1
|
Zheng H, Wang J, Zheng Y, Hong X, Wang L. Identification of genetic associations between acute myocardial infarction and non-small cell lung cancer. Front Mol Biosci 2024; 11:1502509. [PMID: 39712244 PMCID: PMC11659147 DOI: 10.3389/fmolb.2024.1502509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 11/19/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction A growing body of evidence suggests a potential connection between myocardial infarction (MI) and lung cancer (LC). However, the underlying pathogenesis and molecular mechanisms remain unclear. This research aims to identify common genes and pathways between MI and LC through bioinformatics analysis. Methods Two public datasets (GSE166780 and GSE8569) were analyzed to identify differentially expressed genes (DEGs). Common DEGs were enriched using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). Hub genes were identified and their diagnostic performance was evaluated. Gene co-expression networks, as well as regulatory networks involving miRNA-hub genes and TF-hub genes, were also constructed. Finally, candidate drugs were predicted. Results Among the datasets, 34 common trend DEGs were identified. Enrichment analysis linked these DEGs to key biological processes, cellular components, and molecular functions. Eight hub genes (CEBPA, TGFBR2, EZH2, JUNB, JUN, FOS, PLAU, COL1A1) were identified, demonstrating promising diagnostic accuracy. Key transcription factors associated with these hub genes include SP1, ESR1, CREB1, ETS1, NFKB1, and RELA, while key miRNAs include hsa-mir-101-3p, hsa-mir-124-3p, hsa-mir-29c-3p, hsa-mir-93-5p, and hsa-mir-155-5p. Additionally, potential therapeutic drugs were identified, with zoledronic acid anhydrous showing potential value in reducing the co-occurrence of the two diseases. Discussion This study identified eight common signature genes shared between NSCLC and AMI. Validation datasets confirmed the diagnostic value of key hub genes COL1A1 and PLAU. These findings suggest that shared hub genes may serve as novel therapeutic targets for patients with both diseases. Ten candidate drugs were predicted, with zoledronic acid showing potential for targeting dual hub genes, offering a promising therapeutic approach for the comorbidity of lung cancer and myocardial infarction.
Collapse
Affiliation(s)
- Hao Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Jie Wang
- Wenzhou Medical University, Wenzhou, China
- Department of Psychiatry, Wenzhou Seventh People’s Hospital, Wenzhou, China
| | - Yijia Zheng
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Xiaofan Hong
- First School of Clinical Medicine, Wenzhou Medical University, Wenzhou, China
| | - Luxi Wang
- Department of Neurology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Sun X, Setrerrahmane S, Li C, Hu J, Xu H. Nucleic acid drugs: recent progress and future perspectives. Signal Transduct Target Ther 2024; 9:316. [PMID: 39609384 PMCID: PMC11604671 DOI: 10.1038/s41392-024-02035-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 09/20/2024] [Accepted: 10/25/2024] [Indexed: 11/30/2024] Open
Abstract
High efficacy, selectivity and cellular targeting of therapeutic agents has been an active area of investigation for decades. Currently, most clinically approved therapeutics are small molecules or protein/antibody biologics. Targeted action of small molecule drugs remains a challenge in medicine. In addition, many diseases are considered 'undruggable' using standard biomacromolecules. Many of these challenges however, can be addressed using nucleic therapeutics. Nucleic acid drugs (NADs) are a new generation of gene-editing modalities characterized by their high efficiency and rapid development, which have become an active research topic in new drug development field. However, many factors, including their low stability, short half-life, high immunogenicity, tissue targeting, cellular uptake, and endosomal escape, hamper the delivery and clinical application of NADs. Scientists have used chemical modification techniques to improve the physicochemical properties of NADs. In contrast, modified NADs typically require carriers to enter target cells and reach specific intracellular locations. Multiple delivery approaches have been developed to effectively improve intracellular delivery and the in vivo bioavailability of NADs. Several NADs have entered the clinical trial recently, and some have been approved for therapeutic use in different fields. This review summarizes NADs development and evolution and introduces NADs classifications and general delivery strategies, highlighting their success in clinical applications. Additionally, this review discusses the limitations and potential future applications of NADs as gene therapy candidates.
Collapse
Affiliation(s)
- Xiaoyi Sun
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | | | - Chencheng Li
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Jialiang Hu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China
| | - Hanmei Xu
- Jiangsu Province Engineering Research Center of Synthetic Peptide Drug Discovery and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Parr MK, Keiler AM. Oligonucleotide therapeutics in sports? An antidoping perspective. Arch Pharm (Weinheim) 2024:e2400404. [PMID: 39449227 DOI: 10.1002/ardp.202400404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/26/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Within the last two decades, the European Medicines Agency and the US Food and Drug Administration have approved several gene therapies. One category is oligonucleotide therapeutics, which allow for the regulation of the expression of target genes. Besides already approved therapeutics, there are several preclinical and clinical trials ongoing. The World Anti-Doping Agency prohibits the use of "nucleic acids or nucleic acid analogs that may alter genome sequences and/or alter gene expression by any mechanism" as a nonspecified method at all times. Hence, the administration of nucleic acids or analogs by athletes would cause an Anti-Doping Rule Violation. Herein, we discuss types of oligonucleotide therapeutics, their potential to be misused in sports, and considerations to sample preparation and mass spectrometric approaches with regard to antidoping analysis.
Collapse
Affiliation(s)
- Maria K Parr
- Institute of Pharmacy, Pharmaceutical and Medicinal Chemistry, Freie Universität Berlin, Berlin, Germany
| | - Annekathrin M Keiler
- Institute of Doping Analysis & Sports Biochemistry, Kreischa, Germany
- Environmental Monitoring & Endocrinology, Faculty of Biology, Technische Universität Dresden, Dresden, Germany
| |
Collapse
|
4
|
Wang J, Huang W, Chai S, Gan J, Zeng Y, Long P, Pang L. A comprehensive analysis of CEBPA on prognosis and function in uterine corpus endometrial carcinoma. Sci Rep 2024; 14:23773. [PMID: 39390018 PMCID: PMC11467350 DOI: 10.1038/s41598-024-74242-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/24/2024] [Indexed: 10/12/2024] Open
Abstract
Uterine corpus endometrial carcinoma (UCEC) is one of the most common tumours of the female reproductive system. CCAAT enhancer-binding protein alpha (CEBPA) is a member of the transcription factor family involved in regulating processes such as cell proliferation, differentiation, metabolism, and the immune response. However, the role of CEBPA in UCEC has not been clarified. Here, we performed a comprehensive analysis to explore the expression level, prognostic value, immune infiltration and biological function of CEBPA in UCEC. In this study, we found that CEBPA expression was upregulated and associated with poor prognosis in UCEC patients. KEGG and GO analyses revealed that the genes positively correlated with CEBPA were enriched primarily in immune regulation and oxidative phosphorylation. Immune infiltration analysis revealed that CEBPA is strongly correlated with immune cell infiltration in UCEC. RT-qPCR indicated that CEBPA may regulate the OXPHOS level in Ishikawa cells. CCK-8, cell cycle, Transwell and scratch wound healing assays revealed that CEBPA promoted Ishikawa cell proliferation, invasion and migration. In addition, PPI and survival analyses suggested that CEBPG may be a potential target of CEBPA in UCEC. These results demonstrated that CEBPA may be a potential therapeutic target in UCEC.
Collapse
Affiliation(s)
- Jiaxing Wang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Weiyu Huang
- Department of Reproductive Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| | - Shiwei Chai
- Department of Gynecology, The Second Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, China
| | - Jiayi Gan
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Yulu Zeng
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China
| | - Ping Long
- Department of Laboratory Medicine, Guizhou Qiannan People's Hospital, Duyun, Guizhou, China.
| | - Lihong Pang
- Department of Prenatal Diagnosis, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China.
- Guangxi Key Laboratory of Thalassemia Research, Nanning, Guangxi, China.
- National Health Commission Key Laboratory of Thalassemia Medicine (Guangxi Medical University), Nanning, Guangxi, China.
- Key Laboratory of Early Prevention and Treatment for Regional High Frequency Tumor (Guangxi Medical University), Ministry of Education, Nanning, Guangxi, China.
| |
Collapse
|
5
|
Zhang L, Chen S, Zheng Z, Lin Y, Wang C, Gong Y, Qin A, Su J, Tang S. Artificial Neutrophil-Mediated CEBPA-saRNA Delivery to Ameliorate ALI/ARDS. ACS APPLIED MATERIALS & INTERFACES 2024; 16:51957-51969. [PMID: 39305228 DOI: 10.1021/acsami.4c09022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) still faces great challenges due to uncontrollable inflammation disorders, complicated causes of occurrence, and high mortality. Small-activating RNA (saRNA) has emerged as a novel and powerful gene-activating tool that may be useful in the treatment of ALI/ARDS. However, effective saRNA therapy is still challenged by the lack of effective and safe gene delivery vehicles. In this study, we develop a type of artificial neutrophil that is used to deliver saRNAs for ALI/ARDS treatment. The saRNA targeting CCAAT-enhancer binding protein α (CEBPA-saRNA) is complexed with H1 histone and further camouflaged with neutrophil membranes (NHR). Interestingly, we are the first to find that the H1 histone possesses the most effective binding capability to saRNA, compared to other subtypes. The prepared NHR shows excellent physicochemical properties, effective cellular uptake by the inflammatory M1 macrophages, and efficient activation of CEBPA, leading to significant M2 polarization. NHR shows an extended circulation lifetime and high-level accumulation in the inflamed lungs. The in vivo experiments indicate that NHR ameliorates ALI in a mouse model. This type of artificial neutrophil shows powerful inflammatory inhibition both in vitro and in vivo, which opens a new avenue for the treatment of ALI/ARDS.
Collapse
Affiliation(s)
- Lingmin Zhang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Sheng Chen
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - ZhouYikang Zheng
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yinshan Lin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Chen Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Yingjie Gong
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Aiping Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Jianfen Su
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Panyu Central Hospital and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou 511436, China
| | - Shunqing Tang
- Department of Biomedical Engineering, Jinan University, No. 601 Huangpu Road, Guangzhou 510632, China
| |
Collapse
|
6
|
Yu M, Yu H, Wang H, Xu X, Sun Z, Chen W, Yu M, Liu C, Jiang M, Zhang X. Tumor‑associated macrophages activated in the tumor environment of hepatocellular carcinoma: Characterization and treatment (Review). Int J Oncol 2024; 65:100. [PMID: 39239752 PMCID: PMC11387121 DOI: 10.3892/ijo.2024.5688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/08/2024] [Indexed: 09/07/2024] Open
Abstract
Hepatocellular carcinoma (HCC) tissue is rich in dendritic cells, T cells, B cells, macrophages, natural killer cells and cellular stroma. Together they form the tumor microenvironment (TME), which is also rich in numerous cytokines. Tumor‑associated macrophages (TAMs) are involved in the regulation of tumor development. TAMs in HCC receive stimuli in different directions, polarize in different directions and release different cytokines to regulate the development of HCC. TAMs are mostly divided into two cell phenotypes: M1 and M2. M1 TAMs secrete pro‑inflammatory mediators, and M2 TAMs secrete a variety of anti‑inflammatory and pro‑tumorigenic substances. The TAM polarization in HCC tumors is M2. Both direct and indirect methods for TAMs to regulate the development of HCC are discussed. TAMs indirectly support HCC development by promoting peripheral angiogenesis and regulating the immune microenvironment of the TME. In terms of the direct regulation between TAMs and HCC cells, the present review mainly focuses on the molecular mechanism. TAMs are involved in both the proliferation and apoptosis of HCC cells to regulate the quantitative changes of HCC, and stimulate the related invasive migratory ability and cell stemness of HCC cells. The present review aims to identify immunotherapeutic options based on the mechanisms of TAMs in the TME of HCC.
