervention, and medical therapy in pediatric patients with NF1. METHODS Using the results of a prior systematic review, 10 key questions that required further assessment were first identified. A committee of 20 experts across medical specialties was then chosen based on their clinical experience with spinal deformity and tumors in NF1. These were 9 orthopaedic surgeons, 4 neuro-oncologists/oncologists, 3 neurosurgeons, 2 neurologists, 1 pulmonologist, and 1 clinical geneticist. An initial online survey on current practices and opinions was conducted, followed by 2 additional surveys via a formal consensus-based modified Delphi method. The final survey involved voting on agreement or disagreement with 35 recommendations. Items reaching consensus (≥70% agreement or disagreement) were included in the final BPGs. RESULTS Consensus was reached for 30 total recommendations on the management of spinal deformity and tumors in NF1. These were 11 recommendations on screening and surveillance, 16 on surgical intervention, and 3 on medical therapy. Five recommendations did not achieve consensus and were excluded from the BPGs. CONCLUSION We present a set of consensus-based BPGs comprised of 30 recommendations for spinal screening and surveillance, surgical intervention, and medical therapy in pediatric NF1.
Collapse
Affiliation(s)
- Amy L. Xu
- Dept. of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD
| | - Krishna V. Suresh
- Dept. of Orthopaedic Surgery, The Johns Hopkins Hospital, Baltimore, MD
| | - Jaime A. Gomez
- Dept. of Orthopaedic Surgery, Montefiore Medical Center, Bronx, NY
| | - John B. Emans
- Dept. of Orthopaedic Surgery, Boston Children’s Hospital, Boston, MA
| | | | - Patrick J. Cahill
- Dept. of Orthopaedic Surgery, Children’s Hospital of Philadelphia, Philadelphia, PA
| | - Lindsay M. Andras
- Dept. of Orthopaedic Surgery, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Klane K. White
- Dept. of Orthopaedic Surgery, Children’s Hospital Colorado, Aurora, CO
| | - Daniel J. Miller
- Dept. of Orthopaedic Surgery, Gillette Children’s Hospital, St. Paul, MN
| | - Joshua S. Murphy
- Dept. of Orthopaedic Surgery, Children’s Healthcare of Atlanta, Atlanta, GA
| | - Mari L. Groves
- Dept. of Neurosurgery, The Johns Hopkins Hospital, Baltimore, MD
| | | | - Steven W. Hwang
- Dept. of Neurosurgery, Shriners Hospitals for Children, Philadelphia, PA
| | - Tena L. Rosser
- Dept. of Neurology, Children’s Hospital Los Angeles, Los Angeles, CA
| | - Verena Staedtke
- Dept. of Neurology, The Johns Hopkins Hospital, Baltimore, MD
| | | | - Aimee A. Sato
- Dept. of Neurology, Seattle Children’s Hospital, Seattle, WA
| | | | | | - Andrea M. Gross
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, MD
| | - Gregory J. Redding
- Dept. of Pulmonology and Sleep Medicine, Seattle Children’s Hospital, Seattle, WA
| | | | | |
Collapse
|
25
|
Armstrong AE, Belzberg AJ, Crawford JR, Hirbe AC, Wang ZJ. Treatment decisions and the use of MEK inhibitors for children with neurofibromatosis type 1-related plexiform neurofibromas. BMC Cancer 2023; 23:553. [PMID: 37328781 PMCID: PMC10273716 DOI: 10.1186/s12885-023-10996-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 05/22/2023] [Indexed: 06/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1), the most common tumor predisposition syndrome, occurs when NF1 gene variants result in loss of neurofibromin, a negative regulator of RAS activity. Plexiform neurofibromas (PN) are peripheral nerve sheath tumors that develop in patients with NF1 and are associated with substantial morbidity and for which, until recently, the only treatment was surgical resection. However, surgery carries several risks and a proportion of PN are considered inoperable. Understanding the genetic underpinnings of PN led to the investigation of targeted therapies as medical treatment options, and the MEK1/2 inhibitor selumetinib has shown promising efficacy in pediatric patients with NF1 and symptomatic, inoperable PN. In a phase I/II trial, most children (approximately 70%) achieved reduction in tumor volume accompanied by improvements in patient-reported outcomes (decreased tumor-related pain and improvements in quality of life, strength, and range of motion). Selumetinib is currently the only licensed medical therapy indicated for use in pediatric patients with symptomatic, inoperable NF1-PN, with approval based on the results of this pivotal clinical study. Several other MEK inhibitors (binimetinib, mirdametinib, trametinib) and the tyrosine kinase inhibitor cabozantinib are also being investigated as medical therapies for NF1-PN. Careful consideration of multiple aspects of both disease and treatments is vital to reduce morbidity and improve outcomes in patients with this complex and heterogeneous disease, and clinicians should be fully aware of the risks and benefits of available treatments. There is no single treatment pathway for patients with NF1-PN; surgery, watchful waiting, and/or medical treatment are options. Treatment should be individualized based on recommendations from a multidisciplinary team, considering the size and location of PN, effects on adjacent tissues, and patient and family preferences. This review outlines the treatment strategies currently available for patients with NF1-PN and the evidence supporting the use of MEK inhibitors, and discusses key considerations in clinical decision-making.
Collapse
Affiliation(s)
- Amy E Armstrong
- Division of Pediatric Hematology/Oncology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Allan J Belzberg
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - John R Crawford
- CHOC Neuroscience Institute, Children's Hospital of Orange County, Orange, CA, USA
- Department of Pediatrics, Division of Child Neurology University of California Irvine, Orange, CA, USA
| | - Angela C Hirbe
- Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Zhihong J Wang
- Division of Hematology and Oncology, Children's Hospital of Richmond, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
26
|
Millesi E, Rechberger JS, Wang H, Mardini S, Spinner RJ, Daniels DJ. Advancements in therapeutic approaches for malignant peripheral nerve sheath tumor. Ther Deliv 2023; 14:385-389. [PMID: 37464750 DOI: 10.4155/tde-2023-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Tweetable abstract Emerging targeted therapies offer hope for malignant peripheral nerve sheath tumor. Innovative drug delivery enhances potential treatments. #MPNST #TargetedTherapies #TherapeuticDelivery.
Collapse
Affiliation(s)
- Elena Millesi
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Research Laboratory of the Division of Plastic & Reconstructive Surgery, Department of Surgery, Medical University of Vienna, Vienna, 1090, Austria
| | - Julian S Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Huan Wang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Samir Mardini
- Division of Plastic & Reconstructive Surgery, Department of Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - Robert J Spinner
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
| | - David J Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
27
|
Ghalavand MA, Asghari A, Farhadi M, Taghizadeh-Hesary F, Garshasbi M, Falah M. The genetic landscape and possible therapeutics of neurofibromatosis type 2. Cancer Cell Int 2023; 23:99. [PMID: 37217995 DOI: 10.1186/s12935-023-02940-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 05/07/2023] [Indexed: 05/24/2023] Open
Abstract
Neurofibromatosis type 2 (NF2) is a genetic condition marked by the development of multiple benign tumors in the nervous system. The most common tumors associated with NF2 are bilateral vestibular schwannoma, meningioma, and ependymoma. The clinical manifestations of NF2 depend on the site of involvement. Vestibular schwannoma can present with hearing loss, dizziness, and tinnitus, while spinal tumor leads to debilitating pain, muscle weakness, or paresthesias. Clinical diagnosis of NF2 is based on the Manchester criteria, which have been updated in the last decade. NF2 is caused by loss-of-function mutations in the NF2 gene on chromosome 22, leading the merlin protein to malfunction. Over half of NF2 patients have de novo mutations, and half of this group are mosaic. NF2 can be managed by surgery, stereotactic radiosurgery, monoclonal antibody bevacizumab, and close observation. However, the nature of multiple tumors and the necessity of multiple surgeries over the lifetime, inoperable tumors like meningiomatosis with infiltration of the sinus or in the area of the lower cranial nerves, the complications caused by the operation, the malignancies induced by radiotherapy, and inefficiency of cytotoxic chemotherapy due to the benign nature of NF-related tumors have led a march toward exploring targeted therapies. Recent advances in genetics and molecular biology have allowed identifying and targeting of underlying pathways in the pathogenesis of NF2. In this review, we explain the clinicopathological characteristics of NF2, its genetic and molecular background, and the current knowledge and challenges of implementing genetics to develop efficient therapies.
Collapse
Affiliation(s)
- Mohammad Amin Ghalavand
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Alimohamad Asghari
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Skull Base Research Center, The Five Senses Health Institute, Hazrat Rasoul Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Farhadi
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Farzad Taghizadeh-Hesary
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Radiation Oncology Department, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Masoumeh Falah
- ENT and Head and Neck Research Center and Department, The Five Senses Health Institute, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
28
|
Poplausky D, Young JN, Tai H, Rivera-Oyola R, Gulati N, Brown RM. Dermatologic Manifestations of Neurofibromatosis Type 1 and Emerging Treatments. Cancers (Basel) 2023; 15:2770. [PMID: 37345107 DOI: 10.3390/cancers15102770] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/21/2023] [Accepted: 04/26/2023] [Indexed: 06/23/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal dominant tumor predisposition syndrome that increases one's risk for both benign and malignant tumors. NF1 affects every organ in the body, but the most distinctive symptoms that are often the most bothersome to patients are the cutaneous manifestations, which can be unsightly, cause pain or pruritus, and have limited therapeutic options. In an effort to increase awareness of lesser-known dermatologic associations and to promote multidisciplinary care, we conducted a narrative review to shed light on dermatologic associations of NF1 as well as emerging treatment options. Topics covered include cutaneous neurofibromas, plexiform neurofibromas, diffuse neurofibromas, distinct nodular lesions, malignant peripheral nerve sheath tumors, glomus tumors, juvenile xanthogranulomas, skin cancer, and cutaneous T-cell lymphoma.