Collapse
Affiliation(s)
- Mingkai Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Haixia Yu
- Pharmacy College, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Hongmei Wang
- Department of Pharmacology, School of Medicine, Southeast University, Nanjing, Jiangsu 210009, P.R. China
| | - Xiaoya Xu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Zhaoqing Sun
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Wenshuai Chen
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Miaomiao Yu
- School of Clinical Medicine and Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Chunhua Liu
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Mingchun Jiang
- Department of Physiology and Neurobiology, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong 250000, P.R. China
| | - Xiaowei Zhang
- Department of Gastroenterology, The Second Affiliated Hospital of Shandong First Medical University, Taian, Shandong 271000, P.R. China
| |
Collapse
|
7
|
Zhang F, Wang B, Zhang W, Xu Y, Zhang C, Xue X. NEIL3 Upregulated by TFAP2A Promotes M2 Polarization of Macrophages in Liver Cancer via the Mediation of Glutamine Metabolism. Digestion 2024:1-15. [PMID: 39342941 DOI: 10.1159/000540804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 08/04/2024] [Indexed: 10/01/2024]
Abstract
INTRODUCTION Tumor-associated macrophages, which are part of the tumor microenvironment, are a major factor in cancer progression. However, a complete understanding of the regulatory mechanism of M2 polarization of macrophages (Mø) in liver cancer is yet to be established. This study aimed to investigate the potential mechanism by which NEIL3 influenced M2 Mø polarization in liver cancer. METHODS Bioinformatics analysis analyzed NEIL3 expression and its enriched pathways in liver cancer tissue, as well as its correlation with pathway genes. The upstream transcription factor of NEIL3, TFAP2A, was predicted and its expression in liver cancer tissue was analyzed. The binding relationship between the two was analyzed by dual-luciferase reporter and chromatin immunoprecipitation experiments. qRT-PCR assessed NEIL3 and TFAP2A levels in liver cancer cells. Cell viability was detected by CCK-8, while CD206 and CD86 expression was detected by immunofluorescence. IL-10 and CCR2 expressions were assessed using qRT-PCR, and M2 Mø quantity was detected using flow cytometry. Reagent kits tested glutamine (Gln) consumption, α-ketoglutarate, and glutamate content, as well as NADPH/NADP+ and GSH/GSSG ratios. Expression of Gln transport proteins was detected using Western blot. An animal model was established to investigate the influence of NEIL3 expression on liver cancer growth. RESULTS NEIL3 was highly expressed in liver cancer and promoted Mø M2 polarization through Gln metabolism. TFAP2A was identified as the upstream transcription factor of NEIL3 and was highly expressed in liver cancer. Rescue experiments presented that overexpression of NEIL3 reversed the suppressive effect of TFAP2A knockdown on Mø M2 polarization in liver cancer. In vivo experiments demonstrated that the knockdown of NEIL3 could significantly repress the growth of xenograft tumors. CONCLUSION This study suggested that the TFAP2A/NEIL3 axis promoted Mø M2 polarization through Gln metabolism, providing a theoretical basis for immune therapy targeting the liver cancer TME.
Collapse
Affiliation(s)
- Fabiao Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Binfeng Wang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Wenlong Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Yongfu Xu
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Caiming Zhang
- Department of Hepatobiliary Surgery, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Xiangyang Xue
- School of Basic Medical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
8
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
9
|
Rannikko JH, Hollmén M. Clinical landscape of macrophage-reprogramming cancer immunotherapies. Br J Cancer 2024; 131:627-640. [PMID: 38831013 PMCID: PMC11333586 DOI: 10.1038/s41416-024-02715-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/03/2024] [Accepted: 05/08/2024] [Indexed: 06/05/2024] Open
Abstract
Tumour-associated macrophages (TAMs) sustain a tumour-supporting and immunosuppressive milieu and therefore aggravate cancer prognosis. To modify TAM behaviour and unlock their anti-tumoural potential, novel TAM-reprogramming immunotherapies are being developed at an accelerating rate. At the same time, scientific discoveries have highlighted more sophisticated TAM phenotypes with complex biological functions and contradictory prognostic associations. To understand the evolving clinical landscape, we reviewed current and past clinically evaluated TAM-reprogramming cancer therapeutics and summarised almost 200 TAM-reprogramming agents investigated in more than 700 clinical trials. Observable overall trends include a high frequency of overlapping strategies against the same therapeutic targets, development of more complex strategies to improve previously ineffective approaches and reliance on combinatory strategies for efficacy. However, strong anti-tumour efficacy is uncommon, which encourages re-directing efforts on identifying biomarkers for eligible patient populations and comparing similar treatments earlier. Future endeavours will benefit from considering the shortcomings of past treatment strategies and accommodating the emerging complexity of TAM biology.
Collapse
Affiliation(s)
- Jenna H Rannikko
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland
- Turku Doctoral Program of Molecular Medicine, University of Turku, Turku, Finland
| | - Maija Hollmén
- MediCity Research Laboratory and InFLAMES Flagship, University of Turku, Turku, Finland.
- Faron Pharmaceuticals Ltd, Turku, Finland.
| |
Collapse
|
10
|
Su R, Wen Z, Zhan X, Long Y, Wang X, Li C, Su Y, Fei J. Small RNA activation of CDH13 expression overcome BCR-ABL1-independent imatinib-resistance and their signaling pathway studies in chronic myeloid leukemia. Cell Death Dis 2024; 15:615. [PMID: 39179585 PMCID: PMC11343752 DOI: 10.1038/s41419-024-07006-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/26/2024]
Abstract
BCR-ABL1-independent resistance to imatinib has no effective treatment due to its complexity and diversity. We previously reported that the CDH13 oncogene was expressed at low levels in BCR-ABL1-independent resistant CML cell lines. However, its effects on CML resistant cells and mechanisms remain unknown. This study investigated the effects of saRNA-based CDH13 activation on BCR-ABL1-independent imatinib resistance in CML and its underlying mechanism, and proposes a unique treatment method to overcome imatinib resistance. Specifically, this study demonstrated that using the DSIR (Designer of Small Interfering RNA) website tool, saRNAs targeting the CDH13 promoter region were generated and validated using qPCR and western blotting. Among the predicted sequences, C2 and C3 efficiently elevated CDH13 mRNA and protein expression, as well as inhibited the relative vitality of cells and the ability to form clones. After promoting CDH13 expression in K562-IMR cells, it inhabited the NF-κB signaling pathway and induced apoptosis in imatinib-resistant CML cells. LNP-saRNA (C3) was also observed to limit the growth of K562-IMR cells in vivo. From the above, the activation of CDH13 expression by saRNA promotes cell apoptosis by inhibiting the NF-κB signaling pathway to overcome to BCR-ABL1-independent resistance to imatinib in patients with CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/pharmacology
- Imatinib Mesylate/therapeutic use
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Drug Resistance, Neoplasm/genetics
- Drug Resistance, Neoplasm/drug effects
- Cadherins/metabolism
- Cadherins/genetics
- Signal Transduction/drug effects
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/genetics
- K562 Cells
- RNA, Small Interfering/metabolism
- Animals
- Apoptosis/drug effects
- Mice
- NF-kappa B/metabolism
- Mice, Nude
- Cell Line, Tumor
Collapse
Affiliation(s)
- Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Ziqi Wen
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xingri Zhan
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yiling Long
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Xiuyuan Wang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China
| | - Yubin Su
- Department of Cell Biology & Institute of Biomedicine, National Engineering Research Center of Genetic Medicine, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Provincial Key Laboratory of Bioengineering Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China.
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou, China.
- Guangdong Engineering Technology Research Center of Drug Development for Small Nucleic Acids, Guangzhou, China.
- Antisense Biopharmaceutical Technology Co Ltd, Guangzhou, China.
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, China.
| |
Collapse
|
11
|
Zhao M, Hou W, Pu D, Li Z, Tu L, Ow CJL, Tian J, Li W. Impact of Pulmonary microbiota on lung cancer treatment-related pneumonia. J Cancer 2024; 15:4503-4512. [PMID: 39006071 PMCID: PMC11242340 DOI: 10.7150/jca.93818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 05/19/2024] [Indexed: 07/16/2024] Open
Abstract
Background: The use of immunotherapy is progressively expanding for the treatment of lung cancer, either alone or in combination with radiotherapy. However, treatment-related adverse events, especially pneumonia, significantly limit the drug's effectiveness in treating lung cancer. The occurrence of lung cancer, immunotherapy, and pulmonary radiotherapy can all contribute to the imbalance in the pulmonary microbiota, rendering the lungs more susceptible to inflammatory reactions. Methods: Mouse models of lung transplantation tumor were treated with either PD-1 monoclonal antibody or radiotherapy alone, or in combination. The differences in lung inflammation among the different treatment groups were regularly observed by micro-CT. Further, bronchoalveolar lavage fluid was extracted for macrogenomic and cytokine detection. The transcriptional genome of tumor-filled lung tissue was also sequenced. Results: When treated with a combination of PD-1 and radiotherapy, the CT scans showed more severe pulmonary inflammation. However, with the addition of continuously administered antibiotics, no exacerbation of pneumonia signs was observed. Moreover, the differential gene expression and cytokine profiles in the combination treatment group differed from those in the PD-1 monotherapy group and the radiotherapy monotherapy group. This discrepancy does not seem to be a straightforward superimposition of radiation-induced pneumonia and immune-related pneumonia. Further exploration of changes in pulmonary microbiota revealed specific bacterial interactions with DEGs and cytokines. Conclusions: The underlying causes of this susceptibility are intricate and may be associated with the complexity of pulmonary microbiota imbalance, along with fluctuations in the abundance of specific microbiota species.
Collapse
Affiliation(s)
- Maoyuan Zhao
- Lung cancer center, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wang Hou
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dan Pu
- Lung cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhixi Li
- Lung cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Tu
- Lung cancer center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Calista Jia Ling Ow
- BSc (Hons) Biochemistry, School of Biological Sciences, The University of Manchester, Manchester, United Kingdom
| | - Jie Tian
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Weimin Li
- Department of Respiratory and Critical Care Medicine, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Precision Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Research Units of West China, Chinese Academy of Medical Sciences, West China Hospital, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Lin H, Liu C, Hu A, Zhang D, Yang H, Mao Y. Understanding the immunosuppressive microenvironment of glioma: mechanistic insights and clinical perspectives. J Hematol Oncol 2024; 17:31. [PMID: 38720342 PMCID: PMC11077829 DOI: 10.1186/s13045-024-01544-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 04/10/2024] [Indexed: 05/12/2024] Open
Abstract
Glioblastoma (GBM), the predominant and primary malignant intracranial tumor, poses a formidable challenge due to its immunosuppressive microenvironment, thereby confounding conventional therapeutic interventions. Despite the established treatment regimen comprising surgical intervention, radiotherapy, temozolomide administration, and the exploration of emerging modalities such as immunotherapy and integration of medicine and engineering technology therapy, the efficacy of these approaches remains constrained, resulting in suboptimal prognostic outcomes. In recent years, intensive scrutiny of the inhibitory and immunosuppressive milieu within GBM has underscored the significance of cellular constituents of the GBM microenvironment and their interactions with malignant cells and neurons. Novel immune and targeted therapy strategies have emerged, offering promising avenues for advancing GBM treatment. One pivotal mechanism orchestrating immunosuppression in GBM involves the aggregation of myeloid-derived suppressor cells (MDSCs), glioma-associated macrophage/microglia (GAM), and regulatory T cells (Tregs). Among these, MDSCs, though constituting a minority (4-8%) of CD45+ cells in GBM, play a central component in fostering immune evasion and propelling tumor progression, angiogenesis, invasion, and metastasis. MDSCs deploy intricate immunosuppressive mechanisms that adapt to the dynamic tumor microenvironment (TME). Understanding the interplay between GBM and MDSCs provides a compelling basis for therapeutic interventions. This review seeks to elucidate the immune regulatory mechanisms inherent in the GBM microenvironment, explore existing therapeutic targets, and consolidate recent insights into MDSC induction and their contribution to GBM immunosuppression. Additionally, the review comprehensively surveys ongoing clinical trials and potential treatment strategies, envisioning a future where targeting MDSCs could reshape the immune landscape of GBM. Through the synergistic integration of immunotherapy with other therapeutic modalities, this approach can establish a multidisciplinary, multi-target paradigm, ultimately improving the prognosis and quality of life in patients with GBM.