Collapse
Affiliation(s)
- Dina Poplausky
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jade N Young
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Hansen Tai
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ryan Rivera-Oyola
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Nicholas Gulati
- Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rebecca M Brown
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
29
|
Andalib KMS, Rahman MH, Habib A. Bioinformatics and cheminformatics approaches to identify pathways, molecular mechanisms and drug substances related to genetic basis of cervical cancer. J Biomol Struct Dyn 2023; 41:14232-14247. [PMID: 36852684 DOI: 10.1080/07391102.2023.2179542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 02/07/2023] [Indexed: 03/01/2023]
Abstract
Cervical cancer (CC) is a global threat to women and our knowledge is frighteningly little about its underlying genomic contributors. Our research aimed to understand the underlying molecular and genetic mechanisms of CC by integrating bioinformatics and network-based study. Transcriptomic analyses of three microarray datasets identified 218 common differentially expressed genes (DEGs) within control samples and CC specimens. KEGG pathway analysis revealed pathways in cell cycle, drug metabolism, DNA replication and the significant GO terms were cornification, proteolysis, cell division and DNA replication. Protein-protein interaction (PPI) network analysis identified 20 hub genes and survival analyses validated CDC45, MCM2, PCNA and TOP2A as CC biomarkers. Subsequently, 10 transcriptional factors (TFs) and 10 post-transcriptional regulators were detected through TFs-DEGs and miRNAs-DEGs regulatory network assessment. Finally, the CC biomarkers were subjected to a drug-gene relationship analysis to find the best target inhibitors. Standard cheminformatics method including in silico ADMET and molecular docking study substantiated PD0325901 and Selumetinib as the most potent candidate-drug for CC treatment. Overall, this meticulous study holds promises for further in vitro and in vivo research on CC diagnosis, prognosis and therapies. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- K M Salim Andalib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| | - Md Habibur Rahman
- Department of Computer Science and Engineering, Islamic University, Kushtia, Bangladesh
- Center for Advanced Bioinformatics and Artificial Intelligent Research, Islamic University, Kushtia, Bangladesh
| | - Ahsan Habib
- Biotechnology and Genetic Engineering Discipline, Life Science School, Khulna University, Khulna, Bangladesh
| |
Collapse
|
30
|
Bradford D, Singh H, Donoghue M. FDA regulatory considerations for the review of drugs intended to treat pediatric cancers and rare tumors. Curr Opin Pediatr 2023; 35:48-54. [PMID: 36592026 DOI: 10.1097/mop.0000000000001201] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW We describe select recent FDA approvals in pediatric cancers and rare tumors, and the unique regulatory considerations raised by each application. RECENT FINDINGS The approvals of naxitamab, selumetinib, selpercatinib, and crizotinib for pediatric and adolescent patients between April 2020 and January 2021 all represented first FDA approvals in their respective pediatric or adolescent populations. In addition, all represent approvals of targeted therapies administered in select patient populations, and were based on overall response rate (ORR) and duration of response (DOR) data in single-arm trials. SUMMARY Recent approvals for the pediatric oncology indications have often, but not always, relied in part upon investigator-sponsored clinical trials. Early engagement with regulatory agencies to discuss drug development in rare populations is critical to obtain early agreement on trial design and streamline development. Although reliance on ORR and DOR data may be feasible to support an approval, the ability to rely on response rate depends on many factors, including the disease context, reliability of radiographic assessment, and the results of the trial. In some cases, a time-to-event endpoint may be most appropriate to assess clinical benefit; early consideration should be given to the feasibility of conducting of a randomized trial.
Collapse
Affiliation(s)
| | - Harpreet Singh
- Center for Drug Evaluation and Research
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Martha Donoghue
- Center for Drug Evaluation and Research
- Oncology Center of Excellence, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
31
|
Malone CF, Kim M, Alexe G, Engel K, Forman AB, Robichaud A, Conway AS, Goodale A, Meyer A, Khalid D, Thayakumar A, Hatcher JM, Gray NS, Piccioni F, Stegmaier K. Transcriptional Antagonism by CDK8 Inhibition Improves Therapeutic Efficacy of MEK Inhibitors. Cancer Res 2023; 83:285-300. [PMID: 36398965 PMCID: PMC9938728 DOI: 10.1158/0008-5472.can-21-4309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 09/21/2022] [Accepted: 11/15/2022] [Indexed: 11/20/2022]
Abstract
Aberrant RAS/MAPK signaling is a common driver of oncogenesis that can be therapeutically targeted with clinically approved MEK inhibitors. Disease progression on single-agent MEK inhibitors is common, however, and combination therapies are typically required to achieve significant clinical benefit in advanced cancers. Here we focused on identifying MEK inhibitor-based combination therapies in neuroblastoma with mutations that activate the RAS/MAPK signaling pathway, which are rare at diagnosis but frequent in relapsed neuroblastoma. A genome-scale CRISPR-Cas9 functional genomic screen was deployed to identify genes that when knocked out sensitize RAS-mutant neuroblastoma to MEK inhibition. Loss of either CCNC or CDK8, two members of the mediator kinase module, sensitized neuroblastoma to MEK inhibition. Furthermore, small-molecule kinase inhibitors of CDK8 improved response to MEK inhibitors in vitro and in vivo in RAS-mutant neuroblastoma and other adult solid tumors. Transcriptional profiling revealed that loss of CDK8 or CCNC antagonized the transcriptional signature induced by MEK inhibition. When combined, loss of CDK8 or CCNC prevented the compensatory upregulation of progrowth gene expression induced by MEK inhibition. These findings propose a new therapeutic combination for RAS-mutant neuroblastoma and may have clinical relevance for other RAS-driven malignancies. SIGNIFICANCE Transcriptional adaptation to MEK inhibition is mediated by CDK8 and can be blocked by the addition of CDK8 inhibitors to improve response to MEK inhibitors in RAS-mutant neuroblastoma, a clinically challenging disease.
Collapse
Affiliation(s)
- Clare F. Malone
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Minjee Kim
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA
| | - Kathleen Engel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexandra B. Forman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Amanda Robichaud
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Saur Conway
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Amy Goodale
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashleigh Meyer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Delan Khalid
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Allen Thayakumar
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - John M. Hatcher
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA,Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Nathanael S. Gray
- Department of Chemical and Systems Biology, ChEM-H, and Stanford Cancer Institute, Stanford University, Stanford, California, USA
| | | | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA,Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA, USA,Broad Institute of MIT and Harvard, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author. Mailing address: Dana-Farber Cancer Institute, 360 Longwood Ave, LC6102, Boston, MA, 02215. Phone: (617) 632-4438
| |
Collapse
|
32
|
Abstract
Recently, advances in wearable technologies, data science and machine learning have begun to transform evidence-based medicine, offering a tantalizing glimpse into a future of next-generation 'deep' medicine. Despite stunning advances in basic science and technology, clinical translations in major areas of medicine are lagging. While the COVID-19 pandemic exposed inherent systemic limitations of the clinical trial landscape, it also spurred some positive changes, including new trial designs and a shift toward a more patient-centric and intuitive evidence-generation system. In this Perspective, I share my heuristic vision of the future of clinical trials and evidence-based medicine.
Collapse
|
33
|
Pearson AD, Allen C, Fangusaro J, Hutter C, Witt O, Weiner S, Reaman G, Russo M, Bandopadhayay P, Ahsan S, Barone A, Barry E, de Rojas T, Fisher M, Fox E, Bender JG, Gore L, Hargrave D, Hawkins D, Kreider B, Langseth AJ, Lesa G, Ligas F, Marotti M, Marshall LV, Nasri K, Norga K, Nysom K, Pappo A, Rossato G, Scobie N, Smith M, Stieglitz E, Weigel B, Weinstein A, Viana R, Karres D, Vassal G. Paediatric Strategy Forum for medicinal product development in mitogen-activated protein kinase pathway inhibitors: ACCELERATE in collaboration with the European Medicines Agency with participation of the Food and Drug Administration. Eur J Cancer 2022; 177:120-142. [PMID: 36335782 DOI: 10.1016/j.ejca.2022.09.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/08/2022] [Accepted: 09/26/2022] [Indexed: 01/06/2023]
Abstract
As the mitogen-activated protein kinase (MAPK) signalling pathway is activated in many paediatric cancers, it is an important therapeutic target. Currently, a range of targeted MAPK pathway inhibitors are being developed in adults. However, MAPK signals through many cascades and feedback loops and perturbing the MAPK pathway may have substantial influence on other pathways as well as normal development. In view of these issues, the ninth Paediatric Strategy Forum focused on MAPK inhibitors. Development of MAPK pathway inhibitors to date has been predominantly driven by adult indications such as malignant melanoma. However, these inhibitors may also target unmet needs in paediatric low-grade gliomas, high-grade gliomas, Langerhans cell histiocytosis, juvenile myelomonocytic leukaemia and several other paediatric conditions. Although MAPK inhibitors have demonstrated activity in paediatric cancer, the response rates and duration of responses needs improvement and better documentation. The rapid development and evaluation of combination approaches, based on a deep understanding of biology, is required to optimise responses and to avoid paradoxical tumour growth and other unintended consequences including severe toxicity. Better inhibitors with higher central nervous systempenetration for primary brain tumours and cancers with a propensity for central nervous system metastases need to be studied to determine if they are more effective than agents currently being used, and the optimum duration of therapy with MAPK inhibition needs to be determined. Systematic and coordinated clinical investigations to inform future treatment strategies with MAPK inhibitors, rather than use outside of clinical trials, are needed to fully assess the risks and benefits of these single agents and combination strategies in both front-line and in the refractory/relapse settings. Platform trials could address the investigation of multiple similar products and combinations. Accelerating the introduction of MAPK inhibitors into front-line paediatric studies is a priority, as is ensuring that these studies generate data appropriate for scientific and regulatory purposes. Early discussions with regulators are crucial, particularly if external controls are considered as randomised control trials in small patient populations can be challenging. Functional end-points specific to the populations in which they are studied, such as visual acuity, motor and neuro psychological function are important, as these outcomes are often more reflective of benefit for lower grade tumours (such as paediatric low-grade glioma and plexiform neurofibroma) and should be included in initial study designs for paediatric low-grade glioma. Early prospective discussions and agreements with regulators are necessary. Long-term follow-up of patients receiving MAPK inhibitors is crucial in view of their prolonged administration and the important involvement of this pathway in normal development. Further rational development, with a detailed understanding of biology of this class of products, is crucial to ensure they provide optimal benefit while minimising toxicity to children and adolescents with cancer.