Collapse
Affiliation(s)
- Hao Lin
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Chaxian Liu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Ankang Hu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China
| | - Duanwu Zhang
- Children's Hospital of Fudan University, and Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| | - Ying Mao
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, People's Republic of China.
- National Center for Neurological Disorders, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, Neurosurgical Institute of Fudan University, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
13
|
Quaranta V, Ballarò C, Giannelli G. Macrophages Orchestrate the Liver Tumor Microenvironment. Cancers (Basel) 2024; 16:1772. [PMID: 38730724 PMCID: PMC11083142 DOI: 10.3390/cancers16091772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/26/2024] [Accepted: 05/02/2024] [Indexed: 05/13/2024] Open
Abstract
Liver cancer is one of the leading causes of cancer-related mortality. Hepatocellular carcinoma and cholangiocarcinoma are the most common types, and despite numerous advances, therapeutic options still remain poor for these cancer patients. Tumor development and progression strictly depend on a supportive tumor microenvironment (TME). Tumor-associated macrophages (TAMs) are the most abundant immune cells population within a tumorigenic liver; they sustain cancer cells' growth and invasiveness, and their presence is correlated with a poor prognosis. Furthermore, TAM cross-talk with cells and components of the TME promotes immunosuppression, a desmoplastic response, and angiogenesis. In this review, we summarize the latest advances in understanding TAM heterogeneity and function, with a particular focus on TAM modulation of the TME. We also discuss the potential of targeting macrophage subpopulations and how this is now being exploited in current clinical trials for the treatment of liver cancer.
Collapse
Affiliation(s)
- Valeria Quaranta
- National Institute of Gastroenterology, IRCCS “S. de Bellis” Research Hospital, Via Turi 27, Castellana Grotte, 70013 Bari, Italy (G.G.)
| | | | | |
Collapse
|
14
|
Zhang J, Gu J, Wang X, Ji C, Yu D, Wang M, Pan J, Santos HA, Zhang H, Zhang X. Engineering and Targeting Neutrophils for Cancer Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310318. [PMID: 38320755 DOI: 10.1002/adma.202310318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 01/29/2024] [Indexed: 02/22/2024]
Abstract
Neutrophils are the most abundant white blood cells in the circulation and act as the first line of defense against infections. Increasing evidence suggests that neutrophils possess heterogeneous phenotypes and functional plasticity in human health and diseases, including cancer. Neutrophils play multifaceted roles in cancer development and progression, and an N1/N2 paradigm of neutrophils in cancer is proposed, where N1 neutrophils exert anti-tumor properties while N2 neutrophils display tumor-supportive and immune-suppressive functions. Selective activation of beneficial neutrophil population and targeted inhibition or re-polarization of tumor-promoting neutrophils has shown an important potential in tumor therapy. In addition, due to the natural inflammation-responsive and physical barrier-crossing abilities, neutrophils and their derivatives (membranes and extracellular vesicles (EVs)) are regarded as advanced drug delivery carriers for enhanced tumor targeting and improved therapeutic efficacy. In this review, the recent advances in engineering neutrophils for drug delivery and targeting neutrophils for remodeling tumor microenvironment (TME) are comprehensively presented. This review will provide a broad understanding of the potential of neutrophils in cancer therapy.
Collapse
Affiliation(s)
- Jiahui Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianmei Gu
- Departmemt of Clinical Laboratory Medicine, Affiliated Tumor Hospital of Nantong University, Nantong, Jiangsu, 226361, China
| | - Xu Wang
- Department of Radiation Oncology, Jiangsu University Cancer Institute, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, China
| | - Cheng Ji
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Dan Yu
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Maoye Wang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Jianming Pan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, University Medical Center Groningen/University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- W.J. Kolff Institute for Biomedical Engineering and Materials Science, University Medical Center Groningen, University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Abo Akademi University, Turku, 20520, Finland
- Turku Bioscience Centre, University of Turku and Abo Akademi University, Turku, 20520, Finland
| | - Xu Zhang
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, 212013, China
| |
Collapse
|
15
|
Yan T, Yan N, Xia Y, Sawaswong V, Zhu X, Dias HB, Aibara D, Takahashi S, Hamada K, Saito Y, Li G, Liu H, Yan H, Velenosi TJ, Krausz KW, Huang J, Kimura S, Rotman Y, Qu A, Hao H, Gonzalez FJ. Hepatocyte-specific CCAAT/enhancer binding protein α restricts liver fibrosis progression. J Clin Invest 2024; 134:e166731. [PMID: 38557493 PMCID: PMC10977981 DOI: 10.1172/jci166731] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 02/09/2024] [Indexed: 04/04/2024] Open
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) - previously described as nonalcoholic steatohepatitis (NASH) - is a major driver of liver fibrosis in humans, while liver fibrosis is a key determinant of all-cause mortality in liver disease independent of MASH occurrence. CCAAT/enhancer binding protein α (CEBPA), as a versatile ligand-independent transcriptional factor, has an important function in myeloid cells, and is under clinical evaluation for cancer therapy. CEBPA is also expressed in hepatocytes and regulates glucolipid homeostasis; however, the role of hepatocyte-specific CEBPA in modulating liver fibrosis progression is largely unknown. Here, hepatic CEBPA expression was found to be decreased during MASH progression both in humans and mice, and hepatic CEBPA mRNA was negatively correlated with MASH fibrosis in the human liver. CebpaΔHep mice had markedly enhanced liver fibrosis induced by a high-fat, high-cholesterol, high-fructose diet or carbon tetrachloride. Temporal and spatial hepatocyte-specific CEBPA loss at the progressive stage of MASH in CebpaΔHep,ERT2 mice functionally promoted liver fibrosis. Mechanistically, hepatocyte CEBPA directly repressed Spp1 transactivation to reduce the secretion of osteopontin, a fibrogenesis inducer of hepatic stellate cells. Forced hepatocyte-specific CEBPA expression reduced MASH-associated liver fibrosis. These results demonstrate an important role for hepatocyte-specific CEBPA in liver fibrosis progression, and may help guide the therapeutic discoveries targeting hepatocyte CEBPA for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Tingting Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Nana Yan
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Yangliu Xia
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Vorthon Sawaswong
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Xinxin Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Henrique Bregolin Dias
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Daisuke Aibara
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Shogo Takahashi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Keisuke Hamada
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yoshifumi Saito
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | | | - Hui Liu
- Department of Pathology, Beijing YouAn Hospital, Capital Medical University, Beijing, China
| | - Hualong Yan
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Thomas J. Velenosi
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Kristopher W. Krausz
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Jing Huang
- Cancer and Stem Cell Epigenetics, Laboratory of Cancer Biology and Genetics, Center for Cancer Research, National Cancer Institute and
| | - Shioko Kimura
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaron Rotman
- Liver and Energy Metabolism Section, Liver Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, Maryland, USA
| | - Aijuan Qu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Key Laboratory of Remodeling-Related Cardiovascular Diseases, Ministry of Education, and Beijing Key Laboratory of Metabolic Disorder-Related Cardiovascular Diseases, Beijing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, Laboratory of Metabolic Regulation and Drug Target Discovery, China Pharmaceutical University, Nanjing, China
| | - Frank J. Gonzalez
- Cancer Innovation Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
16
|
Wang Y, Li Z, Chen W, Wang J, Huang Z, Yu XJ, Zhang YJ, Zheng L, Xu J. C/EBPα mediates the maturation and antitumor functions of macrophages in human hepatocellular carcinoma. Cancer Lett 2024; 585:216638. [PMID: 38266805 DOI: 10.1016/j.canlet.2024.216638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 01/09/2024] [Indexed: 01/26/2024]
Abstract
Recent studies have suggested that therapeutic upregulation of CCAAT/enhancer binding protein α (C/EBPα) prevents hepatocellular carcinoma (HCC) progression. However, the mechanisms underlying this outcome are not fully understood. In this study, we investigated the expression and functional roles of C/EBPα in human HCC, with a focus on monocytes/macrophages (Mφs). Paraffin-embedded tissues were used to visualize C/EBPα expression and analyze the prognostic value of C/EBPα+ monocytes/Mφs in HCC patients. The underlying regulatory mechanisms were examined using human monocyte-derived Mφs. The results showed that the expression of C/EBPα on monocytes/Mφs was significantly decreased in intra-tumor tissues compared to the corresponding peri-tumor tissues. C/EBPα+ monocytes/Mφs displayed well-differentiation and antitumor capacities, and the accumulation of these cells in tissue was associated with antitumor immune responses and predicted longer overall survival (OS) of HCC patients. Mechanistic studies demonstrated that C/EBPα was required for Mφ maturation and HLA-DR, CD169 and CD86 expression, which initiates antitumor cytotoxic T-cell responses; however, these effects were inhibited by monocyte autocrine IL-6- and IL-1β-induced suppression of mTOR1 signaling. Reprogramming Mφs via the upregulation of C/EBPα may provide a novel strategy for cancer immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Yongchun Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhixiong Li
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weibai Chen
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Junfeng Wang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Zhijie Huang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xing-Juan Yu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yao-Jun Zhang
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Department of Liver Surgery, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Limin Zheng
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China; Key Laboratory of Gene Function and Regulation of the Ministry of Education, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Jing Xu
- Collaborative Innovation Center for Cancer Medicine, State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
17
|
Fan L, Jiang W, Chen C, Gao H, Shi J, Wang D. CEBPA facilitates LOXL2 and LOXL3 transcription to promote BCL-2 stability and thus enhances the growth and metastasis of lung carcinoma cells in vitro. Exp Cell Res 2024; 435:113937. [PMID: 38242344 DOI: 10.1016/j.yexcr.2024.113937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/27/2023] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Lung carcinoma (LC) is a complicated and highly heterogeneous disease with high morbidity and mortality. Both lysyl oxidase-like (LOXL) 2 and 3 act in cancer progression. This work endeavors to illustrate the influence of LOXL2/LOXL3 on LC progression and the underlying mechanisms. LOXL family genes and CCAAT enhancer binding protein A (CEBPA) were analyzed in the TCGA database for their expression patterns in LC patients and their correlations with the patient's prognosis. CEBPA, LOXL2, and LOXL3 expression levels were determined in LC cells. Gain- and loss-of-function assays were conducted, followed by assays for cell proliferation, epithelial-mesenchymal transition (EMT), apoptosis, invasion, and migration. The binding of CEBPA or B cell lymphoma protein (BCL)-2 to LOXL2/LOXL3 was verified. The ubiquitination level of BCL-2 and histone acetylation level of LOXL2/LOXL3 in LC cells were analyzed. Database analyses revealed that LC patients had high CEBPA, LOXL2, and LOXL3 expression, which were related to poor prognosis. LC cells also exhibited high CEBPA, LOXL2, and LOXL3 levels. LOXL2/LOXL3 knockdown subdued EMT, proliferation, migration, and invasion while enhancing the apoptosis of LC cells. LOXL2/LOXL3 could bind to CEBPA and BCL-2. LOXL2/LOXL3 knockdown upregulated BCL-2 ubiquitination level and diminished BCL-2 expression in LC cells. CEBPA recruited Tip60 to enhance histone acetylation and transcription of LOXL2/LOXL3 in LC cells. BCL-2 overexpression abolished the impacts of LOXL2/LOXL3 knockdown on LC cells. In conclusion, CEBPA boosts LOXL2 and LOXL3 transcription to facilitate BCL-2 stability by recruiting Tip60 and thus contributes to LC cell growth and metastasis.