Collapse
Affiliation(s)
| | - Carl Allen
- Texas Children Hospital, Houston, TX, USA; Baylor College of Medicine, Houston, TX, USA
| | - Jason Fangusaro
- Children's Healthcare of Atlanta, USA; Emory University School of Medicine, Atlanta, USA
| | - Caroline Hutter
- St. Anna Children's Hospital, Vienna, Austria; Children's Cancer Research Institute, Vienna, Austria
| | - Olaf Witt
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany; German Cancer Research Center, Heidelberg, Germany
| | | | | | | | - Pratiti Bandopadhayay
- Department of Pediatrics, Harvard Medical School, Broad Institute, USA; Dana-Farber/Boston Children's Cancer and Blood Disorders Center, USA
| | | | - Amy Barone
- US Food and Drug Administration, Silver Springs, USA
| | - Elly Barry
- Day One Biopharmaceuticals, San Francisco, USA
| | | | - Michael Fisher
- The Children's Hospital of Philadelphia, Philadelphia, USA
| | - Elizabeth Fox
- St Jude Children's Research Hospital, Tennessee, USA
| | | | - Lia Gore
- Children's Hospital Colorado, USA; University of Colorado, USA
| | - Darren Hargrave
- UCL Great Ormond Street Institute of Child Health, London UK
| | - Doug Hawkins
- Seattle Children's Hospital, USA; Children's Oncology Group, Seattle, USA
| | | | | | - Giovanni Lesa
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Franca Ligas
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | | | - Lynley V Marshall
- The Royal Marsden Hospital, London, UK; The Institute of Cancer Research, London, UK
| | | | - Koen Norga
- Antwerp University Hospital, Antwerp, Belgium; Paediatric Committee of the European Medicines Agency, (EMA), Netherlands; Federal Agency for Medicines and Health Products, Brussels, Belgium
| | | | - Alberto Pappo
- St Jude Children's Research Hospital, Tennessee, USA
| | | | | | | | | | | | | | - Ruth Viana
- Alexion Pharmaceuticals, Zurich, Switzerland
| | - Dominik Karres
- Paediatric Medicines Office, Scientific Evidence Generation Department, Human Division, European Medicines Agency (EMA), Netherlands
| | - Gilles Vassal
- ACCELERATE, Europe; Gustave Roussy Cancer Centre, Paris, France
| |
Collapse
|
34
|
Leoni C, Neri G. Molecular advances, clinical management, and treatment opportunities in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:411-413. [PMID: 36541914 DOI: 10.1002/ajmg.c.32026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Rome, Italy
| | - Giovanni Neri
- Institute of Genomic Medicine, Catholic University School of Medicine, Rome, Italy
| |
Collapse
|
35
|
Gelb BD, Yohe ME, Wolf C, Andelfinger G. New prospectives on treatment opportunities in RASopathies. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2022; 190:541-560. [PMID: 36533679 PMCID: PMC10150944 DOI: 10.1002/ajmg.c.32024] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/18/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022]
Abstract
The RASopathies are a group of clinically defined developmental syndromes caused by germline variants of the RAS/mitogen-activated protein (MAPK) cascade. The prototypic RASopathy is Noonan syndrome, which has phenotypic overlap with related disorders such as cardiofaciocutaneous syndrome, Costello syndrome, Noonan syndrome with multiple lentigines, and others. In this state-of-the-art review, we summarize current knowledge on unmet therapeutic needs in these diseases and novel treatment approaches informed by insights from RAS/MAPK-associated cancer therapies, in particular through inhibition of MEK1/2 and mTOR in patients with severe disease manifestations. We explore the possibilities of integrating a larger arsenal of molecules currently under development into future care plans. Lastly, we describe both medical and ethical challenges and opportunities for future clinical trials in the field.
Collapse
Affiliation(s)
- Bruce D. Gelb
- Mindich Child Health and Development Institute and Departments of Pediatrics and Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Marielle E. Yohe
- Laboratory of Cell and Developmental Signaling, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, USA
| | - Cordula Wolf
- Department of Congenital Heart Defects and Pediatric Cardiology, German Heart Center Munich, School of Medicine & Health, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Gregor Andelfinger
- CHU Sainte Justine, Department of Pediatrics, Université de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
36
|
Bouchema TSE, Annereau M, Vieillard V, Boquet R, Coelho GA, Castelli F, Solgadi A, Paul M, Yagoubi N, Secretan PH, Do B. Identification of the Major Degradation Pathways of Selumetinib. Pharmaceutics 2022; 14:pharmaceutics14122651. [PMID: 36559146 PMCID: PMC9787286 DOI: 10.3390/pharmaceutics14122651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/25/2022] [Accepted: 11/27/2022] [Indexed: 12/05/2022] Open
Abstract
Selumetinib is administered orally in capsule form and is indicated for the treatment of neurofibromatosis. To facilitate dosage adjustments, liquid preparations, such as solutions or suspensions, are to be developed. This led, first, to determine the stability profile of soluble or dispersed selumetinib and, secondly, to look for ways to stabilize the active substance. The degradation kinetics of selumetinib as a function of stress conditions were determined and compared. The degradation products were detected and identified by LC-HRMSn. In solution, selumetinib is sensitive to oxidation and degrades by photooxidation. In both cases, the side chain represented by the oxoamide group is concerned, leading to the formation of an amide derivative for the first case and an ester derivative for the second. The identification of such degradation mechanisms allowed us to study, in a targeted way, processes aiming at stabilizing the active molecule.
Collapse
Affiliation(s)
| | - Maxime Annereau
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Clinical Pharmacy Department, Gustave Roussy Cancer Campus, 114 Rue Edouard Vaillant, 94800 Villejuif, France
| | - Victoire Vieillard
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | - Raphael Boquet
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| | | | - Florence Castelli
- Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, CEA, INRAE, Université Paris-Saclay, 91191 Gif-sur-Yvette, France
| | - Audrey Solgadi
- Ingénierie et Plateformes au Service de l’Innovation Thérapeutique, Inserm, CNRS, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Muriel Paul
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
- EpidermE, Université Paris Est Creteil, 94010 Creteil, France
| | - Najet Yagoubi
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
| | | | - Bernard Do
- Matériaux et Santé, Université Paris-Saclay, 91400 Orsay, France
- Department of Pharmacy, Henri Mondor Hospital, AP-HP, 94000 Créteil, France
| |
Collapse
|
37
|
A Systematic Review of Recent and Ongoing Clinical Trials in Patients With the Neurofibromatoses. Pediatr Neurol 2022; 134:1-6. [PMID: 35759947 DOI: 10.1016/j.pediatrneurol.2022.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The neurofibromatoses comprise three different genetic conditions causing considerable morbidity and mortality: neurofibromatosis type 1 (NF1), neurofibromatosis type 2 (NF2), and schwannomatosis (SWN). This review summarizes recent and ongoing clinical trials involving patients with neurofibromatoses to better understand the current state of clinical trial research centered around these conditions and inform areas of need. METHODS A search was conducted using the Cochrane Central Register of Controlled Trials and clinicaltrials.gov databases. Inclusion and exclusion criteria were designed to identify clinical trials focused on patients with NF1, NF2, or SWN completed in or after 2010 and in process as of December 31, 2021. Information was collected using standardized guidelines. RESULTS A total of 134 clinical trials were included, with 75 (56%) completed and 59 (44%) in process. For completed trials, 74% (n = 56) involved patients with NF1, and of those based on specific tumors (n = 26, 46%), the majority focused on plexiform neurofibromas (PNs) (n = 12, 46%). For ongoing trials, 79% (n = 47) involve patients with NF1, and of those based on specific tumors (n = 29, 61%), the majority are focused on PNs (n = 13, 45%). CONCLUSION Both recent and ongoing clinical trials have primarily focused on patients with NF1 and the treatment of PNs. This research has led to the first FDA-approved drug for NF1-PN and has changed management of these tumors, allowing for systemic therapy rather than reliance on only a surgical modality. Trials evaluating comorbid psychiatric conditions and quality of life among patients with any of the neurofibromatoses appear less common. These areas may warrant focus in future studies to improve clinical management.
Collapse
|
38
|
Sunkari YK, Meijer L, Flajolet M. The protein kinase CK1: Inhibition, activation, and possible allosteric modulation. Front Mol Biosci 2022; 9:916232. [PMID: 36090057 PMCID: PMC9449355 DOI: 10.3389/fmolb.2022.916232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 07/19/2022] [Indexed: 11/15/2022] Open
Abstract
Protein kinases play a vital role in biology and deregulation of kinases is implicated in numerous diseases ranging from cancer to neurodegenerative diseases, making them a major target class for the pharmaceutical industry. However, the high degree of conservation that exists between ATP-binding sites among kinases makes it difficult for current inhibitors to be highly specific. In the context of neurodegeneration, several groups including ours, have linked different kinases such as CK1 and Alzheimer’s disease for example. Strictly CK1-isoform specific regulators do not exist and known CK1 inhibitors are inhibiting the enzymatic activity, targeting the ATP-binding site. Here we review compounds known to target CK1, as well as other inhibitory types that could benefit CK1. We introduce the DNA-encoded library (DEL) technology that might represent an interesting approach to uncover allosteric modulators instead of ATP competitors. Such a strategy, taking into account known allosteric inhibitors and mechanisms, might help designing modulators that are more specific towards a specific kinase, and in the case of CK1, toward specific isoforms.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
| | - Laurent Meijer
- Perha Pharmaceuticals, Hôtel de Recherche, Roscoff, France
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, New York, NY, United States
- *Correspondence: Marc Flajolet, ,
| |
Collapse
|
39
|
Miller AH, Halloran MC. Mechanistic insights from animal models of neurofibromatosis type 1 cognitive impairment. Dis Model Mech 2022; 15:276464. [PMID: 36037004 PMCID: PMC9459395 DOI: 10.1242/dmm.049422] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is an autosomal-dominant neurogenetic disorder caused by mutations in the gene neurofibromin 1 (NF1). NF1 predisposes individuals to a variety of symptoms, including peripheral nerve tumors, brain tumors and cognitive dysfunction. Cognitive deficits can negatively impact patient quality of life, especially the social and academic development of children. The neurofibromin protein influences neural circuits via diverse cellular signaling pathways, including through RAS, cAMP and dopamine signaling. Although animal models have been useful in identifying cellular and molecular mechanisms that regulate NF1-dependent behaviors, translating these discoveries into effective treatments has proven difficult. Clinical trials measuring cognitive outcomes in patients with NF1 have mainly targeted RAS signaling but, unfortunately, resulted in limited success. In this Review, we provide an overview of the structure and function of neurofibromin, and evaluate several cellular and molecular mechanisms underlying neurofibromin-dependent cognitive function, which have recently been delineated in animal models. A better understanding of neurofibromin roles in the development and function of the nervous system will be crucial for identifying new therapeutic targets for the various cognitive domains affected by NF1. Summary: Neurofibromin influences neural circuits through RAS, cAMP and dopamine signaling. Exploring the mechanisms underlying neurofibromin-dependent behaviors in animal models might enable future treatment of the various cognitive deficits that are associated with neurofibromatosis type 1.