Collapse
Affiliation(s)
- Lihua Fan
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Weijuan Jiang
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Canjuan Chen
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Hong Gao
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Jiangwei Shi
- Department of Radiotherapy, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China
| | - Dewen Wang
- Radiotherapy Department, Jingjiang People's Hospital, Jingjiang, 214500, Jiangsu, China.
| |
Collapse
|
18
|
Lasser SA, Ozbay Kurt FG, Arkhypov I, Utikal J, Umansky V. Myeloid-derived suppressor cells in cancer and cancer therapy. Nat Rev Clin Oncol 2024; 21:147-164. [PMID: 38191922 DOI: 10.1038/s41571-023-00846-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2023] [Indexed: 01/10/2024]
Abstract
Anticancer agents continue to dominate the list of newly approved drugs, approximately half of which are immunotherapies. This trend illustrates the considerable promise of cancer treatments that modulate the immune system. However, the immune system is complex and dynamic, and can have both tumour-suppressive and tumour-promoting effects. Understanding the full range of immune modulation in cancer is crucial to identifying more effective treatment strategies. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of myeloid cells that develop in association with chronic inflammation, which is a hallmark of cancer. Indeed, MDSCs accumulate in the tumour microenvironment, where they strongly inhibit anticancer functions of T cells and natural killer cells and exert a variety of other tumour-promoting effects. Emerging evidence indicates that MDSCs also contribute to resistance to cancer treatments, particularly immunotherapies. Conversely, treatment approaches designed to eliminate cancer cells can have important additional effects on MDSC function, which can be either positive or negative. In this Review, we discuss the interplay between MDSCs and various other cell types found in tumours as well as the mechanisms by which MDSCs promote tumour progression. We also discuss the relevance and implications of MDSCs for cancer therapy.
Collapse
Affiliation(s)
- Samantha A Lasser
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Feyza G Ozbay Kurt
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Ihor Arkhypov
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Jochen Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.
- Skin Cancer Unit, German Cancer Research Center (Deutsches Krebsforschungszentrum (DKFZ)), Heidelberg, Germany.
- DKFZ-Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
19
|
Ding G, Yu H, Jin J, Qiao X, Ma J, Zhang T, Cheng X. Reciprocal relationship between cancer stem cells and myeloid-derived suppressor cells: implications for tumor progression and therapeutic strategies. Future Oncol 2024; 20:215-228. [PMID: 38390682 DOI: 10.2217/fon-2023-0907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024] Open
Abstract
Recently, there has been an increased focus on cancer stem cells (CSCs) due to their resilience, making them difficult to eradicate. This resilience often leads to tumor recurrence and metastasis. CSCs adeptly manipulate their surroundings to create an environment conducive to their survival. In this environment, myeloid-derived suppressor cells (MDSCs) play a crucial role in promoting epithelial-mesenchymal transition and bolstering CSCs' stemness. In response, CSCs attract MDSCs, enhancing their infiltration, expansion and immunosuppressive capabilities. This interaction between CSCs and MDSCs increases the difficulty of antitumor therapy. In this paper, we discuss the interplay between CSCs and MDSCs based on current research and highlight recent therapeutic strategies targeting either CSCs or MDSCs that show promise in achieving effective antitumor outcomes.
Collapse
Affiliation(s)
- Guiqing Ding
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Hua Yu
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jason Jin
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xi Qiao
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Jinyun Ma
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Tong Zhang
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xiaodong Cheng
- Institute of Clinical Immunology, Yue-yang Hospital of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| |
Collapse
|
20
|
Lee A, Lim J, Lim JS. Emerging roles of MITF as a crucial regulator of immunity. Exp Mol Med 2024; 56:311-318. [PMID: 38351314 PMCID: PMC10907664 DOI: 10.1038/s12276-024-01175-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Accepted: 12/03/2023] [Indexed: 02/19/2024] Open
Abstract
Microphthalmia-associated transcription factor (MITF), a basic helix-loop-helix leucine zipper transcription factor (bHLH-Zip), has been identified as a melanocyte-specific transcription factor and plays a critical role in melanocyte survival, differentiation, function, proliferation and pigmentation. Although numerous studies have explained the roles of MITF in melanocytes and in melanoma development, the function of MITF in the hematopoietic or immune system-beyond its function in melanin-producing cells-is not yet fully understood. However, there is convincing and increasing evidence suggesting that MITF may play multiple important roles in immune-related cells. Therefore, this review is focused on recent advances in elucidating novel functions of MITF in cancer progression and immune responses to cancer. In particular, we highlight the role of MITF as a central modulator in the regulation of immune responses, as elucidated in recent studies.
Collapse
Affiliation(s)
- Aram Lee
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jihyun Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea
| | - Jong-Seok Lim
- Department of Biological Science and the Cellular Heterogeneity Research Center, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| |
Collapse
|
21
|
Zhang C, Sui Y, Liu S, Yang M. The Roles of Myeloid-Derived Suppressor Cells in Liver Disease. Biomedicines 2024; 12:299. [PMID: 38397901 PMCID: PMC10886773 DOI: 10.3390/biomedicines12020299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/21/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Liver disease-related mortality is a major cause of death worldwide. Hepatic innate and adaptive immune cells play diverse roles in liver homeostasis and disease. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells. MDSCs can be broadly divided into monocytic MDSCs and polymorphonuclear or granulocytic MDSCs, and they functionally interact with both liver parenchymal and nonparenchymal cells, such as hepatocytes and regulatory T cells, to impact liver disease progression. The infiltration and activation of MDSCs in liver disease can be regulated by inflammatory chemokines and cytokines, tumor-associated fibroblasts, epigenetic regulation factors, and gut microbiota during liver injury and cancer. Given the pivotal roles of MDSCs in advanced liver diseases, they can be targeted to treat primary and metastatic liver cancer, liver generation, alcoholic and nonalcoholic liver disease, and autoimmune hepatitis. Currently, several treatments such as the antioxidant and anti-inflammatory agent berberine are under preclinical and clinical investigation to evaluate their therapeutic efficacy on liver disease and their effect on MDSC infiltration and function. Phenotypic alteration of MDSCs in different liver diseases that are in a model-dependent manner and lack special markers for distinct MDSCs are challenges for targeting MDSCs to treat liver disease. Multi-omics study is an option to uncover the features of disease-specific MDSCs and potential gene or protein targets for liver disease treatment. In summary, MDSCs play important roles in the pathogenesis and progression of liver disease by regulating both intrahepatic innate and adaptive immune responses.
Collapse
Affiliation(s)
- Chunye Zhang
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA;
| | - Yuxiang Sui
- School of Life Science, Shanxi Normal University, Linfen 041004, China
| | - Shuai Liu
- The First Affiliated Hospital, Zhejiang University, Hangzhou 310006, China
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, USA
- NextGen Precision Health Institute, University of Missouri, Columbia, MO 65212, USA
| |
Collapse
|
22
|
Patalano SD, Fuxman Bass P, Fuxman Bass JI. Transcription factors in the development and treatment of immune disorders. Transcription 2023:1-23. [PMID: 38100543 DOI: 10.1080/21541264.2023.2294623] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023] Open
Abstract
Immune function is highly controlled at the transcriptional level by the binding of transcription factors (TFs) to promoter and enhancer elements. Several TF families play major roles in immune gene expression, including NF-κB, STAT, IRF, AP-1, NRs, and NFAT, which trigger anti-pathogen responses, promote cell differentiation, and maintain immune system homeostasis. Aberrant expression, activation, or sequence of isoforms and variants of these TFs can result in autoimmune and inflammatory diseases as well as hematological and solid tumor cancers. For this reason, TFs have become attractive drug targets, even though most were previously deemed "undruggable" due to their lack of small molecule binding pockets and the presence of intrinsically disordered regions. However, several aspects of TF structure and function can be targeted for therapeutic intervention, such as ligand-binding domains, protein-protein interactions between TFs and with cofactors, TF-DNA binding, TF stability, upstream signaling pathways, and TF expression. In this review, we provide an overview of each of the important TF families, how they function in immunity, and some related diseases they are involved in. Additionally, we discuss the ways of targeting TFs with drugs along with recent research developments in these areas and their clinical applications, followed by the advantages and disadvantages of targeting TFs for the treatment of immune disorders.
Collapse
Affiliation(s)
- Samantha D Patalano
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
| | - Paula Fuxman Bass
- Facultad de Medicina, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Juan I Fuxman Bass
- Biology Department, Boston University, Boston, MA, USA
- Molecular Biology, Cellular Biology and Biochemistry Program, Boston University, Boston, MA, USA
- Bioinformatics Program, Boston University, Boston, MA, USA
| |
Collapse
|
23
|
Mei XC, Chen Q, Zuo S. Transient receptor potential-related risk model predicts prognosis of hepatocellular carcinoma patients. World J Gastrointest Oncol 2023; 15:2064-2076. [PMID: 38173438 PMCID: PMC10758653 DOI: 10.4251/wjgo.v15.i12.2064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/17/2023] [Accepted: 11/10/2023] [Indexed: 12/14/2023] Open
Abstract
BACKGROUND Members of the transient receptor potential (TRP) protein family shape oncogenic development, but the specific relevance of TRP-related genes in hepatocellular carcinoma (HCC) has yet to be defined. AIM To investigate the role of TRP genes in HCC, their association with HCC development and treatment was examined. METHODS HCC patient gene expression and clinical data were downloaded from The Cancer Genome Atlas database, and univariate and least absolute shrinkage and selection operator Cox regression models were employed to explore the TRP-related risk spectrum. Based on these analyses, clinically relevant TRP family genes were selected, and the association between the key TRP canonical type 1 (TRPC1) gene and HCC patient prognosis was evaluated. RESULTS In total, 28 TRP family genes were screened for clinical relevance, with multivariate analyses ultimately revealing three of these genes (TRPC1, TRP cation channel subfamily M member 2, and TRP cation channel subfamily M member 6) to be significantly associated with HCC patient prognosis (P < 0.05). These genes were utilized to establish a TRP-related risk model. Patients were separated into low- and high-risk groups based on the expression of these genes, and high-risk patients exhibited a significantly poorer prognosis (P = 0.001). Functional analyses highlighted pronounced differences in the immune status of patients in these two groups and associated enriched immune pathways. TRPC1 was identified as a candidate gene in this family worthy of further study, with HCC patients expressing higher TRPC1 levels exhibiting poorer survival outcomes. Consistently, quantitative, immunohistochemistry, and western blot analyses revealed increased TRPC1 expression in HCC. CONCLUSION These three TRP genes help determine HCC patient prognosis, providing insight into tumor immune status and immunological composition. These findings will help design combination therapies including immunotherapeutic and anti-TRP agents.
Collapse
Affiliation(s)
- Xiao-Cai Mei
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Qian Chen
- Department of Organ Transplantation, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| | - Shi Zuo
- Department of Hepatobiliary Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang 550000, Guizhou Province, China
| |
Collapse
|
24
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
25
|
Agirre-Lizaso A, Huici-Izagirre M, Urretabizkaia-Garmendia J, Rodrigues PM, Banales JM, Perugorria MJ. Targeting the Heterogeneous Tumour-Associated Macrophages in Hepatocellular Carcinoma. Cancers (Basel) 2023; 15:4977. [PMID: 37894344 PMCID: PMC10605535 DOI: 10.3390/cancers15204977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/30/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent and aggressive cancer that comprises a complex tumour microenvironment (TME). Tumour-associated macrophages (TAMs) are one of the most abundant immune cells present in the TME, and play a key role both in the development and in the progression of HCC. Thus, TAM-based immunotherapy has been presented as a promising strategy to complement the currently available therapies for HCC treatment. Among the novel approaches focusing on TAMs, reprogramming their functional state has emerged as a promising option for targeting TAMs as an immunotherapy in combination with the currently available treatment options. Nevertheless, a further understanding of the immunobiology of TAMs is still required. This review synthesizes current insights into the heterogeneous nature of TAMs in HCC and describes the mechanisms behind their pro-tumoural polarization focusing the attention on their interaction with HCC cells. Furthermore, this review underscores the potential involvement of TAMs' reprogramming in HCC therapy and highlights the urgency of advancing our understanding of these cells within the dynamic landscape of HCC.