Collapse
Affiliation(s)
- Andrew H Miller
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA.,Neuroscience Training Program, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Mary C Halloran
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI 53706, USA.,Department of Neuroscience, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
40
|
Darrigo Junior LG, Ferraz VEDF, Cormedi MCV, Araujo LHH, Magalhães MPS, Carneiro RC, Sales LHN, Suchmacher M, Cunha KS, Filho AB, Azulay DR, Geller M. Epidemiological profile and clinical characteristics of 491 Brazilian patients with neurofibromatosis type 1. Brain Behav 2022; 12:e2599. [PMID: 35506373 PMCID: PMC9226847 DOI: 10.1002/brb3.2599] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 03/08/2022] [Accepted: 03/23/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a chronic and progressive autosomal dominant genetic and sporadic disease characterized by cutaneous and neurological abnormalities. Plexiform neurofibroma (PN), a significant cause of clinical complications in NF-1, is a benign tumor of the peripheral nerve sheath that involves multiple nerve fascicles. Although there is an important number of patients who are affected by NF1 in Brazil, there is little data on the behavior of the disease in the national literature as well as in other low- and middle-income countries. METHODS We performed a retrospective analysis of 491 patients with NF1 followed at two reference centers in Brazil. RESULTS Approximately 38% of patients had PNs, resulting in reduced life quality. The median patient age with PNs was 30 years (range: 6 to 83 years). Head and neck, and extremity were the main affected locations with 35.8 and 30.6%, respectively. PNs were classified as asymptomatic in 25.1% of patients, while 52.5% presented symptomatic and inoperable tumors. The most common manifestations related to PNs were disfigurement and orthopedic involvement. Twenty patients developed neoplasms and ten (50%) presented with malignant peripheral nerve sheath tumors (MPNST). The prevalence of MPNST in our study was 2.9%. CONCLUSIONS Patients with NF1 experience clinically significant morbidity, especially when it is associated with PN. Though there are many patients affected by NF1 in Brazil and other low- and middle-income countries, there is little data available in the corresponding literature. Our results are comparable to the previous results reported from higher-income countries and international registries.
Collapse
Affiliation(s)
| | | | | | | | | | - Rafaella Curis Carneiro
- Immunology Department, Fundação Educacional Serra dos Órgãos (UNIFESO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis Henrique Nunes Sales
- Immunology Department, Fundação Educacional Serra dos Órgãos (UNIFESO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mendel Suchmacher
- Immunology Department, Fundação Educacional Serra dos Órgãos (UNIFESO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Karin Soares Cunha
- Department of Pathology and Post-graduation Program in Pathology, School of Medicine, Fluminense Federal University, Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - David Rubem Azulay
- Dermatology Service, Prof. Rubem David Azulay Dermatology Institute, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Mauro Geller
- Immunology Department, Fundação Educacional Serra dos Órgãos (UNIFESO), Rio de Janeiro, Rio de Janeiro, Brazil.,Clinical Immunology, Instituto de Pós-Graduação Médica Carlos Chagas (IPGMCC), Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
41
|
Roman Souza G, Abdalla A, Mahadevan D. Clinical Trials Targeting Neurofibromatoses-associated Tumors: A Systematic Review. Neurooncol Adv 2022; 4:vdac005. [PMID: 35291225 PMCID: PMC8919406 DOI: 10.1093/noajnl/vdac005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background There is a paucity of literature that comprehensively analyzes previous and current clinical trials targeting neurofibromatoses-related tumors. This article aims to provide readers with drug development efforts targeting these tumors by analyzing translational and clinical findings. Methods This systematic review was written according to the PRISMA guidelines. Inclusion criteria were clinical trials involving patients with neurofibromatosis type 1, type 2, or schwannomatosis that were treated with therapies targeting neurofibromatoses-associated tumors and that were registered on clinicaltrials.gov. In addition, a search was performed in PubMed, Web of Science, Google Scholar, and Embase European for articles fully describing these clinical trials. Results A total of 265 clinical trials were registered and screened for eligibility. Ninety-two were included in this systematic review involving approximately 4636 participants. The number of therapies analyzed was more than 50. Drugs under investigation mainly act on the MAPK/ERK and PI3K/AKT/mTOR pathways, tumor microenvironment, or aberrantly over-expressed cell surface receptors. Selumetinib was the most effective medication for treating a neurofibromatosis type 1-associated tumor with approximately 68%–71% partial response for inoperable or progressive plexiform neurofibromas in children 2 years of age and older and bevacizumab for a neurofibromatosis type 2-related tumor with approximately 36%–41% partial response for vestibular schwannomas in patients 12 years of age and older. Conclusions This systematic review presents the results of previous clinical investigations and those under development for neurofibromatoses-associated tumors. Clinicians may use this information to strategize patients to appropriate clinical trials.