Collapse
Affiliation(s)
- Aloña Agirre-Lizaso
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Maider Huici-Izagirre
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Josu Urretabizkaia-Garmendia
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
| | - Pedro M. Rodrigues
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Jesus M. Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, 31008 Pamplona, Spain
| | - Maria J. Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute, Donostia University Hospital, University of the Basque Country (UPV-EHU), 20014 Donostia-San Sebastian, Spain; (A.A.-L.); (M.H.-I.); (J.U.-G.); (P.M.R.); (J.M.B.)
- Centre for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Department of Medicine, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 20014 Donostia-San Sebastian, Spain
| |
Collapse
|
26
|
Gao Q, Zhan Y, Sun L, Zhu W. Cancer Stem Cells and the Tumor Microenvironment in Tumor Drug Resistance. Stem Cell Rev Rep 2023; 19:2141-2154. [PMID: 37477773 DOI: 10.1007/s12015-023-10593-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2023] [Indexed: 07/22/2023]
Abstract
Although there has been some progress in the efficacy of anti-cancer drugs, drug resistance remains challenging. Cancer stem cells (CSCs) are self-renewing and differentiate into cancer tissues with tumor heterogeneity. CSCs are associated with the progression of breast, colon, and lung cancers. Hence, recent studies have focused on the role of CSCs in resistance to anti-cancer drugs. Increasing evidence suggests that CSCs interact with components of the tumor microenvironment (TME), such as vascular and immune cells, as well as various cytokines, and are regulated by multiple signaling pathways, thereby promoting drug resistance in various cancers. Therefore, it is important to clarify the mechanisms underlying the crosstalk between CSCs and the TME for the development of targeted anti-cancer therapies.
Collapse
Affiliation(s)
- Qiuzhi Gao
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China
| | - Yixiang Zhan
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu, 215300, China
| | - Wei Zhu
- School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu, 212013, China.
| |
Collapse
|
27
|
Yi Z, Geng S, Li L. Comparative analyses of monocyte memory dynamics from mice to humans. Inflamm Res 2023; 72:1539-1549. [PMID: 37453943 PMCID: PMC10499745 DOI: 10.1007/s00011-023-01762-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/13/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
BACKGROUND Innate monocytes can adopt dynamic "memory" states ranging from low-grade inflammation to pathogenic exhaustion, dependent upon signal strength and history of challenges. Low-grade inflammatory monocytes facilitate the pathogenesis of chronic inflammatory diseases, while exhausted monocytes drive the pathogenesis of severe sepsis. Although clinical and basic studies suggest the conservation of key features of exhausted monocytes from human and murine sepsis, systems analyses of monocyte exhaustion among human and murine monocytes are lacking. METHODS We performed cross examination of septic monocytes scRNAseq data recently collected from human sepsis patients as well as experimental septic mice, in reference to monocytes experimentally exhausted in vitro. Furthermore, we performed pseudo-time analyses of in vitro programmed monocytes following prolonged challenges causing either low-grade inflammation or exhaustion. Additional comparative analyses of low-grade inflammatory monocytes were performed with scRNAseq data from selected human patients with chronic low-grade inflammatory diseases. RESULTS Our systems analyses reveal key features of monocyte exhaustion including reduced differentiation, pathogenic inflammation and immune suppression that are highly conserved in human and murine septic monocytes, and captured by in vitro experimental exhaustion. Pseudo-time analyses reveal that monocytes initially transition into a less-differentiated state with proliferative potential. The expansion of proliferative monocytes can be observed not only in experimentally challenged monocytes, but also in tissues of murine sepsis and human septic blood. We observed that monocytes similarly transition into the less-differentiated state when challenged with a subclinical dose endotoxin under chronic inflammatory conditions. Instead of being exhausted, monocytes with prolonged challenges with super-low dose endotoxin bifurcate into the low-grade inflammatory immune-enhancing or the chemotactic/adhesive state, often see in atherosclerosis or auto-immune diseases. CONCLUSIONS Key features of monocyte memory dynamics are identified and conserved in human and murine monocytes, which can be captured by prolonged challenges of innate signals with varying signal strength.
Collapse
Affiliation(s)
- Ziyue Yi
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Shuo Geng
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA
| | - Liwu Li
- Department of Biological Sciences, Virginia Tech, 149 Life Science 1 Bldg, Blacksburg, VA, 24061-0910, USA.
| |
Collapse
|
28
|
Blandino G, Dinami R, Marcia M, Anastasiadou E, Ryan BM, Palcau AC, Fattore L, Regazzo G, Sestito R, Loria R, Díaz Méndez AB, Cappelletto MC, Pulito C, Monteonofrio L, Calin GA, Sozzi G, Cheong JK, Aharonov R, Ciliberto G. The new world of RNA diagnostics and therapeutics. J Exp Clin Cancer Res 2023; 42:189. [PMID: 37507791 PMCID: PMC10386627 DOI: 10.1186/s13046-023-02752-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
The 5th Workshop IRE on Translational Oncology was held in Rome (Italy) on 27-28 March at the IRCCS Regina Elena National Cancer Institute. This meeting entitled "The New World of RNA diagnostics and therapeutics" highlightes the significant progress in the RNA field made over the last years. Research moved from pure discovery towards the development of diagnostic biomarkers or RNA-base targeted therapies seeking validation in several clinical trials. Non-coding RNAs in particular have been the focus of this workshop due to their unique properties that make them attractive tools for the diagnosis and therapy of cancer.This report collected the presentations of many scientists from different institutions that discussed recent oncology research providing an excellent overview and representative examples for each possible application of RNA as biomarker, for therapy or to increase the number of patients that can benefit from precision oncology treatment.In particular, the meeting specifically emphasized two key features of RNA applications: RNA diagnostic (Blandino, Palcau, Sestito, Díaz Méndez, Cappelletto, Pulito, Monteonofrio, Calin, Sozzi, Cheong) and RNA therapeutics (Dinami, Marcia, Anastasiadou, Ryan, Fattore, Regazzo, Loria, Aharonov).
Collapse
Affiliation(s)
- Giovanni Blandino
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy.
| | - Roberto Dinami
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Eleni Anastasiadou
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | | | - Alina Catalina Palcau
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Luigi Fattore
- SAFU Laboratory, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Giulia Regazzo
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Rosanna Sestito
- Preclinical models and new therapeutic agents Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Rossella Loria
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Ana Belén Díaz Méndez
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Maria Chiara Cappelletto
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Claudio Pulito
- Translational Oncology Research Unit, IRCCS, Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Monteonofrio
- Unit of Cellular Networks and Molecular Therapeutic Targets, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | | | - Jit Kong Cheong
- National University of Singapore Yong Loo Lin School of Medicine, NUS Centre for Cancer Research and Mirxes Lab Pte Ltd, Singapore, Singapore
| | | | - Gennaro Ciliberto
- Scientific Direction, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
29
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Long non-coding RNA-targeting therapeutics: discovery and development update. Expert Opin Drug Discov 2023; 18:1011-1029. [PMID: 37466388 DOI: 10.1080/17460441.2023.2236552] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/20/2023]
Abstract
INTRODUCTION lncRNAs are major players in regulatory networks orchestrating multiple cellular functions, such as 3D chromosomal interactions, epigenetic modifications, gene expression and others. Due to progress in the development of nucleic acid-based therapeutics, lncRNAs potentially represent easily accessible therapeutic targets. AREAS COVERED Currently, significant efforts are directed at studies that can tap the enormous therapeutic potential of lncRNAs. This review describes recent developments in this field, particularly focusing on clinical applications. EXPERT OPINION Extensive druggable target range of lncRNA combined with high specificity and accelerated development process of nucleic acid-based therapeutics open new prospects for treatment in areas of extreme unmet medical need, such as genetic diseases, aggressive cancers, protein deficiencies, and subsets of common diseases caused by known mutations. Although currently wide acceptance of lncRNA-targeting nucleic acid-based therapeutics is impeded by the need for parenteral or direct-to-CNS administration, development of less invasive techniques and orally available/BBB-penetrant nucleic acid-based therapeutics is showing early successes. Recently, mRNA-based COVID-19 vaccines have demonstrated clinical safety of all aspects of nucleic acid-based therapeutic technology, including multiple chemical modifications of nucleic acids and nanoparticle delivery. These trends position lncRNA-targeting drugs as significant players in the future of drug development, especially in the area of personalized medicine.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| |
Collapse
|
30
|
Khorkova O, Stahl J, Joji A, Volmar CH, Wahlestedt C. Amplifying gene expression with RNA-targeted therapeutics. Nat Rev Drug Discov 2023; 22:539-561. [PMID: 37253858 PMCID: PMC10227815 DOI: 10.1038/s41573-023-00704-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2023] [Indexed: 06/01/2023]
Abstract
Many diseases are caused by insufficient expression of mutated genes and would benefit from increased expression of the corresponding protein. However, in drug development, it has been historically easier to develop drugs with inhibitory or antagonistic effects. Protein replacement and gene therapy can achieve the goal of increased protein expression but have limitations. Recent discoveries of the extensive regulatory networks formed by non-coding RNAs offer alternative targets and strategies to amplify the production of a specific protein. In addition to RNA-targeting small molecules, new nucleic acid-based therapeutic modalities that allow highly specific modulation of RNA-based regulatory networks are being developed. Such approaches can directly target the stability of mRNAs or modulate non-coding RNA-mediated regulation of transcription and translation. This Review highlights emerging RNA-targeted therapeutics for gene activation, focusing on opportunities and challenges for translation to the clinic.
Collapse
Affiliation(s)
- Olga Khorkova
- OPKO Health, Miami, FL, USA
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
| | - Jack Stahl
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Aswathy Joji
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Chemistry, University of Miami, Miami, FL, USA
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA
| | - Claes Wahlestedt
- Center for Therapeutic Innovation, University of Miami, Miami, FL, USA.
- Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, USA.
- Department of Chemistry, University of Miami, Miami, FL, USA.
| |
Collapse
|
31
|
Head KZ, Bolatimi OE, Gripshover TC, Tan M, Li Y, Audam TN, Jones SP, Klinge CM, Cave MC, Wahlang B. Investigating the effects of long-term Aroclor 1260 exposure on fatty liver disease in a diet-induced obesity mouse model. FRONTIERS IN GASTROENTEROLOGY (LAUSANNE, SWITZERLAND) 2023; 2:1180712. [PMID: 37426695 PMCID: PMC10327714 DOI: 10.3389/fgstr.2023.1180712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Introduction Polychlorinated biphenyls (PCBs) are persistent environmental toxicants that have been implicated in numerous health disorders including liver diseases such as non-alcoholic fatty liver disease (NAFLD). Toxicant-associated NAFLD, also known as toxicant-associated fatty liver disease (TAFLD), consists of a spectrum of disorders ranging from steatosis and steatohepatitis to fibrosis and hepatocellular carcinoma. Previously, our group demonstrated that 12-week exposure to the PCB mixture, Aroclor 1260, exacerbated steatohepatitis in high-fat diet (HFD)-fed mice; however, the longer-term effects of PCBs on TAFLD remain to be elucidated. This study aims to examine the longer-term effects of Aroclor 1260 (>30 weeks) in a diet-induced obesity model to better understand how duration of exposure can impact TAFLD. Methods Male C57BL/6 mice were exposed to Aroclor 1260 (20 mg/kg) or vehicle control by oral gavage at the beginning of the study period and fed either a low-fat diet (LFD) or HFD throughout the study period. Results Aroclor 1260 exposure (>30 weeks) led to steatohepatitis only in LFD-fed mice. Several Aroclor 1260 exposed LFD-fed mice also developed hepatocellular carcinoma (25%), which was absent in HFD-fed mice. The LFD+Aroclor1260 group also exhibited decreased hepatic Cyp7a1 expression and increased pro-fibrotic Acta2 expression. In contrast, longer term Aroclor 1260 exposure in conjunction with HFD did not exacerbate steatosis or inflammatory responses beyond those observed with HFD alone. Further, hepatic xenobiotic receptor activation by Aroclor 1260 was absent at 31 weeks post exposure, suggesting PCB redistribution to the adipose and other extra-hepatic tissues with time. Discussion Overall, the results demonstrated that longer-term PCB exposure worsened TAFLD outcomes independent of HFD feeding and suggests altered energy metabolism as a potential mechanism fueling PCB mediated toxicity without dietary insult. Additional research exploring mechanisms for these longer-term PCB mediated toxicity in TAFLD is warranted.
Collapse
Affiliation(s)
- Kimberly Z. Head
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
| | - Oluwanifemi E. Bolatimi
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Tyler C. Gripshover
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Min Tan
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Yan Li
- Department of Surgery, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Timothy N. Audam
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Steven P. Jones
- Center for Cardiometabolic Science, Department of Medicine, Division of Environmental Medicine, Christina Lee Brown Envirome Institute, University of Louisville, Louisville, KY, United States
| | - Carolyn M. Klinge
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
| | - Matthew C. Cave
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- Department of Pharmacology and Toxicology, School of Medicine, University of Louisville, Louisville, KY, United States
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
- Robley Rex Department of Veterans Affairs Medical Center, Louisville, KY, United States
| | - Banrida Wahlang
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, School of Medicine, University of Louisville, Louisville, KY, United States
- The Hepatobiology and Toxicology Center, University of Louisville, Louisville, KY, United States
- The Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, United States
- University of Louisville (UofL) Superfund Research Center, University of Louisville, Louisville, KY, United States
| |
Collapse
|
32
|
Chen L, Wang Y. Interdisciplinary advances reshape the delivery tools for effective NASH treatment. Mol Metab 2023; 73:101730. [PMID: 37142161 DOI: 10.1016/j.molmet.2023.101730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/10/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Nonalcoholic steatohepatitis (NASH), a severe systemic and inflammatory subtype of nonalcoholic fatty liver disease, eventually develops into cirrhosis and hepatocellular carcinoma with few options for effective treatment. Currently potent small molecules identified in preclinical studies are confronted with adverse effects and long-term ineffectiveness in clinical trials. Nevertheless, highly specific delivery tools designed from interdisciplinary concepts may address the significant challenges by either effectively increasing the concentrations of drugs in target cell types, or selectively manipulating the gene expression in liver to resolve NASH. SCOPE OF REVIEW We focus on dissecting the detailed principles of the latest interdisciplinary advances and concepts that direct the design of future delivery tools to enhance the efficacy. Recent advances have indicated that cell and organelle-specific vehicles, non-coding RNA research (e.g. saRNA, hybrid miRNA) improve the specificity, while small extracellular vesicles and coacervates increase the cellular uptake of therapeutics. Moreover, strategies based on interdisciplinary advances drastically elevate drug loading capacity and delivery efficiency and ameliorate NASH and other liver diseases. MAJOR CONCLUSIONS The latest concepts and advances in chemistry, biochemistry and machine learning technology provide the framework and strategies for the design of more effective tools to treat NASH, other pivotal liver diseases and metabolic disorders.
Collapse
Affiliation(s)
- Linshan Chen
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China
| | - Yibing Wang
- School of Kinesiology, Shanghai University of Sport, Shanghai 200438, China; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health.
| |
Collapse
|
33
|
Barry ST, Gabrilovich DI, Sansom OJ, Campbell AD, Morton JP. Therapeutic targeting of tumour myeloid cells. Nat Rev Cancer 2023; 23:216-237. [PMID: 36747021 DOI: 10.1038/s41568-022-00546-2] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 02/08/2023]
Abstract
Myeloid cells are pivotal within the immunosuppressive tumour microenvironment. The accumulation of tumour-modified myeloid cells derived from monocytes or neutrophils - termed 'myeloid-derived suppressor cells' - and tumour-associated macrophages is associated with poor outcome and resistance to treatments such as chemotherapy and immune checkpoint inhibitors. Unfortunately, there has been little success in large-scale clinical trials of myeloid cell modulators, and only a few distinct strategies have been used to target suppressive myeloid cells clinically so far. Preclinical and translational studies have now elucidated specific functions for different myeloid cell subpopulations within the tumour microenvironment, revealing context-specific roles of different myeloid cell populations in disease progression and influencing response to therapy. To improve the success of myeloid cell-targeted therapies, it will be important to target tumour types and patient subsets in which myeloid cells represent the dominant driver of therapy resistance, as well as to determine the most efficacious treatment regimens and combination partners. This Review discusses what we can learn from work with the first generation of myeloid modulators and highlights recent developments in modelling context-specific roles for different myeloid cell subtypes, which can ultimately inform how to drive more successful clinical trials.
Collapse
Affiliation(s)
- Simon T Barry
- Bioscience, Early Oncology, AstraZeneca, Cambridge, UK.
| | | | - Owen J Sansom
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| | | | - Jennifer P Morton
- Cancer Research UK Beatson Institute, Glasgow, UK
- School of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
34
|
Jiang T, Gonzalez KM, Cordova LE, Lu J. Nanotechnology-enabled gene delivery for cancer and other genetic diseases. Expert Opin Drug Deliv 2023; 20:523-540. [PMID: 37017558 PMCID: PMC10164135 DOI: 10.1080/17425247.2023.2200246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 04/04/2023] [Indexed: 04/06/2023]
Abstract
INTRODUCTION Despite gene therapy is ideal for genetic abnormality-related diseases, the easy degradation, poor targeting, and inefficiency in entering targeted cells are plaguing the effective delivery of gene therapy. Viral and non-viral vectors have been used for delivering gene therapeutics in vivo by safeguarding nucleic acid agents to target cells and to reach the specific intracellular location. A variety of nanotechnology-enabled safe and efficient systems have been successfully developed to improve the targeting ability for effective therapeutic delivery of genetic drugs. AREAS COVERED In this review, we outline the multiple biological barriers associated with gene delivery process, and highlight recent advances to gene therapy strategy in vivo, including gene correction, gene silencing, gene activation and genome editing. We point out current developments and challenges exist of non-viral and viral vector systems in association with chemical and physical gene delivery technologies and their potential for the future. EXPERT OPINION This review focuses on the opportunities and challenges to various gene therapy strategy, with specific emphasis on overcoming the challenges through the development of biocompatibility and smart gene vectors for potential clinical application.
Collapse
Affiliation(s)
- Tong Jiang
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Karina Marie Gonzalez
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Leyla Estrella Cordova
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
| | - Jianqin Lu
- Skaggs Pharmaceutical Sciences Center, Department of Pharmacology & Toxicology, R. Ken Coit College of Pharmacy, The University of Arizona, Tucson, Arizona, 85721, United States
- NCI-designated University of Arizona Comprehensive Cancer Center, Tucson, Arizona, 85721, United States
- BIO5 Institute, The University of Arizona, Tucson, Arizona, 85721, United States
- Southwest Environmental Health Sciences Center, The University of Arizona, Tucson, 85721, United States
| |
Collapse
|
35
|
Chaib M, Tanveer UA, Makowski L. Myeloid cells in the era of cancer immunotherapy: Top 3 unanswered questions. Pharmacol Ther 2023; 244:108370. [PMID: 36871784 PMCID: PMC10798582 DOI: 10.1016/j.pharmthera.2023.108370] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/09/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023]
Abstract
Myeloid cells are increasingly being recognized as central players orchestrating or suppressing antitumor immune responses. With the advent of high-resolution analytical methods such as single-cell technologies, we now appreciate the heterogeneity and complexity of the myeloid compartment in the context of cancer. Because of their highly plastic nature, targeting myeloid cells has shown promising results either as a monotherapy or in combination with immunotherapy in preclinical models and cancer patients. However, the complexity of myeloid cell cellular crosstalk and molecular networks contributes to our poor understanding of the different myeloid cell subsets in tumorigenesis, which makes targeting myeloid cells challenging. Here, we summarize varied myeloid cell subsets and their contribution to tumor progression with a main focus on mononuclear phagocytes. The top three unanswered questions challenging the field of myeloid cells and cancer in the era of cancer immunotherapy are addressed. Through these questions, we discuss how myeloid cell origin and identity influence their function and disease outcomes. Different therapeutic strategies used to target myeloid cells in cancer are also addressed. Finally, the durability of myeloid cell targeting is interrogated by examining the complexity of resultant compensatory cellular and molecular mechanisms.
Collapse
Affiliation(s)
- Mehdi Chaib
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Ubaid A Tanveer
- Division of Hematology Oncology, Department of Medicine, College of Medicine, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Liza Makowski
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Division of Hematology Oncology, Department of Medicine, College of Medicine, USA; Center for Cancer Research, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| |
Collapse
|
36
|
Johnson KC, Corey DR. RNAi in cell nuclei: potential for a new layer of biological regulation and a new strategy for therapeutic discovery. RNA (NEW YORK, N.Y.) 2023; 29:415-422. [PMID: 36657971 PMCID: PMC10019369 DOI: 10.1261/rna.079500.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
RNA interference is almost always associated with post-transcriptional silencing in the cytoplasm. MicroRNAs (miRNAs) and critical RNAi protein factors like argonaute (AGO) and trinucleotide repeat binding containing 6 protein (TNRC6), however, are also found in cell nuclei, suggesting that nuclear miRNAs may be targets for gene regulation. Designed small duplex RNAs (dsRNAs) can modulate nuclear processes such as transcription and splicing, suggesting that they can also provide leads for therapeutic discovery. The goal of this Perspective is to provide the background on nuclear RNAi necessary to guide discussions on whether nuclear RNAi can play a role in therapeutic development programs.
Collapse
Affiliation(s)
- Krystal C Johnson
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| | - David R Corey
- UT Southwestern Medical Center, Departments of Pharmacology and Biochemistry, Dallas, Texas 75205, USA
| |
Collapse
|
37
|
Zhang MN, Yuan YL, Ao SH. Advances in the study of myeloid-derived suppressor cells in infectious lung diseases. Front Immunol 2023; 14:1125737. [PMID: 37063919 PMCID: PMC10090681 DOI: 10.3389/fimmu.2023.1125737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature cells capable of inhibiting T-cell responses. MDSCs have a crucial role in the regulation of the immune response of the body to pathogens, especially in inflammatory response and pathogenesis during anti-infection. Pathogens such as bacteria and viruses use MDSCs as their infectious targets, and even some pathogens may exploit the inhibitory activity of MDSCs to enhance pathogen persistence and chronic infection of the host. Recent researches have revealed the pathogenic significance of MDSCs in pathogens such as bacteria and viruses, despite the fact that the majority of studies on MDSCs have focused on tumor immune evasion. With the increased prevalence of viral respiratory infections, the resurgence of classical tuberculosis, and the advent of medication resistance in common bacterial pneumonia, research on MDSCs in these illnesses is intensifying. The purpose of this work is to provide new avenues for treatment approaches to pulmonary infectious disorders by outlining the mechanism of action of MDSCs as a biomarker and therapeutic target in pulmonary infectious diseases.