Collapse
Affiliation(s)
- Gabriel Roman Souza
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Ahmed Abdalla
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| | - Daruka Mahadevan
- Institute for Drug Development, Division of Hematology and Medical Oncology, Mays Cancer Center, University of Texas Health San Antonio MD Anderson Cancer Center, Texas, United States of America
| |
Collapse
|
42
|
External Control Arms in Oncology: Current Use and Future Directions. Ann Oncol 2022; 33:376-383. [DOI: 10.1016/j.annonc.2021.12.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 12/21/2021] [Accepted: 12/27/2021] [Indexed: 12/14/2022] Open
|
43
|
Acar S, Armstrong AE, Hirbe AC. Plexiform neurofibroma: shedding light on the investigational agents in clinical trials. Expert Opin Investig Drugs 2021; 31:31-40. [PMID: 34932916 DOI: 10.1080/13543784.2022.2022120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Neurofibromatosis Type 1 (NF1) is an autosomal dominant genetic condition, which predisposes individuals to the development of plexiform neurofibromas (PN), benign nerve sheath tumors seen in 30-50% of patients with NF1. These tumors may cause significant pain and disfigurement or may compromise organ function. Given the morbidity associated with these tumors, therapeutic options for patients with NF1-related PN are necessary. AREAS COVERED We searched the www.clinicaltrials.gov database for 'plexiform neurofibroma.' This article summarizes completed and ongoing trials involving systemic therapies for PN. EXPERT OPINION Surgery is the mainstay treatment; however, complete resection is not possible in many cases. Numerous systemic therapies have been evaluated in patients with NF1, with MEK inhibitors (MEKi) showing the greatest efficacy for volumetric reduction and improvement in functional and patient-reported outcomes. The MEKi selumetinib is now FDA approved for the treatment of inoperable, symptomatic PN in pediatric NF1 patients. Questions remain regarding the use of this drug class in terms of when to initiate therapy, overall duration, reduced dosing schedules, and side effect management. Future studies are needed to fully understand the clinical application of MEKi and to evaluate other potential therapies through appropriate trial designs for this potentially devastating, manifestation in NF1.
Collapse
Affiliation(s)
- Simge Acar
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,School of Medicine, Koç University, Istanbul, Turkey
| | - Amy E Armstrong
- Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Mo, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela C Hirbe
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.,Division of Hematology and Oncology, Department of Pediatrics, Washington University School of Medicine, St. Louis, Mo, USA.,Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
44
|
Anderson MK, Johnson M, Thornburg L, Halford Z. A Review of Selumetinib in the Treatment of Neurofibromatosis Type 1-Related Plexiform Neurofibromas. Ann Pharmacother 2021; 56:716-726. [PMID: 34541874 DOI: 10.1177/10600280211046298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate the safety and efficacy of selumetinib, a novel MEK inhibitor, for the treatment of plexiform neurofibromas (PN) in patients with neurofibromatosis type 1 (NF1). DATA SOURCES An English-based literature search of PubMed, EMBASE, and ClinicalTrials.gov was conducted using the terms selumetinib AND neurofibromatosis from inception to August 1, 2021. STUDY SELECTION AND DATA EXTRACTION Relevant prescribing information, abstracts, and articles identified through the search were considered for inclusion in this review. DATA SYNTHESIS The open-label, multicenter, single-arm, phase II SPRINT trial demonstrated clinically significant improvements in PN-related complications. Of 50 symptomatic patients, 68% experienced a partial response, with a median change in tumor volume of -27.9% from baseline. Estimated progression-free survival at 3 years was 84%. Additionally, clinically meaningful improvements were seen on patient- and parent-reported assessments evaluating pain, range of motion, disfigurement, and quality of life. Overall, the adverse effect profile for selumetinib appears mild and manageable. RELEVANCE TO PATIENT CARE AND CLINICAL PRACTICE Selumetinib is the first FDA-approved treatment for inoperable PN in patients with NF1, demonstrating that MEK inhibition is a promising therapeutic strategy. Studies are ongoing to assess the effect of selumetinib on other NF1-associated tumor types and to determine the optimal dosing schedule and treatment duration. Cost and treatment burden must be considered when selecting selumetinib therapy. CONCLUSION Selumetinib exhibits impressive antitumor activity and sustained clinical benefit in patients lacking other viable treatment options. Further studies are warranted to determine the optimal age of initiation, treatment duration, and overall cost-effectiveness of selumetinib.
Collapse
|
45
|
Integrative pan-cancer analysis of MEK1 aberrations and the potential clinical implications. Sci Rep 2021; 11:18366. [PMID: 34526571 PMCID: PMC8443600 DOI: 10.1038/s41598-021-97840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Alterations of mitogen-activated protein kinase kinase 1 (MEK1) are commonly associated with tumorigenesis, and MEK1 is thought to be a suitable targeted therapy for various cancers. However, abnormal MEK1 alterations and their relevant clinical implications are unknown. Our research comprehensively analyzed the MEK1 alteration spectrum and provided novel insight for targeted therapies. There were 7694 samples covering 32 types of cancer from The Cancer Genome Atlas (TCGA) database. They were used to conduct an integrative analysis of MEK1 expression, alterations, functional impacts and clinical significance. There was a dramatic difference in the alteration frequency and distribution and clinical implications in 32 types of cancer from the TCGA. Skin cutaneous melanoma (SKCM) has the most alterations and has therapeutic targets located in the protein kinase domain, and the growing expression of SKCM is positively related to patient prognosis. MEK1 expression in lung adenocarcinoma (LUAD), kidney renal papillary cell carcinoma (KIRP), esophageal carcinoma (ESCA) and liver hepatocellular carcinoma (LIHC) is decreased, which is associated with better prognosis, while MEK1 expression in thymoma (THYM), stomach adenocarcinoma (STAD), kidney renal clear cell carcinoma (KIRC), testicular germ cell tumors (TGCTs) and head and neck squamous cell carcinoma (HNSC) is increased, which is associated with better prognosis. Mesothelioma (MESO) has the second highest alterations but has no therapy targets. This study provided a great and detailed interpretation of MEK1 expression, alterations and clinical implications in 32 types of cancer and reminded us to fill the gap in MEK1 research from a new perspective.
Collapse
|