Collapse
Affiliation(s)
- Meng-Nan Zhang
- College of Integrated Chinese and Western Medicine and the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yu-Lai Yuan
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Su-Hua Ao
- The Department of Respirology of the Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou, Sichuan, China
- *Correspondence: Su-Hua Ao,
| |
Collapse
|
38
|
Liu R, Xu W, Zhu H, Dong Z, Dong H, Yin S. Aging aggravates acetaminophen-induced acute liver injury and inflammation through inordinate C/EBPα-BMP9 crosstalk. Cell Biosci 2023; 13:61. [PMID: 36945064 PMCID: PMC10029235 DOI: 10.1186/s13578-023-01014-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/13/2023] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND Previous studies have shown that bone morphogenetic protein 9 (BMP9) is almost exclusively produced in the liver and reaches tissues throughout the body as a secreted protein. However, the mechanism of BMP9 action and its role in aging-associated liver injury and inflammation are still unclear. RESULTS Aging significantly aggravates acetaminophen (APAP)-induced acute liver injury (ALI). Increased expression of CCAAT/enhancer binding protein α (C/EBPα) and BMP9 was identified in aged livers and in hepatocytes and macrophages (MФs) isolated from aged mice. Further analysis revealed that excess BMP9 was directly related to APAP-induced hepatocyte injury and death, as evidenced by activated drosophila mothers against decapentaplegic protein 1/5/9 (SMAD1/5/9) signaling, an increased dead cell/total cell ratio, decreased levels of ATG3 and ATG7, blocked autophagy, increased senescence-associated beta-galactosidase (SA-β-Gal) activity, and a higher rate of senescence-associated secretory phenotype (SASP) acquisition. In contrast, Bmp9 knockout (Bmp9-/-) partially alleviated the aforementioned manifestations of BMP9 overexpression. Moreover, BMP9 expression was found to be regulated by C/EBPα in vitro and in vivo. Notably, BMP9 also downregulated autophagy through its effect on autophagy-related genes (ATG3 and ATG7) in MΦs, which was associated with aggravated liver injury and SASP acquisition. CONCLUSIONS In summary, the present study highlights the crucial roles played by C/EBPα-BMP9 crosstalk and provides insights into the interrelationship between hepatocytes and MΦs during acute liver injury.
Collapse
Affiliation(s)
- Rui Liu
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - Wentao Xu
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, China
| | - He Zhu
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China
| | - Zijian Dong
- Clinical Medical College of Anhui Medical University, Hefei, 230036, China
| | - Huke Dong
- Clinical Medical College of Anhui Medical University, Hefei, 230036, China
| | - Shi Yin
- Department of Geriatrics, Affiliated Provincial Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230001, People's Republic of China.
- Department of Geriatrics, Division of Life Sciences and Medicine, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, 230001, Anhui, China.
| |
Collapse
|
39
|
Roth C, Kilpinen H, Kurian MA, Barral S. Histone lysine methyltransferase-related neurodevelopmental disorders: current knowledge and saRNA future therapies. Front Cell Dev Biol 2023; 11:1090046. [PMID: 36923252 PMCID: PMC10009263 DOI: 10.3389/fcell.2023.1090046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/06/2023] [Indexed: 03/02/2023] Open
Abstract
Neurodevelopmental disorders encompass a group of debilitating diseases presenting with motor and cognitive dysfunction, with variable age of onset and disease severity. Advances in genetic diagnostic tools have facilitated the identification of several monogenic chromatin remodeling diseases that cause Neurodevelopmental disorders. Chromatin remodelers play a key role in the neuro-epigenetic landscape and regulation of brain development; it is therefore not surprising that mutations, leading to loss of protein function, result in aberrant neurodevelopment. Heterozygous, usually de novo mutations in histone lysine methyltransferases have been described in patients leading to haploinsufficiency, dysregulated protein levels and impaired protein function. Studies in animal models and patient-derived cell lines, have highlighted the role of histone lysine methyltransferases in the regulation of cell self-renewal, cell fate specification and apoptosis. To date, in depth studies of histone lysine methyltransferases in oncology have provided strong evidence of histone lysine methyltransferase dysregulation as a determinant of cancer progression and drug resistance. As a result, histone lysine methyltransferases have become an important therapeutic target for the treatment of different cancer forms. Despite recent advances, we still lack knowledge about the role of histone lysine methyltransferases in neuronal development. This has hampered both the study and development of precision therapies for histone lysine methyltransferases-related Neurodevelopmental disorders. In this review, we will discuss the current knowledge of the role of histone lysine methyltransferases in neuronal development and disease progression. We will also discuss how RNA-based technologies using small-activating RNAs could potentially provide a novel therapeutic approach for the future treatment of histone lysine methyltransferase haploinsufficiency in these Neurodevelopmental disorders, and how they could be first tested in state-of-the-art patient-derived neuronal models.
Collapse
Affiliation(s)
- Charlotte Roth
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Helena Kilpinen
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland
- Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Manju A. Kurian
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Neurology, Great Ormond Street Hospital for Children, London, United Kingdom
| | - Serena Barral
- Molecular Neurosciences, Developmental Neurosciences Programme, Zayed Centre for Research into Rare Disease in Children, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
40
|
Li Z, Yang Y, Wu K, Li Y, Shi M. Myeloid leukemia factor 1: A "double-edged sword" in health and disease. Front Oncol 2023; 13:1124978. [PMID: 36814822 PMCID: PMC9939472 DOI: 10.3389/fonc.2023.1124978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/08/2023] Open
Abstract
The occurrence and development of malignancies are closely related to abnormal cell cycle regulation. Myeloid leukemia factor 1 (MLF1) is a small nucleocytoplasmic shuttling protein associated with cell cycle exit, apoptosis, and certain immune functions. Therefore, it is pertinent to explore the role of MLF1 in health and diseases. Studies to date have suggested that MLF1 could act as a double-edged sword, regulating biochemical activities directly or indirectly. In hematopoietic cells, it serves as a protective factor for the development of lineages, and in malignancies, it serves as an oncogenesis factor. The diversity of its functions depends on the binding partners, including tumor inhibitors, scaffolding molecules, mitochondrial membrane proteins, and transcription factors. Emerging evidence indicates that MLF1 influences immune responses as well. This paper reviews the structure, biological function, and research progress on MLF1 in health and diseases to provide new insights for future research.
Collapse
Affiliation(s)
- Zixuan Li
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China,Hematology Research Center of Yunnan Province, Kunming, China
| | - Yuanyuan Yang
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China,Hematology Research Center of Yunnan Province, Kunming, China
| | - Kun Wu
- Department of Clinical Laboratory, First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yuntao Li
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China,Hematology Research Center of Yunnan Province, Kunming, China
| | - Mingxia Shi
- Department of Hematology, the First Affiliated Hospital of Kunming Medical University, Kunming, China,Hematology Research Center of Yunnan Province, Kunming, China,*Correspondence: Mingxia Shi,
| |
Collapse
|
41
|
Gregory GL, Copple IM. Modulating the expression of tumor suppressor genes using activating oligonucleotide technologies as a therapeutic approach in cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 31:211-223. [PMID: 36700046 PMCID: PMC9840112 DOI: 10.1016/j.omtn.2022.12.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Tumor suppressor genes (TSGs) are frequently downregulated in cancer, leading to dysregulation of the pathways that they control. The continuum model of tumor suppression suggests that even subtle changes in TSG expression, for example, driven by epigenetic modifications or copy number alterations, can lead to a loss of gene function and a phenotypic effect. This approach to exploring tumor suppression provides opportunities for alternative therapies that may be able to restore TSG expression toward normal levels, such as oligonucleotide therapies. Oligonucleotide therapies involve the administration of exogenous nucleic acids to modulate the expression of specific endogenous genes. This review focuses on two types of activating oligonucleotide therapies, small-activating RNAs and synthetic mRNAs, as novel methods to increase the expression of TSGs in cancer.
Collapse
Affiliation(s)
- Georgina L. Gregory
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
| | - Ian M. Copple
- Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK
- Corresponding author: Department of Pharmacology & Therapeutics, Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool L69 3GE, UK.
| |
Collapse
|
42
|
Andrikakou P, Reebye V, Vasconcelos D, Yoon S, Voutila J, George AJT, Swiderski P, Habib R, Catley M, Blakey D, Habib NA, Rossi JJ, Huang KW. Enhancing SIRT1 Gene Expression Using Small Activating RNAs: A Novel Approach for Reversing Metabolic Syndrome. Nucleic Acid Ther 2022; 32:486-496. [PMID: 35895511 DOI: 10.1089/nat.2021.0115] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Metabolic syndrome (MetS) is a pathological condition characterized by abdominal obesity, insulin resistance, hypertension, and hyperlipidemia. Sirtuin 1 (SIRT1), a highly conserved histone deacetylase, is characterized as a key metabolic regulator and protector against aging-associated pathologies, including MetS. In this study, we investigate the therapeutic potential of activating SIRT1 using small activating RNAs (saRNA), thereby reducing inflammatory-like responses and re-establishing normal lipid metabolism. SIRT1 saRNA significantly increased SIRT1 messenger RNA (mRNA) and protein levels in both lipopolysaccharide-stimulated and nonstimulated macrophages. SIRT1 saRNA significantly decreased inflammatory-like responses, by reducing mRNA levels of key inflammatory cytokines, such as Tumor Necrosis Factor alpha, Interleukin 1 beta (IL-1β), Interleukin 6 (IL-6), and chemokines Monocyte Chemoattractant Protein-1 and keratinocyte chemoattractant. SIRT1 overexpression also significantly reduced phosphorylation of nuclear factor-κB and c-Jun N-terminal kinase, both key signaling molecules for the inflammatory pathway. To investigate the therapeutic effect of SIRT1 upregulation, we treated a high-fat diet model with SIRT1 saRNA conjugated to a transferrin receptor aptamer for delivery to the liver and cellular internalization. Animals in the SIRT1 saRNA treatment arm demonstrated significantly decreased weight gain with a significant reduction in white adipose tissue, triglycerides, fasting glucose levels, and intracellular lipid accumulation. These suggest treatment-induced changes to lipid and glucose metabolism in the animals. The results of this study demonstrate that targeted activation of SIRT1 by saRNAs is a potential strategy to reverse MetS.
Collapse
Affiliation(s)
- Pinelopi Andrikakou
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Vikash Reebye
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom
| | - Daniel Vasconcelos
- MiNA Therapeutics Limited, London, United Kingdom.,Center for Drug Discovery and Innovative Medicines (MedInUP), University of Porto, Porto, Portugal
| | - Sorah Yoon
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Jon Voutila
- MiNA Therapeutics Limited, London, United Kingdom
| | | | - Piotr Swiderski
- DNA/RNA Synthesis Core Facility, Department of Molecular Medicine, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Robert Habib
- MiNA Therapeutics Limited, London, United Kingdom
| | | | - David Blakey
- MiNA Therapeutics Limited, London, United Kingdom
| | - Nagy A Habib
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.,MiNA Therapeutics Limited, London, United Kingdom
| | - John J Rossi
- Department of Molecular and Cellular Biology, Beckman Research Institute of City of Hope, Duarte, California, USA
| | - Kai-Wen Huang
- Department of Surgery, Hepatitis Research Center, National Taiwan University Hospital, Taipei, Taiwan.,Graduate Institute of Clinical Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
43
|
Berger PA, Freitag J, Linkenbach SC, Merz L, Schork M, Thevissen S, Yildiz I, Beck JD. CIMT 2022: Report on the 19th Annual Meeting of the Association for Cancer Immunotherapy. Hum Vaccin Immunother 2022; 18:2124785. [PMID: 36222759 DOI: 10.1080/21645515.2022.2124785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The 19th Annual Meeting of the Association for Cancer Immunotherapy (CIMT), Europe's cancer immunotherapy meeting, was the first in-person event organized by CIMT since the beginning of the COVID-19 pandemic. As a hybrid event from May 10-12, the meeting attracted 920 academic and clinical professionals from over 40 countries, who met to discuss the latest advances in cancer immunology and immunotherapy research. This report summarizes the highlights of CIMT2022.
Collapse
|
44
|
Effect and Mechanism Analysis of Pig FUT8 Gene on Resistance to Escherichia coli F18 Infection. Int J Mol Sci 2022; 23:ijms232314713. [PMID: 36499043 PMCID: PMC9739813 DOI: 10.3390/ijms232314713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Post-weaning diarrhea caused by enterotoxigenic Escherichia coli F18 (E. coli F18) causes significant economic losses for pig producers. Fucosyltransferase 8 (FUT8) is a glycosyltransferase that catalyzes core fucosylation; however, its role in mediating the resistance to E. coli F18 infection in pigs remains unknown. In this study, we systematically verified the relationship between FUT8 expression and E. coli resistance. The results showed that FUT8 was expressed in all detected tissues of Meishan piglets and that its expression was significantly increased in the duodenum and jejunum of E. coli F18-sensitive individuals when compared to E. coli F18-resistant individuals. FUT8 expression increased after exposure to E. coli F18 (p < 0.05) and decreased significantly after LPS induction for 6 h (p < 0.01). Then, the IPEC-J2 stable cell line with FUT8 interference was constructed, and FUT8 knockdown decreased the adhesion of E. coli F18ac to IPEC-J2 cells (p < 0.05). Moreover, we performed a comparative transcriptome study of IPEC-J2 cells after FUT8 knockdown via RNA-seq. In addition, further expression verification demonstrated the significant effect of FUT8 on the glycosphingolipid biosynthesis and Toll-like signaling pathways. Moreover, the core promoter of FUT8, which was located at −1213 bp to −673 bp, was identified via luciferase assay. Interestingly, we found a 1 bp C base insertion mutation at the −774 bp region, which could clearly inhibit the transcriptional binding activity of C/EBPα to an FUT8 promoter. Therefore, it is speculated that FUT8 acts in a critical role in the process of E. coli infection; furthermore, the low expression of FUT8 is conducive to the enhancement of E. coli resistance in piglets. Our findings revealed the mechanism of pig FUT8 in regulating E. coli resistance, which provided a theoretical basis for the screening of E. coli resistance in Chinese local pig breeds.
Collapse
|
45
|
Strategies for Bottlenecks of rAAV-Mediated Expression in Skeletal and Cardiac Muscle of Duchenne Muscular Dystrophy. Genes (Basel) 2022; 13:genes13112021. [DOI: 10.3390/genes13112021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Gene therapy using the adeno-associated virus (rAAV) to deliver mini/micro- dystrophin is the current promising strategy for Duchenne Muscular Dystrophy (DMD). However, the further transformation of this strategy still faces many “bottlenecks”. Most gene therapies are only suitable for infants with strong muscle cell regeneration and immature immune system, and the treatment depends heavily on the high dose of rAAV. However, high-dose rAAV inevitably causes side effects such as immune response and acute liver toxicity. Therefore, how to reduce the degree of fibrosis and excessive immune response in older patients and uncouple the dependence association between therapeutic effect and high dose rAAV are crucial steps for the transformation of rAAV-based gene therapy. The article analyzes the latest research and finds that the application of utrophin, the homologous protein of dystrophin, could avoid the immune response associated with dystrophin, and the exploration of methods to improve the expression level of mini/micro-utrophin in striated muscle, combined with the novel MyoAAV with high efficiency and specific infection of striated muscle, is expected to achieve the same therapeutic efficacy under the condition of reducing the dose of rAAV. Furthermore, the delivery of allogeneic cardio sphere-derived cells (CDCs) with anti-inflammatory and anti-fibrotic characteristics combined with immune suppression can provide a continuous and appropriate “window period” for gene therapy. This strategy can expand the number of patients who could benefit from gene therapy.
Collapse
|
46
|
Feng H, Zhuo Y, Zhang X, Li Y, Li Y, Duan X, Shi J, Xu C, Gao Y, Yu Z. Tumor Microenvironment in Hepatocellular Carcinoma: Key Players for Immunotherapy. J Hepatocell Carcinoma 2022; 9:1109-1125. [PMID: 36320666 PMCID: PMC9618253 DOI: 10.2147/jhc.s381764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
Hepatocellular carcinoma (HCC) remains a serious medical therapeutic challenge as conventional curative avenues such as surgery and chemotherapy only benefit for few patients with limited tumor burden. Immunotherapy achieves clinical progress in the treatment of this prevalent malignant disease by virtue of the development of tumor immunology; however, most patients have experienced minimal or no clinical benefit in terms of overall survival. The complexity and diversity of tumor microenvironment (TME) built by immune and stromal cell subsets has been considered to be responsible for the insufficiency of immunotherapy. The advance of bioanalytical technology boosts the exploration of the composition and differentiation of these infiltrated cells, which reflect the immune state of the TME and impact the efficacy of the antitumor immune response. Targeting these cells to remodel the TME is one of the important immunotherapeutic approaches to improve HCC treatment. In this review, we focused on the role of these non-cancerous cells in the tumor progression, and elaborated their function on cancer immunotherapy when manipulating them as potential targets.
Collapse
Affiliation(s)
- Hai Feng
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yunhui Zhuo
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xuemei Zhang
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yuyao Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yue Li
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Xiangjuan Duan
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Jia Shi
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Chengbin Xu
- Department of Informatics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Yueqiu Gao
- Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Correspondence: Yueqiu Gao, Institute of Infectious Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| | - Zhuo Yu
- Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China,Zhuo Yu, Department of Liver Disease, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China, Tel +86 21 20256507, Fax +86 21 20256699, Email
| |
Collapse
|
47
|
Khorkova O, Stahl J, Joji A, Volmar CH, Zeier Z, Wahlestedt C. Natural antisense transcripts as drug targets. Front Mol Biosci 2022; 9:978375. [PMID: 36250017 PMCID: PMC9563854 DOI: 10.3389/fmolb.2022.978375] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent discovery of vast non-coding RNA-based regulatory networks that can be easily modulated by nucleic acid-based drugs has opened numerous new therapeutic possibilities. Long non-coding RNA, and natural antisense transcripts (NATs) in particular, play a significant role in networks that involve a wide variety of disease-relevant biological mechanisms such as transcription, splicing, translation, mRNA degradation and others. Currently, significant efforts are dedicated to harnessing these newly emerging NAT-mediated biological mechanisms for therapeutic purposes. This review will highlight the recent clinical and pre-clinical developments in this field and survey the advances in nucleic acid-based drug technologies that make these developments possible.
Collapse
Affiliation(s)
- Olga Khorkova
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Jack Stahl
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Aswathy Joji
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
| | - Claude-Henry Volmar
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Zane Zeier
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
| | - Claes Wahlestedt
- Center for Therapeutic Innovation and Department of Psychiatry and Behavioral Sciences, University of Miami, Miami, FL, United States
- Department of Chemistry, University of Miami, Miami, FL, United States
- *Correspondence: Claes Wahlestedt,
| |
Collapse
|
48
|
Senent Y, Tavira B, Pio R, Ajona D. The complement system as a regulator of tumor-promoting activities mediated by myeloid-derived suppressor cells. Cancer Lett 2022; 549:215900. [PMID: 36087681 DOI: 10.1016/j.canlet.2022.215900] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022]
Abstract
Tumor progression relies on the interaction between tumor cells and their surrounding tumor microenvironment (TME), which also influences therapeutic responses. The complement system, an essential part of innate immunity, has been traditionally considered an effector arm against tumors. However, established tumors co-opt complement-mediated immune responses in the TME to support chronic inflammation, activate cancer-related signaling pathways and hamper antitumor immune responses. In this context, myeloid-derived suppressor cells (MDSCs), a heterogeneous population of myeloid progenitors with immunosuppressive functions, are recognized as major mediators of tumor-associated complement activities. This review focuses on the impact of complement activation within the TME, with a special emphasis on MDSC functions and the involvement of the C5a/C5aR1 axis. We also discuss the translation of these findings into therapeutic advances based on complement inhibition.
Collapse
Affiliation(s)
- Yaiza Senent
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain
| | - Beatriz Tavira
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Medicine, Department of Pathology, Anatomy and Physiology, Pamplona, Spain
| | - Ruben Pio
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain.
| | - Daniel Ajona
- Cima-University of Navarra, Program in Solid Tumors, Pamplona, Spain; Cancer Center University of Navarra (CCUN), Pamplona, Spain; University of Navarra, School of Sciences, Department of Biochemistry and Genetics, Pamplona, Spain; Navarra Institute for Health Research (IdISNA), Pamplona, Spain; Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
49
|
Cheng K, Cai N, Zhu J, Yang X, Liang H, Zhang W. Tumor-associated macrophages in liver cancer: From mechanisms to therapy. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1112-1140. [PMID: 36069342 DOI: 10.1002/cac2.12345] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 06/28/2022] [Accepted: 07/26/2022] [Indexed: 12/19/2022]
Abstract
Multidimensional analyses have demonstrated the presence of a unique tumor microenvironment (TME) in liver cancer. Tumor-associated macrophages (TAMs) are among the most abundant immune cells infiltrating the TME and are present at all stages of liver cancer progression, and targeting TAMs has become one of the most favored immunotherapy strategies. In addition, macrophages and liver cancer cells have distinct origins. At the early stage of liver cancer, macrophages can provide a niche for the maintenance of liver cancer stem cells. In contrast, cancer stem cells (CSCs) or poorly differentiated tumor cells are key factors modulating macrophage activation. In the present review, we first propose the origin connection between precursor macrophages and liver cancer cells. Macrophages undergo dynamic phenotypic transition during carcinogenesis. In this course of such transition, it is critical to determine the appropriate timing for therapy and block specific markers to suppress pro-tumoral TAMs. The present review provides a more detailed discussion of transition trends of such surface markers than previous reviews. Complex crosstalk occurs between TAMs and liver cancer cells. TAMs play indispensable roles in tumor progression, angiogenesis, and autophagy due to their heterogeneity and robust plasticity. In addition, macrophages in the TME interact with other immune cells by directing cell-to-cell contact or secreting various effector molecules. Similarly, tumor cells combined with other immune cells can drive macrophage recruitment and polarization. Despite the latest achievements and the advancements in treatment strategies following TAMs studies, comprehensive discussions on the communication between macrophages and cancer cells or immune cells in liver cancer are currently lacking. In this review, we discussed the interactions between TAMs and liver cancer cells (from cell origin to maturation), the latest therapeutic strategies (including chimeric antigen receptor macrophages), and critical clinical trials for hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA) to provide a rationale for further clinical investigation of TAMs as a potential target for treating patients with liver cancer.
Collapse
Affiliation(s)
- Kun Cheng
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Ning Cai
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Jinghan Zhu
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Xing Yang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Huifang Liang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| | - Wanguang Zhang
- Hepatic Surgery Centre, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, P. R. China
| |
Collapse
|
50
|
Tumor immune contexture is a determinant of anti-CD19 CAR T cell efficacy in large B cell lymphoma. Nat Med 2022; 28:1872-1882. [PMID: 36038629 PMCID: PMC9499856 DOI: 10.1038/s41591-022-01916-x] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/27/2022] [Indexed: 12/12/2022]
Abstract
Axicabtagene ciloleucel (axi-cel) is an anti-CD19 chimeric antigen receptor (CAR) T cell therapy approved for relapsed/refractory large B cell lymphoma (LBCL) and has treatment with similar efficacy across conventional LBCL subtypes. Toward patient stratification, we assessed whether tumor immune contexture influenced clinical outcomes after axi-cel. We evaluated the tumor microenvironment (TME) of 135 pre-treatment and post-treatment tumor biopsies taken from 51 patients in the ZUMA-1 phase 2 trial. We uncovered dynamic patterns that occurred within 2 weeks after axi-cel. The biological associations among Immunoscore (quantification of tumor-infiltrating T cell density), Immunosign 21 (expression of pre-defined immune gene panel) and cell subsets were validated in three independent LBCL datasets. In the ZUMA-1 trial samples, clinical response and overall survival were associated with pre-treatment immune contexture as characterized by Immunoscore and Immunosign 21. Circulating CAR T cell levels were associated with post-treatment TME T cell exhaustion. TME enriched for chemokines (CCL5 and CCL22), γ-chain receptor cytokines (IL-15, IL-7 and IL-21) and interferon-regulated molecules were associated with T cell infiltration and markers of activity. Finally, high density of regulatory T cells in pre-treatment TME associated with reduced axi-cel–related neurologic toxicity. These findings advance the understanding of LBCL TME characteristics associated with clinical responses to anti-CD19 CAR T cell therapy and could foster biomarker development and treatment optimization for patients with LBCL. Analysis of tumor biopsies from the pivotal phase 1/2 ZUMA-1 trial identifies pre-treatment T cell–related characteristics that are associated with clinical response and neurologic toxicity after anti-CD19 CAR T cell therapy in patients with large B cell lymphoma.
Collapse
|